Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
0003  *
0004  * Based on skelton.c by Donald Becker.
0005  *
0006  * This driver is a replacement of older and less maintained version.
0007  * This is a header of the older version:
0008  *  -----<snip>-----
0009  *  Copyright 2001 MontaVista Software Inc.
0010  *  Author: MontaVista Software, Inc.
0011  *      ahennessy@mvista.com
0012  *  Copyright (C) 2000-2001 Toshiba Corporation
0013  *  static const char *version =
0014  *      "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
0015  *  -----<snip>-----
0016  *
0017  * This file is subject to the terms and conditions of the GNU General Public
0018  * License.  See the file "COPYING" in the main directory of this archive
0019  * for more details.
0020  *
0021  * (C) Copyright TOSHIBA CORPORATION 2004-2005
0022  * All Rights Reserved.
0023  */
0024 
0025 #define DRV_VERSION "1.39"
0026 static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
0027 #define MODNAME         "tc35815"
0028 
0029 #include <linux/module.h>
0030 #include <linux/kernel.h>
0031 #include <linux/types.h>
0032 #include <linux/fcntl.h>
0033 #include <linux/interrupt.h>
0034 #include <linux/ioport.h>
0035 #include <linux/in.h>
0036 #include <linux/if_vlan.h>
0037 #include <linux/slab.h>
0038 #include <linux/string.h>
0039 #include <linux/spinlock.h>
0040 #include <linux/errno.h>
0041 #include <linux/netdevice.h>
0042 #include <linux/etherdevice.h>
0043 #include <linux/skbuff.h>
0044 #include <linux/delay.h>
0045 #include <linux/pci.h>
0046 #include <linux/phy.h>
0047 #include <linux/workqueue.h>
0048 #include <linux/platform_device.h>
0049 #include <linux/prefetch.h>
0050 #include <asm/io.h>
0051 #include <asm/byteorder.h>
0052 
0053 enum tc35815_chiptype {
0054     TC35815CF = 0,
0055     TC35815_NWU,
0056     TC35815_TX4939,
0057 };
0058 
0059 /* indexed by tc35815_chiptype, above */
0060 static const struct {
0061     const char *name;
0062 } chip_info[] = {
0063     { "TOSHIBA TC35815CF 10/100BaseTX" },
0064     { "TOSHIBA TC35815 with Wake on LAN" },
0065     { "TOSHIBA TC35815/TX4939" },
0066 };
0067 
0068 static const struct pci_device_id tc35815_pci_tbl[] = {
0069     {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
0070     {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
0071     {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
0072     {0,}
0073 };
0074 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
0075 
0076 /* see MODULE_PARM_DESC */
0077 static struct tc35815_options {
0078     int speed;
0079     int duplex;
0080 } options;
0081 
0082 /*
0083  * Registers
0084  */
0085 struct tc35815_regs {
0086     __u32 DMA_Ctl;      /* 0x00 */
0087     __u32 TxFrmPtr;
0088     __u32 TxThrsh;
0089     __u32 TxPollCtr;
0090     __u32 BLFrmPtr;
0091     __u32 RxFragSize;
0092     __u32 Int_En;
0093     __u32 FDA_Bas;
0094     __u32 FDA_Lim;      /* 0x20 */
0095     __u32 Int_Src;
0096     __u32 unused0[2];
0097     __u32 PauseCnt;
0098     __u32 RemPauCnt;
0099     __u32 TxCtlFrmStat;
0100     __u32 unused1;
0101     __u32 MAC_Ctl;      /* 0x40 */
0102     __u32 CAM_Ctl;
0103     __u32 Tx_Ctl;
0104     __u32 Tx_Stat;
0105     __u32 Rx_Ctl;
0106     __u32 Rx_Stat;
0107     __u32 MD_Data;
0108     __u32 MD_CA;
0109     __u32 CAM_Adr;      /* 0x60 */
0110     __u32 CAM_Data;
0111     __u32 CAM_Ena;
0112     __u32 PROM_Ctl;
0113     __u32 PROM_Data;
0114     __u32 Algn_Cnt;
0115     __u32 CRC_Cnt;
0116     __u32 Miss_Cnt;
0117 };
0118 
0119 /*
0120  * Bit assignments
0121  */
0122 /* DMA_Ctl bit assign ------------------------------------------------------- */
0123 #define DMA_RxAlign        0x00c00000 /* 1:Reception Alignment       */
0124 #define DMA_RxAlign_1          0x00400000
0125 #define DMA_RxAlign_2          0x00800000
0126 #define DMA_RxAlign_3          0x00c00000
0127 #define DMA_M66EnStat          0x00080000 /* 1:66MHz Enable State        */
0128 #define DMA_IntMask        0x00040000 /* 1:Interrupt mask            */
0129 #define DMA_SWIntReq           0x00020000 /* 1:Software Interrupt request    */
0130 #define DMA_TxWakeUp           0x00010000 /* 1:Transmit Wake Up          */
0131 #define DMA_RxBigE         0x00008000 /* 1:Receive Big Endian        */
0132 #define DMA_TxBigE         0x00004000 /* 1:Transmit Big Endian       */
0133 #define DMA_TestMode           0x00002000 /* 1:Test Mode             */
0134 #define DMA_PowrMgmnt          0x00001000 /* 1:Power Management          */
0135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size          */
0136 
0137 /* RxFragSize bit assign ---------------------------------------------------- */
0138 #define RxFrag_EnPack          0x00008000 /* 1:Enable Packing            */
0139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment            */
0140 
0141 /* MAC_Ctl bit assign ------------------------------------------------------- */
0142 #define MAC_Link10         0x00008000 /* 1:Link Status 10Mbits       */
0143 #define MAC_EnMissRoll         0x00002000 /* 1:Enable Missed Roll        */
0144 #define MAC_MissRoll           0x00000400 /* 1:Missed Roll           */
0145 #define MAC_Loop10         0x00000080 /* 1:Loop 10 Mbps          */
0146 #define MAC_Conn_Auto          0x00000000 /*00:Connection mode (Automatic)   */
0147 #define MAC_Conn_10M           0x00000020 /*01:            (10Mbps endec)*/
0148 #define MAC_Conn_Mll           0x00000040 /*10:            (Mll clock)   */
0149 #define MAC_MacLoop        0x00000010 /* 1:MAC Loopback          */
0150 #define MAC_FullDup        0x00000008 /* 1:Full Duplex 0:Half Duplex     */
0151 #define MAC_Reset          0x00000004 /* 1:Software Reset            */
0152 #define MAC_HaltImm        0x00000002 /* 1:Halt Immediate            */
0153 #define MAC_HaltReq        0x00000001 /* 1:Halt request          */
0154 
0155 /* PROM_Ctl bit assign ------------------------------------------------------ */
0156 #define PROM_Busy          0x00008000 /* 1:Busy (Start Operation)        */
0157 #define PROM_Read          0x00004000 /*10:Read operation            */
0158 #define PROM_Write         0x00002000 /*01:Write operation           */
0159 #define PROM_Erase         0x00006000 /*11:Erase operation           */
0160                       /*00:Enable or Disable Writting,   */
0161                       /*      as specified in PROM_Addr. */
0162 #define PROM_Addr_Ena          0x00000030 /*11xxxx:PROM Write enable         */
0163                       /*00xxxx:       disable        */
0164 
0165 /* CAM_Ctl bit assign ------------------------------------------------------- */
0166 #define CAM_CompEn         0x00000010 /* 1:CAM Compare Enable        */
0167 #define CAM_NegCAM         0x00000008 /* 1:Reject packets CAM recognizes,*/
0168                       /*            accept other */
0169 #define CAM_BroadAcc           0x00000004 /* 1:Broadcast assept          */
0170 #define CAM_GroupAcc           0x00000002 /* 1:Multicast assept          */
0171 #define CAM_StationAcc         0x00000001 /* 1:unicast accept            */
0172 
0173 /* CAM_Ena bit assign ------------------------------------------------------- */
0174 #define CAM_ENTRY_MAX              21   /* CAM Data entry max count      */
0175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
0176 #define CAM_Ena_Bit(index)  (1 << (index))
0177 #define CAM_ENTRY_DESTINATION   0
0178 #define CAM_ENTRY_SOURCE    1
0179 #define CAM_ENTRY_MACCTL    20
0180 
0181 /* Tx_Ctl bit assign -------------------------------------------------------- */
0182 #define Tx_En              0x00000001 /* 1:Transmit enable           */
0183 #define Tx_TxHalt          0x00000002 /* 1:Transmit Halt Request         */
0184 #define Tx_NoPad           0x00000004 /* 1:Suppress Padding          */
0185 #define Tx_NoCRC           0x00000008 /* 1:Suppress Padding          */
0186 #define Tx_FBack           0x00000010 /* 1:Fast Back-off             */
0187 #define Tx_EnUnder         0x00000100 /* 1:Enable Underrun           */
0188 #define Tx_EnExDefer           0x00000200 /* 1:Enable Excessive Deferral     */
0189 #define Tx_EnLCarr         0x00000400 /* 1:Enable Lost Carrier       */
0190 #define Tx_EnExColl        0x00000800 /* 1:Enable Excessive Collision    */
0191 #define Tx_EnLateColl          0x00001000 /* 1:Enable Late Collision         */
0192 #define Tx_EnTxPar         0x00002000 /* 1:Enable Transmit Parity        */
0193 #define Tx_EnComp          0x00004000 /* 1:Enable Completion         */
0194 
0195 /* Tx_Stat bit assign ------------------------------------------------------- */
0196 #define Tx_TxColl_MASK         0x0000000F /* Tx Collision Count          */
0197 #define Tx_ExColl          0x00000010 /* Excessive Collision         */
0198 #define Tx_TXDefer         0x00000020 /* Transmit Defered            */
0199 #define Tx_Paused          0x00000040 /* Transmit Paused             */
0200 #define Tx_IntTx           0x00000080 /* Interrupt on Tx             */
0201 #define Tx_Under           0x00000100 /* Underrun                */
0202 #define Tx_Defer           0x00000200 /* Deferral                */
0203 #define Tx_NCarr           0x00000400 /* No Carrier              */
0204 #define Tx_10Stat          0x00000800 /* 10Mbps Status           */
0205 #define Tx_LateColl        0x00001000 /* Late Collision          */
0206 #define Tx_TxPar           0x00002000 /* Tx Parity Error             */
0207 #define Tx_Comp            0x00004000 /* Completion              */
0208 #define Tx_Halted          0x00008000 /* Tx Halted               */
