0001
0002 #include <linux/acpi.h>
0003 #include <linux/ctype.h>
0004 #include <linux/debugfs.h>
0005 #include <linux/delay.h>
0006 #include <linux/gpio/consumer.h>
0007 #include <linux/hwmon.h>
0008 #include <linux/i2c.h>
0009 #include <linux/interrupt.h>
0010 #include <linux/jiffies.h>
0011 #include <linux/mdio/mdio-i2c.h>
0012 #include <linux/module.h>
0013 #include <linux/mutex.h>
0014 #include <linux/of.h>
0015 #include <linux/phy.h>
0016 #include <linux/platform_device.h>
0017 #include <linux/rtnetlink.h>
0018 #include <linux/slab.h>
0019 #include <linux/workqueue.h>
0020
0021 #include "sfp.h"
0022 #include "swphy.h"
0023
0024 enum {
0025 GPIO_MODDEF0,
0026 GPIO_LOS,
0027 GPIO_TX_FAULT,
0028 GPIO_TX_DISABLE,
0029 GPIO_RATE_SELECT,
0030 GPIO_MAX,
0031
0032 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
0033 SFP_F_LOS = BIT(GPIO_LOS),
0034 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
0035 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
0036 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
0037
0038 SFP_E_INSERT = 0,
0039 SFP_E_REMOVE,
0040 SFP_E_DEV_ATTACH,
0041 SFP_E_DEV_DETACH,
0042 SFP_E_DEV_DOWN,
0043 SFP_E_DEV_UP,
0044 SFP_E_TX_FAULT,
0045 SFP_E_TX_CLEAR,
0046 SFP_E_LOS_HIGH,
0047 SFP_E_LOS_LOW,
0048 SFP_E_TIMEOUT,
0049
0050 SFP_MOD_EMPTY = 0,
0051 SFP_MOD_ERROR,
0052 SFP_MOD_PROBE,
0053 SFP_MOD_WAITDEV,
0054 SFP_MOD_HPOWER,
0055 SFP_MOD_WAITPWR,
0056 SFP_MOD_PRESENT,
0057
0058 SFP_DEV_DETACHED = 0,
0059 SFP_DEV_DOWN,
0060 SFP_DEV_UP,
0061
0062 SFP_S_DOWN = 0,
0063 SFP_S_FAIL,
0064 SFP_S_WAIT,
0065 SFP_S_INIT,
0066 SFP_S_INIT_PHY,
0067 SFP_S_INIT_TX_FAULT,
0068 SFP_S_WAIT_LOS,
0069 SFP_S_LINK_UP,
0070 SFP_S_TX_FAULT,
0071 SFP_S_REINIT,
0072 SFP_S_TX_DISABLE,
0073 };
0074
0075 static const char * const mod_state_strings[] = {
0076 [SFP_MOD_EMPTY] = "empty",
0077 [SFP_MOD_ERROR] = "error",
0078 [SFP_MOD_PROBE] = "probe",
0079 [SFP_MOD_WAITDEV] = "waitdev",
0080 [SFP_MOD_HPOWER] = "hpower",
0081 [SFP_MOD_WAITPWR] = "waitpwr",
0082 [SFP_MOD_PRESENT] = "present",
0083 };
0084
0085 static const char *mod_state_to_str(unsigned short mod_state)
0086 {
0087 if (mod_state >= ARRAY_SIZE(mod_state_strings))
0088 return "Unknown module state";
0089 return mod_state_strings[mod_state];
0090 }
0091
0092 static const char * const dev_state_strings[] = {
0093 [SFP_DEV_DETACHED] = "detached",
0094 [SFP_DEV_DOWN] = "down",
0095 [SFP_DEV_UP] = "up",
0096 };
0097
0098 static const char *dev_state_to_str(unsigned short dev_state)
0099 {
0100 if (dev_state >= ARRAY_SIZE(dev_state_strings))
0101 return "Unknown device state";
0102 return dev_state_strings[dev_state];
0103 }
0104
0105 static const char * const event_strings[] = {
0106 [SFP_E_INSERT] = "insert",
0107 [SFP_E_REMOVE] = "remove",
0108 [SFP_E_DEV_ATTACH] = "dev_attach",
0109 [SFP_E_DEV_DETACH] = "dev_detach",
0110 [SFP_E_DEV_DOWN] = "dev_down",
0111 [SFP_E_DEV_UP] = "dev_up",
0112 [SFP_E_TX_FAULT] = "tx_fault",
0113 [SFP_E_TX_CLEAR] = "tx_clear",
0114 [SFP_E_LOS_HIGH] = "los_high",
0115 [SFP_E_LOS_LOW] = "los_low",
0116 [SFP_E_TIMEOUT] = "timeout",
0117 };
0118
0119 static const char *event_to_str(unsigned short event)
0120 {
0121 if (event >= ARRAY_SIZE(event_strings))
0122 return "Unknown event";
0123 return event_strings[event];
0124 }
0125
0126 static const char * const sm_state_strings[] = {
0127 [SFP_S_DOWN] = "down",
0128 [SFP_S_FAIL] = "fail",
0129 [SFP_S_WAIT] = "wait",
0130 [SFP_S_INIT] = "init",
0131 [SFP_S_INIT_PHY] = "init_phy",
0132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
0133 [SFP_S_WAIT_LOS] = "wait_los",
0134 [SFP_S_LINK_UP] = "link_up",
0135 [SFP_S_TX_FAULT] = "tx_fault",
0136 [SFP_S_REINIT] = "reinit",
0137 [SFP_S_TX_DISABLE] = "tx_disable",
0138 };
0139
0140 static const char *sm_state_to_str(unsigned short sm_state)
0141 {
0142 if (sm_state >= ARRAY_SIZE(sm_state_strings))
0143 return "Unknown state";
0144 return sm_state_strings[sm_state];
0145 }
0146
0147 static const char *gpio_of_names[] = {
0148 "mod-def0",
0149 "los",
0150 "tx-fault",
0151 "tx-disable",
0152 "rate-select0",
0153 };
0154
0155 static const enum gpiod_flags gpio_flags[] = {
0156 GPIOD_IN,
0157 GPIOD_IN,
0158 GPIOD_IN,
0159 GPIOD_ASIS,
0160 GPIOD_ASIS,
0161 };
0162
0163
0164
0165
0166
0167
0168 #define T_WAIT msecs_to_jiffies(50)
0169 #define T_START_UP msecs_to_jiffies(300)
0170 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
0171
0172
0173
0174
0175 #define T_RESET_US 10
0176 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
0177
0178
0179
0180
0181
0182
0183 #define N_FAULT_INIT 5
0184 #define N_FAULT 5
0185
0186
0187
0188
0189 #define T_PHY_RETRY msecs_to_jiffies(50)
0190 #define R_PHY_RETRY 12
0191
0192
0193
0194
0195
0196
0197
0198
0199 #define T_SERIAL msecs_to_jiffies(300)
0200 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
0201 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
0202 #define R_PROBE_RETRY_INIT 10
0203 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
0204 #define R_PROBE_RETRY_SLOW 12
0205
0206
0207
0208
0209 #define SFP_PHY_ADDR 22
0210
0211 struct sff_data {
0212 unsigned int gpios;
0213 bool (*module_supported)(const struct sfp_eeprom_id *id);
0214 };
0215
0216 struct sfp {
0217 struct device *dev;
0218 struct i2c_adapter *i2c;
0219 struct mii_bus *i2c_mii;
0220 struct sfp_bus *sfp_bus;
0221 struct phy_device *mod_phy;
0222 const struct sff_data *type;
0223 size_t i2c_block_size;
0224 u32 max_power_mW;
0225
0226 unsigned int (*get_state)(struct sfp *);
0227 void (*set_state)(struct sfp *, unsigned int);
0228 int (*read)(struct sfp *, bool, u8, void *, size_t);
0229 int (*write)(struct sfp *, bool, u8, void *, size_t);
0230
0231 struct gpio_desc *gpio[GPIO_MAX];
0232 int gpio_irq[GPIO_MAX];
0233
0234 bool need_poll;
0235
0236 struct mutex st_mutex;
0237 unsigned int state_soft_mask;
0238 unsigned int state;
0239 struct delayed_work poll;
0240 struct delayed_work timeout;
0241 struct mutex sm_mutex;
0242 unsigned char sm_mod_state;
0243 unsigned char sm_mod_tries_init;
0244 unsigned char sm_mod_tries;
0245 unsigned char sm_dev_state;
0246 unsigned short sm_state;
0247 unsigned char sm_fault_retries;
0248 unsigned char sm_phy_retries;
0249
0250 struct sfp_eeprom_id id;
0251 unsigned int module_power_mW;
0252 unsigned int module_t_start_up;
0253 bool tx_fault_ignore;
0254
0255 #if IS_ENABLED(CONFIG_HWMON)
0256 struct sfp_diag diag;
0257 struct delayed_work hwmon_probe;
0258 unsigned int hwmon_tries;
0259 struct device *hwmon_dev;
0260 char *hwmon_name;
0261 #endif
0262
0263 #if IS_ENABLED(CONFIG_DEBUG_FS)
0264 struct dentry *debugfs_dir;
0265 #endif
0266 };
0267
0268 static bool sff_module_supported(const struct sfp_eeprom_id *id)
0269 {
0270 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
0271 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
0272 }
0273
0274 static const struct sff_data sff_data = {
0275 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
0276 .module_supported = sff_module_supported,
0277 };
0278
0279 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
0280 {
0281 if (id->base.phys_id == SFF8024_ID_SFP &&
0282 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
0283 return true;
0284
0285
0286
0287
0288
0289 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
0290 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
0291 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
0292 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
0293 return true;
0294
0295 return false;
0296 }
0297
0298 static const struct sff_data sfp_data = {
0299 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
0300 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
0301 .module_supported = sfp_module_supported,
0302 };
0303
0304 static const struct of_device_id sfp_of_match[] = {
0305 { .compatible = "sff,sff", .data = &sff_data, },
0306 { .compatible = "sff,sfp", .data = &sfp_data, },
0307 { },
0308 };
0309 MODULE_DEVICE_TABLE(of, sfp_of_match);
0310
0311 static unsigned long poll_jiffies;
0312
0313 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
0314 {
0315 unsigned int i, state, v;
0316
0317 for (i = state = 0; i < GPIO_MAX; i++) {
0318 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
0319 continue;
0320
0321 v = gpiod_get_value_cansleep(sfp->gpio[i]);
0322 if (v)
0323 state |= BIT(i);
0324 }
0325
0326 return state;
0327 }
0328
0329 static unsigned int sff_gpio_get_state(struct sfp *sfp)
0330 {
0331 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
0332 }
0333
0334 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
0335 {
0336 if (state & SFP_F_PRESENT) {
0337
0338 if (sfp->gpio[GPIO_TX_DISABLE])
0339 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
