Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
0003  * sungem.c: Sun GEM ethernet driver.
0004  *
0005  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
0006  *
0007  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
0008  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
0009  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
0010  *
0011  * NAPI and NETPOLL support
0012  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
0013  *
0014  */
0015 
0016 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0017 
0018 #include <linux/module.h>
0019 #include <linux/kernel.h>
0020 #include <linux/types.h>
0021 #include <linux/fcntl.h>
0022 #include <linux/interrupt.h>
0023 #include <linux/ioport.h>
0024 #include <linux/in.h>
0025 #include <linux/sched.h>
0026 #include <linux/string.h>
0027 #include <linux/delay.h>
0028 #include <linux/errno.h>
0029 #include <linux/pci.h>
0030 #include <linux/dma-mapping.h>
0031 #include <linux/netdevice.h>
0032 #include <linux/etherdevice.h>
0033 #include <linux/skbuff.h>
0034 #include <linux/mii.h>
0035 #include <linux/ethtool.h>
0036 #include <linux/crc32.h>
0037 #include <linux/random.h>
0038 #include <linux/workqueue.h>
0039 #include <linux/if_vlan.h>
0040 #include <linux/bitops.h>
0041 #include <linux/mm.h>
0042 #include <linux/gfp.h>
0043 
0044 #include <asm/io.h>
0045 #include <asm/byteorder.h>
0046 #include <linux/uaccess.h>
0047 #include <asm/irq.h>
0048 
0049 #ifdef CONFIG_SPARC
0050 #include <asm/idprom.h>
0051 #include <asm/prom.h>
0052 #endif
0053 
0054 #ifdef CONFIG_PPC_PMAC
0055 #include <asm/machdep.h>
0056 #include <asm/pmac_feature.h>
0057 #endif
0058 
0059 #include <linux/sungem_phy.h>
0060 #include "sungem.h"
0061 
0062 #define STRIP_FCS
0063 
0064 #define DEFAULT_MSG (NETIF_MSG_DRV      | \
0065              NETIF_MSG_PROBE    | \
0066              NETIF_MSG_LINK)
0067 
0068 #define ADVERTISE_MASK  (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
0069              SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
0070              SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
0071              SUPPORTED_Pause | SUPPORTED_Autoneg)
0072 
0073 #define DRV_NAME    "sungem"
0074 #define DRV_VERSION "1.0"
0075 #define DRV_AUTHOR  "David S. Miller <davem@redhat.com>"
0076 
0077 static char version[] =
0078         DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
0079 
0080 MODULE_AUTHOR(DRV_AUTHOR);
0081 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
0082 MODULE_LICENSE("GPL");
0083 
0084 #define GEM_MODULE_NAME "gem"
0085 
0086 static const struct pci_device_id gem_pci_tbl[] = {
0087     { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
0088       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0089 
0090     /* These models only differ from the original GEM in
0091      * that their tx/rx fifos are of a different size and
0092      * they only support 10/100 speeds. -DaveM
0093      *
0094      * Apple's GMAC does support gigabit on machines with
0095      * the BCM54xx PHYs. -BenH
0096      */
0097     { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
0098       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0099     { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
0100       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0101     { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
0102       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0103     { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
0104       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0105     { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
0106       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0107     { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
0108       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0109     { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
0110       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0111     {0, }
0112 };
0113 
0114 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
0115 
0116 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
0117 {
0118     u32 cmd;
0119     int limit = 10000;
0120 
0121     cmd  = (1 << 30);
0122     cmd |= (2 << 28);
0123     cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
0124     cmd |= (reg << 18) & MIF_FRAME_REGAD;
0125     cmd |= (MIF_FRAME_TAMSB);
0126     writel(cmd, gp->regs + MIF_FRAME);
0127 
0128     while (--limit) {
0129         cmd = readl(gp->regs + MIF_FRAME);
0130         if (cmd & MIF_FRAME_TALSB)
0131             break;
0132 
0133         udelay(10);
0134     }
0135 
0136     if (!limit)
0137         cmd = 0xffff;
0138 
0139     return cmd & MIF_FRAME_DATA;
0140 }
0141 
0142 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
0143 {
0144     struct gem *gp = netdev_priv(dev);
0145     return __sungem_phy_read(gp, mii_id, reg);
0146 }
0147 
0148 static inline u16 sungem_phy_read(struct gem *gp, int reg)
0149 {
0150     return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
0151 }
0152 
0153 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
0154 {
0155     u32 cmd;
0156     int limit = 10000;
0157 
0158     cmd  = (1 << 30);
0159     cmd |= (1 << 28);
0160     cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
0161     cmd |= (reg << 18) & MIF_FRAME_REGAD;
0162     cmd |= (MIF_FRAME_TAMSB);
0163     cmd |= (val & MIF_FRAME_DATA);
0164     writel(cmd, gp->regs + MIF_FRAME);
0165 
0166     while (limit--) {
0167         cmd = readl(gp->regs + MIF_FRAME);
0168         if (cmd & MIF_FRAME_TALSB)
0169             break;
0170 
0171         udelay(10);
0172     }
0173 }
0174 
0175 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
0176 {
0177     struct gem *gp = netdev_priv(dev);
0178     __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
0179 }
0180 
0181 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
0182 {
0183     __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
0184 }
0185 
0186 static inline void gem_enable_ints(struct gem *gp)
0187 {
0188     /* Enable all interrupts but TXDONE */
0189     writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
0190 }
0191 
0192 static inline void gem_disable_ints(struct gem *gp)
0193 {
0194     /* Disable all interrupts, including TXDONE */
0195     writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
0196     (void)readl(gp->regs + GREG_IMASK); /* write posting */
0197 }
0198 
0199 static void gem_get_cell(struct gem *gp)
0200 {
0201     BUG_ON(gp->cell_enabled < 0);
0202     gp->cell_enabled++;
0203 #ifdef CONFIG_PPC_PMAC
0204     if (gp->cell_enabled == 1) {
0205         mb();
0206         pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
0207         udelay(10);
0208     }
0209 #endif /* CONFIG_PPC_PMAC */
0210 }
0211 
0212 /* Turn off the chip's clock */
0213 static void gem_put_cell(struct gem *gp)
0214 {
0215     BUG_ON(gp->cell_enabled <= 0);
0216     gp->cell_enabled--;
0217 #ifdef CONFIG_PPC_PMAC
0218     if (gp->cell_enabled == 0) {
0219         mb();
0220         pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
0221         udelay(10);
0222     }
0223 #endif /* CONFIG_PPC_PMAC */
0224 }
0225 
0226 static inline void gem_netif_stop(struct gem *gp)
0227 {
0228     netif_trans_update(gp->dev);    /* prevent tx timeout */
0229     napi_disable(&gp->napi);
0230     netif_tx_disable(gp->dev);
0231 }
0232 
0233 static inline void gem_netif_start(struct gem *gp)
0234 {
0235     /* NOTE: unconditional netif_wake_queue is only
0236      * appropriate so long as all callers are assured to
0237      * have free tx slots.
0238      */
0239     netif_wake_queue(gp->dev);
0240     napi_enable(&gp->napi);
0241 }
0242 
0243 static void gem_schedule_reset(struct gem *gp)
0244 {
0245     gp->reset_task_pending = 1;
0246     schedule_work(&gp->reset_task);
0247 }
0248 
0249 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
0250 {
0251     if (netif_msg_intr(gp))
0252         printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
0253 }
0254 
0255 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
0256 {
0257     u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
0258     u32 pcs_miistat;
0259 
0260     if (netif_msg_intr(gp))
0261         printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
0262             gp->dev->name, pcs_istat);
0263 
0264     if (!(pcs_istat & PCS_ISTAT_LSC)) {
0265         netdev_err(dev, "PCS irq but no link status change???\n");
0266         return 0;
0267     }
0268 
0269     /* The link status bit latches on zero, so you must
0270      * read it twice in such a case to see a transition
0271      * to the link being up.
0272      */
0273     pcs_miistat = readl(gp->regs + PCS_MIISTAT);
0274     if (!(pcs_miistat & PCS_MIISTAT_LS))
0275         pcs_miistat |=
0276             (readl(gp->regs + PCS_MIISTAT) &
0277              PCS_MIISTAT_LS);
0278 
0279     if (pcs_miistat & PCS_MIISTAT_ANC) {
0280         /* The remote-fault indication is only valid
0281          * when autoneg has completed.
0282          */
0283         if (pcs_miistat & PCS_MIISTAT_RF)
0284             netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
0285         else
0286             netdev_info(dev, "PCS AutoNEG complete\n");
0287     }
0288 
0289     if (pcs_miistat & PCS_MIISTAT_LS) {
0290         netdev_info(dev, "PCS link is now up\n");
0291         netif_carrier_on(gp->dev);
0292     } else {
0293         netdev_info(dev, "PCS link is now down\n");
0294         netif_carrier_off(gp->dev);
0295         /* If this happens and the link timer is not running,
0296          * reset so we re-negotiate.
0297          */
0298         if (!timer_pending(&gp->link_timer))
0299             return 1;
0300     }
0301 
0302     return 0;
0303 }
0304 
0305 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
0306 {
0307     u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
0308 
0309     if (netif_msg_intr(gp))
0310         printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
0311             gp->dev->name, txmac_stat);
0312 
0313     /* Defer timer expiration is quite normal,
0314      * don't even log the event.
0315      */
0316     if ((txmac_stat & MAC_TXSTAT_DTE) &&
0317         !(txmac_stat & ~MAC_TXSTAT_DTE))
0318         return 0;
0319 
0320     if (txmac_stat & MAC_TXSTAT_URUN) {
0321         netdev_err(dev, "TX MAC xmit underrun\n");
0322         dev->stats.tx_fifo_errors++;
0323     }
0324 
0325     if (txmac_stat & MAC_TXSTAT_MPE) {
0326         netdev_err(dev, "TX MAC max packet size error\n");
0327         dev->stats.tx_errors++;
0328     }
0329 
0330     /* The rest are all cases of one of the 16-bit TX
0331      * counters expiring.
0332      */
0333     if (txmac_stat & MAC_TXSTAT_NCE)
0334         dev->stats.collisions += 0x10000;
0335 
0336     if (txmac_stat & MAC_TXSTAT_ECE) {
0337         dev->stats.tx_aborted_errors += 0x10000;
0338         dev->stats.collisions += 0x10000;
0339     }
0340 
0341     if (txmac_stat & MAC_TXSTAT_LCE) {
0342         dev->stats.tx_aborted_errors += 0x10000;
0343         dev->stats.collisions += 0x10000;
0344     }
0345 
0346     /* We do not keep track of MAC_TXSTAT_FCE and
0347      * MAC_TXSTAT_PCE events.
0348      */
0349     return 0;
0350 }
0351 
0352 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
0353  * so we do the following.
0354  *
0355  * If any part of the reset goes wrong, we return 1 and that causes the
0356  * whole chip to be reset.