0209 #define Tx_SQErr           0x00010000 /* Signal Quality Error(SQE)       */
0210 
0211 /* Rx_Ctl bit assign -------------------------------------------------------- */
0212 #define Rx_EnGood          0x00004000 /* 1:Enable Good           */
0213 #define Rx_EnRxPar         0x00002000 /* 1:Enable Receive Parity         */
0214 #define Rx_EnLongErr           0x00000800 /* 1:Enable Long Error         */
0215 #define Rx_EnOver          0x00000400 /* 1:Enable OverFlow           */
0216 #define Rx_EnCRCErr        0x00000200 /* 1:Enable CRC Error          */
0217 #define Rx_EnAlign         0x00000100 /* 1:Enable Alignment          */
0218 #define Rx_IgnoreCRC           0x00000040 /* 1:Ignore CRC Value          */
0219 #define Rx_StripCRC        0x00000010 /* 1:Strip CRC Value           */
0220 #define Rx_ShortEn         0x00000008 /* 1:Short Enable          */
0221 #define Rx_LongEn          0x00000004 /* 1:Long Enable           */
0222 #define Rx_RxHalt          0x00000002 /* 1:Receive Halt Request      */
0223 #define Rx_RxEn            0x00000001 /* 1:Receive Intrrupt Enable       */
0224 
0225 /* Rx_Stat bit assign ------------------------------------------------------- */
0226 #define Rx_Halted          0x00008000 /* Rx Halted               */
0227 #define Rx_Good            0x00004000 /* Rx Good                 */
0228 #define Rx_RxPar           0x00002000 /* Rx Parity Error             */
0229 #define Rx_TypePkt         0x00001000 /* Rx Type Packet          */
0230 #define Rx_LongErr         0x00000800 /* Rx Long Error           */
0231 #define Rx_Over            0x00000400 /* Rx Overflow             */
0232 #define Rx_CRCErr          0x00000200 /* Rx CRC Error            */
0233 #define Rx_Align           0x00000100 /* Rx Alignment Error          */
0234 #define Rx_10Stat          0x00000080 /* Rx 10Mbps Status            */
0235 #define Rx_IntRx           0x00000040 /* Rx Interrupt            */
0236 #define Rx_CtlRecd         0x00000020 /* Rx Control Receive          */
0237 #define Rx_InLenErr        0x00000010 /* Rx In Range Frame Length Error  */
0238 
0239 #define Rx_Stat_Mask           0x0000FFF0 /* Rx All Status Mask          */
0240 
0241 /* Int_En bit assign -------------------------------------------------------- */
0242 #define Int_NRAbtEn        0x00000800 /* 1:Non-recoverable Abort Enable  */
0243 #define Int_TxCtlCmpEn         0x00000400 /* 1:Transmit Ctl Complete Enable  */
0244 #define Int_DmParErrEn         0x00000200 /* 1:DMA Parity Error Enable       */
0245 #define Int_DParDEn        0x00000100 /* 1:Data Parity Error Enable      */
0246 #define Int_EarNotEn           0x00000080 /* 1:Early Notify Enable       */
0247 #define Int_DParErrEn          0x00000040 /* 1:Detected Parity Error Enable  */
0248 #define Int_SSysErrEn          0x00000020 /* 1:Signalled System Error Enable */
0249 #define Int_RMasAbtEn          0x00000010 /* 1:Received Master Abort Enable  */
0250 #define Int_RTargAbtEn         0x00000008 /* 1:Received Target Abort Enable  */
0251 #define Int_STargAbtEn         0x00000004 /* 1:Signalled Target Abort Enable */
0252 #define Int_BLExEn         0x00000002 /* 1:Buffer List Exhausted Enable  */
0253 #define Int_FDAExEn        0x00000001 /* 1:Free Descriptor Area      */
0254                       /*           Exhausted Enable  */
0255 
0256 /* Int_Src bit assign ------------------------------------------------------- */
0257 #define Int_NRabt          0x00004000 /* 1:Non Recoverable error         */
0258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear      */
0259 #define Int_BLEx           0x00001000 /* 1:Buffer List Empty & Clear     */
0260 #define Int_FDAEx          0x00000800 /* 1:FDA Empty & Clear         */
0261 #define Int_IntNRAbt           0x00000400 /* 1:Non Recoverable Abort         */
0262 #define Int_IntCmp         0x00000200 /* 1:MAC control packet complete   */
0263 #define Int_IntExBD        0x00000100 /* 1:Interrupt Extra BD & Clear    */
0264 #define Int_DmParErr           0x00000080 /* 1:DMA Parity Error & Clear      */
0265 #define Int_IntEarNot          0x00000040 /* 1:Receive Data write & Clear    */
0266 #define Int_SWInt          0x00000020 /* 1:Software request & Clear      */
0267 #define Int_IntBLEx        0x00000010 /* 1:Buffer List Empty & Clear     */
0268 #define Int_IntFDAEx           0x00000008 /* 1:FDA Empty & Clear         */
0269 #define Int_IntPCI         0x00000004 /* 1:PCI controller & Clear        */
0270 #define Int_IntMacRx           0x00000002 /* 1:Rx controller & Clear         */
0271 #define Int_IntMacTx           0x00000001 /* 1:Tx controller & Clear         */
0272 
0273 /* MD_CA bit assign --------------------------------------------------------- */
0274 #define MD_CA_PreSup           0x00001000 /* 1:Preamble Suppress             */
0275 #define MD_CA_Busy         0x00000800 /* 1:Busy (Start Operation)        */
0276 #define MD_CA_Wr           0x00000400 /* 1:Write 0:Read          */
0277 
0278 
0279 /*
0280  * Descriptors
0281  */
0282 
0283 /* Frame descriptor */
0284 struct FDesc {
0285     volatile __u32 FDNext;
0286     volatile __u32 FDSystem;
0287     volatile __u32 FDStat;
0288     volatile __u32 FDCtl;
0289 };
0290 
0291 /* Buffer descriptor */
0292 struct BDesc {
0293     volatile __u32 BuffData;
0294     volatile __u32 BDCtl;
0295 };
0296 
0297 #define FD_ALIGN    16
0298 
0299 /* Frame Descriptor bit assign ---------------------------------------------- */
0300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK             */
0301 #define FD_BDCnt_MASK          0x001F0000 /* BD count MASK in FD         */
0302 #define FD_FrmOpt_MASK         0x7C000000 /* Frame option MASK           */
0303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
0304 #define FD_FrmOpt_IntTx        0x20000000 /* Tx only */
0305 #define FD_FrmOpt_NoCRC        0x10000000 /* Tx only */
0306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
0307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
0308 #define FD_CownsFD         0x80000000 /* FD Controller owner bit         */
0309 #define FD_Next_EOL        0x00000001 /* FD EOL indicator            */
0310 #define FD_BDCnt_SHIFT         16
0311 
0312 /* Buffer Descriptor bit assign --------------------------------------------- */
0313 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size           */
0314 #define BD_RxBDID_MASK         0x00FF0000 /* BD ID Number MASK           */
0315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number       */
0316 #define BD_CownsBD         0x80000000 /* BD Controller owner bit         */
0317 #define BD_RxBDID_SHIFT        16
0318 #define BD_RxBDSeqN_SHIFT      24
0319 
0320 
0321 /* Some useful constants. */
0322 
0323 #define TX_CTL_CMD  (Tx_EnTxPar | Tx_EnLateColl | \
0324     Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
0325     Tx_En)  /* maybe  0x7b01 */
0326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
0327 #define RX_CTL_CMD  (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
0328     | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
0329 #define INT_EN_CMD  (Int_NRAbtEn | \
0330     Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
0331     Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
0332     Int_STargAbtEn | \
0333     Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
0334 #define DMA_CTL_CMD DMA_BURST_SIZE
0335 #define HAVE_DMA_RXALIGN(lp)    likely((lp)->chiptype != TC35815CF)
0336 
0337 /* Tuning parameters */
0338 #define DMA_BURST_SIZE  32
0339 #define TX_THRESHOLD    1024
0340 /* used threshold with packet max byte for low pci transfer ability.*/
0341 #define TX_THRESHOLD_MAX 1536
0342 /* setting threshold max value when overrun error occurred this count. */
0343 #define TX_THRESHOLD_KEEP_LIMIT 10
0344 
0345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
0346 #define FD_PAGE_NUM 4
0347 #define RX_BUF_NUM  128 /* < 256 */
0348 #define RX_FD_NUM   256 /* >= 32 */
0349 #define TX_FD_NUM   128
0350 #if RX_CTL_CMD & Rx_LongEn
0351 #define RX_BUF_SIZE PAGE_SIZE
0352 #elif RX_CTL_CMD & Rx_StripCRC
0353 #define RX_BUF_SIZE \
0354     L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
0355 #else
0356 #define RX_BUF_SIZE \
0357     L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
0358 #endif
0359 #define RX_FD_RESERVE   (2 / 2) /* max 2 BD per RxFD */
0360 #define NAPI_WEIGHT 16
0361 
0362 struct TxFD {
0363     struct FDesc fd;
0364     struct BDesc bd;
0365     struct BDesc unused;
0366 };
0367 
0368 struct RxFD {
0369     struct FDesc fd;
0370     struct BDesc bd[];  /* variable length */
0371 };
0372 
0373 struct FrFD {
0374     struct FDesc fd;
0375     struct BDesc bd[RX_BUF_NUM];
0376 };
0377 
0378 
0379 #define tc_readl(addr)  ioread32(addr)
0380 #define tc_writel(d, addr)  iowrite32(d, addr)
0381 
0382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
0383 
0384 /* Information that need to be kept for each controller. */
0385 struct tc35815_local {
0386     struct pci_dev *pci_dev;
0387 
0388     struct net_device *dev;
0389     struct napi_struct napi;
0390 
0391     /* statistics */
0392     struct {
0393         int max_tx_qlen;
0394         int tx_ints;
0395         int rx_ints;
0396         int tx_underrun;
0397     } lstats;
0398 
0399     /* Tx control lock.  This protects the transmit buffer ring
0400      * state along with the "tx full" state of the driver.  This
0401      * means all netif_queue flow control actions are protected
0402      * by this lock as well.
