Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
0003  *
0004  * Copyright (C) 2004 Sun Microsystems Inc.
0005  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
0006  *
0007  * This driver uses the sungem driver (c) David Miller
0008  * (davem@redhat.com) as its basis.
0009  *
0010  * The cassini chip has a number of features that distinguish it from
0011  * the gem chip:
0012  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
0013  *      load balancing (non-VLAN mode)
0014  *  batching of multiple packets
0015  *  multiple CPU dispatching
0016  *  page-based RX descriptor engine with separate completion rings
0017  *  Gigabit support (GMII and PCS interface)
0018  *  MIF link up/down detection works
0019  *
0020  * RX is handled by page sized buffers that are attached as fragments to
0021  * the skb. here's what's done:
0022  *  -- driver allocates pages at a time and keeps reference counts
0023  *     on them.
0024  *  -- the upper protocol layers assume that the header is in the skb
0025  *     itself. as a result, cassini will copy a small amount (64 bytes)
0026  *     to make them happy.
0027  *  -- driver appends the rest of the data pages as frags to skbuffs
0028  *     and increments the reference count
0029  *  -- on page reclamation, the driver swaps the page with a spare page.
0030  *     if that page is still in use, it frees its reference to that page,
0031  *     and allocates a new page for use. otherwise, it just recycles the
0032  *     page.
0033  *
0034  * NOTE: cassini can parse the header. however, it's not worth it
0035  *       as long as the network stack requires a header copy.
0036  *
0037  * TX has 4 queues. currently these queues are used in a round-robin
0038  * fashion for load balancing. They can also be used for QoS. for that
0039  * to work, however, QoS information needs to be exposed down to the driver
0040  * level so that subqueues get targeted to particular transmit rings.
0041  * alternatively, the queues can be configured via use of the all-purpose
0042  * ioctl.
0043  *
0044  * RX DATA: the rx completion ring has all the info, but the rx desc
0045  * ring has all of the data. RX can conceivably come in under multiple
0046  * interrupts, but the INT# assignment needs to be set up properly by
0047  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
0048  * that. also, the two descriptor rings are designed to distinguish between
0049  * encrypted and non-encrypted packets, but we use them for buffering
0050  * instead.
0051  *
0052  * by default, the selective clear mask is set up to process rx packets.
0053  */
0054 
0055 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0056 
0057 #include <linux/module.h>
0058 #include <linux/kernel.h>
0059 #include <linux/types.h>
0060 #include <linux/compiler.h>
0061 #include <linux/slab.h>
0062 #include <linux/delay.h>
0063 #include <linux/init.h>
0064 #include <linux/interrupt.h>
0065 #include <linux/vmalloc.h>
0066 #include <linux/ioport.h>
0067 #include <linux/pci.h>
0068 #include <linux/mm.h>
0069 #include <linux/highmem.h>
0070 #include <linux/list.h>
0071 #include <linux/dma-mapping.h>
0072 
0073 #include <linux/netdevice.h>
0074 #include <linux/etherdevice.h>
0075 #include <linux/skbuff.h>
0076 #include <linux/ethtool.h>
0077 #include <linux/crc32.h>
0078 #include <linux/random.h>
0079 #include <linux/mii.h>
0080 #include <linux/ip.h>
0081 #include <linux/tcp.h>
0082 #include <linux/mutex.h>
0083 #include <linux/firmware.h>
0084 
0085 #include <net/checksum.h>
0086 
0087 #include <linux/atomic.h>
0088 #include <asm/io.h>
0089 #include <asm/byteorder.h>
0090 #include <linux/uaccess.h>
0091 #include <linux/jiffies.h>
0092 
0093 #define cas_page_map(x)      kmap_atomic((x))
0094 #define cas_page_unmap(x)    kunmap_atomic((x))
0095 #define CAS_NCPUS            num_online_cpus()
0096 
0097 #define cas_skb_release(x)  netif_rx(x)
0098 
0099 /* select which firmware to use */
0100 #define USE_HP_WORKAROUND
0101 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
0102 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
0103 
0104 #include "cassini.h"
0105 
0106 #define USE_TX_COMPWB      /* use completion writeback registers */
0107 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
0108 #define USE_RX_BLANK       /* hw interrupt mitigation */
0109 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
0110 
0111 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
0112  * also, we need to make cp->lock finer-grained.
0113  */
0114 #undef  USE_PCI_INTB
0115 #undef  USE_PCI_INTC
0116 #undef  USE_PCI_INTD
0117 #undef  USE_QOS
0118 
0119 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
0120 
0121 /* rx processing options */
0122 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
0123 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
0124 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
0125 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
0126 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
0127 
0128 #define DRV_MODULE_NAME     "cassini"
0129 #define DRV_MODULE_VERSION  "1.6"
0130 #define DRV_MODULE_RELDATE  "21 May 2008"
0131 
0132 #define CAS_DEF_MSG_ENABLE    \
0133     (NETIF_MSG_DRV      | \
0134      NETIF_MSG_PROBE    | \
0135      NETIF_MSG_LINK     | \
0136      NETIF_MSG_TIMER    | \
0137      NETIF_MSG_IFDOWN   | \
0138      NETIF_MSG_IFUP     | \
0139      NETIF_MSG_RX_ERR   | \
0140      NETIF_MSG_TX_ERR)
0141 
0142 /* length of time before we decide the hardware is borked,
0143  * and dev->tx_timeout() should be called to fix the problem
0144  */
0145 #define CAS_TX_TIMEOUT          (HZ)
0146 #define CAS_LINK_TIMEOUT                (22*HZ/10)
0147 #define CAS_LINK_FAST_TIMEOUT           (1)
0148 
0149 /* timeout values for state changing. these specify the number
0150  * of 10us delays to be used before giving up.
0151  */
0152 #define STOP_TRIES_PHY 1000
0153 #define STOP_TRIES     5000
0154 
0155 /* specify a minimum frame size to deal with some fifo issues
0156  * max mtu == 2 * page size - ethernet header - 64 - swivel =
0157  *            2 * page_size - 0x50
0158  */
0159 #define CAS_MIN_FRAME           97
0160 #define CAS_1000MB_MIN_FRAME            255
0161 #define CAS_MIN_MTU                     60
0162 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
0163 
0164 #if 1
0165 /*
0166  * Eliminate these and use separate atomic counters for each, to
0167  * avoid a race condition.
0168  */
0169 #else
0170 #define CAS_RESET_MTU                   1
0171 #define CAS_RESET_ALL                   2
0172 #define CAS_RESET_SPARE                 3
0173 #endif
0174 
0175 static char version[] =
0176     DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
0177 
0178 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
0179 static int link_mode;
0180 
0181 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
0182 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
0183 MODULE_LICENSE("GPL");
0184 MODULE_FIRMWARE("sun/cassini.bin");
0185 module_param(cassini_debug, int, 0);
0186 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
0187 module_param(link_mode, int, 0);
0188 MODULE_PARM_DESC(link_mode, "default link mode");
0189 
0190 /*
0191  * Work around for a PCS bug in which the link goes down due to the chip
0192  * being confused and never showing a link status of "up."
0193  */
0194 #define DEFAULT_LINKDOWN_TIMEOUT 5
0195 /*
0196  * Value in seconds, for user input.
0197  */
0198 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
0199 module_param(linkdown_timeout, int, 0);
0200 MODULE_PARM_DESC(linkdown_timeout,
0201 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
0202 
0203 /*
0204  * value in 'ticks' (units used by jiffies). Set when we init the
0205  * module because 'HZ' in actually a function call on some flavors of
0206  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
0207  */
0208 static int link_transition_timeout;
0209 
0210 
0211 
0212 static u16 link_modes[] = {
0213     BMCR_ANENABLE,           /* 0 : autoneg */
0214     0,               /* 1 : 10bt half duplex */
0215     BMCR_SPEED100,           /* 2 : 100bt half duplex */
0216     BMCR_FULLDPLX,           /* 3 : 10bt full duplex */
0217     BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
0218     CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
0219 };
0220 
0221 static const struct pci_device_id cas_pci_tbl[] = {
0222     { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
0223       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0224     { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
0225       PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
0226     { 0, }
0227 };
0228 
0229 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
0230 
0231 static void cas_set_link_modes(struct cas *cp);
0232 
0233 static inline void cas_lock_tx(struct cas *cp)
0234 {
0235     int i;
0236 
0237     for (i = 0; i < N_TX_RINGS; i++)
0238         spin_lock_nested(&cp->tx_lock[i], i);
0239 }
0240 
0241 /* WTZ: QA was finding deadlock problems with the previous
0242  * versions after long test runs with multiple cards per machine.
0243  * See if replacing cas_lock_all with safer versions helps. The
0244  * symptoms QA is reporting match those we'd expect if interrupts
0245  * aren't being properly restored, and we fixed a previous deadlock
0246  * with similar symptoms by using save/restore versions in other
0247  * places.
0248  */
0249 #define cas_lock_all_save(cp, flags) \
0250 do { \
0251     struct cas *xxxcp = (cp); \
0252     spin_lock_irqsave(&xxxcp->lock, flags); \
0253     cas_lock_tx(xxxcp); \
0254 } while (0)
0255 
0256 static inline void cas_unlock_tx(struct cas *cp)
0257 {
0258     int i;
0259 
0260     for (i = N_TX_RINGS; i > 0; i--)
0261         spin_unlock(&cp->tx_lock[i - 1]);
0262 }
0263 
0264 #define cas_unlock_all_restore(cp, flags) \
0265 do { \
0266     struct cas *xxxcp = (cp); \
0267     cas_unlock_tx(xxxcp); \
0268     spin_unlock_irqrestore(&xxxcp->lock, flags); \
0269 } while (0)
0270 
0271 static void cas_disable_irq(struct cas *cp, const int ring)
0272 {
0273     /* Make sure we won't get any more interrupts */
0274     if (ring == 0) {
0275         writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
0276         return;
0277     }
0278 
0279     /* disable completion interrupts and selectively mask */
0280     if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
0281         switch (ring) {
0282 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
0283 #ifdef USE_PCI_INTB
0284         case 1:
0285 #endif
0286 #ifdef USE_PCI_INTC
0287         case 2:
0288 #endif
0289 #ifdef USE_PCI_INTD
0290         case 3:
0291 #endif
0292             writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
0293                    cp->regs + REG_PLUS_INTRN_MASK(ring));
0294             break;
0295 #endif
0296         default:
0297             writel(INTRN_MASK_CLEAR_ALL, cp->regs +
0298                    REG_PLUS_INTRN_MASK(ring));
0299             break;
0300         }
0301     }
0302 }
0303 
0304 static inline void cas_mask_intr(struct cas *cp)
0305 {
0306     int i;
0307 
0308     for (i = 0; i < N_RX_COMP_RINGS; i++)
0309         cas_disable_irq(cp, i);
0310 }
0311 
0312 static void cas_enable_irq(struct cas *cp, const int ring)
0313 {
0314     if (ring == 0) { /* all but TX_DONE */
0315         writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
0316         return;
0317     }
0318 
0319     if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
0320         switch (ring) {
0321 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
0322 #ifdef USE_PCI_INTB
0323         case 1:
0324 #endif
0325 #ifdef USE_PCI_INTC
0326         case 2:
0327 #endif
0328 #ifdef USE_PCI_INTD
0329         case 3:
0330 #endif
0331             writel(INTRN_MASK_RX_EN, cp->regs +
0332                    REG_PLUS_INTRN_MASK(ring));
0333             break;
0334 #endif
0335         default:
0336             break;
0337         }
0338     }
0339 }
0340 
0341 static inline void cas_unmask_intr(struct cas *cp)
0342 {
0343     int i;
0344 
0345     for (i = 0; i < N_RX_COMP_RINGS; i++)
0346         cas_enable_irq(cp, i);
0347 }
0348 
0349 static inline void cas_entropy_gather(struct cas *cp)
0350 {
0351 #ifdef USE_ENTROPY_DEV
0352     if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
0353         return;
0354 
0355     batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
0356                 readl(cp->regs + REG_ENTROPY_IV),
0357                 sizeof(uint64_t)*8);
0358 #endif
0359 }
0360 
0361 static inline void cas_entropy_reset(struct cas *cp)
0362 {
0363 #ifdef USE_ENTROPY_DEV
0364     if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
0365         return;
0366 
0367     writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
0368            cp->regs + REG_BIM_LOCAL_DEV_EN);
0369     writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
0370     writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
0371 
0372     /* if we read back 0x0, we don't have an entropy device */
0373     if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
0374         cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
0375 #endif
0376 }
0377 
0378 /* access to the phy. the following assumes that we've initialized the MIF to
0379  * be in frame rather than bit-bang mode
0380  */
0381 static u16 cas_phy_read(struct cas *cp, int reg)
0382 {
0383     u32 cmd;
0384     int limit = STOP_TRIES_PHY;
0385 
0386     cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
0387     cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
0388     cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
0389     cmd |= MIF_FRAME_TURN_AROUND_MSB;
0390     writel(cmd, cp->regs + REG_MIF_FRAME);
0391 
0392     /* poll for completion */
0393     while (limit-- > 0) {
0394         udelay(10);
0395         cmd = readl(cp->regs + REG_MIF_FRAME);
0396         if (cmd & MIF_FRAME_TURN_AROUND_LSB)
0397             return cmd & MIF_FRAME_DATA_MASK;
0398     }
0399     return 0xFFFF; /* -1 */
0400 }
0401 
0402 static int cas_phy_write(struct cas *cp, int reg, u16 val)
0403 {
0404     int limit = STOP_TRIES_PHY;
0405     u32 cmd;
0406 
0407     cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
0408     cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
0409     cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
0410     cmd |= MIF_FRAME_TURN_AROUND_MSB;
0411     cmd |= val & MIF_FRAME_DATA_MASK;
0412     writel(cmd, cp->regs + REG_MIF_FRAME);
0413 
0414     /* poll for completion */
0415     while (limit-- > 0) {
0416         udelay(10);
0417         cmd = readl(cp->regs + REG_MIF_FRAME);
0418         if (cmd & MIF_FRAME_TURN_AROUND_LSB)
0419             return 0;
0420     }
0421     return -1;
0422 }
0423 
0424 static void cas_phy_powerup(struct cas *cp)
0425 {
0426     u16 ctl = cas_phy_read(cp, MII_BMCR);
0427 
0428     if ((ctl & BMCR_PDOWN) == 0)
0429         return;
0430     ctl &= ~BMCR_PDOWN;
0431     cas_phy_write(cp, MII_BMCR, ctl);
0432 }
0433 
0434 static void cas_phy_powerdown(struct cas *cp)
0435 {
0436     u16 ctl = cas_phy_read(cp, MII_BMCR);
0437 
0438     if (ctl & BMCR_PDOWN)
0439         return;
0440     ctl |= BMCR_PDOWN;
0441     cas_phy_write(cp, MII_BMCR, ctl);
0442 }
0443 
0444 /* cp->lock held. note: the last put_page will free the buffer */
0445 static int cas_page_free(struct cas *cp, cas_page_t *page)
0446 {
0447     dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
0448                DMA_FROM_DEVICE);
0449     __free_pages(page->buffer, cp->page_order);
0450     kfree(page);
0451     return 0;
0452 }
0453 
0454 #ifdef RX_COUNT_BUFFERS
0455 #define RX_USED_ADD(x, y)       ((x)->used += (y))
0456 #define RX_USED_SET(x, y)       ((x)->used  = (y))
0457 #else
0458 #define RX_USED_ADD(x, y) do { } while(0)
0459 #define RX_USED_SET(x, y) do { } while(0)
0460 #endif
0461 
0462 /* local page allocation routines for the receive buffers. jumbo pages
0463  * require at least 8K contiguous and 8K aligned buffers.
0464  */
0465 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
0466 {
0467     cas_page_t *page;
0468 
0469     page = kmalloc(sizeof(cas_page_t), flags);
0470     if (!page)
0471         return NULL;
0472 
0473     INIT_LIST_HEAD(&page->list);
0474     RX_USED_SET(page, 0);
0475     page->buffer = alloc_pages(flags, cp->page_order);
0476     if (!page->buffer)
0477         goto page_err;
0478     page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
0479                       cp->page_size, DMA_FROM_DEVICE);
0480     return page;
0481 
0482 page_err:
0483     kfree(page);
0484     return NULL;
0485 }
0486 
0487 /* initialize spare pool of rx buffers, but allocate during the open */
0488 static void cas_spare_init(struct cas *cp)
0489 {
0490     spin_lock(&cp->rx_inuse_lock);
0491     INIT_LIST_HEAD(&cp->rx_inuse_list);
0492     spin_unlock(&cp->rx_inuse_lock);
0493 
0494     spin_lock(&cp->rx_spare_lock);
0495     INIT_LIST_HEAD(&cp->rx_spare_list);
0496     cp->rx_spares_needed = RX_SPARE_COUNT;
0497     spin_unlock(&cp->rx_spare_lock);
0498 }
0499 
0500 /* used on close. free all the spare buffers. */
0501 static void cas_spare_free(struct cas *cp)
0502 {
0503     struct list_head list, *elem, *tmp;
0504 
0505     /* free spare buffers */
0506     INIT_LIST_HEAD(&list);
0507     spin_lock(&cp->rx_spare_lock);
0508     list_splice_init(&cp->rx_spare_list, &list);
0509     spin_unlock(&cp->rx_spare_lock);
0510     list_for_each_safe(elem, tmp, &list) {
0511         cas_page_free(cp, list_entry(elem, cas_page_t, list));
0512     }
0513 
0514     INIT_LIST_HEAD(&list);
0515 #if 1
0516     /*
0517      * Looks like Adrian had protected this with a different
0518      * lock than used everywhere else to manipulate this list.
0519      */
0520     spin_lock(&cp->rx_inuse_lock);
0521     list_splice_init(&cp->rx_inuse_list, &list);
0522     spin_unlock(&cp->rx_inuse_lock);
0523 #else
0524     spin_lock(&cp->rx_spare_lock);
0525     list_splice_init(&cp->rx_inuse_list, &list);
0526     spin_unlock(&cp->rx_spare_lock);
0527 #endif
0528     list_for_each_safe(elem, tmp, &list) {
0529         cas_page_free(cp, list_entry(elem, cas_page_t, list));
0530     }
0531 }
0532 
0533 /* replenish spares if needed */
0534 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
0535 {
0536     struct list_head list, *elem, *tmp;
0537     int needed, i;
0538 
0539     /* check inuse list. if we don't need any more free buffers,
0540      * just free it
0541      */
0542 
0543     /* make a local copy of the list */
0544     INIT_LIST_HEAD(&list);
0545     spin_lock(&cp->rx_inuse_lock);
0546     list_splice_init(&cp->rx_inuse_list, &list);
0547     spin_unlock(&cp->rx_inuse_lock);
0548 
0549     list_for_each_safe(elem, tmp, &list) {
0550         cas_page_t *page = list_entry(elem, cas_page_t, list);
0551 
0552         /*
0553          * With the lockless pagecache, cassini buffering scheme gets
0554          * slightly less accurate: we might find that a page has an
0555          * elevated reference count here, due to a speculative ref,
0556          * and skip it as in-use. Ideally we would be able to reclaim
0557          * it. However this would be such a rare case, it doesn't
0558          * matter too much as we should pick it up the next time round.
0559          *
0560          * Importantly, if we find that the page has a refcount of 1
0561          * here (our refcount), then we know it is definitely not inuse
0562          * so we can reuse it.
