Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /* Framework for finding and configuring PHYs.
0003  * Also contains generic PHY driver
0004  *
0005  * Author: Andy Fleming
0006  *
0007  * Copyright (c) 2004 Freescale Semiconductor, Inc.
0008  */
0009 
0010 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0011 
0012 #include <linux/acpi.h>
0013 #include <linux/bitmap.h>
0014 #include <linux/delay.h>
0015 #include <linux/errno.h>
0016 #include <linux/etherdevice.h>
0017 #include <linux/ethtool.h>
0018 #include <linux/init.h>
0019 #include <linux/interrupt.h>
0020 #include <linux/io.h>
0021 #include <linux/kernel.h>
0022 #include <linux/mdio.h>
0023 #include <linux/mii.h>
0024 #include <linux/mm.h>
0025 #include <linux/module.h>
0026 #include <linux/netdevice.h>
0027 #include <linux/phy.h>
0028 #include <linux/phy_led_triggers.h>
0029 #include <linux/property.h>
0030 #include <linux/sfp.h>
0031 #include <linux/skbuff.h>
0032 #include <linux/slab.h>
0033 #include <linux/string.h>
0034 #include <linux/uaccess.h>
0035 #include <linux/unistd.h>
0036 
0037 MODULE_DESCRIPTION("PHY library");
0038 MODULE_AUTHOR("Andy Fleming");
0039 MODULE_LICENSE("GPL");
0040 
0041 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
0042 EXPORT_SYMBOL_GPL(phy_basic_features);
0043 
0044 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
0045 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
0046 
0047 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
0048 EXPORT_SYMBOL_GPL(phy_gbit_features);
0049 
0050 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
0051 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
0052 
0053 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
0054 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
0055 
0056 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
0057 EXPORT_SYMBOL_GPL(phy_10gbit_features);
0058 
0059 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
0060 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
0061 
0062 const int phy_basic_ports_array[3] = {
0063     ETHTOOL_LINK_MODE_Autoneg_BIT,
0064     ETHTOOL_LINK_MODE_TP_BIT,
0065     ETHTOOL_LINK_MODE_MII_BIT,
0066 };
0067 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
0068 
0069 const int phy_fibre_port_array[1] = {
0070     ETHTOOL_LINK_MODE_FIBRE_BIT,
0071 };
0072 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
0073 
0074 const int phy_all_ports_features_array[7] = {
0075     ETHTOOL_LINK_MODE_Autoneg_BIT,
0076     ETHTOOL_LINK_MODE_TP_BIT,
0077     ETHTOOL_LINK_MODE_MII_BIT,
0078     ETHTOOL_LINK_MODE_FIBRE_BIT,
0079     ETHTOOL_LINK_MODE_AUI_BIT,
0080     ETHTOOL_LINK_MODE_BNC_BIT,
0081     ETHTOOL_LINK_MODE_Backplane_BIT,
0082 };
0083 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
0084 
0085 const int phy_10_100_features_array[4] = {
0086     ETHTOOL_LINK_MODE_10baseT_Half_BIT,
0087     ETHTOOL_LINK_MODE_10baseT_Full_BIT,
0088     ETHTOOL_LINK_MODE_100baseT_Half_BIT,
0089     ETHTOOL_LINK_MODE_100baseT_Full_BIT,
0090 };
0091 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
0092 
0093 const int phy_basic_t1_features_array[3] = {
0094     ETHTOOL_LINK_MODE_TP_BIT,
0095     ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
0096     ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
0097 };
0098 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
0099 
0100 const int phy_gbit_features_array[2] = {
0101     ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
0102     ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
0103 };
0104 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
0105 
0106 const int phy_10gbit_features_array[1] = {
0107     ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
0108 };
0109 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
0110 
0111 static const int phy_10gbit_fec_features_array[1] = {
0112     ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
0113 };
0114 
0115 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
0116 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
0117 
0118 static const int phy_10gbit_full_features_array[] = {
0119     ETHTOOL_LINK_MODE_10baseT_Full_BIT,
0120     ETHTOOL_LINK_MODE_100baseT_Full_BIT,
0121     ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
0122     ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
0123 };
0124 
0125 static void features_init(void)
0126 {
0127     /* 10/100 half/full*/
0128     linkmode_set_bit_array(phy_basic_ports_array,
0129                    ARRAY_SIZE(phy_basic_ports_array),
0130                    phy_basic_features);
0131     linkmode_set_bit_array(phy_10_100_features_array,
0132                    ARRAY_SIZE(phy_10_100_features_array),
0133                    phy_basic_features);
0134 
0135     /* 100 full, TP */
0136     linkmode_set_bit_array(phy_basic_t1_features_array,
0137                    ARRAY_SIZE(phy_basic_t1_features_array),
0138                    phy_basic_t1_features);
0139 
0140     /* 10/100 half/full + 1000 half/full */
0141     linkmode_set_bit_array(phy_basic_ports_array,
0142                    ARRAY_SIZE(phy_basic_ports_array),
0143                    phy_gbit_features);
0144     linkmode_set_bit_array(phy_10_100_features_array,
0145                    ARRAY_SIZE(phy_10_100_features_array),
0146                    phy_gbit_features);
0147     linkmode_set_bit_array(phy_gbit_features_array,
0148                    ARRAY_SIZE(phy_gbit_features_array),
0149                    phy_gbit_features);
0150 
0151     /* 10/100 half/full + 1000 half/full + fibre*/
0152     linkmode_set_bit_array(phy_basic_ports_array,
0153                    ARRAY_SIZE(phy_basic_ports_array),
0154                    phy_gbit_fibre_features);
0155     linkmode_set_bit_array(phy_10_100_features_array,
0156                    ARRAY_SIZE(phy_10_100_features_array),
0157                    phy_gbit_fibre_features);
0158     linkmode_set_bit_array(phy_gbit_features_array,
0159                    ARRAY_SIZE(phy_gbit_features_array),
0160                    phy_gbit_fibre_features);
0161     linkmode_set_bit_array(phy_fibre_port_array,
0162                    ARRAY_SIZE(phy_fibre_port_array),
0163                    phy_gbit_fibre_features);
0164 
0165     /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
0166     linkmode_set_bit_array(phy_all_ports_features_array,
0167                    ARRAY_SIZE(phy_all_ports_features_array),
0168                    phy_gbit_all_ports_features);
0169     linkmode_set_bit_array(phy_10_100_features_array,
0170                    ARRAY_SIZE(phy_10_100_features_array),
0171                    phy_gbit_all_ports_features);
0172     linkmode_set_bit_array(phy_gbit_features_array,
0173                    ARRAY_SIZE(phy_gbit_features_array),
0174                    phy_gbit_all_ports_features);
0175 
0176     /* 10/100 half/full + 1000 half/full + 10G full*/
0177     linkmode_set_bit_array(phy_all_ports_features_array,
0178                    ARRAY_SIZE(phy_all_ports_features_array),
0179                    phy_10gbit_features);
0180     linkmode_set_bit_array(phy_10_100_features_array,
0181                    ARRAY_SIZE(phy_10_100_features_array),
0182                    phy_10gbit_features);
0183     linkmode_set_bit_array(phy_gbit_features_array,
0184                    ARRAY_SIZE(phy_gbit_features_array),
0185                    phy_10gbit_features);
0186     linkmode_set_bit_array(phy_10gbit_features_array,
0187                    ARRAY_SIZE(phy_10gbit_features_array),
0188                    phy_10gbit_features);
0189 
0190     /* 10/100/1000/10G full */
0191     linkmode_set_bit_array(phy_all_ports_features_array,
0192                    ARRAY_SIZE(phy_all_ports_features_array),
0193                    phy_10gbit_full_features);
0194     linkmode_set_bit_array(phy_10gbit_full_features_array,
0195                    ARRAY_SIZE(phy_10gbit_full_features_array),
0196                    phy_10gbit_full_features);
0197     /* 10G FEC only */
0198     linkmode_set_bit_array(phy_10gbit_fec_features_array,
0199                    ARRAY_SIZE(phy_10gbit_fec_features_array),
0200                    phy_10gbit_fec_features);
0201 }
0202 
0203 void phy_device_free(struct phy_device *phydev)
0204 {
0205     put_device(&phydev->mdio.dev);
0206 }
0207 EXPORT_SYMBOL(phy_device_free);
0208 
0209 static void phy_mdio_device_free(struct mdio_device *mdiodev)
0210 {
0211     struct phy_device *phydev;
0212 
0213     phydev = container_of(mdiodev, struct phy_device, mdio);
0214     phy_device_free(phydev);
0215 }
0216 
0217 static void phy_device_release(struct device *dev)
0218 {
0219     kfree(to_phy_device(dev));
0220 }
0221 
0222 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
0223 {
0224     struct phy_device *phydev;
0225 
0226     phydev = container_of(mdiodev, struct phy_device, mdio);
0227     phy_device_remove(phydev);
0228 }
0229 
0230 static struct phy_driver genphy_driver;
0231 
0232 static LIST_HEAD(phy_fixup_list);
0233 static DEFINE_MUTEX(phy_fixup_lock);
0234 
0235 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
0236 {
0237     struct device_driver *drv = phydev->mdio.dev.driver;
0238     struct phy_driver *phydrv = to_phy_driver(drv);
0239     struct net_device *netdev = phydev->attached_dev;
0240 
0241     if (!drv || !phydrv->suspend)
0242         return false;
0243 
0244     /* PHY not attached? May suspend if the PHY has not already been
0245      * suspended as part of a prior call to phy_disconnect() ->
0246      * phy_detach() -> phy_suspend() because the parent netdev might be the
0247      * MDIO bus driver and clock gated at this point.
0248      */
0249     if (!netdev)
0250         goto out;
0251 
0252     if (netdev->wol_enabled)
0253         return false;
0254 
0255     /* As long as not all affected network drivers support the
0256      * wol_enabled flag, let's check for hints that WoL is enabled.
0257      * Don't suspend PHY if the attached netdev parent may wake up.
0258      * The parent may point to a PCI device, as in tg3 driver.
0259      */
0260     if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
0261         return false;
0262 
0263     /* Also don't suspend PHY if the netdev itself may wakeup. This
0264      * is the case for devices w/o underlaying pwr. mgmt. aware bus,
0265      * e.g. SoC devices.
0266      */
0267     if (device_may_wakeup(&netdev->dev))
0268         return false;
0269 
0270 out:
0271     return !phydev->suspended;
0272 }
0273 
0274 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
0275 {
0276     struct phy_device *phydev = to_phy_device(dev);
0277 
0278     if (phydev->mac_managed_pm)
0279         return 0;
0280 
0281     /* Wakeup interrupts may occur during the system sleep transition when
0282      * the PHY is inaccessible. Set flag to postpone handling until the PHY
0283      * has resumed. Wait for concurrent interrupt handler to complete.
0284      */
0285     if (phy_interrupt_is_valid(phydev)) {
0286         phydev->irq_suspended = 1;
0287         synchronize_irq(phydev->irq);
0288     }
0289 
0290     /* We must stop the state machine manually, otherwise it stops out of
0291      * control, possibly with the phydev->lock held. Upon resume, netdev
0292      * may call phy routines that try to grab the same lock, and that may
0293      * lead to a deadlock.
0294      */
0295     if (phydev->attached_dev && phydev->adjust_link)
0296         phy_stop_machine(phydev);
0297 
0298     if (!mdio_bus_phy_may_suspend(phydev))
0299         return 0;
0300 
0301     phydev->suspended_by_mdio_bus = 1;
0302 
0303     return phy_suspend(phydev);
0304 }
0305 
0306 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
0307 {
0308     struct phy_device *phydev = to_phy_device(dev);
0309     int ret;
0310 
0311     if (phydev->mac_managed_pm)
0312         return 0;
0313 
0314     if (!phydev->suspended_by_mdio_bus)
0315         goto no_resume;
0316 
0317     phydev->suspended_by_mdio_bus = 0;
0318 
0319     /* If we managed to get here with the PHY state machine in a state
0320      * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
0321      * that something went wrong and we should most likely be using
0322      * MAC managed PM, but we are not.
0323      */
0324     WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
0325         phydev->state != PHY_UP);
0326 
0327     ret = phy_init_hw(phydev);
0328     if (ret < 0)
0329         return ret;
0330 
0331     ret = phy_resume(phydev);
0332     if (ret < 0)
0333         return ret;
0334 no_resume:
0335     if (phy_interrupt_is_valid(phydev)) {
0336         phydev->irq_suspended = 0;
0337         synchronize_irq(phydev->irq);
0338 
0339         /* Rerun interrupts which were postponed by phy_interrupt()
0340          * because they occurred during the system sleep transition.