0357  */
0358 static int gem_rxmac_reset(struct gem *gp)
0359 {
0360     struct net_device *dev = gp->dev;
0361     int limit, i;
0362     u64 desc_dma;
0363     u32 val;
0364 
0365     /* First, reset & disable MAC RX. */
0366     writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
0367     for (limit = 0; limit < 5000; limit++) {
0368         if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
0369             break;
0370         udelay(10);
0371     }
0372     if (limit == 5000) {
0373         netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
0374         return 1;
0375     }
0376 
0377     writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
0378            gp->regs + MAC_RXCFG);
0379     for (limit = 0; limit < 5000; limit++) {
0380         if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
0381             break;
0382         udelay(10);
0383     }
0384     if (limit == 5000) {
0385         netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
0386         return 1;
0387     }
0388 
0389     /* Second, disable RX DMA. */
0390     writel(0, gp->regs + RXDMA_CFG);
0391     for (limit = 0; limit < 5000; limit++) {
0392         if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
0393             break;
0394         udelay(10);
0395     }
0396     if (limit == 5000) {
0397         netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
0398         return 1;
0399     }
0400 
0401     mdelay(5);
0402 
0403     /* Execute RX reset command. */
0404     writel(gp->swrst_base | GREG_SWRST_RXRST,
0405            gp->regs + GREG_SWRST);
0406     for (limit = 0; limit < 5000; limit++) {
0407         if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
0408             break;
0409         udelay(10);
0410     }
0411     if (limit == 5000) {
0412         netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
0413         return 1;
0414     }
0415 
0416     /* Refresh the RX ring. */
0417     for (i = 0; i < RX_RING_SIZE; i++) {
0418         struct gem_rxd *rxd = &gp->init_block->rxd[i];
0419 
0420         if (gp->rx_skbs[i] == NULL) {
0421             netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
0422             return 1;
0423         }
0424 
0425         rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
0426     }
0427     gp->rx_new = gp->rx_old = 0;
0428 
0429     /* Now we must reprogram the rest of RX unit. */
0430     desc_dma = (u64) gp->gblock_dvma;
0431     desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
0432     writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
0433     writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
0434     writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
0435     val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
0436            (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
0437     writel(val, gp->regs + RXDMA_CFG);
0438     if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
0439         writel(((5 & RXDMA_BLANK_IPKTS) |
0440             ((8 << 12) & RXDMA_BLANK_ITIME)),
0441                gp->regs + RXDMA_BLANK);
0442     else
0443         writel(((5 & RXDMA_BLANK_IPKTS) |
0444             ((4 << 12) & RXDMA_BLANK_ITIME)),
0445                gp->regs + RXDMA_BLANK);
0446     val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
0447     val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
0448     writel(val, gp->regs + RXDMA_PTHRESH);
0449     val = readl(gp->regs + RXDMA_CFG);
0450     writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
0451     writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
0452     val = readl(gp->regs + MAC_RXCFG);
0453     writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
0454 
0455     return 0;
0456 }
0457 
0458 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
0459 {
0460     u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
0461     int ret = 0;
0462 
0463     if (netif_msg_intr(gp))
0464         printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
0465             gp->dev->name, rxmac_stat);
0466 
0467     if (rxmac_stat & MAC_RXSTAT_OFLW) {
0468         u32 smac = readl(gp->regs + MAC_SMACHINE);
0469 
0470         netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
0471         dev->stats.rx_over_errors++;
0472         dev->stats.rx_fifo_errors++;
0473 
0474         ret = gem_rxmac_reset(gp);
0475     }
0476 
0477     if (rxmac_stat & MAC_RXSTAT_ACE)
0478         dev->stats.rx_frame_errors += 0x10000;
0479 
0480     if (rxmac_stat & MAC_RXSTAT_CCE)
0481         dev->stats.rx_crc_errors += 0x10000;
0482 
0483     if (rxmac_stat & MAC_RXSTAT_LCE)
0484         dev->stats.rx_length_errors += 0x10000;
0485 
0486     /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
0487      * events.
0488      */
0489     return ret;
0490 }
0491 
0492 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
0493 {
0494     u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
0495 
0496     if (netif_msg_intr(gp))
0497         printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
0498             gp->dev->name, mac_cstat);
0499 
0500     /* This interrupt is just for pause frame and pause
0501      * tracking.  It is useful for diagnostics and debug
0502      * but probably by default we will mask these events.
0503      */
0504     if (mac_cstat & MAC_CSTAT_PS)
0505         gp->pause_entered++;
0506 
0507     if (mac_cstat & MAC_CSTAT_PRCV)
0508         gp->pause_last_time_recvd = (mac_cstat >> 16);
0509 
0510     return 0;
0511 }
0512 
0513 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
0514 {
0515     u32 mif_status = readl(gp->regs + MIF_STATUS);
0516     u32 reg_val, changed_bits;
0517 
0518     reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
0519     changed_bits = (mif_status & MIF_STATUS_STAT);
0520 
0521     gem_handle_mif_event(gp, reg_val, changed_bits);
0522 
0523     return 0;
0524 }
0525 
0526 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
0527 {
0528     u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
0529 
0530     if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
0531         gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
0532         netdev_err(dev, "PCI error [%04x]", pci_estat);
0533 
0534         if (pci_estat & GREG_PCIESTAT_BADACK)
0535             pr_cont(" <No ACK64# during ABS64 cycle>");
0536         if (pci_estat & GREG_PCIESTAT_DTRTO)
0537             pr_cont(" <Delayed transaction timeout>");
0538         if (pci_estat & GREG_PCIESTAT_OTHER)
0539             pr_cont(" <other>");
0540         pr_cont("\n");
0541     } else {
0542         pci_estat |= GREG_PCIESTAT_OTHER;
0543         netdev_err(dev, "PCI error\n");
0544     }
0545 
0546     if (pci_estat & GREG_PCIESTAT_OTHER) {
0547         int pci_errs;
0548 
0549         /* Interrogate PCI config space for the
0550          * true cause.
0551          */
0552         pci_errs = pci_status_get_and_clear_errors(gp->pdev);
0553         netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
0554         if (pci_errs & PCI_STATUS_PARITY)
0555             netdev_err(dev, "PCI parity error detected\n");
0556         if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
0557             netdev_err(dev, "PCI target abort\n");
0558         if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
0559             netdev_err(dev, "PCI master acks target abort\n");
0560         if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
0561             netdev_err(dev, "PCI master abort\n");
0562         if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
0563             netdev_err(dev, "PCI system error SERR#\n");
0564         if (pci_errs & PCI_STATUS_DETECTED_PARITY)
0565             netdev_err(dev, "PCI parity error\n");
0566     }
0567 
0568     /* For all PCI errors, we should reset the chip. */
0569     return 1;
0570 }
0571 
0572 /* All non-normal interrupt conditions get serviced here.
0573  * Returns non-zero if we should just exit the interrupt
0574  * handler right now (ie. if we reset the card which invalidates
0575  * all of the other original irq status bits).
0576  */
0577 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
0578 {
0579     if (gem_status & GREG_STAT_RXNOBUF) {
0580         /* Frame arrived, no free RX buffers available. */
0581         if (netif_msg_rx_err(gp))
0582             printk(KERN_DEBUG "%s: no buffer for rx frame\n",
0583                 gp->dev->name);
0584         dev->stats.rx_dropped++;
0585     }
0586 
0587     if (gem_status & GREG_STAT_RXTAGERR) {
0588         /* corrupt RX tag framing */
0589         if (netif_msg_rx_err(gp))
0590             printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
0591                 gp->dev->name);
0592         dev->stats.rx_errors++;
0593 
0594         return 1;
0595     }
0596 
0597     if (gem_status & GREG_STAT_PCS) {
0598         if (gem_pcs_interrupt(dev, gp, gem_status))
0599             return 1;
0600     }
0601 
0602     if (gem_status & GREG_STAT_TXMAC) {
0603         if (gem_txmac_interrupt(dev, gp, gem_status))
0604             return 1;
0605     }
0606 
0607     if (gem_status & GREG_STAT_RXMAC) {
0608         if (gem_rxmac_interrupt(dev, gp, gem_status))
0609             return 1;
0610     }
0611 
0612     if (gem_status & GREG_STAT_MAC) {
0613         if (gem_mac_interrupt(dev, gp, gem_status))
0614             return 1;
0615     }
0616 
0617     if (gem_status & GREG_STAT_MIF) {
0618         if (gem_mif_interrupt(dev, gp, gem_status))
0619             return 1;
0620     }
0621 
0622     if (gem_status & GREG_STAT_PCIERR) {
0623         if (gem_pci_interrupt(dev, gp, gem_status))
0624             return 1;
0625     }
0626 
0627     return 0;
0628 }
0629 
0630 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
0631 {
0632     int entry, limit;
0633 
0634     entry = gp->tx_old;
0635     limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
0636     while (entry != limit) {
0637         struct sk_buff *skb;
0638         struct gem_txd *txd;
0639         dma_addr_t dma_addr;
0640         u32 dma_len;
0641         int frag;
0642 
0643         if (netif_msg_tx_done(gp))
0644             printk(KERN_DEBUG "%s: tx done, slot %d\n",
0645                 gp->dev->name, entry);
0646         skb = gp->tx_skbs[entry];
0647         if (skb_shinfo(skb)->nr_frags) {
0648             int last = entry + skb_shinfo(skb)->nr_frags;
0649             int walk = entry;
0650             int incomplete = 0;
0651 
0652             last &= (TX_RING_SIZE - 1);
0653             for (;;) {
0654                 walk = NEXT_TX(walk);
0655                 if (walk == limit)
0656                     incomplete = 1;
0657                 if (walk == last)
0658                     break;
0659             }
0660             if (incomplete)
0661                 break;
0662         }
0663         gp->tx_skbs[entry] = NULL;
0664         dev->stats.tx_bytes += skb->len;
0665 
0666         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
0667             txd = &gp->init_block->txd[entry];
0668 
0669             dma_addr = le64_to_cpu(txd->buffer);
0670             dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
0671 
0672             dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
0673                        DMA_TO_DEVICE);
0674             entry = NEXT_TX(entry);
0675         }
0676 
0677         dev->stats.tx_packets++;
0678         dev_consume_skb_any(skb);
0679     }
0680     gp->tx_old = entry;
0681 
0682     /* Need to make the tx_old update visible to gem_start_xmit()
0683      * before checking for netif_queue_stopped().  Without the
0684      * memory barrier, there is a small possibility that gem_start_xmit()
0685      * will miss it and cause the queue to be stopped forever.
0686      */
0687     smp_mb();
0688 
0689     if (unlikely(netif_queue_stopped(dev) &&
0690              TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
0691         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
0692 
0693         __netif_tx_lock(txq, smp_processor_id());
0694         if (netif_queue_stopped(dev) &&
0695             TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
0696             netif_wake_queue(dev);
0697         __netif_tx_unlock(txq);
0698     }
0699 }
0700 
0701 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
0702 {
0703     int cluster_start, curr, count, kick;
0704 
0705     cluster_start = curr = (gp->rx_new & ~(4 - 1));
0706     count = 0;
0707     kick = -1;
0708     dma_wmb();
0709     while (curr != limit) {
0710         curr = NEXT_RX(curr);
0711         if (++count == 4) {
0712             struct gem_rxd *rxd =
0713                 &gp->init_block->rxd[cluster_start];
0714             for (;;) {
0715                 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
0716                 rxd++;
0717                 cluster_start = NEXT_RX(cluster_start);
0718                 if (cluster_start == curr)
0719                     break;
0720             }
0721             kick = curr;
0722             count = 0;
0723         }
0724     }
0725     if (kick >= 0) {
0726         mb();
0727         writel(kick, gp->regs + RXDMA_KICK);
0728     }
0729 }
0730 
0731 #define ALIGNED_RX_SKB_ADDR(addr) \
0732         ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
0733 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
0734                         gfp_t gfp_flags)
0735 {
0736     struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
0737 
0738     if (likely(skb)) {
0739         unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
0740         skb_reserve(skb, offset);
0741     }
0742     return skb;
0743 }
0744 
0745 static int gem_rx(struct gem *gp, int work_to_do)
0746 {
0747     struct net_device *dev = gp->dev;
0748     int entry, drops, work_done = 0;
0749     u32 done;
0750 
0751     if (netif_msg_rx_status(gp))
0752         printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
0753             gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
0754 
0755     entry = gp->rx_new;
0756     drops = 0;
0757     done = readl(gp->regs + RXDMA_DONE);
0758     for (;;) {
0759         struct gem_rxd *rxd = &gp->init_block->rxd[entry];
0760         struct sk_buff *skb;
0761         u64 status = le64_to_cpu(rxd->status_word);
0762         dma_addr_t dma_addr;
0763         int len;
0764 
0765         if ((status & RXDCTRL_OWN) != 0)
0766             break;
0767 
0768         if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
0769             break;
0770 
0771         /* When writing back RX descriptor, GEM writes status
0772          * then buffer address, possibly in separate transactions.
0773          * If we don't wait for the chip to write both, we could
0774          * post a new buffer to this descriptor then have GEM spam
0775          * on the buffer address.  We sync on the RX completion
0776          * register to prevent this from happening.
