Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (c) 2009, Microsoft Corporation.
0004  *
0005  * Authors:
0006  *   Haiyang Zhang <haiyangz@microsoft.com>
0007  *   Hank Janssen  <hjanssen@microsoft.com>
0008  */
0009 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0010 
0011 #include <linux/init.h>
0012 #include <linux/atomic.h>
0013 #include <linux/ethtool.h>
0014 #include <linux/module.h>
0015 #include <linux/highmem.h>
0016 #include <linux/device.h>
0017 #include <linux/io.h>
0018 #include <linux/delay.h>
0019 #include <linux/netdevice.h>
0020 #include <linux/inetdevice.h>
0021 #include <linux/etherdevice.h>
0022 #include <linux/pci.h>
0023 #include <linux/skbuff.h>
0024 #include <linux/if_vlan.h>
0025 #include <linux/in.h>
0026 #include <linux/slab.h>
0027 #include <linux/rtnetlink.h>
0028 #include <linux/netpoll.h>
0029 #include <linux/bpf.h>
0030 
0031 #include <net/arp.h>
0032 #include <net/route.h>
0033 #include <net/sock.h>
0034 #include <net/pkt_sched.h>
0035 #include <net/checksum.h>
0036 #include <net/ip6_checksum.h>
0037 
0038 #include "hyperv_net.h"
0039 
0040 #define RING_SIZE_MIN   64
0041 
0042 #define LINKCHANGE_INT (2 * HZ)
0043 #define VF_TAKEOVER_INT (HZ / 10)
0044 
0045 static unsigned int ring_size __ro_after_init = 128;
0046 module_param(ring_size, uint, 0444);
0047 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
0048 unsigned int netvsc_ring_bytes __ro_after_init;
0049 
0050 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
0051                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
0052                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
0053                 NETIF_MSG_TX_ERR;
0054 
0055 static int debug = -1;
0056 module_param(debug, int, 0444);
0057 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
0058 
0059 static LIST_HEAD(netvsc_dev_list);
0060 
0061 static void netvsc_change_rx_flags(struct net_device *net, int change)
0062 {
0063     struct net_device_context *ndev_ctx = netdev_priv(net);
0064     struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
0065     int inc;
0066 
0067     if (!vf_netdev)
0068         return;
0069 
0070     if (change & IFF_PROMISC) {
0071         inc = (net->flags & IFF_PROMISC) ? 1 : -1;
0072         dev_set_promiscuity(vf_netdev, inc);
0073     }
0074 
0075     if (change & IFF_ALLMULTI) {
0076         inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
0077         dev_set_allmulti(vf_netdev, inc);
0078     }
0079 }
0080 
0081 static void netvsc_set_rx_mode(struct net_device *net)
0082 {
0083     struct net_device_context *ndev_ctx = netdev_priv(net);
0084     struct net_device *vf_netdev;
0085     struct netvsc_device *nvdev;
0086 
0087     rcu_read_lock();
0088     vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
0089     if (vf_netdev) {
0090         dev_uc_sync(vf_netdev, net);
0091         dev_mc_sync(vf_netdev, net);
0092     }
0093 
0094     nvdev = rcu_dereference(ndev_ctx->nvdev);
0095     if (nvdev)
0096         rndis_filter_update(nvdev);
0097     rcu_read_unlock();
0098 }
0099 
0100 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
0101                  struct net_device *ndev)
0102 {
0103     nvscdev->tx_disable = false;
0104     virt_wmb(); /* ensure queue wake up mechanism is on */
0105 
0106     netif_tx_wake_all_queues(ndev);
0107 }
0108 
0109 static int netvsc_open(struct net_device *net)
0110 {
0111     struct net_device_context *ndev_ctx = netdev_priv(net);
0112     struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
0113     struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
0114     struct rndis_device *rdev;
0115     int ret = 0;
0116 
0117     netif_carrier_off(net);
0118 
0119     /* Open up the device */
0120     ret = rndis_filter_open(nvdev);
0121     if (ret != 0) {
0122         netdev_err(net, "unable to open device (ret %d).\n", ret);
0123         return ret;
0124     }
0125 
0126     rdev = nvdev->extension;
0127     if (!rdev->link_state) {
0128         netif_carrier_on(net);
0129         netvsc_tx_enable(nvdev, net);
0130     }
0131 
0132     if (vf_netdev) {
0133         /* Setting synthetic device up transparently sets
0134          * slave as up. If open fails, then slave will be
0135          * still be offline (and not used).
0136          */
0137         ret = dev_open(vf_netdev, NULL);
0138         if (ret)
0139             netdev_warn(net,
0140                     "unable to open slave: %s: %d\n",
0141                     vf_netdev->name, ret);
0142     }
0143     return 0;
0144 }
0145 
0146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
0147 {
0148     unsigned int retry = 0;
0149     int i;
0150 
0151     /* Ensure pending bytes in ring are read */
0152     for (;;) {
0153         u32 aread = 0;
0154 
0155         for (i = 0; i < nvdev->num_chn; i++) {
0156             struct vmbus_channel *chn
0157                 = nvdev->chan_table[i].channel;
0158 
0159             if (!chn)
0160                 continue;
0161 
0162             /* make sure receive not running now */
0163             napi_synchronize(&nvdev->chan_table[i].napi);
0164 
0165             aread = hv_get_bytes_to_read(&chn->inbound);
0166             if (aread)
0167                 break;
0168 
0169             aread = hv_get_bytes_to_read(&chn->outbound);
0170             if (aread)
0171                 break;
0172         }
0173 
0174         if (aread == 0)
0175             return 0;
0176 
0177         if (++retry > RETRY_MAX)
0178             return -ETIMEDOUT;
0179 
0180         usleep_range(RETRY_US_LO, RETRY_US_HI);
0181     }
0182 }
0183 
0184 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
0185                   struct net_device *ndev)
0186 {
0187     if (nvscdev) {
0188         nvscdev->tx_disable = true;
0189         virt_wmb(); /* ensure txq will not wake up after stop */
0190     }
0191 
0192     netif_tx_disable(ndev);
0193 }
0194 
0195 static int netvsc_close(struct net_device *net)
0196 {
0197     struct net_device_context *net_device_ctx = netdev_priv(net);
0198     struct net_device *vf_netdev
0199         = rtnl_dereference(net_device_ctx->vf_netdev);
0200     struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
0201     int ret;
0202 
0203     netvsc_tx_disable(nvdev, net);
0204 
0205     /* No need to close rndis filter if it is removed already */
0206     if (!nvdev)
0207         return 0;
0208 
0209     ret = rndis_filter_close(nvdev);
0210     if (ret != 0) {
0211         netdev_err(net, "unable to close device (ret %d).\n", ret);
0212         return ret;
0213     }
0214 
0215     ret = netvsc_wait_until_empty(nvdev);
0216     if (ret)
0217         netdev_err(net, "Ring buffer not empty after closing rndis\n");
0218 
0219     if (vf_netdev)
0220         dev_close(vf_netdev);
0221 
0222     return ret;
0223 }
0224 
0225 static inline void *init_ppi_data(struct rndis_message *msg,
0226                   u32 ppi_size, u32 pkt_type)
0227 {
0228     struct rndis_packet *rndis_pkt = &msg->msg.pkt;
0229     struct rndis_per_packet_info *ppi;
0230 
0231     rndis_pkt->data_offset += ppi_size;
0232     ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
0233         + rndis_pkt->per_pkt_info_len;
0234 
0235     ppi->size = ppi_size;
0236     ppi->type = pkt_type;
0237     ppi->internal = 0;
0238     ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
0239 
0240     rndis_pkt->per_pkt_info_len += ppi_size;
0241 
0242     return ppi + 1;
0243 }
0244 
0245 static inline int netvsc_get_tx_queue(struct net_device *ndev,
0246                       struct sk_buff *skb, int old_idx)
0247 {
0248     const struct net_device_context *ndc = netdev_priv(ndev);
0249     struct sock *sk = skb->sk;
0250     int q_idx;
0251 
0252     q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
0253                   (VRSS_SEND_TAB_SIZE - 1)];
0254 
0255     /* If queue index changed record the new value */
0256     if (q_idx != old_idx &&
0257         sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
0258         sk_tx_queue_set(sk, q_idx);
0259 
0260     return q_idx;
0261 }
0262 
0263 /*
0264  * Select queue for transmit.
0265  *
0266  * If a valid queue has already been assigned, then use that.
0267  * Otherwise compute tx queue based on hash and the send table.
0268  *
0269  * This is basically similar to default (netdev_pick_tx) with the added step
0270  * of using the host send_table when no other queue has been assigned.
0271  *
0272  * TODO support XPS - but get_xps_queue not exported
0273  */
0274 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
0275 {
0276     int q_idx = sk_tx_queue_get(skb->sk);
0277 
0278     if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
0279         /* If forwarding a packet, we use the recorded queue when
0280          * available for better cache locality.
0281          */
0282         if (skb_rx_queue_recorded(skb))
0283             q_idx = skb_get_rx_queue(skb);
0284         else
0285             q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
0286     }
0287 
0288     return q_idx;
0289 }
0290 
0291 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
0292                    struct net_device *sb_dev)
0293 {
0294     struct net_device_context *ndc = netdev_priv(ndev);
0295     struct net_device *vf_netdev;
0296     u16 txq;
0297 
0298     rcu_read_lock();
0299     vf_netdev = rcu_dereference(ndc->vf_netdev);
0300     if (vf_netdev) {
0301         const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
0302 
0303         if (vf_ops->ndo_select_queue)
0304             txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
0305         else
0306             txq = netdev_pick_tx(vf_netdev, skb, NULL);
0307 
0308         /* Record the queue selected by VF so that it can be
0309          * used for common case where VF has more queues than
0310          * the synthetic device.