0341          */
0342         if (phydev->irq_rerun) {
0343             phydev->irq_rerun = 0;
0344             enable_irq(phydev->irq);
0345             irq_wake_thread(phydev->irq, phydev);
0346         }
0347     }
0348 
0349     if (phydev->attached_dev && phydev->adjust_link)
0350         phy_start_machine(phydev);
0351 
0352     return 0;
0353 }
0354 
0355 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
0356              mdio_bus_phy_resume);
0357 
0358 /**
0359  * phy_register_fixup - creates a new phy_fixup and adds it to the list
0360  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
0361  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
0362  *  It can also be PHY_ANY_UID
0363  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
0364  *  comparison
0365  * @run: The actual code to be run when a matching PHY is found
0366  */
0367 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
0368                int (*run)(struct phy_device *))
0369 {
0370     struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
0371 
0372     if (!fixup)
0373         return -ENOMEM;
0374 
0375     strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
0376     fixup->phy_uid = phy_uid;
0377     fixup->phy_uid_mask = phy_uid_mask;
0378     fixup->run = run;
0379 
0380     mutex_lock(&phy_fixup_lock);
0381     list_add_tail(&fixup->list, &phy_fixup_list);
0382     mutex_unlock(&phy_fixup_lock);
0383 
0384     return 0;
0385 }
0386 EXPORT_SYMBOL(phy_register_fixup);
0387 
0388 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
0389 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
0390                    int (*run)(struct phy_device *))
0391 {
0392     return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
0393 }
0394 EXPORT_SYMBOL(phy_register_fixup_for_uid);
0395 
0396 /* Registers a fixup to be run on the PHY with id string bus_id */
0397 int phy_register_fixup_for_id(const char *bus_id,
0398                   int (*run)(struct phy_device *))
0399 {
0400     return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
0401 }
0402 EXPORT_SYMBOL(phy_register_fixup_for_id);
0403 
0404 /**
0405  * phy_unregister_fixup - remove a phy_fixup from the list
0406  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
0407  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
0408  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
0409  */
0410 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
0411 {
0412     struct list_head *pos, *n;
0413     struct phy_fixup *fixup;
0414     int ret;
0415 
0416     ret = -ENODEV;
0417 
0418     mutex_lock(&phy_fixup_lock);
0419     list_for_each_safe(pos, n, &phy_fixup_list) {
0420         fixup = list_entry(pos, struct phy_fixup, list);
0421 
0422         if ((!strcmp(fixup->bus_id, bus_id)) &&
0423             ((fixup->phy_uid & phy_uid_mask) ==
0424              (phy_uid & phy_uid_mask))) {
0425             list_del(&fixup->list);
0426             kfree(fixup);
0427             ret = 0;
0428             break;
0429         }
0430     }
0431     mutex_unlock(&phy_fixup_lock);
0432 
0433     return ret;
0434 }
0435 EXPORT_SYMBOL(phy_unregister_fixup);
0436 
0437 /* Unregisters a fixup of any PHY with the UID in phy_uid */
0438 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
0439 {
0440     return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
0441 }
0442 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
0443 
0444 /* Unregisters a fixup of the PHY with id string bus_id */
0445 int phy_unregister_fixup_for_id(const char *bus_id)
0446 {
0447     return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
0448 }
0449 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
0450 
0451 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
0452  * Fixups can be set to match any in one or more fields.
0453  */
0454 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
0455 {
0456     if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
0457         if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
0458             return 0;
0459 
0460     if ((fixup->phy_uid & fixup->phy_uid_mask) !=
0461         (phydev->phy_id & fixup->phy_uid_mask))
0462         if (fixup->phy_uid != PHY_ANY_UID)
0463             return 0;
0464 
0465     return 1;
0466 }
0467 
0468 /* Runs any matching fixups for this phydev */
0469 static int phy_scan_fixups(struct phy_device *phydev)
0470 {
0471     struct phy_fixup *fixup;
0472 
0473     mutex_lock(&phy_fixup_lock);
0474     list_for_each_entry(fixup, &phy_fixup_list, list) {
0475         if (phy_needs_fixup(phydev, fixup)) {
0476             int err = fixup->run(phydev);
0477 
0478             if (err < 0) {
0479                 mutex_unlock(&phy_fixup_lock);
0480                 return err;
0481             }
0482             phydev->has_fixups = true;
0483         }
0484     }
0485     mutex_unlock(&phy_fixup_lock);
0486 
0487     return 0;
0488 }
0489 
0490 static int phy_bus_match(struct device *dev, struct device_driver *drv)
0491 {
0492     struct phy_device *phydev = to_phy_device(dev);
0493     struct phy_driver *phydrv = to_phy_driver(drv);
0494     const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
0495     int i;
0496 
0497     if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
0498         return 0;
0499 
0500     if (phydrv->match_phy_device)
0501         return phydrv->match_phy_device(phydev);
0502 
0503     if (phydev->is_c45) {
0504         for (i = 1; i < num_ids; i++) {
0505             if (phydev->c45_ids.device_ids[i] == 0xffffffff)
0506                 continue;
0507 
0508             if ((phydrv->phy_id & phydrv->phy_id_mask) ==
0509                 (phydev->c45_ids.device_ids[i] &
0510                  phydrv->phy_id_mask))
0511                 return 1;
0512         }
0513         return 0;
0514     } else {
0515         return (phydrv->phy_id & phydrv->phy_id_mask) ==
0516             (phydev->phy_id & phydrv->phy_id_mask);
0517     }
0518 }
0519 
0520 static ssize_t
0521 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
0522 {
0523     struct phy_device *phydev = to_phy_device(dev);
0524 
0525     return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
0526 }
0527 static DEVICE_ATTR_RO(phy_id);
0528 
0529 static ssize_t
0530 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
0531 {
0532     struct phy_device *phydev = to_phy_device(dev);
0533     const char *mode = NULL;
0534 
0535     if (phy_is_internal(phydev))
0536         mode = "internal";
0537     else
0538         mode = phy_modes(phydev->interface);
0539 
0540     return sprintf(buf, "%s\n", mode);
0541 }
0542 static DEVICE_ATTR_RO(phy_interface);
0543 
0544 static ssize_t
0545 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
0546             char *buf)
0547 {
0548     struct phy_device *phydev = to_phy_device(dev);
0549 
0550     return sprintf(buf, "%d\n", phydev->has_fixups);
0551 }
0552 static DEVICE_ATTR_RO(phy_has_fixups);
0553 
0554 static ssize_t phy_dev_flags_show(struct device *dev,
0555                   struct device_attribute *attr,
0556                   char *buf)
0557 {
0558     struct phy_device *phydev = to_phy_device(dev);
0559 
0560     return sprintf(buf, "0x%08x\n", phydev->dev_flags);
0561 }
0562 static DEVICE_ATTR_RO(phy_dev_flags);
0563 
0564 static struct attribute *phy_dev_attrs[] = {
0565     &dev_attr_phy_id.attr,
0566     &dev_attr_phy_interface.attr,
0567     &dev_attr_phy_has_fixups.attr,
0568     &dev_attr_phy_dev_flags.attr,
0569     NULL,
0570 };
0571 ATTRIBUTE_GROUPS(phy_dev);
0572 
0573 static const struct device_type mdio_bus_phy_type = {
0574     .name = "PHY",
0575     .groups = phy_dev_groups,
0576     .release = phy_device_release,
0577     .pm = pm_ptr(&mdio_bus_phy_pm_ops),
0578 };
0579 
0580 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
0581 {
0582     int ret;
0583 
0584     ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
0585                  MDIO_ID_ARGS(phy_id));
0586     /* We only check for failures in executing the usermode binary,
0587      * not whether a PHY driver module exists for the PHY ID.
0588      * Accept -ENOENT because this may occur in case no initramfs exists,
0589      * then modprobe isn't available.
0590      */
0591     if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
0592         phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
0593                ret, (unsigned long)phy_id);
0594         return ret;
0595     }
0596 
0597     return 0;
0598 }
0599 
0600 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
0601                      bool is_c45,
0602                      struct phy_c45_device_ids *c45_ids)
0603 {
0604     struct phy_device *dev;
0605     struct mdio_device *mdiodev;
0606     int ret = 0;
0607 
0608     /* We allocate the device, and initialize the default values */
0609     dev = kzalloc(sizeof(*dev), GFP_KERNEL);
0610     if (!dev)
0611         return ERR_PTR(-ENOMEM);
0612 
0613     mdiodev = &dev->mdio;
0614     mdiodev->dev.parent = &bus->dev;
0615     mdiodev->dev.bus = &mdio_bus_type;
0616     mdiodev->dev.type = &mdio_bus_phy_type;
0617     mdiodev->bus = bus;
0618     mdiodev->bus_match = phy_bus_match;
0619     mdiodev->addr = addr;
0620     mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
0621     mdiodev->device_free = phy_mdio_device_free;
0622     mdiodev->device_remove = phy_mdio_device_remove;
0623 
0624     dev->speed = SPEED_UNKNOWN;
0625     dev->duplex = DUPLEX_UNKNOWN;
0626     dev->pause = 0;
0627     dev->asym_pause = 0;
0628     dev->link = 0;
0629     dev->port = PORT_TP;
0630     dev->interface = PHY_INTERFACE_MODE_GMII;
0631 
0632     dev->autoneg = AUTONEG_ENABLE;
0633 
0634     dev->pma_extable = -ENODATA;
0635     dev->is_c45 = is_c45;
0636     dev->phy_id = phy_id;
0637     if (c45_ids)
0638         dev->c45_ids = *c45_ids;
0639     dev->irq = bus->irq[addr];
0640 
0641     dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
0642     device_initialize(&mdiodev->dev);
0643 
0644     dev->state = PHY_DOWN;
0645 
0646     mutex_init(&dev->lock);
0647     INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
0648 
0649     /* Request the appropriate module unconditionally; don't
0650      * bother trying to do so only if it isn't already loaded,
0651      * because that gets complicated. A hotplug event would have
0652      * done an unconditional modprobe anyway.
0653      * We don't do normal hotplug because it won't work for MDIO
0654      * -- because it relies on the device staying around for long
0655      * enough for the driver to get loaded. With MDIO, the NIC
0656      * driver will get bored and give up as soon as it finds that
0657      * there's no driver _already_ loaded.
0658      */
0659     if (is_c45 && c45_ids) {
0660         const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
0661         int i;
0662 
0663         for (i = 1; i < num_ids; i++) {
0664             if (c45_ids->device_ids[i] == 0xffffffff)
0665                 continue;
0666 
0667             ret = phy_request_driver_module(dev,
0668                         c45_ids->device_ids[i]);
0669             if (ret)
0670                 break;
0671         }
0672     } else {
0673         ret = phy_request_driver_module(dev, phy_id);
0674     }
0675 
0676     if (ret) {
0677         put_device(&mdiodev->dev);
0678         dev = ERR_PTR(ret);
0679     }
0680 
0681     return dev;
0682 }
0683 EXPORT_SYMBOL(phy_device_create);
0684 
0685 /* phy_c45_probe_present - checks to see if a MMD is present in the package
0686  * @bus: the target MII bus
0687  * @prtad: PHY package address on the MII bus
0688  * @devad: PHY device (MMD) address
0689  *
0690  * Read the MDIO_STAT2 register, and check whether a device is responding
0691  * at this address.
0692  *
0693  * Returns: negative error number on bus access error, zero if no device
0694  * is responding, or positive if a device is present.
0695  */
0696 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
0697 {
0698     int stat2;
0699 
0700     stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
0701     if (stat2 < 0)
0702         return stat2;
0703 
0704     return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
0705 }
0706 
0707 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
0708  * @bus: the target MII bus
0709  * @addr: PHY address on the MII bus
0710  * @dev_addr: MMD address in the PHY.
0711  * @devices_in_package: where to store the devices in package information.
0712  *
0713  * Description: reads devices in package registers of a MMD at @dev_addr
0714  * from PHY at @addr on @bus.
0715  *
0716  * Returns: 0 on success, -EIO on failure.
0717  */
0718 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
0719                    u32 *devices_in_package)
0720 {
0721     int phy_reg;
0722 
0723     phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
0724     if (phy_reg < 0)
0725         return -EIO;
0726     *devices_in_package = phy_reg << 16;
0727 
0728     phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
0729     if (phy_reg < 0)
0730         return -EIO;
0731     *devices_in_package |= phy_reg;
0732 
0733     return 0;
0734 }
0735 
0736 /**
0737  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
0738  * @bus: the target MII bus
0739  * @addr: PHY address on the MII bus
0740  * @c45_ids: where to store the c45 ID information.
0741  *
0742  * Read the PHY "devices in package". If this appears to be valid, read
0743  * the PHY identifiers for each device. Return the "devices in package"
0744  * and identifiers in @c45_ids.
0745  *
0746  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
0747  * the "devices in package" is invalid.
0748  */
0749 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
0750                struct phy_c45_device_ids *c45_ids)
0751 {
0752     const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
0753     u32 devs_in_pkg = 0;
0754     int i, ret, phy_reg;
0755 
0756     /* Find first non-zero Devices In package. Device zero is reserved
0757      * for 802.3 c45 complied PHYs, so don't probe it at first.
0758      */
0759     for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
0760          (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
0761         if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
0762             /* Check that there is a device present at this
0763              * address before reading the devices-in-package
0764              * register to avoid reading garbage from the PHY.
0765              * Some PHYs (88x3310) vendor space is not IEEE802.3
0766              * compliant.