0777          */
0778         if (entry == done) {
0779             done = readl(gp->regs + RXDMA_DONE);
0780             if (entry == done)
0781                 break;
0782         }
0783 
0784         /* We can now account for the work we're about to do */
0785         work_done++;
0786 
0787         skb = gp->rx_skbs[entry];
0788 
0789         len = (status & RXDCTRL_BUFSZ) >> 16;
0790         if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
0791             dev->stats.rx_errors++;
0792             if (len < ETH_ZLEN)
0793                 dev->stats.rx_length_errors++;
0794             if (len & RXDCTRL_BAD)
0795                 dev->stats.rx_crc_errors++;
0796 
0797             /* We'll just return it to GEM. */
0798         drop_it:
0799             dev->stats.rx_dropped++;
0800             goto next;
0801         }
0802 
0803         dma_addr = le64_to_cpu(rxd->buffer);
0804         if (len > RX_COPY_THRESHOLD) {
0805             struct sk_buff *new_skb;
0806 
0807             new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
0808             if (new_skb == NULL) {
0809                 drops++;
0810                 goto drop_it;
0811             }
0812             dma_unmap_page(&gp->pdev->dev, dma_addr,
0813                        RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
0814             gp->rx_skbs[entry] = new_skb;
0815             skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
0816             rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
0817                                    virt_to_page(new_skb->data),
0818                                    offset_in_page(new_skb->data),
0819                                    RX_BUF_ALLOC_SIZE(gp),
0820                                    DMA_FROM_DEVICE));
0821             skb_reserve(new_skb, RX_OFFSET);
0822 
0823             /* Trim the original skb for the netif. */
0824             skb_trim(skb, len);
0825         } else {
0826             struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
0827 
0828             if (copy_skb == NULL) {
0829                 drops++;
0830                 goto drop_it;
0831             }
0832 
0833             skb_reserve(copy_skb, 2);
0834             skb_put(copy_skb, len);
0835             dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
0836                         DMA_FROM_DEVICE);
0837             skb_copy_from_linear_data(skb, copy_skb->data, len);
0838             dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
0839                            len, DMA_FROM_DEVICE);
0840 
0841             /* We'll reuse the original ring buffer. */
0842             skb = copy_skb;
0843         }
0844 
0845         if (likely(dev->features & NETIF_F_RXCSUM)) {
0846             __sum16 csum;
0847 
0848             csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
0849             skb->csum = csum_unfold(csum);
0850             skb->ip_summed = CHECKSUM_COMPLETE;
0851         }
0852         skb->protocol = eth_type_trans(skb, gp->dev);
0853 
0854         napi_gro_receive(&gp->napi, skb);
0855 
0856         dev->stats.rx_packets++;
0857         dev->stats.rx_bytes += len;
0858 
0859     next:
0860         entry = NEXT_RX(entry);
0861     }
0862 
0863     gem_post_rxds(gp, entry);
0864 
0865     gp->rx_new = entry;
0866 
0867     if (drops)
0868         netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
0869 
0870     return work_done;
0871 }
0872 
0873 static int gem_poll(struct napi_struct *napi, int budget)
0874 {
0875     struct gem *gp = container_of(napi, struct gem, napi);
0876     struct net_device *dev = gp->dev;
0877     int work_done;
0878 
0879     work_done = 0;
0880     do {
0881         /* Handle anomalies */
0882         if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
0883             struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
0884             int reset;
0885 
0886             /* We run the abnormal interrupt handling code with
0887              * the Tx lock. It only resets the Rx portion of the
0888              * chip, but we need to guard it against DMA being
0889              * restarted by the link poll timer
0890              */
0891             __netif_tx_lock(txq, smp_processor_id());
0892             reset = gem_abnormal_irq(dev, gp, gp->status);
0893             __netif_tx_unlock(txq);
0894             if (reset) {
0895                 gem_schedule_reset(gp);
0896                 napi_complete(napi);
0897                 return work_done;
0898             }
0899         }
0900 
0901         /* Run TX completion thread */
0902         gem_tx(dev, gp, gp->status);
0903 
0904         /* Run RX thread. We don't use any locking here,
0905          * code willing to do bad things - like cleaning the
0906          * rx ring - must call napi_disable(), which
0907          * schedule_timeout()'s if polling is already disabled.
0908          */
0909         work_done += gem_rx(gp, budget - work_done);
0910 
0911         if (work_done >= budget)
0912             return work_done;
0913 
0914         gp->status = readl(gp->regs + GREG_STAT);
0915     } while (gp->status & GREG_STAT_NAPI);
0916 
0917     napi_complete_done(napi, work_done);
0918     gem_enable_ints(gp);
0919 
0920     return work_done;
0921 }
0922 
0923 static irqreturn_t gem_interrupt(int irq, void *dev_id)
0924 {
0925     struct net_device *dev = dev_id;
0926     struct gem *gp = netdev_priv(dev);
0927 
0928     if (napi_schedule_prep(&gp->napi)) {
0929         u32 gem_status = readl(gp->regs + GREG_STAT);
0930 
0931         if (unlikely(gem_status == 0)) {
0932             napi_enable(&gp->napi);
0933             return IRQ_NONE;
0934         }
0935         if (netif_msg_intr(gp))
0936             printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
0937                    gp->dev->name, gem_status);
0938 
0939         gp->status = gem_status;
0940         gem_disable_ints(gp);
0941         __napi_schedule(&gp->napi);
0942     }
0943 
0944     /* If polling was disabled at the time we received that
0945      * interrupt, we may return IRQ_HANDLED here while we
0946      * should return IRQ_NONE. No big deal...
0947      */
0948     return IRQ_HANDLED;
0949 }
0950 
0951 #ifdef CONFIG_NET_POLL_CONTROLLER
0952 static void gem_poll_controller(struct net_device *dev)
0953 {
0954     struct gem *gp = netdev_priv(dev);
0955 
0956     disable_irq(gp->pdev->irq);
0957     gem_interrupt(gp->pdev->irq, dev);
0958     enable_irq(gp->pdev->irq);
0959 }
0960 #endif
0961 
0962 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
0963 {
0964     struct gem *gp = netdev_priv(dev);
0965 
0966     netdev_err(dev, "transmit timed out, resetting\n");
0967 
0968     netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
0969            readl(gp->regs + TXDMA_CFG),
0970            readl(gp->regs + MAC_TXSTAT),
0971            readl(gp->regs + MAC_TXCFG));
0972     netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
0973            readl(gp->regs + RXDMA_CFG),
0974            readl(gp->regs + MAC_RXSTAT),
0975            readl(gp->regs + MAC_RXCFG));
0976 
0977     gem_schedule_reset(gp);
0978 }
0979 
0980 static __inline__ int gem_intme(int entry)
0981 {
0982     /* Algorithm: IRQ every 1/2 of descriptors. */
0983     if (!(entry & ((TX_RING_SIZE>>1)-1)))
0984         return 1;
0985 
0986     return 0;
0987 }
0988 
0989 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
0990                   struct net_device *dev)
0991 {
0992     struct gem *gp = netdev_priv(dev);
0993     int entry;
0994     u64 ctrl;
0995 
0996     ctrl = 0;
0997     if (skb->ip_summed == CHECKSUM_PARTIAL) {
0998         const u64 csum_start_off = skb_checksum_start_offset(skb);
0999         const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1000 
1001         ctrl = (TXDCTRL_CENAB |
1002             (csum_start_off << 15) |
1003             (csum_stuff_off << 21));
1004     }
1005 
1006     if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1007         /* This is a hard error, log it. */
1008         if (!netif_queue_stopped(dev)) {
1009             netif_stop_queue(dev);
1010             netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1011         }
1012         return NETDEV_TX_BUSY;
1013     }
1014 
1015     entry = gp->tx_new;
1016     gp->tx_skbs[entry] = skb;
1017 
1018     if (skb_shinfo(skb)->nr_frags == 0) {
1019         struct gem_txd *txd = &gp->init_block->txd[entry];
1020         dma_addr_t mapping;
1021         u32 len;
1022 
1023         len = skb->len;
1024         mapping = dma_map_page(&gp->pdev->dev,
1025                        virt_to_page(skb->data),
1026                        offset_in_page(skb->data),
1027                        len, DMA_TO_DEVICE);
1028         ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1029         if (gem_intme(entry))
1030             ctrl |= TXDCTRL_INTME;
1031         txd->buffer = cpu_to_le64(mapping);
1032         dma_wmb();
1033         txd->control_word = cpu_to_le64(ctrl);
1034         entry = NEXT_TX(entry);
1035     } else {
1036         struct gem_txd *txd;
1037         u32 first_len;
1038         u64 intme;
1039         dma_addr_t first_mapping;
1040         int frag, first_entry = entry;
1041 
1042         intme = 0;
1043         if (gem_intme(entry))
1044             intme |= TXDCTRL_INTME;
1045 
1046         /* We must give this initial chunk to the device last.
1047          * Otherwise we could race with the device.
1048          */
1049         first_len = skb_headlen(skb);
1050         first_mapping = dma_map_page(&gp->pdev->dev,
1051                          virt_to_page(skb->data),
1052                          offset_in_page(skb->data),
1053                          first_len, DMA_TO_DEVICE);
1054         entry = NEXT_TX(entry);
1055 
1056         for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1057             const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1058             u32 len;
1059             dma_addr_t mapping;
1060             u64 this_ctrl;
1061 
1062             len = skb_frag_size(this_frag);
1063             mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1064                            0, len, DMA_TO_DEVICE);
1065             this_ctrl = ctrl;
1066             if (frag == skb_shinfo(skb)->nr_frags - 1)
1067                 this_ctrl |= TXDCTRL_EOF;
1068 
1069             txd = &gp->init_block->txd[entry];
1070             txd->buffer = cpu_to_le64(mapping);
1071             dma_wmb();
1072             txd->control_word = cpu_to_le64(this_ctrl | len);
1073 
1074             if (gem_intme(entry))
1075                 intme |= TXDCTRL_INTME;
1076 
1077             entry = NEXT_TX(entry);
1078         }
1079         txd = &gp->init_block->txd[first_entry];
1080         txd->buffer = cpu_to_le64(first_mapping);
1081         dma_wmb();
1082         txd->control_word =
1083             cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1084     }
1085 
1086     gp->tx_new = entry;
1087     if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1088         netif_stop_queue(dev);
1089 
1090         /* netif_stop_queue() must be done before checking
1091          * tx index in TX_BUFFS_AVAIL() below, because
1092          * in gem_tx(), we update tx_old before checking for
1093          * netif_queue_stopped().
1094          */
1095         smp_mb();
1096         if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1097             netif_wake_queue(dev);
1098     }
1099     if (netif_msg_tx_queued(gp))
1100         printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1101                dev->name, entry, skb->len);
1102     mb();
1103     writel(gp->tx_new, gp->regs + TXDMA_KICK);
1104 
1105     return NETDEV_TX_OK;
1106 }
1107 
1108 static void gem_pcs_reset(struct gem *gp)
1109 {
1110     int limit;
1111     u32 val;
1112 
1113     /* Reset PCS unit. */
1114     val = readl(gp->regs + PCS_MIICTRL);
1115     val |= PCS_MIICTRL_RST;
1116     writel(val, gp->regs + PCS_MIICTRL);
1117 
1118     limit = 32;
1119     while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1120         udelay(100);
1121         if (limit-- <= 0)
1122             break;
1123     }
1124     if (limit < 0)
1125         netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1126 }
1127 
1128 static void gem_pcs_reinit_adv(struct gem *gp)
1129 {
1130     u32 val;
1131 
1132     /* Make sure PCS is disabled while changing advertisement
1133      * configuration.
1134      */
1135     val = readl(gp->regs + PCS_CFG);
1136     val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1137     writel(val, gp->regs + PCS_CFG);
1138 
1139     /* Advertise all capabilities except asymmetric
1140      * pause.
1141      */
1142     val = readl(gp->regs + PCS_MIIADV);
1143     val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1144         PCS_MIIADV_SP | PCS_MIIADV_AP);
1145     writel(val, gp->regs + PCS_MIIADV);
1146 
1147     /* Enable and restart auto-negotiation, disable wrapback/loopback,
1148      * and re-enable PCS.
1149      */
1150     val = readl(gp->regs + PCS_MIICTRL);
1151     val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1152     val &= ~PCS_MIICTRL_WB;
1153     writel(val, gp->regs + PCS_MIICTRL);
1154 
1155     val = readl(gp->regs + PCS_CFG);
1156     val |= PCS_CFG_ENABLE;
1157     writel(val, gp->regs + PCS_CFG);
1158 
1159     /* Make sure serialink loopback is off.  The meaning
1160      * of this bit is logically inverted based upon whether
1161      * you are in Serialink or SERDES mode.
