0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022 #include <linux/bitfield.h>
0023 #include <linux/ethtool_netlink.h>
0024 #include <linux/kernel.h>
0025 #include <linux/module.h>
0026 #include <linux/phy.h>
0027 #include <linux/micrel_phy.h>
0028 #include <linux/of.h>
0029 #include <linux/clk.h>
0030 #include <linux/delay.h>
0031 #include <linux/ptp_clock_kernel.h>
0032 #include <linux/ptp_clock.h>
0033 #include <linux/ptp_classify.h>
0034 #include <linux/net_tstamp.h>
0035 #include <linux/gpio/consumer.h>
0036
0037
0038 #define MII_KSZPHY_OMSO 0x16
0039 #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
0040 #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
0041 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
0042 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
0043 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
0044
0045
0046 #define MII_KSZPHY_INTCS 0x1B
0047 #define KSZPHY_INTCS_JABBER BIT(15)
0048 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
0049 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
0050 #define KSZPHY_INTCS_PARELLEL BIT(12)
0051 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
0052 #define KSZPHY_INTCS_LINK_DOWN BIT(10)
0053 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
0054 #define KSZPHY_INTCS_LINK_UP BIT(8)
0055 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
0056 KSZPHY_INTCS_LINK_DOWN)
0057 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
0058 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
0059 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
0060 KSZPHY_INTCS_LINK_UP_STATUS)
0061
0062
0063 #define KSZ8081_LMD 0x1d
0064 #define KSZ8081_LMD_ENABLE_TEST BIT(15)
0065 #define KSZ8081_LMD_STAT_NORMAL 0
0066 #define KSZ8081_LMD_STAT_OPEN 1
0067 #define KSZ8081_LMD_STAT_SHORT 2
0068 #define KSZ8081_LMD_STAT_FAIL 3
0069 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
0070
0071 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
0072 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
0073
0074 #define KSZ9x31_LMD 0x12
0075 #define KSZ9x31_LMD_VCT_EN BIT(15)
0076 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
0077 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
0078 #define KSZ9x31_LMD_VCT_SEL_RESULT 0
0079 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
0080 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
0081 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
0082 #define KSZ9x31_LMD_VCT_ST_NORMAL 0
0083 #define KSZ9x31_LMD_VCT_ST_OPEN 1
0084 #define KSZ9x31_LMD_VCT_ST_SHORT 2
0085 #define KSZ9x31_LMD_VCT_ST_FAIL 3
0086 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
0087 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
0088 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
0089 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
0090 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
0091 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
0092 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
0093 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
0094
0095
0096 #define LAN8814_INTC 0x18
0097 #define LAN8814_INTS 0x1B
0098
0099 #define LAN8814_INT_LINK_DOWN BIT(2)
0100 #define LAN8814_INT_LINK_UP BIT(0)
0101 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
0102 LAN8814_INT_LINK_DOWN)
0103
0104 #define LAN8814_INTR_CTRL_REG 0x34
0105 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
0106 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
0107
0108
0109
0110
0111
0112 #define LAN8814_1PPM_FORMAT 17179
0113
0114 #define PTP_RX_MOD 0x024F
0115 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
0116 #define PTP_RX_TIMESTAMP_EN 0x024D
0117 #define PTP_TX_TIMESTAMP_EN 0x028D
0118
0119 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
0120 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
0121 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
0122 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
0123
0124 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
0125 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
0126
0127 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
0128 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
0129 #define LTC_HARD_RESET 0x023F
0130 #define LTC_HARD_RESET_ BIT(0)
0131
0132 #define TSU_HARD_RESET 0x02C1
0133 #define TSU_HARD_RESET_ BIT(0)
0134
0135 #define PTP_CMD_CTL 0x0200
0136 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
0137 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
0138 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
0139 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
0140 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
0141 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
0142
0143 #define PTP_CLOCK_SET_SEC_MID 0x0206
0144 #define PTP_CLOCK_SET_SEC_LO 0x0207
0145 #define PTP_CLOCK_SET_NS_HI 0x0208
0146 #define PTP_CLOCK_SET_NS_LO 0x0209
0147
0148 #define PTP_CLOCK_READ_SEC_MID 0x022A
0149 #define PTP_CLOCK_READ_SEC_LO 0x022B
0150 #define PTP_CLOCK_READ_NS_HI 0x022C
0151 #define PTP_CLOCK_READ_NS_LO 0x022D
0152
0153 #define PTP_OPERATING_MODE 0x0241
0154 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
0155
0156 #define PTP_TX_MOD 0x028F
0157 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
0158 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
0159
0160 #define PTP_RX_PARSE_CONFIG 0x0242
0161 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
0162 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
0163 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
0164
0165 #define PTP_TX_PARSE_CONFIG 0x0282
0166 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
0167 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
0168 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
0169
0170 #define PTP_CLOCK_RATE_ADJ_HI 0x020C
0171 #define PTP_CLOCK_RATE_ADJ_LO 0x020D
0172 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
0173
0174 #define PTP_LTC_STEP_ADJ_HI 0x0212
0175 #define PTP_LTC_STEP_ADJ_LO 0x0213
0176 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
0177
0178 #define LAN8814_INTR_STS_REG 0x0033
0179 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
0180 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
0181 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
0182 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
0183
0184 #define PTP_CAP_INFO 0x022A
0185 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
0186 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
0187
0188 #define PTP_TX_EGRESS_SEC_HI 0x0296
0189 #define PTP_TX_EGRESS_SEC_LO 0x0297
0190 #define PTP_TX_EGRESS_NS_HI 0x0294
0191 #define PTP_TX_EGRESS_NS_LO 0x0295
0192 #define PTP_TX_MSG_HEADER2 0x0299
0193
0194 #define PTP_RX_INGRESS_SEC_HI 0x0256
0195 #define PTP_RX_INGRESS_SEC_LO 0x0257
0196 #define PTP_RX_INGRESS_NS_HI 0x0254
0197 #define PTP_RX_INGRESS_NS_LO 0x0255
0198 #define PTP_RX_MSG_HEADER2 0x0259
0199
0200 #define PTP_TSU_INT_EN 0x0200
0201 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
0202 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
0203 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
0204 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
0205
0206 #define PTP_TSU_INT_STS 0x0201
0207 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
0208 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
0209 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
0210 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
0211
0212 #define LAN8814_LED_CTRL_1 0x0
0213 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
0214
0215
0216 #define MII_KSZPHY_CTRL_1 0x1e
0217 #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
0218
0219
0220 #define MII_KSZPHY_CTRL_2 0x1f
0221 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
0222
0223 #define KSZ8081_CTRL2_HP_MDIX BIT(15)
0224 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
0225 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
0226 #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
0227 #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
0228 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
0229 #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
0230
0231
0232 #define MII_KSZPHY_EXTREG 0x0b
0233 #define KSZPHY_EXTREG_WRITE 0x8000
0234
0235 #define MII_KSZPHY_EXTREG_WRITE 0x0c
0236 #define MII_KSZPHY_EXTREG_READ 0x0d
0237
0238
0239 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
0240 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
0241 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
0242
0243 #define PS_TO_REG 200
0244 #define FIFO_SIZE 8
0245
0246 struct kszphy_hw_stat {
0247 const char *string;
0248 u8 reg;
0249 u8 bits;
0250 };
0251
0252 static struct kszphy_hw_stat kszphy_hw_stats[] = {
0253 { "phy_receive_errors", 21, 16},
0254 { "phy_idle_errors", 10, 8 },
0255 };
0256
0257 struct kszphy_type {
0258 u32 led_mode_reg;
0259 u16 interrupt_level_mask;
0260 bool has_broadcast_disable;
0261 bool has_nand_tree_disable;
0262 bool has_rmii_ref_clk_sel;
0263 };
0264
0265
0266 struct lan8814_shared_priv {
0267 struct phy_device *phydev;
0268 struct ptp_clock *ptp_clock;
0269 struct ptp_clock_info ptp_clock_info;
0270
0271
0272
0273
0274 u8 ref;
0275
0276
0277 struct mutex shared_lock;
0278 };
0279
0280 struct lan8814_ptp_rx_ts {
0281 struct list_head list;
0282 u32 seconds;
0283 u32 nsec;
0284 u16 seq_id;
0285 };
0286
0287 struct kszphy_ptp_priv {
0288 struct mii_timestamper mii_ts;
0289 struct phy_device *phydev;
0290
0291 struct sk_buff_head tx_queue;
0292 struct sk_buff_head rx_queue;
0293
0294 struct list_head rx_ts_list;
0295
0296 spinlock_t rx_ts_lock;
0297
0298 int hwts_tx_type;
0299 enum hwtstamp_rx_filters rx_filter;
0300 int layer;
0301 int version;
0302 };
0303
0304 struct kszphy_priv {
0305 struct kszphy_ptp_priv ptp_priv;
0306 const struct kszphy_type *type;
0307 int led_mode;
0308 u16 vct_ctrl1000;
0309 bool rmii_ref_clk_sel;
0310 bool rmii_ref_clk_sel_val;
0311 u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
0312 };
0313
0314 static const struct kszphy_type lan8814_type = {
0315 .led_mode_reg = ~LAN8814_LED_CTRL_1,
0316 };
0317
0318 static const struct kszphy_type ksz8021_type = {
0319 .led_mode_reg = MII_KSZPHY_CTRL_2,
0320 .has_broadcast_disable = true,
0321 .has_nand_tree_disable = true,
0322 .has_rmii_ref_clk_sel = true,
0323 };
0324
0325 static const struct kszphy_type ksz8041_type = {
0326 .led_mode_reg = MII_KSZPHY_CTRL_1,
0327 };
0328
0329 static const struct kszphy_type ksz8051_type = {
0330 .led_mode_reg = MII_KSZPHY_CTRL_2,
0331 .has_nand_tree_disable = true,
0332 };
0333
0334 static const struct kszphy_type ksz8081_type = {
0335 .led_mode_reg = MII_KSZPHY_CTRL_2,
0336 .has_broadcast_disable = true,
0337 .has_nand_tree_disable = true,
0338 .has_rmii_ref_clk_sel = true,
0339 };
0340
0341 static const struct kszphy_type ks8737_type = {
0342 .interrupt_level_mask = BIT(14),
0343 };
0344
0345 static const struct kszphy_type ksz9021_type = {
0346 .interrupt_level_mask = BIT(14),
0347 };
0348
0349 static int kszphy_extended_write(struct phy_device *phydev,