0563          */
0564         if (page_count(page->buffer) > 1)
0565             continue;
0566 
0567         list_del(elem);
0568         spin_lock(&cp->rx_spare_lock);
0569         if (cp->rx_spares_needed > 0) {
0570             list_add(elem, &cp->rx_spare_list);
0571             cp->rx_spares_needed--;
0572             spin_unlock(&cp->rx_spare_lock);
0573         } else {
0574             spin_unlock(&cp->rx_spare_lock);
0575             cas_page_free(cp, page);
0576         }
0577     }
0578 
0579     /* put any inuse buffers back on the list */
0580     if (!list_empty(&list)) {
0581         spin_lock(&cp->rx_inuse_lock);
0582         list_splice(&list, &cp->rx_inuse_list);
0583         spin_unlock(&cp->rx_inuse_lock);
0584     }
0585 
0586     spin_lock(&cp->rx_spare_lock);
0587     needed = cp->rx_spares_needed;
0588     spin_unlock(&cp->rx_spare_lock);
0589     if (!needed)
0590         return;
0591 
0592     /* we still need spares, so try to allocate some */
0593     INIT_LIST_HEAD(&list);
0594     i = 0;
0595     while (i < needed) {
0596         cas_page_t *spare = cas_page_alloc(cp, flags);
0597         if (!spare)
0598             break;
0599         list_add(&spare->list, &list);
0600         i++;
0601     }
0602 
0603     spin_lock(&cp->rx_spare_lock);
0604     list_splice(&list, &cp->rx_spare_list);
0605     cp->rx_spares_needed -= i;
0606     spin_unlock(&cp->rx_spare_lock);
0607 }
0608 
0609 /* pull a page from the list. */
0610 static cas_page_t *cas_page_dequeue(struct cas *cp)
0611 {
0612     struct list_head *entry;
0613     int recover;
0614 
0615     spin_lock(&cp->rx_spare_lock);
0616     if (list_empty(&cp->rx_spare_list)) {
0617         /* try to do a quick recovery */
0618         spin_unlock(&cp->rx_spare_lock);
0619         cas_spare_recover(cp, GFP_ATOMIC);
0620         spin_lock(&cp->rx_spare_lock);
0621         if (list_empty(&cp->rx_spare_list)) {
0622             netif_err(cp, rx_err, cp->dev,
0623                   "no spare buffers available\n");
0624             spin_unlock(&cp->rx_spare_lock);
0625             return NULL;
0626         }
0627     }
0628 
0629     entry = cp->rx_spare_list.next;
0630     list_del(entry);
0631     recover = ++cp->rx_spares_needed;
0632     spin_unlock(&cp->rx_spare_lock);
0633 
0634     /* trigger the timer to do the recovery */
0635     if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
0636 #if 1
0637         atomic_inc(&cp->reset_task_pending);
0638         atomic_inc(&cp->reset_task_pending_spare);
0639         schedule_work(&cp->reset_task);
0640 #else
0641         atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
0642         schedule_work(&cp->reset_task);
0643 #endif
0644     }
0645     return list_entry(entry, cas_page_t, list);
0646 }
0647 
0648 
0649 static void cas_mif_poll(struct cas *cp, const int enable)
0650 {
0651     u32 cfg;
0652 
0653     cfg  = readl(cp->regs + REG_MIF_CFG);
0654     cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
0655 
0656     if (cp->phy_type & CAS_PHY_MII_MDIO1)
0657         cfg |= MIF_CFG_PHY_SELECT;
0658 
0659     /* poll and interrupt on link status change. */
0660     if (enable) {
0661         cfg |= MIF_CFG_POLL_EN;
0662         cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
0663         cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
0664     }
0665     writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
0666            cp->regs + REG_MIF_MASK);
0667     writel(cfg, cp->regs + REG_MIF_CFG);
0668 }
0669 
0670 /* Must be invoked under cp->lock */
0671 static void cas_begin_auto_negotiation(struct cas *cp,
0672                        const struct ethtool_link_ksettings *ep)
0673 {
0674     u16 ctl;
0675 #if 1
0676     int lcntl;
0677     int changed = 0;
0678     int oldstate = cp->lstate;
0679     int link_was_not_down = !(oldstate == link_down);
0680 #endif
0681     /* Setup link parameters */
0682     if (!ep)
0683         goto start_aneg;
0684     lcntl = cp->link_cntl;
0685     if (ep->base.autoneg == AUTONEG_ENABLE) {
0686         cp->link_cntl = BMCR_ANENABLE;
0687     } else {
0688         u32 speed = ep->base.speed;
0689         cp->link_cntl = 0;
0690         if (speed == SPEED_100)
0691             cp->link_cntl |= BMCR_SPEED100;
0692         else if (speed == SPEED_1000)
0693             cp->link_cntl |= CAS_BMCR_SPEED1000;
0694         if (ep->base.duplex == DUPLEX_FULL)
0695             cp->link_cntl |= BMCR_FULLDPLX;
0696     }
0697 #if 1
0698     changed = (lcntl != cp->link_cntl);
0699 #endif
0700 start_aneg:
0701     if (cp->lstate == link_up) {
0702         netdev_info(cp->dev, "PCS link down\n");
0703     } else {
0704         if (changed) {
0705             netdev_info(cp->dev, "link configuration changed\n");
0706         }
0707     }
0708     cp->lstate = link_down;
0709     cp->link_transition = LINK_TRANSITION_LINK_DOWN;
0710     if (!cp->hw_running)
0711         return;
0712 #if 1
0713     /*
0714      * WTZ: If the old state was link_up, we turn off the carrier
0715      * to replicate everything we do elsewhere on a link-down
0716      * event when we were already in a link-up state..
0717      */
0718     if (oldstate == link_up)
0719         netif_carrier_off(cp->dev);
0720     if (changed  && link_was_not_down) {
0721         /*
0722          * WTZ: This branch will simply schedule a full reset after
0723          * we explicitly changed link modes in an ioctl. See if this
0724          * fixes the link-problems we were having for forced mode.
0725          */
0726         atomic_inc(&cp->reset_task_pending);
0727         atomic_inc(&cp->reset_task_pending_all);
0728         schedule_work(&cp->reset_task);
0729         cp->timer_ticks = 0;
0730         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
0731         return;
0732     }
0733 #endif
0734     if (cp->phy_type & CAS_PHY_SERDES) {
0735         u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
0736 
0737         if (cp->link_cntl & BMCR_ANENABLE) {
0738             val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
0739             cp->lstate = link_aneg;
0740         } else {
0741             if (cp->link_cntl & BMCR_FULLDPLX)
0742                 val |= PCS_MII_CTRL_DUPLEX;
0743             val &= ~PCS_MII_AUTONEG_EN;
0744             cp->lstate = link_force_ok;
0745         }
0746         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
0747         writel(val, cp->regs + REG_PCS_MII_CTRL);
0748 
0749     } else {
0750         cas_mif_poll(cp, 0);
0751         ctl = cas_phy_read(cp, MII_BMCR);
0752         ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
0753              CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
0754         ctl |= cp->link_cntl;
0755         if (ctl & BMCR_ANENABLE) {
0756             ctl |= BMCR_ANRESTART;
0757             cp->lstate = link_aneg;
0758         } else {
0759             cp->lstate = link_force_ok;
0760         }
0761         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
0762         cas_phy_write(cp, MII_BMCR, ctl);
0763         cas_mif_poll(cp, 1);
0764     }
0765 
0766     cp->timer_ticks = 0;
0767     mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
0768 }
0769 
0770 /* Must be invoked under cp->lock. */
0771 static int cas_reset_mii_phy(struct cas *cp)
0772 {
0773     int limit = STOP_TRIES_PHY;
0774     u16 val;
0775 
0776     cas_phy_write(cp, MII_BMCR, BMCR_RESET);
0777     udelay(100);
0778     while (--limit) {
0779         val = cas_phy_read(cp, MII_BMCR);
0780         if ((val & BMCR_RESET) == 0)
0781             break;
0782         udelay(10);
0783     }
0784     return limit <= 0;
0785 }
0786 
0787 static void cas_saturn_firmware_init(struct cas *cp)
0788 {
0789     const struct firmware *fw;
0790     const char fw_name[] = "sun/cassini.bin";
0791     int err;
0792 
0793     if (PHY_NS_DP83065 != cp->phy_id)
0794         return;
0795 
0796     err = request_firmware(&fw, fw_name, &cp->pdev->dev);
0797     if (err) {
0798         pr_err("Failed to load firmware \"%s\"\n",
0799                fw_name);
0800         return;
0801     }
0802     if (fw->size < 2) {
0803         pr_err("bogus length %zu in \"%s\"\n",
0804                fw->size, fw_name);
0805         goto out;
0806     }
0807     cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
0808     cp->fw_size = fw->size - 2;
0809     cp->fw_data = vmalloc(cp->fw_size);
0810     if (!cp->fw_data)
0811         goto out;
0812     memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
0813 out:
0814     release_firmware(fw);
0815 }
0816 
0817 static void cas_saturn_firmware_load(struct cas *cp)
0818 {
0819     int i;
0820 
0821     if (!cp->fw_data)
0822         return;
0823 
0824     cas_phy_powerdown(cp);
0825 
0826     /* expanded memory access mode */
0827     cas_phy_write(cp, DP83065_MII_MEM, 0x0);
0828 
0829     /* pointer configuration for new firmware */
0830     cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
0831     cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
0832     cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
0833     cas_phy_write(cp, DP83065_MII_REGD, 0x82);
0834     cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
0835     cas_phy_write(cp, DP83065_MII_REGD, 0x0);
0836     cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
0837     cas_phy_write(cp, DP83065_MII_REGD, 0x39);
0838 
0839     /* download new firmware */
0840     cas_phy_write(cp, DP83065_MII_MEM, 0x1);
0841     cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
0842     for (i = 0; i < cp->fw_size; i++)
0843         cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
0844 
0845     /* enable firmware */
0846     cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
0847     cas_phy_write(cp, DP83065_MII_REGD, 0x1);
0848 }
0849 
0850 
0851 /* phy initialization */
0852 static void cas_phy_init(struct cas *cp)
0853 {
0854     u16 val;
0855 
0856     /* if we're in MII/GMII mode, set up phy */
0857     if (CAS_PHY_MII(cp->phy_type)) {
0858         writel(PCS_DATAPATH_MODE_MII,
0859                cp->regs + REG_PCS_DATAPATH_MODE);
0860 
0861         cas_mif_poll(cp, 0);
0862         cas_reset_mii_phy(cp); /* take out of isolate mode */
0863 
0864         if (PHY_LUCENT_B0 == cp->phy_id) {
0865             /* workaround link up/down issue with lucent */
0866             cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
0867             cas_phy_write(cp, MII_BMCR, 0x00f1);
0868             cas_phy_write(cp, LUCENT_MII_REG, 0x0);
0869 
0870         } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
0871             /* workarounds for broadcom phy */
0872             cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
0873             cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
0874             cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
0875             cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
0876             cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
0877             cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
0878             cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
0879             cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
0880             cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
0881             cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
0882             cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
0883 
0884         } else if (PHY_BROADCOM_5411 == cp->phy_id) {
0885             val = cas_phy_read(cp, BROADCOM_MII_REG4);
0886             val = cas_phy_read(cp, BROADCOM_MII_REG4);
0887             if (val & 0x0080) {
0888                 /* link workaround */
0889                 cas_phy_write(cp, BROADCOM_MII_REG4,
0890                           val & ~0x0080);
0891             }
0892 
0893         } else if (cp->cas_flags & CAS_FLAG_SATURN) {
0894             writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
0895                    SATURN_PCFG_FSI : 0x0,
0896                    cp->regs + REG_SATURN_PCFG);
0897 
0898             /* load firmware to address 10Mbps auto-negotiation
0899              * issue. NOTE: this will need to be changed if the
0900              * default firmware gets fixed.
0901              */
0902             if (PHY_NS_DP83065 == cp->phy_id) {
0903                 cas_saturn_firmware_load(cp);
0904             }
0905             cas_phy_powerup(cp);
0906         }
0907 
0908         /* advertise capabilities */
0909         val = cas_phy_read(cp, MII_BMCR);
0910         val &= ~BMCR_ANENABLE;
0911         cas_phy_write(cp, MII_BMCR, val);
0912         udelay(10);
0913 
0914         cas_phy_write(cp, MII_ADVERTISE,
0915                   cas_phy_read(cp, MII_ADVERTISE) |
0916                   (ADVERTISE_10HALF | ADVERTISE_10FULL |
0917                    ADVERTISE_100HALF | ADVERTISE_100FULL |
0918                    CAS_ADVERTISE_PAUSE |
0919                    CAS_ADVERTISE_ASYM_PAUSE));
0920 
0921         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
0922             /* make sure that we don't advertise half
0923              * duplex to avoid a chip issue
0924              */
0925             val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
0926             val &= ~CAS_ADVERTISE_1000HALF;
0927             val |= CAS_ADVERTISE_1000FULL;
0928             cas_phy_write(cp, CAS_MII_1000_CTRL, val);
0929         }
0930 
0931     } else {
0932         /* reset pcs for serdes */
0933         u32 val;
0934         int limit;
0935 
0936         writel(PCS_DATAPATH_MODE_SERDES,
0937                cp->regs + REG_PCS_DATAPATH_MODE);
0938 
0939         /* enable serdes pins on saturn */
0940         if (cp->cas_flags & CAS_FLAG_SATURN)
0941             writel(0, cp->regs + REG_SATURN_PCFG);
0942 
0943         /* Reset PCS unit. */
0944         val = readl(cp->regs + REG_PCS_MII_CTRL);
0945         val |= PCS_MII_RESET;
0946         writel(val, cp->regs + REG_PCS_MII_CTRL);
0947 
0948         limit = STOP_TRIES;
0949         while (--limit > 0) {
0950             udelay(10);
0951             if ((readl(cp->regs + REG_PCS_MII_CTRL) &
0952                  PCS_MII_RESET) == 0)
0953                 break;
0954         }
0955         if (limit <= 0)
0956             netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
0957                     readl(cp->regs + REG_PCS_STATE_MACHINE));
0958 
0959         /* Make sure PCS is disabled while changing advertisement
0960          * configuration.
0961          */
0962         writel(0x0, cp->regs + REG_PCS_CFG);
0963 
0964         /* Advertise all capabilities except half-duplex. */
0965         val  = readl(cp->regs + REG_PCS_MII_ADVERT);
0966         val &= ~PCS_MII_ADVERT_HD;
0967         val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
0968             PCS_MII_ADVERT_ASYM_PAUSE);
0969         writel(val, cp->regs + REG_PCS_MII_ADVERT);
0970 
0971         /* enable PCS */
0972         writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
0973 
0974         /* pcs workaround: enable sync detect */
0975         writel(PCS_SERDES_CTRL_SYNCD_EN,
0976                cp->regs + REG_PCS_SERDES_CTRL);
0977     }
0978 }
0979 
0980 
0981 static int cas_pcs_link_check(struct cas *cp)
0982 {
0983     u32 stat, state_machine;
0984     int retval = 0;
0985 
0986     /* The link status bit latches on zero, so you must
0987      * read it twice in such a case to see a transition
0988      * to the link being up.
0989      */
0990     stat = readl(cp->regs + REG_PCS_MII_STATUS);
0991     if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
0992         stat = readl(cp->regs + REG_PCS_MII_STATUS);
0993 
0994     /* The remote-fault indication is only valid
0995      * when autoneg has completed.
0996      */
0997     if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
0998              PCS_MII_STATUS_REMOTE_FAULT)) ==
0999         (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1000         netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1001 
1002     /* work around link detection issue by querying the PCS state
1003      * machine directly.
1004      */
1005     state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1006     if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1007         stat &= ~PCS_MII_STATUS_LINK_STATUS;
1008     } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1009         stat |= PCS_MII_STATUS_LINK_STATUS;
1010     }
1011 
1012     if (stat & PCS_MII_STATUS_LINK_STATUS) {
1013         if (cp->lstate != link_up) {
1014             if (cp->opened) {
1015                 cp->lstate = link_up;
1016                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1017 
1018                 cas_set_link_modes(cp);
1019                 netif_carrier_on(cp->dev);
1020             }
1021         }
1022     } else if (cp->lstate == link_up) {
1023         cp->lstate = link_down;
1024         if (link_transition_timeout != 0 &&
1025             cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1026             !cp->link_transition_jiffies_valid) {
1027             /*
1028              * force a reset, as a workaround for the
1029              * link-failure problem. May want to move this to a
1030              * point a bit earlier in the sequence. If we had
1031              * generated a reset a short time ago, we'll wait for
1032              * the link timer to check the status until a
1033              * timer expires (link_transistion_jiffies_valid is
1034              * true when the timer is running.)  Instead of using
1035              * a system timer, we just do a check whenever the
1036              * link timer is running - this clears the flag after
1037              * a suitable delay.
1038              */
1039             retval = 1;
1040             cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1041             cp->link_transition_jiffies = jiffies;
1042             cp->link_transition_jiffies_valid = 1;
1043         } else {
1044             cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1045         }
1046         netif_carrier_off(cp->dev);
1047         if (cp->opened)
1048             netif_info(cp, link, cp->dev, "PCS link down\n");
1049 
1050         /* Cassini only: if you force a mode, there can be
1051          * sync problems on link down. to fix that, the following
1052          * things need to be checked:
1053          * 1) read serialink state register
1054          * 2) read pcs status register to verify link down.
1055          * 3) if link down and serial link == 0x03, then you need
1056          *    to global reset the chip.
1057          */
1058         if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1059             /* should check to see if we're in a forced mode */
1060             stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1061             if (stat == 0x03)
1062                 return 1;
1063         }
1064     } else if (cp->lstate == link_down) {
1065         if (link_transition_timeout != 0 &&
1066             cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1067             !cp->link_transition_jiffies_valid) {
1068             /* force a reset, as a workaround for the
1069              * link-failure problem.  May want to move
1070              * this to a point a bit earlier in the
1071              * sequence.
1072              */
1073             retval = 1;
1074             cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1075             cp->link_transition_jiffies = jiffies;
1076             cp->link_transition_jiffies_valid = 1;
1077         } else {
1078             cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1079         }
1080     }
1081 
1082     return retval;
1083 }
1084 
1085 static int cas_pcs_interrupt(struct net_device *dev,
1086                  struct cas *cp, u32 status)
1087 {
1088     u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1089 
1090     if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1091         return 0;
1092     return cas_pcs_link_check(cp);
1093 }
1094 
1095 static int cas_txmac_interrupt(struct net_device *dev,
1096                    struct cas *cp, u32 status)
1097 {
1098     u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1099 
1100     if (!txmac_stat)
1101         return 0;
1102 
1103     netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1104              "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1105 
1106     /* Defer timer expiration is quite normal,
1107      * don't even log the event.
1108      */
1109     if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1110         !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1111         return 0;
1112 
1113     spin_lock(&cp->stat_lock[0]);
1114     if (txmac_stat & MAC_TX_UNDERRUN) {
1115         netdev_err(dev, "TX MAC xmit underrun\n");
1116         cp->net_stats[0].tx_fifo_errors++;
1117     }
1118 
1119     if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1120         netdev_err(dev, "TX MAC max packet size error\n");
1121         cp->net_stats[0].tx_errors++;
1122     }
1123 
1124     /* The rest are all cases of one of the 16-bit TX
1125      * counters expiring.
1126      */
1127     if (txmac_stat & MAC_TX_COLL_NORMAL)
1128         cp->net_stats[0].collisions += 0x10000;
1129 
1130     if (txmac_stat & MAC_TX_COLL_EXCESS) {
1131         cp->net_stats[0].tx_aborted_errors += 0x10000;
1132         cp->net_stats[0].collisions += 0x10000;
1133     }
1134 
1135     if (txmac_stat & MAC_TX_COLL_LATE) {
1136         cp->net_stats[0].tx_aborted_errors += 0x10000;
1137         cp->net_stats[0].collisions += 0x10000;
1138     }
1139     spin_unlock(&cp->stat_lock[0]);
1140 
1141     /* We do not keep track of MAC_TX_COLL_FIRST and
1142      * MAC_TX_PEAK_ATTEMPTS events.
1143      */
1144     return 0;
1145 }
1146 
1147 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1148 {
1149     cas_hp_inst_t *inst;
1150     u32 val;
1151     int i;
1152 
1153     i = 0;
1154     while ((inst = firmware) && inst->note) {
1155         writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1156 
1157         val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1158         val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1159         writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1160 
1161         val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1162         val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1163         val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1164         val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1165         val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1166         val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1167         val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1168         writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1169 
1170         val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1171         val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1172         val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1173         val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1174         writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1175         ++firmware;
1176         ++i;
1177     }
1178 }
1179 
1180 static void cas_init_rx_dma(struct cas *cp)
1181 {
1182     u64 desc_dma = cp->block_dvma;
1183     u32 val;
1184     int i, size;
1185 
1186     /* rx free descriptors */
1187     val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1188     val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1189     val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1190     if ((N_RX_DESC_RINGS > 1) &&
1191         (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1192         val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1193     writel(val, cp->regs + REG_RX_CFG);
1194 
1195     val = (unsigned long) cp->init_rxds[0] -
1196         (unsigned long) cp->init_block;
1197     writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1198     writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1199     writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1200 
1201     if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1202         /* rx desc 2 is for IPSEC packets. however,
1203          * we don't it that for that purpose.
1204          */
1205         val = (unsigned long) cp->init_rxds[1] -
1206             (unsigned long) cp->init_block;
1207         writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1208         writel((desc_dma + val) & 0xffffffff, cp->regs +
1209                REG_PLUS_RX_DB1_LOW);
1210         writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1211                REG_PLUS_RX_KICK1);
1212     }
1213 
1214     /* rx completion registers */
1215     val = (unsigned long) cp->init_rxcs[0] -
1216         (unsigned long) cp->init_block;
1217     writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1218     writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1219 
1220     if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1221         /* rx comp 2-4 */
1222         for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1223             val = (unsigned long) cp->init_rxcs[i] -
1224                 (unsigned long) cp->init_block;
1225             writel((desc_dma + val) >> 32, cp->regs +
1226                    REG_PLUS_RX_CBN_HI(i));
1227             writel((desc_dma + val) & 0xffffffff, cp->regs +
1228                    REG_PLUS_RX_CBN_LOW(i));
1229         }
1230     }
1231 
1232     /* read selective clear regs to prevent spurious interrupts
1233      * on reset because complete == kick.
1234      * selective clear set up to prevent interrupts on resets
1235      */
1236     readl(cp->regs + REG_INTR_STATUS_ALIAS);
1237     writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1238 
1239     /* set up pause thresholds */
1240     val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1241             cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1242     val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1243             cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1244     writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1245 
1246     /* zero out dma reassembly buffers */
1247     for (i = 0; i < 64; i++) {
1248         writel(i, cp->regs + REG_RX_TABLE_ADDR);
1249         writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1250         writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1251         writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1252     }
1253 
1254     /* make sure address register is 0 for normal operation */
1255     writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1256     writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1257 
1258     /* interrupt mitigation */
1259 #ifdef USE_RX_BLANK
1260     val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1261     val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1262     writel(val, cp->regs + REG_RX_BLANK);
1263 #else
1264     writel(0x0, cp->regs + REG_RX_BLANK);
1265 #endif
1266 
1267     /* interrupt generation as a function of low water marks for
1268      * free desc and completion entries. these are used to trigger
1269      * housekeeping for rx descs. we don't use the free interrupt
1270      * as it's not very useful
1271      */
1272     /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1273     val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1274     writel(val, cp->regs + REG_RX_AE_THRESH);
1275     if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1276         val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1277         writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1278     }
1279 
1280     /* Random early detect registers. useful for congestion avoidance.