1162      */
1163     val = readl(gp->regs + PCS_SCTRL);
1164     if (gp->phy_type == phy_serialink)
1165         val &= ~PCS_SCTRL_LOOP;
1166     else
1167         val |= PCS_SCTRL_LOOP;
1168     writel(val, gp->regs + PCS_SCTRL);
1169 }
1170 
1171 #define STOP_TRIES 32
1172 
1173 static void gem_reset(struct gem *gp)
1174 {
1175     int limit;
1176     u32 val;
1177 
1178     /* Make sure we won't get any more interrupts */
1179     writel(0xffffffff, gp->regs + GREG_IMASK);
1180 
1181     /* Reset the chip */
1182     writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1183            gp->regs + GREG_SWRST);
1184 
1185     limit = STOP_TRIES;
1186 
1187     do {
1188         udelay(20);
1189         val = readl(gp->regs + GREG_SWRST);
1190         if (limit-- <= 0)
1191             break;
1192     } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1193 
1194     if (limit < 0)
1195         netdev_err(gp->dev, "SW reset is ghetto\n");
1196 
1197     if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1198         gem_pcs_reinit_adv(gp);
1199 }
1200 
1201 static void gem_start_dma(struct gem *gp)
1202 {
1203     u32 val;
1204 
1205     /* We are ready to rock, turn everything on. */
1206     val = readl(gp->regs + TXDMA_CFG);
1207     writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1208     val = readl(gp->regs + RXDMA_CFG);
1209     writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1210     val = readl(gp->regs + MAC_TXCFG);
1211     writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1212     val = readl(gp->regs + MAC_RXCFG);
1213     writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1214 
1215     (void) readl(gp->regs + MAC_RXCFG);
1216     udelay(100);
1217 
1218     gem_enable_ints(gp);
1219 
1220     writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1221 }
1222 
1223 /* DMA won't be actually stopped before about 4ms tho ...
1224  */
1225 static void gem_stop_dma(struct gem *gp)
1226 {
1227     u32 val;
1228 
1229     /* We are done rocking, turn everything off. */
1230     val = readl(gp->regs + TXDMA_CFG);
1231     writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1232     val = readl(gp->regs + RXDMA_CFG);
1233     writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1234     val = readl(gp->regs + MAC_TXCFG);
1235     writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1236     val = readl(gp->regs + MAC_RXCFG);
1237     writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1238 
1239     (void) readl(gp->regs + MAC_RXCFG);
1240 
1241     /* Need to wait a bit ... done by the caller */
1242 }
1243 
1244 
1245 // XXX dbl check what that function should do when called on PCS PHY
1246 static void gem_begin_auto_negotiation(struct gem *gp,
1247                        const struct ethtool_link_ksettings *ep)
1248 {
1249     u32 advertise, features;
1250     int autoneg;
1251     int speed;
1252     int duplex;
1253     u32 advertising;
1254 
1255     if (ep)
1256         ethtool_convert_link_mode_to_legacy_u32(
1257             &advertising, ep->link_modes.advertising);
1258 
1259     if (gp->phy_type != phy_mii_mdio0 &&
1260         gp->phy_type != phy_mii_mdio1)
1261         goto non_mii;
1262 
1263     /* Setup advertise */
1264     if (found_mii_phy(gp))
1265         features = gp->phy_mii.def->features;
1266     else
1267         features = 0;
1268 
1269     advertise = features & ADVERTISE_MASK;
1270     if (gp->phy_mii.advertising != 0)
1271         advertise &= gp->phy_mii.advertising;
1272 
1273     autoneg = gp->want_autoneg;
1274     speed = gp->phy_mii.speed;
1275     duplex = gp->phy_mii.duplex;
1276 
1277     /* Setup link parameters */
1278     if (!ep)
1279         goto start_aneg;
1280     if (ep->base.autoneg == AUTONEG_ENABLE) {
1281         advertise = advertising;
1282         autoneg = 1;
1283     } else {
1284         autoneg = 0;
1285         speed = ep->base.speed;
1286         duplex = ep->base.duplex;
1287     }
1288 
1289 start_aneg:
1290     /* Sanitize settings based on PHY capabilities */
1291     if ((features & SUPPORTED_Autoneg) == 0)
1292         autoneg = 0;
1293     if (speed == SPEED_1000 &&
1294         !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1295         speed = SPEED_100;
1296     if (speed == SPEED_100 &&
1297         !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1298         speed = SPEED_10;
1299     if (duplex == DUPLEX_FULL &&
1300         !(features & (SUPPORTED_1000baseT_Full |
1301                   SUPPORTED_100baseT_Full |
1302                   SUPPORTED_10baseT_Full)))
1303             duplex = DUPLEX_HALF;
1304     if (speed == 0)
1305         speed = SPEED_10;
1306 
1307     /* If we are asleep, we don't try to actually setup the PHY, we
1308      * just store the settings
1309      */
1310     if (!netif_device_present(gp->dev)) {
1311         gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1312         gp->phy_mii.speed = speed;
1313         gp->phy_mii.duplex = duplex;
1314         return;
1315     }
1316 
1317     /* Configure PHY & start aneg */
1318     gp->want_autoneg = autoneg;
1319     if (autoneg) {
1320         if (found_mii_phy(gp))
1321             gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1322         gp->lstate = link_aneg;
1323     } else {
1324         if (found_mii_phy(gp))
1325             gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1326         gp->lstate = link_force_ok;
1327     }
1328 
1329 non_mii:
1330     gp->timer_ticks = 0;
1331     mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1332 }
1333 
1334 /* A link-up condition has occurred, initialize and enable the
1335  * rest of the chip.
1336  */
1337 static int gem_set_link_modes(struct gem *gp)
1338 {
1339     struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1340     int full_duplex, speed, pause;
1341     u32 val;
1342 
1343     full_duplex = 0;
1344     speed = SPEED_10;
1345     pause = 0;
1346 
1347     if (found_mii_phy(gp)) {
1348             if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1349                 return 1;
1350         full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1351         speed = gp->phy_mii.speed;
1352         pause = gp->phy_mii.pause;
1353     } else if (gp->phy_type == phy_serialink ||
1354                gp->phy_type == phy_serdes) {
1355         u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1356 
1357         if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1358             full_duplex = 1;
1359         speed = SPEED_1000;
1360     }
1361 
1362     netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1363            speed, (full_duplex ? "full" : "half"));
1364 
1365 
1366     /* We take the tx queue lock to avoid collisions between
1367      * this code, the tx path and the NAPI-driven error path
1368      */
1369     __netif_tx_lock(txq, smp_processor_id());
1370 
1371     val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1372     if (full_duplex) {
1373         val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1374     } else {
1375         /* MAC_TXCFG_NBO must be zero. */
1376     }
1377     writel(val, gp->regs + MAC_TXCFG);
1378 
1379     val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1380     if (!full_duplex &&
1381         (gp->phy_type == phy_mii_mdio0 ||
1382          gp->phy_type == phy_mii_mdio1)) {
1383         val |= MAC_XIFCFG_DISE;
1384     } else if (full_duplex) {
1385         val |= MAC_XIFCFG_FLED;
1386     }
1387 
1388     if (speed == SPEED_1000)
1389         val |= (MAC_XIFCFG_GMII);
1390 
1391     writel(val, gp->regs + MAC_XIFCFG);
1392 
1393     /* If gigabit and half-duplex, enable carrier extension
1394      * mode.  Else, disable it.
1395      */
1396     if (speed == SPEED_1000 && !full_duplex) {
1397         val = readl(gp->regs + MAC_TXCFG);
1398         writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1399 
1400         val = readl(gp->regs + MAC_RXCFG);
1401         writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1402     } else {
1403         val = readl(gp->regs + MAC_TXCFG);
1404         writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1405 
1406         val = readl(gp->regs + MAC_RXCFG);
1407         writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1408     }
1409 
1410     if (gp->phy_type == phy_serialink ||
1411         gp->phy_type == phy_serdes) {
1412         u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1413 
1414         if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1415             pause = 1;
1416     }
1417 
1418     if (!full_duplex)
1419         writel(512, gp->regs + MAC_STIME);
1420     else
1421         writel(64, gp->regs + MAC_STIME);
1422     val = readl(gp->regs + MAC_MCCFG);
1423     if (pause)
1424         val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1425     else
1426         val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1427     writel(val, gp->regs + MAC_MCCFG);
1428 
1429     gem_start_dma(gp);
1430 
1431     __netif_tx_unlock(txq);
1432 
1433     if (netif_msg_link(gp)) {
1434         if (pause) {
1435             netdev_info(gp->dev,
1436                     "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1437                     gp->rx_fifo_sz,
1438                     gp->rx_pause_off,
1439                     gp->rx_pause_on);
1440         } else {
1441             netdev_info(gp->dev, "Pause is disabled\n");
1442         }
1443     }
1444 
1445     return 0;
1446 }
1447 
1448 static int gem_mdio_link_not_up(struct gem *gp)
1449 {
1450     switch (gp->lstate) {
1451     case link_force_ret:
1452         netif_info(gp, link, gp->dev,
1453                "Autoneg failed again, keeping forced mode\n");
1454         gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1455             gp->last_forced_speed, DUPLEX_HALF);
1456         gp->timer_ticks = 5;
1457         gp->lstate = link_force_ok;
1458         return 0;
1459     case link_aneg:
1460         /* We try forced modes after a failed aneg only on PHYs that don't
1461          * have "magic_aneg" bit set, which means they internally do the
1462          * while forced-mode thingy. On these, we just restart aneg
1463          */
1464         if (gp->phy_mii.def->magic_aneg)
1465             return 1;
1466         netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1467         /* Try forced modes. */
1468         gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1469             DUPLEX_HALF);
1470         gp->timer_ticks = 5;
1471         gp->lstate = link_force_try;
1472         return 0;
1473     case link_force_try:
1474         /* Downgrade from 100 to 10 Mbps if necessary.
1475          * If already at 10Mbps, warn user about the
1476          * situation every 10 ticks.