0340 state & SFP_F_TX_DISABLE);
0341 if (state & SFP_F_RATE_SELECT)
0342 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
0343 state & SFP_F_RATE_SELECT);
0344 } else {
0345
0346 if (sfp->gpio[GPIO_TX_DISABLE])
0347 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
0348 if (state & SFP_F_RATE_SELECT)
0349 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
0350 }
0351 }
0352
0353 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
0354 size_t len)
0355 {
0356 struct i2c_msg msgs[2];
0357 u8 bus_addr = a2 ? 0x51 : 0x50;
0358 size_t block_size = sfp->i2c_block_size;
0359 size_t this_len;
0360 int ret;
0361
0362 msgs[0].addr = bus_addr;
0363 msgs[0].flags = 0;
0364 msgs[0].len = 1;
0365 msgs[0].buf = &dev_addr;
0366 msgs[1].addr = bus_addr;
0367 msgs[1].flags = I2C_M_RD;
0368 msgs[1].len = len;
0369 msgs[1].buf = buf;
0370
0371 while (len) {
0372 this_len = len;
0373 if (this_len > block_size)
0374 this_len = block_size;
0375
0376 msgs[1].len = this_len;
0377
0378 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
0379 if (ret < 0)
0380 return ret;
0381
0382 if (ret != ARRAY_SIZE(msgs))
0383 break;
0384
0385 msgs[1].buf += this_len;
0386 dev_addr += this_len;
0387 len -= this_len;
0388 }
0389
0390 return msgs[1].buf - (u8 *)buf;
0391 }
0392
0393 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
0394 size_t len)
0395 {
0396 struct i2c_msg msgs[1];
0397 u8 bus_addr = a2 ? 0x51 : 0x50;
0398 int ret;
0399
0400 msgs[0].addr = bus_addr;
0401 msgs[0].flags = 0;
0402 msgs[0].len = 1 + len;
0403 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
0404 if (!msgs[0].buf)
0405 return -ENOMEM;
0406
0407 msgs[0].buf[0] = dev_addr;
0408 memcpy(&msgs[0].buf[1], buf, len);
0409
0410 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
0411
0412 kfree(msgs[0].buf);
0413
0414 if (ret < 0)
0415 return ret;
0416
0417 return ret == ARRAY_SIZE(msgs) ? len : 0;
0418 }
0419
0420 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
0421 {
0422 struct mii_bus *i2c_mii;
0423 int ret;
0424
0425 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
0426 return -EINVAL;
0427
0428 sfp->i2c = i2c;
0429 sfp->read = sfp_i2c_read;
0430 sfp->write = sfp_i2c_write;
0431
0432 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
0433 if (IS_ERR(i2c_mii))
0434 return PTR_ERR(i2c_mii);
0435
0436 i2c_mii->name = "SFP I2C Bus";
0437 i2c_mii->phy_mask = ~0;
0438
0439 ret = mdiobus_register(i2c_mii);
0440 if (ret < 0) {
0441 mdiobus_free(i2c_mii);
0442 return ret;
0443 }
0444
0445 sfp->i2c_mii = i2c_mii;
0446
0447 return 0;
0448 }
0449
0450
0451 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
0452 {
0453 return sfp->read(sfp, a2, addr, buf, len);
0454 }
0455
0456 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
0457 {
0458 return sfp->write(sfp, a2, addr, buf, len);
0459 }
0460
0461 static unsigned int sfp_soft_get_state(struct sfp *sfp)
0462 {
0463 unsigned int state = 0;
0464 u8 status;
0465 int ret;
0466
0467 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
0468 if (ret == sizeof(status)) {
0469 if (status & SFP_STATUS_RX_LOS)
0470 state |= SFP_F_LOS;
0471 if (status & SFP_STATUS_TX_FAULT)
0472 state |= SFP_F_TX_FAULT;
0473 } else {
0474 dev_err_ratelimited(sfp->dev,
0475 "failed to read SFP soft status: %pe\n",
0476 ERR_PTR(ret));
0477
0478 state = sfp->state;
0479 }
0480
0481 return state & sfp->state_soft_mask;
0482 }
0483
0484 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
0485 {
0486 u8 status;
0487
0488 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
0489 sizeof(status)) {
0490 if (state & SFP_F_TX_DISABLE)
0491 status |= SFP_STATUS_TX_DISABLE_FORCE;
0492 else
0493 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
0494
0495 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
0496 }
0497 }
0498
0499 static void sfp_soft_start_poll(struct sfp *sfp)
0500 {
0501 const struct sfp_eeprom_id *id = &sfp->id;
0502
0503 sfp->state_soft_mask = 0;
0504 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
0505 !sfp->gpio[GPIO_TX_DISABLE])
0506 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
0507 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
0508 !sfp->gpio[GPIO_TX_FAULT])
0509 sfp->state_soft_mask |= SFP_F_TX_FAULT;
0510 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
0511 !sfp->gpio[GPIO_LOS])
0512 sfp->state_soft_mask |= SFP_F_LOS;
0513
0514 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
0515 !sfp->need_poll)
0516 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
0517 }
0518
0519 static void sfp_soft_stop_poll(struct sfp *sfp)
0520 {
0521 sfp->state_soft_mask = 0;
0522 }
0523
0524 static unsigned int sfp_get_state(struct sfp *sfp)
0525 {
0526 unsigned int state = sfp->get_state(sfp);
0527
0528 if (state & SFP_F_PRESENT &&
0529 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
0530 state |= sfp_soft_get_state(sfp);
0531
0532 return state;
0533 }
0534
0535 static void sfp_set_state(struct sfp *sfp, unsigned int state)
0536 {
0537 sfp->set_state(sfp, state);
0538
0539 if (state & SFP_F_PRESENT &&
0540 sfp->state_soft_mask & SFP_F_TX_DISABLE)
0541 sfp_soft_set_state(sfp, state);
0542 }
0543
0544 static unsigned int sfp_check(void *buf, size_t len)
0545 {
0546 u8 *p, check;
0547
0548 for (p = buf, check = 0; len; p++, len--)
0549 check += *p;
0550
0551 return check;
0552 }
0553
0554
0555 #if IS_ENABLED(CONFIG_HWMON)
0556 static umode_t sfp_hwmon_is_visible(const void *data,
0557 enum hwmon_sensor_types type,
0558 u32 attr, int channel)
0559 {
0560 const struct sfp *sfp = data;
0561
0562 switch (type) {
0563 case hwmon_temp:
0564 switch (attr) {
0565 case hwmon_temp_min_alarm:
0566 case hwmon_temp_max_alarm:
0567 case hwmon_temp_lcrit_alarm:
0568 case hwmon_temp_crit_alarm:
0569 case hwmon_temp_min:
0570 case hwmon_temp_max:
0571 case hwmon_temp_lcrit:
0572 case hwmon_temp_crit:
0573 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
0574 return 0;
0575 fallthrough;
0576 case hwmon_temp_input:
0577 case hwmon_temp_label:
0578 return 0444;
0579 default:
0580 return 0;
0581 }
0582 case hwmon_in:
0583 switch (attr) {
0584 case hwmon_in_min_alarm:
0585 case hwmon_in_max_alarm:
0586 case hwmon_in_lcrit_alarm:
0587 case hwmon_in_crit_alarm:
0588 case hwmon_in_min:
0589 case hwmon_in_max:
0590 case hwmon_in_lcrit:
0591 case hwmon_in_crit:
0592 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
0593 return 0;
0594 fallthrough;
0595 case hwmon_in_input:
0596 case hwmon_in_label:
0597 return 0444;
0598 default:
0599 return 0;
0600 }
0601 case hwmon_curr:
0602 switch (attr) {
0603 case hwmon_curr_min_alarm:
0604 case hwmon_curr_max_alarm:
0605 case hwmon_curr_lcrit_alarm:
0606 case hwmon_curr_crit_alarm:
0607 case hwmon_curr_min:
0608 case hwmon_curr_max:
0609 case hwmon_curr_lcrit:
0610 case hwmon_curr_crit:
0611 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
0612 return 0;
0613 fallthrough;
0614 case hwmon_curr_input:
0615 case hwmon_curr_label:
0616 return 0444;
0617 default:
0618 return 0;
0619 }
0620 case hwmon_power:
0621
0622
0623
0624
0625
0626
0627 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
0628 channel == 1)
0629 return 0;
0630 switch (attr) {
0631 case hwmon_power_min_alarm:
0632 case hwmon_power_max_alarm:
0633 case hwmon_power_lcrit_alarm:
0634 case hwmon_power_crit_alarm:
0635 case hwmon_power_min:
0636 case hwmon_power_max:
0637 case hwmon_power_lcrit:
0638 case hwmon_power_crit:
0639 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
0640 return 0;
0641 fallthrough;
0642 case hwmon_power_input:
0643 case hwmon_power_label:
0644 return 0444;
0645 default:
0646 return 0;
0647 }
0648 default:
0649 return 0;
0650 }
0651 }
0652
0653 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
0654 {
0655 __be16 val;
0656 int err;
0657
0658 err = sfp_read(sfp, true, reg, &val, sizeof(val));
0659 if (err < 0)
0660 return err;
0661
0662 *value = be16_to_cpu(val);
0663
0664 return 0;
0665 }
0666
0667 static void sfp_hwmon_to_rx_power(long *value)
0668 {
0669 *value = DIV_ROUND_CLOSEST(*value, 10);
0670 }
0671
0672 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
0673 long *value)
0674 {
0675 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
0676 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
0677 }
0678
0679 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
0680 {
0681 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
0682 be16_to_cpu(sfp->diag.cal_t_offset), value);
0683
0684 if (*value >= 0x8000)
0685 *value -= 0x10000;
0686
0687 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
0688 }
0689
0690 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
0691 {
0692 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