0403      */
0404     spinlock_t lock;
0405     spinlock_t rx_lock;
0406 
0407     struct mii_bus *mii_bus;
0408     int duplex;
0409     int speed;
0410     int link;
0411     struct work_struct restart_work;
0412 
0413     /*
0414      * Transmitting: Batch Mode.
0415      *  1 BD in 1 TxFD.
0416      * Receiving: Non-Packing Mode.
0417      *  1 circular FD for Free Buffer List.
0418      *  RX_BUF_NUM BD in Free Buffer FD.
0419      *  One Free Buffer BD has ETH_FRAME_LEN data buffer.
0420      */
0421     void *fd_buf;   /* for TxFD, RxFD, FrFD */
0422     dma_addr_t fd_buf_dma;
0423     struct TxFD *tfd_base;
0424     unsigned int tfd_start;
0425     unsigned int tfd_end;
0426     struct RxFD *rfd_base;
0427     struct RxFD *rfd_limit;
0428     struct RxFD *rfd_cur;
0429     struct FrFD *fbl_ptr;
0430     unsigned int fbl_count;
0431     struct {
0432         struct sk_buff *skb;
0433         dma_addr_t skb_dma;
0434     } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
0435     u32 msg_enable;
0436     enum tc35815_chiptype chiptype;
0437 };
0438 
0439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
0440 {
0441     return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
0442 }
0443 #ifdef DEBUG
0444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
0445 {
0446     return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
0447 }
0448 #endif
0449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
0450                        struct pci_dev *hwdev,
0451                        dma_addr_t *dma_handle)
0452 {
0453     struct sk_buff *skb;
0454     skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
0455     if (!skb)
0456         return NULL;
0457     *dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
0458                      DMA_FROM_DEVICE);
0459     if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
0460         dev_kfree_skb_any(skb);
0461         return NULL;
0462     }
0463     skb_reserve(skb, 2);    /* make IP header 4byte aligned */
0464     return skb;
0465 }
0466 
0467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
0468 {
0469     dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
0470              DMA_FROM_DEVICE);
0471     dev_kfree_skb_any(skb);
0472 }
0473 
0474 /* Index to functions, as function prototypes. */
0475 
0476 static int  tc35815_open(struct net_device *dev);
0477 static netdev_tx_t  tc35815_send_packet(struct sk_buff *skb,
0478                         struct net_device *dev);
0479 static irqreturn_t  tc35815_interrupt(int irq, void *dev_id);
0480 static int  tc35815_rx(struct net_device *dev, int limit);
0481 static int  tc35815_poll(struct napi_struct *napi, int budget);
0482 static void tc35815_txdone(struct net_device *dev);
0483 static int  tc35815_close(struct net_device *dev);
0484 static struct   net_device_stats *tc35815_get_stats(struct net_device *dev);
0485 static void tc35815_set_multicast_list(struct net_device *dev);
0486 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
0487 #ifdef CONFIG_NET_POLL_CONTROLLER
0488 static void tc35815_poll_controller(struct net_device *dev);
0489 #endif
0490 static const struct ethtool_ops tc35815_ethtool_ops;
0491 
0492 /* Example routines you must write ;->. */
0493 static void tc35815_chip_reset(struct net_device *dev);
0494 static void tc35815_chip_init(struct net_device *dev);
0495 
0496 #ifdef DEBUG
0497 static void panic_queues(struct net_device *dev);
0498 #endif
0499 
0500 static void tc35815_restart_work(struct work_struct *work);
0501 
0502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
0503 {
0504     struct net_device *dev = bus->priv;
0505     struct tc35815_regs __iomem *tr =
0506         (struct tc35815_regs __iomem *)dev->base_addr;
0507     unsigned long timeout = jiffies + HZ;
0508 
0509     tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
0510     udelay(12); /* it takes 32 x 400ns at least */
0511     while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
0512         if (time_after(jiffies, timeout))
0513             return -EIO;
0514         cpu_relax();
0515     }
0516     return tc_readl(&tr->MD_Data) & 0xffff;
0517 }
0518 
0519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
0520 {
0521     struct net_device *dev = bus->priv;
0522     struct tc35815_regs __iomem *tr =
0523         (struct tc35815_regs __iomem *)dev->base_addr;
0524     unsigned long timeout = jiffies + HZ;
0525 
0526     tc_writel(val, &tr->MD_Data);
0527     tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
0528           &tr->MD_CA);
0529     udelay(12); /* it takes 32 x 400ns at least */
0530     while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
0531         if (time_after(jiffies, timeout))
0532             return -EIO;
0533         cpu_relax();
0534     }
0535     return 0;
0536 }
0537 
0538 static void tc_handle_link_change(struct net_device *dev)
0539 {
0540     struct tc35815_local *lp = netdev_priv(dev);
0541     struct phy_device *phydev = dev->phydev;
0542     unsigned long flags;
0543     int status_change = 0;
0544 
0545     spin_lock_irqsave(&lp->lock, flags);
0546     if (phydev->link &&
0547         (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
0548         struct tc35815_regs __iomem *tr =
0549             (struct tc35815_regs __iomem *)dev->base_addr;
0550         u32 reg;
0551 
0552         reg = tc_readl(&tr->MAC_Ctl);
0553         reg |= MAC_HaltReq;
0554         tc_writel(reg, &tr->MAC_Ctl);
0555         if (phydev->duplex == DUPLEX_FULL)
0556             reg |= MAC_FullDup;
0557         else
0558             reg &= ~MAC_FullDup;
0559         tc_writel(reg, &tr->MAC_Ctl);
0560         reg &= ~MAC_HaltReq;
0561         tc_writel(reg, &tr->MAC_Ctl);
0562 
0563         /*
0564          * TX4939 PCFG.SPEEDn bit will be changed on
0565          * NETDEV_CHANGE event.
0566          */
0567         /*
0568          * WORKAROUND: enable LostCrS only if half duplex
0569          * operation.
0570          * (TX4939 does not have EnLCarr)
0571          */
0572         if (phydev->duplex == DUPLEX_HALF &&
0573             lp->chiptype != TC35815_TX4939)
0574             tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
0575                   &tr->Tx_Ctl);
0576 
0577         lp->speed = phydev->speed;
0578         lp->duplex = phydev->duplex;
0579         status_change = 1;
0580     }
0581 
0582     if (phydev->link != lp->link) {
0583         if (phydev->link) {
0584             /* delayed promiscuous enabling */
0585             if (dev->flags & IFF_PROMISC)
0586                 tc35815_set_multicast_list(dev);
0587         } else {
0588             lp->speed = 0;
0589             lp->duplex = -1;
0590         }
0591         lp->link = phydev->link;
0592 
0593         status_change = 1;
0594     }
0595     spin_unlock_irqrestore(&lp->lock, flags);
0596 
0597     if (status_change && netif_msg_link(lp)) {
0598         phy_print_status(phydev);
0599         pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
0600              dev->name,
0601              phy_read(phydev, MII_BMCR),
0602              phy_read(phydev, MII_BMSR),
0603              phy_read(phydev, MII_LPA));
0604     }
0605 }
0606 
0607 static int tc_mii_probe(struct net_device *dev)
0608 {
0609     __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
0610     struct tc35815_local *lp = netdev_priv(dev);
0611     struct phy_device *phydev;
0612 
0613     phydev = phy_find_first(lp->mii_bus);
0614     if (!phydev) {
0615         printk(KERN_ERR "%s: no PHY found\n", dev->name);
0616         return -ENODEV;
0617     }
0618 
0619     /* attach the mac to the phy */
0620     phydev = phy_connect(dev, phydev_name(phydev),
0621                  &tc_handle_link_change,
0622                  lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
0623     if (IS_ERR(phydev)) {
0624         printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
0625         return PTR_ERR(phydev);
0626     }
0627 
0628     phy_attached_info(phydev);
0629 
0630     /* mask with MAC supported features */
0631     phy_set_max_speed(phydev, SPEED_100);
0632     if (options.speed == 10) {
0633         linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
0634         linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
0635     } else if (options.speed == 100) {
0636         linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
0637         linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
0638     }
0639     if (options.duplex == 1) {
0640         linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
0641         linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
0642     } else if (options.duplex == 2) {
0643         linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
0644         linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
0645     }
0646     linkmode_andnot(phydev->supported, phydev->supported, mask);
0647     linkmode_copy(phydev->advertising, phydev->supported);
0648 
0649     lp->link = 0;
0650     lp->speed = 0;
0651     lp->duplex = -1;
0652 
0653     return 0;
0654 }
0655 
0656 static int tc_mii_init(struct net_device *dev)
0657 {
0658     struct tc35815_local *lp = netdev_priv(dev);
0659     int err;
0660 
0661     lp->mii_bus = mdiobus_alloc();
0662     if (lp->mii_bus == NULL) {
0663         err = -ENOMEM;
0664         goto err_out;
0665     }
0666 
0667     lp->mii_bus->name = "tc35815_mii_bus";
0668     lp->mii_bus->read = tc_mdio_read;
0669     lp->mii_bus->write = tc_mdio_write;
0670     snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
0671          (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
0672     lp->mii_bus->priv = dev;
0673     lp->mii_bus->parent = &lp->pci_dev->dev;
0674     err = mdiobus_register(lp->mii_bus);
0675     if (err)
0676         goto err_out_free_mii_bus;
0677     err = tc_mii_probe(dev);
0678     if (err)
0679         goto err_out_unregister_bus;
0680     return 0;
0681 
0682 err_out_unregister_bus:
0683     mdiobus_unregister(lp->mii_bus);
0684 err_out_free_mii_bus:
0685     mdiobus_free(lp->mii_bus);
0686 err_out:
0687     return err;
0688 }
0689 
0690 #ifdef CONFIG_CPU_TX49XX
0691 /*
0692  * Find a platform_device providing a MAC address.  The platform code
0693  * should provide a "tc35815-mac" device with a MAC address in its
0694  * platform_data.