0350 u32 regnum, u16 val)
0351 {
0352 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
0353 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
0354 }
0355
0356 static int kszphy_extended_read(struct phy_device *phydev,
0357 u32 regnum)
0358 {
0359 phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
0360 return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
0361 }
0362
0363 static int kszphy_ack_interrupt(struct phy_device *phydev)
0364 {
0365
0366 int rc;
0367
0368 rc = phy_read(phydev, MII_KSZPHY_INTCS);
0369
0370 return (rc < 0) ? rc : 0;
0371 }
0372
0373 static int kszphy_config_intr(struct phy_device *phydev)
0374 {
0375 const struct kszphy_type *type = phydev->drv->driver_data;
0376 int temp, err;
0377 u16 mask;
0378
0379 if (type && type->interrupt_level_mask)
0380 mask = type->interrupt_level_mask;
0381 else
0382 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
0383
0384
0385 temp = phy_read(phydev, MII_KSZPHY_CTRL);
0386 if (temp < 0)
0387 return temp;
0388 temp &= ~mask;
0389 phy_write(phydev, MII_KSZPHY_CTRL, temp);
0390
0391
0392 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
0393 err = kszphy_ack_interrupt(phydev);
0394 if (err)
0395 return err;
0396
0397 temp = KSZPHY_INTCS_ALL;
0398 err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
0399 } else {
0400 temp = 0;
0401 err = phy_write(phydev, MII_KSZPHY_INTCS, temp);
0402 if (err)
0403 return err;
0404
0405 err = kszphy_ack_interrupt(phydev);
0406 }
0407
0408 return err;
0409 }
0410
0411 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
0412 {
0413 int irq_status;
0414
0415 irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
0416 if (irq_status < 0) {
0417 phy_error(phydev);
0418 return IRQ_NONE;
0419 }
0420
0421 if (!(irq_status & KSZPHY_INTCS_STATUS))
0422 return IRQ_NONE;
0423
0424 phy_trigger_machine(phydev);
0425
0426 return IRQ_HANDLED;
0427 }
0428
0429 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
0430 {
0431 int ctrl;
0432
0433 ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
0434 if (ctrl < 0)
0435 return ctrl;
0436
0437 if (val)
0438 ctrl |= KSZPHY_RMII_REF_CLK_SEL;
0439 else
0440 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
0441
0442 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
0443 }
0444
0445 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
0446 {
0447 int rc, temp, shift;
0448
0449 switch (reg) {
0450 case MII_KSZPHY_CTRL_1:
0451 shift = 14;
0452 break;
0453 case MII_KSZPHY_CTRL_2:
0454 shift = 4;
0455 break;
0456 default:
0457 return -EINVAL;
0458 }
0459
0460 temp = phy_read(phydev, reg);
0461 if (temp < 0) {
0462 rc = temp;
0463 goto out;
0464 }
0465
0466 temp &= ~(3 << shift);
0467 temp |= val << shift;
0468 rc = phy_write(phydev, reg, temp);
0469 out:
0470 if (rc < 0)
0471 phydev_err(phydev, "failed to set led mode\n");
0472
0473 return rc;
0474 }
0475
0476
0477
0478
0479 static int kszphy_broadcast_disable(struct phy_device *phydev)
0480 {
0481 int ret;
0482
0483 ret = phy_read(phydev, MII_KSZPHY_OMSO);
0484 if (ret < 0)
0485 goto out;
0486
0487 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
0488 out:
0489 if (ret)
0490 phydev_err(phydev, "failed to disable broadcast address\n");
0491
0492 return ret;
0493 }
0494
0495 static int kszphy_nand_tree_disable(struct phy_device *phydev)
0496 {
0497 int ret;
0498
0499 ret = phy_read(phydev, MII_KSZPHY_OMSO);
0500 if (ret < 0)
0501 goto out;
0502
0503 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
0504 return 0;
0505
0506 ret = phy_write(phydev, MII_KSZPHY_OMSO,
0507 ret & ~KSZPHY_OMSO_NAND_TREE_ON);
0508 out:
0509 if (ret)
0510 phydev_err(phydev, "failed to disable NAND tree mode\n");
0511
0512 return ret;
0513 }
0514
0515
0516 static int kszphy_config_reset(struct phy_device *phydev)
0517 {
0518 struct kszphy_priv *priv = phydev->priv;
0519 int ret;
0520
0521 if (priv->rmii_ref_clk_sel) {
0522 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
0523 if (ret) {
0524 phydev_err(phydev,
0525 "failed to set rmii reference clock\n");
0526 return ret;
0527 }
0528 }
0529
0530 if (priv->type && priv->led_mode >= 0)
0531 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
0532
0533 return 0;
0534 }
0535
0536 static int kszphy_config_init(struct phy_device *phydev)
0537 {
0538 struct kszphy_priv *priv = phydev->priv;
0539 const struct kszphy_type *type;
0540
0541 if (!priv)
0542 return 0;
0543
0544 type = priv->type;
0545
0546 if (type && type->has_broadcast_disable)
0547 kszphy_broadcast_disable(phydev);
0548
0549 if (type && type->has_nand_tree_disable)
0550 kszphy_nand_tree_disable(phydev);
0551
0552 return kszphy_config_reset(phydev);
0553 }
0554
0555 static int ksz8041_fiber_mode(struct phy_device *phydev)
0556 {
0557 struct device_node *of_node = phydev->mdio.dev.of_node;
0558
0559 return of_property_read_bool(of_node, "micrel,fiber-mode");
0560 }
0561
0562 static int ksz8041_config_init(struct phy_device *phydev)
0563 {
0564 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
0565
0566
0567 if (ksz8041_fiber_mode(phydev)) {
0568 phydev->dev_flags |= MICREL_PHY_FXEN;
0569 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
0570 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
0571
0572 linkmode_and(phydev->supported, phydev->supported, mask);
0573 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
0574 phydev->supported);
0575 linkmode_and(phydev->advertising, phydev->advertising, mask);
0576 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
0577 phydev->advertising);
0578 phydev->autoneg = AUTONEG_DISABLE;
0579 }
0580
0581 return kszphy_config_init(phydev);
0582 }
0583
0584 static int ksz8041_config_aneg(struct phy_device *phydev)
0585 {
0586
0587 if (phydev->dev_flags & MICREL_PHY_FXEN) {
0588 phydev->speed = SPEED_100;
0589 return 0;
0590 }
0591
0592 return genphy_config_aneg(phydev);
0593 }
0594
0595 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
0596 const bool ksz_8051)
0597 {
0598 int ret;
0599
0600 if ((phydev->phy_id & MICREL_PHY_ID_MASK) != PHY_ID_KSZ8051)
0601 return 0;
0602
0603 ret = phy_read(phydev, MII_BMSR);
0604 if (ret < 0)
0605 return ret;
0606
0607
0608
0609
0610
0611
0612 ret &= BMSR_ERCAP;
0613 if (ksz_8051)
0614 return ret;
0615 else
0616 return !ret;
0617 }
0618
0619 static int ksz8051_match_phy_device(struct phy_device *phydev)
0620 {
0621 return ksz8051_ksz8795_match_phy_device(phydev, true);
0622 }
0623
0624 static int ksz8081_config_init(struct phy_device *phydev)
0625 {
0626
0627
0628
0629
0630
0631 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
0632
0633 return kszphy_config_init(phydev);
0634 }
0635
0636 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
0637 {
0638 u16 val;
0639
0640 switch (ctrl) {
0641 case ETH_TP_MDI:
0642 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
0643 break;
0644 case ETH_TP_MDI_X:
0645 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
0646 KSZ8081_CTRL2_MDI_MDI_X_SELECT;
0647 break;
0648 case ETH_TP_MDI_AUTO:
0649 val = 0;
0650 break;
0651 default:
0652 return 0;
0653 }
0654
0655 return phy_modify(phydev, MII_KSZPHY_CTRL_2,
0656 KSZ8081_CTRL2_HP_MDIX |
0657 KSZ8081_CTRL2_MDI_MDI_X_SELECT |
0658 KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
0659 KSZ8081_CTRL2_HP_MDIX | val);
0660 }
0661
0662 static int ksz8081_config_aneg(struct phy_device *phydev)
0663 {
0664 int ret;
0665
0666 ret = genphy_config_aneg(phydev);
0667 if (ret)
0668 return ret;
0669
0670
0671
0672
0673
0674 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
0675 }
0676
0677 static int ksz8081_mdix_update(struct phy_device *phydev)
0678 {
0679 int ret;
0680
0681 ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
0682 if (ret < 0)
0683 return ret;
0684
0685 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
0686 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
0687 phydev->mdix_ctrl = ETH_TP_MDI_X;
0688 else
0689 phydev->mdix_ctrl = ETH_TP_MDI;
0690 } else {
0691 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
0692 }
0693
0694 ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
0695 if (ret < 0)
0696 return ret;
0697
0698 if (ret & KSZ8081_CTRL1_MDIX_STAT)
0699 phydev->mdix = ETH_TP_MDI;
0700 else
0701 phydev->mdix = ETH_TP_MDI_X;
0702
0703 return 0;
0704 }
0705
0706 static int ksz8081_read_status(struct phy_device *phydev)
0707 {
0708 int ret;
0709
0710 ret = ksz8081_mdix_update(phydev);
0711 if (ret < 0)
0712 return ret;
0713
0714 return genphy_read_status(phydev);
0715 }
0716
0717 static int ksz8061_config_init(struct phy_device *phydev)
0718 {
0719 int ret;
0720
0721 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
0722 if (ret)
0723 return ret;
0724
0725 return kszphy_config_init(phydev);
0726 }
0727
0728 static int ksz8795_match_phy_device(struct phy_device *phydev)
0729 {
0730 return ksz8051_ksz8795_match_phy_device(phydev, false);
0731 }
0732
0733 static int ksz9021_load_values_from_of(struct phy_device *phydev,
0734 const struct device_node *of_node,
0735 u16 reg,
0736 const char *field1, const char *field2,
0737 const char *field3, const char *field4)
0738 {
0739 int val1 = -1;
0740 int val2 = -2;
0741 int val3 = -3;
0742 int val4 = -4;
0743 int newval;
0744 int matches = 0;
0745
0746 if (!of_property_read_u32(of_node, field1, &val1))
0747 matches++;
0748
0749 if (!of_property_read_u32(of_node, field2, &val2))
0750 matches++;
0751
0752 if (!of_property_read_u32(of_node, field3, &val3))
0753 matches++;
0754
0755 if (!of_property_read_u32(of_node, field4, &val4))
0756 matches++;
0757
0758 if (!matches)
0759 return 0;
0760
0761 if (matches < 4)
0762 newval = kszphy_extended_read(phydev, reg);
0763 else
0764 newval = 0;
0765
0766 if (val1 != -1)
0767 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
0768
0769 if (val2 != -2)
0770 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
0771
0772 if (val3 != -3)
0773 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
0774
0775 if (val4 != -4)
0776 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
0777
0778 return kszphy_extended_write(phydev, reg, newval);
0779 }
0780
0781 static int ksz9021_config_init(struct phy_device *phydev)
0782 {
0783 const struct device_node *of_node;
0784 const struct device *dev_walker;
0785
0786
0787
0788
0789
0790 dev_walker = &phydev->mdio.dev;
0791 do {
0792 of_node = dev_walker->of_node;
0793 dev_walker = dev_walker->parent;
0794
0795 } while (!of_node && dev_walker);
0796
0797 if (of_node) {
0798 ksz9021_load_values_from_of(phydev, of_node,
0799 MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
0800 "txen-skew-ps", "txc-skew-ps",
0801 "rxdv-skew-ps", "rxc-skew-ps");
0802 ksz9021_load_values_from_of(phydev, of_node,
0803 MII_KSZPHY_RX_DATA_PAD_SKEW,
0804 "rxd0-skew-ps", "rxd1-skew-ps",
0805 "rxd2-skew-ps", "rxd3-skew-ps");
0806 ksz9021_load_values_from_of(phydev, of_node,
0807 MII_KSZPHY_TX_DATA_PAD_SKEW,
0808 "txd0-skew-ps", "txd1-skew-ps",
0809 "txd2-skew-ps", "txd3-skew-ps");
0810 }
0811 return 0;
0812 }
0813
0814 #define KSZ9031_PS_TO_REG 60
0815
0816
0817
0818 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