1477          */
1478         if (gp->phy_mii.speed == SPEED_100) {
1479             gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1480                 DUPLEX_HALF);
1481             gp->timer_ticks = 5;
1482             netif_info(gp, link, gp->dev,
1483                    "switching to forced 10bt\n");
1484             return 0;
1485         } else
1486             return 1;
1487     default:
1488         return 0;
1489     }
1490 }
1491 
1492 static void gem_link_timer(struct timer_list *t)
1493 {
1494     struct gem *gp = from_timer(gp, t, link_timer);
1495     struct net_device *dev = gp->dev;
1496     int restart_aneg = 0;
1497 
1498     /* There's no point doing anything if we're going to be reset */
1499     if (gp->reset_task_pending)
1500         return;
1501 
1502     if (gp->phy_type == phy_serialink ||
1503         gp->phy_type == phy_serdes) {
1504         u32 val = readl(gp->regs + PCS_MIISTAT);
1505 
1506         if (!(val & PCS_MIISTAT_LS))
1507             val = readl(gp->regs + PCS_MIISTAT);
1508 
1509         if ((val & PCS_MIISTAT_LS) != 0) {
1510             if (gp->lstate == link_up)
1511                 goto restart;
1512 
1513             gp->lstate = link_up;
1514             netif_carrier_on(dev);
1515             (void)gem_set_link_modes(gp);
1516         }
1517         goto restart;
1518     }
1519     if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1520         /* Ok, here we got a link. If we had it due to a forced
1521          * fallback, and we were configured for autoneg, we do
1522          * retry a short autoneg pass. If you know your hub is
1523          * broken, use ethtool ;)
1524          */
1525         if (gp->lstate == link_force_try && gp->want_autoneg) {
1526             gp->lstate = link_force_ret;
1527             gp->last_forced_speed = gp->phy_mii.speed;
1528             gp->timer_ticks = 5;
1529             if (netif_msg_link(gp))
1530                 netdev_info(dev,
1531                         "Got link after fallback, retrying autoneg once...\n");
1532             gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1533         } else if (gp->lstate != link_up) {
1534             gp->lstate = link_up;
1535             netif_carrier_on(dev);
1536             if (gem_set_link_modes(gp))
1537                 restart_aneg = 1;
1538         }
1539     } else {
1540         /* If the link was previously up, we restart the
1541          * whole process
1542          */
1543         if (gp->lstate == link_up) {
1544             gp->lstate = link_down;
1545             netif_info(gp, link, dev, "Link down\n");
1546             netif_carrier_off(dev);
1547             gem_schedule_reset(gp);
1548             /* The reset task will restart the timer */
1549             return;
1550         } else if (++gp->timer_ticks > 10) {
1551             if (found_mii_phy(gp))
1552                 restart_aneg = gem_mdio_link_not_up(gp);
1553             else
1554                 restart_aneg = 1;
1555         }
1556     }
1557     if (restart_aneg) {
1558         gem_begin_auto_negotiation(gp, NULL);
1559         return;
1560     }
1561 restart:
1562     mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1563 }
1564 
1565 static void gem_clean_rings(struct gem *gp)
1566 {
1567     struct gem_init_block *gb = gp->init_block;
1568     struct sk_buff *skb;
1569     int i;
1570     dma_addr_t dma_addr;
1571 
1572     for (i = 0; i < RX_RING_SIZE; i++) {
1573         struct gem_rxd *rxd;
1574 
1575         rxd = &gb->rxd[i];
1576         if (gp->rx_skbs[i] != NULL) {
1577             skb = gp->rx_skbs[i];
1578             dma_addr = le64_to_cpu(rxd->buffer);
1579             dma_unmap_page(&gp->pdev->dev, dma_addr,
1580                        RX_BUF_ALLOC_SIZE(gp),
1581                        DMA_FROM_DEVICE);
1582             dev_kfree_skb_any(skb);
1583             gp->rx_skbs[i] = NULL;
1584         }
1585         rxd->status_word = 0;
1586         dma_wmb();
1587         rxd->buffer = 0;
1588     }
1589 
1590     for (i = 0; i < TX_RING_SIZE; i++) {
1591         if (gp->tx_skbs[i] != NULL) {
1592             struct gem_txd *txd;
1593             int frag;
1594 
1595             skb = gp->tx_skbs[i];
1596             gp->tx_skbs[i] = NULL;
1597 
1598             for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1599                 int ent = i & (TX_RING_SIZE - 1);
1600 
1601                 txd = &gb->txd[ent];
1602                 dma_addr = le64_to_cpu(txd->buffer);
1603                 dma_unmap_page(&gp->pdev->dev, dma_addr,
1604                            le64_to_cpu(txd->control_word) &
1605                            TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1606 
1607                 if (frag != skb_shinfo(skb)->nr_frags)
1608                     i++;
1609             }
1610             dev_kfree_skb_any(skb);
1611         }
1612     }
1613 }
1614 
1615 static void gem_init_rings(struct gem *gp)
1616 {
1617     struct gem_init_block *gb = gp->init_block;
1618     struct net_device *dev = gp->dev;
1619     int i;
1620     dma_addr_t dma_addr;
1621 
1622     gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1623 
1624     gem_clean_rings(gp);
1625 
1626     gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1627                 (unsigned)VLAN_ETH_FRAME_LEN);
1628 
1629     for (i = 0; i < RX_RING_SIZE; i++) {
1630         struct sk_buff *skb;
1631         struct gem_rxd *rxd = &gb->rxd[i];
1632 
1633         skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1634         if (!skb) {
1635             rxd->buffer = 0;
1636             rxd->status_word = 0;
1637             continue;
1638         }
1639 
1640         gp->rx_skbs[i] = skb;
1641         skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1642         dma_addr = dma_map_page(&gp->pdev->dev,
1643                     virt_to_page(skb->data),
1644                     offset_in_page(skb->data),
1645                     RX_BUF_ALLOC_SIZE(gp),
1646                     DMA_FROM_DEVICE);
1647         rxd->buffer = cpu_to_le64(dma_addr);
1648         dma_wmb();
1649         rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1650         skb_reserve(skb, RX_OFFSET);
1651     }
1652 
1653     for (i = 0; i < TX_RING_SIZE; i++) {
1654         struct gem_txd *txd = &gb->txd[i];
1655 
1656         txd->control_word = 0;
1657         dma_wmb();
1658         txd->buffer = 0;
1659     }
1660     wmb();
1661 }
1662 
1663 /* Init PHY interface and start link poll state machine */
1664 static void gem_init_phy(struct gem *gp)
1665 {
1666     u32 mifcfg;
1667 
1668     /* Revert MIF CFG setting done on stop_phy */
1669     mifcfg = readl(gp->regs + MIF_CFG);
1670     mifcfg &= ~MIF_CFG_BBMODE;
1671     writel(mifcfg, gp->regs + MIF_CFG);
1672 
1673     if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1674         int i;
1675 
1676         /* Those delays sucks, the HW seems to love them though, I'll
1677          * seriously consider breaking some locks here to be able
1678          * to schedule instead
1679          */
1680         for (i = 0; i < 3; i++) {
1681 #ifdef CONFIG_PPC_PMAC
1682             pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1683             msleep(20);
1684 #endif
1685             /* Some PHYs used by apple have problem getting back to us,
1686              * we do an additional reset here
1687              */
1688             sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1689             msleep(20);
1690             if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1691                 break;
1692             if (i == 2)
1693                 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1694         }
1695     }
1696 
1697     if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1698         gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1699         u32 val;
1700 
1701         /* Init datapath mode register. */
1702         if (gp->phy_type == phy_mii_mdio0 ||
1703             gp->phy_type == phy_mii_mdio1) {
1704             val = PCS_DMODE_MGM;
1705         } else if (gp->phy_type == phy_serialink) {
1706             val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1707         } else {
1708             val = PCS_DMODE_ESM;
1709         }
1710 
1711         writel(val, gp->regs + PCS_DMODE);
1712     }
1713 
1714     if (gp->phy_type == phy_mii_mdio0 ||
1715         gp->phy_type == phy_mii_mdio1) {
1716         /* Reset and detect MII PHY */
1717         sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1718 
1719         /* Init PHY */
1720         if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1721             gp->phy_mii.def->ops->init(&gp->phy_mii);
1722     } else {
1723         gem_pcs_reset(gp);
1724         gem_pcs_reinit_adv(gp);
1725     }
1726 
1727     /* Default aneg parameters */
1728     gp->timer_ticks = 0;
1729     gp->lstate = link_down;
1730     netif_carrier_off(gp->dev);
1731 
1732     /* Print things out */
1733     if (gp->phy_type == phy_mii_mdio0 ||
1734         gp->phy_type == phy_mii_mdio1)
1735         netdev_info(gp->dev, "Found %s PHY\n",
1736                 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1737 
1738     gem_begin_auto_negotiation(gp, NULL);
1739 }
1740 
1741 static void gem_init_dma(struct gem *gp)
1742 {
1743     u64 desc_dma = (u64) gp->gblock_dvma;
1744     u32 val;
1745 
1746     val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1747     writel(val, gp->regs + TXDMA_CFG);
1748 
1749     writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1750     writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1751     desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1752 
1753     writel(0, gp->regs + TXDMA_KICK);
1754 
1755     val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1756            (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1757     writel(val, gp->regs + RXDMA_CFG);
1758 
1759     writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1760     writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1761 
1762     writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1763 
1764     val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1765     val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1766     writel(val, gp->regs + RXDMA_PTHRESH);
1767 
1768     if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1769         writel(((5 & RXDMA_BLANK_IPKTS) |
1770             ((8 << 12) & RXDMA_BLANK_ITIME)),
1771                gp->regs + RXDMA_BLANK);
1772     else
1773         writel(((5 & RXDMA_BLANK_IPKTS) |
1774             ((4 << 12) & RXDMA_BLANK_ITIME)),
1775                gp->regs + RXDMA_BLANK);
1776 }
1777 
1778 static u32 gem_setup_multicast(struct gem *gp)
1779 {
1780     u32 rxcfg = 0;
1781     int i;
1782 
1783     if ((gp->dev->flags & IFF_ALLMULTI) ||
1784         (netdev_mc_count(gp->dev) > 256)) {
1785             for (i=0; i<16; i++)
1786             writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1787         rxcfg |= MAC_RXCFG_HFE;
1788     } else if (gp->dev->flags & IFF_PROMISC) {
1789         rxcfg |= MAC_RXCFG_PROM;
1790     } else {
1791         u16 hash_table[16];
1792         u32 crc;
1793         struct netdev_hw_addr *ha;
1794         int i;
1795 
1796         memset(hash_table, 0, sizeof(hash_table));
1797         netdev_for_each_mc_addr(ha, gp->dev) {
1798             crc = ether_crc_le(6, ha->addr);
1799             crc >>= 24;
1800             hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1801         }
1802             for (i=0; i<16; i++)
1803             writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1804         rxcfg |= MAC_RXCFG_HFE;
1805     }
1806 
1807     return rxcfg;
1808 }
1809 
1810 static void gem_init_mac(struct gem *gp)
1811 {
1812     const unsigned char *e = &gp->dev->dev_addr[0];
1813 
1814     writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1815 
1816     writel(0x00, gp->regs + MAC_IPG0);
1817     writel(0x08, gp->regs + MAC_IPG1);
1818     writel(0x04, gp->regs + MAC_IPG2);
1819     writel(0x40, gp->regs + MAC_STIME);
1820     writel(0x40, gp->regs + MAC_MINFSZ);
1821 
1822     /* Ethernet payload + header + FCS + optional VLAN tag. */
1823     writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1824 
1825     writel(0x07, gp->regs + MAC_PASIZE);
1826     writel(0x04, gp->regs + MAC_JAMSIZE);
1827     writel(0x10, gp->regs + MAC_ATTLIM);
1828     writel(0x8808, gp->regs + MAC_MCTYPE);
1829 
1830     writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1831 
1832     writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1833     writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1834     writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1835 
1836     writel(0, gp->regs + MAC_ADDR3);
1837     writel(0, gp->regs + MAC_ADDR4);
1838     writel(0, gp->regs + MAC_ADDR5);
1839 
1840     writel(0x0001, gp->regs + MAC_ADDR6);
1841     writel(0xc200, gp->regs + MAC_ADDR7);
1842     writel(0x0180, gp->regs + MAC_ADDR8);
1843 
1844     writel(0, gp->regs + MAC_AFILT0);
1845     writel(0, gp->regs + MAC_AFILT1);
1846     writel(0, gp->regs + MAC_AFILT2);
1847     writel(0, gp->regs + MAC_AF21MSK);
1848     writel(0, gp->regs + MAC_AF0MSK);
1849 
1850     gp->mac_rx_cfg = gem_setup_multicast(gp);
1851 #ifdef STRIP_FCS
1852     gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1853 #endif
1854     writel(0, gp->regs + MAC_NCOLL);
1855     writel(0, gp->regs + MAC_FASUCC);
1856     writel(0, gp->regs + MAC_ECOLL);
1857     writel(0, gp->regs + MAC_LCOLL);
1858     writel(0, gp->regs + MAC_DTIMER);
1859     writel(0, gp->regs + MAC_PATMPS);
1860     writel(0, gp->regs + MAC_RFCTR);
1861     writel(0, gp->regs + MAC_LERR);
1862     writel(0, gp->regs + MAC_AERR);
1863     writel(0, gp->regs + MAC_FCSERR);
1864     writel(0, gp->regs + MAC_RXCVERR);
1865 
1866     /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1867      * them once a link is established.
1868      */
1869     writel(0, gp->regs + MAC_TXCFG);
1870     writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1871     writel(0, gp->regs + MAC_MCCFG);
1872     writel(0, gp->regs + MAC_XIFCFG);
1873 
1874     /* Setup MAC interrupts.  We want to get all of the interesting
1875      * counter expiration events, but we do not want to hear about
1876      * normal rx/tx as the DMA engine tells us that.
1877      */
1878     writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1879     writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1880 
1881     /* Don't enable even the PAUSE interrupts for now, we
1882      * make no use of those events other than to record them.
1883      */
1884     writel(0xffffffff, gp->regs + MAC_MCMASK);
1885 
1886     /* Don't enable GEM's WOL in normal operations
1887      */
1888     if (gp->has_wol)
1889         writel(0, gp->regs + WOL_WAKECSR);
1890 }
1891 
1892 static void gem_init_pause_thresholds(struct gem *gp)
1893 {
1894     u32 cfg;
1895 
1896     /* Calculate pause thresholds.  Setting the OFF threshold to the
1897      * full RX fifo size effectively disables PAUSE generation which
1898      * is what we do for 10/100 only GEMs which have FIFOs too small
1899      * to make real gains from PAUSE.
