Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*******************************************************************************
0003   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
0004   ST Ethernet IPs are built around a Synopsys IP Core.
0005 
0006     Copyright(C) 2007-2011 STMicroelectronics Ltd
0007 
0008 
0009   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
0010 
0011   Documentation available at:
0012     http://www.stlinux.com
0013   Support available at:
0014     https://bugzilla.stlinux.com/
0015 *******************************************************************************/
0016 
0017 #include <linux/clk.h>
0018 #include <linux/kernel.h>
0019 #include <linux/interrupt.h>
0020 #include <linux/ip.h>
0021 #include <linux/tcp.h>
0022 #include <linux/skbuff.h>
0023 #include <linux/ethtool.h>
0024 #include <linux/if_ether.h>
0025 #include <linux/crc32.h>
0026 #include <linux/mii.h>
0027 #include <linux/if.h>
0028 #include <linux/if_vlan.h>
0029 #include <linux/dma-mapping.h>
0030 #include <linux/slab.h>
0031 #include <linux/pm_runtime.h>
0032 #include <linux/prefetch.h>
0033 #include <linux/pinctrl/consumer.h>
0034 #ifdef CONFIG_DEBUG_FS
0035 #include <linux/debugfs.h>
0036 #include <linux/seq_file.h>
0037 #endif /* CONFIG_DEBUG_FS */
0038 #include <linux/net_tstamp.h>
0039 #include <linux/phylink.h>
0040 #include <linux/udp.h>
0041 #include <linux/bpf_trace.h>
0042 #include <net/pkt_cls.h>
0043 #include <net/xdp_sock_drv.h>
0044 #include "stmmac_ptp.h"
0045 #include "stmmac.h"
0046 #include "stmmac_xdp.h"
0047 #include <linux/reset.h>
0048 #include <linux/of_mdio.h>
0049 #include "dwmac1000.h"
0050 #include "dwxgmac2.h"
0051 #include "hwif.h"
0052 
0053 /* As long as the interface is active, we keep the timestamping counter enabled
0054  * with fine resolution and binary rollover. This avoid non-monotonic behavior
0055  * (clock jumps) when changing timestamping settings at runtime.
0056  */
0057 #define STMMAC_HWTS_ACTIVE  (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
0058                  PTP_TCR_TSCTRLSSR)
0059 
0060 #define STMMAC_ALIGN(x)     ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
0061 #define TSO_MAX_BUFF_SIZE   (SZ_16K - 1)
0062 
0063 /* Module parameters */
0064 #define TX_TIMEO    5000
0065 static int watchdog = TX_TIMEO;
0066 module_param(watchdog, int, 0644);
0067 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
0068 
0069 static int debug = -1;
0070 module_param(debug, int, 0644);
0071 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
0072 
0073 static int phyaddr = -1;
0074 module_param(phyaddr, int, 0444);
0075 MODULE_PARM_DESC(phyaddr, "Physical device address");
0076 
0077 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4)
0078 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4)
0079 
0080 /* Limit to make sure XDP TX and slow path can coexist */
0081 #define STMMAC_XSK_TX_BUDGET_MAX    256
0082 #define STMMAC_TX_XSK_AVAIL     16
0083 #define STMMAC_RX_FILL_BATCH        16
0084 
0085 #define STMMAC_XDP_PASS     0
0086 #define STMMAC_XDP_CONSUMED BIT(0)
0087 #define STMMAC_XDP_TX       BIT(1)
0088 #define STMMAC_XDP_REDIRECT BIT(2)
0089 
0090 static int flow_ctrl = FLOW_AUTO;
0091 module_param(flow_ctrl, int, 0644);
0092 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
0093 
0094 static int pause = PAUSE_TIME;
0095 module_param(pause, int, 0644);
0096 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
0097 
0098 #define TC_DEFAULT 64
0099 static int tc = TC_DEFAULT;
0100 module_param(tc, int, 0644);
0101 MODULE_PARM_DESC(tc, "DMA threshold control value");
0102 
0103 #define DEFAULT_BUFSIZE 1536
0104 static int buf_sz = DEFAULT_BUFSIZE;
0105 module_param(buf_sz, int, 0644);
0106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
0107 
0108 #define STMMAC_RX_COPYBREAK 256
0109 
0110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
0111                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
0112                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
0113 
0114 #define STMMAC_DEFAULT_LPI_TIMER    1000
0115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
0116 module_param(eee_timer, int, 0644);
0117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
0118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
0119 
0120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
0121  * but allow user to force to use the chain instead of the ring
0122  */
0123 static unsigned int chain_mode;
0124 module_param(chain_mode, int, 0444);
0125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
0126 
0127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
0128 /* For MSI interrupts handling */
0129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
0130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
0131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
0132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
0133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
0134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
0135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
0136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
0137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
0138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
0139                       u32 rxmode, u32 chan);
0140 
0141 #ifdef CONFIG_DEBUG_FS
0142 static const struct net_device_ops stmmac_netdev_ops;
0143 static void stmmac_init_fs(struct net_device *dev);
0144 static void stmmac_exit_fs(struct net_device *dev);
0145 #endif
0146 
0147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
0148 
0149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
0150 {
0151     int ret = 0;
0152 
0153     if (enabled) {
0154         ret = clk_prepare_enable(priv->plat->stmmac_clk);
0155         if (ret)
0156             return ret;
0157         ret = clk_prepare_enable(priv->plat->pclk);
0158         if (ret) {
0159             clk_disable_unprepare(priv->plat->stmmac_clk);
0160             return ret;
0161         }
0162         if (priv->plat->clks_config) {
0163             ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
0164             if (ret) {
0165                 clk_disable_unprepare(priv->plat->stmmac_clk);
0166                 clk_disable_unprepare(priv->plat->pclk);
0167                 return ret;
0168             }
0169         }
0170     } else {
0171         clk_disable_unprepare(priv->plat->stmmac_clk);
0172         clk_disable_unprepare(priv->plat->pclk);
0173         if (priv->plat->clks_config)
0174             priv->plat->clks_config(priv->plat->bsp_priv, enabled);
0175     }
0176 
0177     return ret;
0178 }
0179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
0180 
0181 /**
0182  * stmmac_verify_args - verify the driver parameters.