0311          */
0312         qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
0313     } else {
0314         txq = netvsc_pick_tx(ndev, skb);
0315     }
0316     rcu_read_unlock();
0317 
0318     while (txq >= ndev->real_num_tx_queues)
0319         txq -= ndev->real_num_tx_queues;
0320 
0321     return txq;
0322 }
0323 
0324 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
0325                struct hv_page_buffer *pb)
0326 {
0327     int j = 0;
0328 
0329     hvpfn += offset >> HV_HYP_PAGE_SHIFT;
0330     offset = offset & ~HV_HYP_PAGE_MASK;
0331 
0332     while (len > 0) {
0333         unsigned long bytes;
0334 
0335         bytes = HV_HYP_PAGE_SIZE - offset;
0336         if (bytes > len)
0337             bytes = len;
0338         pb[j].pfn = hvpfn;
0339         pb[j].offset = offset;
0340         pb[j].len = bytes;
0341 
0342         offset += bytes;
0343         len -= bytes;
0344 
0345         if (offset == HV_HYP_PAGE_SIZE && len) {
0346             hvpfn++;
0347             offset = 0;
0348             j++;
0349         }
0350     }
0351 
0352     return j + 1;
0353 }
0354 
0355 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
0356                struct hv_netvsc_packet *packet,
0357                struct hv_page_buffer *pb)
0358 {
0359     u32 slots_used = 0;
0360     char *data = skb->data;
0361     int frags = skb_shinfo(skb)->nr_frags;
0362     int i;
0363 
0364     /* The packet is laid out thus:
0365      * 1. hdr: RNDIS header and PPI
0366      * 2. skb linear data
0367      * 3. skb fragment data
0368      */
0369     slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
0370                   offset_in_hvpage(hdr),
0371                   len,
0372                   &pb[slots_used]);
0373 
0374     packet->rmsg_size = len;
0375     packet->rmsg_pgcnt = slots_used;
0376 
0377     slots_used += fill_pg_buf(virt_to_hvpfn(data),
0378                   offset_in_hvpage(data),
0379                   skb_headlen(skb),
0380                   &pb[slots_used]);
0381 
0382     for (i = 0; i < frags; i++) {
0383         skb_frag_t *frag = skb_shinfo(skb)->frags + i;
0384 
0385         slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
0386                       skb_frag_off(frag),
0387                       skb_frag_size(frag),
0388                       &pb[slots_used]);
0389     }
0390     return slots_used;
0391 }
0392 
0393 static int count_skb_frag_slots(struct sk_buff *skb)
0394 {
0395     int i, frags = skb_shinfo(skb)->nr_frags;
0396     int pages = 0;
0397 
0398     for (i = 0; i < frags; i++) {
0399         skb_frag_t *frag = skb_shinfo(skb)->frags + i;
0400         unsigned long size = skb_frag_size(frag);
0401         unsigned long offset = skb_frag_off(frag);
0402 
0403         /* Skip unused frames from start of page */
0404         offset &= ~HV_HYP_PAGE_MASK;
0405         pages += HVPFN_UP(offset + size);
0406     }
0407     return pages;
0408 }
0409 
0410 static int netvsc_get_slots(struct sk_buff *skb)
0411 {
0412     char *data = skb->data;
0413     unsigned int offset = offset_in_hvpage(data);
0414     unsigned int len = skb_headlen(skb);
0415     int slots;
0416     int frag_slots;
0417 
0418     slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
0419     frag_slots = count_skb_frag_slots(skb);
0420     return slots + frag_slots;
0421 }
0422 
0423 static u32 net_checksum_info(struct sk_buff *skb)
0424 {
0425     if (skb->protocol == htons(ETH_P_IP)) {
0426         struct iphdr *ip = ip_hdr(skb);
0427 
0428         if (ip->protocol == IPPROTO_TCP)
0429             return TRANSPORT_INFO_IPV4_TCP;
0430         else if (ip->protocol == IPPROTO_UDP)
0431             return TRANSPORT_INFO_IPV4_UDP;
0432     } else {
0433         struct ipv6hdr *ip6 = ipv6_hdr(skb);
0434 
0435         if (ip6->nexthdr == IPPROTO_TCP)
0436             return TRANSPORT_INFO_IPV6_TCP;
0437         else if (ip6->nexthdr == IPPROTO_UDP)
0438             return TRANSPORT_INFO_IPV6_UDP;
0439     }
0440 
0441     return TRANSPORT_INFO_NOT_IP;
0442 }
0443 
0444 /* Send skb on the slave VF device. */
0445 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
0446               struct sk_buff *skb)
0447 {
0448     struct net_device_context *ndev_ctx = netdev_priv(net);
0449     unsigned int len = skb->len;
0450     int rc;
0451 
0452     skb->dev = vf_netdev;
0453     skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
0454 
0455     rc = dev_queue_xmit(skb);
0456     if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
0457         struct netvsc_vf_pcpu_stats *pcpu_stats
0458             = this_cpu_ptr(ndev_ctx->vf_stats);
0459 
0460         u64_stats_update_begin(&pcpu_stats->syncp);
0461         pcpu_stats->tx_packets++;
0462         pcpu_stats->tx_bytes += len;
0463         u64_stats_update_end(&pcpu_stats->syncp);
0464     } else {
0465         this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
0466     }
0467 
0468     return rc;
0469 }
0470 
0471 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
0472 {
0473     struct net_device_context *net_device_ctx = netdev_priv(net);
0474     struct hv_netvsc_packet *packet = NULL;
0475     int ret;
0476     unsigned int num_data_pgs;
0477     struct rndis_message *rndis_msg;
0478     struct net_device *vf_netdev;
0479     u32 rndis_msg_size;
0480     u32 hash;
0481     struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
0482 
0483     /* If VF is present and up then redirect packets to it.
0484      * Skip the VF if it is marked down or has no carrier.
0485      * If netpoll is in uses, then VF can not be used either.
0486      */
0487     vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
0488     if (vf_netdev && netif_running(vf_netdev) &&
0489         netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
0490         net_device_ctx->data_path_is_vf)
0491         return netvsc_vf_xmit(net, vf_netdev, skb);
0492 
0493     /* We will atmost need two pages to describe the rndis
0494      * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
0495      * of pages in a single packet. If skb is scattered around
0496      * more pages we try linearizing it.
0497      */
0498 
0499     num_data_pgs = netvsc_get_slots(skb) + 2;
0500 
0501     if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
0502         ++net_device_ctx->eth_stats.tx_scattered;
0503 
0504         if (skb_linearize(skb))
0505             goto no_memory;
0506 
0507         num_data_pgs = netvsc_get_slots(skb) + 2;
0508         if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
0509             ++net_device_ctx->eth_stats.tx_too_big;
0510             goto drop;
0511         }
0512     }
0513 
0514     /*
0515      * Place the rndis header in the skb head room and
0516      * the skb->cb will be used for hv_netvsc_packet
0517      * structure.
0518      */
0519     ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
0520     if (ret)
0521         goto no_memory;
0522 
0523     /* Use the skb control buffer for building up the packet */
0524     BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
0525             sizeof_field(struct sk_buff, cb));
0526     packet = (struct hv_netvsc_packet *)skb->cb;
0527 
0528     packet->q_idx = skb_get_queue_mapping(skb);
0529 
0530     packet->total_data_buflen = skb->len;
0531     packet->total_bytes = skb->len;
0532     packet->total_packets = 1;
0533 
0534     rndis_msg = (struct rndis_message *)skb->head;
0535 
0536     /* Add the rndis header */
0537     rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
0538     rndis_msg->msg_len = packet->total_data_buflen;
0539 
0540     rndis_msg->msg.pkt = (struct rndis_packet) {
0541         .data_offset = sizeof(struct rndis_packet),
0542         .data_len = packet->total_data_buflen,
0543         .per_pkt_info_offset = sizeof(struct rndis_packet),
0544     };
0545 
0546     rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
0547 
0548     hash = skb_get_hash_raw(skb);
0549     if (hash != 0 && net->real_num_tx_queues > 1) {
0550         u32 *hash_info;
0551 
0552         rndis_msg_size += NDIS_HASH_PPI_SIZE;
0553         hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
0554                       NBL_HASH_VALUE);
0555         *hash_info = hash;
0556     }
0557 
0558     /* When using AF_PACKET we need to drop VLAN header from
0559      * the frame and update the SKB to allow the HOST OS
0560      * to transmit the 802.1Q packet
0561      */
0562     if (skb->protocol == htons(ETH_P_8021Q)) {
0563         u16 vlan_tci;
0564 
0565         skb_reset_mac_header(skb);
0566         if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
0567             if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
0568                 ++net_device_ctx->eth_stats.vlan_error;
0569                 goto drop;
0570             }
0571 
0572             __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
0573             /* Update the NDIS header pkt lengths */
0574             packet->total_data_buflen -= VLAN_HLEN;
0575             packet->total_bytes -= VLAN_HLEN;
0576             rndis_msg->msg_len = packet->total_data_buflen;
0577             rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
0578         }
0579     }
0580 
0581     if (skb_vlan_tag_present(skb)) {
0582         struct ndis_pkt_8021q_info *vlan;
0583 
0584         rndis_msg_size += NDIS_VLAN_PPI_SIZE;
0585         vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
0586                      IEEE_8021Q_INFO);
0587 
0588         vlan->value = 0;
0589         vlan->vlanid = skb_vlan_tag_get_id(skb);
0590         vlan->cfi = skb_vlan_tag_get_cfi(skb);
0591         vlan->pri = skb_vlan_tag_get_prio(skb);
0592     }
0593 
0594     if (skb_is_gso(skb)) {
0595         struct ndis_tcp_lso_info *lso_info;
0596 
0597         rndis_msg_size += NDIS_LSO_PPI_SIZE;
0598         lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
0599                      TCP_LARGESEND_PKTINFO);
0600 
0601         lso_info->value = 0;
0602         lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
0603         if (skb->protocol == htons(ETH_P_IP)) {
0604             lso_info->lso_v2_transmit.ip_version =
0605                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
0606             ip_hdr(skb)->tot_len = 0;
0607             ip_hdr(skb)->check = 0;
0608             tcp_hdr(skb)->check =
0609                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
0610                            ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
0611         } else {
0612             lso_info->lso_v2_transmit.ip_version =
0613                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
0614             tcp_v6_gso_csum_prep(skb);
0615         }
0616         lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
0617         lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
0618     } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
0619         if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
0620             struct ndis_tcp_ip_checksum_info *csum_info;
0621 
0622             rndis_msg_size += NDIS_CSUM_PPI_SIZE;
0623             csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
0624                           TCPIP_CHKSUM_PKTINFO);
0625 
0626             csum_info->value = 0;
0627             csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
0628 
0629             if (skb->protocol == htons(ETH_P_IP)) {
0630                 csum_info->transmit.is_ipv4 = 1;
0631 
0632                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
0633                     csum_info->transmit.tcp_checksum = 1;
0634                 else
0635                     csum_info->transmit.udp_checksum = 1;
0636             } else {
0637                 csum_info->transmit.is_ipv6 = 1;
0638 
0639                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
0640                     csum_info->transmit.tcp_checksum = 1;
0641                 else
0642                     csum_info->transmit.udp_checksum = 1;
0643             }
0644         } else {
0645             /* Can't do offload of this type of checksum */
0646             if (skb_checksum_help(skb))
0647                 goto drop;
0648         }
0649     }
0650 
0651     /* Start filling in the page buffers with the rndis hdr */
0652     rndis_msg->msg_len += rndis_msg_size;
0653     packet->total_data_buflen = rndis_msg->msg_len;
0654     packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
0655                            skb, packet, pb);
0656 
0657     /* timestamp packet in software */
0658     skb_tx_timestamp(skb);
0659 
0660     ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
0661     if (likely(ret == 0))
0662         return NETDEV_TX_OK;
0663 
0664     if (ret == -EAGAIN) {
0665         ++net_device_ctx->eth_stats.tx_busy;
0666         return NETDEV_TX_BUSY;
0667     }
0668 
0669     if (ret == -ENOSPC)
0670         ++net_device_ctx->eth_stats.tx_no_space;
0671 
0672 drop:
0673     dev_kfree_skb_any(skb);
0674     net->stats.tx_dropped++;
0675 
0676     return NETDEV_TX_OK;
0677 
0678 no_memory:
0679     ++net_device_ctx->eth_stats.tx_no_memory;
0680     goto drop;
0681 }
0682 
0683 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
0684                      struct net_device *ndev)
0685 {
0686     return netvsc_xmit(skb, ndev, false);
0687 }
0688 
0689 /*
0690  * netvsc_linkstatus_callback - Link up/down notification
0691  */
0692 void netvsc_linkstatus_callback(struct net_device *net,
0693                 struct rndis_message *resp,
0694                 void *data, u32 data_buflen)
0695 {
0696     struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
0697     struct net_device_context *ndev_ctx = netdev_priv(net);
0698     struct netvsc_reconfig *event;
0699     unsigned long flags;
0700 
0701     /* Ensure the packet is big enough to access its fields */
0702     if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
0703         netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
0704                resp->msg_len);
0705         return;
0706     }
0707 
0708     /* Copy the RNDIS indicate status into nvchan->recv_buf */
0709     memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
0710 
0711     /* Update the physical link speed when changing to another vSwitch */
0712     if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
0713         u32 speed;
0714 
0715         /* Validate status_buf_offset and status_buflen.