0693 be16_to_cpu(sfp->diag.cal_v_offset), value);
0694
0695 *value = DIV_ROUND_CLOSEST(*value, 10);
0696 }
0697
0698 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
0699 {
0700 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
0701 be16_to_cpu(sfp->diag.cal_txi_offset), value);
0702
0703 *value = DIV_ROUND_CLOSEST(*value, 500);
0704 }
0705
0706 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
0707 {
0708 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
0709 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
0710
0711 *value = DIV_ROUND_CLOSEST(*value, 10);
0712 }
0713
0714 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
0715 {
0716 int err;
0717
0718 err = sfp_hwmon_read_sensor(sfp, reg, value);
0719 if (err < 0)
0720 return err;
0721
0722 sfp_hwmon_calibrate_temp(sfp, value);
0723
0724 return 0;
0725 }
0726
0727 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
0728 {
0729 int err;
0730
0731 err = sfp_hwmon_read_sensor(sfp, reg, value);
0732 if (err < 0)
0733 return err;
0734
0735 sfp_hwmon_calibrate_vcc(sfp, value);
0736
0737 return 0;
0738 }
0739
0740 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
0741 {
0742 int err;
0743
0744 err = sfp_hwmon_read_sensor(sfp, reg, value);
0745 if (err < 0)
0746 return err;
0747
0748 sfp_hwmon_calibrate_bias(sfp, value);
0749
0750 return 0;
0751 }
0752
0753 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
0754 {
0755 int err;
0756
0757 err = sfp_hwmon_read_sensor(sfp, reg, value);
0758 if (err < 0)
0759 return err;
0760
0761 sfp_hwmon_calibrate_tx_power(sfp, value);
0762
0763 return 0;
0764 }
0765
0766 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
0767 {
0768 int err;
0769
0770 err = sfp_hwmon_read_sensor(sfp, reg, value);
0771 if (err < 0)
0772 return err;
0773
0774 sfp_hwmon_to_rx_power(value);
0775
0776 return 0;
0777 }
0778
0779 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
0780 {
0781 u8 status;
0782 int err;
0783
0784 switch (attr) {
0785 case hwmon_temp_input:
0786 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
0787
0788 case hwmon_temp_lcrit:
0789 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
0790 sfp_hwmon_calibrate_temp(sfp, value);
0791 return 0;
0792
0793 case hwmon_temp_min:
0794 *value = be16_to_cpu(sfp->diag.temp_low_warn);
0795 sfp_hwmon_calibrate_temp(sfp, value);
0796 return 0;
0797 case hwmon_temp_max:
0798 *value = be16_to_cpu(sfp->diag.temp_high_warn);
0799 sfp_hwmon_calibrate_temp(sfp, value);
0800 return 0;
0801
0802 case hwmon_temp_crit:
0803 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
0804 sfp_hwmon_calibrate_temp(sfp, value);
0805 return 0;
0806
0807 case hwmon_temp_lcrit_alarm:
0808 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
0809 if (err < 0)
0810 return err;
0811
0812 *value = !!(status & SFP_ALARM0_TEMP_LOW);
0813 return 0;
0814
0815 case hwmon_temp_min_alarm:
0816 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
0817 if (err < 0)
0818 return err;
0819
0820 *value = !!(status & SFP_WARN0_TEMP_LOW);
0821 return 0;
0822
0823 case hwmon_temp_max_alarm:
0824 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
0825 if (err < 0)
0826 return err;
0827
0828 *value = !!(status & SFP_WARN0_TEMP_HIGH);
0829 return 0;
0830
0831 case hwmon_temp_crit_alarm:
0832 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
0833 if (err < 0)
0834 return err;
0835
0836 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
0837 return 0;
0838 default:
0839 return -EOPNOTSUPP;
0840 }
0841
0842 return -EOPNOTSUPP;
0843 }
0844
0845 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
0846 {
0847 u8 status;
0848 int err;
0849
0850 switch (attr) {
0851 case hwmon_in_input:
0852 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
0853
0854 case hwmon_in_lcrit:
0855 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
0856 sfp_hwmon_calibrate_vcc(sfp, value);
0857 return 0;
0858
0859 case hwmon_in_min:
0860 *value = be16_to_cpu(sfp->diag.volt_low_warn);
0861 sfp_hwmon_calibrate_vcc(sfp, value);
0862 return 0;
0863
0864 case hwmon_in_max:
0865 *value = be16_to_cpu(sfp->diag.volt_high_warn);
0866 sfp_hwmon_calibrate_vcc(sfp, value);
0867 return 0;
0868
0869 case hwmon_in_crit:
0870 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
0871 sfp_hwmon_calibrate_vcc(sfp, value);
0872 return 0;
0873
0874 case hwmon_in_lcrit_alarm:
0875 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
0876 if (err < 0)
0877 return err;
0878
0879 *value = !!(status & SFP_ALARM0_VCC_LOW);
0880 return 0;
0881
0882 case hwmon_in_min_alarm:
0883 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
0884 if (err < 0)
0885 return err;
0886
0887 *value = !!(status & SFP_WARN0_VCC_LOW);
0888 return 0;
0889
0890 case hwmon_in_max_alarm:
0891 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
0892 if (err < 0)
0893 return err;
0894
0895 *value = !!(status & SFP_WARN0_VCC_HIGH);
0896 return 0;
0897
0898 case hwmon_in_crit_alarm:
0899 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
0900 if (err < 0)
0901 return err;
0902
0903 *value = !!(status & SFP_ALARM0_VCC_HIGH);
0904 return 0;
0905 default:
0906 return -EOPNOTSUPP;
0907 }
0908
0909 return -EOPNOTSUPP;
0910 }
0911
0912 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
0913 {
0914 u8 status;
0915 int err;
0916
0917 switch (attr) {
0918 case hwmon_curr_input:
0919 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
0920
0921 case hwmon_curr_lcrit:
0922 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
0923 sfp_hwmon_calibrate_bias(sfp, value);
0924 return 0;
0925
0926 case hwmon_curr_min:
0927 *value = be16_to_cpu(sfp->diag.bias_low_warn);
0928 sfp_hwmon_calibrate_bias(sfp, value);
0929 return 0;
0930
0931 case hwmon_curr_max:
0932 *value = be16_to_cpu(sfp->diag.bias_high_warn);
0933 sfp_hwmon_calibrate_bias(sfp, value);
0934 return 0;
0935
0936 case hwmon_curr_crit:
0937 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
0938 sfp_hwmon_calibrate_bias(sfp, value);
0939 return 0;
0940
0941 case hwmon_curr_lcrit_alarm:
0942 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
0943 if (err < 0)
0944 return err;
0945
0946 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
0947 return 0;
0948
0949 case hwmon_curr_min_alarm:
0950 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
0951 if (err < 0)
0952 return err;
0953
0954 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
0955 return 0;
0956
0957 case hwmon_curr_max_alarm:
0958 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
0959 if (err < 0)
0960 return err;
0961
0962 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
0963 return 0;
0964
0965 case hwmon_curr_crit_alarm:
0966 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
0967 if (err < 0)
0968 return err;
0969
0970 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
0971 return 0;
0972 default:
0973 return -EOPNOTSUPP;
0974 }
0975
0976 return -EOPNOTSUPP;
0977 }
0978
0979 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
0980 {
0981 u8 status;
0982 int err;
0983
0984 switch (attr) {
0985 case hwmon_power_input:
0986 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
0987
0988 case hwmon_power_lcrit:
0989 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
0990 sfp_hwmon_calibrate_tx_power(sfp, value);
0991 return 0;
0992
0993 case hwmon_power_min:
0994 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
0995 sfp_hwmon_calibrate_tx_power(sfp, value);
0996 return 0;
0997
0998 case hwmon_power_max:
0999 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1000 sfp_hwmon_calibrate_tx_power(sfp, value);
1001 return 0;
1002
1003 case hwmon_power_crit:
1004 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1005 sfp_hwmon_calibrate_tx_power(sfp, value);
1006 return 0;
1007
1008 case hwmon_power_lcrit_alarm:
1009 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1010 if (err < 0)
1011 return err;
1012
1013 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1014 return 0;
1015
1016 case hwmon_power_min_alarm:
1017 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1018 if (err < 0)
1019 return err;
1020
1021 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1022 return 0;
1023
1024 case hwmon_power_max_alarm:
1025 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1026 if (err < 0)
1027 return err;
1028
1029 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1030 return 0;
1031
1032 case hwmon_power_crit_alarm:
1033 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1034 if (err < 0)
1035 return err;
1036
1037 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1038 return 0;
1039 default:
1040 return -EOPNOTSUPP;
1041 }
1042
1043 return -EOPNOTSUPP;
1044 }
1045