0819 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
0820
0821
0822 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
0823 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
0824 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
0825
0826 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
0827 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
0828 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
0829 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
0830 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
0831
0832 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
0833 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
0834 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
0835 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
0836 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
0837
0838 #define MII_KSZ9031RN_CLK_PAD_SKEW 8
0839 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
0840 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
0841
0842
0843
0844
0845
0846
0847
0848
0849 #define RX_ID 0x7
0850 #define RX_CLK_ID 0x19
0851
0852
0853
0854
0855 #define RX_ND 0xc
0856 #define RX_CLK_ND 0x0
0857
0858
0859 #define TX_ID 0x0
0860 #define TX_CLK_ID 0x1f
0861
0862
0863
0864
0865 #define TX_ND 0x7
0866 #define TX_CLK_ND 0xf
0867
0868
0869 #define MII_KSZ9031RN_EDPD 0x23
0870 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
0871
0872 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
0873 const struct device_node *of_node,
0874 u16 reg, size_t field_sz,
0875 const char *field[], u8 numfields,
0876 bool *update)
0877 {
0878 int val[4] = {-1, -2, -3, -4};
0879 int matches = 0;
0880 u16 mask;
0881 u16 maxval;
0882 u16 newval;
0883 int i;
0884
0885 for (i = 0; i < numfields; i++)
0886 if (!of_property_read_u32(of_node, field[i], val + i))
0887 matches++;
0888
0889 if (!matches)
0890 return 0;
0891
0892 *update |= true;
0893
0894 if (matches < numfields)
0895 newval = phy_read_mmd(phydev, 2, reg);
0896 else
0897 newval = 0;
0898
0899 maxval = (field_sz == 4) ? 0xf : 0x1f;
0900 for (i = 0; i < numfields; i++)
0901 if (val[i] != -(i + 1)) {
0902 mask = 0xffff;
0903 mask ^= maxval << (field_sz * i);
0904 newval = (newval & mask) |
0905 (((val[i] / KSZ9031_PS_TO_REG) & maxval)
0906 << (field_sz * i));
0907 }
0908
0909 return phy_write_mmd(phydev, 2, reg, newval);
0910 }
0911
0912
0913 static int ksz9031_center_flp_timing(struct phy_device *phydev)
0914 {
0915 int result;
0916
0917 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
0918 0x0006);
0919 if (result)
0920 return result;
0921
0922 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
0923 0x1A80);
0924 if (result)
0925 return result;
0926
0927 return genphy_restart_aneg(phydev);
0928 }
0929
0930
0931 static int ksz9031_enable_edpd(struct phy_device *phydev)
0932 {
0933 int reg;
0934
0935 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
0936 if (reg < 0)
0937 return reg;
0938 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
0939 reg | MII_KSZ9031RN_EDPD_ENABLE);
0940 }
0941
0942 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
0943 {
0944 u16 rx, tx, rx_clk, tx_clk;
0945 int ret;
0946
0947 switch (phydev->interface) {
0948 case PHY_INTERFACE_MODE_RGMII:
0949 tx = TX_ND;
0950 tx_clk = TX_CLK_ND;
0951 rx = RX_ND;
0952 rx_clk = RX_CLK_ND;
0953 break;
0954 case PHY_INTERFACE_MODE_RGMII_ID:
0955 tx = TX_ID;
0956 tx_clk = TX_CLK_ID;
0957 rx = RX_ID;
0958 rx_clk = RX_CLK_ID;
0959 break;
0960 case PHY_INTERFACE_MODE_RGMII_RXID:
0961 tx = TX_ND;
0962 tx_clk = TX_CLK_ND;
0963 rx = RX_ID;
0964 rx_clk = RX_CLK_ID;
0965 break;
0966 case PHY_INTERFACE_MODE_RGMII_TXID:
0967 tx = TX_ID;
0968 tx_clk = TX_CLK_ID;
0969 rx = RX_ND;
0970 rx_clk = RX_CLK_ND;
0971 break;
0972 default:
0973 return 0;
0974 }
0975
0976 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
0977 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
0978 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
0979 if (ret < 0)
0980 return ret;
0981
0982 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
0983 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
0984 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
0985 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
0986 FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
0987 if (ret < 0)
0988 return ret;
0989
0990 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
0991 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
0992 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
0993 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
0994 FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
0995 if (ret < 0)
0996 return ret;
0997
0998 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
0999 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1000 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1001 }
1002
1003 static int ksz9031_config_init(struct phy_device *phydev)
1004 {
1005 const struct device_node *of_node;
1006 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1007 static const char *rx_data_skews[4] = {
1008 "rxd0-skew-ps", "rxd1-skew-ps",
1009 "rxd2-skew-ps", "rxd3-skew-ps"
1010 };
1011 static const char *tx_data_skews[4] = {
1012 "txd0-skew-ps", "txd1-skew-ps",
1013 "txd2-skew-ps", "txd3-skew-ps"
1014 };
1015 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1016 const struct device *dev_walker;
1017 int result;
1018
1019 result = ksz9031_enable_edpd(phydev);
1020 if (result < 0)
1021 return result;
1022
1023
1024
1025
1026
1027 dev_walker = &phydev->mdio.dev;
1028 do {
1029 of_node = dev_walker->of_node;
1030 dev_walker = dev_walker->parent;
1031 } while (!of_node && dev_walker);
1032
1033 if (of_node) {
1034 bool update = false;
1035
1036 if (phy_interface_is_rgmii(phydev)) {
1037 result = ksz9031_config_rgmii_delay(phydev);
1038 if (result < 0)
1039 return result;
1040 }
1041
1042 ksz9031_of_load_skew_values(phydev, of_node,
1043 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1044 clk_skews, 2, &update);
1045
1046 ksz9031_of_load_skew_values(phydev, of_node,
1047 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1048 control_skews, 2, &update);
1049
1050 ksz9031_of_load_skew_values(phydev, of_node,
1051 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1052 rx_data_skews, 4, &update);
1053
1054 ksz9031_of_load_skew_values(phydev, of_node,
1055 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1056 tx_data_skews, 4, &update);
1057
1058 if (update && !phy_interface_is_rgmii(phydev))
1059 phydev_warn(phydev,
1060 "*-skew-ps values should be used only with RGMII PHY modes\n");
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077 if (of_property_read_bool(of_node, "micrel,force-master")) {
1078 result = phy_read(phydev, MII_CTRL1000);
1079 if (result < 0)
1080 goto err_force_master;
1081
1082
1083 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1084 result = phy_write(phydev, MII_CTRL1000, result);
1085 if (result < 0)
1086 goto err_force_master;
1087 }
1088 }
1089
1090 return ksz9031_center_flp_timing(phydev);
1091
1092 err_force_master:
1093 phydev_err(phydev, "failed to force the phy to master mode\n");
1094 return result;
1095 }
1096
1097 #define KSZ9131_SKEW_5BIT_MAX 2400
1098 #define KSZ9131_SKEW_4BIT_MAX 800
1099 #define KSZ9131_OFFSET 700
1100 #define KSZ9131_STEP 100
1101
1102 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1103 struct device_node *of_node,
1104 u16 reg, size_t field_sz,
1105 char *field[], u8 numfields)
1106 {
1107 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1108 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1109 int skewval, skewmax = 0;
1110 int matches = 0;
1111 u16 maxval;
1112 u16 newval;
1113 u16 mask;
1114 int i;
1115
1116
1117 if (field_sz == 5)
1118 skewmax = KSZ9131_SKEW_5BIT_MAX;
1119 else
1120 skewmax = KSZ9131_SKEW_4BIT_MAX;
1121
1122 for (i = 0; i < numfields; i++)
1123 if (!of_property_read_s32(of_node, field[i], &skewval)) {
1124 if (skewval < -KSZ9131_OFFSET)
1125 skewval = -KSZ9131_OFFSET;
1126 else if (skewval > skewmax)
1127 skewval = skewmax;
1128
1129 val[i] = skewval + KSZ9131_OFFSET;
1130 matches++;
1131 }
1132
1133 if (!matches)
1134 return 0;
1135
1136 if (matches < numfields)
1137 newval = phy_read_mmd(phydev, 2, reg);
1138 else
1139 newval = 0;
1140
1141 maxval = (field_sz == 4) ? 0xf : 0x1f;
1142 for (i = 0; i < numfields; i++)
1143 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1144 mask = 0xffff;
1145 mask ^= maxval << (field_sz * i);
1146 newval = (newval & mask) |
1147 (((val[i] / KSZ9131_STEP) & maxval)
1148 << (field_sz * i));
1149 }
1150
1151 return phy_write_mmd(phydev, 2, reg, newval);
1152 }
1153
1154 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
1155 #define KSZ9131RN_RXC_DLL_CTRL 76
1156 #define KSZ9131RN_TXC_DLL_CTRL 77
1157 #define KSZ9131RN_DLL_CTRL_BYPASS BIT_MASK(12)
1158 #define KSZ9131RN_DLL_ENABLE_DELAY 0
1159 #define KSZ9131RN_DLL_DISABLE_DELAY BIT(12)
1160
1161 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1162 {
1163 u16 rxcdll_val, txcdll_val;
1164 int ret;
1165
1166 switch (phydev->interface) {
1167 case PHY_INTERFACE_MODE_RGMII:
1168 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1169 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1170 break;
1171 case PHY_INTERFACE_MODE_RGMII_ID:
1172 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1173 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1174 break;
1175 case PHY_INTERFACE_MODE_RGMII_RXID:
1176 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1177 txcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1178 break;
1179 case PHY_INTERFACE_MODE_RGMII_TXID:
1180 rxcdll_val = KSZ9131RN_DLL_DISABLE_DELAY;
1181 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1182 break;
1183 default:
1184 return 0;
1185 }
1186
1187 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1188 KSZ9131RN_RXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
1189 rxcdll_val);
1190 if (ret < 0)
1191 return ret;
1192
1193 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1194 KSZ9131RN_TXC_DLL_CTRL, KSZ9131RN_DLL_CTRL_BYPASS,
1195 txcdll_val);
1196 }
1197
1198
1199
1200
1201
1202
1203
1204 static int ksz9131_led_errata(struct phy_device *phydev)
1205 {
1206 int reg;
1207
1208 reg = phy_read_mmd(phydev, 2, 0);
1209 if (reg < 0)
1210 return reg;
1211
1212 if (!(reg & BIT(4)))
1213 return 0;
1214
1215 return phy_set_bits(phydev, 0x1e, BIT(9));
1216 }
1217
1218 static int ksz9131_config_init(struct phy_device *phydev)
1219 {
1220 struct device_node *of_node;
1221 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1222 char *rx_data_skews[4] = {
1223 "rxd0-skew-psec", "rxd1-skew-psec",
1224 "rxd2-skew-psec", "rxd3-skew-psec"
1225 };
1226 char *tx_data_skews[4] = {
1227 "txd0-skew-psec", "txd1-skew-psec",
1228 "txd2-skew-psec", "txd3-skew-psec"
1229 };
1230 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1231 const struct device *dev_walker;
1232 int ret;
1233
1234 dev_walker = &phydev->mdio.dev;
1235 do {
1236 of_node = dev_walker->of_node;
1237 dev_walker = dev_walker->parent;