1281      * this should be tunable.
1282      */
1283     writel(0x0, cp->regs + REG_RX_RED);
1284 
1285     /* receive page sizes. default == 2K (0x800) */
1286     val = 0;
1287     if (cp->page_size == 0x1000)
1288         val = 0x1;
1289     else if (cp->page_size == 0x2000)
1290         val = 0x2;
1291     else if (cp->page_size == 0x4000)
1292         val = 0x3;
1293 
1294     /* round mtu + offset. constrain to page size. */
1295     size = cp->dev->mtu + 64;
1296     if (size > cp->page_size)
1297         size = cp->page_size;
1298 
1299     if (size <= 0x400)
1300         i = 0x0;
1301     else if (size <= 0x800)
1302         i = 0x1;
1303     else if (size <= 0x1000)
1304         i = 0x2;
1305     else
1306         i = 0x3;
1307 
1308     cp->mtu_stride = 1 << (i + 10);
1309     val  = CAS_BASE(RX_PAGE_SIZE, val);
1310     val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1311     val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1312     val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1313     writel(val, cp->regs + REG_RX_PAGE_SIZE);
1314 
1315     /* enable the header parser if desired */
1316     if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1317         return;
1318 
1319     val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1320     val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1321     val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1322     writel(val, cp->regs + REG_HP_CFG);
1323 }
1324 
1325 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1326 {
1327     memset(rxc, 0, sizeof(*rxc));
1328     rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1329 }
1330 
1331 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1332  * flipping is protected by the fact that the chip will not
1333  * hand back the same page index while it's being processed.
1334  */
1335 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1336 {
1337     cas_page_t *page = cp->rx_pages[1][index];
1338     cas_page_t *new;
1339 
1340     if (page_count(page->buffer) == 1)
1341         return page;
1342 
1343     new = cas_page_dequeue(cp);
1344     if (new) {
1345         spin_lock(&cp->rx_inuse_lock);
1346         list_add(&page->list, &cp->rx_inuse_list);
1347         spin_unlock(&cp->rx_inuse_lock);
1348     }
1349     return new;
1350 }
1351 
1352 /* this needs to be changed if we actually use the ENC RX DESC ring */
1353 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1354                  const int index)
1355 {
1356     cas_page_t **page0 = cp->rx_pages[0];
1357     cas_page_t **page1 = cp->rx_pages[1];
1358 
1359     /* swap if buffer is in use */
1360     if (page_count(page0[index]->buffer) > 1) {
1361         cas_page_t *new = cas_page_spare(cp, index);
1362         if (new) {
1363             page1[index] = page0[index];
1364             page0[index] = new;
1365         }
1366     }
1367     RX_USED_SET(page0[index], 0);
1368     return page0[index];
1369 }
1370 
1371 static void cas_clean_rxds(struct cas *cp)
1372 {
1373     /* only clean ring 0 as ring 1 is used for spare buffers */
1374         struct cas_rx_desc *rxd = cp->init_rxds[0];
1375     int i, size;
1376 
1377     /* release all rx flows */
1378     for (i = 0; i < N_RX_FLOWS; i++) {
1379         struct sk_buff *skb;
1380         while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1381             cas_skb_release(skb);
1382         }
1383     }
1384 
1385     /* initialize descriptors */
1386     size = RX_DESC_RINGN_SIZE(0);
1387     for (i = 0; i < size; i++) {
1388         cas_page_t *page = cas_page_swap(cp, 0, i);
1389         rxd[i].buffer = cpu_to_le64(page->dma_addr);
1390         rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1391                         CAS_BASE(RX_INDEX_RING, 0));
1392     }
1393 
1394     cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1395     cp->rx_last[0] = 0;
1396     cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1397 }
1398 
1399 static void cas_clean_rxcs(struct cas *cp)
1400 {
1401     int i, j;
1402 
1403     /* take ownership of rx comp descriptors */
1404     memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1405     memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1406     for (i = 0; i < N_RX_COMP_RINGS; i++) {
1407         struct cas_rx_comp *rxc = cp->init_rxcs[i];
1408         for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1409             cas_rxc_init(rxc + j);
1410         }
1411     }
1412 }
1413 
1414 #if 0
1415 /* When we get a RX fifo overflow, the RX unit is probably hung
1416  * so we do the following.
1417  *
1418  * If any part of the reset goes wrong, we return 1 and that causes the
1419  * whole chip to be reset.
1420  */
1421 static int cas_rxmac_reset(struct cas *cp)
1422 {
1423     struct net_device *dev = cp->dev;
1424     int limit;
1425     u32 val;
1426 
1427     /* First, reset MAC RX. */
1428     writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1429     for (limit = 0; limit < STOP_TRIES; limit++) {
1430         if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1431             break;
1432         udelay(10);
1433     }
1434     if (limit == STOP_TRIES) {
1435         netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1436         return 1;
1437     }
1438 
1439     /* Second, disable RX DMA. */
1440     writel(0, cp->regs + REG_RX_CFG);
1441     for (limit = 0; limit < STOP_TRIES; limit++) {
1442         if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1443             break;
1444         udelay(10);
1445     }
1446     if (limit == STOP_TRIES) {
1447         netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1448         return 1;
1449     }
1450 
1451     mdelay(5);
1452 
1453     /* Execute RX reset command. */
1454     writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1455     for (limit = 0; limit < STOP_TRIES; limit++) {
1456         if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1457             break;
1458         udelay(10);
1459     }
1460     if (limit == STOP_TRIES) {
1461         netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1462         return 1;
1463     }
1464 
1465     /* reset driver rx state */
1466     cas_clean_rxds(cp);
1467     cas_clean_rxcs(cp);
1468 
1469     /* Now, reprogram the rest of RX unit. */
1470     cas_init_rx_dma(cp);
1471 
1472     /* re-enable */
1473     val = readl(cp->regs + REG_RX_CFG);
1474     writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1475     writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1476     val = readl(cp->regs + REG_MAC_RX_CFG);
1477     writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1478     return 0;
1479 }
1480 #endif
1481 
1482 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1483                    u32 status)
1484 {
1485     u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1486 
1487     if (!stat)
1488         return 0;
1489 
1490     netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1491 
1492     /* these are all rollovers */
1493     spin_lock(&cp->stat_lock[0]);
1494     if (stat & MAC_RX_ALIGN_ERR)
1495         cp->net_stats[0].rx_frame_errors += 0x10000;
1496 
1497     if (stat & MAC_RX_CRC_ERR)
1498         cp->net_stats[0].rx_crc_errors += 0x10000;
1499 
1500     if (stat & MAC_RX_LEN_ERR)
1501         cp->net_stats[0].rx_length_errors += 0x10000;
1502 
1503     if (stat & MAC_RX_OVERFLOW) {
1504         cp->net_stats[0].rx_over_errors++;
1505         cp->net_stats[0].rx_fifo_errors++;
1506     }
1507 
1508     /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1509      * events.
1510      */
1511     spin_unlock(&cp->stat_lock[0]);
1512     return 0;
1513 }
1514 
1515 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1516                  u32 status)
1517 {
1518     u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1519 
1520     if (!stat)
1521         return 0;
1522 
1523     netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1524              "mac interrupt, stat: 0x%x\n", stat);
1525 
1526     /* This interrupt is just for pause frame and pause
1527      * tracking.  It is useful for diagnostics and debug
1528      * but probably by default we will mask these events.
1529      */
1530     if (stat & MAC_CTRL_PAUSE_STATE)
1531         cp->pause_entered++;
1532 
1533     if (stat & MAC_CTRL_PAUSE_RECEIVED)
1534         cp->pause_last_time_recvd = (stat >> 16);
1535 
1536     return 0;
1537 }
1538 
1539 
1540 /* Must be invoked under cp->lock. */
1541 static inline int cas_mdio_link_not_up(struct cas *cp)
1542 {
1543     u16 val;
1544 
1545     switch (cp->lstate) {
1546     case link_force_ret:
1547         netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1548         cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1549         cp->timer_ticks = 5;
1550         cp->lstate = link_force_ok;
1551         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1552         break;
1553 
1554     case link_aneg:
1555         val = cas_phy_read(cp, MII_BMCR);
1556 
1557         /* Try forced modes. we try things in the following order:
1558          * 1000 full -> 100 full/half -> 10 half
1559          */
1560         val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1561         val |= BMCR_FULLDPLX;
1562         val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1563             CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1564         cas_phy_write(cp, MII_BMCR, val);
1565         cp->timer_ticks = 5;
1566         cp->lstate = link_force_try;
1567         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1568         break;
1569 
1570     case link_force_try:
1571         /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1572         val = cas_phy_read(cp, MII_BMCR);
1573         cp->timer_ticks = 5;
1574         if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1575             val &= ~CAS_BMCR_SPEED1000;
1576             val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1577             cas_phy_write(cp, MII_BMCR, val);
1578             break;
1579         }
1580 
1581         if (val & BMCR_SPEED100) {
1582             if (val & BMCR_FULLDPLX) /* fd failed */
1583                 val &= ~BMCR_FULLDPLX;
1584             else { /* 100Mbps failed */
1585                 val &= ~BMCR_SPEED100;
1586             }
1587             cas_phy_write(cp, MII_BMCR, val);
1588             break;
1589         }
1590         break;
1591     default:
1592         break;
1593     }
1594     return 0;
1595 }
1596 
1597 
1598 /* must be invoked with cp->lock held */
1599 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1600 {
1601     int restart;
1602 
1603     if (bmsr & BMSR_LSTATUS) {
1604         /* Ok, here we got a link. If we had it due to a forced
1605          * fallback, and we were configured for autoneg, we
1606          * retry a short autoneg pass. If you know your hub is
1607          * broken, use ethtool ;)
1608          */
1609         if ((cp->lstate == link_force_try) &&
1610             (cp->link_cntl & BMCR_ANENABLE)) {
1611             cp->lstate = link_force_ret;
1612             cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1613             cas_mif_poll(cp, 0);
1614             cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1615             cp->timer_ticks = 5;
1616             if (cp->opened)
1617                 netif_info(cp, link, cp->dev,
1618                        "Got link after fallback, retrying autoneg once...\n");
1619             cas_phy_write(cp, MII_BMCR,
1620                       cp->link_fcntl | BMCR_ANENABLE |
1621                       BMCR_ANRESTART);
1622             cas_mif_poll(cp, 1);
1623 
1624         } else if (cp->lstate != link_up) {
1625             cp->lstate = link_up;
1626             cp->link_transition = LINK_TRANSITION_LINK_UP;
1627 
1628             if (cp->opened) {
1629                 cas_set_link_modes(cp);
1630                 netif_carrier_on(cp->dev);
1631             }
1632         }
1633         return 0;
1634     }
1635 
1636     /* link not up. if the link was previously up, we restart the
1637      * whole process
1638      */
1639     restart = 0;
1640     if (cp->lstate == link_up) {
1641         cp->lstate = link_down;
1642         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1643 
1644         netif_carrier_off(cp->dev);
1645         if (cp->opened)
1646             netif_info(cp, link, cp->dev, "Link down\n");
1647         restart = 1;
1648 
1649     } else if (++cp->timer_ticks > 10)
1650         cas_mdio_link_not_up(cp);
1651 
1652     return restart;
1653 }
1654 
1655 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1656                  u32 status)
1657 {
1658     u32 stat = readl(cp->regs + REG_MIF_STATUS);
1659     u16 bmsr;
1660 
1661     /* check for a link change */
1662     if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1663         return 0;
1664 
1665     bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1666     return cas_mii_link_check(cp, bmsr);
1667 }
1668 
1669 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1670                  u32 status)
1671 {
1672     u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1673 
1674     if (!stat)
1675         return 0;
1676 
1677     netdev_err(dev, "PCI error [%04x:%04x]",
1678            stat, readl(cp->regs + REG_BIM_DIAG));
1679 
1680     /* cassini+ has this reserved */
1681     if ((stat & PCI_ERR_BADACK) &&
1682         ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1683         pr_cont(" <No ACK64# during ABS64 cycle>");
1684 
1685     if (stat & PCI_ERR_DTRTO)
1686         pr_cont(" <Delayed transaction timeout>");
1687     if (stat & PCI_ERR_OTHER)
1688         pr_cont(" <other>");
1689     if (stat & PCI_ERR_BIM_DMA_WRITE)
1690         pr_cont(" <BIM DMA 0 write req>");
1691     if (stat & PCI_ERR_BIM_DMA_READ)
1692         pr_cont(" <BIM DMA 0 read req>");
1693     pr_cont("\n");
1694 
1695     if (stat & PCI_ERR_OTHER) {
1696         int pci_errs;
1697 
1698         /* Interrogate PCI config space for the
1699          * true cause.
1700          */
1701         pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1702 
1703         netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1704         if (pci_errs & PCI_STATUS_PARITY)
1705             netdev_err(dev, "PCI parity error detected\n");
1706         if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1707             netdev_err(dev, "PCI target abort\n");
1708         if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1709             netdev_err(dev, "PCI master acks target abort\n");
1710         if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1711             netdev_err(dev, "PCI master abort\n");
1712         if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1713             netdev_err(dev, "PCI system error SERR#\n");
1714         if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1715             netdev_err(dev, "PCI parity error\n");
1716     }
1717 
1718     /* For all PCI errors, we should reset the chip. */
1719     return 1;
1720 }
1721 
1722 /* All non-normal interrupt conditions get serviced here.
1723  * Returns non-zero if we should just exit the interrupt
1724  * handler right now (ie. if we reset the card which invalidates
1725  * all of the other original irq status bits).
1726  */
1727 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1728                 u32 status)
1729 {
1730     if (status & INTR_RX_TAG_ERROR) {
1731         /* corrupt RX tag framing */
1732         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1733                  "corrupt rx tag framing\n");
1734         spin_lock(&cp->stat_lock[0]);
1735         cp->net_stats[0].rx_errors++;
1736         spin_unlock(&cp->stat_lock[0]);
1737         goto do_reset;
1738     }
1739 
1740     if (status & INTR_RX_LEN_MISMATCH) {
1741         /* length mismatch. */
1742         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1743                  "length mismatch for rx frame\n");
1744         spin_lock(&cp->stat_lock[0]);
1745         cp->net_stats[0].rx_errors++;
1746         spin_unlock(&cp->stat_lock[0]);
1747         goto do_reset;
1748     }
1749 
1750     if (status & INTR_PCS_STATUS) {
1751         if (cas_pcs_interrupt(dev, cp, status))
1752             goto do_reset;
1753     }
1754 
1755     if (status & INTR_TX_MAC_STATUS) {
1756         if (cas_txmac_interrupt(dev, cp, status))
1757             goto do_reset;
1758     }
1759 
1760     if (status & INTR_RX_MAC_STATUS) {
1761         if (cas_rxmac_interrupt(dev, cp, status))
1762             goto do_reset;
1763     }
1764 
1765     if (status & INTR_MAC_CTRL_STATUS) {
1766         if (cas_mac_interrupt(dev, cp, status))
1767             goto do_reset;
1768     }
1769 
1770     if (status & INTR_MIF_STATUS) {
1771         if (cas_mif_interrupt(dev, cp, status))
1772             goto do_reset;
1773     }
1774 
1775     if (status & INTR_PCI_ERROR_STATUS) {
1776         if (cas_pci_interrupt(dev, cp, status))
1777             goto do_reset;
1778     }
1779     return 0;
1780 
1781 do_reset:
1782 #if 1
1783     atomic_inc(&cp->reset_task_pending);
1784     atomic_inc(&cp->reset_task_pending_all);
1785     netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1786     schedule_work(&cp->reset_task);
1787 #else
1788     atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1789     netdev_err(dev, "reset called in cas_abnormal_irq\n");
1790     schedule_work(&cp->reset_task);
1791 #endif
1792     return 1;
1793 }
1794 
1795 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1796  *       determining whether to do a netif_stop/wakeup
1797  */
1798 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1799 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1800 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1801                   const int len)
1802 {
1803     unsigned long off = addr + len;
1804 
1805     if (CAS_TABORT(cp) == 1)
1806         return 0;
1807     if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1808         return 0;
1809     return TX_TARGET_ABORT_LEN;
1810 }
1811 
1812 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1813 {
1814     struct cas_tx_desc *txds;
1815     struct sk_buff **skbs;
1816     struct net_device *dev = cp->dev;
1817     int entry, count;
1818 
1819     spin_lock(&cp->tx_lock[ring]);
1820     txds = cp->init_txds[ring];
1821     skbs = cp->tx_skbs[ring];
1822     entry = cp->tx_old[ring];
1823 
1824     count = TX_BUFF_COUNT(ring, entry, limit);
1825     while (entry != limit) {
1826         struct sk_buff *skb = skbs[entry];
1827         dma_addr_t daddr;
1828         u32 dlen;
1829         int frag;
1830 
1831         if (!skb) {
1832             /* this should never occur */
1833             entry = TX_DESC_NEXT(ring, entry);
1834             continue;
1835         }
1836 
1837         /* however, we might get only a partial skb release. */
1838         count -= skb_shinfo(skb)->nr_frags +
1839             + cp->tx_tiny_use[ring][entry].nbufs + 1;
1840         if (count < 0)
1841             break;
1842 
1843         netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1844                  "tx[%d] done, slot %d\n", ring, entry);
1845 
1846         skbs[entry] = NULL;
1847         cp->tx_tiny_use[ring][entry].nbufs = 0;
1848 
1849         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1850             struct cas_tx_desc *txd = txds + entry;
1851 
1852             daddr = le64_to_cpu(txd->buffer);
1853             dlen = CAS_VAL(TX_DESC_BUFLEN,
1854                        le64_to_cpu(txd->control));
1855             dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1856                        DMA_TO_DEVICE);
1857             entry = TX_DESC_NEXT(ring, entry);
1858 
1859             /* tiny buffer may follow */
1860             if (cp->tx_tiny_use[ring][entry].used) {
1861                 cp->tx_tiny_use[ring][entry].used = 0;
1862                 entry = TX_DESC_NEXT(ring, entry);
1863             }
1864         }
1865 
1866         spin_lock(&cp->stat_lock[ring]);
1867         cp->net_stats[ring].tx_packets++;
1868         cp->net_stats[ring].tx_bytes += skb->len;
1869         spin_unlock(&cp->stat_lock[ring]);
1870         dev_consume_skb_irq(skb);
1871     }
1872     cp->tx_old[ring] = entry;
1873 
1874     /* this is wrong for multiple tx rings. the net device needs
1875      * multiple queues for this to do the right thing.  we wait
1876      * for 2*packets to be available when using tiny buffers
1877      */
1878     if (netif_queue_stopped(dev) &&
1879         (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1880         netif_wake_queue(dev);
1881     spin_unlock(&cp->tx_lock[ring]);
1882 }
1883 
1884 static void cas_tx(struct net_device *dev, struct cas *cp,
1885            u32 status)
1886 {
1887         int limit, ring;
1888 #ifdef USE_TX_COMPWB
1889     u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1890 #endif
1891     netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1892              "tx interrupt, status: 0x%x, %llx\n",
1893              status, (unsigned long long)compwb);
1894     /* process all the rings */
1895     for (ring = 0; ring < N_TX_RINGS; ring++) {
1896 #ifdef USE_TX_COMPWB
1897         /* use the completion writeback registers */
1898         limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1899             CAS_VAL(TX_COMPWB_LSB, compwb);
1900         compwb = TX_COMPWB_NEXT(compwb);
1901 #else
1902         limit = readl(cp->regs + REG_TX_COMPN(ring));
1903 #endif
1904         if (cp->tx_old[ring] != limit)
1905             cas_tx_ringN(cp, ring, limit);
1906     }
1907 }
1908 
1909 
1910 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1911                   int entry, const u64 *words,
1912                   struct sk_buff **skbref)
1913 {
1914     int dlen, hlen, len, i, alloclen;
1915     int off, swivel = RX_SWIVEL_OFF_VAL;
1916     struct cas_page *page;
1917     struct sk_buff *skb;
1918     void *addr, *crcaddr;
1919     __sum16 csum;
1920     char *p;
1921 
1922     hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1923     dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1924     len  = hlen + dlen;
1925 
1926     if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1927         alloclen = len;
1928     else
1929         alloclen = max(hlen, RX_COPY_MIN);
1930 
1931     skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1932     if (skb == NULL)
1933         return -1;
1934 
1935     *skbref = skb;
1936     skb_reserve(skb, swivel);
1937 
1938     p = skb->data;
1939     addr = crcaddr = NULL;
1940     if (hlen) { /* always copy header pages */
1941         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1942         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1943         off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1944             swivel;
1945 
1946         i = hlen;
1947         if (!dlen) /* attach FCS */
1948             i += cp->crc_size;
1949         dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1950                     i, DMA_FROM_DEVICE);
1951         addr = cas_page_map(page->buffer);
1952         memcpy(p, addr + off, i);
1953         dma_sync_single_for_device(&cp->pdev->dev,
1954                        page->dma_addr + off, i,
1955                        DMA_FROM_DEVICE);
1956         cas_page_unmap(addr);
1957         RX_USED_ADD(page, 0x100);
1958         p += hlen;
1959         swivel = 0;
1960     }
1961 
1962 
1963     if (alloclen < (hlen + dlen)) {
1964         skb_frag_t *frag = skb_shinfo(skb)->frags;
1965 
1966         /* normal or jumbo packets. we use frags */
1967         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1968         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1969         off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1970 
1971         hlen = min(cp->page_size - off, dlen);
1972         if (hlen < 0) {
1973             netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1974                      "rx page overflow: %d\n", hlen);
1975             dev_kfree_skb_irq(skb);
1976             return -1;
1977         }
1978         i = hlen;
1979         if (i == dlen)  /* attach FCS */
1980             i += cp->crc_size;
1981         dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1982                     i, DMA_FROM_DEVICE);
1983 
1984         /* make sure we always copy a header */
1985         swivel = 0;
1986         if (p == (char *) skb->data) { /* not split */
1987             addr = cas_page_map(page->buffer);
1988             memcpy(p, addr + off, RX_COPY_MIN);
1989             dma_sync_single_for_device(&cp->pdev->dev,
1990                            page->dma_addr + off, i,
1991                            DMA_FROM_DEVICE);
1992             cas_page_unmap(addr);
1993             off += RX_COPY_MIN;
1994             swivel = RX_COPY_MIN;
1995             RX_USED_ADD(page, cp->mtu_stride);
1996         } else {
1997             RX_USED_ADD(page, hlen);
1998         }
1999         skb_put(skb, alloclen);
2000 
2001         skb_shinfo(skb)->nr_frags++;
2002         skb->data_len += hlen - swivel;
2003         skb->truesize += hlen - swivel;
2004         skb->len      += hlen - swivel;
2005 
2006         __skb_frag_set_page(frag, page->buffer);
2007         __skb_frag_ref(frag);
2008         skb_frag_off_set(frag, off);
2009         skb_frag_size_set(frag, hlen - swivel);
2010 
2011         /* any more data? */
2012         if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2013             hlen = dlen;
2014             off = 0;
2015 
2016             i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2017             page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2018             dma_sync_single_for_cpu(&cp->pdev->dev,
2019                         page->dma_addr,
2020                         hlen + cp->crc_size,
2021                         DMA_FROM_DEVICE);
2022             dma_sync_single_for_device(&cp->pdev->dev,
2023                            page->dma_addr,
2024                            hlen + cp->crc_size,
2025                            DMA_FROM_DEVICE);
2026 
2027             skb_shinfo(skb)->nr_frags++;
2028             skb->data_len += hlen;
2029             skb->len      += hlen;
2030             frag++;
2031 
2032             __skb_frag_set_page(frag, page->buffer);
2033             __skb_frag_ref(frag);
2034             skb_frag_off_set(frag, 0);
2035             skb_frag_size_set(frag, hlen);
2036             RX_USED_ADD(page, hlen + cp->crc_size);
2037         }
2038 
2039         if (cp->crc_size) {
2040             addr = cas_page_map(page->buffer);
2041             crcaddr  = addr + off + hlen;
2042         }
2043 
2044     } else {
2045         /* copying packet */
2046         if (!dlen)
2047             goto end_copy_pkt;
2048 
2049         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2050         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2051         off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2052         hlen = min(cp->page_size - off, dlen);
2053         if (hlen < 0) {
2054             netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2055                      "rx page overflow: %d\n", hlen);
2056             dev_kfree_skb_irq(skb);
2057             return -1;
2058         }
2059         i = hlen;
2060         if (i == dlen) /* attach FCS */
2061             i += cp->crc_size;
2062         dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2063                     i, DMA_FROM_DEVICE);
2064         addr = cas_page_map(page->buffer);
2065         memcpy(p, addr + off, i);
2066         dma_sync_single_for_device(&cp->pdev->dev,
2067                        page->dma_addr + off, i,
2068                        DMA_FROM_DEVICE);
2069         cas_page_unmap(addr);
2070         if (p == (char *) skb->data) /* not split */
2071             RX_USED_ADD(page, cp->mtu_stride);
2072         else
2073             RX_USED_ADD(page, i);
2074 
2075         /* any more data? */
2076         if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2077             p += hlen;
2078             i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2079             page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2080             dma_sync_single_for_cpu(&cp->pdev->dev,
2081                         page->dma_addr,
2082                         dlen + cp->crc_size,
2083                         DMA_FROM_DEVICE);
2084             addr = cas_page_map(page->buffer);
2085             memcpy(p, addr, dlen + cp->crc_size);
2086             dma_sync_single_for_device(&cp->pdev->dev,
2087                            page->dma_addr,
2088                            dlen + cp->crc_size,
2089                            DMA_FROM_DEVICE);
2090             cas_page_unmap(addr);
2091             RX_USED_ADD(page, dlen + cp->crc_size);
2092         }
2093 end_copy_pkt:
2094         if (cp->crc_size) {
2095             addr    = NULL;
2096             crcaddr = skb->data + alloclen;
2097         }
2098         skb_put(skb, alloclen);
2099     }
2100 
2101     csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2102     if (cp->crc_size) {
2103         /* checksum includes FCS. strip it out. */
2104         csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2105                           csum_unfold(csum)));
2106         if (addr)
2107             cas_page_unmap(addr);
2108     }
2109     skb->protocol = eth_type_trans(skb, cp->dev);
2110     if (skb->protocol == htons(ETH_P_IP)) {
2111         skb->csum = csum_unfold(~csum);
2112         skb->ip_summed = CHECKSUM_COMPLETE;
2113     } else
2114         skb_checksum_none_assert(skb);
2115     return len;
2116 }
2117 
2118 
2119 /* we can handle up to 64 rx flows at a time. we do the same thing
2120  * as nonreassm except that we batch up the buffers.