1046 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1047 {
1048 u8 status;
1049 int err;
1050
1051 switch (attr) {
1052 case hwmon_power_input:
1053 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1054
1055 case hwmon_power_lcrit:
1056 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1057 sfp_hwmon_to_rx_power(value);
1058 return 0;
1059
1060 case hwmon_power_min:
1061 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1062 sfp_hwmon_to_rx_power(value);
1063 return 0;
1064
1065 case hwmon_power_max:
1066 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1067 sfp_hwmon_to_rx_power(value);
1068 return 0;
1069
1070 case hwmon_power_crit:
1071 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1072 sfp_hwmon_to_rx_power(value);
1073 return 0;
1074
1075 case hwmon_power_lcrit_alarm:
1076 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1077 if (err < 0)
1078 return err;
1079
1080 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1081 return 0;
1082
1083 case hwmon_power_min_alarm:
1084 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1085 if (err < 0)
1086 return err;
1087
1088 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1089 return 0;
1090
1091 case hwmon_power_max_alarm:
1092 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1093 if (err < 0)
1094 return err;
1095
1096 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1097 return 0;
1098
1099 case hwmon_power_crit_alarm:
1100 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1101 if (err < 0)
1102 return err;
1103
1104 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1105 return 0;
1106 default:
1107 return -EOPNOTSUPP;
1108 }
1109
1110 return -EOPNOTSUPP;
1111 }
1112
1113 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1114 u32 attr, int channel, long *value)
1115 {
1116 struct sfp *sfp = dev_get_drvdata(dev);
1117
1118 switch (type) {
1119 case hwmon_temp:
1120 return sfp_hwmon_temp(sfp, attr, value);
1121 case hwmon_in:
1122 return sfp_hwmon_vcc(sfp, attr, value);
1123 case hwmon_curr:
1124 return sfp_hwmon_bias(sfp, attr, value);
1125 case hwmon_power:
1126 switch (channel) {
1127 case 0:
1128 return sfp_hwmon_tx_power(sfp, attr, value);
1129 case 1:
1130 return sfp_hwmon_rx_power(sfp, attr, value);
1131 default:
1132 return -EOPNOTSUPP;
1133 }
1134 default:
1135 return -EOPNOTSUPP;
1136 }
1137 }
1138
1139 static const char *const sfp_hwmon_power_labels[] = {
1140 "TX_power",
1141 "RX_power",
1142 };
1143
1144 static int sfp_hwmon_read_string(struct device *dev,
1145 enum hwmon_sensor_types type,
1146 u32 attr, int channel, const char **str)
1147 {
1148 switch (type) {
1149 case hwmon_curr:
1150 switch (attr) {
1151 case hwmon_curr_label:
1152 *str = "bias";
1153 return 0;
1154 default:
1155 return -EOPNOTSUPP;
1156 }
1157 break;
1158 case hwmon_temp:
1159 switch (attr) {
1160 case hwmon_temp_label:
1161 *str = "temperature";
1162 return 0;
1163 default:
1164 return -EOPNOTSUPP;
1165 }
1166 break;
1167 case hwmon_in:
1168 switch (attr) {
1169 case hwmon_in_label:
1170 *str = "VCC";
1171 return 0;
1172 default:
1173 return -EOPNOTSUPP;
1174 }
1175 break;
1176 case hwmon_power:
1177 switch (attr) {
1178 case hwmon_power_label:
1179 *str = sfp_hwmon_power_labels[channel];
1180 return 0;
1181 default:
1182 return -EOPNOTSUPP;
1183 }
1184 break;
1185 default:
1186 return -EOPNOTSUPP;
1187 }
1188
1189 return -EOPNOTSUPP;
1190 }
1191
1192 static const struct hwmon_ops sfp_hwmon_ops = {
1193 .is_visible = sfp_hwmon_is_visible,
1194 .read = sfp_hwmon_read,
1195 .read_string = sfp_hwmon_read_string,
1196 };
1197
1198 static u32 sfp_hwmon_chip_config[] = {
1199 HWMON_C_REGISTER_TZ,
1200 0,
1201 };
1202
1203 static const struct hwmon_channel_info sfp_hwmon_chip = {
1204 .type = hwmon_chip,
1205 .config = sfp_hwmon_chip_config,
1206 };
1207
1208 static u32 sfp_hwmon_temp_config[] = {
1209 HWMON_T_INPUT |
1210 HWMON_T_MAX | HWMON_T_MIN |
1211 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1212 HWMON_T_CRIT | HWMON_T_LCRIT |
1213 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1214 HWMON_T_LABEL,
1215 0,
1216 };
1217
1218 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1219 .type = hwmon_temp,
1220 .config = sfp_hwmon_temp_config,
1221 };
1222
1223 static u32 sfp_hwmon_vcc_config[] = {
1224 HWMON_I_INPUT |
1225 HWMON_I_MAX | HWMON_I_MIN |
1226 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1227 HWMON_I_CRIT | HWMON_I_LCRIT |
1228 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1229 HWMON_I_LABEL,
1230 0,
1231 };
1232
1233 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1234 .type = hwmon_in,
1235 .config = sfp_hwmon_vcc_config,
1236 };
1237
1238 static u32 sfp_hwmon_bias_config[] = {
1239 HWMON_C_INPUT |
1240 HWMON_C_MAX | HWMON_C_MIN |
1241 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1242 HWMON_C_CRIT | HWMON_C_LCRIT |
1243 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1244 HWMON_C_LABEL,
1245 0,
1246 };
1247
1248 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1249 .type = hwmon_curr,
1250 .config = sfp_hwmon_bias_config,
1251 };
1252
1253 static u32 sfp_hwmon_power_config[] = {
1254
1255 HWMON_P_INPUT |
1256 HWMON_P_MAX | HWMON_P_MIN |
1257 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1258 HWMON_P_CRIT | HWMON_P_LCRIT |
1259 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1260 HWMON_P_LABEL,
1261
1262 HWMON_P_INPUT |
1263 HWMON_P_MAX | HWMON_P_MIN |
1264 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1265 HWMON_P_CRIT | HWMON_P_LCRIT |
1266 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1267 HWMON_P_LABEL,
1268 0,
1269 };
1270
1271 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1272 .type = hwmon_power,
1273 .config = sfp_hwmon_power_config,
1274 };
1275
1276 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1277 &sfp_hwmon_chip,
1278 &sfp_hwmon_vcc_channel_info,
1279 &sfp_hwmon_temp_channel_info,
1280 &sfp_hwmon_bias_channel_info,
1281 &sfp_hwmon_power_channel_info,
1282 NULL,
1283 };
1284
1285 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1286 .ops = &sfp_hwmon_ops,
1287 .info = sfp_hwmon_info,
1288 };
1289
1290 static void sfp_hwmon_probe(struct work_struct *work)
1291 {
1292 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1293 int err;
1294
1295
1296
1297
1298
1299
1300
1301 if (sfp->i2c_block_size < 2) {
1302 dev_info(sfp->dev,
1303 "skipping hwmon device registration due to broken EEPROM\n");
1304 dev_info(sfp->dev,
1305 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1306 return;
1307 }
1308
1309 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1310 if (err < 0) {
1311 if (sfp->hwmon_tries--) {
1312 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1313 T_PROBE_RETRY_SLOW);
1314 } else {
1315 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1316 ERR_PTR(err));
1317 }
1318 return;
1319 }
1320
1321 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1322 if (IS_ERR(sfp->hwmon_name)) {
1323 dev_err(sfp->dev, "out of memory for hwmon name\n");
1324 return;
1325 }
1326
1327 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1328 sfp->hwmon_name, sfp,
1329 &sfp_hwmon_chip_info,
1330 NULL);
1331 if (IS_ERR(sfp->hwmon_dev))
1332 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1333 PTR_ERR(sfp->hwmon_dev));
1334 }
1335
1336 static int sfp_hwmon_insert(struct sfp *sfp)
1337 {
1338 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1339 return 0;
1340
1341 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1342 return 0;
1343
1344 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1345
1346
1347
1348 return 0;
1349
1350 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1351 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1352
1353 return 0;
1354 }
1355
1356 static void sfp_hwmon_remove(struct sfp *sfp)
1357 {
1358 cancel_delayed_work_sync(&sfp->hwmon_probe);
1359 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1360 hwmon_device_unregister(sfp->hwmon_dev);
1361 sfp->hwmon_dev = NULL;
1362 kfree(sfp->hwmon_name);
1363 }
1364 }
1365
1366 static int sfp_hwmon_init(struct sfp *sfp)
1367 {
1368 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1369
1370 return 0;
1371 }
1372
1373 static void sfp_hwmon_exit(struct sfp *sfp)
1374 {
1375 cancel_delayed_work_sync(&sfp->hwmon_probe);
1376 }
1377 #else
1378 static int sfp_hwmon_insert(struct sfp *sfp)
1379 {
1380 return 0;
1381 }
1382
1383 static void sfp_hwmon_remove(struct sfp *sfp)
1384 {
1385 }
1386
1387 static int sfp_hwmon_init(struct sfp *sfp)
1388 {
1389 return 0;
1390 }
1391
1392 static void sfp_hwmon_exit(struct sfp *sfp)
1393 {
1394 }
1395 #endif
1396
1397
1398 static void sfp_module_tx_disable(struct sfp *sfp)
1399 {