1900      */
1901     if (gp->rx_fifo_sz <= (2 * 1024)) {
1902         gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1903     } else {
1904         int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1905         int off = (gp->rx_fifo_sz - (max_frame * 2));
1906         int on = off - max_frame;
1907 
1908         gp->rx_pause_off = off;
1909         gp->rx_pause_on = on;
1910     }
1911 
1912 
1913     /* Configure the chip "burst" DMA mode & enable some
1914      * HW bug fixes on Apple version
1915      */
1916     cfg  = 0;
1917     if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1918         cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1919 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1920     cfg |= GREG_CFG_IBURST;
1921 #endif
1922     cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1923     cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1924     writel(cfg, gp->regs + GREG_CFG);
1925 
1926     /* If Infinite Burst didn't stick, then use different
1927      * thresholds (and Apple bug fixes don't exist)
1928      */
1929     if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1930         cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1931         cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1932         writel(cfg, gp->regs + GREG_CFG);
1933     }
1934 }
1935 
1936 static int gem_check_invariants(struct gem *gp)
1937 {
1938     struct pci_dev *pdev = gp->pdev;
1939     u32 mif_cfg;
1940 
1941     /* On Apple's sungem, we can't rely on registers as the chip
1942      * was been powered down by the firmware. The PHY is looked
1943      * up later on.
1944      */
1945     if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1946         gp->phy_type = phy_mii_mdio0;
1947         gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1948         gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1949         gp->swrst_base = 0;
1950 
1951         mif_cfg = readl(gp->regs + MIF_CFG);
1952         mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1953         mif_cfg |= MIF_CFG_MDI0;
1954         writel(mif_cfg, gp->regs + MIF_CFG);
1955         writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1956         writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1957 
1958         /* We hard-code the PHY address so we can properly bring it out of
1959          * reset later on, we can't really probe it at this point, though
1960          * that isn't an issue.
1961          */
1962         if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1963             gp->mii_phy_addr = 1;
1964         else
1965             gp->mii_phy_addr = 0;
1966 
1967         return 0;
1968     }
1969 
1970     mif_cfg = readl(gp->regs + MIF_CFG);
1971 
1972     if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1973         pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1974         /* One of the MII PHYs _must_ be present
1975          * as this chip has no gigabit PHY.
1976          */
1977         if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1978             pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1979                    mif_cfg);
1980             return -1;
1981         }
1982     }
1983 
1984     /* Determine initial PHY interface type guess.  MDIO1 is the
1985      * external PHY and thus takes precedence over MDIO0.
1986      */
1987 
1988     if (mif_cfg & MIF_CFG_MDI1) {
1989         gp->phy_type = phy_mii_mdio1;
1990         mif_cfg |= MIF_CFG_PSELECT;
1991         writel(mif_cfg, gp->regs + MIF_CFG);
1992     } else if (mif_cfg & MIF_CFG_MDI0) {
1993         gp->phy_type = phy_mii_mdio0;
1994         mif_cfg &= ~MIF_CFG_PSELECT;
1995         writel(mif_cfg, gp->regs + MIF_CFG);
1996     } else {
1997 #ifdef CONFIG_SPARC
1998         const char *p;
1999 
2000         p = of_get_property(gp->of_node, "shared-pins", NULL);
2001         if (p && !strcmp(p, "serdes"))
2002             gp->phy_type = phy_serdes;
2003         else
2004 #endif
2005             gp->phy_type = phy_serialink;
2006     }
2007     if (gp->phy_type == phy_mii_mdio1 ||
2008         gp->phy_type == phy_mii_mdio0) {
2009         int i;
2010 
2011         for (i = 0; i < 32; i++) {
2012             gp->mii_phy_addr = i;
2013             if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2014                 break;
2015         }
2016         if (i == 32) {
2017             if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2018                 pr_err("RIO MII phy will not respond\n");
2019                 return -1;
2020             }
2021             gp->phy_type = phy_serdes;
2022         }
2023     }
2024 
2025     /* Fetch the FIFO configurations now too. */
2026     gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2027     gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2028 
2029     if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2030         if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2031             if (gp->tx_fifo_sz != (9 * 1024) ||
2032                 gp->rx_fifo_sz != (20 * 1024)) {
2033                 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2034                        gp->tx_fifo_sz, gp->rx_fifo_sz);
2035                 return -1;
2036             }
2037             gp->swrst_base = 0;
2038         } else {
2039             if (gp->tx_fifo_sz != (2 * 1024) ||
2040                 gp->rx_fifo_sz != (2 * 1024)) {
2041                 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2042                        gp->tx_fifo_sz, gp->rx_fifo_sz);
2043                 return -1;
2044             }
2045             gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2046         }
2047     }
2048 
2049     return 0;
2050 }
2051 
2052 static void gem_reinit_chip(struct gem *gp)
2053 {
2054     /* Reset the chip */
2055     gem_reset(gp);
2056 
2057     /* Make sure ints are disabled */
2058     gem_disable_ints(gp);
2059 
2060     /* Allocate & setup ring buffers */
2061     gem_init_rings(gp);
2062 
2063     /* Configure pause thresholds */
2064     gem_init_pause_thresholds(gp);
2065 
2066     /* Init DMA & MAC engines */
2067     gem_init_dma(gp);
2068     gem_init_mac(gp);
2069 }
2070 
2071 
2072 static void gem_stop_phy(struct gem *gp, int wol)
2073 {
2074     u32 mifcfg;
2075 
2076     /* Let the chip settle down a bit, it seems that helps
2077      * for sleep mode on some models
2078      */
2079     msleep(10);
2080 
2081     /* Make sure we aren't polling PHY status change. We
2082      * don't currently use that feature though
2083      */
2084     mifcfg = readl(gp->regs + MIF_CFG);
2085     mifcfg &= ~MIF_CFG_POLL;
2086     writel(mifcfg, gp->regs + MIF_CFG);
2087 
2088     if (wol && gp->has_wol) {
2089         const unsigned char *e = &gp->dev->dev_addr[0];
2090         u32 csr;
2091 
2092         /* Setup wake-on-lan for MAGIC packet */
2093         writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2094                gp->regs + MAC_RXCFG);
2095         writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2096         writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2097         writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2098 
2099         writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2100         csr = WOL_WAKECSR_ENABLE;
2101         if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2102             csr |= WOL_WAKECSR_MII;
2103         writel(csr, gp->regs + WOL_WAKECSR);
2104     } else {
2105         writel(0, gp->regs + MAC_RXCFG);
2106         (void)readl(gp->regs + MAC_RXCFG);
2107         /* Machine sleep will die in strange ways if we
2108          * dont wait a bit here, looks like the chip takes
2109          * some time to really shut down
2110          */
2111         msleep(10);
2112     }
2113 
2114     writel(0, gp->regs + MAC_TXCFG);
2115     writel(0, gp->regs + MAC_XIFCFG);
2116     writel(0, gp->regs + TXDMA_CFG);
2117     writel(0, gp->regs + RXDMA_CFG);
2118 
2119     if (!wol) {
2120         gem_reset(gp);
2121         writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2122         writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2123 
2124         if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2125             gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2126 
2127         /* According to Apple, we must set the MDIO pins to this begnign
2128          * state or we may 1) eat more current, 2) damage some PHYs
2129          */
2130         writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2131         writel(0, gp->regs + MIF_BBCLK);
2132         writel(0, gp->regs + MIF_BBDATA);
2133         writel(0, gp->regs + MIF_BBOENAB);
2134         writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2135         (void) readl(gp->regs + MAC_XIFCFG);
2136     }
2137 }
2138 
2139 static int gem_do_start(struct net_device *dev)
2140 {
2141     struct gem *gp = netdev_priv(dev);
2142     int rc;
2143 
2144     pci_set_master(gp->pdev);
2145 
2146     /* Init & setup chip hardware */
2147     gem_reinit_chip(gp);
2148 
2149     /* An interrupt might come in handy */
2150     rc = request_irq(gp->pdev->irq, gem_interrupt,
2151              IRQF_SHARED, dev->name, (void *)dev);
2152     if (rc) {
2153         netdev_err(dev, "failed to request irq !\n");
2154 
2155         gem_reset(gp);
2156         gem_clean_rings(gp);
2157         gem_put_cell(gp);
2158         return rc;
2159     }
2160 
2161     /* Mark us as attached again if we come from resume(), this has
2162      * no effect if we weren't detached and needs to be done now.
2163      */
2164     netif_device_attach(dev);
2165 
2166     /* Restart NAPI & queues */
2167     gem_netif_start(gp);
2168 
2169     /* Detect & init PHY, start autoneg etc... this will
2170      * eventually result in starting DMA operations when
2171      * the link is up
2172      */
2173     gem_init_phy(gp);
2174 
2175     return 0;
2176 }
2177 
2178 static void gem_do_stop(struct net_device *dev, int wol)
2179 {
2180     struct gem *gp = netdev_priv(dev);
2181 
2182     /* Stop NAPI and stop tx queue */
2183     gem_netif_stop(gp);
2184 
2185     /* Make sure ints are disabled. We don't care about
2186      * synchronizing as NAPI is disabled, thus a stray
2187      * interrupt will do nothing bad (our irq handler
2188      * just schedules NAPI)
2189      */
2190     gem_disable_ints(gp);
2191 
2192     /* Stop the link timer */
2193     del_timer_sync(&gp->link_timer);
2194 
2195     /* We cannot cancel the reset task while holding the
2196      * rtnl lock, we'd get an A->B / B->A deadlock stituation
2197      * if we did. This is not an issue however as the reset
2198      * task is synchronized vs. us (rtnl_lock) and will do
2199      * nothing if the device is down or suspended. We do
2200      * still clear reset_task_pending to avoid a spurrious
2201      * reset later on in case we do resume before it gets
2202      * scheduled.
2203      */
2204     gp->reset_task_pending = 0;
2205 
2206     /* If we are going to sleep with WOL */
2207     gem_stop_dma(gp);
2208     msleep(10);
2209     if (!wol)
2210         gem_reset(gp);
2211     msleep(10);
2212 
2213     /* Get rid of rings */
2214     gem_clean_rings(gp);
2215 
2216     /* No irq needed anymore */
2217     free_irq(gp->pdev->irq, (void *) dev);
2218 
2219     /* Shut the PHY down eventually and setup WOL */
2220     gem_stop_phy(gp, wol);
2221 }
2222 
2223 static void gem_reset_task(struct work_struct *work)
2224 {
2225     struct gem *gp = container_of(work, struct gem, reset_task);
2226 
2227     /* Lock out the network stack (essentially shield ourselves
2228      * against a racing open, close, control call, or suspend
2229      */
2230     rtnl_lock();
2231 
2232     /* Skip the reset task if suspended or closed, or if it's
2233      * been cancelled by gem_do_stop (see comment there)
2234      */
2235     if (!netif_device_present(gp->dev) ||
2236         !netif_running(gp->dev) ||
2237         !gp->reset_task_pending) {
2238         rtnl_unlock();
2239         return;
2240     }
2241 
2242     /* Stop the link timer */
2243     del_timer_sync(&gp->link_timer);
2244 
2245     /* Stop NAPI and tx */
2246     gem_netif_stop(gp);
2247 
2248     /* Reset the chip & rings */
2249     gem_reinit_chip(gp);
2250     if (gp->lstate == link_up)
2251         gem_set_link_modes(gp);
2252 
2253     /* Restart NAPI and Tx */
2254     gem_netif_start(gp);
2255 
2256     /* We are back ! */
2257     gp->reset_task_pending = 0;
2258 
2259     /* If the link is not up, restart autoneg, else restart the
2260      * polling timer
2261      */
2262     if (gp->lstate != link_up)
2263         gem_begin_auto_negotiation(gp, NULL);
2264     else
2265         mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2266 
2267     rtnl_unlock();
2268 }
2269 
2270 static int gem_open(struct net_device *dev)
2271 {
2272     struct gem *gp = netdev_priv(dev);
2273     int rc;
2274 
2275     /* We allow open while suspended, we just do nothing,
2276      * the chip will be initialized in resume()
2277      */
2278     if (netif_device_present(dev)) {
2279         /* Enable the cell */
2280         gem_get_cell(gp);
2281 
2282         /* Make sure PCI access and bus master are enabled */
2283         rc = pci_enable_device(gp->pdev);
2284         if (rc) {
2285             netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2286 
2287             /* Put cell and forget it for now, it will be considered
2288              *as still asleep, a new sleep cycle may bring it back
2289              */
2290             gem_put_cell(gp);
2291             return -ENXIO;
2292         }
2293         return gem_do_start(dev);
2294     }
2295 
2296     return 0;
2297 }
2298 
2299 static int gem_close(struct net_device *dev)
2300 {
2301     struct gem *gp = netdev_priv(dev);
2302 
2303     if (netif_device_present(dev)) {
2304         gem_do_stop(dev, 0);
2305 
2306         /* Make sure bus master is disabled */
2307         pci_disable_device(gp->pdev);
2308 
2309         /* Cell not needed neither if no WOL */
2310         if (!gp->asleep_wol)
2311             gem_put_cell(gp);
2312     }
2313     return 0;
2314 }
2315 
2316 static int __maybe_unused gem_suspend(struct device *dev_d)
2317 {
2318     struct net_device *dev = dev_get_drvdata(dev_d);
2319     struct gem *gp = netdev_priv(dev);
2320 
2321     /* Lock the network stack first to avoid racing with open/close,
2322      * reset task and setting calls
2323      */
2324     rtnl_lock();
2325 
2326     /* Not running, mark ourselves non-present, no need for
2327      * a lock here
2328      */
2329     if (!netif_running(dev)) {
2330         netif_device_detach(dev);
2331         rtnl_unlock();
2332         return 0;
2333     }
2334     netdev_info(dev, "suspending, WakeOnLan %s\n",
2335             (gp->wake_on_lan && netif_running(dev)) ?