1238 } while (!of_node && dev_walker);
1239
1240 if (!of_node)
1241 return 0;
1242
1243 if (phy_interface_is_rgmii(phydev)) {
1244 ret = ksz9131_config_rgmii_delay(phydev);
1245 if (ret < 0)
1246 return ret;
1247 }
1248
1249 ret = ksz9131_of_load_skew_values(phydev, of_node,
1250 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1251 clk_skews, 2);
1252 if (ret < 0)
1253 return ret;
1254
1255 ret = ksz9131_of_load_skew_values(phydev, of_node,
1256 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1257 control_skews, 2);
1258 if (ret < 0)
1259 return ret;
1260
1261 ret = ksz9131_of_load_skew_values(phydev, of_node,
1262 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1263 rx_data_skews, 4);
1264 if (ret < 0)
1265 return ret;
1266
1267 ret = ksz9131_of_load_skew_values(phydev, of_node,
1268 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1269 tx_data_skews, 4);
1270 if (ret < 0)
1271 return ret;
1272
1273 ret = ksz9131_led_errata(phydev);
1274 if (ret < 0)
1275 return ret;
1276
1277 return 0;
1278 }
1279
1280 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
1281 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
1282 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
1283 static int ksz8873mll_read_status(struct phy_device *phydev)
1284 {
1285 int regval;
1286
1287
1288 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1289
1290 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1291
1292 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1293 phydev->duplex = DUPLEX_HALF;
1294 else
1295 phydev->duplex = DUPLEX_FULL;
1296
1297 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1298 phydev->speed = SPEED_10;
1299 else
1300 phydev->speed = SPEED_100;
1301
1302 phydev->link = 1;
1303 phydev->pause = phydev->asym_pause = 0;
1304
1305 return 0;
1306 }
1307
1308 static int ksz9031_get_features(struct phy_device *phydev)
1309 {
1310 int ret;
1311
1312 ret = genphy_read_abilities(phydev);
1313 if (ret < 0)
1314 return ret;
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1326
1327
1328
1329
1330 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1331
1332 return 0;
1333 }
1334
1335 static int ksz9031_read_status(struct phy_device *phydev)
1336 {
1337 int err;
1338 int regval;
1339
1340 err = genphy_read_status(phydev);
1341 if (err)
1342 return err;
1343
1344
1345
1346
1347 regval = phy_read(phydev, MII_STAT1000);
1348 if ((regval & 0xFF) == 0xFF) {
1349 phy_init_hw(phydev);
1350 phydev->link = 0;
1351 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1352 phydev->drv->config_intr(phydev);
1353 return genphy_config_aneg(phydev);
1354 }
1355
1356 return 0;
1357 }
1358
1359 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1360 {
1361 struct kszphy_priv *priv = phydev->priv;
1362 int ret;
1363
1364
1365
1366
1367
1368
1369 ret = phy_modify(phydev, MII_BMCR,
1370 BMCR_SPEED1000 | BMCR_FULLDPLX |
1371 BMCR_ANENABLE | BMCR_SPEED100,
1372 BMCR_SPEED1000 | BMCR_FULLDPLX);
1373 if (ret)
1374 return ret;
1375
1376
1377
1378
1379
1380
1381 ret = phy_read(phydev, MII_CTRL1000);
1382 if (ret < 0)
1383 return ret;
1384
1385
1386 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1387 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1388 ret |= CTL1000_ENABLE_MASTER;
1389
1390 return phy_write(phydev, MII_CTRL1000, ret);
1391 }
1392
1393 static int ksz9x31_cable_test_result_trans(u16 status)
1394 {
1395 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1396 case KSZ9x31_LMD_VCT_ST_NORMAL:
1397 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1398 case KSZ9x31_LMD_VCT_ST_OPEN:
1399 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1400 case KSZ9x31_LMD_VCT_ST_SHORT:
1401 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1402 case KSZ9x31_LMD_VCT_ST_FAIL:
1403 fallthrough;
1404 default:
1405 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1406 }
1407 }
1408
1409 static bool ksz9x31_cable_test_failed(u16 status)
1410 {
1411 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1412
1413 return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1414 }
1415
1416 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1417 {
1418 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1419 case KSZ9x31_LMD_VCT_ST_OPEN:
1420 fallthrough;
1421 case KSZ9x31_LMD_VCT_ST_SHORT:
1422 return true;
1423 }
1424 return false;
1425 }
1426
1427 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1428 {
1429 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1430
1431
1432
1433
1434
1435 if ((phydev->phy_id & MICREL_PHY_ID_MASK) == PHY_ID_KSZ9131)
1436 dt = clamp(dt - 22, 0, 255);
1437
1438 return (dt * 400) / 10;
1439 }
1440
1441 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1442 {
1443 int val, ret;
1444
1445 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1446 !(val & KSZ9x31_LMD_VCT_EN),
1447 30000, 100000, true);
1448
1449 return ret < 0 ? ret : 0;
1450 }
1451
1452 static int ksz9x31_cable_test_get_pair(int pair)
1453 {
1454 static const int ethtool_pair[] = {
1455 ETHTOOL_A_CABLE_PAIR_A,
1456 ETHTOOL_A_CABLE_PAIR_B,
1457 ETHTOOL_A_CABLE_PAIR_C,
1458 ETHTOOL_A_CABLE_PAIR_D,
1459 };
1460
1461 return ethtool_pair[pair];
1462 }
1463
1464 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1465 {
1466 int ret, val;
1467
1468
1469
1470
1471
1472
1473
1474
1475 ret = phy_write(phydev, KSZ9x31_LMD,
1476 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1477 if (ret)
1478 return ret;
1479
1480 ret = ksz9x31_cable_test_wait_for_completion(phydev);
1481 if (ret)
1482 return ret;
1483
1484 val = phy_read(phydev, KSZ9x31_LMD);
1485 if (val < 0)
1486 return val;
1487
1488 if (ksz9x31_cable_test_failed(val))
1489 return -EAGAIN;
1490
1491 ret = ethnl_cable_test_result(phydev,
1492 ksz9x31_cable_test_get_pair(pair),
1493 ksz9x31_cable_test_result_trans(val));
1494 if (ret)
1495 return ret;
1496
1497 if (!ksz9x31_cable_test_fault_length_valid(val))
1498 return 0;
1499
1500 return ethnl_cable_test_fault_length(phydev,
1501 ksz9x31_cable_test_get_pair(pair),
1502 ksz9x31_cable_test_fault_length(phydev, val));
1503 }
1504
1505 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1506 bool *finished)
1507 {
1508 struct kszphy_priv *priv = phydev->priv;
1509 unsigned long pair_mask = 0xf;
1510 int retries = 20;
1511 int pair, ret, rv;
1512
1513 *finished = false;
1514
1515
1516 while (pair_mask && retries--) {
1517 for_each_set_bit(pair, &pair_mask, 4) {
1518 ret = ksz9x31_cable_test_one_pair(phydev, pair);
1519 if (ret == -EAGAIN)
1520 continue;
1521 if (ret < 0)
1522 return ret;
1523 clear_bit(pair, &pair_mask);
1524 }
1525
1526
1527
1528
1529 if (pair_mask)
1530 usleep_range(2000, 3000);
1531 }
1532
1533
1534 for_each_set_bit(pair, &pair_mask, 4) {
1535 ret = ethnl_cable_test_result(phydev,
1536 ksz9x31_cable_test_get_pair(pair),
1537 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1538 }
1539
1540 *finished = true;
1541
1542
1543 rv = phy_modify(phydev, MII_CTRL1000,
1544 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1545 priv->vct_ctrl1000);
1546 if (rv)
1547 return rv;
1548
1549 return ret;
1550 }
1551
1552 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1553 {
1554 return 0;
1555 }
1556
1557 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1558 {
1559 u16 val;
1560
1561 switch (ctrl) {
1562 case ETH_TP_MDI:
1563 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1564 break;
1565 case ETH_TP_MDI_X:
1566
1567
1568
1569
1570
1571
1572 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1573 break;
1574 case ETH_TP_MDI_AUTO:
1575 val = 0;
1576 break;
1577 default:
1578 return 0;
1579 }
1580
1581 return phy_modify(phydev, MII_BMCR,
1582 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1583 KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1584 KSZ886X_BMCR_HP_MDIX | val);
1585 }
1586
1587 static int ksz886x_config_aneg(struct phy_device *phydev)
1588 {
1589 int ret;
1590
1591 ret = genphy_config_aneg(phydev);
1592 if (ret)
1593 return ret;
1594
1595
1596
1597
1598
1599 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1600 }
1601
1602 static int ksz886x_mdix_update(struct phy_device *phydev)
1603 {
1604 int ret;
1605
1606 ret = phy_read(phydev, MII_BMCR);
1607 if (ret < 0)
1608 return ret;
1609
1610 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1611 if (ret & KSZ886X_BMCR_FORCE_MDI)
1612 phydev->mdix_ctrl = ETH_TP_MDI_X;
1613 else
1614 phydev->mdix_ctrl = ETH_TP_MDI;
1615 } else {
1616 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1617 }
1618
1619 ret = phy_read(phydev, MII_KSZPHY_CTRL);
1620 if (ret < 0)
1621 return ret;
1622
1623
1624 if (ret & KSZ886X_CTRL_MDIX_STAT)
1625 phydev->mdix = ETH_TP_MDI_X;
1626 else
1627 phydev->mdix = ETH_TP_MDI;
1628
1629 return 0;
1630 }
1631
1632 static int ksz886x_read_status(struct phy_device *phydev)
1633 {
1634 int ret;
1635
1636 ret = ksz886x_mdix_update(phydev);
1637 if (ret < 0)
1638 return ret;
1639
1640 return genphy_read_status(phydev);
1641 }
1642
1643 static int kszphy_get_sset_count(struct phy_device *phydev)
1644 {
1645 return ARRAY_SIZE(kszphy_hw_stats);
1646 }
1647
1648 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1649 {
1650 int i;
1651
1652 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1653 strlcpy(data + i * ETH_GSTRING_LEN,
1654 kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1655 }
1656 }
1657
1658 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1659 {
1660 struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1661 struct kszphy_priv *priv = phydev->priv;
1662 int val;
1663 u64 ret;
1664
1665 val = phy_read(phydev, stat.reg);
1666 if (val < 0) {
1667 ret = U64_MAX;
1668 } else {
1669 val = val & ((1 << stat.bits) - 1);
1670 priv->stats[i] += val;
1671 ret = priv->stats[i];
1672 }
1673
1674 return ret;
1675 }
1676
1677 static void kszphy_get_stats(struct phy_device *phydev,
1678 struct ethtool_stats *stats, u64 *data)
1679 {
1680 int i;
1681
1682 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1683 data[i] = kszphy_get_stat(phydev, i);
1684 }
1685
1686 static int kszphy_suspend(struct phy_device *phydev)
1687 {
1688
1689 if (phy_interrupt_is_valid(phydev)) {
1690 phydev->interrupts = PHY_INTERRUPT_DISABLED;
1691 if (phydev->drv->config_intr)
1692 phydev->drv->config_intr(phydev);
1693 }
1694
1695 return genphy_suspend(phydev);
1696 }
1697
1698 static void kszphy_parse_led_mode(struct phy_device *phydev)
1699 {
1700 const struct kszphy_type *type = phydev->drv->driver_data;
1701 const struct device_node *np = phydev->mdio.dev.of_node;
1702 struct kszphy_priv *priv = phydev->priv;
1703 int ret;
1704
1705 if (type && type->led_mode_reg) {
1706 ret = of_property_read_u32(np, "micrel,led-mode",
1707 &priv->led_mode);
1708
1709 if (ret)
1710 priv->led_mode = -1;
1711
1712 if (priv->led_mode > 3) {
1713 phydev_err(phydev, "invalid led mode: 0x%02x\n",
1714 priv->led_mode);
1715 priv->led_mode = -1;
1716 }
1717 } else {
1718 priv->led_mode = -1;
1719 }
1720 }
1721
1722 static int kszphy_resume(struct phy_device *phydev)
1723 {
1724 int ret;
1725
1726 genphy_resume(phydev);
1727
1728
1729
1730
1731
1732 usleep_range(1000, 2000);