1400 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1401 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1402 sfp->state |= SFP_F_TX_DISABLE;
1403 sfp_set_state(sfp, sfp->state);
1404 }
1405
1406 static void sfp_module_tx_enable(struct sfp *sfp)
1407 {
1408 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1409 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1410 sfp->state &= ~SFP_F_TX_DISABLE;
1411 sfp_set_state(sfp, sfp->state);
1412 }
1413
1414 #if IS_ENABLED(CONFIG_DEBUG_FS)
1415 static int sfp_debug_state_show(struct seq_file *s, void *data)
1416 {
1417 struct sfp *sfp = s->private;
1418
1419 seq_printf(s, "Module state: %s\n",
1420 mod_state_to_str(sfp->sm_mod_state));
1421 seq_printf(s, "Module probe attempts: %d %d\n",
1422 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1423 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1424 seq_printf(s, "Device state: %s\n",
1425 dev_state_to_str(sfp->sm_dev_state));
1426 seq_printf(s, "Main state: %s\n",
1427 sm_state_to_str(sfp->sm_state));
1428 seq_printf(s, "Fault recovery remaining retries: %d\n",
1429 sfp->sm_fault_retries);
1430 seq_printf(s, "PHY probe remaining retries: %d\n",
1431 sfp->sm_phy_retries);
1432 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1433 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1434 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1435 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1436 return 0;
1437 }
1438 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1439
1440 static void sfp_debugfs_init(struct sfp *sfp)
1441 {
1442 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1443
1444 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1445 &sfp_debug_state_fops);
1446 }
1447
1448 static void sfp_debugfs_exit(struct sfp *sfp)
1449 {
1450 debugfs_remove_recursive(sfp->debugfs_dir);
1451 }
1452 #else
1453 static void sfp_debugfs_init(struct sfp *sfp)
1454 {
1455 }
1456
1457 static void sfp_debugfs_exit(struct sfp *sfp)
1458 {
1459 }
1460 #endif
1461
1462 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1463 {
1464 unsigned int state = sfp->state;
1465
1466 if (state & SFP_F_TX_DISABLE)
1467 return;
1468
1469 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1470
1471 udelay(T_RESET_US);
1472
1473 sfp_set_state(sfp, state);
1474 }
1475
1476
1477 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1478 {
1479 if (timeout)
1480 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1481 timeout);
1482 else
1483 cancel_delayed_work(&sfp->timeout);
1484 }
1485
1486 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1487 unsigned int timeout)
1488 {
1489 sfp->sm_state = state;
1490 sfp_sm_set_timer(sfp, timeout);
1491 }
1492
1493 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1494 unsigned int timeout)
1495 {
1496 sfp->sm_mod_state = state;
1497 sfp_sm_set_timer(sfp, timeout);
1498 }
1499
1500 static void sfp_sm_phy_detach(struct sfp *sfp)
1501 {
1502 sfp_remove_phy(sfp->sfp_bus);
1503 phy_device_remove(sfp->mod_phy);
1504 phy_device_free(sfp->mod_phy);
1505 sfp->mod_phy = NULL;
1506 }
1507
1508 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1509 {
1510 struct phy_device *phy;
1511 int err;
1512
1513 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1514 if (phy == ERR_PTR(-ENODEV))
1515 return PTR_ERR(phy);
1516 if (IS_ERR(phy)) {
1517 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1518 return PTR_ERR(phy);
1519 }
1520
1521 err = phy_device_register(phy);
1522 if (err) {
1523 phy_device_free(phy);
1524 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1525 ERR_PTR(err));
1526 return err;
1527 }
1528
1529 err = sfp_add_phy(sfp->sfp_bus, phy);
1530 if (err) {
1531 phy_device_remove(phy);
1532 phy_device_free(phy);
1533 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1534 return err;
1535 }
1536
1537 sfp->mod_phy = phy;
1538
1539 return 0;
1540 }
1541
1542 static void sfp_sm_link_up(struct sfp *sfp)
1543 {
1544 sfp_link_up(sfp->sfp_bus);
1545 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1546 }
1547
1548 static void sfp_sm_link_down(struct sfp *sfp)
1549 {
1550 sfp_link_down(sfp->sfp_bus);
1551 }
1552
1553 static void sfp_sm_link_check_los(struct sfp *sfp)
1554 {
1555 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1556 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1557 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1558 bool los = false;
1559
1560
1561
1562
1563
1564 if (los_options == los_inverted)
1565 los = !(sfp->state & SFP_F_LOS);
1566 else if (los_options == los_normal)
1567 los = !!(sfp->state & SFP_F_LOS);
1568
1569 if (los)
1570 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1571 else
1572 sfp_sm_link_up(sfp);
1573 }
1574
1575 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1576 {
1577 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1578 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1579 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1580
1581 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1582 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1583 }
1584
1585 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1586 {
1587 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1588 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1589 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1590
1591 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1592 (los_options == los_normal && event == SFP_E_LOS_LOW);
1593 }
1594
1595 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1596 {
1597 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1598 dev_err(sfp->dev,
1599 "module persistently indicates fault, disabling\n");
1600 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1601 } else {
1602 if (warn)
1603 dev_err(sfp->dev, "module transmit fault indicated\n");
1604
1605 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1606 }
1607 }
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1621 {
1622 int err = 0;
1623
1624 switch (sfp->id.base.extended_cc) {
1625 case SFF8024_ECC_10GBASE_T_SFI:
1626 case SFF8024_ECC_10GBASE_T_SR:
1627 case SFF8024_ECC_5GBASE_T:
1628 case SFF8024_ECC_2_5GBASE_T:
1629 err = sfp_sm_probe_phy(sfp, true);
1630 break;
1631
1632 default:
1633 if (sfp->id.base.e1000_base_t)
1634 err = sfp_sm_probe_phy(sfp, false);
1635 break;
1636 }
1637 return err;
1638 }
1639
1640 static int sfp_module_parse_power(struct sfp *sfp)
1641 {
1642 u32 power_mW = 1000;
1643 bool supports_a2;
1644
1645 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1646 power_mW = 1500;
1647 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1648 power_mW = 2000;
1649
1650 supports_a2 = sfp->id.ext.sff8472_compliance !=
1651 SFP_SFF8472_COMPLIANCE_NONE ||
1652 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1653
1654 if (power_mW > sfp->max_power_mW) {
1655
1656 if (!supports_a2) {
1657
1658
1659
1660
1661 dev_err(sfp->dev,
1662 "Host does not support %u.%uW modules\n",
1663 power_mW / 1000, (power_mW / 100) % 10);
1664 return -EINVAL;
1665 } else {
1666 dev_warn(sfp->dev,
1667 "Host does not support %u.%uW modules, module left in power mode 1\n",
1668 power_mW / 1000, (power_mW / 100) % 10);
1669 return 0;
1670 }
1671 }
1672
1673 if (power_mW <= 1000) {
1674
1675 sfp->module_power_mW = power_mW;
1676 return 0;
1677 }
1678
1679 if (!supports_a2) {
1680
1681
1682
1683
1684 return 0;
1685 }
1686
1687
1688
1689
1690
1691 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1692 dev_warn(sfp->dev,
1693 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1694 power_mW / 1000, (power_mW / 100) % 10);
1695 return 0;
1696 }
1697
1698 sfp->module_power_mW = power_mW;
1699
1700 return 0;
1701 }
1702
1703 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1704 {
1705 u8 val;
1706 int err;
1707
1708 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1709 if (err != sizeof(val)) {
1710 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err));
1711 return -EAGAIN;
1712 }
1713
1714
1715
1716
1717
1718 if (!!(val & BIT(0)) == enable)
1719 return 0;
1720
1721 if (enable)
1722 val |= BIT(0);
1723 else
1724 val &= ~BIT(0);
1725
1726 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1727 if (err != sizeof(val)) {
1728 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n",
1729 ERR_PTR(err));
1730 return -EAGAIN;
1731 }
1732
1733 if (enable)
1734 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1735 sfp->module_power_mW / 1000,
1736 (sfp->module_power_mW / 100) % 10);
1737
1738 return 0;
1739 }
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1753 {
1754 size_t i, block_size = sfp->i2c_block_size;
1755
1756
1757 if (block_size == 1)
1758 return false;
1759