0716          *
0717          * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
0718          * for the status buffer field in resp->msg_len; perform the validation
0719          * using data_buflen (>= resp->msg_len).
0720          */
0721         if (indicate->status_buflen < sizeof(speed) ||
0722             indicate->status_buf_offset < sizeof(*indicate) ||
0723             data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
0724             data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
0725                 < indicate->status_buflen) {
0726             netdev_err(net, "invalid rndis_indicate_status packet\n");
0727             return;
0728         }
0729 
0730         speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
0731         ndev_ctx->speed = speed;
0732         return;
0733     }
0734 
0735     /* Handle these link change statuses below */
0736     if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
0737         indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
0738         indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
0739         return;
0740 
0741     if (net->reg_state != NETREG_REGISTERED)
0742         return;
0743 
0744     event = kzalloc(sizeof(*event), GFP_ATOMIC);
0745     if (!event)
0746         return;
0747     event->event = indicate->status;
0748 
0749     spin_lock_irqsave(&ndev_ctx->lock, flags);
0750     list_add_tail(&event->list, &ndev_ctx->reconfig_events);
0751     spin_unlock_irqrestore(&ndev_ctx->lock, flags);
0752 
0753     schedule_delayed_work(&ndev_ctx->dwork, 0);
0754 }
0755 
0756 /* This function should only be called after skb_record_rx_queue() */
0757 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
0758 {
0759     int rc;
0760 
0761     skb->queue_mapping = skb_get_rx_queue(skb);
0762     __skb_push(skb, ETH_HLEN);
0763 
0764     rc = netvsc_xmit(skb, ndev, true);
0765 
0766     if (dev_xmit_complete(rc))
0767         return;
0768 
0769     dev_kfree_skb_any(skb);
0770     ndev->stats.tx_dropped++;
0771 }
0772 
0773 static void netvsc_comp_ipcsum(struct sk_buff *skb)
0774 {
0775     struct iphdr *iph = (struct iphdr *)skb->data;
0776 
0777     iph->check = 0;
0778     iph->check = ip_fast_csum(iph, iph->ihl);
0779 }
0780 
0781 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
0782                          struct netvsc_channel *nvchan,
0783                          struct xdp_buff *xdp)
0784 {
0785     struct napi_struct *napi = &nvchan->napi;
0786     const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
0787     const struct ndis_tcp_ip_checksum_info *csum_info =
0788                         &nvchan->rsc.csum_info;
0789     const u32 *hash_info = &nvchan->rsc.hash_info;
0790     u8 ppi_flags = nvchan->rsc.ppi_flags;
0791     struct sk_buff *skb;
0792     void *xbuf = xdp->data_hard_start;
0793     int i;
0794 
0795     if (xbuf) {
0796         unsigned int hdroom = xdp->data - xdp->data_hard_start;
0797         unsigned int xlen = xdp->data_end - xdp->data;
0798         unsigned int frag_size = xdp->frame_sz;
0799 
0800         skb = build_skb(xbuf, frag_size);
0801 
0802         if (!skb) {
0803             __free_page(virt_to_page(xbuf));
0804             return NULL;
0805         }
0806 
0807         skb_reserve(skb, hdroom);
0808         skb_put(skb, xlen);
0809         skb->dev = napi->dev;
0810     } else {
0811         skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
0812 
0813         if (!skb)
0814             return NULL;
0815 
0816         /* Copy to skb. This copy is needed here since the memory
0817          * pointed by hv_netvsc_packet cannot be deallocated.
0818          */
0819         for (i = 0; i < nvchan->rsc.cnt; i++)
0820             skb_put_data(skb, nvchan->rsc.data[i],
0821                      nvchan->rsc.len[i]);
0822     }
0823 
0824     skb->protocol = eth_type_trans(skb, net);
0825 
0826     /* skb is already created with CHECKSUM_NONE */
0827     skb_checksum_none_assert(skb);
0828 
0829     /* Incoming packets may have IP header checksum verified by the host.
0830      * They may not have IP header checksum computed after coalescing.
0831      * We compute it here if the flags are set, because on Linux, the IP
0832      * checksum is always checked.
0833      */
0834     if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
0835         csum_info->receive.ip_checksum_succeeded &&
0836         skb->protocol == htons(ETH_P_IP)) {
0837         /* Check that there is enough space to hold the IP header. */
0838         if (skb_headlen(skb) < sizeof(struct iphdr)) {
0839             kfree_skb(skb);
0840             return NULL;
0841         }
0842         netvsc_comp_ipcsum(skb);
0843     }
0844 
0845     /* Do L4 checksum offload if enabled and present. */
0846     if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
0847         if (csum_info->receive.tcp_checksum_succeeded ||
0848             csum_info->receive.udp_checksum_succeeded)
0849             skb->ip_summed = CHECKSUM_UNNECESSARY;
0850     }
0851 
0852     if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
0853         skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
0854 
0855     if (ppi_flags & NVSC_RSC_VLAN) {
0856         u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
0857             (vlan->cfi ? VLAN_CFI_MASK : 0);
0858 
0859         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
0860                        vlan_tci);
0861     }
0862 
0863     return skb;
0864 }
0865 
0866 /*
0867  * netvsc_recv_callback -  Callback when we receive a packet from the
0868  * "wire" on the specified device.
0869  */
0870 int netvsc_recv_callback(struct net_device *net,
0871              struct netvsc_device *net_device,
0872              struct netvsc_channel *nvchan)
0873 {
0874     struct net_device_context *net_device_ctx = netdev_priv(net);
0875     struct vmbus_channel *channel = nvchan->channel;
0876     u16 q_idx = channel->offermsg.offer.sub_channel_index;
0877     struct sk_buff *skb;
0878     struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
0879     struct xdp_buff xdp;
0880     u32 act;
0881 
0882     if (net->reg_state != NETREG_REGISTERED)
0883         return NVSP_STAT_FAIL;
0884 
0885     act = netvsc_run_xdp(net, nvchan, &xdp);
0886 
0887     if (act == XDP_REDIRECT)
0888         return NVSP_STAT_SUCCESS;
0889 
0890     if (act != XDP_PASS && act != XDP_TX) {
0891         u64_stats_update_begin(&rx_stats->syncp);
0892         rx_stats->xdp_drop++;
0893         u64_stats_update_end(&rx_stats->syncp);
0894 
0895         return NVSP_STAT_SUCCESS; /* consumed by XDP */
0896     }
0897 
0898     /* Allocate a skb - TODO direct I/O to pages? */
0899     skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
0900 
0901     if (unlikely(!skb)) {
0902         ++net_device_ctx->eth_stats.rx_no_memory;
0903         return NVSP_STAT_FAIL;
0904     }
0905 
0906     skb_record_rx_queue(skb, q_idx);
0907 
0908     /*
0909      * Even if injecting the packet, record the statistics
0910      * on the synthetic device because modifying the VF device
0911      * statistics will not work correctly.
0912      */
0913     u64_stats_update_begin(&rx_stats->syncp);
0914     if (act == XDP_TX)
0915         rx_stats->xdp_tx++;
0916 
0917     rx_stats->packets++;
0918     rx_stats->bytes += nvchan->rsc.pktlen;
0919 
0920     if (skb->pkt_type == PACKET_BROADCAST)
0921         ++rx_stats->broadcast;
0922     else if (skb->pkt_type == PACKET_MULTICAST)
0923         ++rx_stats->multicast;
0924     u64_stats_update_end(&rx_stats->syncp);
0925 
0926     if (act == XDP_TX) {
0927         netvsc_xdp_xmit(skb, net);
0928         return NVSP_STAT_SUCCESS;
0929     }
0930 
0931     napi_gro_receive(&nvchan->napi, skb);
0932     return NVSP_STAT_SUCCESS;
0933 }
0934 
0935 static void netvsc_get_drvinfo(struct net_device *net,
0936                    struct ethtool_drvinfo *info)
0937 {
0938     strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
0939     strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
0940 }
0941 
0942 static void netvsc_get_channels(struct net_device *net,
0943                 struct ethtool_channels *channel)
0944 {
0945     struct net_device_context *net_device_ctx = netdev_priv(net);
0946     struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
0947 
0948     if (nvdev) {
0949         channel->max_combined   = nvdev->max_chn;
0950         channel->combined_count = nvdev->num_chn;
0951     }
0952 }
0953 
0954 /* Alloc struct netvsc_device_info, and initialize it from either existing
0955  * struct netvsc_device, or from default values.