0695  */
0696 static int tc35815_mac_match(struct device *dev, const void *data)
0697 {
0698     struct platform_device *plat_dev = to_platform_device(dev);
0699     const struct pci_dev *pci_dev = data;
0700     unsigned int id = pci_dev->irq;
0701     return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
0702 }
0703 
0704 static int tc35815_read_plat_dev_addr(struct net_device *dev)
0705 {
0706     struct tc35815_local *lp = netdev_priv(dev);
0707     struct device *pd = bus_find_device(&platform_bus_type, NULL,
0708                         lp->pci_dev, tc35815_mac_match);
0709     if (pd) {
0710         if (pd->platform_data)
0711             eth_hw_addr_set(dev, pd->platform_data);
0712         put_device(pd);
0713         return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
0714     }
0715     return -ENODEV;
0716 }
0717 #else
0718 static int tc35815_read_plat_dev_addr(struct net_device *dev)
0719 {
0720     return -ENODEV;
0721 }
0722 #endif
0723 
0724 static int tc35815_init_dev_addr(struct net_device *dev)
0725 {
0726     struct tc35815_regs __iomem *tr =
0727         (struct tc35815_regs __iomem *)dev->base_addr;
0728     u8 addr[ETH_ALEN];
0729     int i;
0730 
0731     while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
0732         ;
0733     for (i = 0; i < 6; i += 2) {
0734         unsigned short data;
0735         tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
0736         while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
0737             ;
0738         data = tc_readl(&tr->PROM_Data);
0739         addr[i] = data & 0xff;
0740         addr[i+1] = data >> 8;
0741     }
0742     eth_hw_addr_set(dev, addr);
0743     if (!is_valid_ether_addr(dev->dev_addr))
0744         return tc35815_read_plat_dev_addr(dev);
0745     return 0;
0746 }
0747 
0748 static const struct net_device_ops tc35815_netdev_ops = {
0749     .ndo_open       = tc35815_open,
0750     .ndo_stop       = tc35815_close,
0751     .ndo_start_xmit     = tc35815_send_packet,
0752     .ndo_get_stats      = tc35815_get_stats,
0753     .ndo_set_rx_mode    = tc35815_set_multicast_list,
0754     .ndo_tx_timeout     = tc35815_tx_timeout,
0755     .ndo_eth_ioctl      = phy_do_ioctl_running,
0756     .ndo_validate_addr  = eth_validate_addr,
0757     .ndo_set_mac_address    = eth_mac_addr,
0758 #ifdef CONFIG_NET_POLL_CONTROLLER
0759     .ndo_poll_controller    = tc35815_poll_controller,
0760 #endif
0761 };
0762 
0763 static int tc35815_init_one(struct pci_dev *pdev,
0764                 const struct pci_device_id *ent)
0765 {
0766     void __iomem *ioaddr = NULL;
0767     struct net_device *dev;
0768     struct tc35815_local *lp;
0769     int rc;
0770 
0771     static int printed_version;
0772     if (!printed_version++) {
0773         printk(version);
0774         dev_printk(KERN_DEBUG, &pdev->dev,
0775                "speed:%d duplex:%d\n",
0776                options.speed, options.duplex);
0777     }
0778 
0779     if (!pdev->irq) {
0780         dev_warn(&pdev->dev, "no IRQ assigned.\n");
0781         return -ENODEV;
0782     }
0783 
0784     /* dev zeroed in alloc_etherdev */
0785     dev = alloc_etherdev(sizeof(*lp));
0786     if (dev == NULL)
0787         return -ENOMEM;
0788 
0789     SET_NETDEV_DEV(dev, &pdev->dev);
0790     lp = netdev_priv(dev);
0791     lp->dev = dev;
0792 
0793     /* enable device (incl. PCI PM wakeup), and bus-mastering */
0794     rc = pcim_enable_device(pdev);
0795     if (rc)
0796         goto err_out;
0797     rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
0798     if (rc)
0799         goto err_out;
0800     pci_set_master(pdev);
0801     ioaddr = pcim_iomap_table(pdev)[1];
0802 
0803     /* Initialize the device structure. */
0804     dev->netdev_ops = &tc35815_netdev_ops;
0805     dev->ethtool_ops = &tc35815_ethtool_ops;
0806     dev->watchdog_timeo = TC35815_TX_TIMEOUT;
0807     netif_napi_add_weight(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
0808 
0809     dev->irq = pdev->irq;
0810     dev->base_addr = (unsigned long)ioaddr;
0811 
0812     INIT_WORK(&lp->restart_work, tc35815_restart_work);
0813     spin_lock_init(&lp->lock);
0814     spin_lock_init(&lp->rx_lock);
0815     lp->pci_dev = pdev;
0816     lp->chiptype = ent->driver_data;
0817 
0818     lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
0819     pci_set_drvdata(pdev, dev);
0820 
0821     /* Soft reset the chip. */
0822     tc35815_chip_reset(dev);
0823 
0824     /* Retrieve the ethernet address. */
0825     if (tc35815_init_dev_addr(dev)) {
0826         dev_warn(&pdev->dev, "not valid ether addr\n");
0827         eth_hw_addr_random(dev);
0828     }
0829 
0830     rc = register_netdev(dev);
0831     if (rc)
0832         goto err_out;
0833 
0834     printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
0835         dev->name,
0836         chip_info[ent->driver_data].name,
0837         dev->base_addr,
0838         dev->dev_addr,
0839         dev->irq);
0840 
0841     rc = tc_mii_init(dev);
0842     if (rc)
0843         goto err_out_unregister;
0844 
0845     return 0;
0846 
0847 err_out_unregister:
0848     unregister_netdev(dev);
0849 err_out:
0850     free_netdev(dev);
0851     return rc;
0852 }
0853 
0854 
0855 static void tc35815_remove_one(struct pci_dev *pdev)
0856 {
0857     struct net_device *dev = pci_get_drvdata(pdev);
0858     struct tc35815_local *lp = netdev_priv(dev);
0859 
0860     phy_disconnect(dev->phydev);
0861     mdiobus_unregister(lp->mii_bus);
0862     mdiobus_free(lp->mii_bus);
0863     unregister_netdev(dev);
0864     free_netdev(dev);
0865 }
0866 
0867 static int
0868 tc35815_init_queues(struct net_device *dev)
0869 {
0870     struct tc35815_local *lp = netdev_priv(dev);
0871     int i;
0872     unsigned long fd_addr;
0873 
0874     if (!lp->fd_buf) {
0875         BUG_ON(sizeof(struct FDesc) +
0876                sizeof(struct BDesc) * RX_BUF_NUM +
0877                sizeof(struct FDesc) * RX_FD_NUM +
0878                sizeof(struct TxFD) * TX_FD_NUM >
0879                PAGE_SIZE * FD_PAGE_NUM);
0880 
0881         lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
0882                         PAGE_SIZE * FD_PAGE_NUM,
0883                         &lp->fd_buf_dma, GFP_ATOMIC);
0884         if (!lp->fd_buf)
0885             return -ENOMEM;
0886         for (i = 0; i < RX_BUF_NUM; i++) {
0887             lp->rx_skbs[i].skb =
0888                 alloc_rxbuf_skb(dev, lp->pci_dev,
0889                         &lp->rx_skbs[i].skb_dma);
0890             if (!lp->rx_skbs[i].skb) {
0891                 while (--i >= 0) {
0892                     free_rxbuf_skb(lp->pci_dev,
0893                                lp->rx_skbs[i].skb,
0894                                lp->rx_skbs[i].skb_dma);
0895                     lp->rx_skbs[i].skb = NULL;
0896                 }
0897                 dma_free_coherent(&lp->pci_dev->dev,
0898                           PAGE_SIZE * FD_PAGE_NUM,
0899                           lp->fd_buf, lp->fd_buf_dma);
0900                 lp->fd_buf = NULL;
0901                 return -ENOMEM;
0902             }
0903         }
0904         printk(KERN_DEBUG "%s: FD buf %p DataBuf",
0905                dev->name, lp->fd_buf);
0906         printk("\n");
0907     } else {
0908         for (i = 0; i < FD_PAGE_NUM; i++)
0909             clear_page((void *)((unsigned long)lp->fd_buf +
0910                         i * PAGE_SIZE));
0911     }
0912     fd_addr = (unsigned long)lp->fd_buf;
0913 
0914     /* Free Descriptors (for Receive) */
0915     lp->rfd_base = (struct RxFD *)fd_addr;
0916     fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
0917     for (i = 0; i < RX_FD_NUM; i++)
0918         lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
0919     lp->rfd_cur = lp->rfd_base;
0920     lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
0921 
0922     /* Transmit Descriptors */
0923     lp->tfd_base = (struct TxFD *)fd_addr;
0924     fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
0925     for (i = 0; i < TX_FD_NUM; i++) {
0926         lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
0927         lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
0928         lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
0929     }
0930     lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
0931     lp->tfd_start = 0;
0932     lp->tfd_end = 0;
0933 
0934     /* Buffer List (for Receive) */
0935     lp->fbl_ptr = (struct FrFD *)fd_addr;
0936     lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
0937     lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
0938     /*
0939      * move all allocated skbs to head of rx_skbs[] array.
0940      * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
0941      * tc35815_rx() had failed.
0942      */
0943     lp->fbl_count = 0;
0944     for (i = 0; i < RX_BUF_NUM; i++) {
0945         if (lp->rx_skbs[i].skb) {
0946             if (i != lp->fbl_count) {
0947                 lp->rx_skbs[lp->fbl_count].skb =
0948                     lp->rx_skbs[i].skb;
0949                 lp->rx_skbs[lp->fbl_count].skb_dma =
0950                     lp->rx_skbs[i].skb_dma;
0951             }
0952             lp->fbl_count++;
0953         }
0954     }
0955     for (i = 0; i < RX_BUF_NUM; i++) {
0956         if (i >= lp->fbl_count) {
0957             lp->fbl_ptr->bd[i].BuffData = 0;
0958             lp->fbl_ptr->bd[i].BDCtl = 0;
0959             continue;
0960         }
0961         lp->fbl_ptr->bd[i].BuffData =
0962             cpu_to_le32(lp->rx_skbs[i].skb_dma);
0963         /* BDID is index of FrFD.bd[] */
0964         lp->fbl_ptr->bd[i].BDCtl =
0965             cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
0966                     RX_BUF_SIZE);
0967     }
0968 
0969     printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
0970            dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
0971     return 0;
0972 }
0973 
0974 static void
0975 tc35815_clear_queues(struct net_device *dev)
0976 {
0977     struct tc35815_local *lp = netdev_priv(dev);
0978     int i;
0979 
0980     for (i = 0; i < TX_FD_NUM; i++) {
0981         u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
0982         struct sk_buff *skb =
0983             fdsystem != 0xffffffff ?