2336             "enabled" : "disabled");
2337 
2338     /* Tell the network stack we're gone. gem_do_stop() below will
2339      * synchronize with TX, stop NAPI etc...
2340      */
2341     netif_device_detach(dev);
2342 
2343     /* Switch off chip, remember WOL setting */
2344     gp->asleep_wol = !!gp->wake_on_lan;
2345     gem_do_stop(dev, gp->asleep_wol);
2346 
2347     /* Cell not needed neither if no WOL */
2348     if (!gp->asleep_wol)
2349         gem_put_cell(gp);
2350 
2351     /* Unlock the network stack */
2352     rtnl_unlock();
2353 
2354     return 0;
2355 }
2356 
2357 static int __maybe_unused gem_resume(struct device *dev_d)
2358 {
2359     struct net_device *dev = dev_get_drvdata(dev_d);
2360     struct gem *gp = netdev_priv(dev);
2361 
2362     /* See locking comment in gem_suspend */
2363     rtnl_lock();
2364 
2365     /* Not running, mark ourselves present, no need for
2366      * a lock here
2367      */
2368     if (!netif_running(dev)) {
2369         netif_device_attach(dev);
2370         rtnl_unlock();
2371         return 0;
2372     }
2373 
2374     /* Enable the cell */
2375     gem_get_cell(gp);
2376 
2377     /* Restart chip. If that fails there isn't much we can do, we
2378      * leave things stopped.
2379      */
2380     gem_do_start(dev);
2381 
2382     /* If we had WOL enabled, the cell clock was never turned off during
2383      * sleep, so we end up beeing unbalanced. Fix that here
2384      */
2385     if (gp->asleep_wol)
2386         gem_put_cell(gp);
2387 
2388     /* Unlock the network stack */
2389     rtnl_unlock();
2390 
2391     return 0;
2392 }
2393 
2394 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2395 {
2396     struct gem *gp = netdev_priv(dev);
2397 
2398     /* I have seen this being called while the PM was in progress,
2399      * so we shield against this. Let's also not poke at registers
2400      * while the reset task is going on.
2401      *
2402      * TODO: Move stats collection elsewhere (link timer ?) and
2403      * make this a nop to avoid all those synchro issues
2404      */
2405     if (!netif_device_present(dev) || !netif_running(dev))
2406         goto bail;
2407 
2408     /* Better safe than sorry... */
2409     if (WARN_ON(!gp->cell_enabled))
2410         goto bail;
2411 
2412     dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2413     writel(0, gp->regs + MAC_FCSERR);
2414 
2415     dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2416     writel(0, gp->regs + MAC_AERR);
2417 
2418     dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2419     writel(0, gp->regs + MAC_LERR);
2420 
2421     dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2422     dev->stats.collisions +=
2423         (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2424     writel(0, gp->regs + MAC_ECOLL);
2425     writel(0, gp->regs + MAC_LCOLL);
2426  bail:
2427     return &dev->stats;
2428 }
2429 
2430 static int gem_set_mac_address(struct net_device *dev, void *addr)
2431 {
2432     struct sockaddr *macaddr = (struct sockaddr *) addr;
2433     const unsigned char *e = &dev->dev_addr[0];
2434     struct gem *gp = netdev_priv(dev);
2435 
2436     if (!is_valid_ether_addr(macaddr->sa_data))
2437         return -EADDRNOTAVAIL;
2438 
2439     eth_hw_addr_set(dev, macaddr->sa_data);
2440 
2441     /* We'll just catch it later when the device is up'd or resumed */
2442     if (!netif_running(dev) || !netif_device_present(dev))
2443         return 0;
2444 
2445     /* Better safe than sorry... */
2446     if (WARN_ON(!gp->cell_enabled))
2447         return 0;
2448 
2449     writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2450     writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2451     writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2452 
2453     return 0;
2454 }
2455 
2456 static void gem_set_multicast(struct net_device *dev)
2457 {
2458     struct gem *gp = netdev_priv(dev);
2459     u32 rxcfg, rxcfg_new;
2460     int limit = 10000;
2461 
2462     if (!netif_running(dev) || !netif_device_present(dev))
2463         return;
2464 
2465     /* Better safe than sorry... */
2466     if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2467         return;
2468 
2469     rxcfg = readl(gp->regs + MAC_RXCFG);
2470     rxcfg_new = gem_setup_multicast(gp);
2471 #ifdef STRIP_FCS
2472     rxcfg_new |= MAC_RXCFG_SFCS;
2473 #endif
2474     gp->mac_rx_cfg = rxcfg_new;
2475 
2476     writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2477     while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2478         if (!limit--)
2479             break;
2480         udelay(10);
2481     }
2482 
2483     rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2484     rxcfg |= rxcfg_new;
2485 
2486     writel(rxcfg, gp->regs + MAC_RXCFG);
2487 }
2488 
2489 /* Jumbo-grams don't seem to work :-( */
2490 #define GEM_MIN_MTU ETH_MIN_MTU
2491 #if 1
2492 #define GEM_MAX_MTU ETH_DATA_LEN
2493 #else
2494 #define GEM_MAX_MTU 9000
2495 #endif
2496 
2497 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2498 {
2499     struct gem *gp = netdev_priv(dev);
2500 
2501     dev->mtu = new_mtu;
2502 
2503     /* We'll just catch it later when the device is up'd or resumed */
2504     if (!netif_running(dev) || !netif_device_present(dev))
2505         return 0;
2506 
2507     /* Better safe than sorry... */
2508     if (WARN_ON(!gp->cell_enabled))
2509         return 0;
2510 
2511     gem_netif_stop(gp);
2512     gem_reinit_chip(gp);
2513     if (gp->lstate == link_up)
2514         gem_set_link_modes(gp);
2515     gem_netif_start(gp);
2516 
2517     return 0;
2518 }
2519 
2520 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2521 {
2522     struct gem *gp = netdev_priv(dev);
2523 
2524     strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2525     strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2526     strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2527 }
2528 
2529 static int gem_get_link_ksettings(struct net_device *dev,
2530                   struct ethtool_link_ksettings *cmd)
2531 {
2532     struct gem *gp = netdev_priv(dev);
2533     u32 supported, advertising;
2534 
2535     if (gp->phy_type == phy_mii_mdio0 ||
2536         gp->phy_type == phy_mii_mdio1) {
2537         if (gp->phy_mii.def)
2538             supported = gp->phy_mii.def->features;
2539         else
2540             supported = (SUPPORTED_10baseT_Half |
2541                       SUPPORTED_10baseT_Full);
2542 
2543         /* XXX hardcoded stuff for now */
2544         cmd->base.port = PORT_MII;
2545         cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2546 
2547         /* Return current PHY settings */
2548         cmd->base.autoneg = gp->want_autoneg;
2549         cmd->base.speed = gp->phy_mii.speed;
2550         cmd->base.duplex = gp->phy_mii.duplex;
2551         advertising = gp->phy_mii.advertising;
2552 
2553         /* If we started with a forced mode, we don't have a default
2554          * advertise set, we need to return something sensible so
2555          * userland can re-enable autoneg properly.
2556          */
2557         if (advertising == 0)
2558             advertising = supported;
2559     } else { // XXX PCS ?
2560         supported =
2561             (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2562              SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2563              SUPPORTED_Autoneg);
2564         advertising = supported;
2565         cmd->base.speed = 0;
2566         cmd->base.duplex = 0;
2567         cmd->base.port = 0;
2568         cmd->base.phy_address = 0;
2569         cmd->base.autoneg = 0;
2570 
2571         /* serdes means usually a Fibre connector, with most fixed */
2572         if (gp->phy_type == phy_serdes) {
2573             cmd->base.port = PORT_FIBRE;
2574             supported = (SUPPORTED_1000baseT_Half |
2575                 SUPPORTED_1000baseT_Full |
2576                 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2577                 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2578             advertising = supported;
2579             if (gp->lstate == link_up)
2580                 cmd->base.speed = SPEED_1000;
2581             cmd->base.duplex = DUPLEX_FULL;
2582             cmd->base.autoneg = 1;
2583         }
2584     }
2585 
2586     ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2587                         supported);
2588     ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2589                         advertising);
2590 
2591     return 0;
2592 }
2593 
2594 static int gem_set_link_ksettings(struct net_device *dev,
2595                   const struct ethtool_link_ksettings *cmd)
2596 {
2597     struct gem *gp = netdev_priv(dev);
2598     u32 speed = cmd->base.speed;
2599     u32 advertising;
2600 
2601     ethtool_convert_link_mode_to_legacy_u32(&advertising,
2602                         cmd->link_modes.advertising);
2603 
2604     /* Verify the settings we care about. */
2605     if (cmd->base.autoneg != AUTONEG_ENABLE &&
2606         cmd->base.autoneg != AUTONEG_DISABLE)
2607         return -EINVAL;
2608 
2609     if (cmd->base.autoneg == AUTONEG_ENABLE &&
2610         advertising == 0)
2611         return -EINVAL;
2612 
2613     if (cmd->base.autoneg == AUTONEG_DISABLE &&
2614         ((speed != SPEED_1000 &&
2615           speed != SPEED_100 &&
2616           speed != SPEED_10) ||
2617          (cmd->base.duplex != DUPLEX_HALF &&
2618           cmd->base.duplex != DUPLEX_FULL)))
2619         return -EINVAL;
2620 
2621     /* Apply settings and restart link process. */
2622     if (netif_device_present(gp->dev)) {
2623         del_timer_sync(&gp->link_timer);
2624         gem_begin_auto_negotiation(gp, cmd);
2625     }
2626 
2627     return 0;
2628 }
2629 
2630 static int gem_nway_reset(struct net_device *dev)
2631 {
2632     struct gem *gp = netdev_priv(dev);
2633 
2634     if (!gp->want_autoneg)
2635         return -EINVAL;
2636 
2637     /* Restart link process  */
2638     if (netif_device_present(gp->dev)) {
2639         del_timer_sync(&gp->link_timer);
2640         gem_begin_auto_negotiation(gp, NULL);
2641     }
2642 
2643     return 0;
2644 }
2645 
2646 static u32 gem_get_msglevel(struct net_device *dev)
2647 {
2648     struct gem *gp = netdev_priv(dev);
2649     return gp->msg_enable;
2650 }
2651 
2652 static void gem_set_msglevel(struct net_device *dev, u32 value)
2653 {
2654     struct gem *gp = netdev_priv(dev);
2655     gp->msg_enable = value;
2656 }
2657 
2658 
2659 /* Add more when I understand how to program the chip */
2660 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2661 
2662 #define WOL_SUPPORTED_MASK  (WAKE_MAGIC)
2663 
2664 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665 {
2666     struct gem *gp = netdev_priv(dev);
2667 
2668     /* Add more when I understand how to program the chip */
2669     if (gp->has_wol) {
2670         wol->supported = WOL_SUPPORTED_MASK;
2671         wol->wolopts = gp->wake_on_lan;
2672     } else {
2673         wol->supported = 0;
2674         wol->wolopts = 0;
2675     }
2676 }
2677 
2678 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2679 {
2680     struct gem *gp = netdev_priv(dev);
2681 
2682     if (!gp->has_wol)
2683         return -EOPNOTSUPP;
2684     gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2685     return 0;
2686 }
2687 
2688 static const struct ethtool_ops gem_ethtool_ops = {
2689     .get_drvinfo        = gem_get_drvinfo,
2690     .get_link       = ethtool_op_get_link,