0956  */
0957 static
0958 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
0959 {
0960     struct netvsc_device_info *dev_info;
0961     struct bpf_prog *prog;
0962 
0963     dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
0964 
0965     if (!dev_info)
0966         return NULL;
0967 
0968     if (nvdev) {
0969         ASSERT_RTNL();
0970 
0971         dev_info->num_chn = nvdev->num_chn;
0972         dev_info->send_sections = nvdev->send_section_cnt;
0973         dev_info->send_section_size = nvdev->send_section_size;
0974         dev_info->recv_sections = nvdev->recv_section_cnt;
0975         dev_info->recv_section_size = nvdev->recv_section_size;
0976 
0977         memcpy(dev_info->rss_key, nvdev->extension->rss_key,
0978                NETVSC_HASH_KEYLEN);
0979 
0980         prog = netvsc_xdp_get(nvdev);
0981         if (prog) {
0982             bpf_prog_inc(prog);
0983             dev_info->bprog = prog;
0984         }
0985     } else {
0986         dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
0987         dev_info->send_sections = NETVSC_DEFAULT_TX;
0988         dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
0989         dev_info->recv_sections = NETVSC_DEFAULT_RX;
0990         dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
0991     }
0992 
0993     return dev_info;
0994 }
0995 
0996 /* Free struct netvsc_device_info */
0997 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
0998 {
0999     if (dev_info->bprog) {
1000         ASSERT_RTNL();
1001         bpf_prog_put(dev_info->bprog);
1002     }
1003 
1004     kfree(dev_info);
1005 }
1006 
1007 static int netvsc_detach(struct net_device *ndev,
1008              struct netvsc_device *nvdev)
1009 {
1010     struct net_device_context *ndev_ctx = netdev_priv(ndev);
1011     struct hv_device *hdev = ndev_ctx->device_ctx;
1012     int ret;
1013 
1014     /* Don't try continuing to try and setup sub channels */
1015     if (cancel_work_sync(&nvdev->subchan_work))
1016         nvdev->num_chn = 1;
1017 
1018     netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1019 
1020     /* If device was up (receiving) then shutdown */
1021     if (netif_running(ndev)) {
1022         netvsc_tx_disable(nvdev, ndev);
1023 
1024         ret = rndis_filter_close(nvdev);
1025         if (ret) {
1026             netdev_err(ndev,
1027                    "unable to close device (ret %d).\n", ret);
1028             return ret;
1029         }
1030 
1031         ret = netvsc_wait_until_empty(nvdev);
1032         if (ret) {
1033             netdev_err(ndev,
1034                    "Ring buffer not empty after closing rndis\n");
1035             return ret;
1036         }
1037     }
1038 
1039     netif_device_detach(ndev);
1040 
1041     rndis_filter_device_remove(hdev, nvdev);
1042 
1043     return 0;
1044 }
1045 
1046 static int netvsc_attach(struct net_device *ndev,
1047              struct netvsc_device_info *dev_info)
1048 {
1049     struct net_device_context *ndev_ctx = netdev_priv(ndev);
1050     struct hv_device *hdev = ndev_ctx->device_ctx;
1051     struct netvsc_device *nvdev;
1052     struct rndis_device *rdev;
1053     struct bpf_prog *prog;
1054     int ret = 0;
1055 
1056     nvdev = rndis_filter_device_add(hdev, dev_info);
1057     if (IS_ERR(nvdev))
1058         return PTR_ERR(nvdev);
1059 
1060     if (nvdev->num_chn > 1) {
1061         ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1062 
1063         /* if unavailable, just proceed with one queue */
1064         if (ret) {
1065             nvdev->max_chn = 1;
1066             nvdev->num_chn = 1;
1067         }
1068     }
1069 
1070     prog = dev_info->bprog;
1071     if (prog) {
1072         bpf_prog_inc(prog);
1073         ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1074         if (ret) {
1075             bpf_prog_put(prog);
1076             goto err1;
1077         }
1078     }
1079 
1080     /* In any case device is now ready */
1081     nvdev->tx_disable = false;
1082     netif_device_attach(ndev);
1083 
1084     /* Note: enable and attach happen when sub-channels setup */
1085     netif_carrier_off(ndev);
1086 
1087     if (netif_running(ndev)) {
1088         ret = rndis_filter_open(nvdev);
1089         if (ret)
1090             goto err2;
1091 
1092         rdev = nvdev->extension;
1093         if (!rdev->link_state)
1094             netif_carrier_on(ndev);
1095     }
1096 
1097     return 0;
1098 
1099 err2:
1100     netif_device_detach(ndev);
1101 
1102 err1:
1103     rndis_filter_device_remove(hdev, nvdev);
1104 
1105     return ret;
1106 }
1107 
1108 static int netvsc_set_channels(struct net_device *net,
1109                    struct ethtool_channels *channels)
1110 {
1111     struct net_device_context *net_device_ctx = netdev_priv(net);
1112     struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1113     unsigned int orig, count = channels->combined_count;
1114     struct netvsc_device_info *device_info;
1115     int ret;
1116 
1117     /* We do not support separate count for rx, tx, or other */
1118     if (count == 0 ||
1119         channels->rx_count || channels->tx_count || channels->other_count)
1120         return -EINVAL;
1121 
1122     if (!nvdev || nvdev->destroy)
1123         return -ENODEV;
1124 
1125     if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1126         return -EINVAL;
1127 
1128     if (count > nvdev->max_chn)
1129         return -EINVAL;
1130 
1131     orig = nvdev->num_chn;
1132 
1133     device_info = netvsc_devinfo_get(nvdev);
1134 
1135     if (!device_info)
1136         return -ENOMEM;
1137 
1138     device_info->num_chn = count;
1139 
1140     ret = netvsc_detach(net, nvdev);
1141     if (ret)
1142         goto out;
1143 
1144     ret = netvsc_attach(net, device_info);
1145     if (ret) {
1146         device_info->num_chn = orig;
1147         if (netvsc_attach(net, device_info))
1148             netdev_err(net, "restoring channel setting failed\n");
1149     }
1150 
1151 out:
1152     netvsc_devinfo_put(device_info);
1153     return ret;
1154 }
1155 
1156 static void netvsc_init_settings(struct net_device *dev)
1157 {
1158     struct net_device_context *ndc = netdev_priv(dev);
1159 
1160     ndc->l4_hash = HV_DEFAULT_L4HASH;
1161 
1162     ndc->speed = SPEED_UNKNOWN;
1163     ndc->duplex = DUPLEX_FULL;
1164 
1165     dev->features = NETIF_F_LRO;
1166 }
1167 
1168 static int netvsc_get_link_ksettings(struct net_device *dev,
1169                      struct ethtool_link_ksettings *cmd)
1170 {
1171     struct net_device_context *ndc = netdev_priv(dev);
1172     struct net_device *vf_netdev;
1173 
1174     vf_netdev = rtnl_dereference(ndc->vf_netdev);
1175 
1176     if (vf_netdev)
1177         return __ethtool_get_link_ksettings(vf_netdev, cmd);
1178 
1179     cmd->base.speed = ndc->speed;
1180     cmd->base.duplex = ndc->duplex;
1181     cmd->base.port = PORT_OTHER;
1182 
1183     return 0;
1184 }
1185 
1186 static int netvsc_set_link_ksettings(struct net_device *dev,
1187                      const struct ethtool_link_ksettings *cmd)
1188 {
1189     struct net_device_context *ndc = netdev_priv(dev);
1190     struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1191 
1192     if (vf_netdev) {
1193         if (!vf_netdev->ethtool_ops->set_link_ksettings)
1194             return -EOPNOTSUPP;
1195 
1196         return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1197                                   cmd);
1198     }
1199 
1200     return ethtool_virtdev_set_link_ksettings(dev, cmd,
1201                           &ndc->speed, &ndc->duplex);
1202 }
1203 
1204 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1205 {
1206     struct net_device_context *ndevctx = netdev_priv(ndev);
1207     struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1208     struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1209     int orig_mtu = ndev->mtu;
1210     struct netvsc_device_info *device_info;
1211     int ret = 0;
1212 
1213     if (!nvdev || nvdev->destroy)
1214         return -ENODEV;
1215 
1216     device_info = netvsc_devinfo_get(nvdev);
1217 
1218     if (!device_info)
1219         return -ENOMEM;
1220 
1221     /* Change MTU of underlying VF netdev first. */
1222     if (vf_netdev) {
1223         ret = dev_set_mtu(vf_netdev, mtu);
1224         if (ret)
1225             goto out;
1226     }
1227 
1228     ret = netvsc_detach(ndev, nvdev);
1229     if (ret)
1230         goto rollback_vf;
1231 
1232     ndev->mtu = mtu;
1233 
1234     ret = netvsc_attach(ndev, device_info);
1235     if (!ret)
1236         goto out;
1237 
1238     /* Attempt rollback to original MTU */
1239     ndev->mtu = orig_mtu;
1240 
1241     if (netvsc_attach(ndev, device_info))
1242         netdev_err(ndev, "restoring mtu failed\n");
1243 rollback_vf:
1244     if (vf_netdev)
1245         dev_set_mtu(vf_netdev, orig_mtu);
1246 
1247 out:
1248     netvsc_devinfo_put(device_info);
1249     return ret;
1250 }
1251 
1252 static void netvsc_get_vf_stats(struct net_device *net,
1253                 struct netvsc_vf_pcpu_stats *tot)
1254 {
1255     struct net_device_context *ndev_ctx = netdev_priv(net);
1256     int i;
1257 
1258     memset(tot, 0, sizeof(*tot));
1259 
1260     for_each_possible_cpu(i) {
1261         const struct netvsc_vf_pcpu_stats *stats
1262             = per_cpu_ptr(ndev_ctx->vf_stats, i);
1263         u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1264         unsigned int start;
1265 
1266         do {
1267             start = u64_stats_fetch_begin_irq(&stats->syncp);
1268             rx_packets = stats->rx_packets;
1269             tx_packets = stats->tx_packets;
1270             rx_bytes = stats->rx_bytes;
1271             tx_bytes = stats->tx_bytes;
1272         } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1273 
1274         tot->rx_packets += rx_packets;
1275         tot->tx_packets += tx_packets;
1276         tot->rx_bytes   += rx_bytes;
1277         tot->tx_bytes   += tx_bytes;
1278         tot->tx_dropped += stats->tx_dropped;
1279     }
1280 }
1281 
1282 static void netvsc_get_pcpu_stats(struct net_device *net,
1283                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1284 {
1285     struct net_device_context *ndev_ctx = netdev_priv(net);
1286     struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1287     int i;
1288 
1289     /* fetch percpu stats of vf */
1290     for_each_possible_cpu(i) {
1291         const struct netvsc_vf_pcpu_stats *stats =
1292             per_cpu_ptr(ndev_ctx->vf_stats, i);
1293         struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1294         unsigned int start;
1295 
1296         do {
1297             start = u64_stats_fetch_begin_irq(&stats->syncp);
1298             this_tot->vf_rx_packets = stats->rx_packets;
1299             this_tot->vf_tx_packets = stats->tx_packets;
1300             this_tot->vf_rx_bytes = stats->rx_bytes;
1301             this_tot->vf_tx_bytes = stats->tx_bytes;
1302         } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1303         this_tot->rx_packets = this_tot->vf_rx_packets;
1304         this_tot->tx_packets = this_tot->vf_tx_packets;
1305         this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1306         this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1307     }
1308 
1309     /* fetch percpu stats of netvsc */
1310     for (i = 0; i < nvdev->num_chn; i++) {
1311         const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1312         const struct netvsc_stats_tx *tx_stats;
1313         const struct netvsc_stats_rx *rx_stats;
1314         struct netvsc_ethtool_pcpu_stats *this_tot =
1315             &pcpu_tot[nvchan->channel->target_cpu];
1316         u64 packets, bytes;
1317         unsigned int start;
1318 
1319         tx_stats = &nvchan->tx_stats;
1320         do {
1321             start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
1322             packets = tx_stats->packets;
1323             bytes = tx_stats->bytes;
1324         } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
1325 
1326         this_tot->tx_bytes  += bytes;
1327         this_tot->tx_packets    += packets;
1328 
1329         rx_stats = &nvchan->rx_stats;
1330         do {
1331             start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
1332             packets = rx_stats->packets;
1333             bytes = rx_stats->bytes;
1334         } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
1335 
1336         this_tot->rx_bytes  += bytes;
1337         this_tot->rx_packets    += packets;
1338     }
1339 }
1340 
1341 static void netvsc_get_stats64(struct net_device *net,
1342                    struct rtnl_link_stats64 *t)
1343 {
1344     struct net_device_context *ndev_ctx = netdev_priv(net);
1345     struct netvsc_device *nvdev;
1346     struct netvsc_vf_pcpu_stats vf_tot;
1347     int i;
1348 
1349     rcu_read_lock();
1350 
1351     nvdev = rcu_dereference(ndev_ctx->nvdev);
1352     if (!nvdev)
1353         goto out;
1354 
1355     netdev_stats_to_stats64(t, &net->stats);
1356 
1357     netvsc_get_vf_stats(net, &vf_tot);
1358     t->rx_packets += vf_tot.rx_packets;
1359     t->tx_packets += vf_tot.tx_packets;
1360     t->rx_bytes   += vf_tot.rx_bytes;
1361     t->tx_bytes   += vf_tot.tx_bytes;
1362     t->tx_dropped += vf_tot.tx_dropped;
1363 
1364     for (i = 0; i < nvdev->num_chn; i++) {
1365         const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1366         const struct netvsc_stats_tx *tx_stats;
1367         const struct netvsc_stats_rx *rx_stats;
1368         u64 packets, bytes, multicast;
1369         unsigned int start;
1370 
1371         tx_stats = &nvchan->tx_stats;
1372         do {
1373             start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
1374             packets = tx_stats->packets;
1375             bytes = tx_stats->bytes;
1376         } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
1377 
1378         t->tx_bytes += bytes;
1379         t->tx_packets   += packets;
1380 
1381         rx_stats = &nvchan->rx_stats;
1382         do {
1383             start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