0183  * Description: it checks the driver parameters and set a default in case of
0184  * errors.
0185  */
0186 static void stmmac_verify_args(void)
0187 {
0188     if (unlikely(watchdog < 0))
0189         watchdog = TX_TIMEO;
0190     if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
0191         buf_sz = DEFAULT_BUFSIZE;
0192     if (unlikely(flow_ctrl > 1))
0193         flow_ctrl = FLOW_AUTO;
0194     else if (likely(flow_ctrl < 0))
0195         flow_ctrl = FLOW_OFF;
0196     if (unlikely((pause < 0) || (pause > 0xffff)))
0197         pause = PAUSE_TIME;
0198     if (eee_timer < 0)
0199         eee_timer = STMMAC_DEFAULT_LPI_TIMER;
0200 }
0201 
0202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
0203 {
0204     u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
0205     u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
0206     u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
0207     u32 queue;
0208 
0209     for (queue = 0; queue < maxq; queue++) {
0210         struct stmmac_channel *ch = &priv->channel[queue];
0211 
0212         if (stmmac_xdp_is_enabled(priv) &&
0213             test_bit(queue, priv->af_xdp_zc_qps)) {
0214             napi_disable(&ch->rxtx_napi);
0215             continue;
0216         }
0217 
0218         if (queue < rx_queues_cnt)
0219             napi_disable(&ch->rx_napi);
0220         if (queue < tx_queues_cnt)
0221             napi_disable(&ch->tx_napi);
0222     }
0223 }
0224 
0225 /**
0226  * stmmac_disable_all_queues - Disable all queues
0227  * @priv: driver private structure
0228  */
0229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
0230 {
0231     u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
0232     struct stmmac_rx_queue *rx_q;
0233     u32 queue;
0234 
0235     /* synchronize_rcu() needed for pending XDP buffers to drain */
0236     for (queue = 0; queue < rx_queues_cnt; queue++) {
0237         rx_q = &priv->dma_conf.rx_queue[queue];
0238         if (rx_q->xsk_pool) {
0239             synchronize_rcu();
0240             break;
0241         }
0242     }
0243 
0244     __stmmac_disable_all_queues(priv);
0245 }
0246 
0247 /**
0248  * stmmac_enable_all_queues - Enable all queues
0249  * @priv: driver private structure
0250  */
0251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
0252 {
0253     u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
0254     u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
0255     u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
0256     u32 queue;
0257 
0258     for (queue = 0; queue < maxq; queue++) {
0259         struct stmmac_channel *ch = &priv->channel[queue];
0260 
0261         if (stmmac_xdp_is_enabled(priv) &&
0262             test_bit(queue, priv->af_xdp_zc_qps)) {
0263             napi_enable(&ch->rxtx_napi);
0264             continue;
0265         }
0266 
0267         if (queue < rx_queues_cnt)
0268             napi_enable(&ch->rx_napi);
0269         if (queue < tx_queues_cnt)
0270             napi_enable(&ch->tx_napi);
0271     }
0272 }
0273 
0274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
0275 {
0276     if (!test_bit(STMMAC_DOWN, &priv->state) &&
0277         !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
0278         queue_work(priv->wq, &priv->service_task);
0279 }
0280 
0281 static void stmmac_global_err(struct stmmac_priv *priv)
0282 {
0283     netif_carrier_off(priv->dev);
0284     set_bit(STMMAC_RESET_REQUESTED, &priv->state);
0285     stmmac_service_event_schedule(priv);
0286 }
0287 
0288 /**
0289  * stmmac_clk_csr_set - dynamically set the MDC clock
0290  * @priv: driver private structure
0291  * Description: this is to dynamically set the MDC clock according to the csr
0292  * clock input.