0984             lp->tx_skbs[fdsystem].skb : NULL;
0985 #ifdef DEBUG
0986         if (lp->tx_skbs[i].skb != skb) {
0987             printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
0988             panic_queues(dev);
0989         }
0990 #else
0991         BUG_ON(lp->tx_skbs[i].skb != skb);
0992 #endif
0993         if (skb) {
0994             dma_unmap_single(&lp->pci_dev->dev,
0995                      lp->tx_skbs[i].skb_dma, skb->len,
0996                      DMA_TO_DEVICE);
0997             lp->tx_skbs[i].skb = NULL;
0998             lp->tx_skbs[i].skb_dma = 0;
0999             dev_kfree_skb_any(skb);
1000         }
1001         lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1002     }
1003 
1004     tc35815_init_queues(dev);
1005 }
1006 
1007 static void
1008 tc35815_free_queues(struct net_device *dev)
1009 {
1010     struct tc35815_local *lp = netdev_priv(dev);
1011     int i;
1012 
1013     if (lp->tfd_base) {
1014         for (i = 0; i < TX_FD_NUM; i++) {
1015             u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1016             struct sk_buff *skb =
1017                 fdsystem != 0xffffffff ?
1018                 lp->tx_skbs[fdsystem].skb : NULL;
1019 #ifdef DEBUG
1020             if (lp->tx_skbs[i].skb != skb) {
1021                 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1022                 panic_queues(dev);
1023             }
1024 #else
1025             BUG_ON(lp->tx_skbs[i].skb != skb);
1026 #endif
1027             if (skb) {
1028                 dma_unmap_single(&lp->pci_dev->dev,
1029                          lp->tx_skbs[i].skb_dma,
1030                          skb->len, DMA_TO_DEVICE);
1031                 dev_kfree_skb(skb);
1032                 lp->tx_skbs[i].skb = NULL;
1033                 lp->tx_skbs[i].skb_dma = 0;
1034             }
1035             lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1036         }
1037     }
1038 
1039     lp->rfd_base = NULL;
1040     lp->rfd_limit = NULL;
1041     lp->rfd_cur = NULL;
1042     lp->fbl_ptr = NULL;
1043 
1044     for (i = 0; i < RX_BUF_NUM; i++) {
1045         if (lp->rx_skbs[i].skb) {
1046             free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1047                        lp->rx_skbs[i].skb_dma);
1048             lp->rx_skbs[i].skb = NULL;
1049         }
1050     }
1051     if (lp->fd_buf) {
1052         dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
1053                   lp->fd_buf, lp->fd_buf_dma);
1054         lp->fd_buf = NULL;
1055     }
1056 }
1057 
1058 static void
1059 dump_txfd(struct TxFD *fd)
1060 {
1061     printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1062            le32_to_cpu(fd->fd.FDNext),
1063            le32_to_cpu(fd->fd.FDSystem),
1064            le32_to_cpu(fd->fd.FDStat),
1065            le32_to_cpu(fd->fd.FDCtl));
1066     printk("BD: ");
1067     printk(" %08x %08x",
1068            le32_to_cpu(fd->bd.BuffData),
1069            le32_to_cpu(fd->bd.BDCtl));
1070     printk("\n");
1071 }
1072 
1073 static int
1074 dump_rxfd(struct RxFD *fd)
1075 {
1076     int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1077     if (bd_count > 8)
1078         bd_count = 8;
1079     printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1080            le32_to_cpu(fd->fd.FDNext),
1081            le32_to_cpu(fd->fd.FDSystem),
1082            le32_to_cpu(fd->fd.FDStat),
1083            le32_to_cpu(fd->fd.FDCtl));
1084     if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1085         return 0;
1086     printk("BD: ");
1087     for (i = 0; i < bd_count; i++)
1088         printk(" %08x %08x",
1089                le32_to_cpu(fd->bd[i].BuffData),
1090                le32_to_cpu(fd->bd[i].BDCtl));
1091     printk("\n");
1092     return bd_count;
1093 }
1094 
1095 #ifdef DEBUG
1096 static void
1097 dump_frfd(struct FrFD *fd)
1098 {
1099     int i;
1100     printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1101            le32_to_cpu(fd->fd.FDNext),
1102            le32_to_cpu(fd->fd.FDSystem),
1103            le32_to_cpu(fd->fd.FDStat),
1104            le32_to_cpu(fd->fd.FDCtl));
1105     printk("BD: ");
1106     for (i = 0; i < RX_BUF_NUM; i++)
1107         printk(" %08x %08x",
1108                le32_to_cpu(fd->bd[i].BuffData),
1109                le32_to_cpu(fd->bd[i].BDCtl));
1110     printk("\n");
1111 }
1112 
1113 static void
1114 panic_queues(struct net_device *dev)
1115 {
1116     struct tc35815_local *lp = netdev_priv(dev);
1117     int i;
1118 
1119     printk("TxFD base %p, start %u, end %u\n",
1120            lp->tfd_base, lp->tfd_start, lp->tfd_end);
1121     printk("RxFD base %p limit %p cur %p\n",
1122            lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1123     printk("FrFD %p\n", lp->fbl_ptr);
1124     for (i = 0; i < TX_FD_NUM; i++)
1125         dump_txfd(&lp->tfd_base[i]);
1126     for (i = 0; i < RX_FD_NUM; i++) {
1127         int bd_count = dump_rxfd(&lp->rfd_base[i]);
1128         i += (bd_count + 1) / 2;    /* skip BDs */
1129     }
1130     dump_frfd(lp->fbl_ptr);
1131     panic("%s: Illegal queue state.", dev->name);
1132 }
1133 #endif
1134 
1135 static void print_eth(const u8 *add)
1136 {
1137     printk(KERN_DEBUG "print_eth(%p)\n", add);
1138     printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1139         add + 6, add, add[12], add[13]);
1140 }
1141 
1142 static int tc35815_tx_full(struct net_device *dev)
1143 {
1144     struct tc35815_local *lp = netdev_priv(dev);
1145     return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1146 }
1147 
1148 static void tc35815_restart(struct net_device *dev)
1149 {
1150     struct tc35815_local *lp = netdev_priv(dev);
1151     int ret;
1152 
1153     if (dev->phydev) {
1154         ret = phy_init_hw(dev->phydev);
1155         if (ret)
1156             printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1157     }
1158 
1159     spin_lock_bh(&lp->rx_lock);
1160     spin_lock_irq(&lp->lock);
1161     tc35815_chip_reset(dev);
1162     tc35815_clear_queues(dev);
1163     tc35815_chip_init(dev);
1164     /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1165     tc35815_set_multicast_list(dev);
1166     spin_unlock_irq(&lp->lock);
1167     spin_unlock_bh(&lp->rx_lock);
1168 
1169     netif_wake_queue(dev);
1170 }
1171 
1172 static void tc35815_restart_work(struct work_struct *work)
1173 {
1174     struct tc35815_local *lp =
1175         container_of(work, struct tc35815_local, restart_work);
1176     struct net_device *dev = lp->dev;
1177 
1178     tc35815_restart(dev);
1179 }
1180 
1181 static void tc35815_schedule_restart(struct net_device *dev)
1182 {
1183     struct tc35815_local *lp = netdev_priv(dev);
1184     struct tc35815_regs __iomem *tr =
1185         (struct tc35815_regs __iomem *)dev->base_addr;
1186     unsigned long flags;
1187 
1188     /* disable interrupts */
1189     spin_lock_irqsave(&lp->lock, flags);
1190     tc_writel(0, &tr->Int_En);
1191     tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1192     schedule_work(&lp->restart_work);
1193     spin_unlock_irqrestore(&lp->lock, flags);
1194 }
1195 
1196 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1197 {
1198     struct tc35815_regs __iomem *tr =
1199         (struct tc35815_regs __iomem *)dev->base_addr;
1200 
1201     printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1202            dev->name, tc_readl(&tr->Tx_Stat));
1203 
1204     /* Try to restart the adaptor. */
1205     tc35815_schedule_restart(dev);
1206     dev->stats.tx_errors++;
1207 }
1208 
1209 /*
1210  * Open/initialize the controller. This is called (in the current kernel)
1211  * sometime after booting when the 'ifconfig' program is run.
1212  *
1213  * This routine should set everything up anew at each open, even
1214  * registers that "should" only need to be set once at boot, so that
1215  * there is non-reboot way to recover if something goes wrong.
1216  */
1217 static int
1218 tc35815_open(struct net_device *dev)
1219 {
1220     struct tc35815_local *lp = netdev_priv(dev);
1221 
1222     /*
1223      * This is used if the interrupt line can turned off (shared).
1224      * See 3c503.c for an example of selecting the IRQ at config-time.
1225      */
1226     if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1227             dev->name, dev))
1228         return -EAGAIN;
1229 
1230     tc35815_chip_reset(dev);
1231 
1232     if (tc35815_init_queues(dev) != 0) {
1233         free_irq(dev->irq, dev);
1234         return -EAGAIN;
1235     }
1236 
1237     napi_enable(&lp->napi);
1238 
1239     /* Reset the hardware here. Don't forget to set the station address. */
1240     spin_lock_irq(&lp->lock);
1241     tc35815_chip_init(dev);
1242     spin_unlock_irq(&lp->lock);
1243 
1244     netif_carrier_off(dev);
1245     /* schedule a link state check */
1246     phy_start(dev->phydev);
1247 
1248     /* We are now ready to accept transmit requeusts from
1249      * the queueing layer of the networking.
1250      */
1251     netif_start_queue(dev);
1252 
1253     return 0;
1254 }
1255 
1256 /* This will only be invoked if your driver is _not_ in XOFF state.
1257  * What this means is that you need not check it, and that this
1258  * invariant will hold if you make sure that the netif_*_queue()
1259  * calls are done at the proper times.
1260  */
1261 static netdev_tx_t
1262 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1263 {
1264     struct tc35815_local *lp = netdev_priv(dev);
1265     struct TxFD *txfd;
1266     unsigned long flags;
1267 
1268     /* If some error occurs while trying to transmit this
1269      * packet, you should return '1' from this function.
1270      * In such a case you _may not_ do anything to the
1271      * SKB, it is still owned by the network queueing
1272      * layer when an error is returned.  This means you
1273      * may not modify any SKB fields, you may not free
1274      * the SKB, etc.
1275      */
1276 
1277     /* This is the most common case for modern hardware.