1733
1734 ret = kszphy_config_reset(phydev);
1735 if (ret)
1736 return ret;
1737
1738
1739 if (phy_interrupt_is_valid(phydev)) {
1740 phydev->interrupts = PHY_INTERRUPT_ENABLED;
1741 if (phydev->drv->config_intr)
1742 phydev->drv->config_intr(phydev);
1743 }
1744
1745 return 0;
1746 }
1747
1748 static int kszphy_probe(struct phy_device *phydev)
1749 {
1750 const struct kszphy_type *type = phydev->drv->driver_data;
1751 const struct device_node *np = phydev->mdio.dev.of_node;
1752 struct kszphy_priv *priv;
1753 struct clk *clk;
1754
1755 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
1756 if (!priv)
1757 return -ENOMEM;
1758
1759 phydev->priv = priv;
1760
1761 priv->type = type;
1762
1763 kszphy_parse_led_mode(phydev);
1764
1765 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref");
1766
1767 if (!IS_ERR_OR_NULL(clk)) {
1768 unsigned long rate = clk_get_rate(clk);
1769 bool rmii_ref_clk_sel_25_mhz;
1770
1771 if (type)
1772 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
1773 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
1774 "micrel,rmii-reference-clock-select-25-mhz");
1775
1776 if (rate > 24500000 && rate < 25500000) {
1777 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
1778 } else if (rate > 49500000 && rate < 50500000) {
1779 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
1780 } else {
1781 phydev_err(phydev, "Clock rate out of range: %ld\n",
1782 rate);
1783 return -EINVAL;
1784 }
1785 }
1786
1787 if (ksz8041_fiber_mode(phydev))
1788 phydev->port = PORT_FIBRE;
1789
1790
1791 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
1792 priv->rmii_ref_clk_sel = true;
1793 priv->rmii_ref_clk_sel_val = true;
1794 }
1795
1796 return 0;
1797 }
1798
1799 static int ksz886x_cable_test_start(struct phy_device *phydev)
1800 {
1801 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
1802 return -EOPNOTSUPP;
1803
1804
1805
1806
1807
1808
1809 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
1810 }
1811
1812 static int ksz886x_cable_test_result_trans(u16 status)
1813 {
1814 switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) {
1815 case KSZ8081_LMD_STAT_NORMAL:
1816 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1817 case KSZ8081_LMD_STAT_SHORT:
1818 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1819 case KSZ8081_LMD_STAT_OPEN:
1820 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1821 case KSZ8081_LMD_STAT_FAIL:
1822 fallthrough;
1823 default:
1824 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1825 }
1826 }
1827
1828 static bool ksz886x_cable_test_failed(u16 status)
1829 {
1830 return FIELD_GET(KSZ8081_LMD_STAT_MASK, status) ==
1831 KSZ8081_LMD_STAT_FAIL;
1832 }
1833
1834 static bool ksz886x_cable_test_fault_length_valid(u16 status)
1835 {
1836 switch (FIELD_GET(KSZ8081_LMD_STAT_MASK, status)) {
1837 case KSZ8081_LMD_STAT_OPEN:
1838 fallthrough;
1839 case KSZ8081_LMD_STAT_SHORT:
1840 return true;
1841 }
1842 return false;
1843 }
1844
1845 static int ksz886x_cable_test_fault_length(u16 status)
1846 {
1847 int dt;
1848
1849
1850
1851
1852 dt = FIELD_GET(KSZ8081_LMD_DELTA_TIME_MASK, status);
1853
1854 return (dt * 400) / 10;
1855 }
1856
1857 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
1858 {
1859 int val, ret;
1860
1861 ret = phy_read_poll_timeout(phydev, KSZ8081_LMD, val,
1862 !(val & KSZ8081_LMD_ENABLE_TEST),
1863 30000, 100000, true);
1864
1865 return ret < 0 ? ret : 0;
1866 }
1867
1868 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
1869 {
1870 static const int ethtool_pair[] = {
1871 ETHTOOL_A_CABLE_PAIR_A,
1872 ETHTOOL_A_CABLE_PAIR_B,
1873 };
1874 int ret, val, mdix;
1875
1876
1877
1878
1879 if (pair == 0)
1880 mdix = ETH_TP_MDI;
1881 else
1882 mdix = ETH_TP_MDI_X;
1883
1884 switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
1885 case PHY_ID_KSZ8081:
1886 ret = ksz8081_config_mdix(phydev, mdix);
1887 break;
1888 case PHY_ID_KSZ886X:
1889 ret = ksz886x_config_mdix(phydev, mdix);
1890 break;
1891 default:
1892 ret = -ENODEV;
1893 }
1894
1895 if (ret)
1896 return ret;
1897
1898
1899
1900
1901 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
1902 if (ret)
1903 return ret;
1904
1905 ret = ksz886x_cable_test_wait_for_completion(phydev);
1906 if (ret)
1907 return ret;
1908
1909 val = phy_read(phydev, KSZ8081_LMD);
1910 if (val < 0)
1911 return val;
1912
1913 if (ksz886x_cable_test_failed(val))
1914 return -EAGAIN;
1915
1916 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
1917 ksz886x_cable_test_result_trans(val));
1918 if (ret)
1919 return ret;
1920
1921 if (!ksz886x_cable_test_fault_length_valid(val))
1922 return 0;
1923
1924 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair],
1925 ksz886x_cable_test_fault_length(val));
1926 }
1927
1928 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
1929 bool *finished)
1930 {
1931 unsigned long pair_mask = 0x3;
1932 int retries = 20;
1933 int pair, ret;
1934
1935 *finished = false;
1936
1937
1938 while (pair_mask && retries--) {
1939 for_each_set_bit(pair, &pair_mask, 4) {
1940 ret = ksz886x_cable_test_one_pair(phydev, pair);
1941 if (ret == -EAGAIN)
1942 continue;
1943 if (ret < 0)
1944 return ret;
1945 clear_bit(pair, &pair_mask);
1946 }
1947
1948
1949
1950
1951 if (pair_mask)
1952 msleep(2);
1953 }
1954
1955 *finished = true;
1956
1957 return ret;
1958 }
1959
1960 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
1961 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
1962 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
1963
1964 #define LAN8814_QSGMII_SOFT_RESET 0x43
1965 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
1966 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
1967 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
1968 #define LAN8814_ALIGN_SWAP 0x4a
1969 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
1970 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
1971
1972 #define LAN8804_ALIGN_SWAP 0x4a
1973 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
1974 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
1975 #define LAN8814_CLOCK_MANAGEMENT 0xd
1976 #define LAN8814_LINK_QUALITY 0x8e
1977
1978 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
1979 {
1980 int data;
1981
1982 phy_lock_mdio_bus(phydev);
1983 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
1984 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
1985 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
1986 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
1987 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
1988 phy_unlock_mdio_bus(phydev);
1989
1990 return data;
1991 }
1992
1993 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
1994 u16 val)
1995 {
1996 phy_lock_mdio_bus(phydev);
1997 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
1998 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
1999 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2000 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2001
2002 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2003 if (val != 0)
2004 phydev_err(phydev, "Error: phy_write has returned error %d\n",
2005 val);
2006 phy_unlock_mdio_bus(phydev);
2007 return val;
2008 }
2009
2010 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2011 {
2012 u16 val = 0;
2013
2014 if (enable)
2015 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2016 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2017 PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2018 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2019
2020 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2021 }
2022
2023 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2024 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2025 {
2026 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2027 *seconds = (*seconds << 16) |
2028 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2029
2030 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2031 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2032 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2033
2034 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2035 }
2036
2037 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2038 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2039 {
2040 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2041 *seconds = *seconds << 16 |
2042 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2043
2044 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2045 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2046 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2047
2048 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2049 }
2050
2051 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2052 {
2053 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2054 struct phy_device *phydev = ptp_priv->phydev;
2055 struct lan8814_shared_priv *shared = phydev->shared->priv;
2056
2057 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2058 SOF_TIMESTAMPING_RX_HARDWARE |
2059 SOF_TIMESTAMPING_RAW_HARDWARE;
2060
2061 info->phc_index = ptp_clock_index(shared->ptp_clock);
2062
2063 info->tx_types =
2064 (1 << HWTSTAMP_TX_OFF) |
2065 (1 << HWTSTAMP_TX_ON) |
2066 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
2067
2068 info->rx_filters =
2069 (1 << HWTSTAMP_FILTER_NONE) |
2070 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2071 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2072 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2073 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2074
2075 return 0;
2076 }
2077
2078 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2079 {
2080 int i;
2081
2082 for (i = 0; i < FIFO_SIZE; ++i)
2083 lanphy_read_page_reg(phydev, 5,
2084 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2085
2086
2087 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2088 }
2089
2090 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr)
2091 {
2092 struct kszphy_ptp_priv *ptp_priv =
2093 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2094 struct phy_device *phydev = ptp_priv->phydev;
2095 struct lan8814_shared_priv *shared = phydev->shared->priv;
2096 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2097 struct hwtstamp_config config;
2098 int txcfg = 0, rxcfg = 0;
2099 int pkt_ts_enable;
2100
2101 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2102 return -EFAULT;
2103
2104 ptp_priv->hwts_tx_type = config.tx_type;
2105 ptp_priv->rx_filter = config.rx_filter;
2106
2107 switch (config.rx_filter) {
2108 case HWTSTAMP_FILTER_NONE:
2109 ptp_priv->layer = 0;
2110 ptp_priv->version = 0;
2111 break;
2112 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2113 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2114 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2115 ptp_priv->layer = PTP_CLASS_L4;
2116 ptp_priv->version = PTP_CLASS_V2;
2117 break;
2118 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2119 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2120 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2121 ptp_priv->layer = PTP_CLASS_L2;
2122 ptp_priv->version = PTP_CLASS_V2;