1760 for (i = 1; i < len; i += block_size) {
1761 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1762 return false;
1763 }
1764 return true;
1765 }
1766
1767 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1768 {
1769 u8 check;
1770 int err;
1771
1772 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1773 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1774 id->base.connector != SFF8024_CONNECTOR_LC) {
1775 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1776 id->base.phys_id = SFF8024_ID_SFF_8472;
1777 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1778 id->base.connector = SFF8024_CONNECTOR_LC;
1779 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1780 if (err != 3) {
1781 dev_err(sfp->dev,
1782 "Failed to rewrite module EEPROM: %pe\n",
1783 ERR_PTR(err));
1784 return err;
1785 }
1786
1787
1788 mdelay(50);
1789
1790
1791 check = sfp_check(&id->base, sizeof(id->base) - 1);
1792 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1793 if (err != 1) {
1794 dev_err(sfp->dev,
1795 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
1796 ERR_PTR(err));
1797 return err;
1798 }
1799 }
1800 return 0;
1801 }
1802
1803 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1804 {
1805
1806 struct sfp_eeprom_id id;
1807 bool cotsworks_sfbg;
1808 bool cotsworks;
1809 u8 check;
1810 int ret;
1811
1812
1813
1814
1815
1816 sfp->i2c_block_size = 16;
1817
1818 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1819 if (ret < 0) {
1820 if (report)
1821 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1822 ERR_PTR(ret));
1823 return -EAGAIN;
1824 }
1825
1826 if (ret != sizeof(id.base)) {
1827 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1828 return -EAGAIN;
1829 }
1830
1831
1832
1833
1834
1835
1836
1837 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1838 dev_info(sfp->dev,
1839 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1840 dev_info(sfp->dev,
1841 "Switching to reading EEPROM to one byte at a time\n");
1842 sfp->i2c_block_size = 1;
1843
1844 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1845 if (ret < 0) {
1846 if (report)
1847 dev_err(sfp->dev,
1848 "failed to read EEPROM: %pe\n",
1849 ERR_PTR(ret));
1850 return -EAGAIN;
1851 }
1852
1853 if (ret != sizeof(id.base)) {
1854 dev_err(sfp->dev, "EEPROM short read: %pe\n",
1855 ERR_PTR(ret));
1856 return -EAGAIN;
1857 }
1858 }
1859
1860
1861
1862
1863
1864 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1865 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1866
1867
1868
1869
1870
1871 if (cotsworks && cotsworks_sfbg) {
1872 ret = sfp_cotsworks_fixup_check(sfp, &id);
1873 if (ret < 0)
1874 return ret;
1875 }
1876
1877
1878 check = sfp_check(&id.base, sizeof(id.base) - 1);
1879 if (check != id.base.cc_base) {
1880 if (cotsworks) {
1881 dev_warn(sfp->dev,
1882 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1883 check, id.base.cc_base);
1884 } else {
1885 dev_err(sfp->dev,
1886 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1887 check, id.base.cc_base);
1888 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1889 16, 1, &id, sizeof(id), true);
1890 return -EINVAL;
1891 }
1892 }
1893
1894 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1895 if (ret < 0) {
1896 if (report)
1897 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
1898 ERR_PTR(ret));
1899 return -EAGAIN;
1900 }
1901
1902 if (ret != sizeof(id.ext)) {
1903 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
1904 return -EAGAIN;
1905 }
1906
1907 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1908 if (check != id.ext.cc_ext) {
1909 if (cotsworks) {
1910 dev_warn(sfp->dev,
1911 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1912 check, id.ext.cc_ext);
1913 } else {
1914 dev_err(sfp->dev,
1915 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1916 check, id.ext.cc_ext);
1917 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1918 16, 1, &id, sizeof(id), true);
1919 memset(&id.ext, 0, sizeof(id.ext));
1920 }
1921 }
1922
1923 sfp->id = id;
1924
1925 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1926 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1927 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1928 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1929 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1930 (int)sizeof(id.ext.datecode), id.ext.datecode);
1931
1932
1933 if (!sfp->type->module_supported(&id)) {
1934 dev_err(sfp->dev,
1935 "module is not supported - phys id 0x%02x 0x%02x\n",
1936 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1937 return -EINVAL;
1938 }
1939
1940
1941 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1942 dev_warn(sfp->dev,
1943 "module address swap to access page 0xA2 is not supported.\n");
1944
1945
1946 ret = sfp_module_parse_power(sfp);
1947 if (ret < 0)
1948 return ret;
1949
1950 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1951 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1952 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1953 else
1954 sfp->module_t_start_up = T_START_UP;
1955
1956 if (!memcmp(id.base.vendor_name, "HUAWEI ", 16) &&
1957 !memcmp(id.base.vendor_pn, "MA5671A ", 16))
1958 sfp->tx_fault_ignore = true;
1959 else
1960 sfp->tx_fault_ignore = false;
1961
1962 return 0;
1963 }
1964
1965 static void sfp_sm_mod_remove(struct sfp *sfp)
1966 {
1967 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1968 sfp_module_remove(sfp->sfp_bus);
1969
1970 sfp_hwmon_remove(sfp);
1971
1972 memset(&sfp->id, 0, sizeof(sfp->id));
1973 sfp->module_power_mW = 0;
1974
1975 dev_info(sfp->dev, "module removed\n");
1976 }
1977
1978
1979 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1980 {
1981 switch (sfp->sm_dev_state) {
1982 default:
1983 if (event == SFP_E_DEV_ATTACH)
1984 sfp->sm_dev_state = SFP_DEV_DOWN;
1985 break;
1986
1987 case SFP_DEV_DOWN:
1988 if (event == SFP_E_DEV_DETACH)
1989 sfp->sm_dev_state = SFP_DEV_DETACHED;
1990 else if (event == SFP_E_DEV_UP)
1991 sfp->sm_dev_state = SFP_DEV_UP;
1992 break;
1993
1994 case SFP_DEV_UP:
1995 if (event == SFP_E_DEV_DETACH)
1996 sfp->sm_dev_state = SFP_DEV_DETACHED;
1997 else if (event == SFP_E_DEV_DOWN)
1998 sfp->sm_dev_state = SFP_DEV_DOWN;
1999 break;
2000 }
2001 }
2002
2003
2004
2005
2006 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2007 {
2008 int err;
2009
2010
2011 if (event == SFP_E_REMOVE) {
2012 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2013 sfp_sm_mod_remove(sfp);
2014 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2015 return;
2016 }
2017
2018
2019 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2020 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2021 if (sfp->module_power_mW > 1000 &&
2022 sfp->sm_mod_state > SFP_MOD_HPOWER)
2023 sfp_sm_mod_hpower(sfp, false);
2024 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2025 return;
2026 }
2027
2028 switch (sfp->sm_mod_state) {
2029 default:
2030 if (event == SFP_E_INSERT) {
2031 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2032 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2033 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2034 }
2035 break;
2036
2037 case SFP_MOD_PROBE:
2038
2039 if (event != SFP_E_TIMEOUT)
2040 break;
2041
2042 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2043 if (err == -EAGAIN) {
2044 if (sfp->sm_mod_tries_init &&
2045 --sfp->sm_mod_tries_init) {
2046 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2047 break;
2048 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2049 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2050 dev_warn(sfp->dev,
2051 "please wait, module slow to respond\n");
2052 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2053 break;
2054 }
2055 }
2056 if (err < 0) {
2057 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2058 break;
2059 }
2060
2061 err = sfp_hwmon_insert(sfp);
2062 if (err)
2063 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2064 ERR_PTR(err));
2065
2066 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2067 fallthrough;
2068 case SFP_MOD_WAITDEV:
2069
2070 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2071 break;
2072
2073
2074 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2075 if (err < 0) {
2076 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2077 break;
2078 }
2079
2080
2081 if (sfp->module_power_mW <= 1000)
2082 goto insert;
2083
2084 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2085 fallthrough;
2086 case SFP_MOD_HPOWER:
2087
2088 err = sfp_sm_mod_hpower(sfp, true);
2089 if (err < 0) {
2090 if (err != -EAGAIN) {
2091 sfp_module_remove(sfp->sfp_bus);
2092 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2093 } else {