1384             packets = rx_stats->packets;
1385             bytes = rx_stats->bytes;
1386             multicast = rx_stats->multicast + rx_stats->broadcast;
1387         } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
1388 
1389         t->rx_bytes += bytes;
1390         t->rx_packets   += packets;
1391         t->multicast    += multicast;
1392     }
1393 out:
1394     rcu_read_unlock();
1395 }
1396 
1397 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1398 {
1399     struct net_device_context *ndc = netdev_priv(ndev);
1400     struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1401     struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1402     struct sockaddr *addr = p;
1403     int err;
1404 
1405     err = eth_prepare_mac_addr_change(ndev, p);
1406     if (err)
1407         return err;
1408 
1409     if (!nvdev)
1410         return -ENODEV;
1411 
1412     if (vf_netdev) {
1413         err = dev_set_mac_address(vf_netdev, addr, NULL);
1414         if (err)
1415             return err;
1416     }
1417 
1418     err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1419     if (!err) {
1420         eth_commit_mac_addr_change(ndev, p);
1421     } else if (vf_netdev) {
1422         /* rollback change on VF */
1423         memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1424         dev_set_mac_address(vf_netdev, addr, NULL);
1425     }
1426 
1427     return err;
1428 }
1429 
1430 static const struct {
1431     char name[ETH_GSTRING_LEN];
1432     u16 offset;
1433 } netvsc_stats[] = {
1434     { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1435     { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1436     { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1437     { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1438     { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1439     { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1440     { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1441     { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1442     { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1443     { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1444     { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1445 }, pcpu_stats[] = {
1446     { "cpu%u_rx_packets",
1447         offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1448     { "cpu%u_rx_bytes",
1449         offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1450     { "cpu%u_tx_packets",
1451         offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1452     { "cpu%u_tx_bytes",
1453         offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1454     { "cpu%u_vf_rx_packets",
1455         offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1456     { "cpu%u_vf_rx_bytes",
1457         offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1458     { "cpu%u_vf_tx_packets",
1459         offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1460     { "cpu%u_vf_tx_bytes",
1461         offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1462 }, vf_stats[] = {
1463     { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1464     { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1465     { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1466     { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1467     { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1468 };
1469 
1470 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1471 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1472 
1473 /* statistics per queue (rx/tx packets/bytes) */
1474 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1475 
1476 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1477 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1478 
1479 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1480 {
1481     struct net_device_context *ndc = netdev_priv(dev);
1482     struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1483 
1484     if (!nvdev)
1485         return -ENODEV;
1486 
1487     switch (string_set) {
1488     case ETH_SS_STATS:
1489         return NETVSC_GLOBAL_STATS_LEN
1490             + NETVSC_VF_STATS_LEN
1491             + NETVSC_QUEUE_STATS_LEN(nvdev)
1492             + NETVSC_PCPU_STATS_LEN;
1493     default:
1494         return -EINVAL;
1495     }
1496 }
1497 
1498 static void netvsc_get_ethtool_stats(struct net_device *dev,
1499                      struct ethtool_stats *stats, u64 *data)
1500 {
1501     struct net_device_context *ndc = netdev_priv(dev);
1502     struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1503     const void *nds = &ndc->eth_stats;
1504     const struct netvsc_stats_tx *tx_stats;
1505     const struct netvsc_stats_rx *rx_stats;
1506     struct netvsc_vf_pcpu_stats sum;
1507     struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1508     unsigned int start;
1509     u64 packets, bytes;
1510     u64 xdp_drop;
1511     u64 xdp_redirect;
1512     u64 xdp_tx;
1513     u64 xdp_xmit;
1514     int i, j, cpu;
1515 
1516     if (!nvdev)
1517         return;
1518 
1519     for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1520         data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1521 
1522     netvsc_get_vf_stats(dev, &sum);
1523     for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1524         data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1525 
1526     for (j = 0; j < nvdev->num_chn; j++) {
1527         tx_stats = &nvdev->chan_table[j].tx_stats;
1528 
1529         do {
1530             start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
1531             packets = tx_stats->packets;
1532             bytes = tx_stats->bytes;
1533             xdp_xmit = tx_stats->xdp_xmit;
1534         } while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
1535         data[i++] = packets;
1536         data[i++] = bytes;
1537         data[i++] = xdp_xmit;
1538 
1539         rx_stats = &nvdev->chan_table[j].rx_stats;
1540         do {
1541             start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
1542             packets = rx_stats->packets;
1543             bytes = rx_stats->bytes;
1544             xdp_drop = rx_stats->xdp_drop;
1545             xdp_redirect = rx_stats->xdp_redirect;
1546             xdp_tx = rx_stats->xdp_tx;
1547         } while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
1548         data[i++] = packets;
1549         data[i++] = bytes;
1550         data[i++] = xdp_drop;
1551         data[i++] = xdp_redirect;
1552         data[i++] = xdp_tx;
1553     }
1554 
1555     pcpu_sum = kvmalloc_array(num_possible_cpus(),
1556                   sizeof(struct netvsc_ethtool_pcpu_stats),
1557                   GFP_KERNEL);
1558     if (!pcpu_sum)
1559         return;
1560 
1561     netvsc_get_pcpu_stats(dev, pcpu_sum);
1562     for_each_present_cpu(cpu) {
1563         struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1564 
1565         for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1566             data[i++] = *(u64 *)((void *)this_sum
1567                          + pcpu_stats[j].offset);
1568     }
1569     kvfree(pcpu_sum);
1570 }
1571 
1572 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1573 {
1574     struct net_device_context *ndc = netdev_priv(dev);
1575     struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1576     u8 *p = data;
1577     int i, cpu;
1578 
1579     if (!nvdev)
1580         return;
1581 
1582     switch (stringset) {
1583     case ETH_SS_STATS:
1584         for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1585             ethtool_sprintf(&p, netvsc_stats[i].name);
1586 
1587         for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1588             ethtool_sprintf(&p, vf_stats[i].name);
1589 
1590         for (i = 0; i < nvdev->num_chn; i++) {
1591             ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1592             ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1593             ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1594             ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1595             ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1596             ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1597             ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1598             ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1599         }
1600 
1601         for_each_present_cpu(cpu) {
1602             for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1603                 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1604         }
1605 
1606         break;
1607     }
1608 }
1609 
1610 static int
1611 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1612              struct ethtool_rxnfc *info)
1613 {
1614     const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1615 
1616     info->data = RXH_IP_SRC | RXH_IP_DST;
1617 
1618     switch (info->flow_type) {
1619     case TCP_V4_FLOW:
1620         if (ndc->l4_hash & HV_TCP4_L4HASH)
1621             info->data |= l4_flag;
1622 
1623         break;
1624 
1625     case TCP_V6_FLOW:
1626         if (ndc->l4_hash & HV_TCP6_L4HASH)
1627             info->data |= l4_flag;
1628 
1629         break;
1630 
1631     case UDP_V4_FLOW:
1632         if (ndc->l4_hash & HV_UDP4_L4HASH)
1633             info->data |= l4_flag;
1634 
1635         break;
1636 
1637     case UDP_V6_FLOW:
1638         if (ndc->l4_hash & HV_UDP6_L4HASH)
1639             info->data |= l4_flag;
1640 
1641         break;
1642 
1643     case IPV4_FLOW:
1644     case IPV6_FLOW:
1645         break;
1646     default:
1647         info->data = 0;
1648         break;
1649     }
1650 
1651     return 0;
1652 }
1653 
1654 static int
1655 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1656          u32 *rules)
1657 {
1658     struct net_device_context *ndc = netdev_priv(dev);
1659     struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1660 
1661     if (!nvdev)
1662         return -ENODEV;
1663 
1664     switch (info->cmd) {
1665     case ETHTOOL_GRXRINGS:
1666         info->data = nvdev->num_chn;
1667         return 0;
1668 
1669     case ETHTOOL_GRXFH:
1670         return netvsc_get_rss_hash_opts(ndc, info);
1671     }
1672     return -EOPNOTSUPP;
1673 }
1674 
1675 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1676                     struct ethtool_rxnfc *info)
1677 {
1678     if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1679                RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1680         switch (info->flow_type) {
1681         case TCP_V4_FLOW:
1682             ndc->l4_hash |= HV_TCP4_L4HASH;
1683             break;
1684 
1685         case TCP_V6_FLOW:
1686             ndc->l4_hash |= HV_TCP6_L4HASH;
1687             break;
1688 
1689         case UDP_V4_FLOW:
1690             ndc->l4_hash |= HV_UDP4_L4HASH;
1691             break;
1692 
1693         case UDP_V6_FLOW:
1694             ndc->l4_hash |= HV_UDP6_L4HASH;
1695             break;
1696 
1697         default:
1698             return -EOPNOTSUPP;
1699         }
1700 
1701         return 0;
1702     }
1703 
1704     if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1705         switch (info->flow_type) {
1706         case TCP_V4_FLOW:
1707             ndc->l4_hash &= ~HV_TCP4_L4HASH;
1708             break;
1709 
1710         case TCP_V6_FLOW:
1711             ndc->l4_hash &= ~HV_TCP6_L4HASH;
1712             break;
1713 
1714         case UDP_V4_FLOW:
1715             ndc->l4_hash &= ~HV_UDP4_L4HASH;
1716             break;
1717 
1718         case UDP_V6_FLOW:
1719             ndc->l4_hash &= ~HV_UDP6_L4HASH;
1720             break;
1721 
1722         default:
1723             return -EOPNOTSUPP;
1724         }
1725 
1726         return 0;
1727     }
1728 
1729     return -EOPNOTSUPP;
1730 }
1731 
1732 static int
1733 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1734 {
1735     struct net_device_context *ndc = netdev_priv(ndev);
1736 
1737     if (info->cmd == ETHTOOL_SRXFH)
1738         return netvsc_set_rss_hash_opts(ndc, info);
1739 
1740     return -EOPNOTSUPP;
1741 }
1742 
1743 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1744 {
1745     return NETVSC_HASH_KEYLEN;
1746 }
1747 
1748 static u32 netvsc_rss_indir_size(struct net_device *dev)
1749 {
1750     return ITAB_NUM;
1751 }
1752 
1753 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1754                u8 *hfunc)
1755 {
1756     struct net_device_context *ndc = netdev_priv(dev);
1757     struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1758     struct rndis_device *rndis_dev;
1759     int i;
1760 
1761     if (!ndev)
1762         return -ENODEV;
1763 
1764     if (hfunc)
1765         *hfunc = ETH_RSS_HASH_TOP;  /* Toeplitz */
1766 
1767     rndis_dev = ndev->extension;
1768     if (indir) {
1769         for (i = 0; i < ITAB_NUM; i++)
1770             indir[i] = ndc->rx_table[i];
1771     }
1772 
1773     if (key)
1774         memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1775 
1776     return 0;
1777 }
1778 
1779 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1780                const u8 *key, const u8 hfunc)
1781 {
1782     struct net_device_context *ndc = netdev_priv(dev);
1783     struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1784     struct rndis_device *rndis_dev;
1785     int i;
1786 
1787     if (!ndev)
1788         return -ENODEV;
1789 
1790     if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1791         return -EOPNOTSUPP;
1792 
1793     rndis_dev = ndev->extension;
1794     if (indir) {
1795         for (i = 0; i < ITAB_NUM; i++)
1796             if (indir[i] >= ndev->num_chn)
1797                 return -EINVAL;
1798 
1799         for (i = 0; i < ITAB_NUM; i++)
1800             ndc->rx_table[i] = indir[i];
1801     }
1802 
1803     if (!key) {
1804         if (!indir)
1805             return 0;
1806 
1807         key = rndis_dev->rss_key;
1808     }
1809 
1810     return rndis_filter_set_rss_param(rndis_dev, key);
1811 }
1812 
1813 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1814  * It does have pre-allocated receive area which is divided into sections.