0767              */
0768             ret = phy_c45_probe_present(bus, addr, i);
0769             if (ret < 0)
0770                 return -EIO;
0771 
0772             if (!ret)
0773                 continue;
0774         }
0775         phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
0776         if (phy_reg < 0)
0777             return -EIO;
0778     }
0779 
0780     if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
0781         /* If mostly Fs, there is no device there, then let's probe
0782          * MMD 0, as some 10G PHYs have zero Devices In package,
0783          * e.g. Cortina CS4315/CS4340 PHY.
0784          */
0785         phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
0786         if (phy_reg < 0)
0787             return -EIO;
0788 
0789         /* no device there, let's get out of here */
0790         if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
0791             return -ENODEV;
0792     }
0793 
0794     /* Now probe Device Identifiers for each device present. */
0795     for (i = 1; i < num_ids; i++) {
0796         if (!(devs_in_pkg & (1 << i)))
0797             continue;
0798 
0799         if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
0800             /* Probe the "Device Present" bits for the vendor MMDs
0801              * to ignore these if they do not contain IEEE 802.3
0802              * registers.
0803              */
0804             ret = phy_c45_probe_present(bus, addr, i);
0805             if (ret < 0)
0806                 return ret;
0807 
0808             if (!ret)
0809                 continue;
0810         }
0811 
0812         phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
0813         if (phy_reg < 0)
0814             return -EIO;
0815         c45_ids->device_ids[i] = phy_reg << 16;
0816 
0817         phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
0818         if (phy_reg < 0)
0819             return -EIO;
0820         c45_ids->device_ids[i] |= phy_reg;
0821     }
0822 
0823     c45_ids->devices_in_package = devs_in_pkg;
0824     /* Bit 0 doesn't represent a device, it indicates c22 regs presence */
0825     c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
0826 
0827     return 0;
0828 }
0829 
0830 /**
0831  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
0832  * @bus: the target MII bus
0833  * @addr: PHY address on the MII bus
0834  * @phy_id: where to store the ID retrieved.
0835  *
0836  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
0837  * placing it in @phy_id. Return zero on successful read and the ID is
0838  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
0839  * or invalid ID.
0840  */
0841 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
0842 {
0843     int phy_reg;
0844 
0845     /* Grab the bits from PHYIR1, and put them in the upper half */
0846     phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
0847     if (phy_reg < 0) {
0848         /* returning -ENODEV doesn't stop bus scanning */
0849         return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
0850     }
0851 
0852     *phy_id = phy_reg << 16;
0853 
0854     /* Grab the bits from PHYIR2, and put them in the lower half */
0855     phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
0856     if (phy_reg < 0) {
0857         /* returning -ENODEV doesn't stop bus scanning */
0858         return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
0859     }
0860 
0861     *phy_id |= phy_reg;
0862 
0863     /* If the phy_id is mostly Fs, there is no device there */
0864     if ((*phy_id & 0x1fffffff) == 0x1fffffff)
0865         return -ENODEV;
0866 
0867     return 0;
0868 }
0869 
0870 /* Extract the phy ID from the compatible string of the form
0871  * ethernet-phy-idAAAA.BBBB.
0872  */
0873 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
0874 {
0875     unsigned int upper, lower;
0876     const char *cp;
0877     int ret;
0878 
0879     ret = fwnode_property_read_string(fwnode, "compatible", &cp);
0880     if (ret)
0881         return ret;
0882 
0883     if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
0884         return -EINVAL;
0885 
0886     *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
0887     return 0;
0888 }
0889 EXPORT_SYMBOL(fwnode_get_phy_id);
0890 
0891 /**
0892  * get_phy_device - reads the specified PHY device and returns its @phy_device
0893  *          struct
0894  * @bus: the target MII bus
0895  * @addr: PHY address on the MII bus
0896  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
0897  *
0898  * Probe for a PHY at @addr on @bus.
0899  *
0900  * When probing for a clause 22 PHY, then read the ID registers. If we find
0901  * a valid ID, allocate and return a &struct phy_device.
0902  *
0903  * When probing for a clause 45 PHY, read the "devices in package" registers.
0904  * If the "devices in package" appears valid, read the ID registers for each
0905  * MMD, allocate and return a &struct phy_device.
0906  *
0907  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
0908  * no PHY present, or %-EIO on bus access error.
0909  */
0910 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
0911 {
0912     struct phy_c45_device_ids c45_ids;
0913     u32 phy_id = 0;
0914     int r;
0915 
0916     c45_ids.devices_in_package = 0;
0917     c45_ids.mmds_present = 0;
0918     memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
0919 
0920     if (is_c45)
0921         r = get_phy_c45_ids(bus, addr, &c45_ids);
0922     else
0923         r = get_phy_c22_id(bus, addr, &phy_id);
0924 
0925     if (r)
0926         return ERR_PTR(r);
0927 
0928     /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
0929      * of 0 when probed using get_phy_c22_id() with no error. Proceed to
0930      * probe with C45 to see if we're able to get a valid PHY ID in the C45
0931      * space, if successful, create the C45 PHY device.
0932      */
0933     if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) {
0934         r = get_phy_c45_ids(bus, addr, &c45_ids);
0935         if (!r)
0936             return phy_device_create(bus, addr, phy_id,
0937                          true, &c45_ids);
0938     }
0939 
0940     return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
0941 }
0942 EXPORT_SYMBOL(get_phy_device);
0943 
0944 /**
0945  * phy_device_register - Register the phy device on the MDIO bus
0946  * @phydev: phy_device structure to be added to the MDIO bus
0947  */
0948 int phy_device_register(struct phy_device *phydev)
0949 {
0950     int err;
0951 
0952     err = mdiobus_register_device(&phydev->mdio);
0953     if (err)
0954         return err;
0955 
0956     /* Deassert the reset signal */
0957     phy_device_reset(phydev, 0);
0958 
0959     /* Run all of the fixups for this PHY */
0960     err = phy_scan_fixups(phydev);
0961     if (err) {
0962         phydev_err(phydev, "failed to initialize\n");
0963         goto out;
0964     }
0965 
0966     err = device_add(&phydev->mdio.dev);
0967     if (err) {
0968         phydev_err(phydev, "failed to add\n");
0969         goto out;
0970     }
0971 
0972     return 0;
0973 
0974  out:
0975     /* Assert the reset signal */
0976     phy_device_reset(phydev, 1);
0977 
0978     mdiobus_unregister_device(&phydev->mdio);
0979     return err;
0980 }
0981 EXPORT_SYMBOL(phy_device_register);
0982 
0983 /**
0984  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
0985  * @phydev: phy_device structure to remove
0986  *
0987  * This doesn't free the phy_device itself, it merely reverses the effects
0988  * of phy_device_register(). Use phy_device_free() to free the device
0989  * after calling this function.
0990  */
0991 void phy_device_remove(struct phy_device *phydev)
0992 {
0993     unregister_mii_timestamper(phydev->mii_ts);
0994 
0995     device_del(&phydev->mdio.dev);
0996 
0997     /* Assert the reset signal */
0998     phy_device_reset(phydev, 1);
0999 
1000     mdiobus_unregister_device(&phydev->mdio);
1001 }
1002 EXPORT_SYMBOL(phy_device_remove);
1003 
1004 /**
1005  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1006  * @phydev: phy_device structure to read 802.3-c45 IDs
1007  *
1008  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1009  * the "devices in package" is invalid.
1010  */
1011 int phy_get_c45_ids(struct phy_device *phydev)
1012 {
1013     return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1014                    &phydev->c45_ids);
1015 }
1016 EXPORT_SYMBOL(phy_get_c45_ids);
1017 
1018 /**
1019  * phy_find_first - finds the first PHY device on the bus
1020  * @bus: the target MII bus
1021  */
1022 struct phy_device *phy_find_first(struct mii_bus *bus)
1023 {
1024     struct phy_device *phydev;
1025     int addr;
1026 
1027     for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1028         phydev = mdiobus_get_phy(bus, addr);
1029         if (phydev)
1030             return phydev;
1031     }
1032     return NULL;
1033 }
1034 EXPORT_SYMBOL(phy_find_first);
1035 
1036 static void phy_link_change(struct phy_device *phydev, bool up)
1037 {
1038     struct net_device *netdev = phydev->attached_dev;
1039 
1040     if (up)
1041         netif_carrier_on(netdev);
1042     else
1043         netif_carrier_off(netdev);
1044     phydev->adjust_link(netdev);
1045     if (phydev->mii_ts && phydev->mii_ts->link_state)
1046         phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1047 }
1048 
1049 /**
1050  * phy_prepare_link - prepares the PHY layer to monitor link status
1051  * @phydev: target phy_device struct
1052  * @handler: callback function for link status change notifications
1053  *
1054  * Description: Tells the PHY infrastructure to handle the
1055  *   gory details on monitoring link status (whether through
1056  *   polling or an interrupt), and to call back to the
1057  *   connected device driver when the link status changes.
1058  *   If you want to monitor your own link state, don't call
1059  *   this function.
1060  */
1061 static void phy_prepare_link(struct phy_device *phydev,
1062                  void (*handler)(struct net_device *))
1063 {
1064     phydev->adjust_link = handler;
1065 }
1066 
1067 /**
1068  * phy_connect_direct - connect an ethernet device to a specific phy_device
1069  * @dev: the network device to connect
1070  * @phydev: the pointer to the phy device
1071  * @handler: callback function for state change notifications
1072  * @interface: PHY device's interface
1073  */
1074 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1075                void (*handler)(struct net_device *),
1076                phy_interface_t interface)
1077 {
1078     int rc;
1079 
1080     if (!dev)
1081         return -EINVAL;
1082 
1083     rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1084     if (rc)
1085         return rc;
1086 
1087     phy_prepare_link(phydev, handler);
1088     if (phy_interrupt_is_valid(phydev))
1089         phy_request_interrupt(phydev);
1090 
1091     return 0;
1092 }
1093 EXPORT_SYMBOL(phy_connect_direct);
1094 
1095 /**
1096  * phy_connect - connect an ethernet device to a PHY device
1097  * @dev: the network device to connect
1098  * @bus_id: the id string of the PHY device to connect
1099  * @handler: callback function for state change notifications
1100  * @interface: PHY device's interface
1101  *
1102  * Description: Convenience function for connecting ethernet
1103  *   devices to PHY devices.  The default behavior is for
1104  *   the PHY infrastructure to handle everything, and only notify
1105  *   the connected driver when the link status changes.  If you
1106  *   don't want, or can't use the provided functionality, you may
1107  *   choose to call only the subset of functions which provide
1108  *   the desired functionality.
1109  */
1110 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1111                    void (*handler)(struct net_device *),
1112                    phy_interface_t interface)
1113 {
1114     struct phy_device *phydev;
1115     struct device *d;
1116     int rc;
1117 
1118     /* Search the list of PHY devices on the mdio bus for the
1119      * PHY with the requested name
1120      */
1121     d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1122     if (!d) {
1123         pr_err("PHY %s not found\n", bus_id);
1124         return ERR_PTR(-ENODEV);
1125     }
1126     phydev = to_phy_device(d);
1127 
1128     rc = phy_connect_direct(dev, phydev, handler, interface);
1129     put_device(d);
1130     if (rc)
1131         return ERR_PTR(rc);
1132 
1133     return phydev;
1134 }
1135 EXPORT_SYMBOL(phy_connect);
1136 
1137 /**
1138  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1139  *          device
1140  * @phydev: target phy_device struct
1141  */
1142 void phy_disconnect(struct phy_device *phydev)
1143 {
1144     if (phy_is_started(phydev))
1145         phy_stop(phydev);
1146 
1147     if (phy_interrupt_is_valid(phydev))
1148         phy_free_interrupt(phydev);
1149 
1150     phydev->adjust_link = NULL;
1151 
1152     phy_detach(phydev);
1153 }
1154 EXPORT_SYMBOL(phy_disconnect);
1155 
1156 /**
1157  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1158  * @phydev: The PHY device to poll
1159  *
1160  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1161  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1162  *   register must be polled until the BMCR_RESET bit clears.
1163  *
1164  *   Furthermore, any attempts to write to PHY registers may have no effect
1165  *   or even generate MDIO bus errors until this is complete.
1166  *
1167  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1168  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1169  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1170  *   effort to support such broken PHYs, this function is separate from the
1171  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1172  *   and reapply all driver-specific and board-specific fixups.
1173  */
1174 static int phy_poll_reset(struct phy_device *phydev)
1175 {
1176     /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1177     int ret, val;
1178 
1179     ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1180                     50000, 600000, true);
1181     if (ret)
1182         return ret;
1183     /* Some chips (smsc911x) may still need up to another 1ms after the
1184      * BMCR_RESET bit is cleared before they are usable.