1278      * The spinlock protects this code from the TX complete
1279      * hardware interrupt handler.  Queue flow control is
1280      * thus managed under this lock as well.
1281      */
1282     spin_lock_irqsave(&lp->lock, flags);
1283 
1284     /* failsafe... (handle txdone now if half of FDs are used) */
1285     if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1286         TX_FD_NUM / 2)
1287         tc35815_txdone(dev);
1288 
1289     if (netif_msg_pktdata(lp))
1290         print_eth(skb->data);
1291 #ifdef DEBUG
1292     if (lp->tx_skbs[lp->tfd_start].skb) {
1293         printk("%s: tx_skbs conflict.\n", dev->name);
1294         panic_queues(dev);
1295     }
1296 #else
1297     BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1298 #endif
1299     lp->tx_skbs[lp->tfd_start].skb = skb;
1300     lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
1301                                 skb->data,
1302                                 skb->len,
1303                                 DMA_TO_DEVICE);
1304 
1305     /*add to ring */
1306     txfd = &lp->tfd_base[lp->tfd_start];
1307     txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1308     txfd->bd.BDCtl = cpu_to_le32(skb->len);
1309     txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1310     txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1311 
1312     if (lp->tfd_start == lp->tfd_end) {
1313         struct tc35815_regs __iomem *tr =
1314             (struct tc35815_regs __iomem *)dev->base_addr;
1315         /* Start DMA Transmitter. */
1316         txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1317         txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1318         if (netif_msg_tx_queued(lp)) {
1319             printk("%s: starting TxFD.\n", dev->name);
1320             dump_txfd(txfd);
1321         }
1322         tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1323     } else {
1324         txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1325         if (netif_msg_tx_queued(lp)) {
1326             printk("%s: queueing TxFD.\n", dev->name);
1327             dump_txfd(txfd);
1328         }
1329     }
1330     lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1331 
1332     /* If we just used up the very last entry in the
1333      * TX ring on this device, tell the queueing
1334      * layer to send no more.
1335      */
1336     if (tc35815_tx_full(dev)) {
1337         if (netif_msg_tx_queued(lp))
1338             printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1339         netif_stop_queue(dev);
1340     }
1341 
1342     /* When the TX completion hw interrupt arrives, this
1343      * is when the transmit statistics are updated.
1344      */
1345 
1346     spin_unlock_irqrestore(&lp->lock, flags);
1347     return NETDEV_TX_OK;
1348 }
1349 
1350 #define FATAL_ERROR_INT \
1351     (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1352 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1353 {
1354     static int count;
1355     printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1356            dev->name, status);
1357     if (status & Int_IntPCI)
1358         printk(" IntPCI");
1359     if (status & Int_DmParErr)
1360         printk(" DmParErr");
1361     if (status & Int_IntNRAbt)
1362         printk(" IntNRAbt");
1363     printk("\n");
1364     if (count++ > 100)
1365         panic("%s: Too many fatal errors.", dev->name);
1366     printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1367     /* Try to restart the adaptor. */
1368     tc35815_schedule_restart(dev);
1369 }
1370 
1371 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1372 {
1373     struct tc35815_local *lp = netdev_priv(dev);
1374     int ret = -1;
1375 
1376     /* Fatal errors... */
1377     if (status & FATAL_ERROR_INT) {
1378         tc35815_fatal_error_interrupt(dev, status);
1379         return 0;
1380     }
1381     /* recoverable errors */
1382     if (status & Int_IntFDAEx) {
1383         if (netif_msg_rx_err(lp))
1384             dev_warn(&dev->dev,
1385                  "Free Descriptor Area Exhausted (%#x).\n",
1386                  status);
1387         dev->stats.rx_dropped++;
1388         ret = 0;
1389     }
1390     if (status & Int_IntBLEx) {
1391         if (netif_msg_rx_err(lp))
1392             dev_warn(&dev->dev,
1393                  "Buffer List Exhausted (%#x).\n",
1394                  status);
1395         dev->stats.rx_dropped++;
1396         ret = 0;
1397     }
1398     if (status & Int_IntExBD) {
1399         if (netif_msg_rx_err(lp))
1400             dev_warn(&dev->dev,
1401                  "Excessive Buffer Descriptors (%#x).\n",
1402                  status);
1403         dev->stats.rx_length_errors++;
1404         ret = 0;
1405     }
1406 
1407     /* normal notification */
1408     if (status & Int_IntMacRx) {
1409         /* Got a packet(s). */
1410         ret = tc35815_rx(dev, limit);
1411         lp->lstats.rx_ints++;
1412     }
1413     if (status & Int_IntMacTx) {
1414         /* Transmit complete. */
1415         lp->lstats.tx_ints++;
1416         spin_lock_irq(&lp->lock);
1417         tc35815_txdone(dev);
1418         spin_unlock_irq(&lp->lock);
1419         if (ret < 0)
1420             ret = 0;
1421     }
1422     return ret;
1423 }
1424 
1425 /*
1426  * The typical workload of the driver:
1427  * Handle the network interface interrupts.
1428  */
1429 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1430 {
1431     struct net_device *dev = dev_id;
1432     struct tc35815_local *lp = netdev_priv(dev);
1433     struct tc35815_regs __iomem *tr =
1434         (struct tc35815_regs __iomem *)dev->base_addr;
1435     u32 dmactl = tc_readl(&tr->DMA_Ctl);
1436 
1437     if (!(dmactl & DMA_IntMask)) {
1438         /* disable interrupts */
1439         tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1440         if (napi_schedule_prep(&lp->napi))
1441             __napi_schedule(&lp->napi);
1442         else {
1443             printk(KERN_ERR "%s: interrupt taken in poll\n",
1444                    dev->name);
1445             BUG();
1446         }
1447         (void)tc_readl(&tr->Int_Src);   /* flush */
1448         return IRQ_HANDLED;
1449     }
1450     return IRQ_NONE;
1451 }
1452 
1453 #ifdef CONFIG_NET_POLL_CONTROLLER
1454 static void tc35815_poll_controller(struct net_device *dev)
1455 {
1456     disable_irq(dev->irq);
1457     tc35815_interrupt(dev->irq, dev);
1458     enable_irq(dev->irq);
1459 }
1460 #endif
1461 
1462 /* We have a good packet(s), get it/them out of the buffers. */
1463 static int
1464 tc35815_rx(struct net_device *dev, int limit)
1465 {
1466     struct tc35815_local *lp = netdev_priv(dev);
1467     unsigned int fdctl;
1468     int i;
1469     int received = 0;
1470 
1471     while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1472         int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1473         int pkt_len = fdctl & FD_FDLength_MASK;
1474         int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1475 #ifdef DEBUG
1476         struct RxFD *next_rfd;
1477 #endif
1478 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1479         pkt_len -= ETH_FCS_LEN;
1480 #endif
1481 
1482         if (netif_msg_rx_status(lp))
1483             dump_rxfd(lp->rfd_cur);
1484         if (status & Rx_Good) {
1485             struct sk_buff *skb;
1486             unsigned char *data;
1487             int cur_bd;
1488 
1489             if (--limit < 0)
1490                 break;
1491             BUG_ON(bd_count > 1);
1492             cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1493                   & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1494 #ifdef DEBUG
1495             if (cur_bd >= RX_BUF_NUM) {
1496                 printk("%s: invalid BDID.\n", dev->name);
1497                 panic_queues(dev);
1498             }
1499             BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1500                    (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1501             if (!lp->rx_skbs[cur_bd].skb) {
1502                 printk("%s: NULL skb.\n", dev->name);
1503                 panic_queues(dev);
1504             }
1505 #else
1506             BUG_ON(cur_bd >= RX_BUF_NUM);
1507 #endif
1508             skb = lp->rx_skbs[cur_bd].skb;
1509             prefetch(skb->data);
1510             lp->rx_skbs[cur_bd].skb = NULL;
1511             dma_unmap_single(&lp->pci_dev->dev,
1512                      lp->rx_skbs[cur_bd].skb_dma,
1513                      RX_BUF_SIZE, DMA_FROM_DEVICE);
1514             if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1515                 memmove(skb->data, skb->data - NET_IP_ALIGN,
1516                     pkt_len);
1517             data = skb_put(skb, pkt_len);
1518             if (netif_msg_pktdata(lp))
1519                 print_eth(data);
1520             skb->protocol = eth_type_trans(skb, dev);
1521             netif_receive_skb(skb);
1522             received++;
1523             dev->stats.rx_packets++;
1524             dev->stats.rx_bytes += pkt_len;
1525         } else {
1526             dev->stats.rx_errors++;
1527             if (netif_msg_rx_err(lp))
1528                 dev_info(&dev->dev, "Rx error (status %x)\n",
1529                      status & Rx_Stat_Mask);
1530             /* WORKAROUND: LongErr and CRCErr means Overflow. */
1531             if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1532                 status &= ~(Rx_LongErr|Rx_CRCErr);
1533                 status |= Rx_Over;
1534             }
1535             if (status & Rx_LongErr)
1536                 dev->stats.rx_length_errors++;
1537             if (status & Rx_Over)
1538                 dev->stats.rx_fifo_errors++;
1539             if (status & Rx_CRCErr)
1540                 dev->stats.rx_crc_errors++;
1541             if (status & Rx_Align)
1542                 dev->stats.rx_frame_errors++;
1543         }
1544 
1545         if (bd_count > 0) {
1546             /* put Free Buffer back to controller */
1547             int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1548             unsigned char id =
1549                 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1550 #ifdef DEBUG
1551             if (id >= RX_BUF_NUM) {
1552                 printk("%s: invalid BDID.\n", dev->name);
1553                 panic_queues(dev);
1554             }
1555 #else
1556             BUG_ON(id >= RX_BUF_NUM);
1557 #endif
1558             /* free old buffers */
1559             lp->fbl_count--;
1560             while (lp->fbl_count < RX_BUF_NUM)
1561             {
1562                 unsigned char curid =
1563                     (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1564                 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1565 #ifdef DEBUG