2121  * NOTE: we currently just treat each flow as a bunch of packets that
2122  *       we pass up. a better way would be to coalesce the packets
2123  *       into a jumbo packet. to do that, we need to do the following:
2124  *       1) the first packet will have a clean split between header and
2125  *          data. save both.
2126  *       2) each time the next flow packet comes in, extend the
2127  *          data length and merge the checksums.
2128  *       3) on flow release, fix up the header.
2129  *       4) make sure the higher layer doesn't care.
2130  * because packets get coalesced, we shouldn't run into fragment count
2131  * issues.
2132  */
2133 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2134                    struct sk_buff *skb)
2135 {
2136     int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2137     struct sk_buff_head *flow = &cp->rx_flows[flowid];
2138 
2139     /* this is protected at a higher layer, so no need to
2140      * do any additional locking here. stick the buffer
2141      * at the end.
2142      */
2143     __skb_queue_tail(flow, skb);
2144     if (words[0] & RX_COMP1_RELEASE_FLOW) {
2145         while ((skb = __skb_dequeue(flow))) {
2146             cas_skb_release(skb);
2147         }
2148     }
2149 }
2150 
2151 /* put rx descriptor back on ring. if a buffer is in use by a higher
2152  * layer, this will need to put in a replacement.
2153  */
2154 static void cas_post_page(struct cas *cp, const int ring, const int index)
2155 {
2156     cas_page_t *new;
2157     int entry;
2158 
2159     entry = cp->rx_old[ring];
2160 
2161     new = cas_page_swap(cp, ring, index);
2162     cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2163     cp->init_rxds[ring][entry].index  =
2164         cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2165                 CAS_BASE(RX_INDEX_RING, ring));
2166 
2167     entry = RX_DESC_ENTRY(ring, entry + 1);
2168     cp->rx_old[ring] = entry;
2169 
2170     if (entry % 4)
2171         return;
2172 
2173     if (ring == 0)
2174         writel(entry, cp->regs + REG_RX_KICK);
2175     else if ((N_RX_DESC_RINGS > 1) &&
2176          (cp->cas_flags & CAS_FLAG_REG_PLUS))
2177         writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2178 }
2179 
2180 
2181 /* only when things are bad */
2182 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2183 {
2184     unsigned int entry, last, count, released;
2185     int cluster;
2186     cas_page_t **page = cp->rx_pages[ring];
2187 
2188     entry = cp->rx_old[ring];
2189 
2190     netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2191              "rxd[%d] interrupt, done: %d\n", ring, entry);
2192 
2193     cluster = -1;
2194     count = entry & 0x3;
2195     last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2196     released = 0;
2197     while (entry != last) {
2198         /* make a new buffer if it's still in use */
2199         if (page_count(page[entry]->buffer) > 1) {
2200             cas_page_t *new = cas_page_dequeue(cp);
2201             if (!new) {
2202                 /* let the timer know that we need to
2203                  * do this again
2204                  */
2205                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2206                 if (!timer_pending(&cp->link_timer))
2207                     mod_timer(&cp->link_timer, jiffies +
2208                           CAS_LINK_FAST_TIMEOUT);
2209                 cp->rx_old[ring]  = entry;
2210                 cp->rx_last[ring] = num ? num - released : 0;
2211                 return -ENOMEM;
2212             }
2213             spin_lock(&cp->rx_inuse_lock);
2214             list_add(&page[entry]->list, &cp->rx_inuse_list);
2215             spin_unlock(&cp->rx_inuse_lock);
2216             cp->init_rxds[ring][entry].buffer =
2217                 cpu_to_le64(new->dma_addr);
2218             page[entry] = new;
2219 
2220         }
2221 
2222         if (++count == 4) {
2223             cluster = entry;
2224             count = 0;
2225         }
2226         released++;
2227         entry = RX_DESC_ENTRY(ring, entry + 1);
2228     }
2229     cp->rx_old[ring] = entry;
2230 
2231     if (cluster < 0)
2232         return 0;
2233 
2234     if (ring == 0)
2235         writel(cluster, cp->regs + REG_RX_KICK);
2236     else if ((N_RX_DESC_RINGS > 1) &&
2237          (cp->cas_flags & CAS_FLAG_REG_PLUS))
2238         writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2239     return 0;
2240 }
2241 
2242 
2243 /* process a completion ring. packets are set up in three basic ways:
2244  * small packets: should be copied header + data in single buffer.
2245  * large packets: header and data in a single buffer.
2246  * split packets: header in a separate buffer from data.
2247  *                data may be in multiple pages. data may be > 256
2248  *                bytes but in a single page.
2249  *
2250  * NOTE: RX page posting is done in this routine as well. while there's
2251  *       the capability of using multiple RX completion rings, it isn't
2252  *       really worthwhile due to the fact that the page posting will
2253  *       force serialization on the single descriptor ring.
2254  */
2255 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2256 {
2257     struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2258     int entry, drops;
2259     int npackets = 0;
2260 
2261     netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2262              "rx[%d] interrupt, done: %d/%d\n",
2263              ring,
2264              readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2265 
2266     entry = cp->rx_new[ring];
2267     drops = 0;
2268     while (1) {
2269         struct cas_rx_comp *rxc = rxcs + entry;
2270         struct sk_buff *skb;
2271         int type, len;
2272         u64 words[4];
2273         int i, dring;
2274 
2275         words[0] = le64_to_cpu(rxc->word1);
2276         words[1] = le64_to_cpu(rxc->word2);
2277         words[2] = le64_to_cpu(rxc->word3);
2278         words[3] = le64_to_cpu(rxc->word4);
2279 
2280         /* don't touch if still owned by hw */
2281         type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2282         if (type == 0)
2283             break;
2284 
2285         /* hw hasn't cleared the zero bit yet */
2286         if (words[3] & RX_COMP4_ZERO) {
2287             break;
2288         }
2289 
2290         /* get info on the packet */
2291         if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2292             spin_lock(&cp->stat_lock[ring]);
2293             cp->net_stats[ring].rx_errors++;
2294             if (words[3] & RX_COMP4_LEN_MISMATCH)
2295                 cp->net_stats[ring].rx_length_errors++;
2296             if (words[3] & RX_COMP4_BAD)
2297                 cp->net_stats[ring].rx_crc_errors++;
2298             spin_unlock(&cp->stat_lock[ring]);
2299 
2300             /* We'll just return it to Cassini. */
2301         drop_it:
2302             spin_lock(&cp->stat_lock[ring]);
2303             ++cp->net_stats[ring].rx_dropped;
2304             spin_unlock(&cp->stat_lock[ring]);
2305             goto next;
2306         }
2307 
2308         len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2309         if (len < 0) {
2310             ++drops;
2311             goto drop_it;
2312         }
2313 
2314         /* see if it's a flow re-assembly or not. the driver
2315          * itself handles release back up.
2316          */
2317         if (RX_DONT_BATCH || (type == 0x2)) {
2318             /* non-reassm: these always get released */
2319             cas_skb_release(skb);
2320         } else {
2321             cas_rx_flow_pkt(cp, words, skb);
2322         }
2323 
2324         spin_lock(&cp->stat_lock[ring]);
2325         cp->net_stats[ring].rx_packets++;
2326         cp->net_stats[ring].rx_bytes += len;
2327         spin_unlock(&cp->stat_lock[ring]);
2328 
2329     next:
2330         npackets++;
2331 
2332         /* should it be released? */
2333         if (words[0] & RX_COMP1_RELEASE_HDR) {
2334             i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2335             dring = CAS_VAL(RX_INDEX_RING, i);
2336             i = CAS_VAL(RX_INDEX_NUM, i);
2337             cas_post_page(cp, dring, i);
2338         }
2339 
2340         if (words[0] & RX_COMP1_RELEASE_DATA) {
2341             i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2342             dring = CAS_VAL(RX_INDEX_RING, i);
2343             i = CAS_VAL(RX_INDEX_NUM, i);
2344             cas_post_page(cp, dring, i);
2345         }
2346 
2347         if (words[0] & RX_COMP1_RELEASE_NEXT) {
2348             i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2349             dring = CAS_VAL(RX_INDEX_RING, i);
2350             i = CAS_VAL(RX_INDEX_NUM, i);
2351             cas_post_page(cp, dring, i);
2352         }
2353 
2354         /* skip to the next entry */
2355         entry = RX_COMP_ENTRY(ring, entry + 1 +
2356                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2357 #ifdef USE_NAPI
2358         if (budget && (npackets >= budget))
2359             break;
2360 #endif
2361     }
2362     cp->rx_new[ring] = entry;
2363 
2364     if (drops)
2365         netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2366     return npackets;
2367 }
2368 
2369 
2370 /* put completion entries back on the ring */
2371 static void cas_post_rxcs_ringN(struct net_device *dev,
2372                 struct cas *cp, int ring)
2373 {
2374     struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2375     int last, entry;
2376 
2377     last = cp->rx_cur[ring];
2378     entry = cp->rx_new[ring];
2379     netif_printk(cp, intr, KERN_DEBUG, dev,
2380              "rxc[%d] interrupt, done: %d/%d\n",
2381              ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2382 
2383     /* zero and re-mark descriptors */
2384     while (last != entry) {
2385         cas_rxc_init(rxc + last);
2386         last = RX_COMP_ENTRY(ring, last + 1);
2387     }
2388     cp->rx_cur[ring] = last;
2389 
2390     if (ring == 0)
2391         writel(last, cp->regs + REG_RX_COMP_TAIL);
2392     else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2393         writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2394 }
2395 
2396 
2397 
2398 /* cassini can use all four PCI interrupts for the completion ring.
2399  * rings 3 and 4 are identical
2400  */
2401 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2402 static inline void cas_handle_irqN(struct net_device *dev,
2403                    struct cas *cp, const u32 status,
2404                    const int ring)
2405 {
2406     if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2407         cas_post_rxcs_ringN(dev, cp, ring);
2408 }
2409 
2410 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2411 {
2412     struct net_device *dev = dev_id;
2413     struct cas *cp = netdev_priv(dev);
2414     unsigned long flags;
2415     int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2416     u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2417 
2418     /* check for shared irq */
2419     if (status == 0)
2420         return IRQ_NONE;
2421 
2422     spin_lock_irqsave(&cp->lock, flags);
2423     if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2424 #ifdef USE_NAPI
2425         cas_mask_intr(cp);
2426         napi_schedule(&cp->napi);
2427 #else
2428         cas_rx_ringN(cp, ring, 0);
2429 #endif
2430         status &= ~INTR_RX_DONE_ALT;
2431     }
2432 
2433     if (status)
2434         cas_handle_irqN(dev, cp, status, ring);
2435     spin_unlock_irqrestore(&cp->lock, flags);
2436     return IRQ_HANDLED;
2437 }
2438 #endif
2439 
2440 #ifdef USE_PCI_INTB
2441 /* everything but rx packets */
2442 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2443 {
2444     if (status & INTR_RX_BUF_UNAVAIL_1) {
2445         /* Frame arrived, no free RX buffers available.
2446          * NOTE: we can get this on a link transition. */
2447         cas_post_rxds_ringN(cp, 1, 0);
2448         spin_lock(&cp->stat_lock[1]);
2449         cp->net_stats[1].rx_dropped++;
2450         spin_unlock(&cp->stat_lock[1]);
2451     }
2452 
2453     if (status & INTR_RX_BUF_AE_1)
2454         cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2455                     RX_AE_FREEN_VAL(1));
2456 
2457     if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2458         cas_post_rxcs_ringN(cp, 1);
2459 }
2460 
2461 /* ring 2 handles a few more events than 3 and 4 */
2462 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2463 {
2464     struct net_device *dev = dev_id;
2465     struct cas *cp = netdev_priv(dev);
2466     unsigned long flags;
2467     u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2468 
2469     /* check for shared interrupt */
2470     if (status == 0)
2471         return IRQ_NONE;
2472 
2473     spin_lock_irqsave(&cp->lock, flags);
2474     if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2475 #ifdef USE_NAPI
2476         cas_mask_intr(cp);
2477         napi_schedule(&cp->napi);
2478 #else
2479         cas_rx_ringN(cp, 1, 0);
2480 #endif
2481         status &= ~INTR_RX_DONE_ALT;
2482     }
2483     if (status)
2484         cas_handle_irq1(cp, status);
2485     spin_unlock_irqrestore(&cp->lock, flags);
2486     return IRQ_HANDLED;
2487 }
2488 #endif
2489 
2490 static inline void cas_handle_irq(struct net_device *dev,
2491                   struct cas *cp, const u32 status)
2492 {
2493     /* housekeeping interrupts */
2494     if (status & INTR_ERROR_MASK)
2495         cas_abnormal_irq(dev, cp, status);
2496 
2497     if (status & INTR_RX_BUF_UNAVAIL) {
2498         /* Frame arrived, no free RX buffers available.
2499          * NOTE: we can get this on a link transition.