1185      */
1186     msleep(1);
1187     return 0;
1188 }
1189 
1190 int phy_init_hw(struct phy_device *phydev)
1191 {
1192     int ret = 0;
1193 
1194     /* Deassert the reset signal */
1195     phy_device_reset(phydev, 0);
1196 
1197     if (!phydev->drv)
1198         return 0;
1199 
1200     if (phydev->drv->soft_reset) {
1201         ret = phydev->drv->soft_reset(phydev);
1202         /* see comment in genphy_soft_reset for an explanation */
1203         if (!ret)
1204             phydev->suspended = 0;
1205     }
1206 
1207     if (ret < 0)
1208         return ret;
1209 
1210     ret = phy_scan_fixups(phydev);
1211     if (ret < 0)
1212         return ret;
1213 
1214     if (phydev->drv->config_init) {
1215         ret = phydev->drv->config_init(phydev);
1216         if (ret < 0)
1217             return ret;
1218     }
1219 
1220     if (phydev->drv->config_intr) {
1221         ret = phydev->drv->config_intr(phydev);
1222         if (ret < 0)
1223             return ret;
1224     }
1225 
1226     return 0;
1227 }
1228 EXPORT_SYMBOL(phy_init_hw);
1229 
1230 void phy_attached_info(struct phy_device *phydev)
1231 {
1232     phy_attached_print(phydev, NULL);
1233 }
1234 EXPORT_SYMBOL(phy_attached_info);
1235 
1236 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1237 char *phy_attached_info_irq(struct phy_device *phydev)
1238 {
1239     char *irq_str;
1240     char irq_num[8];
1241 
1242     switch(phydev->irq) {
1243     case PHY_POLL:
1244         irq_str = "POLL";
1245         break;
1246     case PHY_MAC_INTERRUPT:
1247         irq_str = "MAC";
1248         break;
1249     default:
1250         snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1251         irq_str = irq_num;
1252         break;
1253     }
1254 
1255     return kasprintf(GFP_KERNEL, "%s", irq_str);
1256 }
1257 EXPORT_SYMBOL(phy_attached_info_irq);
1258 
1259 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1260 {
1261     const char *unbound = phydev->drv ? "" : "[unbound] ";
1262     char *irq_str = phy_attached_info_irq(phydev);
1263 
1264     if (!fmt) {
1265         phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1266                 phydev_name(phydev), irq_str);
1267     } else {
1268         va_list ap;
1269 
1270         phydev_info(phydev, ATTACHED_FMT, unbound,
1271                 phydev_name(phydev), irq_str);
1272 
1273         va_start(ap, fmt);
1274         vprintk(fmt, ap);
1275         va_end(ap);
1276     }
1277     kfree(irq_str);
1278 }
1279 EXPORT_SYMBOL(phy_attached_print);
1280 
1281 static void phy_sysfs_create_links(struct phy_device *phydev)
1282 {
1283     struct net_device *dev = phydev->attached_dev;
1284     int err;
1285 
1286     if (!dev)
1287         return;
1288 
1289     err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1290                 "attached_dev");
1291     if (err)
1292         return;
1293 
1294     err = sysfs_create_link_nowarn(&dev->dev.kobj,
1295                        &phydev->mdio.dev.kobj,
1296                        "phydev");
1297     if (err) {
1298         dev_err(&dev->dev, "could not add device link to %s err %d\n",
1299             kobject_name(&phydev->mdio.dev.kobj),
1300             err);
1301         /* non-fatal - some net drivers can use one netdevice
1302          * with more then one phy
1303          */
1304     }
1305 
1306     phydev->sysfs_links = true;
1307 }
1308 
1309 static ssize_t
1310 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1311             char *buf)
1312 {
1313     struct phy_device *phydev = to_phy_device(dev);
1314 
1315     return sprintf(buf, "%d\n", !phydev->attached_dev);
1316 }
1317 static DEVICE_ATTR_RO(phy_standalone);
1318 
1319 /**
1320  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1321  * @upstream: pointer to the phy device
1322  * @bus: sfp bus representing cage being attached
1323  *
1324  * This is used to fill in the sfp_upstream_ops .attach member.
1325  */
1326 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1327 {
1328     struct phy_device *phydev = upstream;
1329 
1330     if (phydev->attached_dev)
1331         phydev->attached_dev->sfp_bus = bus;
1332     phydev->sfp_bus_attached = true;
1333 }
1334 EXPORT_SYMBOL(phy_sfp_attach);
1335 
1336 /**
1337  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1338  * @upstream: pointer to the phy device
1339  * @bus: sfp bus representing cage being attached
1340  *
1341  * This is used to fill in the sfp_upstream_ops .detach member.
1342  */
1343 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1344 {
1345     struct phy_device *phydev = upstream;
1346 
1347     if (phydev->attached_dev)
1348         phydev->attached_dev->sfp_bus = NULL;
1349     phydev->sfp_bus_attached = false;
1350 }
1351 EXPORT_SYMBOL(phy_sfp_detach);
1352 
1353 /**
1354  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1355  * @phydev: Pointer to phy_device
1356  * @ops: SFP's upstream operations
1357  */
1358 int phy_sfp_probe(struct phy_device *phydev,
1359           const struct sfp_upstream_ops *ops)
1360 {
1361     struct sfp_bus *bus;
1362     int ret = 0;
1363 
1364     if (phydev->mdio.dev.fwnode) {
1365         bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1366         if (IS_ERR(bus))
1367             return PTR_ERR(bus);
1368 
1369         phydev->sfp_bus = bus;
1370 
1371         ret = sfp_bus_add_upstream(bus, phydev, ops);
1372         sfp_bus_put(bus);
1373     }
1374     return ret;
1375 }
1376 EXPORT_SYMBOL(phy_sfp_probe);
1377 
1378 /**
1379  * phy_attach_direct - attach a network device to a given PHY device pointer
1380  * @dev: network device to attach
1381  * @phydev: Pointer to phy_device to attach
1382  * @flags: PHY device's dev_flags
1383  * @interface: PHY device's interface
1384  *
1385  * Description: Called by drivers to attach to a particular PHY
1386  *     device. The phy_device is found, and properly hooked up
1387  *     to the phy_driver.  If no driver is attached, then a
1388  *     generic driver is used.  The phy_device is given a ptr to
1389  *     the attaching device, and given a callback for link status
1390  *     change.  The phy_device is returned to the attaching driver.
1391  *     This function takes a reference on the phy device.
1392  */
1393 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1394               u32 flags, phy_interface_t interface)
1395 {
1396     struct mii_bus *bus = phydev->mdio.bus;
1397     struct device *d = &phydev->mdio.dev;
1398     struct module *ndev_owner = NULL;
1399     bool using_genphy = false;
1400     int err;
1401 
1402     /* For Ethernet device drivers that register their own MDIO bus, we
1403      * will have bus->owner match ndev_mod, so we do not want to increment
1404      * our own module->refcnt here, otherwise we would not be able to
1405      * unload later on.
1406      */
1407     if (dev)
1408         ndev_owner = dev->dev.parent->driver->owner;
1409     if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1410         phydev_err(phydev, "failed to get the bus module\n");
1411         return -EIO;
1412     }
1413 
1414     get_device(d);
1415 
1416     /* Assume that if there is no driver, that it doesn't
1417      * exist, and we should use the genphy driver.
1418      */
1419     if (!d->driver) {
1420         if (phydev->is_c45)
1421             d->driver = &genphy_c45_driver.mdiodrv.driver;
1422         else
1423             d->driver = &genphy_driver.mdiodrv.driver;
1424 
1425         using_genphy = true;
1426     }
1427 
1428     if (!try_module_get(d->driver->owner)) {
1429         phydev_err(phydev, "failed to get the device driver module\n");
1430         err = -EIO;
1431         goto error_put_device;
1432     }
1433 
1434     if (using_genphy) {
1435         err = d->driver->probe(d);
1436         if (err >= 0)
1437             err = device_bind_driver(d);
1438 
1439         if (err)
1440             goto error_module_put;
1441     }
1442 
1443     if (phydev->attached_dev) {
1444         dev_err(&dev->dev, "PHY already attached\n");
1445         err = -EBUSY;
1446         goto error;
1447     }
1448 
1449     phydev->phy_link_change = phy_link_change;
1450     if (dev) {
1451         phydev->attached_dev = dev;
1452         dev->phydev = phydev;
1453 
1454         if (phydev->sfp_bus_attached)
1455             dev->sfp_bus = phydev->sfp_bus;
1456         else if (dev->sfp_bus)
1457             phydev->is_on_sfp_module = true;
1458     }
1459 
1460     /* Some Ethernet drivers try to connect to a PHY device before
1461      * calling register_netdevice() -> netdev_register_kobject() and
1462      * does the dev->dev.kobj initialization. Here we only check for
1463      * success which indicates that the network device kobject is
1464      * ready. Once we do that we still need to keep track of whether
1465      * links were successfully set up or not for phy_detach() to
1466      * remove them accordingly.
1467      */
1468     phydev->sysfs_links = false;
1469 
1470     phy_sysfs_create_links(phydev);
1471 
1472     if (!phydev->attached_dev) {
1473         err = sysfs_create_file(&phydev->mdio.dev.kobj,
1474                     &dev_attr_phy_standalone.attr);
1475         if (err)
1476             phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1477     }
1478 
1479     phydev->dev_flags |= flags;
1480 
1481     phydev->interface = interface;
1482 
1483     phydev->state = PHY_READY;
1484 
1485     phydev->interrupts = PHY_INTERRUPT_DISABLED;
1486 
1487     /* Port is set to PORT_TP by default and the actual PHY driver will set
1488      * it to different value depending on the PHY configuration. If we have
1489      * the generic PHY driver we can't figure it out, thus set the old
1490      * legacy PORT_MII value.
1491      */
1492     if (using_genphy)
1493         phydev->port = PORT_MII;
1494 
1495     /* Initial carrier state is off as the phy is about to be
1496      * (re)initialized.
1497      */
1498     if (dev)
1499         netif_carrier_off(phydev->attached_dev);
1500 
1501     /* Do initial configuration here, now that
1502      * we have certain key parameters
1503      * (dev_flags and interface)
1504      */
1505     err = phy_init_hw(phydev);
1506     if (err)
1507         goto error;
1508 
1509     phy_resume(phydev);
1510     phy_led_triggers_register(phydev);
1511 
1512     return err;
1513 
1514 error:
1515     /* phy_detach() does all of the cleanup below */
1516     phy_detach(phydev);
1517     return err;
1518 
1519 error_module_put:
1520     module_put(d->driver->owner);
1521 error_put_device:
1522     put_device(d);
1523     if (ndev_owner != bus->owner)
1524         module_put(bus->owner);
1525     return err;
1526 }
1527 EXPORT_SYMBOL(phy_attach_direct);
1528 
1529 /**
1530  * phy_attach - attach a network device to a particular PHY device
1531  * @dev: network device to attach
1532  * @bus_id: Bus ID of PHY device to attach
1533  * @interface: PHY device's interface
1534  *
1535  * Description: Same as phy_attach_direct() except that a PHY bus_id
1536  *     string is passed instead of a pointer to a struct phy_device.
1537  */
1538 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1539                   phy_interface_t interface)
1540 {
1541     struct bus_type *bus = &mdio_bus_type;
1542     struct phy_device *phydev;
1543     struct device *d;
1544     int rc;
1545 
1546     if (!dev)
1547         return ERR_PTR(-EINVAL);
1548 
1549     /* Search the list of PHY devices on the mdio bus for the
1550      * PHY with the requested name
1551      */
1552     d = bus_find_device_by_name(bus, NULL, bus_id);
1553     if (!d) {
1554         pr_err("PHY %s not found\n", bus_id);
1555         return ERR_PTR(-ENODEV);
1556     }
1557     phydev = to_phy_device(d);
1558 
1559     rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1560     put_device(d);
1561     if (rc)
1562         return ERR_PTR(rc);
1563 
1564     return phydev;
1565 }
1566 EXPORT_SYMBOL(phy_attach);
1567 
1568 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1569                       struct device_driver *driver)
1570 {
1571     struct device *d = &phydev->mdio.dev;
1572     bool ret = false;
1573 
1574     if (!phydev->drv)
1575         return ret;
1576 
1577     get_device(d);
1578     ret = d->driver == driver;
1579     put_device(d);
1580 
1581     return ret;
1582 }
1583 
1584 bool phy_driver_is_genphy(struct phy_device *phydev)
1585 {
1586     return phy_driver_is_genphy_kind(phydev,
1587                      &genphy_driver.mdiodrv.driver);
1588 }
1589 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1590 
1591 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1592 {
1593     return phy_driver_is_genphy_kind(phydev,
1594                      &genphy_c45_driver.mdiodrv.driver);
1595 }
1596 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1597 
1598 /**
1599  * phy_package_join - join a common PHY group
1600  * @phydev: target phy_device struct
1601  * @addr: cookie and PHY address for global register access
1602  * @priv_size: if non-zero allocate this amount of bytes for private data
1603  *
1604  * This joins a PHY group and provides a shared storage for all phydevs in
1605  * this group. This is intended to be used for packages which contain
1606  * more than one PHY, for example a quad PHY transceiver.