1566                 bdctl = le32_to_cpu(bd->BDCtl);
1567                 if (bdctl & BD_CownsBD) {
1568                     printk("%s: Freeing invalid BD.\n",
1569                            dev->name);
1570                     panic_queues(dev);
1571                 }
1572 #endif
1573                 /* pass BD to controller */
1574                 if (!lp->rx_skbs[curid].skb) {
1575                     lp->rx_skbs[curid].skb =
1576                         alloc_rxbuf_skb(dev,
1577                                 lp->pci_dev,
1578                                 &lp->rx_skbs[curid].skb_dma);
1579                     if (!lp->rx_skbs[curid].skb)
1580                         break; /* try on next reception */
1581                     bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1582                 }
1583                 /* Note: BDLength was modified by chip. */
1584                 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1585                             (curid << BD_RxBDID_SHIFT) |
1586                             RX_BUF_SIZE);
1587                 lp->fbl_count++;
1588             }
1589         }
1590 
1591         /* put RxFD back to controller */
1592 #ifdef DEBUG
1593         next_rfd = fd_bus_to_virt(lp,
1594                       le32_to_cpu(lp->rfd_cur->fd.FDNext));
1595         if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1596             printk("%s: RxFD FDNext invalid.\n", dev->name);
1597             panic_queues(dev);
1598         }
1599 #endif
1600         for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1601             /* pass FD to controller */
1602 #ifdef DEBUG
1603             lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1604 #else
1605             lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1606 #endif
1607             lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1608             lp->rfd_cur++;
1609         }
1610         if (lp->rfd_cur > lp->rfd_limit)
1611             lp->rfd_cur = lp->rfd_base;
1612 #ifdef DEBUG
1613         if (lp->rfd_cur != next_rfd)
1614             printk("rfd_cur = %p, next_rfd %p\n",
1615                    lp->rfd_cur, next_rfd);
1616 #endif
1617     }
1618 
1619     return received;
1620 }
1621 
1622 static int tc35815_poll(struct napi_struct *napi, int budget)
1623 {
1624     struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1625     struct net_device *dev = lp->dev;
1626     struct tc35815_regs __iomem *tr =
1627         (struct tc35815_regs __iomem *)dev->base_addr;
1628     int received = 0, handled;
1629     u32 status;
1630 
1631     if (budget <= 0)
1632         return received;
1633 
1634     spin_lock(&lp->rx_lock);
1635     status = tc_readl(&tr->Int_Src);
1636     do {
1637         /* BLEx, FDAEx will be cleared later */
1638         tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1639               &tr->Int_Src);    /* write to clear */
1640 
1641         handled = tc35815_do_interrupt(dev, status, budget - received);
1642         if (status & (Int_BLEx | Int_FDAEx))
1643             tc_writel(status & (Int_BLEx | Int_FDAEx),
1644                   &tr->Int_Src);
1645         if (handled >= 0) {
1646             received += handled;
1647             if (received >= budget)
1648                 break;
1649         }
1650         status = tc_readl(&tr->Int_Src);
1651     } while (status);
1652     spin_unlock(&lp->rx_lock);
1653 
1654     if (received < budget) {
1655         napi_complete_done(napi, received);
1656         /* enable interrupts */
1657         tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1658     }
1659     return received;
1660 }
1661 
1662 #define TX_STA_ERR  (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1663 
1664 static void
1665 tc35815_check_tx_stat(struct net_device *dev, int status)
1666 {
1667     struct tc35815_local *lp = netdev_priv(dev);
1668     const char *msg = NULL;
1669 
1670     /* count collisions */
1671     if (status & Tx_ExColl)
1672         dev->stats.collisions += 16;
1673     if (status & Tx_TxColl_MASK)
1674         dev->stats.collisions += status & Tx_TxColl_MASK;
1675 
1676     /* TX4939 does not have NCarr */
1677     if (lp->chiptype == TC35815_TX4939)
1678         status &= ~Tx_NCarr;
1679     /* WORKAROUND: ignore LostCrS in full duplex operation */
1680     if (!lp->link || lp->duplex == DUPLEX_FULL)
1681         status &= ~Tx_NCarr;
1682 
1683     if (!(status & TX_STA_ERR)) {
1684         /* no error. */
1685         dev->stats.tx_packets++;
1686         return;
1687     }
1688 
1689     dev->stats.tx_errors++;
1690     if (status & Tx_ExColl) {
1691         dev->stats.tx_aborted_errors++;
1692         msg = "Excessive Collision.";
1693     }
1694     if (status & Tx_Under) {
1695         dev->stats.tx_fifo_errors++;
1696         msg = "Tx FIFO Underrun.";
1697         if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1698             lp->lstats.tx_underrun++;
1699             if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1700                 struct tc35815_regs __iomem *tr =
1701                     (struct tc35815_regs __iomem *)dev->base_addr;
1702                 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1703                 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1704             }
1705         }
1706     }
1707     if (status & Tx_Defer) {
1708         dev->stats.tx_fifo_errors++;
1709         msg = "Excessive Deferral.";
1710     }
1711     if (status & Tx_NCarr) {
1712         dev->stats.tx_carrier_errors++;
1713         msg = "Lost Carrier Sense.";
1714     }
1715     if (status & Tx_LateColl) {
1716         dev->stats.tx_aborted_errors++;
1717         msg = "Late Collision.";
1718     }
1719     if (status & Tx_TxPar) {
1720         dev->stats.tx_fifo_errors++;
1721         msg = "Transmit Parity Error.";
1722     }
1723     if (status & Tx_SQErr) {
1724         dev->stats.tx_heartbeat_errors++;
1725         msg = "Signal Quality Error.";
1726     }
1727     if (msg && netif_msg_tx_err(lp))
1728         printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1729 }
1730 
1731 /* This handles TX complete events posted by the device
1732  * via interrupts.
1733  */
1734 static void
1735 tc35815_txdone(struct net_device *dev)
1736 {
1737     struct tc35815_local *lp = netdev_priv(dev);
1738     struct TxFD *txfd;
1739     unsigned int fdctl;
1740 
1741     txfd = &lp->tfd_base[lp->tfd_end];
1742     while (lp->tfd_start != lp->tfd_end &&
1743            !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1744         int status = le32_to_cpu(txfd->fd.FDStat);
1745         struct sk_buff *skb;
1746         unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1747         u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1748 
1749         if (netif_msg_tx_done(lp)) {
1750             printk("%s: complete TxFD.\n", dev->name);
1751             dump_txfd(txfd);
1752         }
1753         tc35815_check_tx_stat(dev, status);
1754 
1755         skb = fdsystem != 0xffffffff ?
1756             lp->tx_skbs[fdsystem].skb : NULL;
1757 #ifdef DEBUG
1758         if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1759             printk("%s: tx_skbs mismatch.\n", dev->name);
1760             panic_queues(dev);
1761         }
1762 #else
1763         BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1764 #endif
1765         if (skb) {
1766             dev->stats.tx_bytes += skb->len;
1767             dma_unmap_single(&lp->pci_dev->dev,
1768                      lp->tx_skbs[lp->tfd_end].skb_dma,
1769                      skb->len, DMA_TO_DEVICE);
1770             lp->tx_skbs[lp->tfd_end].skb = NULL;
1771             lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1772             dev_kfree_skb_any(skb);
1773         }
1774         txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1775 
1776         lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1777         txfd = &lp->tfd_base[lp->tfd_end];
1778 #ifdef DEBUG
1779         if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1780             printk("%s: TxFD FDNext invalid.\n", dev->name);
1781             panic_queues(dev);
1782         }
1783 #endif
1784         if (fdnext & FD_Next_EOL) {
1785             /* DMA Transmitter has been stopping... */
1786             if (lp->tfd_end != lp->tfd_start) {
1787                 struct tc35815_regs __iomem *tr =
1788                     (struct tc35815_regs __iomem *)dev->base_addr;
1789                 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1790                 struct TxFD *txhead = &lp->tfd_base[head];
1791                 int qlen = (lp->tfd_start + TX_FD_NUM
1792                         - lp->tfd_end) % TX_FD_NUM;
1793 
1794 #ifdef DEBUG
1795                 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1796                     printk("%s: TxFD FDCtl invalid.\n", dev->name);
1797                     panic_queues(dev);
1798                 }
1799 #endif
1800                 /* log max queue length */
1801                 if (lp->lstats.max_tx_qlen < qlen)
1802                     lp->lstats.max_tx_qlen = qlen;
1803 
1804 
1805                 /* start DMA Transmitter again */
1806                 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1807                 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1808                 if (netif_msg_tx_queued(lp)) {
1809                     printk("%s: start TxFD on queue.\n",
1810                            dev->name);
1811                     dump_txfd(txfd);
1812                 }
1813                 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1814             }
1815             break;
1816         }
1817     }
1818 
1819     /* If we had stopped the queue due to a "tx full"
1820      * condition, and space has now been made available,
1821      * wake up the queue.
1822      */
1823     if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1824         netif_wake_queue(dev);
1825 }
1826 
1827 /* The inverse routine to tc35815_open(). */
1828 static int
1829 tc35815_close(struct net_device *dev)
1830 {
1831     struct tc35815_local *lp = netdev_priv(dev);
1832 
1833     netif_stop_queue(dev);
1834     napi_disable(&lp->napi);
1835     if (dev->phydev)
1836         phy_stop(dev->phydev);
1837     cancel_work_sync(&lp->restart_work);
1838 
1839     /* Flush the Tx and disable Rx here. */
1840     tc35815_chip_reset(dev);
1841     free_irq(dev->irq, dev);
1842 
1843     tc35815_free_queues(dev);
1844 
1845     return 0;
1846 
1847 }
1848 
1849 /*
1850  * Get the current statistics.
1851  * This may be called with the card open or closed.