2094 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2095 }
2096 break;
2097 }
2098
2099 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2100 break;
2101
2102 case SFP_MOD_WAITPWR:
2103
2104 if (event != SFP_E_TIMEOUT)
2105 break;
2106
2107 insert:
2108 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2109 break;
2110
2111 case SFP_MOD_PRESENT:
2112 case SFP_MOD_ERROR:
2113 break;
2114 }
2115 }
2116
2117 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2118 {
2119 unsigned long timeout;
2120 int ret;
2121
2122
2123 if (sfp->sm_state != SFP_S_DOWN &&
2124 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2125 sfp->sm_dev_state != SFP_DEV_UP)) {
2126 if (sfp->sm_state == SFP_S_LINK_UP &&
2127 sfp->sm_dev_state == SFP_DEV_UP)
2128 sfp_sm_link_down(sfp);
2129 if (sfp->sm_state > SFP_S_INIT)
2130 sfp_module_stop(sfp->sfp_bus);
2131 if (sfp->mod_phy)
2132 sfp_sm_phy_detach(sfp);
2133 sfp_module_tx_disable(sfp);
2134 sfp_soft_stop_poll(sfp);
2135 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2136 return;
2137 }
2138
2139
2140 switch (sfp->sm_state) {
2141 case SFP_S_DOWN:
2142 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2143 sfp->sm_dev_state != SFP_DEV_UP)
2144 break;
2145
2146 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2147 sfp_soft_start_poll(sfp);
2148
2149 sfp_module_tx_enable(sfp);
2150
2151
2152 sfp->sm_fault_retries = N_FAULT_INIT;
2153
2154
2155
2156
2157
2158 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2159 break;
2160
2161 case SFP_S_WAIT:
2162 if (event != SFP_E_TIMEOUT)
2163 break;
2164
2165 if (sfp->state & SFP_F_TX_FAULT) {
2166
2167
2168
2169
2170
2171 timeout = sfp->module_t_start_up;
2172 if (timeout > T_WAIT)
2173 timeout -= T_WAIT;
2174 else
2175 timeout = 1;
2176
2177 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2178 } else {
2179
2180
2181
2182 goto init_done;
2183 }
2184 break;
2185
2186 case SFP_S_INIT:
2187 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2188
2189
2190
2191 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2192 sfp->sm_fault_retries == N_FAULT_INIT);
2193 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2194 init_done:
2195 sfp->sm_phy_retries = R_PHY_RETRY;
2196 goto phy_probe;
2197 }
2198 break;
2199
2200 case SFP_S_INIT_PHY:
2201 if (event != SFP_E_TIMEOUT)
2202 break;
2203 phy_probe:
2204
2205
2206
2207 ret = sfp_sm_probe_for_phy(sfp);
2208 if (ret == -ENODEV) {
2209 if (--sfp->sm_phy_retries) {
2210 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2211 break;
2212 } else {
2213 dev_info(sfp->dev, "no PHY detected\n");
2214 }
2215 } else if (ret) {
2216 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2217 break;
2218 }
2219 if (sfp_module_start(sfp->sfp_bus)) {
2220 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2221 break;
2222 }
2223 sfp_sm_link_check_los(sfp);
2224
2225
2226 sfp->sm_fault_retries = N_FAULT;
2227 break;
2228
2229 case SFP_S_INIT_TX_FAULT:
2230 if (event == SFP_E_TIMEOUT) {
2231 sfp_module_tx_fault_reset(sfp);
2232 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2233 }
2234 break;
2235
2236 case SFP_S_WAIT_LOS:
2237 if (event == SFP_E_TX_FAULT)
2238 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2239 else if (sfp_los_event_inactive(sfp, event))
2240 sfp_sm_link_up(sfp);
2241 break;
2242
2243 case SFP_S_LINK_UP:
2244 if (event == SFP_E_TX_FAULT) {
2245 sfp_sm_link_down(sfp);
2246 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2247 } else if (sfp_los_event_active(sfp, event)) {
2248 sfp_sm_link_down(sfp);
2249 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2250 }
2251 break;
2252
2253 case SFP_S_TX_FAULT:
2254 if (event == SFP_E_TIMEOUT) {
2255 sfp_module_tx_fault_reset(sfp);
2256 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2257 }
2258 break;
2259
2260 case SFP_S_REINIT:
2261 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2262 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2263 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2264 dev_info(sfp->dev, "module transmit fault recovered\n");
2265 sfp_sm_link_check_los(sfp);
2266 }
2267 break;
2268
2269 case SFP_S_TX_DISABLE:
2270 break;
2271 }
2272 }
2273
2274 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2275 {
2276 mutex_lock(&sfp->sm_mutex);
2277
2278 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2279 mod_state_to_str(sfp->sm_mod_state),
2280 dev_state_to_str(sfp->sm_dev_state),
2281 sm_state_to_str(sfp->sm_state),
2282 event_to_str(event));
2283
2284 sfp_sm_device(sfp, event);
2285 sfp_sm_module(sfp, event);
2286 sfp_sm_main(sfp, event);
2287
2288 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2289 mod_state_to_str(sfp->sm_mod_state),
2290 dev_state_to_str(sfp->sm_dev_state),
2291 sm_state_to_str(sfp->sm_state));
2292
2293 mutex_unlock(&sfp->sm_mutex);
2294 }
2295
2296 static void sfp_attach(struct sfp *sfp)
2297 {
2298 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2299 }
2300
2301 static void sfp_detach(struct sfp *sfp)
2302 {
2303 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2304 }
2305
2306 static void sfp_start(struct sfp *sfp)
2307 {
2308 sfp_sm_event(sfp, SFP_E_DEV_UP);
2309 }
2310
2311 static void sfp_stop(struct sfp *sfp)
2312 {
2313 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2314 }
2315
2316 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2317 {
2318
2319
2320 if (sfp->id.ext.sff8472_compliance &&
2321 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2322 modinfo->type = ETH_MODULE_SFF_8472;
2323 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2324 } else {
2325 modinfo->type = ETH_MODULE_SFF_8079;
2326 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2327 }
2328 return 0;
2329 }
2330
2331 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2332 u8 *data)
2333 {
2334 unsigned int first, last, len;
2335 int ret;
2336
2337 if (ee->len == 0)
2338 return -EINVAL;
2339
2340 first = ee->offset;
2341 last = ee->offset + ee->len;
2342 if (first < ETH_MODULE_SFF_8079_LEN) {
2343 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2344 len -= first;
2345
2346 ret = sfp_read(sfp, false, first, data, len);
2347 if (ret < 0)
2348 return ret;
2349
2350 first += len;
2351 data += len;
2352 }
2353 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2354 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2355 len -= first;
2356 first -= ETH_MODULE_SFF_8079_LEN;
2357
2358 ret = sfp_read(sfp, true, first, data, len);
2359 if (ret < 0)
2360 return ret;
2361 }
2362 return 0;
2363 }
2364
2365 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2366 const struct ethtool_module_eeprom *page,
2367 struct netlink_ext_ack *extack)
2368 {
2369 if (page->bank) {
2370 NL_SET_ERR_MSG(extack, "Banks not supported");
2371 return -EOPNOTSUPP;
2372 }
2373
2374 if (page->page) {
2375 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2376 return -EOPNOTSUPP;
2377 }
2378
2379 if (page->i2c_address != 0x50 &&
2380 page->i2c_address != 0x51) {
2381 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2382 return -EOPNOTSUPP;
2383 }
2384
2385 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2386 page->data, page->length);
2387 };
2388
2389 static const struct sfp_socket_ops sfp_module_ops = {
2390 .attach = sfp_attach,
2391 .detach = sfp_detach,
2392 .start = sfp_start,
2393 .stop = sfp_stop,
2394 .module_info = sfp_module_info,
2395 .module_eeprom = sfp_module_eeprom,
2396 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2397 };
2398
2399 static void sfp_timeout(struct work_struct *work)
2400 {
2401 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2402
2403 rtnl_lock();
2404 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2405 rtnl_unlock();
2406 }
2407
2408 static void sfp_check_state(struct sfp *sfp)
2409 {
2410 unsigned int state, i, changed;
2411
2412 mutex_lock(&sfp->st_mutex);
2413 state = sfp_get_state(sfp);
2414 changed = state ^ sfp->state;
2415 if (sfp->tx_fault_ignore)
2416 changed &= SFP_F_PRESENT | SFP_F_LOS;
2417 else
2418 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2419
2420 for (i = 0; i < GPIO_MAX; i++)
2421 if (changed & BIT(i))
2422 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2423 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2424
2425 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2426 sfp->state = state;
2427
2428 rtnl_lock();
2429 if (changed & SFP_F_PRESENT)
2430 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2431 SFP_E_INSERT : SFP_E_REMOVE);
2432
2433 if (changed & SFP_F_TX_FAULT)
2434 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2435 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2436
2437 if (changed & SFP_F_LOS)
2438 sfp_sm_event(sfp, state & SFP_F_LOS ?