1607  *
1608  * The addr parameter serves as a cookie which has to have the same value
1609  * for all members of one group and as a PHY address to access generic
1610  * registers of a PHY package. Usually, one of the PHY addresses of the
1611  * different PHYs in the package provides access to these global registers.
1612  * The address which is given here, will be used in the phy_package_read()
1613  * and phy_package_write() convenience functions. If your PHY doesn't have
1614  * global registers you can just pick any of the PHY addresses.
1615  *
1616  * This will set the shared pointer of the phydev to the shared storage.
1617  * If this is the first call for a this cookie the shared storage will be
1618  * allocated. If priv_size is non-zero, the given amount of bytes are
1619  * allocated for the priv member.
1620  *
1621  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1622  * with the same cookie but a different priv_size is an error.
1623  */
1624 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1625 {
1626     struct mii_bus *bus = phydev->mdio.bus;
1627     struct phy_package_shared *shared;
1628     int ret;
1629 
1630     if (addr < 0 || addr >= PHY_MAX_ADDR)
1631         return -EINVAL;
1632 
1633     mutex_lock(&bus->shared_lock);
1634     shared = bus->shared[addr];
1635     if (!shared) {
1636         ret = -ENOMEM;
1637         shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1638         if (!shared)
1639             goto err_unlock;
1640         if (priv_size) {
1641             shared->priv = kzalloc(priv_size, GFP_KERNEL);
1642             if (!shared->priv)
1643                 goto err_free;
1644             shared->priv_size = priv_size;
1645         }
1646         shared->addr = addr;
1647         refcount_set(&shared->refcnt, 1);
1648         bus->shared[addr] = shared;
1649     } else {
1650         ret = -EINVAL;
1651         if (priv_size && priv_size != shared->priv_size)
1652             goto err_unlock;
1653         refcount_inc(&shared->refcnt);
1654     }
1655     mutex_unlock(&bus->shared_lock);
1656 
1657     phydev->shared = shared;
1658 
1659     return 0;
1660 
1661 err_free:
1662     kfree(shared);
1663 err_unlock:
1664     mutex_unlock(&bus->shared_lock);
1665     return ret;
1666 }
1667 EXPORT_SYMBOL_GPL(phy_package_join);
1668 
1669 /**
1670  * phy_package_leave - leave a common PHY group
1671  * @phydev: target phy_device struct
1672  *
1673  * This leaves a PHY group created by phy_package_join(). If this phydev
1674  * was the last user of the shared data between the group, this data is
1675  * freed. Resets the phydev->shared pointer to NULL.
1676  */
1677 void phy_package_leave(struct phy_device *phydev)
1678 {
1679     struct phy_package_shared *shared = phydev->shared;
1680     struct mii_bus *bus = phydev->mdio.bus;
1681 
1682     if (!shared)
1683         return;
1684 
1685     if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1686         bus->shared[shared->addr] = NULL;
1687         mutex_unlock(&bus->shared_lock);
1688         kfree(shared->priv);
1689         kfree(shared);
1690     }
1691 
1692     phydev->shared = NULL;
1693 }
1694 EXPORT_SYMBOL_GPL(phy_package_leave);
1695 
1696 static void devm_phy_package_leave(struct device *dev, void *res)
1697 {
1698     phy_package_leave(*(struct phy_device **)res);
1699 }
1700 
1701 /**
1702  * devm_phy_package_join - resource managed phy_package_join()
1703  * @dev: device that is registering this PHY package
1704  * @phydev: target phy_device struct
1705  * @addr: cookie and PHY address for global register access
1706  * @priv_size: if non-zero allocate this amount of bytes for private data
1707  *
1708  * Managed phy_package_join(). Shared storage fetched by this function,
1709  * phy_package_leave() is automatically called on driver detach. See
1710  * phy_package_join() for more information.
1711  */
1712 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1713               int addr, size_t priv_size)
1714 {
1715     struct phy_device **ptr;
1716     int ret;
1717 
1718     ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1719                GFP_KERNEL);
1720     if (!ptr)
1721         return -ENOMEM;
1722 
1723     ret = phy_package_join(phydev, addr, priv_size);
1724 
1725     if (!ret) {
1726         *ptr = phydev;
1727         devres_add(dev, ptr);
1728     } else {
1729         devres_free(ptr);
1730     }
1731 
1732     return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1735 
1736 /**
1737  * phy_detach - detach a PHY device from its network device
1738  * @phydev: target phy_device struct
1739  *
1740  * This detaches the phy device from its network device and the phy
1741  * driver, and drops the reference count taken in phy_attach_direct().
1742  */
1743 void phy_detach(struct phy_device *phydev)
1744 {
1745     struct net_device *dev = phydev->attached_dev;
1746     struct module *ndev_owner = NULL;
1747     struct mii_bus *bus;
1748 
1749     if (phydev->sysfs_links) {
1750         if (dev)
1751             sysfs_remove_link(&dev->dev.kobj, "phydev");
1752         sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1753     }
1754 
1755     if (!phydev->attached_dev)
1756         sysfs_remove_file(&phydev->mdio.dev.kobj,
1757                   &dev_attr_phy_standalone.attr);
1758 
1759     phy_suspend(phydev);
1760     if (dev) {
1761         phydev->attached_dev->phydev = NULL;
1762         phydev->attached_dev = NULL;
1763     }
1764     phydev->phylink = NULL;
1765 
1766     phy_led_triggers_unregister(phydev);
1767 
1768     if (phydev->mdio.dev.driver)
1769         module_put(phydev->mdio.dev.driver->owner);
1770 
1771     /* If the device had no specific driver before (i.e. - it
1772      * was using the generic driver), we unbind the device
1773      * from the generic driver so that there's a chance a
1774      * real driver could be loaded
1775      */
1776     if (phy_driver_is_genphy(phydev) ||
1777         phy_driver_is_genphy_10g(phydev))
1778         device_release_driver(&phydev->mdio.dev);
1779 
1780     /* Assert the reset signal */
1781     phy_device_reset(phydev, 1);
1782 
1783     /*
1784      * The phydev might go away on the put_device() below, so avoid
1785      * a use-after-free bug by reading the underlying bus first.
1786      */
1787     bus = phydev->mdio.bus;
1788 
1789     put_device(&phydev->mdio.dev);
1790     if (dev)
1791         ndev_owner = dev->dev.parent->driver->owner;
1792     if (ndev_owner != bus->owner)
1793         module_put(bus->owner);
1794 }
1795 EXPORT_SYMBOL(phy_detach);
1796 
1797 int phy_suspend(struct phy_device *phydev)
1798 {
1799     struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1800     struct net_device *netdev = phydev->attached_dev;
1801     struct phy_driver *phydrv = phydev->drv;
1802     int ret;
1803 
1804     if (phydev->suspended)
1805         return 0;
1806 
1807     /* If the device has WOL enabled, we cannot suspend the PHY */
1808     phy_ethtool_get_wol(phydev, &wol);
1809     if (wol.wolopts || (netdev && netdev->wol_enabled))
1810         return -EBUSY;
1811 
1812     if (!phydrv || !phydrv->suspend)
1813         return 0;
1814 
1815     ret = phydrv->suspend(phydev);
1816     if (!ret)
1817         phydev->suspended = true;
1818 
1819     return ret;
1820 }
1821 EXPORT_SYMBOL(phy_suspend);
1822 
1823 int __phy_resume(struct phy_device *phydev)
1824 {
1825     struct phy_driver *phydrv = phydev->drv;
1826     int ret;
1827 
1828     lockdep_assert_held(&phydev->lock);
1829 
1830     if (!phydrv || !phydrv->resume)
1831         return 0;
1832 
1833     ret = phydrv->resume(phydev);
1834     if (!ret)
1835         phydev->suspended = false;
1836 
1837     return ret;
1838 }
1839 EXPORT_SYMBOL(__phy_resume);
1840 
1841 int phy_resume(struct phy_device *phydev)
1842 {
1843     int ret;
1844 
1845     mutex_lock(&phydev->lock);
1846     ret = __phy_resume(phydev);
1847     mutex_unlock(&phydev->lock);
1848 
1849     return ret;
1850 }
1851 EXPORT_SYMBOL(phy_resume);
1852 
1853 int phy_loopback(struct phy_device *phydev, bool enable)
1854 {
1855     int ret = 0;
1856 
1857     if (!phydev->drv)
1858         return -EIO;
1859 
1860     mutex_lock(&phydev->lock);
1861 
1862     if (enable && phydev->loopback_enabled) {
1863         ret = -EBUSY;
1864         goto out;
1865     }
1866 
1867     if (!enable && !phydev->loopback_enabled) {
1868         ret = -EINVAL;
1869         goto out;
1870     }
1871 
1872     if (phydev->drv->set_loopback)
1873         ret = phydev->drv->set_loopback(phydev, enable);
1874     else
1875         ret = genphy_loopback(phydev, enable);
1876 
1877     if (ret)
1878         goto out;
1879 
1880     phydev->loopback_enabled = enable;
1881 
1882 out:
1883     mutex_unlock(&phydev->lock);
1884     return ret;
1885 }
1886 EXPORT_SYMBOL(phy_loopback);
1887 
1888 /**
1889  * phy_reset_after_clk_enable - perform a PHY reset if needed
1890  * @phydev: target phy_device struct
1891  *
1892  * Description: Some PHYs are known to need a reset after their refclk was
1893  *   enabled. This function evaluates the flags and perform the reset if it's
1894  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1895  *   was reset.
1896  */
1897 int phy_reset_after_clk_enable(struct phy_device *phydev)
1898 {
1899     if (!phydev || !phydev->drv)
1900         return -ENODEV;
1901 
1902     if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1903         phy_device_reset(phydev, 1);
1904         phy_device_reset(phydev, 0);
1905         return 1;
1906     }
1907 
1908     return 0;
1909 }
1910 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1911 
1912 /* Generic PHY support and helper functions */
1913 
1914 /**
1915  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1916  * @phydev: target phy_device struct
1917  *
1918  * Description: Writes MII_ADVERTISE with the appropriate values,
1919  *   after sanitizing the values to make sure we only advertise
1920  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1921  *   hasn't changed, and > 0 if it has changed.
1922  */
1923 static int genphy_config_advert(struct phy_device *phydev)
1924 {
1925     int err, bmsr, changed = 0;
1926     u32 adv;
1927 
1928     /* Only allow advertising what this PHY supports */
1929     linkmode_and(phydev->advertising, phydev->advertising,
1930              phydev->supported);
1931 
1932     adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1933 
1934     /* Setup standard advertisement */
1935     err = phy_modify_changed(phydev, MII_ADVERTISE,
1936                  ADVERTISE_ALL | ADVERTISE_100BASE4 |
1937                  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1938                  adv);
1939     if (err < 0)
1940         return err;
1941     if (err > 0)
1942         changed = 1;
1943 
1944     bmsr = phy_read(phydev, MII_BMSR);
1945     if (bmsr < 0)
1946         return bmsr;
1947 
1948     /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
1949      * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
1950      * logical 1.
1951      */
1952     if (!(bmsr & BMSR_ESTATEN))
1953         return changed;
1954 
1955     adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
1956 
1957     err = phy_modify_changed(phydev, MII_CTRL1000,
1958                  ADVERTISE_1000FULL | ADVERTISE_1000HALF,
1959                  adv);
1960     if (err < 0)
1961         return err;
1962     if (err > 0)
1963         changed = 1;
1964 
1965     return changed;
1966 }
1967 
1968 /**
1969  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
1970  * @phydev: target phy_device struct
1971  *
1972  * Description: Writes MII_ADVERTISE with the appropriate values,
1973  *   after sanitizing the values to make sure we only advertise
1974  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1975  *   hasn't changed, and > 0 if it has changed. This function is intended
1976  *   for Clause 37 1000Base-X mode.
1977  */
1978 static int genphy_c37_config_advert(struct phy_device *phydev)
1979 {
1980     u16 adv = 0;
1981 
1982     /* Only allow advertising what this PHY supports */
1983     linkmode_and(phydev->advertising, phydev->advertising,
1984              phydev->supported);
1985 
1986     if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1987                   phydev->advertising))
1988         adv |= ADVERTISE_1000XFULL;
1989     if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
1990                   phydev->advertising))
1991         adv |= ADVERTISE_1000XPAUSE;
1992     if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
1993                   phydev->advertising))
1994         adv |= ADVERTISE_1000XPSE_ASYM;
1995 
1996     return phy_modify_changed(phydev, MII_ADVERTISE,
1997                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1998                   ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
1999                   adv);
2000 }
2001 
2002 /**
2003  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2004  * @phydev: target phy_device struct
2005  *
2006  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2007  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2008  *   changed, and 1 if it has changed.
2009  */
2010 int genphy_config_eee_advert(struct phy_device *phydev)
2011 {
2012     int err;
2013 
2014     /* Nothing to disable */
2015     if (!phydev->eee_broken_modes)
2016         return 0;
2017 
2018     err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2019                      phydev->eee_broken_modes, 0);
2020     /* If the call failed, we assume that EEE is not supported */
2021     return err < 0 ? 0 : err;
2022 }
2023 EXPORT_SYMBOL(genphy_config_eee_advert);
2024 
2025 /**
2026  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2027  * @phydev: target phy_device struct
2028  *
2029  * Description: Configures MII_BMCR to force speed/duplex
2030  *   to the values in phydev. Assumes that the values are valid.