2500          */
2501         cas_post_rxds_ringN(cp, 0, 0);
2502         spin_lock(&cp->stat_lock[0]);
2503         cp->net_stats[0].rx_dropped++;
2504         spin_unlock(&cp->stat_lock[0]);
2505     } else if (status & INTR_RX_BUF_AE) {
2506         cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2507                     RX_AE_FREEN_VAL(0));
2508     }
2509 
2510     if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2511         cas_post_rxcs_ringN(dev, cp, 0);
2512 }
2513 
2514 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2515 {
2516     struct net_device *dev = dev_id;
2517     struct cas *cp = netdev_priv(dev);
2518     unsigned long flags;
2519     u32 status = readl(cp->regs + REG_INTR_STATUS);
2520 
2521     if (status == 0)
2522         return IRQ_NONE;
2523 
2524     spin_lock_irqsave(&cp->lock, flags);
2525     if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2526         cas_tx(dev, cp, status);
2527         status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2528     }
2529 
2530     if (status & INTR_RX_DONE) {
2531 #ifdef USE_NAPI
2532         cas_mask_intr(cp);
2533         napi_schedule(&cp->napi);
2534 #else
2535         cas_rx_ringN(cp, 0, 0);
2536 #endif
2537         status &= ~INTR_RX_DONE;
2538     }
2539 
2540     if (status)
2541         cas_handle_irq(dev, cp, status);
2542     spin_unlock_irqrestore(&cp->lock, flags);
2543     return IRQ_HANDLED;
2544 }
2545 
2546 
2547 #ifdef USE_NAPI
2548 static int cas_poll(struct napi_struct *napi, int budget)
2549 {
2550     struct cas *cp = container_of(napi, struct cas, napi);
2551     struct net_device *dev = cp->dev;
2552     int i, enable_intr, credits;
2553     u32 status = readl(cp->regs + REG_INTR_STATUS);
2554     unsigned long flags;
2555 
2556     spin_lock_irqsave(&cp->lock, flags);
2557     cas_tx(dev, cp, status);
2558     spin_unlock_irqrestore(&cp->lock, flags);
2559 
2560     /* NAPI rx packets. we spread the credits across all of the
2561      * rxc rings
2562      *
2563      * to make sure we're fair with the work we loop through each
2564      * ring N_RX_COMP_RING times with a request of
2565      * budget / N_RX_COMP_RINGS
2566      */
2567     enable_intr = 1;
2568     credits = 0;
2569     for (i = 0; i < N_RX_COMP_RINGS; i++) {
2570         int j;
2571         for (j = 0; j < N_RX_COMP_RINGS; j++) {
2572             credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2573             if (credits >= budget) {
2574                 enable_intr = 0;
2575                 goto rx_comp;
2576             }
2577         }
2578     }
2579 
2580 rx_comp:
2581     /* final rx completion */
2582     spin_lock_irqsave(&cp->lock, flags);
2583     if (status)
2584         cas_handle_irq(dev, cp, status);
2585 
2586 #ifdef USE_PCI_INTB
2587     if (N_RX_COMP_RINGS > 1) {
2588         status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2589         if (status)
2590             cas_handle_irq1(dev, cp, status);
2591     }
2592 #endif
2593 
2594 #ifdef USE_PCI_INTC
2595     if (N_RX_COMP_RINGS > 2) {
2596         status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2597         if (status)
2598             cas_handle_irqN(dev, cp, status, 2);
2599     }
2600 #endif
2601 
2602 #ifdef USE_PCI_INTD
2603     if (N_RX_COMP_RINGS > 3) {
2604         status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2605         if (status)
2606             cas_handle_irqN(dev, cp, status, 3);
2607     }
2608 #endif
2609     spin_unlock_irqrestore(&cp->lock, flags);
2610     if (enable_intr) {
2611         napi_complete(napi);
2612         cas_unmask_intr(cp);
2613     }
2614     return credits;
2615 }
2616 #endif
2617 
2618 #ifdef CONFIG_NET_POLL_CONTROLLER
2619 static void cas_netpoll(struct net_device *dev)
2620 {
2621     struct cas *cp = netdev_priv(dev);
2622 
2623     cas_disable_irq(cp, 0);
2624     cas_interrupt(cp->pdev->irq, dev);
2625     cas_enable_irq(cp, 0);
2626 
2627 #ifdef USE_PCI_INTB
2628     if (N_RX_COMP_RINGS > 1) {
2629         /* cas_interrupt1(); */
2630     }
2631 #endif
2632 #ifdef USE_PCI_INTC
2633     if (N_RX_COMP_RINGS > 2) {
2634         /* cas_interruptN(); */
2635     }
2636 #endif
2637 #ifdef USE_PCI_INTD
2638     if (N_RX_COMP_RINGS > 3) {
2639         /* cas_interruptN(); */
2640     }
2641 #endif
2642 }
2643 #endif
2644 
2645 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2646 {
2647     struct cas *cp = netdev_priv(dev);
2648 
2649     netdev_err(dev, "transmit timed out, resetting\n");
2650     if (!cp->hw_running) {
2651         netdev_err(dev, "hrm.. hw not running!\n");
2652         return;
2653     }
2654 
2655     netdev_err(dev, "MIF_STATE[%08x]\n",
2656            readl(cp->regs + REG_MIF_STATE_MACHINE));
2657 
2658     netdev_err(dev, "MAC_STATE[%08x]\n",
2659            readl(cp->regs + REG_MAC_STATE_MACHINE));
2660 
2661     netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2662            readl(cp->regs + REG_TX_CFG),
2663            readl(cp->regs + REG_MAC_TX_STATUS),
2664            readl(cp->regs + REG_MAC_TX_CFG),
2665            readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2666            readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2667            readl(cp->regs + REG_TX_FIFO_READ_PTR),
2668            readl(cp->regs + REG_TX_SM_1),
2669            readl(cp->regs + REG_TX_SM_2));
2670 
2671     netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2672            readl(cp->regs + REG_RX_CFG),
2673            readl(cp->regs + REG_MAC_RX_STATUS),
2674            readl(cp->regs + REG_MAC_RX_CFG));
2675 
2676     netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2677            readl(cp->regs + REG_HP_STATE_MACHINE),
2678            readl(cp->regs + REG_HP_STATUS0),
2679            readl(cp->regs + REG_HP_STATUS1),
2680            readl(cp->regs + REG_HP_STATUS2));
2681 
2682 #if 1
2683     atomic_inc(&cp->reset_task_pending);
2684     atomic_inc(&cp->reset_task_pending_all);
2685     schedule_work(&cp->reset_task);
2686 #else
2687     atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2688     schedule_work(&cp->reset_task);
2689 #endif
2690 }
2691 
2692 static inline int cas_intme(int ring, int entry)
2693 {
2694     /* Algorithm: IRQ every 1/2 of descriptors. */
2695     if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2696         return 1;
2697     return 0;
2698 }
2699 
2700 
2701 static void cas_write_txd(struct cas *cp, int ring, int entry,
2702               dma_addr_t mapping, int len, u64 ctrl, int last)
2703 {
2704     struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2705 
2706     ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2707     if (cas_intme(ring, entry))
2708         ctrl |= TX_DESC_INTME;
2709     if (last)
2710         ctrl |= TX_DESC_EOF;
2711     txd->control = cpu_to_le64(ctrl);
2712     txd->buffer = cpu_to_le64(mapping);
2713 }
2714 
2715 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2716                 const int entry)
2717 {
2718     return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2719 }
2720 
2721 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2722                      const int entry, const int tentry)
2723 {
2724     cp->tx_tiny_use[ring][tentry].nbufs++;
2725     cp->tx_tiny_use[ring][entry].used = 1;
2726     return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2727 }
2728 
2729 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2730                     struct sk_buff *skb)
2731 {
2732     struct net_device *dev = cp->dev;
2733     int entry, nr_frags, frag, tabort, tentry;
2734     dma_addr_t mapping;
2735     unsigned long flags;
2736     u64 ctrl;
2737     u32 len;
2738 
2739     spin_lock_irqsave(&cp->tx_lock[ring], flags);
2740 
2741     /* This is a hard error, log it. */
2742     if (TX_BUFFS_AVAIL(cp, ring) <=
2743         CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2744         netif_stop_queue(dev);
2745         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2746         netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2747         return 1;
2748     }
2749 
2750     ctrl = 0;
2751     if (skb->ip_summed == CHECKSUM_PARTIAL) {
2752         const u64 csum_start_off = skb_checksum_start_offset(skb);
2753         const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2754 
2755         ctrl =  TX_DESC_CSUM_EN |
2756             CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2757             CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2758     }
2759 
2760     entry = cp->tx_new[ring];
2761     cp->tx_skbs[ring][entry] = skb;
2762 
2763     nr_frags = skb_shinfo(skb)->nr_frags;
2764     len = skb_headlen(skb);
2765     mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2766                    offset_in_page(skb->data), len, DMA_TO_DEVICE);
2767 
2768     tentry = entry;
2769     tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2770     if (unlikely(tabort)) {
2771         /* NOTE: len is always >  tabort */
2772         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2773                   ctrl | TX_DESC_SOF, 0);
2774         entry = TX_DESC_NEXT(ring, entry);
2775 
2776         skb_copy_from_linear_data_offset(skb, len - tabort,
2777                   tx_tiny_buf(cp, ring, entry), tabort);
2778         mapping = tx_tiny_map(cp, ring, entry, tentry);
2779         cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2780                   (nr_frags == 0));
2781     } else {
2782         cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2783                   TX_DESC_SOF, (nr_frags == 0));
2784     }
2785     entry = TX_DESC_NEXT(ring, entry);
2786 
2787     for (frag = 0; frag < nr_frags; frag++) {
2788         const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2789 
2790         len = skb_frag_size(fragp);
2791         mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2792                        DMA_TO_DEVICE);
2793 
2794         tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2795         if (unlikely(tabort)) {
2796             void *addr;
2797 
2798             /* NOTE: len is always > tabort */
2799             cas_write_txd(cp, ring, entry, mapping, len - tabort,
2800                       ctrl, 0);
2801             entry = TX_DESC_NEXT(ring, entry);
2802 
2803             addr = cas_page_map(skb_frag_page(fragp));
2804             memcpy(tx_tiny_buf(cp, ring, entry),
2805                    addr + skb_frag_off(fragp) + len - tabort,
2806                    tabort);
2807             cas_page_unmap(addr);
2808             mapping = tx_tiny_map(cp, ring, entry, tentry);
2809             len     = tabort;
2810         }
2811 
2812         cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2813                   (frag + 1 == nr_frags));
2814         entry = TX_DESC_NEXT(ring, entry);
2815     }
2816 
2817     cp->tx_new[ring] = entry;
2818     if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2819         netif_stop_queue(dev);
2820 
2821     netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2822              "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2823              ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2824     writel(entry, cp->regs + REG_TX_KICKN(ring));
2825     spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2826     return 0;
2827 }
2828 
2829 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2830 {
2831     struct cas *cp = netdev_priv(dev);
2832 
2833     /* this is only used as a load-balancing hint, so it doesn't
2834      * need to be SMP safe
2835      */
2836     static int ring;
2837 
2838     if (skb_padto(skb, cp->min_frame_size))
2839         return NETDEV_TX_OK;
2840 
2841     /* XXX: we need some higher-level QoS hooks to steer packets to
2842      *      individual queues.
2843      */
2844     if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2845         return NETDEV_TX_BUSY;
2846     return NETDEV_TX_OK;
2847 }
2848 
2849 static void cas_init_tx_dma(struct cas *cp)
2850 {
2851     u64 desc_dma = cp->block_dvma;
2852     unsigned long off;
2853     u32 val;
2854     int i;
2855 
2856     /* set up tx completion writeback registers. must be 8-byte aligned */
2857 #ifdef USE_TX_COMPWB
2858     off = offsetof(struct cas_init_block, tx_compwb);
2859     writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2860     writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2861 #endif
2862 
2863     /* enable completion writebacks, enable paced mode,
2864      * disable read pipe, and disable pre-interrupt compwbs
2865      */
2866     val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2867         TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2868         TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2869         TX_CFG_INTR_COMPWB_DIS;
2870 
2871     /* write out tx ring info and tx desc bases */
2872     for (i = 0; i < MAX_TX_RINGS; i++) {
2873         off = (unsigned long) cp->init_txds[i] -
2874             (unsigned long) cp->init_block;
2875 
2876         val |= CAS_TX_RINGN_BASE(i);
2877         writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2878         writel((desc_dma + off) & 0xffffffff, cp->regs +
2879                REG_TX_DBN_LOW(i));
2880         /* don't zero out the kick register here as the system
2881          * will wedge
2882          */
2883     }
2884     writel(val, cp->regs + REG_TX_CFG);
2885 
2886     /* program max burst sizes. these numbers should be different
2887      * if doing QoS.
2888      */
2889 #ifdef USE_QOS
2890     writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2891     writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2892     writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2893     writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2894 #else
2895     writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2896     writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2897     writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2898     writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2899 #endif
2900 }
2901 
2902 /* Must be invoked under cp->lock. */
2903 static inline void cas_init_dma(struct cas *cp)
2904 {
2905     cas_init_tx_dma(cp);
2906     cas_init_rx_dma(cp);
2907 }
2908 
2909 static void cas_process_mc_list(struct cas *cp)
2910 {
2911     u16 hash_table[16];
2912     u32 crc;
2913     struct netdev_hw_addr *ha;
2914     int i = 1;
2915 
2916     memset(hash_table, 0, sizeof(hash_table));
2917     netdev_for_each_mc_addr(ha, cp->dev) {
2918         if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2919             /* use the alternate mac address registers for the
2920              * first 15 multicast addresses
2921              */
2922             writel((ha->addr[4] << 8) | ha->addr[5],
2923                    cp->regs + REG_MAC_ADDRN(i*3 + 0));
2924             writel((ha->addr[2] << 8) | ha->addr[3],
2925                    cp->regs + REG_MAC_ADDRN(i*3 + 1));
2926             writel((ha->addr[0] << 8) | ha->addr[1],
2927                    cp->regs + REG_MAC_ADDRN(i*3 + 2));
2928             i++;
2929         }
2930         else {
2931             /* use hw hash table for the next series of
2932              * multicast addresses
2933              */
2934             crc = ether_crc_le(ETH_ALEN, ha->addr);
2935             crc >>= 24;
2936             hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2937         }
2938     }
2939     for (i = 0; i < 16; i++)
2940         writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2941 }
2942 
2943 /* Must be invoked under cp->lock. */
2944 static u32 cas_setup_multicast(struct cas *cp)
2945 {
2946     u32 rxcfg = 0;
2947     int i;
2948 
2949     if (cp->dev->flags & IFF_PROMISC) {
2950         rxcfg |= MAC_RX_CFG_PROMISC_EN;
2951 
2952     } else if (cp->dev->flags & IFF_ALLMULTI) {
2953             for (i=0; i < 16; i++)
2954             writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2955         rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2956 
2957     } else {
2958         cas_process_mc_list(cp);
2959         rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2960     }
2961 
2962     return rxcfg;
2963 }
2964 
2965 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
2966 static void cas_clear_mac_err(struct cas *cp)
2967 {
2968     writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2969     writel(0, cp->regs + REG_MAC_COLL_FIRST);
2970     writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2971     writel(0, cp->regs + REG_MAC_COLL_LATE);
2972     writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2973     writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2974     writel(0, cp->regs + REG_MAC_RECV_FRAME);
2975     writel(0, cp->regs + REG_MAC_LEN_ERR);
2976     writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2977     writel(0, cp->regs + REG_MAC_FCS_ERR);
2978     writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2979 }
2980 
2981 
2982 static void cas_mac_reset(struct cas *cp)
2983 {
2984     int i;
2985 
2986     /* do both TX and RX reset */
2987     writel(0x1, cp->regs + REG_MAC_TX_RESET);
2988     writel(0x1, cp->regs + REG_MAC_RX_RESET);
2989 
2990     /* wait for TX */
2991     i = STOP_TRIES;
2992     while (i-- > 0) {
2993         if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2994             break;
2995         udelay(10);
2996     }
2997 
2998     /* wait for RX */
2999     i = STOP_TRIES;
3000     while (i-- > 0) {
3001         if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3002             break;
3003         udelay(10);
3004     }
3005 
3006     if (readl(cp->regs + REG_MAC_TX_RESET) |
3007         readl(cp->regs + REG_MAC_RX_RESET))
3008         netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3009                readl(cp->regs + REG_MAC_TX_RESET),
3010                readl(cp->regs + REG_MAC_RX_RESET),
3011                readl(cp->regs + REG_MAC_STATE_MACHINE));
3012 }
3013 
3014 
3015 /* Must be invoked under cp->lock. */
3016 static void cas_init_mac(struct cas *cp)
3017 {
3018     const unsigned char *e = &cp->dev->dev_addr[0];
3019     int i;
3020     cas_mac_reset(cp);
3021 
3022     /* setup core arbitration weight register */
3023     writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3024 
3025 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3026     /* set the infinite burst register for chips that don't have
3027      * pci issues.
3028      */
3029     if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3030         writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3031 #endif
3032 
3033     writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3034 
3035     writel(0x00, cp->regs + REG_MAC_IPG0);
3036     writel(0x08, cp->regs + REG_MAC_IPG1);
3037     writel(0x04, cp->regs + REG_MAC_IPG2);
3038 
3039     /* change later for 802.3z */
3040     writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3041 
3042     /* min frame + FCS */
3043     writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3044 
3045     /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3046      * specify the maximum frame size to prevent RX tag errors on
3047      * oversized frames.
3048      */
3049     writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3050            CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3051             (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3052            cp->regs + REG_MAC_FRAMESIZE_MAX);
3053 
3054     /* NOTE: crc_size is used as a surrogate for half-duplex.
3055      * workaround saturn half-duplex issue by increasing preamble
3056      * size to 65 bytes.
3057      */
3058     if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3059         writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3060     else
3061         writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3062     writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3063     writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3064     writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3065 
3066     writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3067 
3068     writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3069     writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3070     writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3071     writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3072     writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3073 
3074     /* setup mac address in perfect filter array */
3075     for (i = 0; i < 45; i++)
3076         writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3077 
3078     writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3079     writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3080     writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3081 
3082     writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3083     writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3084     writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3085 
3086     cp->mac_rx_cfg = cas_setup_multicast(cp);
3087 
3088     spin_lock(&cp->stat_lock[N_TX_RINGS]);
3089     cas_clear_mac_err(cp);
3090     spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3091 
3092     /* Setup MAC interrupts.  We want to get all of the interesting
3093      * counter expiration events, but we do not want to hear about
3094      * normal rx/tx as the DMA engine tells us that.
3095      */
3096     writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3097     writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3098 
3099     /* Don't enable even the PAUSE interrupts for now, we
3100      * make no use of those events other than to record them.
3101      */
3102     writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3103 }
3104 
3105 /* Must be invoked under cp->lock. */
3106 static void cas_init_pause_thresholds(struct cas *cp)
3107 {
3108     /* Calculate pause thresholds.  Setting the OFF threshold to the
3109      * full RX fifo size effectively disables PAUSE generation
3110      */
3111     if (cp->rx_fifo_size <= (2 * 1024)) {
3112         cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3113     } else {
3114         int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3115         if (max_frame * 3 > cp->rx_fifo_size) {
3116             cp->rx_pause_off = 7104;
3117             cp->rx_pause_on  = 960;
3118         } else {
3119             int off = (cp->rx_fifo_size - (max_frame * 2));
3120             int on = off - max_frame;
3121             cp->rx_pause_off = off;
3122             cp->rx_pause_on = on;
3123         }
3124     }
3125 }
3126 
3127 static int cas_vpd_match(const void __iomem *p, const char *str)
3128 {
3129     int len = strlen(str) + 1;
3130     int i;
3131 
3132     for (i = 0; i < len; i++) {
3133         if (readb(p + i) != str[i])
3134             return 0;
3135     }
3136     return 1;
3137 }
3138 
3139 
3140 /* get the mac address by reading the vpd information in the rom.
3141  * also get the phy type and determine if there's an entropy generator.
3142  * NOTE: this is a bit convoluted for the following reasons:
3143  *  1) vpd info has order-dependent mac addresses for multinic cards
3144  *  2) the only way to determine the nic order is to use the slot
3145  *     number.
3146  *  3) fiber cards don't have bridges, so their slot numbers don't
3147  *     mean anything.
3148  *  4) we don't actually know we have a fiber card until after
3149  *     the mac addresses are parsed.
3150  */
3151 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3152                 const int offset)
3153 {
3154     void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3155     void __iomem *base, *kstart;
3156     int i, len;
3157     int found = 0;
3158 #define VPD_FOUND_MAC        0x01
3159 #define VPD_FOUND_PHY        0x02
3160 
3161     int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3162     int mac_off  = 0;
3163 
3164 #if defined(CONFIG_SPARC)
3165     const unsigned char *addr;
3166 #endif
3167 
3168     /* give us access to the PROM */
3169     writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3170            cp->regs + REG_BIM_LOCAL_DEV_EN);
3171 
3172     /* check for an expansion rom */
3173     if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3174         goto use_random_mac_addr;
3175 
3176     /* search for beginning of vpd */
3177     base = NULL;
3178     for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3179         /* check for PCIR */
3180         if ((readb(p + i + 0) == 0x50) &&
3181             (readb(p + i + 1) == 0x43) &&
3182             (readb(p + i + 2) == 0x49) &&
3183             (readb(p + i + 3) == 0x52)) {
3184             base = p + (readb(p + i + 8) |
3185                     (readb(p + i + 9) << 8));
3186             break;
3187         }
3188     }
3189 
3190     if (!base || (readb(base) != 0x82))
3191         goto use_random_mac_addr;
3192 
3193     i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3194     while (i < EXPANSION_ROM_SIZE) {
3195         if (readb(base + i) != 0x90) /* no vpd found */
3196             goto use_random_mac_addr;
3197 
3198         /* found a vpd field */
3199         len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3200 
3201         /* extract keywords */
3202         kstart = base + i + 3;
3203         p = kstart;
3204         while ((p - kstart) < len) {
3205             int klen = readb(p + 2);
3206             int j;
3207             char type;
3208 
3209             p += 3;
3210 
3211             /* look for the following things:
3212              * -- correct length == 29
3213              * 3 (type) + 2 (size) +
3214              * 18 (strlen("local-mac-address") + 1) +
3215              * 6 (mac addr)
3216              * -- VPD Instance 'I'
3217              * -- VPD Type Bytes 'B'
3218              * -- VPD data length == 6
3219              * -- property string == local-mac-address
3220              *
3221              * -- correct length == 24
3222              * 3 (type) + 2 (size) +
3223              * 12 (strlen("entropy-dev") + 1) +
3224              * 7 (strlen("vms110") + 1)
3225              * -- VPD Instance 'I'
3226              * -- VPD Type String 'B'
3227              * -- VPD data length == 7
3228              * -- property string == entropy-dev
3229              *
3230              * -- correct length == 18
3231              * 3 (type) + 2 (size) +
3232              * 9 (strlen("phy-type") + 1) +
3233              * 4 (strlen("pcs") + 1)
3234              * -- VPD Instance 'I'
3235              * -- VPD Type String 'S'
3236              * -- VPD data length == 4
3237              * -- property string == phy-type
3238              *
3239              * -- correct length == 23
3240              * 3 (type) + 2 (size) +
3241              * 14 (strlen("phy-interface") + 1) +
3242              * 4 (strlen("pcs") + 1)
3243              * -- VPD Instance 'I'
3244              * -- VPD Type String 'S'
3245              * -- VPD data length == 4
3246              * -- property string == phy-interface
3247              */
3248             if (readb(p) != 'I')
3249                 goto next;
3250 
3251             /* finally, check string and length */
3252             type = readb(p + 3);
3253             if (type == 'B') {
3254                 if ((klen == 29) && readb(p + 4) == 6 &&
3255                     cas_vpd_match(p + 5,
3256                           "local-mac-address")) {
3257                     if (mac_off++ > offset)
3258                         goto next;
3259 
3260                     /* set mac address */
3261                     for (j = 0; j < 6; j++)
3262                         dev_addr[j] =
3263                             readb(p + 23 + j);
3264                     goto found_mac;
3265                 }
3266             }
3267 
3268             if (type != 'S')
3269                 goto next;
3270 
3271 #ifdef USE_ENTROPY_DEV
3272             if ((klen == 24) &&
3273                 cas_vpd_match(p + 5, "entropy-dev") &&
3274                 cas_vpd_match(p + 17, "vms110")) {
3275                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3276                 goto next;
3277             }
3278 #endif
3279 
3280             if (found & VPD_FOUND_PHY)
3281                 goto next;
3282 
3283             if ((klen == 18) && readb(p + 4) == 4 &&
3284                 cas_vpd_match(p + 5, "phy-type")) {
3285                 if (cas_vpd_match(p + 14, "pcs")) {
3286                     phy_type = CAS_PHY_SERDES;
3287                     goto found_phy;
3288                 }
3289             }
3290 
3291             if ((klen == 23) && readb(p + 4) == 4 &&
3292                 cas_vpd_match(p + 5, "phy-interface")) {
3293                 if (cas_vpd_match(p + 19, "pcs")) {
3294                     phy_type = CAS_PHY_SERDES;
3295                     goto found_phy;
3296                 }
3297             }
3298 found_mac:
3299             found |= VPD_FOUND_MAC;
3300             goto next;
3301 
3302 found_phy:
3303             found |= VPD_FOUND_PHY;
3304 
3305 next:
3306             p += klen;
3307         }
3308         i += len + 3;
3309     }
3310 
3311 use_random_mac_addr:
3312     if (found & VPD_FOUND_MAC)
3313         goto done;
3314 
3315 #if defined(CONFIG_SPARC)
3316     addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3317     if (addr != NULL) {
3318         memcpy(dev_addr, addr, ETH_ALEN);
3319         goto done;
3320     }
3321 #endif
3322 
3323     /* Sun MAC prefix then 3 random bytes. */
3324     pr_info("MAC address not found in ROM VPD\n");
3325     dev_addr[0] = 0x08;
3326     dev_addr[1] = 0x00;
3327     dev_addr[2] = 0x20;
3328     get_random_bytes(dev_addr + 3, 3);
3329 
3330 done:
3331     writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3332     return phy_type;
3333 }
3334 
3335 /* check pci invariants */
3336 static void cas_check_pci_invariants(struct cas *cp)
3337 {
3338     struct pci_dev *pdev = cp->pdev;
3339 
3340     cp->cas_flags = 0;
3341     if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3342         (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3343         if (pdev->revision >= CAS_ID_REVPLUS)
3344             cp->cas_flags |= CAS_FLAG_REG_PLUS;
3345         if (pdev->revision < CAS_ID_REVPLUS02u)
3346             cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3347 
3348         /* Original Cassini supports HW CSUM, but it's not
3349          * enabled by default as it can trigger TX hangs.