2691     .nway_reset     = gem_nway_reset,
2692     .get_msglevel       = gem_get_msglevel,
2693     .set_msglevel       = gem_set_msglevel,
2694     .get_wol        = gem_get_wol,
2695     .set_wol        = gem_set_wol,
2696     .get_link_ksettings = gem_get_link_ksettings,
2697     .set_link_ksettings = gem_set_link_ksettings,
2698 };
2699 
2700 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2701 {
2702     struct gem *gp = netdev_priv(dev);
2703     struct mii_ioctl_data *data = if_mii(ifr);
2704     int rc = -EOPNOTSUPP;
2705 
2706     /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2707      * netif_device_present() is true and holds rtnl_lock for us
2708      * so we have nothing to worry about
2709      */
2710 
2711     switch (cmd) {
2712     case SIOCGMIIPHY:       /* Get address of MII PHY in use. */
2713         data->phy_id = gp->mii_phy_addr;
2714         fallthrough;
2715 
2716     case SIOCGMIIREG:       /* Read MII PHY register. */
2717         data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2718                        data->reg_num & 0x1f);
2719         rc = 0;
2720         break;
2721 
2722     case SIOCSMIIREG:       /* Write MII PHY register. */
2723         __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2724                 data->val_in);
2725         rc = 0;
2726         break;
2727     }
2728     return rc;
2729 }
2730 
2731 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2732 /* Fetch MAC address from vital product data of PCI ROM. */
2733 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2734 {
2735     int this_offset;
2736 
2737     for (this_offset = 0x20; this_offset < len; this_offset++) {
2738         void __iomem *p = rom_base + this_offset;
2739         int i;
2740 
2741         if (readb(p + 0) != 0x90 ||
2742             readb(p + 1) != 0x00 ||
2743             readb(p + 2) != 0x09 ||
2744             readb(p + 3) != 0x4e ||
2745             readb(p + 4) != 0x41 ||
2746             readb(p + 5) != 0x06)
2747             continue;
2748 
2749         this_offset += 6;
2750         p += 6;
2751 
2752         for (i = 0; i < 6; i++)
2753             dev_addr[i] = readb(p + i);
2754         return 1;
2755     }
2756     return 0;
2757 }
2758 
2759 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2760 {
2761     size_t size;
2762     void __iomem *p = pci_map_rom(pdev, &size);
2763 
2764     if (p) {
2765         int found;
2766 
2767         found = readb(p) == 0x55 &&
2768             readb(p + 1) == 0xaa &&
2769             find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2770         pci_unmap_rom(pdev, p);
2771         if (found)
2772             return;
2773     }
2774 
2775     /* Sun MAC prefix then 3 random bytes. */
2776     dev_addr[0] = 0x08;
2777     dev_addr[1] = 0x00;
2778     dev_addr[2] = 0x20;
2779     get_random_bytes(dev_addr + 3, 3);
2780 }
2781 #endif /* not Sparc and not PPC */
2782 
2783 static int gem_get_device_address(struct gem *gp)
2784 {
2785 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2786     struct net_device *dev = gp->dev;
2787     const unsigned char *addr;
2788 
2789     addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2790     if (addr == NULL) {
2791 #ifdef CONFIG_SPARC
2792         addr = idprom->id_ethaddr;
2793 #else
2794         printk("\n");
2795         pr_err("%s: can't get mac-address\n", dev->name);
2796         return -1;
2797 #endif
2798     }
2799     eth_hw_addr_set(dev, addr);
2800 #else
2801     u8 addr[ETH_ALEN];
2802 
2803     get_gem_mac_nonobp(gp->pdev, addr);
2804     eth_hw_addr_set(gp->dev, addr);
2805 #endif
2806     return 0;
2807 }
2808 
2809 static void gem_remove_one(struct pci_dev *pdev)
2810 {
2811     struct net_device *dev = pci_get_drvdata(pdev);
2812 
2813     if (dev) {
2814         struct gem *gp = netdev_priv(dev);
2815 
2816         unregister_netdev(dev);
2817 
2818         /* Ensure reset task is truly gone */
2819         cancel_work_sync(&gp->reset_task);
2820 
2821         /* Free resources */
2822         dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2823                   gp->init_block, gp->gblock_dvma);
2824         iounmap(gp->regs);
2825         pci_release_regions(pdev);
2826         free_netdev(dev);
2827     }
2828 }
2829 
2830 static const struct net_device_ops gem_netdev_ops = {
2831     .ndo_open       = gem_open,
2832     .ndo_stop       = gem_close,
2833     .ndo_start_xmit     = gem_start_xmit,
2834     .ndo_get_stats      = gem_get_stats,
2835     .ndo_set_rx_mode    = gem_set_multicast,
2836     .ndo_eth_ioctl      = gem_ioctl,
2837     .ndo_tx_timeout     = gem_tx_timeout,
2838     .ndo_change_mtu     = gem_change_mtu,
2839     .ndo_validate_addr  = eth_validate_addr,
2840     .ndo_set_mac_address    = gem_set_mac_address,
2841 #ifdef CONFIG_NET_POLL_CONTROLLER
2842     .ndo_poll_controller    = gem_poll_controller,
2843 #endif
2844 };
2845 
2846 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2847 {
2848     unsigned long gemreg_base, gemreg_len;
2849     struct net_device *dev;
2850     struct gem *gp;
2851     int err, pci_using_dac;
2852 
2853     printk_once(KERN_INFO "%s", version);
2854 
2855     /* Apple gmac note: during probe, the chip is powered up by
2856      * the arch code to allow the code below to work (and to let
2857      * the chip be probed on the config space. It won't stay powered
2858      * up until the interface is brought up however, so we can't rely
2859      * on register configuration done at this point.
2860      */
2861     err = pci_enable_device(pdev);
2862     if (err) {
2863         pr_err("Cannot enable MMIO operation, aborting\n");
2864         return err;
2865     }
2866     pci_set_master(pdev);
2867 
2868     /* Configure DMA attributes. */
2869 
2870     /* All of the GEM documentation states that 64-bit DMA addressing
2871      * is fully supported and should work just fine.  However the
2872      * front end for RIO based GEMs is different and only supports
2873      * 32-bit addressing.
2874      *
2875      * For now we assume the various PPC GEMs are 32-bit only as well.
2876      */
2877     if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2878         pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2879         !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2880         pci_using_dac = 1;
2881     } else {
2882         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2883         if (err) {
2884             pr_err("No usable DMA configuration, aborting\n");
2885             goto err_disable_device;
2886         }
2887         pci_using_dac = 0;
2888     }
2889 
2890     gemreg_base = pci_resource_start(pdev, 0);
2891     gemreg_len = pci_resource_len(pdev, 0);
2892 
2893     if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2894         pr_err("Cannot find proper PCI device base address, aborting\n");
2895         err = -ENODEV;
2896         goto err_disable_device;
2897     }
2898 
2899     dev = alloc_etherdev(sizeof(*gp));
2900     if (!dev) {
2901         err = -ENOMEM;
2902         goto err_disable_device;
2903     }
2904     SET_NETDEV_DEV(dev, &pdev->dev);
2905 
2906     gp = netdev_priv(dev);
2907 
2908     err = pci_request_regions(pdev, DRV_NAME);
2909     if (err) {
2910         pr_err("Cannot obtain PCI resources, aborting\n");
2911         goto err_out_free_netdev;
2912     }
2913 
2914     gp->pdev = pdev;
2915     gp->dev = dev;
2916 
2917     gp->msg_enable = DEFAULT_MSG;
2918 
2919     timer_setup(&gp->link_timer, gem_link_timer, 0);
2920 
2921     INIT_WORK(&gp->reset_task, gem_reset_task);
2922 
2923     gp->lstate = link_down;
2924     gp->timer_ticks = 0;
2925     netif_carrier_off(dev);
2926 
2927     gp->regs = ioremap(gemreg_base, gemreg_len);
2928     if (!gp->regs) {
2929         pr_err("Cannot map device registers, aborting\n");
2930         err = -EIO;
2931         goto err_out_free_res;
2932     }
2933 
2934     /* On Apple, we want a reference to the Open Firmware device-tree
2935      * node. We use it for clock control.
2936      */
2937 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2938     gp->of_node = pci_device_to_OF_node(pdev);
2939 #endif
2940 
2941     /* Only Apple version supports WOL afaik */
2942     if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2943         gp->has_wol = 1;
2944 
2945     /* Make sure cell is enabled */
2946     gem_get_cell(gp);
2947 
2948     /* Make sure everything is stopped and in init state */
2949     gem_reset(gp);
2950 
2951     /* Fill up the mii_phy structure (even if we won't use it) */
2952     gp->phy_mii.dev = dev;
2953     gp->phy_mii.mdio_read = _sungem_phy_read;
2954     gp->phy_mii.mdio_write = _sungem_phy_write;
2955 #ifdef CONFIG_PPC_PMAC
2956     gp->phy_mii.platform_data = gp->of_node;
2957 #endif
2958     /* By default, we start with autoneg */
2959     gp->want_autoneg = 1;
2960 
2961     /* Check fifo sizes, PHY type, etc... */
2962     if (gem_check_invariants(gp)) {
2963         err = -ENODEV;
2964         goto err_out_iounmap;
2965     }
2966 
2967     /* It is guaranteed that the returned buffer will be at least
2968      * PAGE_SIZE aligned.
2969      */
2970     gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2971                         &gp->gblock_dvma, GFP_KERNEL);
2972     if (!gp->init_block) {
2973         pr_err("Cannot allocate init block, aborting\n");
2974         err = -ENOMEM;
2975         goto err_out_iounmap;
2976     }
2977 
2978     err = gem_get_device_address(gp);
2979     if (err)
2980         goto err_out_free_consistent;
2981 
2982     dev->netdev_ops = &gem_netdev_ops;
2983     netif_napi_add(dev, &gp->napi, gem_poll, 64);
2984     dev->ethtool_ops = &gem_ethtool_ops;
2985     dev->watchdog_timeo = 5 * HZ;
2986     dev->dma = 0;
2987 
2988     /* Set that now, in case PM kicks in now */
2989     pci_set_drvdata(pdev, dev);
2990 
2991     /* We can do scatter/gather and HW checksum */
2992     dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2993     dev->features = dev->hw_features;
2994     if (pci_using_dac)
2995         dev->features |= NETIF_F_HIGHDMA;
2996 
2997     /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2998     dev->min_mtu = GEM_MIN_MTU;
2999     dev->max_mtu = GEM_MAX_MTU;
3000 
3001     /* Register with kernel */
3002     if (register_netdev(dev)) {
3003         pr_err("Cannot register net device, aborting\n");
3004         err = -ENOMEM;
3005         goto err_out_free_consistent;
3006     }
3007 
3008     /* Undo the get_cell with appropriate locking (we could use
3009      * ndo_init/uninit but that would be even more clumsy imho)
3010      */
3011     rtnl_lock();
3012     gem_put_cell(gp);
3013     rtnl_unlock();
3014 
3015     netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3016             dev->dev_addr);
3017     return 0;
3018 
3019 err_out_free_consistent:
3020     gem_remove_one(pdev);
3021 err_out_iounmap:
3022     gem_put_cell(gp);
3023     iounmap(gp->regs);
3024 
3025 err_out_free_res:
3026     pci_release_regions(pdev);
3027 
3028 err_out_free_netdev:
3029     free_netdev(dev);
3030 err_disable_device:
3031     pci_disable_device(pdev);
3032     return err;
3033 
3034 }
3035 
3036 static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3037 
3038 static struct pci_driver gem_driver = {
3039     .name       = GEM_MODULE_NAME,
3040     .id_table   = gem_pci_tbl,
3041     .probe      = gem_init_one,
3042     .remove     = gem_remove_one,
3043     .driver.pm  = &gem_pm_ops,
3044 };
3045 
3046 module_pci_driver(gem_driver);