2031  *   Please see phy_sanitize_settings().
2032  */
2033 int genphy_setup_forced(struct phy_device *phydev)
2034 {
2035     u16 ctl;
2036 
2037     phydev->pause = 0;
2038     phydev->asym_pause = 0;
2039 
2040     ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2041 
2042     return phy_modify(phydev, MII_BMCR,
2043               ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2044 }
2045 EXPORT_SYMBOL(genphy_setup_forced);
2046 
2047 static int genphy_setup_master_slave(struct phy_device *phydev)
2048 {
2049     u16 ctl = 0;
2050 
2051     if (!phydev->is_gigabit_capable)
2052         return 0;
2053 
2054     switch (phydev->master_slave_set) {
2055     case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2056         ctl |= CTL1000_PREFER_MASTER;
2057         break;
2058     case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2059         break;
2060     case MASTER_SLAVE_CFG_MASTER_FORCE:
2061         ctl |= CTL1000_AS_MASTER;
2062         fallthrough;
2063     case MASTER_SLAVE_CFG_SLAVE_FORCE:
2064         ctl |= CTL1000_ENABLE_MASTER;
2065         break;
2066     case MASTER_SLAVE_CFG_UNKNOWN:
2067     case MASTER_SLAVE_CFG_UNSUPPORTED:
2068         return 0;
2069     default:
2070         phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2071         return -EOPNOTSUPP;
2072     }
2073 
2074     return phy_modify_changed(phydev, MII_CTRL1000,
2075                   (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2076                    CTL1000_PREFER_MASTER), ctl);
2077 }
2078 
2079 int genphy_read_master_slave(struct phy_device *phydev)
2080 {
2081     int cfg, state;
2082     int val;
2083 
2084     phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2085     phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2086 
2087     val = phy_read(phydev, MII_CTRL1000);
2088     if (val < 0)
2089         return val;
2090 
2091     if (val & CTL1000_ENABLE_MASTER) {
2092         if (val & CTL1000_AS_MASTER)
2093             cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2094         else
2095             cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2096     } else {
2097         if (val & CTL1000_PREFER_MASTER)
2098             cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2099         else
2100             cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2101     }
2102 
2103     val = phy_read(phydev, MII_STAT1000);
2104     if (val < 0)
2105         return val;
2106 
2107     if (val & LPA_1000MSFAIL) {
2108         state = MASTER_SLAVE_STATE_ERR;
2109     } else if (phydev->link) {
2110         /* this bits are valid only for active link */
2111         if (val & LPA_1000MSRES)
2112             state = MASTER_SLAVE_STATE_MASTER;
2113         else
2114             state = MASTER_SLAVE_STATE_SLAVE;
2115     } else {
2116         state = MASTER_SLAVE_STATE_UNKNOWN;
2117     }
2118 
2119     phydev->master_slave_get = cfg;
2120     phydev->master_slave_state = state;
2121 
2122     return 0;
2123 }
2124 EXPORT_SYMBOL(genphy_read_master_slave);
2125 
2126 /**
2127  * genphy_restart_aneg - Enable and Restart Autonegotiation
2128  * @phydev: target phy_device struct
2129  */
2130 int genphy_restart_aneg(struct phy_device *phydev)
2131 {
2132     /* Don't isolate the PHY if we're negotiating */
2133     return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2134               BMCR_ANENABLE | BMCR_ANRESTART);
2135 }
2136 EXPORT_SYMBOL(genphy_restart_aneg);
2137 
2138 /**
2139  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2140  * @phydev: target phy_device struct
2141  * @restart: whether aneg restart is requested
2142  *
2143  * Check, and restart auto-negotiation if needed.
2144  */
2145 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2146 {
2147     int ret;
2148 
2149     if (!restart) {
2150         /* Advertisement hasn't changed, but maybe aneg was never on to
2151          * begin with?  Or maybe phy was isolated?
2152          */
2153         ret = phy_read(phydev, MII_BMCR);
2154         if (ret < 0)
2155             return ret;
2156 
2157         if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2158             restart = true;
2159     }
2160 
2161     if (restart)
2162         return genphy_restart_aneg(phydev);
2163 
2164     return 0;
2165 }
2166 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2167 
2168 /**
2169  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2170  * @phydev: target phy_device struct
2171  * @changed: whether autoneg is requested
2172  *
2173  * Description: If auto-negotiation is enabled, we configure the
2174  *   advertising, and then restart auto-negotiation.  If it is not
2175  *   enabled, then we write the BMCR.
2176  */
2177 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2178 {
2179     int err;
2180 
2181     if (genphy_config_eee_advert(phydev))
2182         changed = true;
2183 
2184     err = genphy_setup_master_slave(phydev);
2185     if (err < 0)
2186         return err;
2187     else if (err)
2188         changed = true;
2189 
2190     if (AUTONEG_ENABLE != phydev->autoneg)
2191         return genphy_setup_forced(phydev);
2192 
2193     err = genphy_config_advert(phydev);
2194     if (err < 0) /* error */
2195         return err;
2196     else if (err)
2197         changed = true;
2198 
2199     return genphy_check_and_restart_aneg(phydev, changed);
2200 }
2201 EXPORT_SYMBOL(__genphy_config_aneg);
2202 
2203 /**
2204  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2205  * @phydev: target phy_device struct
2206  *
2207  * Description: If auto-negotiation is enabled, we configure the
2208  *   advertising, and then restart auto-negotiation.  If it is not
2209  *   enabled, then we write the BMCR. This function is intended
2210  *   for use with Clause 37 1000Base-X mode.
2211  */
2212 int genphy_c37_config_aneg(struct phy_device *phydev)
2213 {
2214     int err, changed;
2215 
2216     if (phydev->autoneg != AUTONEG_ENABLE)
2217         return genphy_setup_forced(phydev);
2218 
2219     err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2220              BMCR_SPEED1000);
2221     if (err)
2222         return err;
2223 
2224     changed = genphy_c37_config_advert(phydev);
2225     if (changed < 0) /* error */
2226         return changed;
2227 
2228     if (!changed) {
2229         /* Advertisement hasn't changed, but maybe aneg was never on to
2230          * begin with?  Or maybe phy was isolated?
2231          */
2232         int ctl = phy_read(phydev, MII_BMCR);
2233 
2234         if (ctl < 0)
2235             return ctl;
2236 
2237         if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2238             changed = 1; /* do restart aneg */
2239     }
2240 
2241     /* Only restart aneg if we are advertising something different
2242      * than we were before.
2243      */
2244     if (changed > 0)
2245         return genphy_restart_aneg(phydev);
2246 
2247     return 0;
2248 }
2249 EXPORT_SYMBOL(genphy_c37_config_aneg);
2250 
2251 /**
2252  * genphy_aneg_done - return auto-negotiation status
2253  * @phydev: target phy_device struct
2254  *
2255  * Description: Reads the status register and returns 0 either if
2256  *   auto-negotiation is incomplete, or if there was an error.
2257  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2258  */
2259 int genphy_aneg_done(struct phy_device *phydev)
2260 {
2261     int retval = phy_read(phydev, MII_BMSR);
2262 
2263     return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2264 }
2265 EXPORT_SYMBOL(genphy_aneg_done);
2266 
2267 /**
2268  * genphy_update_link - update link status in @phydev
2269  * @phydev: target phy_device struct
2270  *
2271  * Description: Update the value in phydev->link to reflect the
2272  *   current link value.  In order to do this, we need to read
2273  *   the status register twice, keeping the second value.
2274  */
2275 int genphy_update_link(struct phy_device *phydev)
2276 {
2277     int status = 0, bmcr;
2278 
2279     bmcr = phy_read(phydev, MII_BMCR);
2280     if (bmcr < 0)
2281         return bmcr;
2282 
2283     /* Autoneg is being started, therefore disregard BMSR value and
2284      * report link as down.
2285      */
2286     if (bmcr & BMCR_ANRESTART)
2287         goto done;
2288 
2289     /* The link state is latched low so that momentary link
2290      * drops can be detected. Do not double-read the status
2291      * in polling mode to detect such short link drops except
2292      * the link was already down.
2293      */
2294     if (!phy_polling_mode(phydev) || !phydev->link) {
2295         status = phy_read(phydev, MII_BMSR);
2296         if (status < 0)
2297             return status;
2298         else if (status & BMSR_LSTATUS)
2299             goto done;
2300     }
2301 
2302     /* Read link and autonegotiation status */
2303     status = phy_read(phydev, MII_BMSR);
2304     if (status < 0)
2305         return status;
2306 done:
2307     phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2308     phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2309 
2310     /* Consider the case that autoneg was started and "aneg complete"
2311      * bit has been reset, but "link up" bit not yet.
2312      */
2313     if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2314         phydev->link = 0;
2315 
2316     return 0;
2317 }
2318 EXPORT_SYMBOL(genphy_update_link);
2319 
2320 int genphy_read_lpa(struct phy_device *phydev)
2321 {
2322     int lpa, lpagb;
2323 
2324     if (phydev->autoneg == AUTONEG_ENABLE) {
2325         if (!phydev->autoneg_complete) {
2326             mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2327                             0);
2328             mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2329             return 0;
2330         }
2331 
2332         if (phydev->is_gigabit_capable) {
2333             lpagb = phy_read(phydev, MII_STAT1000);
2334             if (lpagb < 0)
2335                 return lpagb;
2336 
2337             if (lpagb & LPA_1000MSFAIL) {
2338                 int adv = phy_read(phydev, MII_CTRL1000);
2339 
2340                 if (adv < 0)
2341                     return adv;
2342 
2343                 if (adv & CTL1000_ENABLE_MASTER)
2344                     phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2345                 else
2346                     phydev_err(phydev, "Master/Slave resolution failed\n");
2347                 return -ENOLINK;
2348             }
2349 
2350             mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2351                             lpagb);
2352         }
2353 
2354         lpa = phy_read(phydev, MII_LPA);
2355         if (lpa < 0)
2356             return lpa;
2357 
2358         mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2359     } else {
2360         linkmode_zero(phydev->lp_advertising);
2361     }
2362 
2363     return 0;
2364 }
2365 EXPORT_SYMBOL(genphy_read_lpa);
2366 
2367 /**
2368  * genphy_read_status_fixed - read the link parameters for !aneg mode
2369  * @phydev: target phy_device struct
2370  *
2371  * Read the current duplex and speed state for a PHY operating with
2372  * autonegotiation disabled.
2373  */
2374 int genphy_read_status_fixed(struct phy_device *phydev)
2375 {
2376     int bmcr = phy_read(phydev, MII_BMCR);
2377 
2378     if (bmcr < 0)
2379         return bmcr;
2380 
2381     if (bmcr & BMCR_FULLDPLX)
2382         phydev->duplex = DUPLEX_FULL;
2383     else
2384         phydev->duplex = DUPLEX_HALF;
2385 
2386     if (bmcr & BMCR_SPEED1000)
2387         phydev->speed = SPEED_1000;
2388     else if (bmcr & BMCR_SPEED100)
2389         phydev->speed = SPEED_100;
2390     else
2391         phydev->speed = SPEED_10;
2392 
2393     return 0;
2394 }
2395 EXPORT_SYMBOL(genphy_read_status_fixed);
2396 
2397 /**
2398  * genphy_read_status - check the link status and update current link state
2399  * @phydev: target phy_device struct
2400  *
2401  * Description: Check the link, then figure out the current state
2402  *   by comparing what we advertise with what the link partner
2403  *   advertises.  Start by checking the gigabit possibilities,
2404  *   then move on to 10/100.
2405  */
2406 int genphy_read_status(struct phy_device *phydev)
2407 {
2408     int err, old_link = phydev->link;
2409 
2410     /* Update the link, but return if there was an error */
2411     err = genphy_update_link(phydev);
2412     if (err)
2413         return err;
2414 
2415     /* why bother the PHY if nothing can have changed */
2416     if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2417         return 0;
2418 
2419     phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2420     phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2421     phydev->speed = SPEED_UNKNOWN;
2422     phydev->duplex = DUPLEX_UNKNOWN;
2423     phydev->pause = 0;
2424     phydev->asym_pause = 0;
2425 
2426     if (phydev->is_gigabit_capable) {
2427         err = genphy_read_master_slave(phydev);
2428         if (err < 0)
2429             return err;
2430     }
2431 
2432     err = genphy_read_lpa(phydev);
2433     if (err < 0)
2434         return err;
2435 
2436     if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2437         phy_resolve_aneg_linkmode(phydev);
2438     } else if (phydev->autoneg == AUTONEG_DISABLE) {
2439         err = genphy_read_status_fixed(phydev);
2440         if (err < 0)
2441             return err;
2442     }
2443 
2444     return 0;
2445 }
2446 EXPORT_SYMBOL(genphy_read_status);
2447 
2448 /**
2449  * genphy_c37_read_status - check the link status and update current link state
2450  * @phydev: target phy_device struct
2451  *
2452  * Description: Check the link, then figure out the current state
2453  *   by comparing what we advertise with what the link partner
2454  *   advertises. This function is for Clause 37 1000Base-X mode.