3350          */
3351         if (pdev->revision < CAS_ID_REV2)
3352             cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3353     } else {
3354         /* Only sun has original cassini chips.  */
3355         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3356 
3357         /* We use a flag because the same phy might be externally
3358          * connected.
3359          */
3360         if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3361             (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3362             cp->cas_flags |= CAS_FLAG_SATURN;
3363     }
3364 }
3365 
3366 
3367 static int cas_check_invariants(struct cas *cp)
3368 {
3369     struct pci_dev *pdev = cp->pdev;
3370     u8 addr[ETH_ALEN];
3371     u32 cfg;
3372     int i;
3373 
3374     /* get page size for rx buffers. */
3375     cp->page_order = 0;
3376 #ifdef USE_PAGE_ORDER
3377     if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3378         /* see if we can allocate larger pages */
3379         struct page *page = alloc_pages(GFP_ATOMIC,
3380                         CAS_JUMBO_PAGE_SHIFT -
3381                         PAGE_SHIFT);
3382         if (page) {
3383             __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3384             cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3385         } else {
3386             printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3387         }
3388     }
3389 #endif
3390     cp->page_size = (PAGE_SIZE << cp->page_order);
3391 
3392     /* Fetch the FIFO configurations. */
3393     cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3394     cp->rx_fifo_size = RX_FIFO_SIZE;
3395 
3396     /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3397      * they're both connected.
3398      */
3399     cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3400     eth_hw_addr_set(cp->dev, addr);
3401     if (cp->phy_type & CAS_PHY_SERDES) {
3402         cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3403         return 0; /* no more checking needed */
3404     }
3405 
3406     /* MII */
3407     cfg = readl(cp->regs + REG_MIF_CFG);
3408     if (cfg & MIF_CFG_MDIO_1) {
3409         cp->phy_type = CAS_PHY_MII_MDIO1;
3410     } else if (cfg & MIF_CFG_MDIO_0) {
3411         cp->phy_type = CAS_PHY_MII_MDIO0;
3412     }
3413 
3414     cas_mif_poll(cp, 0);
3415     writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3416 
3417     for (i = 0; i < 32; i++) {
3418         u32 phy_id;
3419         int j;
3420 
3421         for (j = 0; j < 3; j++) {
3422             cp->phy_addr = i;
3423             phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3424             phy_id |= cas_phy_read(cp, MII_PHYSID2);
3425             if (phy_id && (phy_id != 0xFFFFFFFF)) {
3426                 cp->phy_id = phy_id;
3427                 goto done;
3428             }
3429         }
3430     }
3431     pr_err("MII phy did not respond [%08x]\n",
3432            readl(cp->regs + REG_MIF_STATE_MACHINE));
3433     return -1;
3434 
3435 done:
3436     /* see if we can do gigabit */
3437     cfg = cas_phy_read(cp, MII_BMSR);
3438     if ((cfg & CAS_BMSR_1000_EXTEND) &&
3439         cas_phy_read(cp, CAS_MII_1000_EXTEND))
3440         cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3441     return 0;
3442 }
3443 
3444 /* Must be invoked under cp->lock. */
3445 static inline void cas_start_dma(struct cas *cp)
3446 {
3447     int i;
3448     u32 val;
3449     int txfailed = 0;
3450 
3451     /* enable dma */
3452     val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3453     writel(val, cp->regs + REG_TX_CFG);
3454     val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3455     writel(val, cp->regs + REG_RX_CFG);
3456 
3457     /* enable the mac */
3458     val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3459     writel(val, cp->regs + REG_MAC_TX_CFG);
3460     val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3461     writel(val, cp->regs + REG_MAC_RX_CFG);
3462 
3463     i = STOP_TRIES;
3464     while (i-- > 0) {
3465         val = readl(cp->regs + REG_MAC_TX_CFG);
3466         if ((val & MAC_TX_CFG_EN))
3467             break;
3468         udelay(10);
3469     }
3470     if (i < 0) txfailed = 1;
3471     i = STOP_TRIES;
3472     while (i-- > 0) {
3473         val = readl(cp->regs + REG_MAC_RX_CFG);
3474         if ((val & MAC_RX_CFG_EN)) {
3475             if (txfailed) {
3476                 netdev_err(cp->dev,
3477                        "enabling mac failed [tx:%08x:%08x]\n",
3478                        readl(cp->regs + REG_MIF_STATE_MACHINE),
3479                        readl(cp->regs + REG_MAC_STATE_MACHINE));
3480             }
3481             goto enable_rx_done;
3482         }
3483         udelay(10);
3484     }
3485     netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3486            (txfailed ? "tx,rx" : "rx"),
3487            readl(cp->regs + REG_MIF_STATE_MACHINE),
3488            readl(cp->regs + REG_MAC_STATE_MACHINE));
3489 
3490 enable_rx_done:
3491     cas_unmask_intr(cp); /* enable interrupts */
3492     writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3493     writel(0, cp->regs + REG_RX_COMP_TAIL);
3494 
3495     if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3496         if (N_RX_DESC_RINGS > 1)
3497             writel(RX_DESC_RINGN_SIZE(1) - 4,
3498                    cp->regs + REG_PLUS_RX_KICK1);
3499     }
3500 }
3501 
3502 /* Must be invoked under cp->lock. */
3503 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3504                    int *pause)
3505 {
3506     u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3507     *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3508     *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3509     if (val & PCS_MII_LPA_ASYM_PAUSE)
3510         *pause |= 0x10;
3511     *spd = 1000;
3512 }
3513 
3514 /* Must be invoked under cp->lock. */
3515 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3516                    int *pause)
3517 {
3518     u32 val;
3519 
3520     *fd = 0;
3521     *spd = 10;
3522     *pause = 0;
3523 
3524     /* use GMII registers */
3525     val = cas_phy_read(cp, MII_LPA);
3526     if (val & CAS_LPA_PAUSE)
3527         *pause = 0x01;
3528 
3529     if (val & CAS_LPA_ASYM_PAUSE)
3530         *pause |= 0x10;
3531 
3532     if (val & LPA_DUPLEX)
3533         *fd = 1;
3534     if (val & LPA_100)
3535         *spd = 100;
3536 
3537     if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3538         val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3539         if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3540             *spd = 1000;
3541         if (val & CAS_LPA_1000FULL)
3542             *fd = 1;
3543     }
3544 }
3545 
3546 /* A link-up condition has occurred, initialize and enable the
3547  * rest of the chip.
3548  *
3549  * Must be invoked under cp->lock.
3550  */
3551 static void cas_set_link_modes(struct cas *cp)
3552 {
3553     u32 val;
3554     int full_duplex, speed, pause;
3555 
3556     full_duplex = 0;
3557     speed = 10;
3558     pause = 0;
3559 
3560     if (CAS_PHY_MII(cp->phy_type)) {
3561         cas_mif_poll(cp, 0);
3562         val = cas_phy_read(cp, MII_BMCR);
3563         if (val & BMCR_ANENABLE) {
3564             cas_read_mii_link_mode(cp, &full_duplex, &speed,
3565                            &pause);
3566         } else {
3567             if (val & BMCR_FULLDPLX)
3568                 full_duplex = 1;
3569 
3570             if (val & BMCR_SPEED100)
3571                 speed = 100;
3572             else if (val & CAS_BMCR_SPEED1000)
3573                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3574                     1000 : 100;
3575         }
3576         cas_mif_poll(cp, 1);
3577 
3578     } else {
3579         val = readl(cp->regs + REG_PCS_MII_CTRL);
3580         cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3581         if ((val & PCS_MII_AUTONEG_EN) == 0) {
3582             if (val & PCS_MII_CTRL_DUPLEX)
3583                 full_duplex = 1;
3584         }
3585     }
3586 
3587     netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3588            speed, full_duplex ? "full" : "half");
3589 
3590     val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3591     if (CAS_PHY_MII(cp->phy_type)) {
3592         val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3593         if (!full_duplex)
3594             val |= MAC_XIF_DISABLE_ECHO;
3595     }
3596     if (full_duplex)
3597         val |= MAC_XIF_FDPLX_LED;
3598     if (speed == 1000)
3599         val |= MAC_XIF_GMII_MODE;
3600     writel(val, cp->regs + REG_MAC_XIF_CFG);
3601 
3602     /* deal with carrier and collision detect. */
3603     val = MAC_TX_CFG_IPG_EN;
3604     if (full_duplex) {
3605         val |= MAC_TX_CFG_IGNORE_CARRIER;
3606         val |= MAC_TX_CFG_IGNORE_COLL;
3607     } else {
3608 #ifndef USE_CSMA_CD_PROTO
3609         val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3610         val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3611 #endif
3612     }
3613     /* val now set up for REG_MAC_TX_CFG */
3614 
3615     /* If gigabit and half-duplex, enable carrier extension
3616      * mode.  increase slot time to 512 bytes as well.
3617      * else, disable it and make sure slot time is 64 bytes.
3618      * also activate checksum bug workaround
3619      */
3620     if ((speed == 1000) && !full_duplex) {
3621         writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3622                cp->regs + REG_MAC_TX_CFG);
3623 
3624         val = readl(cp->regs + REG_MAC_RX_CFG);
3625         val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3626         writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3627                cp->regs + REG_MAC_RX_CFG);
3628 
3629         writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3630 
3631         cp->crc_size = 4;
3632         /* minimum size gigabit frame at half duplex */
3633         cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3634 
3635     } else {
3636         writel(val, cp->regs + REG_MAC_TX_CFG);
3637 
3638         /* checksum bug workaround. don't strip FCS when in
3639          * half-duplex mode
3640          */
3641         val = readl(cp->regs + REG_MAC_RX_CFG);
3642         if (full_duplex) {
3643             val |= MAC_RX_CFG_STRIP_FCS;
3644             cp->crc_size = 0;
3645             cp->min_frame_size = CAS_MIN_MTU;
3646         } else {
3647             val &= ~MAC_RX_CFG_STRIP_FCS;
3648             cp->crc_size = 4;
3649             cp->min_frame_size = CAS_MIN_FRAME;
3650         }
3651         writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3652                cp->regs + REG_MAC_RX_CFG);
3653         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3654     }
3655 
3656     if (netif_msg_link(cp)) {
3657         if (pause & 0x01) {
3658             netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3659                     cp->rx_fifo_size,
3660                     cp->rx_pause_off,
3661                     cp->rx_pause_on);
3662         } else if (pause & 0x10) {
3663             netdev_info(cp->dev, "TX pause enabled\n");
3664         } else {
3665             netdev_info(cp->dev, "Pause is disabled\n");
3666         }
3667     }
3668 
3669     val = readl(cp->regs + REG_MAC_CTRL_CFG);
3670     val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3671     if (pause) { /* symmetric or asymmetric pause */
3672         val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3673         if (pause & 0x01) { /* symmetric pause */
3674             val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3675         }
3676     }
3677     writel(val, cp->regs + REG_MAC_CTRL_CFG);
3678     cas_start_dma(cp);
3679 }
3680 
3681 /* Must be invoked under cp->lock. */
3682 static void cas_init_hw(struct cas *cp, int restart_link)
3683 {
3684     if (restart_link)
3685         cas_phy_init(cp);
3686 
3687     cas_init_pause_thresholds(cp);
3688     cas_init_mac(cp);
3689     cas_init_dma(cp);
3690 
3691     if (restart_link) {
3692         /* Default aneg parameters */
3693         cp->timer_ticks = 0;
3694         cas_begin_auto_negotiation(cp, NULL);
3695     } else if (cp->lstate == link_up) {
3696         cas_set_link_modes(cp);
3697         netif_carrier_on(cp->dev);
3698     }
3699 }
3700 
3701 /* Must be invoked under cp->lock. on earlier cassini boards,
3702  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3703  * let it settle out, and then restore pci state.
3704  */
3705 static void cas_hard_reset(struct cas *cp)
3706 {
3707     writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3708     udelay(20);
3709     pci_restore_state(cp->pdev);
3710 }
3711 
3712 
3713 static void cas_global_reset(struct cas *cp, int blkflag)
3714 {
3715     int limit;
3716 
3717     /* issue a global reset. don't use RSTOUT. */
3718     if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3719         /* For PCS, when the blkflag is set, we should set the
3720          * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3721          * the last autonegotiation from being cleared.  We'll
3722          * need some special handling if the chip is set into a
3723          * loopback mode.
3724          */
3725         writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3726                cp->regs + REG_SW_RESET);
3727     } else {
3728         writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3729     }
3730 
3731     /* need to wait at least 3ms before polling register */
3732     mdelay(3);
3733 
3734     limit = STOP_TRIES;
3735     while (limit-- > 0) {
3736         u32 val = readl(cp->regs + REG_SW_RESET);
3737         if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3738             goto done;
3739         udelay(10);
3740     }
3741     netdev_err(cp->dev, "sw reset failed\n");
3742 
3743 done:
3744     /* enable various BIM interrupts */
3745     writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3746            BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3747 
3748     /* clear out pci error status mask for handled errors.
3749      * we don't deal with DMA counter overflows as they happen
3750      * all the time.
3751      */
3752     writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3753                    PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3754                    PCI_ERR_BIM_DMA_READ), cp->regs +
3755            REG_PCI_ERR_STATUS_MASK);
3756 
3757     /* set up for MII by default to address mac rx reset timeout
3758      * issue
3759      */
3760     writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3761 }
3762 
3763 static void cas_reset(struct cas *cp, int blkflag)
3764 {
3765     u32 val;
3766 
3767     cas_mask_intr(cp);
3768     cas_global_reset(cp, blkflag);
3769     cas_mac_reset(cp);
3770     cas_entropy_reset(cp);
3771 
3772     /* disable dma engines. */
3773     val = readl(cp->regs + REG_TX_CFG);
3774     val &= ~TX_CFG_DMA_EN;
3775     writel(val, cp->regs + REG_TX_CFG);
3776 
3777     val = readl(cp->regs + REG_RX_CFG);
3778     val &= ~RX_CFG_DMA_EN;
3779     writel(val, cp->regs + REG_RX_CFG);
3780 
3781     /* program header parser */
3782     if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3783         (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3784         cas_load_firmware(cp, CAS_HP_FIRMWARE);
3785     } else {
3786         cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3787     }
3788 
3789     /* clear out error registers */
3790     spin_lock(&cp->stat_lock[N_TX_RINGS]);
3791     cas_clear_mac_err(cp);
3792     spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3793 }
3794 
3795 /* Shut down the chip, must be called with pm_mutex held.  */
3796 static void cas_shutdown(struct cas *cp)
3797 {
3798     unsigned long flags;
3799 
3800     /* Make us not-running to avoid timers respawning */
3801     cp->hw_running = 0;
3802 
3803     del_timer_sync(&cp->link_timer);
3804 
3805     /* Stop the reset task */
3806 #if 0
3807     while (atomic_read(&cp->reset_task_pending_mtu) ||
3808            atomic_read(&cp->reset_task_pending_spare) ||
3809            atomic_read(&cp->reset_task_pending_all))
3810         schedule();
3811 
3812 #else
3813     while (atomic_read(&cp->reset_task_pending))
3814         schedule();
3815 #endif
3816     /* Actually stop the chip */
3817     cas_lock_all_save(cp, flags);
3818     cas_reset(cp, 0);
3819     if (cp->cas_flags & CAS_FLAG_SATURN)
3820         cas_phy_powerdown(cp);
3821     cas_unlock_all_restore(cp, flags);
3822 }
3823 
3824 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3825 {
3826     struct cas *cp = netdev_priv(dev);
3827 
3828     dev->mtu = new_mtu;
3829     if (!netif_running(dev) || !netif_device_present(dev))
3830         return 0;
3831 
3832     /* let the reset task handle it */
3833 #if 1
3834     atomic_inc(&cp->reset_task_pending);
3835     if ((cp->phy_type & CAS_PHY_SERDES)) {
3836         atomic_inc(&cp->reset_task_pending_all);
3837     } else {
3838         atomic_inc(&cp->reset_task_pending_mtu);
3839     }
3840     schedule_work(&cp->reset_task);
3841 #else
3842     atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3843            CAS_RESET_ALL : CAS_RESET_MTU);
3844     pr_err("reset called in cas_change_mtu\n");
3845     schedule_work(&cp->reset_task);
3846 #endif
3847 
3848     flush_work(&cp->reset_task);
3849     return 0;
3850 }
3851 
3852 static void cas_clean_txd(struct cas *cp, int ring)
3853 {
3854     struct cas_tx_desc *txd = cp->init_txds[ring];
3855     struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3856     u64 daddr, dlen;
3857     int i, size;
3858 
3859     size = TX_DESC_RINGN_SIZE(ring);
3860     for (i = 0; i < size; i++) {
3861         int frag;
3862 
3863         if (skbs[i] == NULL)
3864             continue;
3865 
3866         skb = skbs[i];
3867         skbs[i] = NULL;
3868 
3869         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3870             int ent = i & (size - 1);
3871 
3872             /* first buffer is never a tiny buffer and so
3873              * needs to be unmapped.
3874              */
3875             daddr = le64_to_cpu(txd[ent].buffer);
3876             dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3877                      le64_to_cpu(txd[ent].control));
3878             dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3879                        DMA_TO_DEVICE);
3880 
3881             if (frag != skb_shinfo(skb)->nr_frags) {
3882                 i++;
3883 
3884                 /* next buffer might by a tiny buffer.
3885                  * skip past it.
3886                  */
3887                 ent = i & (size - 1);
3888                 if (cp->tx_tiny_use[ring][ent].used)
3889                     i++;
3890             }
3891         }
3892         dev_kfree_skb_any(skb);
3893     }
3894 
3895     /* zero out tiny buf usage */
3896     memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3897 }
3898 
3899 /* freed on close */
3900 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3901 {
3902     cas_page_t **page = cp->rx_pages[ring];
3903     int i, size;
3904 
3905     size = RX_DESC_RINGN_SIZE(ring);
3906     for (i = 0; i < size; i++) {
3907         if (page[i]) {
3908             cas_page_free(cp, page[i]);
3909             page[i] = NULL;
3910         }
3911     }
3912 }
3913 
3914 static void cas_free_rxds(struct cas *cp)
3915 {
3916     int i;
3917 
3918     for (i = 0; i < N_RX_DESC_RINGS; i++)
3919         cas_free_rx_desc(cp, i);
3920 }
3921 
3922 /* Must be invoked under cp->lock. */
3923 static void cas_clean_rings(struct cas *cp)
3924 {
3925     int i;
3926 
3927     /* need to clean all tx rings */
3928     memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3929     memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3930     for (i = 0; i < N_TX_RINGS; i++)
3931         cas_clean_txd(cp, i);
3932 
3933     /* zero out init block */
3934     memset(cp->init_block, 0, sizeof(struct cas_init_block));
3935     cas_clean_rxds(cp);
3936     cas_clean_rxcs(cp);
3937 }
3938 
3939 /* allocated on open */
3940 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3941 {
3942     cas_page_t **page = cp->rx_pages[ring];
3943     int size, i = 0;
3944 
3945     size = RX_DESC_RINGN_SIZE(ring);
3946     for (i = 0; i < size; i++) {
3947         if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3948             return -1;
3949     }
3950     return 0;
3951 }
3952 
3953 static int cas_alloc_rxds(struct cas *cp)
3954 {
3955     int i;
3956 
3957     for (i = 0; i < N_RX_DESC_RINGS; i++) {
3958         if (cas_alloc_rx_desc(cp, i) < 0) {
3959             cas_free_rxds(cp);
3960             return -1;
3961         }
3962     }
3963     return 0;
3964 }
3965 
3966 static void cas_reset_task(struct work_struct *work)
3967 {
3968     struct cas *cp = container_of(work, struct cas, reset_task);
3969 #if 0
3970     int pending = atomic_read(&cp->reset_task_pending);
3971 #else
3972     int pending_all = atomic_read(&cp->reset_task_pending_all);
3973     int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3974     int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3975 
3976     if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3977         /* We can have more tasks scheduled than actually
3978          * needed.