2123 break;
2124 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2125 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2126 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2127 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2128 ptp_priv->version = PTP_CLASS_V2;
2129 break;
2130 default:
2131 return -ERANGE;
2132 }
2133
2134 if (ptp_priv->layer & PTP_CLASS_L2) {
2135 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2136 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2137 } else if (ptp_priv->layer & PTP_CLASS_L4) {
2138 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2139 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2140 }
2141 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2142 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2143
2144 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2145 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2146 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2147 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2148
2149 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2150 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2151 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2152
2153 if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2154 lan8814_config_ts_intr(ptp_priv->phydev, true);
2155 else
2156 lan8814_config_ts_intr(ptp_priv->phydev, false);
2157
2158 mutex_lock(&shared->shared_lock);
2159 if (config.rx_filter != HWTSTAMP_FILTER_NONE)
2160 shared->ref++;
2161 else
2162 shared->ref--;
2163
2164 if (shared->ref)
2165 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2166 PTP_CMD_CTL_PTP_ENABLE_);
2167 else
2168 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2169 PTP_CMD_CTL_PTP_DISABLE_);
2170 mutex_unlock(&shared->shared_lock);
2171
2172
2173 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2174 list_del(&rx_ts->list);
2175 kfree(rx_ts);
2176 }
2177 skb_queue_purge(&ptp_priv->rx_queue);
2178 skb_queue_purge(&ptp_priv->tx_queue);
2179
2180 lan8814_flush_fifo(ptp_priv->phydev, false);
2181 lan8814_flush_fifo(ptp_priv->phydev, true);
2182
2183 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0;
2184 }
2185
2186 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2187 struct sk_buff *skb, int type)
2188 {
2189 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2190
2191 switch (ptp_priv->hwts_tx_type) {
2192 case HWTSTAMP_TX_ONESTEP_SYNC:
2193 if (ptp_msg_is_sync(skb, type)) {
2194 kfree_skb(skb);
2195 return;
2196 }
2197 fallthrough;
2198 case HWTSTAMP_TX_ON:
2199 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2200 skb_queue_tail(&ptp_priv->tx_queue, skb);
2201 break;
2202 case HWTSTAMP_TX_OFF:
2203 default:
2204 kfree_skb(skb);
2205 break;
2206 }
2207 }
2208
2209 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2210 {
2211 struct ptp_header *ptp_header;
2212 u32 type;
2213
2214 skb_push(skb, ETH_HLEN);
2215 type = ptp_classify_raw(skb);
2216 ptp_header = ptp_parse_header(skb, type);
2217 skb_pull_inline(skb, ETH_HLEN);
2218
2219 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2220 }
2221
2222 static bool lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2223 struct sk_buff *skb)
2224 {
2225 struct skb_shared_hwtstamps *shhwtstamps;
2226 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2227 unsigned long flags;
2228 bool ret = false;
2229 u16 skb_sig;
2230
2231 lan8814_get_sig_rx(skb, &skb_sig);
2232
2233
2234 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2235 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2236
2237 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2238 continue;
2239
2240 shhwtstamps = skb_hwtstamps(skb);
2241 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2242 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2243 rx_ts->nsec);
2244 list_del(&rx_ts->list);
2245 kfree(rx_ts);
2246
2247 ret = true;
2248 break;
2249 }
2250 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2251
2252 if (ret)
2253 netif_rx(skb);
2254 return ret;
2255 }
2256
2257 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2258 {
2259 struct kszphy_ptp_priv *ptp_priv =
2260 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2261
2262 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2263 type == PTP_CLASS_NONE)
2264 return false;
2265
2266 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2267 return false;
2268
2269
2270
2271
2272 if (!lan8814_match_rx_ts(ptp_priv, skb))
2273 skb_queue_tail(&ptp_priv->rx_queue, skb);
2274
2275 return true;
2276 }
2277
2278 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2279 u32 seconds, u32 nano_seconds)
2280 {
2281 u32 sec_low, sec_high, nsec_low, nsec_high;
2282
2283 sec_low = seconds & 0xffff;
2284 sec_high = (seconds >> 16) & 0xffff;
2285 nsec_low = nano_seconds & 0xffff;
2286 nsec_high = (nano_seconds >> 16) & 0x3fff;
2287
2288 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low);
2289 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high);
2290 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low);
2291 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high);
2292
2293 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2294 }
2295
2296 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2297 u32 *seconds, u32 *nano_seconds)
2298 {
2299 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2300
2301 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2302 *seconds = (*seconds << 16) |
2303 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2304
2305 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2306 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2307 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2308 }
2309
2310 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2311 struct timespec64 *ts)
2312 {
2313 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2314 ptp_clock_info);
2315 struct phy_device *phydev = shared->phydev;
2316 u32 nano_seconds;
2317 u32 seconds;
2318
2319 mutex_lock(&shared->shared_lock);
2320 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2321 mutex_unlock(&shared->shared_lock);
2322 ts->tv_sec = seconds;
2323 ts->tv_nsec = nano_seconds;
2324
2325 return 0;
2326 }
2327
2328 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2329 const struct timespec64 *ts)
2330 {
2331 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2332 ptp_clock_info);
2333 struct phy_device *phydev = shared->phydev;
2334
2335 mutex_lock(&shared->shared_lock);
2336 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2337 mutex_unlock(&shared->shared_lock);
2338
2339 return 0;
2340 }
2341
2342 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2343 s64 time_step_ns)
2344 {
2345 u32 nano_seconds_step;
2346 u64 abs_time_step_ns;
2347 u32 unsigned_seconds;
2348 u32 nano_seconds;
2349 u32 remainder;
2350 s32 seconds;
2351
2352 if (time_step_ns > 15000000000LL) {
2353
2354 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2355 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2356 &remainder);
2357 nano_seconds += remainder;
2358 if (nano_seconds >= 1000000000) {
2359 unsigned_seconds++;
2360 nano_seconds -= 1000000000;
2361 }
2362 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds);
2363 return;
2364 } else if (time_step_ns < -15000000000LL) {
2365
2366 time_step_ns = -time_step_ns;
2367
2368 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds);
2369 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2370 &remainder);
2371 nano_seconds_step = remainder;
2372 if (nano_seconds < nano_seconds_step) {
2373 unsigned_seconds--;
2374 nano_seconds += 1000000000;
2375 }
2376 nano_seconds -= nano_seconds_step;
2377 lan8814_ptp_clock_set(phydev, unsigned_seconds,
2378 nano_seconds);
2379 return;
2380 }
2381
2382
2383 if (time_step_ns >= 0) {
2384 abs_time_step_ns = (u64)time_step_ns;
2385 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2386 &remainder);
2387 nano_seconds = remainder;
2388 } else {
2389 abs_time_step_ns = (u64)(-time_step_ns);
2390 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2391 &remainder));
2392 nano_seconds = remainder;
2393 if (nano_seconds > 0) {
2394
2395
2396
2397
2398 seconds--;
2399 nano_seconds = (1000000000 - nano_seconds);
2400 }
2401 }
2402
2403 if (nano_seconds > 0) {
2404
2405 nano_seconds += 8;
2406 }
2407
2408 if (nano_seconds >= 1000000000) {
2409
2410 seconds++;
2411 nano_seconds -= 1000000000;
2412 }
2413
2414 while (seconds) {
2415 if (seconds > 0) {
2416 u32 adjustment_value = (u32)seconds;
2417 u16 adjustment_value_lo, adjustment_value_hi;
2418
2419 if (adjustment_value > 0xF)
2420 adjustment_value = 0xF;
2421
2422 adjustment_value_lo = adjustment_value & 0xffff;
2423 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2424
2425 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2426 adjustment_value_lo);
2427 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2428 PTP_LTC_STEP_ADJ_DIR_ |
2429 adjustment_value_hi);
2430 seconds -= ((s32)adjustment_value);
2431 } else {
2432 u32 adjustment_value = (u32)(-seconds);
2433 u16 adjustment_value_lo, adjustment_value_hi;
2434
2435 if (adjustment_value > 0xF)
2436 adjustment_value = 0xF;
2437
2438 adjustment_value_lo = adjustment_value & 0xffff;
2439 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2440
2441 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2442 adjustment_value_lo);
2443 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2444 adjustment_value_hi);
2445 seconds += ((s32)adjustment_value);
2446 }
2447 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2448 PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2449 }
2450 if (nano_seconds) {
2451 u16 nano_seconds_lo;
2452 u16 nano_seconds_hi;
2453
2454 nano_seconds_lo = nano_seconds & 0xffff;
2455 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2456
2457 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2458 nano_seconds_lo);
2459 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2460 PTP_LTC_STEP_ADJ_DIR_ |
2461 nano_seconds_hi);
2462 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2463 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2464 }
2465 }
2466
2467 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2468 {
2469 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2470 ptp_clock_info);
2471 struct phy_device *phydev = shared->phydev;
2472
2473 mutex_lock(&shared->shared_lock);
2474 lan8814_ptp_clock_step(phydev, delta);
2475 mutex_unlock(&shared->shared_lock);
2476
2477 return 0;
2478 }
2479
2480 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2481 {
2482 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2483 ptp_clock_info);
2484 struct phy_device *phydev = shared->phydev;
2485 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2486 bool positive = true;
2487 u32 kszphy_rate_adj;
2488
2489 if (scaled_ppm < 0) {
2490 scaled_ppm = -scaled_ppm;
2491 positive = false;
2492 }
2493
2494 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2495 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2496
2497 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2498 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2499