1852  */
1853 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1854 {
1855     struct tc35815_regs __iomem *tr =
1856         (struct tc35815_regs __iomem *)dev->base_addr;
1857     if (netif_running(dev))
1858         /* Update the statistics from the device registers. */
1859         dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1860 
1861     return &dev->stats;
1862 }
1863 
1864 static void tc35815_set_cam_entry(struct net_device *dev, int index,
1865                   const unsigned char *addr)
1866 {
1867     struct tc35815_local *lp = netdev_priv(dev);
1868     struct tc35815_regs __iomem *tr =
1869         (struct tc35815_regs __iomem *)dev->base_addr;
1870     int cam_index = index * 6;
1871     u32 cam_data;
1872     u32 saved_addr;
1873 
1874     saved_addr = tc_readl(&tr->CAM_Adr);
1875 
1876     if (netif_msg_hw(lp))
1877         printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1878             dev->name, index, addr);
1879     if (index & 1) {
1880         /* read modify write */
1881         tc_writel(cam_index - 2, &tr->CAM_Adr);
1882         cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1883         cam_data |= addr[0] << 8 | addr[1];
1884         tc_writel(cam_data, &tr->CAM_Data);
1885         /* write whole word */
1886         tc_writel(cam_index + 2, &tr->CAM_Adr);
1887         cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1888         tc_writel(cam_data, &tr->CAM_Data);
1889     } else {
1890         /* write whole word */
1891         tc_writel(cam_index, &tr->CAM_Adr);
1892         cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1893         tc_writel(cam_data, &tr->CAM_Data);
1894         /* read modify write */
1895         tc_writel(cam_index + 4, &tr->CAM_Adr);
1896         cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1897         cam_data |= addr[4] << 24 | (addr[5] << 16);
1898         tc_writel(cam_data, &tr->CAM_Data);
1899     }
1900 
1901     tc_writel(saved_addr, &tr->CAM_Adr);
1902 }
1903 
1904 
1905 /*
1906  * Set or clear the multicast filter for this adaptor.
1907  * num_addrs == -1  Promiscuous mode, receive all packets
1908  * num_addrs == 0   Normal mode, clear multicast list
1909  * num_addrs > 0    Multicast mode, receive normal and MC packets,
1910  *          and do best-effort filtering.
1911  */
1912 static void
1913 tc35815_set_multicast_list(struct net_device *dev)
1914 {
1915     struct tc35815_regs __iomem *tr =
1916         (struct tc35815_regs __iomem *)dev->base_addr;
1917 
1918     if (dev->flags & IFF_PROMISC) {
1919         /* With some (all?) 100MHalf HUB, controller will hang
1920          * if we enabled promiscuous mode before linkup...
1921          */
1922         struct tc35815_local *lp = netdev_priv(dev);
1923 
1924         if (!lp->link)
1925             return;
1926         /* Enable promiscuous mode */
1927         tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1928     } else if ((dev->flags & IFF_ALLMULTI) ||
1929           netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1930         /* CAM 0, 1, 20 are reserved. */
1931         /* Disable promiscuous mode, use normal mode. */
1932         tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1933     } else if (!netdev_mc_empty(dev)) {
1934         struct netdev_hw_addr *ha;
1935         int i;
1936         int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1937 
1938         tc_writel(0, &tr->CAM_Ctl);
1939         /* Walk the address list, and load the filter */
1940         i = 0;
1941         netdev_for_each_mc_addr(ha, dev) {
1942             /* entry 0,1 is reserved. */
1943             tc35815_set_cam_entry(dev, i + 2, ha->addr);
1944             ena_bits |= CAM_Ena_Bit(i + 2);
1945             i++;
1946         }
1947         tc_writel(ena_bits, &tr->CAM_Ena);
1948         tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1949     } else {
1950         tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1951         tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1952     }
1953 }
1954 
1955 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1956 {
1957     struct tc35815_local *lp = netdev_priv(dev);
1958 
1959     strlcpy(info->driver, MODNAME, sizeof(info->driver));
1960     strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1961     strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1962 }
1963 
1964 static u32 tc35815_get_msglevel(struct net_device *dev)
1965 {
1966     struct tc35815_local *lp = netdev_priv(dev);
1967     return lp->msg_enable;
1968 }
1969 
1970 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1971 {
1972     struct tc35815_local *lp = netdev_priv(dev);
1973     lp->msg_enable = datum;
1974 }
1975 
1976 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1977 {
1978     struct tc35815_local *lp = netdev_priv(dev);
1979 
1980     switch (sset) {
1981     case ETH_SS_STATS:
1982         return sizeof(lp->lstats) / sizeof(int);
1983     default:
1984         return -EOPNOTSUPP;
1985     }
1986 }
1987 
1988 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1989 {
1990     struct tc35815_local *lp = netdev_priv(dev);
1991     data[0] = lp->lstats.max_tx_qlen;
1992     data[1] = lp->lstats.tx_ints;
1993     data[2] = lp->lstats.rx_ints;
1994     data[3] = lp->lstats.tx_underrun;
1995 }
1996 
1997 static struct {
1998     const char str[ETH_GSTRING_LEN];
1999 } ethtool_stats_keys[] = {
2000     { "max_tx_qlen" },
2001     { "tx_ints" },
2002     { "rx_ints" },
2003     { "tx_underrun" },
2004 };
2005 
2006 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2007 {
2008     memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2009 }
2010 
2011 static const struct ethtool_ops tc35815_ethtool_ops = {
2012     .get_drvinfo        = tc35815_get_drvinfo,
2013     .get_link       = ethtool_op_get_link,
2014     .get_msglevel       = tc35815_get_msglevel,
2015     .set_msglevel       = tc35815_set_msglevel,
2016     .get_strings        = tc35815_get_strings,
2017     .get_sset_count     = tc35815_get_sset_count,
2018     .get_ethtool_stats  = tc35815_get_ethtool_stats,
2019     .get_link_ksettings = phy_ethtool_get_link_ksettings,
2020     .set_link_ksettings = phy_ethtool_set_link_ksettings,
2021 };
2022 
2023 static void tc35815_chip_reset(struct net_device *dev)
2024 {
2025     struct tc35815_regs __iomem *tr =
2026         (struct tc35815_regs __iomem *)dev->base_addr;
2027     int i;
2028     /* reset the controller */
2029     tc_writel(MAC_Reset, &tr->MAC_Ctl);
2030     udelay(4); /* 3200ns */
2031     i = 0;
2032     while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2033         if (i++ > 100) {
2034             printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2035             break;
2036         }
2037         mdelay(1);
2038     }
2039     tc_writel(0, &tr->MAC_Ctl);
2040 
2041     /* initialize registers to default value */
2042     tc_writel(0, &tr->DMA_Ctl);
2043     tc_writel(0, &tr->TxThrsh);
2044     tc_writel(0, &tr->TxPollCtr);
2045     tc_writel(0, &tr->RxFragSize);
2046     tc_writel(0, &tr->Int_En);
2047     tc_writel(0, &tr->FDA_Bas);
2048     tc_writel(0, &tr->FDA_Lim);
2049     tc_writel(0xffffffff, &tr->Int_Src);    /* Write 1 to clear */
2050     tc_writel(0, &tr->CAM_Ctl);
2051     tc_writel(0, &tr->Tx_Ctl);
2052     tc_writel(0, &tr->Rx_Ctl);
2053     tc_writel(0, &tr->CAM_Ena);
2054     (void)tc_readl(&tr->Miss_Cnt);  /* Read to clear */
2055 
2056     /* initialize internal SRAM */
2057     tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2058     for (i = 0; i < 0x1000; i += 4) {
2059         tc_writel(i, &tr->CAM_Adr);
2060         tc_writel(0, &tr->CAM_Data);
2061     }
2062     tc_writel(0, &tr->DMA_Ctl);
2063 }
2064 
2065 static void tc35815_chip_init(struct net_device *dev)
2066 {
2067     struct tc35815_local *lp = netdev_priv(dev);
2068     struct tc35815_regs __iomem *tr =
2069         (struct tc35815_regs __iomem *)dev->base_addr;
2070     unsigned long txctl = TX_CTL_CMD;
2071 
2072     /* load station address to CAM */
2073     tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2074 
2075     /* Enable CAM (broadcast and unicast) */
2076     tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2077     tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2078 
2079     /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2080     if (HAVE_DMA_RXALIGN(lp))
2081         tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2082     else
2083         tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2084     tc_writel(0, &tr->TxPollCtr);   /* Batch mode */
2085     tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2086     tc_writel(INT_EN_CMD, &tr->Int_En);
2087 
2088     /* set queues */
2089     tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2090     tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2091           &tr->FDA_Lim);
2092     /*
2093      * Activation method:
2094      * First, enable the MAC Transmitter and the DMA Receive circuits.
2095      * Then enable the DMA Transmitter and the MAC Receive circuits.
2096      */
2097     tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);  /* start DMA receiver */
2098     tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2099 
2100     /* start MAC transmitter */
2101     /* TX4939 does not have EnLCarr */
2102     if (lp->chiptype == TC35815_TX4939)
2103         txctl &= ~Tx_EnLCarr;
2104     /* WORKAROUND: ignore LostCrS in full duplex operation */
2105     if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2106         txctl &= ~Tx_EnLCarr;
2107     tc_writel(txctl, &tr->Tx_Ctl);
2108 }
2109 
2110 #ifdef CONFIG_PM
2111 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2112 {
2113     struct net_device *dev = pci_get_drvdata(pdev);
2114     struct tc35815_local *lp = netdev_priv(dev);
2115     unsigned long flags;
2116 
2117     pci_save_state(pdev);
2118     if (!netif_running(dev))
2119         return 0;
2120     netif_device_detach(dev);
2121     if (dev->phydev)
2122         phy_stop(dev->phydev);
2123     spin_lock_irqsave(&lp->lock, flags);
2124     tc35815_chip_reset(dev);
2125     spin_unlock_irqrestore(&lp->lock, flags);
2126     pci_set_power_state(pdev, PCI_D3hot);
2127     return 0;
2128 }
2129 
2130 static int tc35815_resume(struct pci_dev *pdev)
2131 {
2132     struct net_device *dev = pci_get_drvdata(pdev);
2133 
2134     pci_restore_state(pdev);
2135     if (!netif_running(dev))
2136         return 0;
2137     pci_set_power_state(pdev, PCI_D0);
2138     tc35815_restart(dev);
2139     netif_carrier_off(dev);
2140     if (dev->phydev)
2141         phy_start(dev->phydev);
2142     netif_device_attach(dev);
2143     return 0;
2144 }
2145 #endif /* CONFIG_PM */
2146 
2147 static struct pci_driver tc35815_pci_driver = {
2148     .name       = MODNAME,
2149     .id_table   = tc35815_pci_tbl,
2150     .probe      = tc35815_init_one,
2151     .remove     = tc35815_remove_one,
2152 #ifdef CONFIG_PM
2153     .suspend    = tc35815_suspend,
2154     .resume     = tc35815_resume,
2155 #endif
2156 };
2157 
2158 module_param_named(speed, options.speed, int, 0);
2159 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2160 module_param_named(duplex, options.duplex, int, 0);
2161 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2162 
2163 module_pci_driver(tc35815_pci_driver);
2164 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2165 MODULE_LICENSE("GPL");