1815  */
1816 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1817                    struct ethtool_ringparam *ring)
1818 {
1819     u32 max_buf_size;
1820 
1821     ring->rx_pending = nvdev->recv_section_cnt;
1822     ring->tx_pending = nvdev->send_section_cnt;
1823 
1824     if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1825         max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1826     else
1827         max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1828 
1829     ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1830     ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1831         / nvdev->send_section_size;
1832 }
1833 
1834 static void netvsc_get_ringparam(struct net_device *ndev,
1835                  struct ethtool_ringparam *ring,
1836                  struct kernel_ethtool_ringparam *kernel_ring,
1837                  struct netlink_ext_ack *extack)
1838 {
1839     struct net_device_context *ndevctx = netdev_priv(ndev);
1840     struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1841 
1842     if (!nvdev)
1843         return;
1844 
1845     __netvsc_get_ringparam(nvdev, ring);
1846 }
1847 
1848 static int netvsc_set_ringparam(struct net_device *ndev,
1849                 struct ethtool_ringparam *ring,
1850                 struct kernel_ethtool_ringparam *kernel_ring,
1851                 struct netlink_ext_ack *extack)
1852 {
1853     struct net_device_context *ndevctx = netdev_priv(ndev);
1854     struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1855     struct netvsc_device_info *device_info;
1856     struct ethtool_ringparam orig;
1857     u32 new_tx, new_rx;
1858     int ret = 0;
1859 
1860     if (!nvdev || nvdev->destroy)
1861         return -ENODEV;
1862 
1863     memset(&orig, 0, sizeof(orig));
1864     __netvsc_get_ringparam(nvdev, &orig);
1865 
1866     new_tx = clamp_t(u32, ring->tx_pending,
1867              NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1868     new_rx = clamp_t(u32, ring->rx_pending,
1869              NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1870 
1871     if (new_tx == orig.tx_pending &&
1872         new_rx == orig.rx_pending)
1873         return 0;    /* no change */
1874 
1875     device_info = netvsc_devinfo_get(nvdev);
1876 
1877     if (!device_info)
1878         return -ENOMEM;
1879 
1880     device_info->send_sections = new_tx;
1881     device_info->recv_sections = new_rx;
1882 
1883     ret = netvsc_detach(ndev, nvdev);
1884     if (ret)
1885         goto out;
1886 
1887     ret = netvsc_attach(ndev, device_info);
1888     if (ret) {
1889         device_info->send_sections = orig.tx_pending;
1890         device_info->recv_sections = orig.rx_pending;
1891 
1892         if (netvsc_attach(ndev, device_info))
1893             netdev_err(ndev, "restoring ringparam failed");
1894     }
1895 
1896 out:
1897     netvsc_devinfo_put(device_info);
1898     return ret;
1899 }
1900 
1901 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1902                          netdev_features_t features)
1903 {
1904     struct net_device_context *ndevctx = netdev_priv(ndev);
1905     struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1906 
1907     if (!nvdev || nvdev->destroy)
1908         return features;
1909 
1910     if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1911         features ^= NETIF_F_LRO;
1912         netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1913     }
1914 
1915     return features;
1916 }
1917 
1918 static int netvsc_set_features(struct net_device *ndev,
1919                    netdev_features_t features)
1920 {
1921     netdev_features_t change = features ^ ndev->features;
1922     struct net_device_context *ndevctx = netdev_priv(ndev);
1923     struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1924     struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1925     struct ndis_offload_params offloads;
1926     int ret = 0;
1927 
1928     if (!nvdev || nvdev->destroy)
1929         return -ENODEV;
1930 
1931     if (!(change & NETIF_F_LRO))
1932         goto syncvf;
1933 
1934     memset(&offloads, 0, sizeof(struct ndis_offload_params));
1935 
1936     if (features & NETIF_F_LRO) {
1937         offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1938         offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1939     } else {
1940         offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1941         offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1942     }
1943 
1944     ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1945 
1946     if (ret) {
1947         features ^= NETIF_F_LRO;
1948         ndev->features = features;
1949     }
1950 
1951 syncvf:
1952     if (!vf_netdev)
1953         return ret;
1954 
1955     vf_netdev->wanted_features = features;
1956     netdev_update_features(vf_netdev);
1957 
1958     return ret;
1959 }
1960 
1961 static int netvsc_get_regs_len(struct net_device *netdev)
1962 {
1963     return VRSS_SEND_TAB_SIZE * sizeof(u32);
1964 }
1965 
1966 static void netvsc_get_regs(struct net_device *netdev,
1967                 struct ethtool_regs *regs, void *p)
1968 {
1969     struct net_device_context *ndc = netdev_priv(netdev);
1970     u32 *regs_buff = p;
1971 
1972     /* increase the version, if buffer format is changed. */
1973     regs->version = 1;
1974 
1975     memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1976 }
1977 
1978 static u32 netvsc_get_msglevel(struct net_device *ndev)
1979 {
1980     struct net_device_context *ndev_ctx = netdev_priv(ndev);
1981 
1982     return ndev_ctx->msg_enable;
1983 }
1984 
1985 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1986 {
1987     struct net_device_context *ndev_ctx = netdev_priv(ndev);
1988 
1989     ndev_ctx->msg_enable = val;
1990 }
1991 
1992 static const struct ethtool_ops ethtool_ops = {
1993     .get_drvinfo    = netvsc_get_drvinfo,
1994     .get_regs_len   = netvsc_get_regs_len,
1995     .get_regs   = netvsc_get_regs,
1996     .get_msglevel   = netvsc_get_msglevel,
1997     .set_msglevel   = netvsc_set_msglevel,
1998     .get_link   = ethtool_op_get_link,
1999     .get_ethtool_stats = netvsc_get_ethtool_stats,
2000     .get_sset_count = netvsc_get_sset_count,
2001     .get_strings    = netvsc_get_strings,
2002     .get_channels   = netvsc_get_channels,
2003     .set_channels   = netvsc_set_channels,
2004     .get_ts_info    = ethtool_op_get_ts_info,
2005     .get_rxnfc  = netvsc_get_rxnfc,
2006     .set_rxnfc  = netvsc_set_rxnfc,
2007     .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2008     .get_rxfh_indir_size = netvsc_rss_indir_size,
2009     .get_rxfh   = netvsc_get_rxfh,
2010     .set_rxfh   = netvsc_set_rxfh,
2011     .get_link_ksettings = netvsc_get_link_ksettings,
2012     .set_link_ksettings = netvsc_set_link_ksettings,
2013     .get_ringparam  = netvsc_get_ringparam,
2014     .set_ringparam  = netvsc_set_ringparam,
2015 };
2016 
2017 static const struct net_device_ops device_ops = {
2018     .ndo_open =         netvsc_open,
2019     .ndo_stop =         netvsc_close,
2020     .ndo_start_xmit =       netvsc_start_xmit,
2021     .ndo_change_rx_flags =      netvsc_change_rx_flags,
2022     .ndo_set_rx_mode =      netvsc_set_rx_mode,
2023     .ndo_fix_features =     netvsc_fix_features,
2024     .ndo_set_features =     netvsc_set_features,
2025     .ndo_change_mtu =       netvsc_change_mtu,
2026     .ndo_validate_addr =        eth_validate_addr,
2027     .ndo_set_mac_address =      netvsc_set_mac_addr,
2028     .ndo_select_queue =     netvsc_select_queue,
2029     .ndo_get_stats64 =      netvsc_get_stats64,
2030     .ndo_bpf =          netvsc_bpf,
2031     .ndo_xdp_xmit =         netvsc_ndoxdp_xmit,
2032 };
2033 
2034 /*
2035  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2036  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2037  * present send GARP packet to network peers with netif_notify_peers().
2038  */
2039 static void netvsc_link_change(struct work_struct *w)
2040 {
2041     struct net_device_context *ndev_ctx =
2042         container_of(w, struct net_device_context, dwork.work);
2043     struct hv_device *device_obj = ndev_ctx->device_ctx;
2044     struct net_device *net = hv_get_drvdata(device_obj);
2045     unsigned long flags, next_reconfig, delay;
2046     struct netvsc_reconfig *event = NULL;
2047     struct netvsc_device *net_device;
2048     struct rndis_device *rdev;
2049     bool reschedule = false;
2050 
2051     /* if changes are happening, comeback later */
2052     if (!rtnl_trylock()) {
2053         schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2054         return;
2055     }
2056 
2057     net_device = rtnl_dereference(ndev_ctx->nvdev);
2058     if (!net_device)
2059         goto out_unlock;
2060 
2061     rdev = net_device->extension;
2062 
2063     next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2064     if (time_is_after_jiffies(next_reconfig)) {
2065         /* link_watch only sends one notification with current state
2066          * per second, avoid doing reconfig more frequently. Handle
2067          * wrap around.
2068          */
2069         delay = next_reconfig - jiffies;
2070         delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2071         schedule_delayed_work(&ndev_ctx->dwork, delay);
2072         goto out_unlock;
2073     }
2074     ndev_ctx->last_reconfig = jiffies;
2075 
2076     spin_lock_irqsave(&ndev_ctx->lock, flags);
2077     if (!list_empty(&ndev_ctx->reconfig_events)) {
2078         event = list_first_entry(&ndev_ctx->reconfig_events,
2079                      struct netvsc_reconfig, list);
2080         list_del(&event->list);
2081         reschedule = !list_empty(&ndev_ctx->reconfig_events);
2082     }
2083     spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2084 
2085     if (!event)
2086         goto out_unlock;
2087 
2088     switch (event->event) {
2089         /* Only the following events are possible due to the check in
2090          * netvsc_linkstatus_callback()
2091          */
2092     case RNDIS_STATUS_MEDIA_CONNECT:
2093         if (rdev->link_state) {
2094             rdev->link_state = false;
2095             netif_carrier_on(net);
2096             netvsc_tx_enable(net_device, net);
2097         } else {
2098             __netdev_notify_peers(net);
2099         }
2100         kfree(event);
2101         break;
2102     case RNDIS_STATUS_MEDIA_DISCONNECT:
2103         if (!rdev->link_state) {
2104             rdev->link_state = true;
2105             netif_carrier_off(net);
2106             netvsc_tx_disable(net_device, net);
2107         }
2108         kfree(event);
2109         break;
2110     case RNDIS_STATUS_NETWORK_CHANGE:
2111         /* Only makes sense if carrier is present */
2112         if (!rdev->link_state) {
2113             rdev->link_state = true;
2114             netif_carrier_off(net);
2115             netvsc_tx_disable(net_device, net);
2116             event->event = RNDIS_STATUS_MEDIA_CONNECT;
2117             spin_lock_irqsave(&ndev_ctx->lock, flags);
2118             list_add(&event->list, &ndev_ctx->reconfig_events);
2119             spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2120             reschedule = true;
2121         }
2122         break;
2123     }
2124 
2125     rtnl_unlock();
2126 
2127     /* link_watch only sends one notification with current state per
2128      * second, handle next reconfig event in 2 seconds.