2439 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2440 rtnl_unlock();
2441 mutex_unlock(&sfp->st_mutex);
2442 }
2443
2444 static irqreturn_t sfp_irq(int irq, void *data)
2445 {
2446 struct sfp *sfp = data;
2447
2448 sfp_check_state(sfp);
2449
2450 return IRQ_HANDLED;
2451 }
2452
2453 static void sfp_poll(struct work_struct *work)
2454 {
2455 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2456
2457 sfp_check_state(sfp);
2458
2459 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2460 sfp->need_poll)
2461 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2462 }
2463
2464 static struct sfp *sfp_alloc(struct device *dev)
2465 {
2466 struct sfp *sfp;
2467
2468 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2469 if (!sfp)
2470 return ERR_PTR(-ENOMEM);
2471
2472 sfp->dev = dev;
2473
2474 mutex_init(&sfp->sm_mutex);
2475 mutex_init(&sfp->st_mutex);
2476 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2477 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2478
2479 sfp_hwmon_init(sfp);
2480
2481 return sfp;
2482 }
2483
2484 static void sfp_cleanup(void *data)
2485 {
2486 struct sfp *sfp = data;
2487
2488 sfp_hwmon_exit(sfp);
2489
2490 cancel_delayed_work_sync(&sfp->poll);
2491 cancel_delayed_work_sync(&sfp->timeout);
2492 if (sfp->i2c_mii) {
2493 mdiobus_unregister(sfp->i2c_mii);
2494 mdiobus_free(sfp->i2c_mii);
2495 }
2496 if (sfp->i2c)
2497 i2c_put_adapter(sfp->i2c);
2498 kfree(sfp);
2499 }
2500
2501 static int sfp_probe(struct platform_device *pdev)
2502 {
2503 const struct sff_data *sff;
2504 struct i2c_adapter *i2c;
2505 char *sfp_irq_name;
2506 struct sfp *sfp;
2507 int err, i;
2508
2509 sfp = sfp_alloc(&pdev->dev);
2510 if (IS_ERR(sfp))
2511 return PTR_ERR(sfp);
2512
2513 platform_set_drvdata(pdev, sfp);
2514
2515 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2516 if (err < 0)
2517 return err;
2518
2519 sff = sfp->type = &sfp_data;
2520
2521 if (pdev->dev.of_node) {
2522 struct device_node *node = pdev->dev.of_node;
2523 const struct of_device_id *id;
2524 struct device_node *np;
2525
2526 id = of_match_node(sfp_of_match, node);
2527 if (WARN_ON(!id))
2528 return -EINVAL;
2529
2530 sff = sfp->type = id->data;
2531
2532 np = of_parse_phandle(node, "i2c-bus", 0);
2533 if (!np) {
2534 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2535 return -ENODEV;
2536 }
2537
2538 i2c = of_find_i2c_adapter_by_node(np);
2539 of_node_put(np);
2540 } else if (has_acpi_companion(&pdev->dev)) {
2541 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2542 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2543 struct fwnode_reference_args args;
2544 struct acpi_handle *acpi_handle;
2545 int ret;
2546
2547 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2548 if (ret || !is_acpi_device_node(args.fwnode)) {
2549 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2550 return -ENODEV;
2551 }
2552
2553 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2554 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2555 } else {
2556 return -EINVAL;
2557 }
2558
2559 if (!i2c)
2560 return -EPROBE_DEFER;
2561
2562 err = sfp_i2c_configure(sfp, i2c);
2563 if (err < 0) {
2564 i2c_put_adapter(i2c);
2565 return err;
2566 }
2567
2568 for (i = 0; i < GPIO_MAX; i++)
2569 if (sff->gpios & BIT(i)) {
2570 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2571 gpio_of_names[i], gpio_flags[i]);
2572 if (IS_ERR(sfp->gpio[i]))
2573 return PTR_ERR(sfp->gpio[i]);
2574 }
2575
2576 sfp->get_state = sfp_gpio_get_state;
2577 sfp->set_state = sfp_gpio_set_state;
2578
2579
2580 if (!(sfp->gpio[GPIO_MODDEF0]))
2581 sfp->get_state = sff_gpio_get_state;
2582
2583 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2584 &sfp->max_power_mW);
2585 if (!sfp->max_power_mW)
2586 sfp->max_power_mW = 1000;
2587
2588 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2589 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2590
2591
2592
2593
2594 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2595
2596 if (sfp->gpio[GPIO_RATE_SELECT] &&
2597 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2598 sfp->state |= SFP_F_RATE_SELECT;
2599 sfp_set_state(sfp, sfp->state);
2600 sfp_module_tx_disable(sfp);
2601 if (sfp->state & SFP_F_PRESENT) {
2602 rtnl_lock();
2603 sfp_sm_event(sfp, SFP_E_INSERT);
2604 rtnl_unlock();
2605 }
2606
2607 for (i = 0; i < GPIO_MAX; i++) {
2608 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2609 continue;
2610
2611 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2612 if (sfp->gpio_irq[i] < 0) {
2613 sfp->gpio_irq[i] = 0;
2614 sfp->need_poll = true;
2615 continue;
2616 }
2617
2618 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2619 "%s-%s", dev_name(sfp->dev),
2620 gpio_of_names[i]);
2621
2622 if (!sfp_irq_name)
2623 return -ENOMEM;
2624
2625 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2626 NULL, sfp_irq,
2627 IRQF_ONESHOT |
2628 IRQF_TRIGGER_RISING |
2629 IRQF_TRIGGER_FALLING,
2630 sfp_irq_name, sfp);
2631 if (err) {
2632 sfp->gpio_irq[i] = 0;
2633 sfp->need_poll = true;
2634 }
2635 }
2636
2637 if (sfp->need_poll)
2638 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2639
2640
2641
2642
2643
2644
2645 if (!sfp->gpio[GPIO_TX_DISABLE])
2646 dev_warn(sfp->dev,
2647 "No tx_disable pin: SFP modules will always be emitting.\n");
2648
2649 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2650 if (!sfp->sfp_bus)
2651 return -ENOMEM;
2652
2653 sfp_debugfs_init(sfp);
2654
2655 return 0;
2656 }
2657
2658 static int sfp_remove(struct platform_device *pdev)
2659 {
2660 struct sfp *sfp = platform_get_drvdata(pdev);
2661
2662 sfp_debugfs_exit(sfp);
2663 sfp_unregister_socket(sfp->sfp_bus);
2664
2665 rtnl_lock();
2666 sfp_sm_event(sfp, SFP_E_REMOVE);
2667 rtnl_unlock();
2668
2669 return 0;
2670 }
2671
2672 static void sfp_shutdown(struct platform_device *pdev)
2673 {
2674 struct sfp *sfp = platform_get_drvdata(pdev);
2675 int i;
2676
2677 for (i = 0; i < GPIO_MAX; i++) {
2678 if (!sfp->gpio_irq[i])
2679 continue;
2680
2681 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2682 }
2683
2684 cancel_delayed_work_sync(&sfp->poll);
2685 cancel_delayed_work_sync(&sfp->timeout);
2686 }
2687
2688 static struct platform_driver sfp_driver = {
2689 .probe = sfp_probe,
2690 .remove = sfp_remove,
2691 .shutdown = sfp_shutdown,
2692 .driver = {
2693 .name = "sfp",
2694 .of_match_table = sfp_of_match,
2695 },
2696 };
2697
2698 static int sfp_init(void)
2699 {
2700 poll_jiffies = msecs_to_jiffies(100);
2701
2702 return platform_driver_register(&sfp_driver);
2703 }
2704 module_init(sfp_init);
2705
2706 static void sfp_exit(void)
2707 {
2708 platform_driver_unregister(&sfp_driver);
2709 }
2710 module_exit(sfp_exit);
2711
2712 MODULE_ALIAS("platform:sfp");
2713 MODULE_AUTHOR("Russell King");
2714 MODULE_LICENSE("GPL v2");