2455  */
2456 int genphy_c37_read_status(struct phy_device *phydev)
2457 {
2458     int lpa, err, old_link = phydev->link;
2459 
2460     /* Update the link, but return if there was an error */
2461     err = genphy_update_link(phydev);
2462     if (err)
2463         return err;
2464 
2465     /* why bother the PHY if nothing can have changed */
2466     if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2467         return 0;
2468 
2469     phydev->duplex = DUPLEX_UNKNOWN;
2470     phydev->pause = 0;
2471     phydev->asym_pause = 0;
2472 
2473     if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2474         lpa = phy_read(phydev, MII_LPA);
2475         if (lpa < 0)
2476             return lpa;
2477 
2478         linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2479                  phydev->lp_advertising, lpa & LPA_LPACK);
2480         linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2481                  phydev->lp_advertising, lpa & LPA_1000XFULL);
2482         linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2483                  phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2484         linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2485                  phydev->lp_advertising,
2486                  lpa & LPA_1000XPAUSE_ASYM);
2487 
2488         phy_resolve_aneg_linkmode(phydev);
2489     } else if (phydev->autoneg == AUTONEG_DISABLE) {
2490         int bmcr = phy_read(phydev, MII_BMCR);
2491 
2492         if (bmcr < 0)
2493             return bmcr;
2494 
2495         if (bmcr & BMCR_FULLDPLX)
2496             phydev->duplex = DUPLEX_FULL;
2497         else
2498             phydev->duplex = DUPLEX_HALF;
2499     }
2500 
2501     return 0;
2502 }
2503 EXPORT_SYMBOL(genphy_c37_read_status);
2504 
2505 /**
2506  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2507  * @phydev: target phy_device struct
2508  *
2509  * Description: Perform a software PHY reset using the standard
2510  * BMCR_RESET bit and poll for the reset bit to be cleared.
2511  *
2512  * Returns: 0 on success, < 0 on failure
2513  */
2514 int genphy_soft_reset(struct phy_device *phydev)
2515 {
2516     u16 res = BMCR_RESET;
2517     int ret;
2518 
2519     if (phydev->autoneg == AUTONEG_ENABLE)
2520         res |= BMCR_ANRESTART;
2521 
2522     ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2523     if (ret < 0)
2524         return ret;
2525 
2526     /* Clause 22 states that setting bit BMCR_RESET sets control registers
2527      * to their default value. Therefore the POWER DOWN bit is supposed to
2528      * be cleared after soft reset.
2529      */
2530     phydev->suspended = 0;
2531 
2532     ret = phy_poll_reset(phydev);
2533     if (ret)
2534         return ret;
2535 
2536     /* BMCR may be reset to defaults */
2537     if (phydev->autoneg == AUTONEG_DISABLE)
2538         ret = genphy_setup_forced(phydev);
2539 
2540     return ret;
2541 }
2542 EXPORT_SYMBOL(genphy_soft_reset);
2543 
2544 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2545 {
2546     /* It seems there are cases where the interrupts are handled by another
2547      * entity (ie an IRQ controller embedded inside the PHY) and do not
2548      * need any other interraction from phylib. In this case, just trigger
2549      * the state machine directly.
2550      */
2551     phy_trigger_machine(phydev);
2552 
2553     return 0;
2554 }
2555 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2556 
2557 /**
2558  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2559  * @phydev: target phy_device struct
2560  *
2561  * Description: Reads the PHY's abilities and populates
2562  * phydev->supported accordingly.
2563  *
2564  * Returns: 0 on success, < 0 on failure
2565  */
2566 int genphy_read_abilities(struct phy_device *phydev)
2567 {
2568     int val;
2569 
2570     linkmode_set_bit_array(phy_basic_ports_array,
2571                    ARRAY_SIZE(phy_basic_ports_array),
2572                    phydev->supported);
2573 
2574     val = phy_read(phydev, MII_BMSR);
2575     if (val < 0)
2576         return val;
2577 
2578     linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2579              val & BMSR_ANEGCAPABLE);
2580 
2581     linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2582              val & BMSR_100FULL);
2583     linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2584              val & BMSR_100HALF);
2585     linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2586              val & BMSR_10FULL);
2587     linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2588              val & BMSR_10HALF);
2589 
2590     if (val & BMSR_ESTATEN) {
2591         val = phy_read(phydev, MII_ESTATUS);
2592         if (val < 0)
2593             return val;
2594 
2595         linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2596                  phydev->supported, val & ESTATUS_1000_TFULL);
2597         linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2598                  phydev->supported, val & ESTATUS_1000_THALF);
2599         linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2600                  phydev->supported, val & ESTATUS_1000_XFULL);
2601     }
2602 
2603     return 0;
2604 }
2605 EXPORT_SYMBOL(genphy_read_abilities);
2606 
2607 /* This is used for the phy device which doesn't support the MMD extended
2608  * register access, but it does have side effect when we are trying to access
2609  * the MMD register via indirect method.
2610  */
2611 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2612 {
2613     return -EOPNOTSUPP;
2614 }
2615 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2616 
2617 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2618                  u16 regnum, u16 val)
2619 {
2620     return -EOPNOTSUPP;
2621 }
2622 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2623 
2624 int genphy_suspend(struct phy_device *phydev)
2625 {
2626     return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2627 }
2628 EXPORT_SYMBOL(genphy_suspend);
2629 
2630 int genphy_resume(struct phy_device *phydev)
2631 {
2632     return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2633 }
2634 EXPORT_SYMBOL(genphy_resume);
2635 
2636 int genphy_loopback(struct phy_device *phydev, bool enable)
2637 {
2638     if (enable) {
2639         u16 val, ctl = BMCR_LOOPBACK;
2640         int ret;
2641 
2642         ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2643 
2644         phy_modify(phydev, MII_BMCR, ~0, ctl);
2645 
2646         ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2647                         val & BMSR_LSTATUS,
2648                     5000, 500000, true);
2649         if (ret)
2650             return ret;
2651     } else {
2652         phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2653 
2654         phy_config_aneg(phydev);
2655     }
2656 
2657     return 0;
2658 }
2659 EXPORT_SYMBOL(genphy_loopback);
2660 
2661 /**
2662  * phy_remove_link_mode - Remove a supported link mode
2663  * @phydev: phy_device structure to remove link mode from
2664  * @link_mode: Link mode to be removed
2665  *
2666  * Description: Some MACs don't support all link modes which the PHY
2667  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2668  * to remove a link mode.
2669  */
2670 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2671 {
2672     linkmode_clear_bit(link_mode, phydev->supported);
2673     phy_advertise_supported(phydev);
2674 }
2675 EXPORT_SYMBOL(phy_remove_link_mode);
2676 
2677 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2678 {
2679     linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2680         linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2681     linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2682         linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2683 }
2684 
2685 /**
2686  * phy_advertise_supported - Advertise all supported modes
2687  * @phydev: target phy_device struct
2688  *
2689  * Description: Called to advertise all supported modes, doesn't touch
2690  * pause mode advertising.
2691  */
2692 void phy_advertise_supported(struct phy_device *phydev)
2693 {
2694     __ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2695 
2696     linkmode_copy(new, phydev->supported);
2697     phy_copy_pause_bits(new, phydev->advertising);
2698     linkmode_copy(phydev->advertising, new);
2699 }
2700 EXPORT_SYMBOL(phy_advertise_supported);
2701 
2702 /**
2703  * phy_support_sym_pause - Enable support of symmetrical pause
2704  * @phydev: target phy_device struct
2705  *
2706  * Description: Called by the MAC to indicate is supports symmetrical
2707  * Pause, but not asym pause.
2708  */
2709 void phy_support_sym_pause(struct phy_device *phydev)
2710 {
2711     linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2712     phy_copy_pause_bits(phydev->advertising, phydev->supported);
2713 }
2714 EXPORT_SYMBOL(phy_support_sym_pause);
2715 
2716 /**
2717  * phy_support_asym_pause - Enable support of asym pause
2718  * @phydev: target phy_device struct
2719  *
2720  * Description: Called by the MAC to indicate is supports Asym Pause.
2721  */
2722 void phy_support_asym_pause(struct phy_device *phydev)
2723 {
2724     phy_copy_pause_bits(phydev->advertising, phydev->supported);
2725 }
2726 EXPORT_SYMBOL(phy_support_asym_pause);
2727 
2728 /**
2729  * phy_set_sym_pause - Configure symmetric Pause
2730  * @phydev: target phy_device struct
2731  * @rx: Receiver Pause is supported
2732  * @tx: Transmit Pause is supported
2733  * @autoneg: Auto neg should be used
2734  *
2735  * Description: Configure advertised Pause support depending on if
2736  * receiver pause and pause auto neg is supported. Generally called
2737  * from the set_pauseparam .ndo.
2738  */
2739 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2740                bool autoneg)
2741 {
2742     linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2743 
2744     if (rx && tx && autoneg)
2745         linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2746                  phydev->supported);
2747 
2748     linkmode_copy(phydev->advertising, phydev->supported);
2749 }
2750 EXPORT_SYMBOL(phy_set_sym_pause);
2751 
2752 /**
2753  * phy_set_asym_pause - Configure Pause and Asym Pause
2754  * @phydev: target phy_device struct
2755  * @rx: Receiver Pause is supported
2756  * @tx: Transmit Pause is supported
2757  *
2758  * Description: Configure advertised Pause support depending on if
2759  * transmit and receiver pause is supported. If there has been a
2760  * change in adverting, trigger a new autoneg. Generally called from
2761  * the set_pauseparam .ndo.
2762  */
2763 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2764 {
2765     __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2766 
2767     linkmode_copy(oldadv, phydev->advertising);
2768     linkmode_set_pause(phydev->advertising, tx, rx);
2769 
2770     if (!linkmode_equal(oldadv, phydev->advertising) &&
2771         phydev->autoneg)
2772         phy_start_aneg(phydev);
2773 }
2774 EXPORT_SYMBOL(phy_set_asym_pause);
2775 
2776 /**
2777  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2778  * @phydev: phy_device struct
2779  * @pp: requested pause configuration
2780  *
2781  * Description: Test if the PHY/MAC combination supports the Pause
2782  * configuration the user is requesting. Returns True if it is
2783  * supported, false otherwise.
2784  */
2785 bool phy_validate_pause(struct phy_device *phydev,
2786             struct ethtool_pauseparam *pp)
2787 {
2788     if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2789                    phydev->supported) && pp->rx_pause)
2790         return false;
2791 
2792     if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2793                    phydev->supported) &&
2794         pp->rx_pause != pp->tx_pause)
2795         return false;
2796 
2797     return true;
2798 }
2799 EXPORT_SYMBOL(phy_validate_pause);
2800 
2801 /**
2802  * phy_get_pause - resolve negotiated pause modes
2803  * @phydev: phy_device struct
2804  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2805  * enabled.
2806  * @rx_pause: pointer to bool to indicate whether receive pause should be
2807  * enabled.
2808  *
2809  * Resolve and return the flow control modes according to the negotiation
2810  * result. This includes checking that we are operating in full duplex mode.
2811  * See linkmode_resolve_pause() for further details.
2812  */
2813 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2814 {
2815     if (phydev->duplex != DUPLEX_FULL) {
2816         *tx_pause = false;
2817         *rx_pause = false;
2818         return;
2819     }
2820 
2821     return linkmode_resolve_pause(phydev->advertising,
2822                       phydev->lp_advertising,
2823                       tx_pause, rx_pause);
2824 }
2825 EXPORT_SYMBOL(phy_get_pause);
2826 
2827 #if IS_ENABLED(CONFIG_OF_MDIO)
2828 static int phy_get_int_delay_property(struct device *dev, const char *name)
2829 {
2830     s32 int_delay;
2831     int ret;
2832 
2833     ret = device_property_read_u32(dev, name, &int_delay);
2834     if (ret)
2835         return ret;
2836 
2837     return int_delay;
2838 }
2839 #else
2840 static int phy_get_int_delay_property(struct device *dev, const char *name)
2841 {
2842     return -EINVAL;
2843 }
2844 #endif
2845 
2846 /**
2847  * phy_get_internal_delay - returns the index of the internal delay
2848  * @phydev: phy_device struct
2849  * @dev: pointer to the devices device struct
2850  * @delay_values: array of delays the PHY supports
2851  * @size: the size of the delay array
2852  * @is_rx: boolean to indicate to get the rx internal delay
2853  *
2854  * Returns the index within the array of internal delay passed in.
2855  * If the device property is not present then the interface type is checked
2856  * if the interface defines use of internal delay then a 1 is returned otherwise
2857  * a 0 is returned.
2858  * The array must be in ascending order. If PHY does not have an ascending order
2859  * array then size = 0 and the value of the delay property is returned.