2129      */
2130     if (reschedule)
2131         schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2132 
2133     return;
2134 
2135 out_unlock:
2136     rtnl_unlock();
2137 }
2138 
2139 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2140 {
2141     struct net_device_context *net_device_ctx;
2142     struct net_device *dev;
2143 
2144     dev = netdev_master_upper_dev_get(vf_netdev);
2145     if (!dev || dev->netdev_ops != &device_ops)
2146         return NULL;    /* not a netvsc device */
2147 
2148     net_device_ctx = netdev_priv(dev);
2149     if (!rtnl_dereference(net_device_ctx->nvdev))
2150         return NULL;    /* device is removed */
2151 
2152     return dev;
2153 }
2154 
2155 /* Called when VF is injecting data into network stack.
2156  * Change the associated network device from VF to netvsc.
2157  * note: already called with rcu_read_lock
2158  */
2159 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2160 {
2161     struct sk_buff *skb = *pskb;
2162     struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2163     struct net_device_context *ndev_ctx = netdev_priv(ndev);
2164     struct netvsc_vf_pcpu_stats *pcpu_stats
2165          = this_cpu_ptr(ndev_ctx->vf_stats);
2166 
2167     skb = skb_share_check(skb, GFP_ATOMIC);
2168     if (unlikely(!skb))
2169         return RX_HANDLER_CONSUMED;
2170 
2171     *pskb = skb;
2172 
2173     skb->dev = ndev;
2174 
2175     u64_stats_update_begin(&pcpu_stats->syncp);
2176     pcpu_stats->rx_packets++;
2177     pcpu_stats->rx_bytes += skb->len;
2178     u64_stats_update_end(&pcpu_stats->syncp);
2179 
2180     return RX_HANDLER_ANOTHER;
2181 }
2182 
2183 static int netvsc_vf_join(struct net_device *vf_netdev,
2184               struct net_device *ndev)
2185 {
2186     struct net_device_context *ndev_ctx = netdev_priv(ndev);
2187     int ret;
2188 
2189     ret = netdev_rx_handler_register(vf_netdev,
2190                      netvsc_vf_handle_frame, ndev);
2191     if (ret != 0) {
2192         netdev_err(vf_netdev,
2193                "can not register netvsc VF receive handler (err = %d)\n",
2194                ret);
2195         goto rx_handler_failed;
2196     }
2197 
2198     ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2199                        NULL, NULL, NULL);
2200     if (ret != 0) {
2201         netdev_err(vf_netdev,
2202                "can not set master device %s (err = %d)\n",
2203                ndev->name, ret);
2204         goto upper_link_failed;
2205     }
2206 
2207     /* set slave flag before open to prevent IPv6 addrconf */
2208     vf_netdev->flags |= IFF_SLAVE;
2209 
2210     schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2211 
2212     call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2213 
2214     netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2215     return 0;
2216 
2217 upper_link_failed:
2218     netdev_rx_handler_unregister(vf_netdev);
2219 rx_handler_failed:
2220     return ret;
2221 }
2222 
2223 static void __netvsc_vf_setup(struct net_device *ndev,
2224                   struct net_device *vf_netdev)
2225 {
2226     int ret;
2227 
2228     /* Align MTU of VF with master */
2229     ret = dev_set_mtu(vf_netdev, ndev->mtu);
2230     if (ret)
2231         netdev_warn(vf_netdev,
2232                 "unable to change mtu to %u\n", ndev->mtu);
2233 
2234     /* set multicast etc flags on VF */
2235     dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2236 
2237     /* sync address list from ndev to VF */
2238     netif_addr_lock_bh(ndev);
2239     dev_uc_sync(vf_netdev, ndev);
2240     dev_mc_sync(vf_netdev, ndev);
2241     netif_addr_unlock_bh(ndev);
2242 
2243     if (netif_running(ndev)) {
2244         ret = dev_open(vf_netdev, NULL);
2245         if (ret)
2246             netdev_warn(vf_netdev,
2247                     "unable to open: %d\n", ret);
2248     }
2249 }
2250 
2251 /* Setup VF as slave of the synthetic device.
2252  * Runs in workqueue to avoid recursion in netlink callbacks.
2253  */
2254 static void netvsc_vf_setup(struct work_struct *w)
2255 {
2256     struct net_device_context *ndev_ctx
2257         = container_of(w, struct net_device_context, vf_takeover.work);
2258     struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2259     struct net_device *vf_netdev;
2260 
2261     if (!rtnl_trylock()) {
2262         schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2263         return;
2264     }
2265 
2266     vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2267     if (vf_netdev)
2268         __netvsc_vf_setup(ndev, vf_netdev);
2269 
2270     rtnl_unlock();
2271 }
2272 
2273 /* Find netvsc by VF serial number.
2274  * The PCI hyperv controller records the serial number as the slot kobj name.
2275  */
2276 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2277 {
2278     struct device *parent = vf_netdev->dev.parent;
2279     struct net_device_context *ndev_ctx;
2280     struct net_device *ndev;
2281     struct pci_dev *pdev;
2282     u32 serial;
2283 
2284     if (!parent || !dev_is_pci(parent))
2285         return NULL; /* not a PCI device */
2286 
2287     pdev = to_pci_dev(parent);
2288     if (!pdev->slot) {
2289         netdev_notice(vf_netdev, "no PCI slot information\n");
2290         return NULL;
2291     }
2292 
2293     if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2294         netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2295                   pci_slot_name(pdev->slot));
2296         return NULL;
2297     }
2298 
2299     list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2300         if (!ndev_ctx->vf_alloc)
2301             continue;
2302 
2303         if (ndev_ctx->vf_serial != serial)
2304             continue;
2305 
2306         ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2307         if (ndev->addr_len != vf_netdev->addr_len ||
2308             memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2309                ndev->addr_len) != 0)
2310             continue;
2311 
2312         return ndev;
2313 
2314     }
2315 
2316     netdev_notice(vf_netdev,
2317               "no netdev found for vf serial:%u\n", serial);
2318     return NULL;
2319 }
2320 
2321 static int netvsc_register_vf(struct net_device *vf_netdev)
2322 {
2323     struct net_device_context *net_device_ctx;
2324     struct netvsc_device *netvsc_dev;
2325     struct bpf_prog *prog;
2326     struct net_device *ndev;
2327     int ret;
2328 
2329     if (vf_netdev->addr_len != ETH_ALEN)
2330         return NOTIFY_DONE;
2331 
2332     ndev = get_netvsc_byslot(vf_netdev);
2333     if (!ndev)
2334         return NOTIFY_DONE;
2335 
2336     net_device_ctx = netdev_priv(ndev);
2337     netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2338     if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2339         return NOTIFY_DONE;
2340 
2341     /* if synthetic interface is a different namespace,
2342      * then move the VF to that namespace; join will be
2343      * done again in that context.
2344      */
2345     if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2346         ret = dev_change_net_namespace(vf_netdev,
2347                            dev_net(ndev), "eth%d");
2348         if (ret)
2349             netdev_err(vf_netdev,
2350                    "could not move to same namespace as %s: %d\n",
2351                    ndev->name, ret);
2352         else
2353             netdev_info(vf_netdev,
2354                     "VF moved to namespace with: %s\n",
2355                     ndev->name);
2356         return NOTIFY_DONE;
2357     }
2358 
2359     netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2360 
2361     if (netvsc_vf_join(vf_netdev, ndev) != 0)
2362         return NOTIFY_DONE;
2363 
2364     dev_hold(vf_netdev);
2365     rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2366 
2367     if (ndev->needed_headroom < vf_netdev->needed_headroom)
2368         ndev->needed_headroom = vf_netdev->needed_headroom;
2369 
2370     vf_netdev->wanted_features = ndev->features;
2371     netdev_update_features(vf_netdev);
2372 
2373     prog = netvsc_xdp_get(netvsc_dev);
2374     netvsc_vf_setxdp(vf_netdev, prog);
2375 
2376     return NOTIFY_OK;
2377 }
2378 
2379 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2380  *
2381  * Typically a UP or DOWN event is followed by a CHANGE event, so
2382  * net_device_ctx->data_path_is_vf is used to cache the current data path
2383  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2384  * message.
2385  *
2386  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2387  * interface, there is only the CHANGE event and no UP or DOWN event.
2388  */
2389 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2390 {
2391     struct net_device_context *net_device_ctx;
2392     struct netvsc_device *netvsc_dev;
2393     struct net_device *ndev;
2394     bool vf_is_up = false;
2395     int ret;
2396 
2397     if (event != NETDEV_GOING_DOWN)
2398         vf_is_up = netif_running(vf_netdev);
2399 
2400     ndev = get_netvsc_byref(vf_netdev);
2401     if (!ndev)
2402         return NOTIFY_DONE;
2403 
2404     net_device_ctx = netdev_priv(ndev);
2405     netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2406     if (!netvsc_dev)
2407         return NOTIFY_DONE;
2408 
2409     if (net_device_ctx->data_path_is_vf == vf_is_up)
2410         return NOTIFY_OK;
2411 
2412     ret = netvsc_switch_datapath(ndev, vf_is_up);
2413 
2414     if (ret) {
2415         netdev_err(ndev,
2416                "Data path failed to switch %s VF: %s, err: %d\n",
2417                vf_is_up ? "to" : "from", vf_netdev->name, ret);
2418         return NOTIFY_DONE;
2419     } else {
2420         netdev_info(ndev, "Data path switched %s VF: %s\n",
2421                 vf_is_up ? "to" : "from", vf_netdev->name);
2422     }
2423 
2424     return NOTIFY_OK;
2425 }
2426 
2427 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2428 {
2429     struct net_device *ndev;
2430     struct net_device_context *net_device_ctx;
2431 
2432     ndev = get_netvsc_byref(vf_netdev);
2433     if (!ndev)
2434         return NOTIFY_DONE;
2435 
2436     net_device_ctx = netdev_priv(ndev);
2437     cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2438 
2439     netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2440 
2441     netvsc_vf_setxdp(vf_netdev, NULL);
2442 
2443     netdev_rx_handler_unregister(vf_netdev);
2444     netdev_upper_dev_unlink(vf_netdev, ndev);
2445     RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2446     dev_put(vf_netdev);
2447 
2448     ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2449 
2450     return NOTIFY_OK;
2451 }
2452 
2453 static int netvsc_probe(struct hv_device *dev,
2454             const struct hv_vmbus_device_id *dev_id)
2455 {
2456     struct net_device *net = NULL;
2457     struct net_device_context *net_device_ctx;
2458     struct netvsc_device_info *device_info = NULL;
2459     struct netvsc_device *nvdev;
2460     int ret = -ENOMEM;
2461 
2462     net = alloc_etherdev_mq(sizeof(struct net_device_context),
2463                 VRSS_CHANNEL_MAX);
2464     if (!net)
2465         goto no_net;
2466 
2467     netif_carrier_off(net);
2468 
2469     netvsc_init_settings(net);
2470 
2471     net_device_ctx = netdev_priv(net);
2472     net_device_ctx->device_ctx = dev;
2473     net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2474     if (netif_msg_probe(net_device_ctx))
2475         netdev_dbg(net, "netvsc msg_enable: %d\n",
2476                net_device_ctx->msg_enable);
2477 
2478     hv_set_drvdata(dev, net);
2479 
2480     INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2481 
2482     spin_lock_init(&net_device_ctx->lock);
2483     INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2484     INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2485 
2486     net_device_ctx->vf_stats
2487         = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2488     if (!net_device_ctx->vf_stats)
2489         goto no_stats;
2490 
2491     net->netdev_ops = &device_ops;
2492     net->ethtool_ops = &ethtool_ops;
2493     SET_NETDEV_DEV(net, &dev->device);
2494     dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2495 
2496     /* We always need headroom for rndis header */
2497     net->needed_headroom = RNDIS_AND_PPI_SIZE;
2498 
2499     /* Initialize the number of queues to be 1, we may change it if more
2500      * channels are offered later.