3979          */
3980         atomic_dec(&cp->reset_task_pending);
3981         return;
3982     }
3983 #endif
3984     /* The link went down, we reset the ring, but keep
3985      * DMA stopped. Use this function for reset
3986      * on error as well.
3987      */
3988     if (cp->hw_running) {
3989         unsigned long flags;
3990 
3991         /* Make sure we don't get interrupts or tx packets */
3992         netif_device_detach(cp->dev);
3993         cas_lock_all_save(cp, flags);
3994 
3995         if (cp->opened) {
3996             /* We call cas_spare_recover when we call cas_open.
3997              * but we do not initialize the lists cas_spare_recover
3998              * uses until cas_open is called.
3999              */
4000             cas_spare_recover(cp, GFP_ATOMIC);
4001         }
4002 #if 1
4003         /* test => only pending_spare set */
4004         if (!pending_all && !pending_mtu)
4005             goto done;
4006 #else
4007         if (pending == CAS_RESET_SPARE)
4008             goto done;
4009 #endif
4010         /* when pending == CAS_RESET_ALL, the following
4011          * call to cas_init_hw will restart auto negotiation.
4012          * Setting the second argument of cas_reset to
4013          * !(pending == CAS_RESET_ALL) will set this argument
4014          * to 1 (avoiding reinitializing the PHY for the normal
4015          * PCS case) when auto negotiation is not restarted.
4016          */
4017 #if 1
4018         cas_reset(cp, !(pending_all > 0));
4019         if (cp->opened)
4020             cas_clean_rings(cp);
4021         cas_init_hw(cp, (pending_all > 0));
4022 #else
4023         cas_reset(cp, !(pending == CAS_RESET_ALL));
4024         if (cp->opened)
4025             cas_clean_rings(cp);
4026         cas_init_hw(cp, pending == CAS_RESET_ALL);
4027 #endif
4028 
4029 done:
4030         cas_unlock_all_restore(cp, flags);
4031         netif_device_attach(cp->dev);
4032     }
4033 #if 1
4034     atomic_sub(pending_all, &cp->reset_task_pending_all);
4035     atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4036     atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4037     atomic_dec(&cp->reset_task_pending);
4038 #else
4039     atomic_set(&cp->reset_task_pending, 0);
4040 #endif
4041 }
4042 
4043 static void cas_link_timer(struct timer_list *t)
4044 {
4045     struct cas *cp = from_timer(cp, t, link_timer);
4046     int mask, pending = 0, reset = 0;
4047     unsigned long flags;
4048 
4049     if (link_transition_timeout != 0 &&
4050         cp->link_transition_jiffies_valid &&
4051         time_is_before_jiffies(cp->link_transition_jiffies +
4052           link_transition_timeout)) {
4053         /* One-second counter so link-down workaround doesn't
4054          * cause resets to occur so fast as to fool the switch
4055          * into thinking the link is down.
4056          */
4057         cp->link_transition_jiffies_valid = 0;
4058     }
4059 
4060     if (!cp->hw_running)
4061         return;
4062 
4063     spin_lock_irqsave(&cp->lock, flags);
4064     cas_lock_tx(cp);
4065     cas_entropy_gather(cp);
4066 
4067     /* If the link task is still pending, we just
4068      * reschedule the link timer
4069      */
4070 #if 1
4071     if (atomic_read(&cp->reset_task_pending_all) ||
4072         atomic_read(&cp->reset_task_pending_spare) ||
4073         atomic_read(&cp->reset_task_pending_mtu))
4074         goto done;
4075 #else
4076     if (atomic_read(&cp->reset_task_pending))
4077         goto done;
4078 #endif
4079 
4080     /* check for rx cleaning */
4081     if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4082         int i, rmask;
4083 
4084         for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4085             rmask = CAS_FLAG_RXD_POST(i);
4086             if ((mask & rmask) == 0)
4087                 continue;
4088 
4089             /* post_rxds will do a mod_timer */
4090             if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4091                 pending = 1;
4092                 continue;
4093             }
4094             cp->cas_flags &= ~rmask;
4095         }
4096     }
4097 
4098     if (CAS_PHY_MII(cp->phy_type)) {
4099         u16 bmsr;
4100         cas_mif_poll(cp, 0);
4101         bmsr = cas_phy_read(cp, MII_BMSR);
4102         /* WTZ: Solaris driver reads this twice, but that
4103          * may be due to the PCS case and the use of a
4104          * common implementation. Read it twice here to be
4105          * safe.
4106          */
4107         bmsr = cas_phy_read(cp, MII_BMSR);
4108         cas_mif_poll(cp, 1);
4109         readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4110         reset = cas_mii_link_check(cp, bmsr);
4111     } else {
4112         reset = cas_pcs_link_check(cp);
4113     }
4114 
4115     if (reset)
4116         goto done;
4117 
4118     /* check for tx state machine confusion */
4119     if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4120         u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4121         u32 wptr, rptr;
4122         int tlm  = CAS_VAL(MAC_SM_TLM, val);
4123 
4124         if (((tlm == 0x5) || (tlm == 0x3)) &&
4125             (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4126             netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4127                      "tx err: MAC_STATE[%08x]\n", val);
4128             reset = 1;
4129             goto done;
4130         }
4131 
4132         val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4133         wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4134         rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4135         if ((val == 0) && (wptr != rptr)) {
4136             netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4137                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4138                      val, wptr, rptr);
4139             reset = 1;
4140         }
4141 
4142         if (reset)
4143             cas_hard_reset(cp);
4144     }
4145 
4146 done:
4147     if (reset) {
4148 #if 1
4149         atomic_inc(&cp->reset_task_pending);
4150         atomic_inc(&cp->reset_task_pending_all);
4151         schedule_work(&cp->reset_task);
4152 #else
4153         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4154         pr_err("reset called in cas_link_timer\n");
4155         schedule_work(&cp->reset_task);
4156 #endif
4157     }
4158 
4159     if (!pending)
4160         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4161     cas_unlock_tx(cp);
4162     spin_unlock_irqrestore(&cp->lock, flags);
4163 }
4164 
4165 /* tiny buffers are used to avoid target abort issues with
4166  * older cassini's
4167  */
4168 static void cas_tx_tiny_free(struct cas *cp)
4169 {
4170     struct pci_dev *pdev = cp->pdev;
4171     int i;
4172 
4173     for (i = 0; i < N_TX_RINGS; i++) {
4174         if (!cp->tx_tiny_bufs[i])
4175             continue;
4176 
4177         dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4178                   cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4179         cp->tx_tiny_bufs[i] = NULL;
4180     }
4181 }
4182 
4183 static int cas_tx_tiny_alloc(struct cas *cp)
4184 {
4185     struct pci_dev *pdev = cp->pdev;
4186     int i;
4187 
4188     for (i = 0; i < N_TX_RINGS; i++) {
4189         cp->tx_tiny_bufs[i] =
4190             dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4191                        &cp->tx_tiny_dvma[i], GFP_KERNEL);
4192         if (!cp->tx_tiny_bufs[i]) {
4193             cas_tx_tiny_free(cp);
4194             return -1;
4195         }
4196     }
4197     return 0;
4198 }
4199 
4200 
4201 static int cas_open(struct net_device *dev)
4202 {
4203     struct cas *cp = netdev_priv(dev);
4204     int hw_was_up, err;
4205     unsigned long flags;
4206 
4207     mutex_lock(&cp->pm_mutex);
4208 
4209     hw_was_up = cp->hw_running;
4210 
4211     /* The power-management mutex protects the hw_running
4212      * etc. state so it is safe to do this bit without cp->lock
4213      */
4214     if (!cp->hw_running) {
4215         /* Reset the chip */
4216         cas_lock_all_save(cp, flags);
4217         /* We set the second arg to cas_reset to zero
4218          * because cas_init_hw below will have its second
4219          * argument set to non-zero, which will force
4220          * autonegotiation to start.
4221          */
4222         cas_reset(cp, 0);
4223         cp->hw_running = 1;
4224         cas_unlock_all_restore(cp, flags);
4225     }
4226 
4227     err = -ENOMEM;
4228     if (cas_tx_tiny_alloc(cp) < 0)
4229         goto err_unlock;
4230 
4231     /* alloc rx descriptors */
4232     if (cas_alloc_rxds(cp) < 0)
4233         goto err_tx_tiny;
4234 
4235     /* allocate spares */
4236     cas_spare_init(cp);
4237     cas_spare_recover(cp, GFP_KERNEL);
4238 
4239     /* We can now request the interrupt as we know it's masked
4240      * on the controller. cassini+ has up to 4 interrupts
4241      * that can be used, but you need to do explicit pci interrupt
4242      * mapping to expose them
4243      */
4244     if (request_irq(cp->pdev->irq, cas_interrupt,
4245             IRQF_SHARED, dev->name, (void *) dev)) {
4246         netdev_err(cp->dev, "failed to request irq !\n");
4247         err = -EAGAIN;
4248         goto err_spare;
4249     }
4250 
4251 #ifdef USE_NAPI
4252     napi_enable(&cp->napi);
4253 #endif
4254     /* init hw */
4255     cas_lock_all_save(cp, flags);
4256     cas_clean_rings(cp);
4257     cas_init_hw(cp, !hw_was_up);
4258     cp->opened = 1;
4259     cas_unlock_all_restore(cp, flags);
4260 
4261     netif_start_queue(dev);
4262     mutex_unlock(&cp->pm_mutex);
4263     return 0;
4264 
4265 err_spare:
4266     cas_spare_free(cp);
4267     cas_free_rxds(cp);
4268 err_tx_tiny:
4269     cas_tx_tiny_free(cp);
4270 err_unlock:
4271     mutex_unlock(&cp->pm_mutex);
4272     return err;
4273 }
4274 
4275 static int cas_close(struct net_device *dev)
4276 {
4277     unsigned long flags;
4278     struct cas *cp = netdev_priv(dev);
4279 
4280 #ifdef USE_NAPI
4281     napi_disable(&cp->napi);
4282 #endif
4283     /* Make sure we don't get distracted by suspend/resume */
4284     mutex_lock(&cp->pm_mutex);
4285 
4286     netif_stop_queue(dev);
4287 
4288     /* Stop traffic, mark us closed */
4289     cas_lock_all_save(cp, flags);
4290     cp->opened = 0;
4291     cas_reset(cp, 0);
4292     cas_phy_init(cp);
4293     cas_begin_auto_negotiation(cp, NULL);
4294     cas_clean_rings(cp);
4295     cas_unlock_all_restore(cp, flags);
4296 
4297     free_irq(cp->pdev->irq, (void *) dev);
4298     cas_spare_free(cp);
4299     cas_free_rxds(cp);
4300     cas_tx_tiny_free(cp);
4301     mutex_unlock(&cp->pm_mutex);
4302     return 0;
4303 }
4304 
4305 static struct {
4306     const char name[ETH_GSTRING_LEN];
4307 } ethtool_cassini_statnames[] = {
4308     {"collisions"},
4309     {"rx_bytes"},
4310     {"rx_crc_errors"},
4311     {"rx_dropped"},
4312     {"rx_errors"},
4313     {"rx_fifo_errors"},
4314     {"rx_frame_errors"},
4315     {"rx_length_errors"},
4316     {"rx_over_errors"},
4317     {"rx_packets"},
4318     {"tx_aborted_errors"},
4319     {"tx_bytes"},
4320     {"tx_dropped"},
4321     {"tx_errors"},
4322     {"tx_fifo_errors"},
4323     {"tx_packets"}
4324 };
4325 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4326 
4327 static struct {
4328     const int offsets;  /* neg. values for 2nd arg to cas_read_phy */
4329 } ethtool_register_table[] = {
4330     {-MII_BMSR},
4331     {-MII_BMCR},
4332     {REG_CAWR},
4333     {REG_INF_BURST},
4334     {REG_BIM_CFG},
4335     {REG_RX_CFG},
4336     {REG_HP_CFG},
4337     {REG_MAC_TX_CFG},
4338     {REG_MAC_RX_CFG},
4339     {REG_MAC_CTRL_CFG},
4340     {REG_MAC_XIF_CFG},
4341     {REG_MIF_CFG},
4342     {REG_PCS_CFG},
4343     {REG_SATURN_PCFG},
4344     {REG_PCS_MII_STATUS},
4345     {REG_PCS_STATE_MACHINE},
4346     {REG_MAC_COLL_EXCESS},
4347     {REG_MAC_COLL_LATE}
4348 };
4349 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4350 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4351 
4352 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4353 {
4354     u8 *p;
4355     int i;
4356     unsigned long flags;
4357 
4358     spin_lock_irqsave(&cp->lock, flags);
4359     for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4360         u16 hval;
4361         u32 val;
4362         if (ethtool_register_table[i].offsets < 0) {
4363             hval = cas_phy_read(cp,
4364                     -ethtool_register_table[i].offsets);
4365             val = hval;
4366         } else {
4367             val= readl(cp->regs+ethtool_register_table[i].offsets);
4368         }
4369         memcpy(p, (u8 *)&val, sizeof(u32));
4370     }
4371     spin_unlock_irqrestore(&cp->lock, flags);
4372 }
4373 
4374 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4375 {
4376     struct cas *cp = netdev_priv(dev);
4377     struct net_device_stats *stats = cp->net_stats;
4378     unsigned long flags;
4379     int i;
4380     unsigned long tmp;
4381 
4382     /* we collate all of the stats into net_stats[N_TX_RING] */
4383     if (!cp->hw_running)
4384         return stats + N_TX_RINGS;
4385 
4386     /* collect outstanding stats */
4387     /* WTZ: the Cassini spec gives these as 16 bit counters but
4388      * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4389      * in case the chip somehow puts any garbage in the other bits.
4390      * Also, counter usage didn't seem to mach what Adrian did
4391      * in the parts of the code that set these quantities. Made
4392      * that consistent.
4393      */
4394     spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4395     stats[N_TX_RINGS].rx_crc_errors +=
4396       readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4397     stats[N_TX_RINGS].rx_frame_errors +=
4398         readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4399     stats[N_TX_RINGS].rx_length_errors +=
4400         readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4401 #if 1
4402     tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4403         (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4404     stats[N_TX_RINGS].tx_aborted_errors += tmp;
4405     stats[N_TX_RINGS].collisions +=
4406       tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4407 #else
4408     stats[N_TX_RINGS].tx_aborted_errors +=
4409         readl(cp->regs + REG_MAC_COLL_EXCESS);
4410     stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4411         readl(cp->regs + REG_MAC_COLL_LATE);
4412 #endif
4413     cas_clear_mac_err(cp);
4414 
4415     /* saved bits that are unique to ring 0 */
4416     spin_lock(&cp->stat_lock[0]);
4417     stats[N_TX_RINGS].collisions        += stats[0].collisions;
4418     stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4419     stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4420     stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4421     stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4422     stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4423     spin_unlock(&cp->stat_lock[0]);
4424 
4425     for (i = 0; i < N_TX_RINGS; i++) {
4426         spin_lock(&cp->stat_lock[i]);
4427         stats[N_TX_RINGS].rx_length_errors +=
4428             stats[i].rx_length_errors;
4429         stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4430         stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4431         stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4432         stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4433         stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4434         stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4435         stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4436         stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4437         stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4438         memset(stats + i, 0, sizeof(struct net_device_stats));
4439         spin_unlock(&cp->stat_lock[i]);
4440     }
4441     spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4442     return stats + N_TX_RINGS;
4443 }
4444 
4445 
4446 static void cas_set_multicast(struct net_device *dev)
4447 {
4448     struct cas *cp = netdev_priv(dev);
4449     u32 rxcfg, rxcfg_new;
4450     unsigned long flags;
4451     int limit = STOP_TRIES;
4452 
4453     if (!cp->hw_running)
4454         return;
4455 
4456     spin_lock_irqsave(&cp->lock, flags);
4457     rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4458 
4459     /* disable RX MAC and wait for completion */
4460     writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4461     while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4462         if (!limit--)
4463             break;
4464         udelay(10);
4465     }
4466 
4467     /* disable hash filter and wait for completion */
4468     limit = STOP_TRIES;
4469     rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4470     writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4471     while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4472         if (!limit--)
4473             break;
4474         udelay(10);
4475     }
4476 
4477     /* program hash filters */
4478     cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4479     rxcfg |= rxcfg_new;
4480     writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4481     spin_unlock_irqrestore(&cp->lock, flags);
4482 }
4483 
4484 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4485 {
4486     struct cas *cp = netdev_priv(dev);
4487     strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4488     strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4489     strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4490 }
4491 
4492 static int cas_get_link_ksettings(struct net_device *dev,
4493                   struct ethtool_link_ksettings *cmd)
4494 {
4495     struct cas *cp = netdev_priv(dev);
4496     u16 bmcr;
4497     int full_duplex, speed, pause;
4498     unsigned long flags;
4499     enum link_state linkstate = link_up;
4500     u32 supported, advertising;
4501 
4502     advertising = 0;
4503     supported = SUPPORTED_Autoneg;
4504     if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4505         supported |= SUPPORTED_1000baseT_Full;
4506         advertising |= ADVERTISED_1000baseT_Full;
4507     }
4508 
4509     /* Record PHY settings if HW is on. */
4510     spin_lock_irqsave(&cp->lock, flags);
4511     bmcr = 0;
4512     linkstate = cp->lstate;
4513     if (CAS_PHY_MII(cp->phy_type)) {
4514         cmd->base.port = PORT_MII;
4515         cmd->base.phy_address = cp->phy_addr;
4516         advertising |= ADVERTISED_TP | ADVERTISED_MII |
4517             ADVERTISED_10baseT_Half |
4518             ADVERTISED_10baseT_Full |
4519             ADVERTISED_100baseT_Half |
4520             ADVERTISED_100baseT_Full;
4521 
4522         supported |=
4523             (SUPPORTED_10baseT_Half |
4524              SUPPORTED_10baseT_Full |
4525              SUPPORTED_100baseT_Half |
4526              SUPPORTED_100baseT_Full |
4527              SUPPORTED_TP | SUPPORTED_MII);
4528 
4529         if (cp->hw_running) {
4530             cas_mif_poll(cp, 0);
4531             bmcr = cas_phy_read(cp, MII_BMCR);
4532             cas_read_mii_link_mode(cp, &full_duplex,
4533                            &speed, &pause);
4534             cas_mif_poll(cp, 1);
4535         }
4536 
4537     } else {
4538         cmd->base.port = PORT_FIBRE;
4539         cmd->base.phy_address = 0;
4540         supported   |= SUPPORTED_FIBRE;
4541         advertising |= ADVERTISED_FIBRE;
4542 
4543         if (cp->hw_running) {
4544             /* pcs uses the same bits as mii */
4545             bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4546             cas_read_pcs_link_mode(cp, &full_duplex,
4547                            &speed, &pause);
4548         }
4549     }
4550     spin_unlock_irqrestore(&cp->lock, flags);
4551 
4552     if (bmcr & BMCR_ANENABLE) {
4553         advertising |= ADVERTISED_Autoneg;
4554         cmd->base.autoneg = AUTONEG_ENABLE;
4555         cmd->base.speed =  ((speed == 10) ?
4556                         SPEED_10 :
4557                         ((speed == 1000) ?
4558                          SPEED_1000 : SPEED_100));
4559         cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4560     } else {
4561         cmd->base.autoneg = AUTONEG_DISABLE;
4562         cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4563                         SPEED_1000 :
4564                         ((bmcr & BMCR_SPEED100) ?
4565                          SPEED_100 : SPEED_10));
4566         cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4567             DUPLEX_FULL : DUPLEX_HALF;
4568     }
4569     if (linkstate != link_up) {
4570         /* Force these to "unknown" if the link is not up and
4571          * autonogotiation in enabled. We can set the link
4572          * speed to 0, but not cmd->duplex,
4573          * because its legal values are 0 and 1.  Ethtool will
4574          * print the value reported in parentheses after the
4575          * word "Unknown" for unrecognized values.
4576          *
4577          * If in forced mode, we report the speed and duplex
4578          * settings that we configured.