2500 if (positive)
2501 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2502
2503 mutex_lock(&shared->shared_lock);
2504 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2505 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2506 mutex_unlock(&shared->shared_lock);
2507
2508 return 0;
2509 }
2510
2511 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2512 {
2513 struct ptp_header *ptp_header;
2514 u32 type;
2515
2516 type = ptp_classify_raw(skb);
2517 ptp_header = ptp_parse_header(skb, type);
2518
2519 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2520 }
2521
2522 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2523 {
2524 struct phy_device *phydev = ptp_priv->phydev;
2525 struct skb_shared_hwtstamps shhwtstamps;
2526 struct sk_buff *skb, *skb_tmp;
2527 unsigned long flags;
2528 u32 seconds, nsec;
2529 bool ret = false;
2530 u16 skb_sig;
2531 u16 seq_id;
2532
2533 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2534
2535 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2536 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2537 lan8814_get_sig_tx(skb, &skb_sig);
2538
2539 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2540 continue;
2541
2542 __skb_unlink(skb, &ptp_priv->tx_queue);
2543 ret = true;
2544 break;
2545 }
2546 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2547
2548 if (ret) {
2549 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2550 shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2551 skb_complete_tx_timestamp(skb, &shhwtstamps);
2552 }
2553 }
2554
2555 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2556 {
2557 struct phy_device *phydev = ptp_priv->phydev;
2558 u32 reg;
2559
2560 do {
2561 lan8814_dequeue_tx_skb(ptp_priv);
2562
2563
2564
2565
2566 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2567 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2568 }
2569
2570 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2571 struct lan8814_ptp_rx_ts *rx_ts)
2572 {
2573 struct skb_shared_hwtstamps *shhwtstamps;
2574 struct sk_buff *skb, *skb_tmp;
2575 unsigned long flags;
2576 bool ret = false;
2577 u16 skb_sig;
2578
2579 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2580 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2581 lan8814_get_sig_rx(skb, &skb_sig);
2582
2583 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2584 continue;
2585
2586 __skb_unlink(skb, &ptp_priv->rx_queue);
2587
2588 ret = true;
2589 break;
2590 }
2591 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2592
2593 if (ret) {
2594 shhwtstamps = skb_hwtstamps(skb);
2595 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2596 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2597 netif_rx(skb);
2598 }
2599
2600 return ret;
2601 }
2602
2603 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2604 {
2605 struct phy_device *phydev = ptp_priv->phydev;
2606 struct lan8814_ptp_rx_ts *rx_ts;
2607 unsigned long flags;
2608 u32 reg;
2609
2610 do {
2611 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2612 if (!rx_ts)
2613 return;
2614
2615 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2616 &rx_ts->seq_id);
2617
2618
2619
2620
2621 if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2622 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2623 list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2624 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2625 } else {
2626 kfree(rx_ts);
2627 }
2628
2629
2630
2631
2632 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2633 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2634 }
2635
2636 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev)
2637 {
2638 struct kszphy_priv *priv = phydev->priv;
2639 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2640 u16 status;
2641
2642 status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2643 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2644 lan8814_get_tx_ts(ptp_priv);
2645
2646 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2647 lan8814_get_rx_ts(ptp_priv);
2648
2649 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2650 lan8814_flush_fifo(phydev, true);
2651 skb_queue_purge(&ptp_priv->tx_queue);
2652 }
2653
2654 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2655 lan8814_flush_fifo(phydev, false);
2656 skb_queue_purge(&ptp_priv->rx_queue);
2657 }
2658 }
2659
2660 static int lan8804_config_init(struct phy_device *phydev)
2661 {
2662 int val;
2663
2664
2665 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2666 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2667 val |= LAN8804_ALIGN_TX_A_B_SWAP;
2668 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2669
2670
2671
2672
2673 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2674 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2675
2676 return 0;
2677 }
2678
2679 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
2680 {
2681 int irq_status, tsu_irq_status;
2682 int ret = IRQ_NONE;
2683
2684 irq_status = phy_read(phydev, LAN8814_INTS);
2685 if (irq_status < 0) {
2686 phy_error(phydev);
2687 return IRQ_NONE;
2688 }
2689
2690 if (irq_status & LAN8814_INT_LINK) {
2691 phy_trigger_machine(phydev);
2692 ret = IRQ_HANDLED;
2693 }
2694
2695 while (1) {
2696 tsu_irq_status = lanphy_read_page_reg(phydev, 4,
2697 LAN8814_INTR_STS_REG);
2698
2699 if (tsu_irq_status > 0 &&
2700 (tsu_irq_status & (LAN8814_INTR_STS_REG_1588_TSU0_ |
2701 LAN8814_INTR_STS_REG_1588_TSU1_ |
2702 LAN8814_INTR_STS_REG_1588_TSU2_ |
2703 LAN8814_INTR_STS_REG_1588_TSU3_))) {
2704 lan8814_handle_ptp_interrupt(phydev);
2705 ret = IRQ_HANDLED;
2706 } else {
2707 break;
2708 }
2709 }
2710
2711 return ret;
2712 }
2713
2714 static int lan8814_ack_interrupt(struct phy_device *phydev)
2715 {
2716
2717 int rc;
2718
2719 rc = phy_read(phydev, LAN8814_INTS);
2720
2721 return (rc < 0) ? rc : 0;
2722 }
2723
2724 static int lan8814_config_intr(struct phy_device *phydev)
2725 {
2726 int err;
2727
2728 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
2729 LAN8814_INTR_CTRL_REG_POLARITY |
2730 LAN8814_INTR_CTRL_REG_INTR_ENABLE);
2731
2732
2733 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
2734 err = lan8814_ack_interrupt(phydev);
2735 if (err)
2736 return err;
2737
2738 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
2739 } else {
2740 err = phy_write(phydev, LAN8814_INTC, 0);
2741 if (err)
2742 return err;
2743
2744 err = lan8814_ack_interrupt(phydev);
2745 }
2746
2747 return err;
2748 }
2749
2750 static void lan8814_ptp_init(struct phy_device *phydev)
2751 {
2752 struct kszphy_priv *priv = phydev->priv;
2753 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2754 u32 temp;
2755
2756 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
2757 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
2758 return;
2759
2760 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
2761
2762 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
2763 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2764 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
2765
2766 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
2767 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
2768 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
2769
2770 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
2771 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
2772
2773
2774 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
2775 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
2776 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
2777 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
2778
2779 skb_queue_head_init(&ptp_priv->tx_queue);
2780 skb_queue_head_init(&ptp_priv->rx_queue);
2781 INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
2782 spin_lock_init(&ptp_priv->rx_ts_lock);
2783
2784 ptp_priv->phydev = phydev;
2785
2786 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
2787 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
2788 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
2789 ptp_priv->mii_ts.ts_info = lan8814_ts_info;
2790
2791 phydev->mii_ts = &ptp_priv->mii_ts;
2792 }
2793
2794 static int lan8814_ptp_probe_once(struct phy_device *phydev)
2795 {
2796 struct lan8814_shared_priv *shared = phydev->shared->priv;
2797
2798 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
2799 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
2800 return 0;
2801
2802
2803 mutex_init(&shared->shared_lock);
2804
2805 shared->ptp_clock_info.owner = THIS_MODULE;
2806 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
2807 shared->ptp_clock_info.max_adj = 31249999;
2808 shared->ptp_clock_info.n_alarm = 0;
2809 shared->ptp_clock_info.n_ext_ts = 0;
2810 shared->ptp_clock_info.n_pins = 0;
2811 shared->ptp_clock_info.pps = 0;
2812 shared->ptp_clock_info.pin_config = NULL;
2813 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
2814 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
2815 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
2816 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
2817 shared->ptp_clock_info.getcrosststamp = NULL;
2818
2819 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
2820 &phydev->mdio.dev);
2821 if (IS_ERR_OR_NULL(shared->ptp_clock)) {
2822 phydev_err(phydev, "ptp_clock_register failed %lu\n",
2823 PTR_ERR(shared->ptp_clock));
2824 return -EINVAL;
2825 }
2826
2827 phydev_dbg(phydev, "successfully registered ptp clock\n");
2828
2829 shared->phydev = phydev;
2830
2831
2832
2833
2834 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
2835 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
2836 PTP_OPERATING_MODE_STANDALONE_);
2837
2838 return 0;
2839 }
2840
2841 static void lan8814_setup_led(struct phy_device *phydev, int val)
2842 {
2843 int temp;
2844
2845 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
2846
2847 if (val)
2848 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
2849 else
2850 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
2851
2852 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
2853 }
2854
2855 static int lan8814_config_init(struct phy_device *phydev)
2856 {
2857 struct kszphy_priv *lan8814 = phydev->priv;
2858 int val;
2859
2860
2861 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
2862 val |= LAN8814_QSGMII_SOFT_RESET_BIT;
2863 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
2864
2865
2866 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
2867 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
2868 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
2869
2870
2871 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
2872 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
2873 val |= LAN8814_ALIGN_TX_A_B_SWAP;
2874 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
2875
2876 if (lan8814->led_mode >= 0)
2877 lan8814_setup_led(phydev, lan8814->led_mode);
2878
2879 return 0;
2880 }
2881
2882
2883
2884
2885
2886
2887 static int lan8814_release_coma_mode(struct phy_device *phydev)
2888 {
2889 struct gpio_desc *gpiod;
2890