2501      */
2502     netif_set_real_num_tx_queues(net, 1);
2503     netif_set_real_num_rx_queues(net, 1);
2504 
2505     /* Notify the netvsc driver of the new device */
2506     device_info = netvsc_devinfo_get(NULL);
2507 
2508     if (!device_info) {
2509         ret = -ENOMEM;
2510         goto devinfo_failed;
2511     }
2512 
2513     nvdev = rndis_filter_device_add(dev, device_info);
2514     if (IS_ERR(nvdev)) {
2515         ret = PTR_ERR(nvdev);
2516         netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2517         goto rndis_failed;
2518     }
2519 
2520     eth_hw_addr_set(net, device_info->mac_adr);
2521 
2522     /* We must get rtnl lock before scheduling nvdev->subchan_work,
2523      * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2524      * all subchannels to show up, but that may not happen because
2525      * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2526      * -> ... -> device_add() -> ... -> __device_attach() can't get
2527      * the device lock, so all the subchannels can't be processed --
2528      * finally netvsc_subchan_work() hangs forever.
2529      */
2530     rtnl_lock();
2531 
2532     if (nvdev->num_chn > 1)
2533         schedule_work(&nvdev->subchan_work);
2534 
2535     /* hw_features computed in rndis_netdev_set_hwcaps() */
2536     net->features = net->hw_features |
2537         NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2538         NETIF_F_HW_VLAN_CTAG_RX;
2539     net->vlan_features = net->features;
2540 
2541     netdev_lockdep_set_classes(net);
2542 
2543     /* MTU range: 68 - 1500 or 65521 */
2544     net->min_mtu = NETVSC_MTU_MIN;
2545     if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2546         net->max_mtu = NETVSC_MTU - ETH_HLEN;
2547     else
2548         net->max_mtu = ETH_DATA_LEN;
2549 
2550     nvdev->tx_disable = false;
2551 
2552     ret = register_netdevice(net);
2553     if (ret != 0) {
2554         pr_err("Unable to register netdev.\n");
2555         goto register_failed;
2556     }
2557 
2558     list_add(&net_device_ctx->list, &netvsc_dev_list);
2559     rtnl_unlock();
2560 
2561     netvsc_devinfo_put(device_info);
2562     return 0;
2563 
2564 register_failed:
2565     rtnl_unlock();
2566     rndis_filter_device_remove(dev, nvdev);
2567 rndis_failed:
2568     netvsc_devinfo_put(device_info);
2569 devinfo_failed:
2570     free_percpu(net_device_ctx->vf_stats);
2571 no_stats:
2572     hv_set_drvdata(dev, NULL);
2573     free_netdev(net);
2574 no_net:
2575     return ret;
2576 }
2577 
2578 static int netvsc_remove(struct hv_device *dev)
2579 {
2580     struct net_device_context *ndev_ctx;
2581     struct net_device *vf_netdev, *net;
2582     struct netvsc_device *nvdev;
2583 
2584     net = hv_get_drvdata(dev);
2585     if (net == NULL) {
2586         dev_err(&dev->device, "No net device to remove\n");
2587         return 0;
2588     }
2589 
2590     ndev_ctx = netdev_priv(net);
2591 
2592     cancel_delayed_work_sync(&ndev_ctx->dwork);
2593 
2594     rtnl_lock();
2595     nvdev = rtnl_dereference(ndev_ctx->nvdev);
2596     if (nvdev) {
2597         cancel_work_sync(&nvdev->subchan_work);
2598         netvsc_xdp_set(net, NULL, NULL, nvdev);
2599     }
2600 
2601     /*
2602      * Call to the vsc driver to let it know that the device is being
2603      * removed. Also blocks mtu and channel changes.
2604      */
2605     vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2606     if (vf_netdev)
2607         netvsc_unregister_vf(vf_netdev);
2608 
2609     if (nvdev)
2610         rndis_filter_device_remove(dev, nvdev);
2611 
2612     unregister_netdevice(net);
2613     list_del(&ndev_ctx->list);
2614 
2615     rtnl_unlock();
2616 
2617     hv_set_drvdata(dev, NULL);
2618 
2619     free_percpu(ndev_ctx->vf_stats);
2620     free_netdev(net);
2621     return 0;
2622 }
2623 
2624 static int netvsc_suspend(struct hv_device *dev)
2625 {
2626     struct net_device_context *ndev_ctx;
2627     struct netvsc_device *nvdev;
2628     struct net_device *net;
2629     int ret;
2630 
2631     net = hv_get_drvdata(dev);
2632 
2633     ndev_ctx = netdev_priv(net);
2634     cancel_delayed_work_sync(&ndev_ctx->dwork);
2635 
2636     rtnl_lock();
2637 
2638     nvdev = rtnl_dereference(ndev_ctx->nvdev);
2639     if (nvdev == NULL) {
2640         ret = -ENODEV;
2641         goto out;
2642     }
2643 
2644     /* Save the current config info */
2645     ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2646     if (!ndev_ctx->saved_netvsc_dev_info) {
2647         ret = -ENOMEM;
2648         goto out;
2649     }
2650     ret = netvsc_detach(net, nvdev);
2651 out:
2652     rtnl_unlock();
2653 
2654     return ret;
2655 }
2656 
2657 static int netvsc_resume(struct hv_device *dev)
2658 {
2659     struct net_device *net = hv_get_drvdata(dev);
2660     struct net_device_context *net_device_ctx;
2661     struct netvsc_device_info *device_info;
2662     int ret;
2663 
2664     rtnl_lock();
2665 
2666     net_device_ctx = netdev_priv(net);
2667 
2668     /* Reset the data path to the netvsc NIC before re-opening the vmbus
2669      * channel. Later netvsc_netdev_event() will switch the data path to
2670      * the VF upon the UP or CHANGE event.
2671      */
2672     net_device_ctx->data_path_is_vf = false;
2673     device_info = net_device_ctx->saved_netvsc_dev_info;
2674 
2675     ret = netvsc_attach(net, device_info);
2676 
2677     netvsc_devinfo_put(device_info);
2678     net_device_ctx->saved_netvsc_dev_info = NULL;
2679 
2680     rtnl_unlock();
2681 
2682     return ret;
2683 }
2684 static const struct hv_vmbus_device_id id_table[] = {
2685     /* Network guid */
2686     { HV_NIC_GUID, },
2687     { },
2688 };
2689 
2690 MODULE_DEVICE_TABLE(vmbus, id_table);
2691 
2692 /* The one and only one */
2693 static struct  hv_driver netvsc_drv = {
2694     .name = KBUILD_MODNAME,
2695     .id_table = id_table,
2696     .probe = netvsc_probe,
2697     .remove = netvsc_remove,
2698     .suspend = netvsc_suspend,
2699     .resume = netvsc_resume,
2700     .driver = {
2701         .probe_type = PROBE_FORCE_SYNCHRONOUS,
2702     },
2703 };
2704 
2705 /*
2706  * On Hyper-V, every VF interface is matched with a corresponding
2707  * synthetic interface. The synthetic interface is presented first
2708  * to the guest. When the corresponding VF instance is registered,
2709  * we will take care of switching the data path.
2710  */
2711 static int netvsc_netdev_event(struct notifier_block *this,
2712                    unsigned long event, void *ptr)
2713 {
2714     struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2715 
2716     /* Skip our own events */
2717     if (event_dev->netdev_ops == &device_ops)
2718         return NOTIFY_DONE;
2719 
2720     /* Avoid non-Ethernet type devices */
2721     if (event_dev->type != ARPHRD_ETHER)
2722         return NOTIFY_DONE;
2723 
2724     /* Avoid Vlan dev with same MAC registering as VF */
2725     if (is_vlan_dev(event_dev))
2726         return NOTIFY_DONE;
2727 
2728     /* Avoid Bonding master dev with same MAC registering as VF */
2729     if (netif_is_bond_master(event_dev))
2730         return NOTIFY_DONE;
2731 
2732     switch (event) {
2733     case NETDEV_REGISTER:
2734         return netvsc_register_vf(event_dev);
2735     case NETDEV_UNREGISTER:
2736         return netvsc_unregister_vf(event_dev);
2737     case NETDEV_UP:
2738     case NETDEV_DOWN:
2739     case NETDEV_CHANGE:
2740     case NETDEV_GOING_DOWN:
2741         return netvsc_vf_changed(event_dev, event);
2742     default:
2743         return NOTIFY_DONE;
2744     }
2745 }
2746 
2747 static struct notifier_block netvsc_netdev_notifier = {
2748     .notifier_call = netvsc_netdev_event,
2749 };
2750 
2751 static void __exit netvsc_drv_exit(void)
2752 {
2753     unregister_netdevice_notifier(&netvsc_netdev_notifier);
2754     vmbus_driver_unregister(&netvsc_drv);
2755 }
2756 
2757 static int __init netvsc_drv_init(void)
2758 {
2759     int ret;
2760 
2761     if (ring_size < RING_SIZE_MIN) {
2762         ring_size = RING_SIZE_MIN;
2763         pr_info("Increased ring_size to %u (min allowed)\n",
2764             ring_size);
2765     }
2766     netvsc_ring_bytes = ring_size * PAGE_SIZE;
2767 
2768     ret = vmbus_driver_register(&netvsc_drv);
2769     if (ret)
2770         return ret;
2771 
2772     register_netdevice_notifier(&netvsc_netdev_notifier);
2773     return 0;
2774 }
2775 
2776 MODULE_LICENSE("GPL");
2777 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2778 
2779 module_init(netvsc_drv_init);
2780 module_exit(netvsc_drv_exit);