2860  * Return -EINVAL if the delay is invalid or cannot be found.
2861  */
2862 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2863                const int *delay_values, int size, bool is_rx)
2864 {
2865     s32 delay;
2866     int i;
2867 
2868     if (is_rx) {
2869         delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2870         if (delay < 0 && size == 0) {
2871             if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2872                 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2873                 return 1;
2874             else
2875                 return 0;
2876         }
2877 
2878     } else {
2879         delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2880         if (delay < 0 && size == 0) {
2881             if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2882                 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2883                 return 1;
2884             else
2885                 return 0;
2886         }
2887     }
2888 
2889     if (delay < 0)
2890         return delay;
2891 
2892     if (delay && size == 0)
2893         return delay;
2894 
2895     if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2896         phydev_err(phydev, "Delay %d is out of range\n", delay);
2897         return -EINVAL;
2898     }
2899 
2900     if (delay == delay_values[0])
2901         return 0;
2902 
2903     for (i = 1; i < size; i++) {
2904         if (delay == delay_values[i])
2905             return i;
2906 
2907         /* Find an approximate index by looking up the table */
2908         if (delay > delay_values[i - 1] &&
2909             delay < delay_values[i]) {
2910             if (delay - delay_values[i - 1] <
2911                 delay_values[i] - delay)
2912                 return i - 1;
2913             else
2914                 return i;
2915         }
2916     }
2917 
2918     phydev_err(phydev, "error finding internal delay index for %d\n",
2919            delay);
2920 
2921     return -EINVAL;
2922 }
2923 EXPORT_SYMBOL(phy_get_internal_delay);
2924 
2925 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2926 {
2927     return phydrv->config_intr && phydrv->handle_interrupt;
2928 }
2929 
2930 /**
2931  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
2932  * @fwnode: pointer to the mdio_device's fwnode
2933  *
2934  * If successful, returns a pointer to the mdio_device with the embedded
2935  * struct device refcount incremented by one, or NULL on failure.
2936  * The caller should call put_device() on the mdio_device after its use.
2937  */
2938 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
2939 {
2940     struct device *d;
2941 
2942     if (!fwnode)
2943         return NULL;
2944 
2945     d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
2946     if (!d)
2947         return NULL;
2948 
2949     return to_mdio_device(d);
2950 }
2951 EXPORT_SYMBOL(fwnode_mdio_find_device);
2952 
2953 /**
2954  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
2955  *
2956  * @phy_fwnode: Pointer to the phy's fwnode.
2957  *
2958  * If successful, returns a pointer to the phy_device with the embedded
2959  * struct device refcount incremented by one, or NULL on failure.
2960  */
2961 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
2962 {
2963     struct mdio_device *mdiodev;
2964 
2965     mdiodev = fwnode_mdio_find_device(phy_fwnode);
2966     if (!mdiodev)
2967         return NULL;
2968 
2969     if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
2970         return to_phy_device(&mdiodev->dev);
2971 
2972     put_device(&mdiodev->dev);
2973 
2974     return NULL;
2975 }
2976 EXPORT_SYMBOL(fwnode_phy_find_device);
2977 
2978 /**
2979  * device_phy_find_device - For the given device, get the phy_device
2980  * @dev: Pointer to the given device
2981  *
2982  * Refer return conditions of fwnode_phy_find_device().
2983  */
2984 struct phy_device *device_phy_find_device(struct device *dev)
2985 {
2986     return fwnode_phy_find_device(dev_fwnode(dev));
2987 }
2988 EXPORT_SYMBOL_GPL(device_phy_find_device);
2989 
2990 /**
2991  * fwnode_get_phy_node - Get the phy_node using the named reference.
2992  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
2993  *
2994  * Refer return conditions of fwnode_find_reference().
2995  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
2996  * and "phy-device" are not supported in ACPI. DT supports all the three
2997  * named references to the phy node.
2998  */
2999 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode)
3000 {
3001     struct fwnode_handle *phy_node;
3002 
3003     /* Only phy-handle is used for ACPI */
3004     phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3005     if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3006         return phy_node;
3007     phy_node = fwnode_find_reference(fwnode, "phy", 0);
3008     if (IS_ERR(phy_node))
3009         phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3010     return phy_node;
3011 }
3012 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3013 
3014 /**
3015  * phy_probe - probe and init a PHY device
3016  * @dev: device to probe and init
3017  *
3018  * Description: Take care of setting up the phy_device structure,
3019  *   set the state to READY (the driver's init function should
3020  *   set it to STARTING if needed).
3021  */
3022 static int phy_probe(struct device *dev)
3023 {
3024     struct phy_device *phydev = to_phy_device(dev);
3025     struct device_driver *drv = phydev->mdio.dev.driver;
3026     struct phy_driver *phydrv = to_phy_driver(drv);
3027     int err = 0;
3028 
3029     phydev->drv = phydrv;
3030 
3031     /* Disable the interrupt if the PHY doesn't support it
3032      * but the interrupt is still a valid one
3033      */
3034     if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3035         phydev->irq = PHY_POLL;
3036 
3037     if (phydrv->flags & PHY_IS_INTERNAL)
3038         phydev->is_internal = true;
3039 
3040     mutex_lock(&phydev->lock);
3041 
3042     /* Deassert the reset signal */
3043     phy_device_reset(phydev, 0);
3044 
3045     if (phydev->drv->probe) {
3046         err = phydev->drv->probe(phydev);
3047         if (err)
3048             goto out;
3049     }
3050 
3051     /* Start out supporting everything. Eventually,
3052      * a controller will attach, and may modify one
3053      * or both of these values
3054      */
3055     if (phydrv->features)
3056         linkmode_copy(phydev->supported, phydrv->features);
3057     else if (phydrv->get_features)
3058         err = phydrv->get_features(phydev);
3059     else if (phydev->is_c45)
3060         err = genphy_c45_pma_read_abilities(phydev);
3061     else
3062         err = genphy_read_abilities(phydev);
3063 
3064     if (err)
3065         goto out;
3066 
3067     if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3068                    phydev->supported))
3069         phydev->autoneg = 0;
3070 
3071     if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3072                   phydev->supported))
3073         phydev->is_gigabit_capable = 1;
3074     if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3075                   phydev->supported))
3076         phydev->is_gigabit_capable = 1;
3077 
3078     of_set_phy_supported(phydev);
3079     phy_advertise_supported(phydev);
3080 
3081     /* Get the EEE modes we want to prohibit. We will ask
3082      * the PHY stop advertising these mode later on
3083      */
3084     of_set_phy_eee_broken(phydev);
3085 
3086     /* The Pause Frame bits indicate that the PHY can support passing
3087      * pause frames. During autonegotiation, the PHYs will determine if
3088      * they should allow pause frames to pass.  The MAC driver should then
3089      * use that result to determine whether to enable flow control via
3090      * pause frames.
3091      *
3092      * Normally, PHY drivers should not set the Pause bits, and instead
3093      * allow phylib to do that.  However, there may be some situations
3094      * (e.g. hardware erratum) where the driver wants to set only one
3095      * of these bits.
3096      */
3097     if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3098         !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3099         linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3100                  phydev->supported);
3101         linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3102                  phydev->supported);
3103     }
3104 
3105     /* Set the state to READY by default */
3106     phydev->state = PHY_READY;
3107 
3108 out:
3109     /* Assert the reset signal */
3110     if (err)
3111         phy_device_reset(phydev, 1);
3112 
3113     mutex_unlock(&phydev->lock);
3114 
3115     return err;
3116 }
3117 
3118 static int phy_remove(struct device *dev)
3119 {
3120     struct phy_device *phydev = to_phy_device(dev);
3121 
3122     cancel_delayed_work_sync(&phydev->state_queue);
3123 
3124     mutex_lock(&phydev->lock);
3125     phydev->state = PHY_DOWN;
3126     mutex_unlock(&phydev->lock);
3127 
3128     sfp_bus_del_upstream(phydev->sfp_bus);
3129     phydev->sfp_bus = NULL;
3130 
3131     if (phydev->drv && phydev->drv->remove)
3132         phydev->drv->remove(phydev);
3133 
3134     /* Assert the reset signal */
3135     phy_device_reset(phydev, 1);
3136 
3137     phydev->drv = NULL;
3138 
3139     return 0;
3140 }
3141 
3142 static void phy_shutdown(struct device *dev)
3143 {
3144     struct phy_device *phydev = to_phy_device(dev);
3145 
3146     if (phydev->state == PHY_READY || !phydev->attached_dev)
3147         return;
3148 
3149     phy_disable_interrupts(phydev);
3150 }
3151 
3152 /**
3153  * phy_driver_register - register a phy_driver with the PHY layer
3154  * @new_driver: new phy_driver to register
3155  * @owner: module owning this PHY
3156  */
3157 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3158 {
3159     int retval;
3160 
3161     /* Either the features are hard coded, or dynamically
3162      * determined. It cannot be both.
3163      */
3164     if (WARN_ON(new_driver->features && new_driver->get_features)) {
3165         pr_err("%s: features and get_features must not both be set\n",
3166                new_driver->name);
3167         return -EINVAL;
3168     }
3169 
3170     /* PHYLIB device drivers must not match using a DT compatible table
3171      * as this bypasses our checks that the mdiodev that is being matched
3172      * is backed by a struct phy_device. If such a case happens, we will
3173      * make out-of-bounds accesses and lockup in phydev->lock.
3174      */
3175     if (WARN(new_driver->mdiodrv.driver.of_match_table,
3176          "%s: driver must not provide a DT match table\n",
3177          new_driver->name))
3178         return -EINVAL;
3179 
3180     new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3181     new_driver->mdiodrv.driver.name = new_driver->name;
3182     new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3183     new_driver->mdiodrv.driver.probe = phy_probe;
3184     new_driver->mdiodrv.driver.remove = phy_remove;
3185     new_driver->mdiodrv.driver.shutdown = phy_shutdown;
3186     new_driver->mdiodrv.driver.owner = owner;
3187     new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3188 
3189     retval = driver_register(&new_driver->mdiodrv.driver);
3190     if (retval) {
3191         pr_err("%s: Error %d in registering driver\n",
3192                new_driver->name, retval);
3193 
3194         return retval;
3195     }
3196 
3197     pr_debug("%s: Registered new driver\n", new_driver->name);
3198 
3199     return 0;
3200 }
3201 EXPORT_SYMBOL(phy_driver_register);
3202 
3203 int phy_drivers_register(struct phy_driver *new_driver, int n,
3204              struct module *owner)
3205 {
3206     int i, ret = 0;
3207 
3208     for (i = 0; i < n; i++) {
3209         ret = phy_driver_register(new_driver + i, owner);
3210         if (ret) {
3211             while (i-- > 0)
3212                 phy_driver_unregister(new_driver + i);
3213             break;
3214         }
3215     }
3216     return ret;
3217 }
3218 EXPORT_SYMBOL(phy_drivers_register);
3219 
3220 void phy_driver_unregister(struct phy_driver *drv)
3221 {
3222     driver_unregister(&drv->mdiodrv.driver);
3223 }
3224 EXPORT_SYMBOL(phy_driver_unregister);
3225 
3226 void phy_drivers_unregister(struct phy_driver *drv, int n)
3227 {
3228     int i;
3229 
3230     for (i = 0; i < n; i++)
3231         phy_driver_unregister(drv + i);
3232 }
3233 EXPORT_SYMBOL(phy_drivers_unregister);
3234 
3235 static struct phy_driver genphy_driver = {
3236     .phy_id     = 0xffffffff,
3237     .phy_id_mask    = 0xffffffff,
3238     .name       = "Generic PHY",
3239     .get_features   = genphy_read_abilities,
3240     .suspend    = genphy_suspend,
3241     .resume     = genphy_resume,
3242     .set_loopback   = genphy_loopback,
3243 };
3244 
3245 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3246     .get_sset_count     = phy_ethtool_get_sset_count,
3247     .get_strings        = phy_ethtool_get_strings,
3248     .get_stats      = phy_ethtool_get_stats,
3249     .start_cable_test   = phy_start_cable_test,
3250     .start_cable_test_tdr   = phy_start_cable_test_tdr,
3251 };
3252 
3253 static int __init phy_init(void)
3254 {
3255     int rc;
3256 
3257     rc = mdio_bus_init();
3258     if (rc)
3259         return rc;
3260 
3261     ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3262     features_init();
3263 
3264     rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3265     if (rc)
3266         goto err_c45;
3267 
3268     rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3269     if (rc) {
3270         phy_driver_unregister(&genphy_c45_driver);
3271 err_c45:
3272         mdio_bus_exit();
3273     }
3274 
3275     return rc;
3276 }
3277 
3278 static void __exit phy_exit(void)
3279 {
3280     phy_driver_unregister(&genphy_c45_driver);
3281     phy_driver_unregister(&genphy_driver);
3282     mdio_bus_exit();
3283     ethtool_set_ethtool_phy_ops(NULL);
3284 }
3285 
3286 subsys_initcall(phy_init);
3287 module_exit(phy_exit);