4579          */
4580         if (cp->link_cntl & BMCR_ANENABLE) {
4581             cmd->base.speed = 0;
4582             cmd->base.duplex = 0xff;
4583         } else {
4584             cmd->base.speed = SPEED_10;
4585             if (cp->link_cntl & BMCR_SPEED100) {
4586                 cmd->base.speed = SPEED_100;
4587             } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4588                 cmd->base.speed = SPEED_1000;
4589             }
4590             cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4591                 DUPLEX_FULL : DUPLEX_HALF;
4592         }
4593     }
4594 
4595     ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4596                         supported);
4597     ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4598                         advertising);
4599 
4600     return 0;
4601 }
4602 
4603 static int cas_set_link_ksettings(struct net_device *dev,
4604                   const struct ethtool_link_ksettings *cmd)
4605 {
4606     struct cas *cp = netdev_priv(dev);
4607     unsigned long flags;
4608     u32 speed = cmd->base.speed;
4609 
4610     /* Verify the settings we care about. */
4611     if (cmd->base.autoneg != AUTONEG_ENABLE &&
4612         cmd->base.autoneg != AUTONEG_DISABLE)
4613         return -EINVAL;
4614 
4615     if (cmd->base.autoneg == AUTONEG_DISABLE &&
4616         ((speed != SPEED_1000 &&
4617           speed != SPEED_100 &&
4618           speed != SPEED_10) ||
4619          (cmd->base.duplex != DUPLEX_HALF &&
4620           cmd->base.duplex != DUPLEX_FULL)))
4621         return -EINVAL;
4622 
4623     /* Apply settings and restart link process. */
4624     spin_lock_irqsave(&cp->lock, flags);
4625     cas_begin_auto_negotiation(cp, cmd);
4626     spin_unlock_irqrestore(&cp->lock, flags);
4627     return 0;
4628 }
4629 
4630 static int cas_nway_reset(struct net_device *dev)
4631 {
4632     struct cas *cp = netdev_priv(dev);
4633     unsigned long flags;
4634 
4635     if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4636         return -EINVAL;
4637 
4638     /* Restart link process. */
4639     spin_lock_irqsave(&cp->lock, flags);
4640     cas_begin_auto_negotiation(cp, NULL);
4641     spin_unlock_irqrestore(&cp->lock, flags);
4642 
4643     return 0;
4644 }
4645 
4646 static u32 cas_get_link(struct net_device *dev)
4647 {
4648     struct cas *cp = netdev_priv(dev);
4649     return cp->lstate == link_up;
4650 }
4651 
4652 static u32 cas_get_msglevel(struct net_device *dev)
4653 {
4654     struct cas *cp = netdev_priv(dev);
4655     return cp->msg_enable;
4656 }
4657 
4658 static void cas_set_msglevel(struct net_device *dev, u32 value)
4659 {
4660     struct cas *cp = netdev_priv(dev);
4661     cp->msg_enable = value;
4662 }
4663 
4664 static int cas_get_regs_len(struct net_device *dev)
4665 {
4666     struct cas *cp = netdev_priv(dev);
4667     return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4668 }
4669 
4670 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4671                  void *p)
4672 {
4673     struct cas *cp = netdev_priv(dev);
4674     regs->version = 0;
4675     /* cas_read_regs handles locks (cp->lock).  */
4676     cas_read_regs(cp, p, regs->len / sizeof(u32));
4677 }
4678 
4679 static int cas_get_sset_count(struct net_device *dev, int sset)
4680 {
4681     switch (sset) {
4682     case ETH_SS_STATS:
4683         return CAS_NUM_STAT_KEYS;
4684     default:
4685         return -EOPNOTSUPP;
4686     }
4687 }
4688 
4689 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4690 {
4691      memcpy(data, &ethtool_cassini_statnames,
4692                      CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4693 }
4694 
4695 static void cas_get_ethtool_stats(struct net_device *dev,
4696                       struct ethtool_stats *estats, u64 *data)
4697 {
4698     struct cas *cp = netdev_priv(dev);
4699     struct net_device_stats *stats = cas_get_stats(cp->dev);
4700     int i = 0;
4701     data[i++] = stats->collisions;
4702     data[i++] = stats->rx_bytes;
4703     data[i++] = stats->rx_crc_errors;
4704     data[i++] = stats->rx_dropped;
4705     data[i++] = stats->rx_errors;
4706     data[i++] = stats->rx_fifo_errors;
4707     data[i++] = stats->rx_frame_errors;
4708     data[i++] = stats->rx_length_errors;
4709     data[i++] = stats->rx_over_errors;
4710     data[i++] = stats->rx_packets;
4711     data[i++] = stats->tx_aborted_errors;
4712     data[i++] = stats->tx_bytes;
4713     data[i++] = stats->tx_dropped;
4714     data[i++] = stats->tx_errors;
4715     data[i++] = stats->tx_fifo_errors;
4716     data[i++] = stats->tx_packets;
4717     BUG_ON(i != CAS_NUM_STAT_KEYS);
4718 }
4719 
4720 static const struct ethtool_ops cas_ethtool_ops = {
4721     .get_drvinfo        = cas_get_drvinfo,
4722     .nway_reset     = cas_nway_reset,
4723     .get_link       = cas_get_link,
4724     .get_msglevel       = cas_get_msglevel,
4725     .set_msglevel       = cas_set_msglevel,
4726     .get_regs_len       = cas_get_regs_len,
4727     .get_regs       = cas_get_regs,
4728     .get_sset_count     = cas_get_sset_count,
4729     .get_strings        = cas_get_strings,
4730     .get_ethtool_stats  = cas_get_ethtool_stats,
4731     .get_link_ksettings = cas_get_link_ksettings,
4732     .set_link_ksettings = cas_set_link_ksettings,
4733 };
4734 
4735 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4736 {
4737     struct cas *cp = netdev_priv(dev);
4738     struct mii_ioctl_data *data = if_mii(ifr);
4739     unsigned long flags;
4740     int rc = -EOPNOTSUPP;
4741 
4742     /* Hold the PM mutex while doing ioctl's or we may collide
4743      * with open/close and power management and oops.
4744      */
4745     mutex_lock(&cp->pm_mutex);
4746     switch (cmd) {
4747     case SIOCGMIIPHY:       /* Get address of MII PHY in use. */
4748         data->phy_id = cp->phy_addr;
4749         fallthrough;
4750 
4751     case SIOCGMIIREG:       /* Read MII PHY register. */
4752         spin_lock_irqsave(&cp->lock, flags);
4753         cas_mif_poll(cp, 0);
4754         data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4755         cas_mif_poll(cp, 1);
4756         spin_unlock_irqrestore(&cp->lock, flags);
4757         rc = 0;
4758         break;
4759 
4760     case SIOCSMIIREG:       /* Write MII PHY register. */
4761         spin_lock_irqsave(&cp->lock, flags);
4762         cas_mif_poll(cp, 0);
4763         rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4764         cas_mif_poll(cp, 1);
4765         spin_unlock_irqrestore(&cp->lock, flags);
4766         break;
4767     default:
4768         break;
4769     }
4770 
4771     mutex_unlock(&cp->pm_mutex);
4772     return rc;
4773 }
4774 
4775 /* When this chip sits underneath an Intel 31154 bridge, it is the
4776  * only subordinate device and we can tweak the bridge settings to
4777  * reflect that fact.
4778  */
4779 static void cas_program_bridge(struct pci_dev *cas_pdev)
4780 {
4781     struct pci_dev *pdev = cas_pdev->bus->self;
4782     u32 val;
4783 
4784     if (!pdev)
4785         return;
4786 
4787     if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4788         return;
4789 
4790     /* Clear bit 10 (Bus Parking Control) in the Secondary
4791      * Arbiter Control/Status Register which lives at offset
4792      * 0x41.  Using a 32-bit word read/modify/write at 0x40
4793      * is much simpler so that's how we do this.
4794      */
4795     pci_read_config_dword(pdev, 0x40, &val);
4796     val &= ~0x00040000;
4797     pci_write_config_dword(pdev, 0x40, val);
4798 
4799     /* Max out the Multi-Transaction Timer settings since
4800      * Cassini is the only device present.
4801      *
4802      * The register is 16-bit and lives at 0x50.  When the
4803      * settings are enabled, it extends the GRANT# signal
4804      * for a requestor after a transaction is complete.  This
4805      * allows the next request to run without first needing
4806      * to negotiate the GRANT# signal back.
4807      *
4808      * Bits 12:10 define the grant duration:
4809      *
4810      *  1   --  16 clocks
4811      *  2   --  32 clocks
4812      *  3   --  64 clocks
4813      *  4   --  128 clocks
4814      *  5   --  256 clocks
4815      *
4816      * All other values are illegal.
4817      *
4818      * Bits 09:00 define which REQ/GNT signal pairs get the
4819      * GRANT# signal treatment.  We set them all.
4820      */
4821     pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4822 
4823     /* The Read Prefecth Policy register is 16-bit and sits at
4824      * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4825      * enable it and max out all of the settings since only one
4826      * device is sitting underneath and thus bandwidth sharing is
4827      * not an issue.
4828      *
4829      * The register has several 3 bit fields, which indicates a
4830      * multiplier applied to the base amount of prefetching the
4831      * chip would do.  These fields are at:
4832      *
4833      *  15:13   --- ReRead Primary Bus
4834      *  12:10   --- FirstRead Primary Bus
4835      *  09:07   --- ReRead Secondary Bus
4836      *  06:04   --- FirstRead Secondary Bus
4837      *
4838      * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4839      * get enabled on.  Bit 3 is a grouped enabler which controls
4840      * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4841      * the individual REQ/GNT pairs [2:0].
4842      */
4843     pci_write_config_word(pdev, 0x52,
4844                   (0x7 << 13) |
4845                   (0x7 << 10) |
4846                   (0x7 <<  7) |
4847                   (0x7 <<  4) |
4848                   (0xf <<  0));
4849 
4850     /* Force cacheline size to 0x8 */
4851     pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4852 
4853     /* Force latency timer to maximum setting so Cassini can
4854      * sit on the bus as long as it likes.
4855      */
4856     pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4857 }
4858 
4859 static const struct net_device_ops cas_netdev_ops = {
4860     .ndo_open       = cas_open,
4861     .ndo_stop       = cas_close,
4862     .ndo_start_xmit     = cas_start_xmit,
4863     .ndo_get_stats      = cas_get_stats,
4864     .ndo_set_rx_mode    = cas_set_multicast,
4865     .ndo_eth_ioctl      = cas_ioctl,
4866     .ndo_tx_timeout     = cas_tx_timeout,
4867     .ndo_change_mtu     = cas_change_mtu,
4868     .ndo_set_mac_address    = eth_mac_addr,
4869     .ndo_validate_addr  = eth_validate_addr,
4870 #ifdef CONFIG_NET_POLL_CONTROLLER
4871     .ndo_poll_controller    = cas_netpoll,
4872 #endif
4873 };
4874 
4875 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4876 {
4877     static int cas_version_printed = 0;
4878     unsigned long casreg_len;
4879     struct net_device *dev;
4880     struct cas *cp;
4881     u16 pci_cmd;
4882     int i, err;
4883     u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4884 
4885     if (cas_version_printed++ == 0)
4886         pr_info("%s", version);
4887 
4888     err = pci_enable_device(pdev);
4889     if (err) {
4890         dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4891         return err;
4892     }
4893 
4894     if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4895         dev_err(&pdev->dev, "Cannot find proper PCI device "
4896                "base address, aborting\n");
4897         err = -ENODEV;
4898         goto err_out_disable_pdev;
4899     }
4900 
4901     dev = alloc_etherdev(sizeof(*cp));
4902     if (!dev) {
4903         err = -ENOMEM;
4904         goto err_out_disable_pdev;
4905     }
4906     SET_NETDEV_DEV(dev, &pdev->dev);
4907 
4908     err = pci_request_regions(pdev, dev->name);
4909     if (err) {
4910         dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4911         goto err_out_free_netdev;
4912     }
4913     pci_set_master(pdev);
4914 
4915     /* we must always turn on parity response or else parity
4916      * doesn't get generated properly. disable SERR/PERR as well.
4917      * in addition, we want to turn MWI on.
4918      */
4919     pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4920     pci_cmd &= ~PCI_COMMAND_SERR;
4921     pci_cmd |= PCI_COMMAND_PARITY;
4922     pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4923     if (pci_try_set_mwi(pdev))
4924         pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4925 
4926     cas_program_bridge(pdev);
4927 
4928     /*
4929      * On some architectures, the default cache line size set
4930      * by pci_try_set_mwi reduces perforamnce.  We have to increase
4931      * it for this case.  To start, we'll print some configuration
4932      * data.
4933      */
4934 #if 1
4935     pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4936                  &orig_cacheline_size);
4937     if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4938         cas_cacheline_size =
4939             (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4940             CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4941         if (pci_write_config_byte(pdev,
4942                       PCI_CACHE_LINE_SIZE,
4943                       cas_cacheline_size)) {
4944             dev_err(&pdev->dev, "Could not set PCI cache "
4945                    "line size\n");
4946             goto err_out_free_res;
4947         }
4948     }
4949 #endif
4950 
4951 
4952     /* Configure DMA attributes. */
4953     err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4954     if (err) {
4955         dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4956         goto err_out_free_res;
4957     }
4958 
4959     casreg_len = pci_resource_len(pdev, 0);
4960 
4961     cp = netdev_priv(dev);
4962     cp->pdev = pdev;
4963 #if 1
4964     /* A value of 0 indicates we never explicitly set it */
4965     cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4966 #endif
4967     cp->dev = dev;
4968     cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4969       cassini_debug;
4970 
4971 #if defined(CONFIG_SPARC)
4972     cp->of_node = pci_device_to_OF_node(pdev);
4973 #endif
4974 
4975     cp->link_transition = LINK_TRANSITION_UNKNOWN;
4976     cp->link_transition_jiffies_valid = 0;
4977 
4978     spin_lock_init(&cp->lock);
4979     spin_lock_init(&cp->rx_inuse_lock);
4980     spin_lock_init(&cp->rx_spare_lock);
4981     for (i = 0; i < N_TX_RINGS; i++) {
4982         spin_lock_init(&cp->stat_lock[i]);
4983         spin_lock_init(&cp->tx_lock[i]);
4984     }
4985     spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4986     mutex_init(&cp->pm_mutex);
4987 
4988     timer_setup(&cp->link_timer, cas_link_timer, 0);
4989 
4990 #if 1
4991     /* Just in case the implementation of atomic operations
4992      * change so that an explicit initialization is necessary.
4993      */
4994     atomic_set(&cp->reset_task_pending, 0);
4995     atomic_set(&cp->reset_task_pending_all, 0);
4996     atomic_set(&cp->reset_task_pending_spare, 0);
4997     atomic_set(&cp->reset_task_pending_mtu, 0);
4998 #endif
4999     INIT_WORK(&cp->reset_task, cas_reset_task);
5000 
5001     /* Default link parameters */
5002     if (link_mode >= 0 && link_mode < 6)
5003         cp->link_cntl = link_modes[link_mode];
5004     else
5005         cp->link_cntl = BMCR_ANENABLE;
5006     cp->lstate = link_down;
5007     cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5008     netif_carrier_off(cp->dev);
5009     cp->timer_ticks = 0;
5010 
5011     /* give us access to cassini registers */
5012     cp->regs = pci_iomap(pdev, 0, casreg_len);
5013     if (!cp->regs) {
5014         dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5015         goto err_out_free_res;
5016     }
5017     cp->casreg_len = casreg_len;
5018 
5019     pci_save_state(pdev);
5020     cas_check_pci_invariants(cp);
5021     cas_hard_reset(cp);
5022     cas_reset(cp, 0);
5023     if (cas_check_invariants(cp))
5024         goto err_out_iounmap;
5025     if (cp->cas_flags & CAS_FLAG_SATURN)
5026         cas_saturn_firmware_init(cp);
5027 
5028     cp->init_block =
5029         dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5030                    &cp->block_dvma, GFP_KERNEL);
5031     if (!cp->init_block) {
5032         dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5033         goto err_out_iounmap;
5034     }
5035 
5036     for (i = 0; i < N_TX_RINGS; i++)
5037         cp->init_txds[i] = cp->init_block->txds[i];
5038 
5039     for (i = 0; i < N_RX_DESC_RINGS; i++)
5040         cp->init_rxds[i] = cp->init_block->rxds[i];
5041 
5042     for (i = 0; i < N_RX_COMP_RINGS; i++)
5043         cp->init_rxcs[i] = cp->init_block->rxcs[i];
5044 
5045     for (i = 0; i < N_RX_FLOWS; i++)
5046         skb_queue_head_init(&cp->rx_flows[i]);
5047 
5048     dev->netdev_ops = &cas_netdev_ops;
5049     dev->ethtool_ops = &cas_ethtool_ops;
5050     dev->watchdog_timeo = CAS_TX_TIMEOUT;
5051 
5052 #ifdef USE_NAPI
5053     netif_napi_add(dev, &cp->napi, cas_poll, 64);
5054 #endif
5055     dev->irq = pdev->irq;
5056     dev->dma = 0;
5057 
5058     /* Cassini features. */
5059     if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5060         dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5061 
5062     dev->features |= NETIF_F_HIGHDMA;
5063 
5064     /* MTU range: 60 - varies or 9000 */
5065     dev->min_mtu = CAS_MIN_MTU;
5066     dev->max_mtu = CAS_MAX_MTU;
5067 
5068     if (register_netdev(dev)) {
5069         dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5070         goto err_out_free_consistent;
5071     }
5072 
5073     i = readl(cp->regs + REG_BIM_CFG);
5074     netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5075             (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5076             (i & BIM_CFG_32BIT) ? "32" : "64",
5077             (i & BIM_CFG_66MHZ) ? "66" : "33",
5078             (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5079             dev->dev_addr);
5080 
5081     pci_set_drvdata(pdev, dev);
5082     cp->hw_running = 1;
5083     cas_entropy_reset(cp);
5084     cas_phy_init(cp);
5085     cas_begin_auto_negotiation(cp, NULL);
5086     return 0;
5087 
5088 err_out_free_consistent:
5089     dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5090               cp->init_block, cp->block_dvma);
5091 
5092 err_out_iounmap:
5093     mutex_lock(&cp->pm_mutex);
5094     if (cp->hw_running)
5095         cas_shutdown(cp);
5096     mutex_unlock(&cp->pm_mutex);
5097 
5098     pci_iounmap(pdev, cp->regs);
5099 
5100 
5101 err_out_free_res:
5102     pci_release_regions(pdev);
5103 
5104     /* Try to restore it in case the error occurred after we
5105      * set it.
5106      */
5107     pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5108 
5109 err_out_free_netdev:
5110     free_netdev(dev);
5111 
5112 err_out_disable_pdev:
5113     pci_disable_device(pdev);
5114     return -ENODEV;
5115 }
5116 
5117 static void cas_remove_one(struct pci_dev *pdev)
5118 {
5119     struct net_device *dev = pci_get_drvdata(pdev);
5120     struct cas *cp;
5121     if (!dev)
5122         return;
5123 
5124     cp = netdev_priv(dev);
5125     unregister_netdev(dev);
5126 
5127     vfree(cp->fw_data);
5128 
5129     mutex_lock(&cp->pm_mutex);
5130     cancel_work_sync(&cp->reset_task);
5131     if (cp->hw_running)
5132         cas_shutdown(cp);
5133     mutex_unlock(&cp->pm_mutex);
5134 
5135 #if 1
5136     if (cp->orig_cacheline_size) {
5137         /* Restore the cache line size if we had modified
5138          * it.
5139          */
5140         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5141                       cp->orig_cacheline_size);
5142     }
5143 #endif
5144     dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5145               cp->init_block, cp->block_dvma);
5146     pci_iounmap(pdev, cp->regs);
5147     free_netdev(dev);
5148     pci_release_regions(pdev);
5149     pci_disable_device(pdev);
5150 }
5151 
5152 static int __maybe_unused cas_suspend(struct device *dev_d)
5153 {
5154     struct net_device *dev = dev_get_drvdata(dev_d);
5155     struct cas *cp = netdev_priv(dev);
5156     unsigned long flags;
5157 
5158     mutex_lock(&cp->pm_mutex);
5159 
5160     /* If the driver is opened, we stop the DMA */
5161     if (cp->opened) {
5162         netif_device_detach(dev);
5163 
5164         cas_lock_all_save(cp, flags);
5165 
5166         /* We can set the second arg of cas_reset to 0
5167          * because on resume, we'll call cas_init_hw with
5168          * its second arg set so that autonegotiation is
5169          * restarted.
5170          */
5171         cas_reset(cp, 0);
5172         cas_clean_rings(cp);
5173         cas_unlock_all_restore(cp, flags);
5174     }
5175 
5176     if (cp->hw_running)
5177         cas_shutdown(cp);
5178     mutex_unlock(&cp->pm_mutex);
5179 
5180     return 0;
5181 }
5182 
5183 static int __maybe_unused cas_resume(struct device *dev_d)
5184 {
5185     struct net_device *dev = dev_get_drvdata(dev_d);
5186     struct cas *cp = netdev_priv(dev);
5187 
5188     netdev_info(dev, "resuming\n");
5189 
5190     mutex_lock(&cp->pm_mutex);
5191     cas_hard_reset(cp);
5192     if (cp->opened) {
5193         unsigned long flags;
5194         cas_lock_all_save(cp, flags);
5195         cas_reset(cp, 0);
5196         cp->hw_running = 1;
5197         cas_clean_rings(cp);
5198         cas_init_hw(cp, 1);
5199         cas_unlock_all_restore(cp, flags);
5200 
5201         netif_device_attach(dev);
5202     }
5203     mutex_unlock(&cp->pm_mutex);
5204     return 0;
5205 }
5206 
5207 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5208 
5209 static struct pci_driver cas_driver = {
5210     .name       = DRV_MODULE_NAME,
5211     .id_table   = cas_pci_tbl,
5212     .probe      = cas_init_one,
5213     .remove     = cas_remove_one,
5214     .driver.pm  = &cas_pm_ops,
5215 };
5216 
5217 static int __init cas_init(void)
5218 {
5219     if (linkdown_timeout > 0)
5220         link_transition_timeout = linkdown_timeout * HZ;
5221     else
5222         link_transition_timeout = 0;
5223 
5224     return pci_register_driver(&cas_driver);
5225 }
5226 
5227 static void __exit cas_cleanup(void)
5228 {
5229     pci_unregister_driver(&cas_driver);
5230 }
5231 
5232 module_init(cas_init);
5233 module_exit(cas_cleanup);