2891 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
2892 GPIOD_OUT_HIGH_OPEN_DRAIN |
2893 GPIOD_FLAGS_BIT_NONEXCLUSIVE);
2894 if (IS_ERR(gpiod))
2895 return PTR_ERR(gpiod);
2896
2897 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
2898 gpiod_set_value_cansleep(gpiod, 0);
2899
2900 return 0;
2901 }
2902
2903 static int lan8814_probe(struct phy_device *phydev)
2904 {
2905 const struct kszphy_type *type = phydev->drv->driver_data;
2906 struct kszphy_priv *priv;
2907 u16 addr;
2908 int err;
2909
2910 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2911 if (!priv)
2912 return -ENOMEM;
2913
2914 phydev->priv = priv;
2915
2916 priv->type = type;
2917
2918 kszphy_parse_led_mode(phydev);
2919
2920
2921
2922
2923 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
2924 devm_phy_package_join(&phydev->mdio.dev, phydev,
2925 addr, sizeof(struct lan8814_shared_priv));
2926
2927 if (phy_package_init_once(phydev)) {
2928 err = lan8814_release_coma_mode(phydev);
2929 if (err)
2930 return err;
2931
2932 err = lan8814_ptp_probe_once(phydev);
2933 if (err)
2934 return err;
2935 }
2936
2937 lan8814_ptp_init(phydev);
2938
2939 return 0;
2940 }
2941
2942 static struct phy_driver ksphy_driver[] = {
2943 {
2944 .phy_id = PHY_ID_KS8737,
2945 .phy_id_mask = MICREL_PHY_ID_MASK,
2946 .name = "Micrel KS8737",
2947
2948 .driver_data = &ks8737_type,
2949 .probe = kszphy_probe,
2950 .config_init = kszphy_config_init,
2951 .config_intr = kszphy_config_intr,
2952 .handle_interrupt = kszphy_handle_interrupt,
2953 .suspend = kszphy_suspend,
2954 .resume = kszphy_resume,
2955 }, {
2956 .phy_id = PHY_ID_KSZ8021,
2957 .phy_id_mask = 0x00ffffff,
2958 .name = "Micrel KSZ8021 or KSZ8031",
2959
2960 .driver_data = &ksz8021_type,
2961 .probe = kszphy_probe,
2962 .config_init = kszphy_config_init,
2963 .config_intr = kszphy_config_intr,
2964 .handle_interrupt = kszphy_handle_interrupt,
2965 .get_sset_count = kszphy_get_sset_count,
2966 .get_strings = kszphy_get_strings,
2967 .get_stats = kszphy_get_stats,
2968 .suspend = kszphy_suspend,
2969 .resume = kszphy_resume,
2970 }, {
2971 .phy_id = PHY_ID_KSZ8031,
2972 .phy_id_mask = 0x00ffffff,
2973 .name = "Micrel KSZ8031",
2974
2975 .driver_data = &ksz8021_type,
2976 .probe = kszphy_probe,
2977 .config_init = kszphy_config_init,
2978 .config_intr = kszphy_config_intr,
2979 .handle_interrupt = kszphy_handle_interrupt,
2980 .get_sset_count = kszphy_get_sset_count,
2981 .get_strings = kszphy_get_strings,
2982 .get_stats = kszphy_get_stats,
2983 .suspend = kszphy_suspend,
2984 .resume = kszphy_resume,
2985 }, {
2986 .phy_id = PHY_ID_KSZ8041,
2987 .phy_id_mask = MICREL_PHY_ID_MASK,
2988 .name = "Micrel KSZ8041",
2989
2990 .driver_data = &ksz8041_type,
2991 .probe = kszphy_probe,
2992 .config_init = ksz8041_config_init,
2993 .config_aneg = ksz8041_config_aneg,
2994 .config_intr = kszphy_config_intr,
2995 .handle_interrupt = kszphy_handle_interrupt,
2996 .get_sset_count = kszphy_get_sset_count,
2997 .get_strings = kszphy_get_strings,
2998 .get_stats = kszphy_get_stats,
2999
3000
3001
3002 }, {
3003 .phy_id = PHY_ID_KSZ8041RNLI,
3004 .phy_id_mask = MICREL_PHY_ID_MASK,
3005 .name = "Micrel KSZ8041RNLI",
3006
3007 .driver_data = &ksz8041_type,
3008 .probe = kszphy_probe,
3009 .config_init = kszphy_config_init,
3010 .config_intr = kszphy_config_intr,
3011 .handle_interrupt = kszphy_handle_interrupt,
3012 .get_sset_count = kszphy_get_sset_count,
3013 .get_strings = kszphy_get_strings,
3014 .get_stats = kszphy_get_stats,
3015 .suspend = kszphy_suspend,
3016 .resume = kszphy_resume,
3017 }, {
3018 .name = "Micrel KSZ8051",
3019
3020 .driver_data = &ksz8051_type,
3021 .probe = kszphy_probe,
3022 .config_init = kszphy_config_init,
3023 .config_intr = kszphy_config_intr,
3024 .handle_interrupt = kszphy_handle_interrupt,
3025 .get_sset_count = kszphy_get_sset_count,
3026 .get_strings = kszphy_get_strings,
3027 .get_stats = kszphy_get_stats,
3028 .match_phy_device = ksz8051_match_phy_device,
3029 .suspend = kszphy_suspend,
3030 .resume = kszphy_resume,
3031 }, {
3032 .phy_id = PHY_ID_KSZ8001,
3033 .name = "Micrel KSZ8001 or KS8721",
3034 .phy_id_mask = 0x00fffffc,
3035
3036 .driver_data = &ksz8041_type,
3037 .probe = kszphy_probe,
3038 .config_init = kszphy_config_init,
3039 .config_intr = kszphy_config_intr,
3040 .handle_interrupt = kszphy_handle_interrupt,
3041 .get_sset_count = kszphy_get_sset_count,
3042 .get_strings = kszphy_get_strings,
3043 .get_stats = kszphy_get_stats,
3044 .suspend = kszphy_suspend,
3045 .resume = kszphy_resume,
3046 }, {
3047 .phy_id = PHY_ID_KSZ8081,
3048 .name = "Micrel KSZ8081 or KSZ8091",
3049 .phy_id_mask = MICREL_PHY_ID_MASK,
3050 .flags = PHY_POLL_CABLE_TEST,
3051
3052 .driver_data = &ksz8081_type,
3053 .probe = kszphy_probe,
3054 .config_init = ksz8081_config_init,
3055 .soft_reset = genphy_soft_reset,
3056 .config_aneg = ksz8081_config_aneg,
3057 .read_status = ksz8081_read_status,
3058 .config_intr = kszphy_config_intr,
3059 .handle_interrupt = kszphy_handle_interrupt,
3060 .get_sset_count = kszphy_get_sset_count,
3061 .get_strings = kszphy_get_strings,
3062 .get_stats = kszphy_get_stats,
3063 .suspend = kszphy_suspend,
3064 .resume = kszphy_resume,
3065 .cable_test_start = ksz886x_cable_test_start,
3066 .cable_test_get_status = ksz886x_cable_test_get_status,
3067 }, {
3068 .phy_id = PHY_ID_KSZ8061,
3069 .name = "Micrel KSZ8061",
3070 .phy_id_mask = MICREL_PHY_ID_MASK,
3071
3072 .probe = kszphy_probe,
3073 .config_init = ksz8061_config_init,
3074 .config_intr = kszphy_config_intr,
3075 .handle_interrupt = kszphy_handle_interrupt,
3076 .suspend = kszphy_suspend,
3077 .resume = kszphy_resume,
3078 }, {
3079 .phy_id = PHY_ID_KSZ9021,
3080 .phy_id_mask = 0x000ffffe,
3081 .name = "Micrel KSZ9021 Gigabit PHY",
3082
3083 .driver_data = &ksz9021_type,
3084 .probe = kszphy_probe,
3085 .get_features = ksz9031_get_features,
3086 .config_init = ksz9021_config_init,
3087 .config_intr = kszphy_config_intr,
3088 .handle_interrupt = kszphy_handle_interrupt,
3089 .get_sset_count = kszphy_get_sset_count,
3090 .get_strings = kszphy_get_strings,
3091 .get_stats = kszphy_get_stats,
3092 .suspend = kszphy_suspend,
3093 .resume = kszphy_resume,
3094 .read_mmd = genphy_read_mmd_unsupported,
3095 .write_mmd = genphy_write_mmd_unsupported,
3096 }, {
3097 .phy_id = PHY_ID_KSZ9031,
3098 .phy_id_mask = MICREL_PHY_ID_MASK,
3099 .name = "Micrel KSZ9031 Gigabit PHY",
3100 .flags = PHY_POLL_CABLE_TEST,
3101 .driver_data = &ksz9021_type,
3102 .probe = kszphy_probe,
3103 .get_features = ksz9031_get_features,
3104 .config_init = ksz9031_config_init,
3105 .soft_reset = genphy_soft_reset,
3106 .read_status = ksz9031_read_status,
3107 .config_intr = kszphy_config_intr,
3108 .handle_interrupt = kszphy_handle_interrupt,
3109 .get_sset_count = kszphy_get_sset_count,
3110 .get_strings = kszphy_get_strings,
3111 .get_stats = kszphy_get_stats,
3112 .suspend = kszphy_suspend,
3113 .resume = kszphy_resume,
3114 .cable_test_start = ksz9x31_cable_test_start,
3115 .cable_test_get_status = ksz9x31_cable_test_get_status,
3116 }, {
3117 .phy_id = PHY_ID_LAN8814,
3118 .phy_id_mask = MICREL_PHY_ID_MASK,
3119 .name = "Microchip INDY Gigabit Quad PHY",
3120 .config_init = lan8814_config_init,
3121 .driver_data = &lan8814_type,
3122 .probe = lan8814_probe,
3123 .soft_reset = genphy_soft_reset,
3124 .read_status = ksz9031_read_status,
3125 .get_sset_count = kszphy_get_sset_count,
3126 .get_strings = kszphy_get_strings,
3127 .get_stats = kszphy_get_stats,
3128 .suspend = genphy_suspend,
3129 .resume = kszphy_resume,
3130 .config_intr = lan8814_config_intr,
3131 .handle_interrupt = lan8814_handle_interrupt,
3132 }, {
3133 .phy_id = PHY_ID_LAN8804,
3134 .phy_id_mask = MICREL_PHY_ID_MASK,
3135 .name = "Microchip LAN966X Gigabit PHY",
3136 .config_init = lan8804_config_init,
3137 .driver_data = &ksz9021_type,
3138 .probe = kszphy_probe,
3139 .soft_reset = genphy_soft_reset,
3140 .read_status = ksz9031_read_status,
3141 .get_sset_count = kszphy_get_sset_count,
3142 .get_strings = kszphy_get_strings,
3143 .get_stats = kszphy_get_stats,
3144 .suspend = genphy_suspend,
3145 .resume = kszphy_resume,
3146 }, {
3147 .phy_id = PHY_ID_KSZ9131,
3148 .phy_id_mask = MICREL_PHY_ID_MASK,
3149 .name = "Microchip KSZ9131 Gigabit PHY",
3150
3151 .flags = PHY_POLL_CABLE_TEST,
3152 .driver_data = &ksz9021_type,
3153 .probe = kszphy_probe,
3154 .config_init = ksz9131_config_init,
3155 .config_intr = kszphy_config_intr,
3156 .handle_interrupt = kszphy_handle_interrupt,
3157 .get_sset_count = kszphy_get_sset_count,
3158 .get_strings = kszphy_get_strings,
3159 .get_stats = kszphy_get_stats,
3160 .suspend = kszphy_suspend,
3161 .resume = kszphy_resume,
3162 .cable_test_start = ksz9x31_cable_test_start,
3163 .cable_test_get_status = ksz9x31_cable_test_get_status,
3164 }, {
3165 .phy_id = PHY_ID_KSZ8873MLL,
3166 .phy_id_mask = MICREL_PHY_ID_MASK,
3167 .name = "Micrel KSZ8873MLL Switch",
3168
3169 .config_init = kszphy_config_init,
3170 .config_aneg = ksz8873mll_config_aneg,
3171 .read_status = ksz8873mll_read_status,
3172 .suspend = genphy_suspend,
3173 .resume = genphy_resume,
3174 }, {
3175 .phy_id = PHY_ID_KSZ886X,
3176 .phy_id_mask = MICREL_PHY_ID_MASK,
3177 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
3178
3179 .flags = PHY_POLL_CABLE_TEST,
3180 .config_init = kszphy_config_init,
3181 .config_aneg = ksz886x_config_aneg,
3182 .read_status = ksz886x_read_status,
3183 .suspend = genphy_suspend,
3184 .resume = genphy_resume,
3185 .cable_test_start = ksz886x_cable_test_start,
3186 .cable_test_get_status = ksz886x_cable_test_get_status,
3187 }, {
3188 .name = "Micrel KSZ87XX Switch",
3189
3190 .config_init = kszphy_config_init,
3191 .match_phy_device = ksz8795_match_phy_device,
3192 .suspend = genphy_suspend,
3193 .resume = genphy_resume,
3194 }, {
3195 .phy_id = PHY_ID_KSZ9477,
3196 .phy_id_mask = MICREL_PHY_ID_MASK,
3197 .name = "Microchip KSZ9477",
3198
3199 .config_init = kszphy_config_init,
3200 .suspend = genphy_suspend,
3201 .resume = genphy_resume,
3202 } };
3203
3204 module_phy_driver(ksphy_driver);
3205
3206 MODULE_DESCRIPTION("Micrel PHY driver");
3207 MODULE_AUTHOR("David J. Choi");
3208 MODULE_LICENSE("GPL");
3209
3210 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
3211 { PHY_ID_KSZ9021, 0x000ffffe },
3212 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
3213 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
3214 { PHY_ID_KSZ8001, 0x00fffffc },
3215 { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
3216 { PHY_ID_KSZ8021, 0x00ffffff },
3217 { PHY_ID_KSZ8031, 0x00ffffff },
3218 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
3219 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
3220 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
3221 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
3222 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
3223 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
3224 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
3225 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
3226 { }
3227 };
3228
3229 MODULE_DEVICE_TABLE(mdio, micrel_tbl);