0293  * Note:
0294  *  If a specific clk_csr value is passed from the platform
0295  *  this means that the CSR Clock Range selection cannot be
0296  *  changed at run-time and it is fixed (as reported in the driver
0297  *  documentation). Viceversa the driver will try to set the MDC
0298  *  clock dynamically according to the actual clock input.
0299  */
0300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
0301 {
0302     u32 clk_rate;
0303 
0304     clk_rate = clk_get_rate(priv->plat->stmmac_clk);
0305 
0306     /* Platform provided default clk_csr would be assumed valid
0307      * for all other cases except for the below mentioned ones.
0308      * For values higher than the IEEE 802.3 specified frequency
0309      * we can not estimate the proper divider as it is not known
0310      * the frequency of clk_csr_i. So we do not change the default
0311      * divider.
0312      */
0313     if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
0314         if (clk_rate < CSR_F_35M)
0315             priv->clk_csr = STMMAC_CSR_20_35M;
0316         else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
0317             priv->clk_csr = STMMAC_CSR_35_60M;
0318         else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
0319             priv->clk_csr = STMMAC_CSR_60_100M;
0320         else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
0321             priv->clk_csr = STMMAC_CSR_100_150M;
0322         else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
0323             priv->clk_csr = STMMAC_CSR_150_250M;
0324         else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
0325             priv->clk_csr = STMMAC_CSR_250_300M;
0326     }
0327 
0328     if (priv->plat->has_sun8i) {
0329         if (clk_rate > 160000000)
0330             priv->clk_csr = 0x03;
0331         else if (clk_rate > 80000000)
0332             priv->clk_csr = 0x02;
0333         else if (clk_rate > 40000000)
0334             priv->clk_csr = 0x01;
0335         else
0336             priv->clk_csr = 0;
0337     }
0338 
0339     if (priv->plat->has_xgmac) {
0340         if (clk_rate > 400000000)
0341             priv->clk_csr = 0x5;
0342         else if (clk_rate > 350000000)
0343             priv->clk_csr = 0x4;
0344         else if (clk_rate > 300000000)
0345             priv->clk_csr = 0x3;
0346         else if (clk_rate > 250000000)
0347             priv->clk_csr = 0x2;
0348         else if (clk_rate > 150000000)
0349             priv->clk_csr = 0x1;
0350         else
0351             priv->clk_csr = 0x0;
0352     }
0353 }
0354 
0355 static void print_pkt(unsigned char *buf, int len)
0356 {
0357     pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
0358     print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
0359 }
0360 
0361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
0362 {
0363     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
0364     u32 avail;
0365 
0366     if (tx_q->dirty_tx > tx_q->cur_tx)
0367         avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
0368     else
0369         avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
0370 
0371     return avail;
0372 }
0373 
0374 /**
0375  * stmmac_rx_dirty - Get RX queue dirty
0376  * @priv: driver private structure
0377  * @queue: RX queue index
0378  */
0379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
0380 {
0381     struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
0382     u32 dirty;
0383 
0384     if (rx_q->dirty_rx <= rx_q->cur_rx)
0385         dirty = rx_q->cur_rx - rx_q->dirty_rx;
0386     else
0387         dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
0388 
0389     return dirty;
0390 }
0391 
0392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
0393 {
0394     int tx_lpi_timer;
0395 
0396     /* Clear/set the SW EEE timer flag based on LPI ET enablement */
0397     priv->eee_sw_timer_en = en ? 0 : 1;
0398     tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
0399     stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
0400 }
0401 
0402 /**
0403  * stmmac_enable_eee_mode - check and enter in LPI mode
0404  * @priv: driver private structure
0405  * Description: this function is to verify and enter in LPI mode in case of
0406  * EEE.
0407  */
0408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
0409 {
0410     u32 tx_cnt = priv->plat->tx_queues_to_use;
0411     u32 queue;
0412 
0413     /* check if all TX queues have the work finished */
0414     for (queue = 0; queue < tx_cnt; queue++) {
0415         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
0416 
0417         if (tx_q->dirty_tx != tx_q->cur_tx)
0418             return -EBUSY; /* still unfinished work */
0419     }
0420 
0421     /* Check and enter in LPI mode */
0422     if (!priv->tx_path_in_lpi_mode)
0423         stmmac_set_eee_mode(priv, priv->hw,
0424                 priv->plat->en_tx_lpi_clockgating);
0425     return 0;
0426 }
0427 
0428 /**
0429  * stmmac_disable_eee_mode - disable and exit from LPI mode
0430  * @priv: driver private structure
0431  * Description: this function is to exit and disable EEE in case of
0432  * LPI state is true. This is called by the xmit.
0433  */
0434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
0435 {
0436     if (!priv->eee_sw_timer_en) {
0437         stmmac_lpi_entry_timer_config(priv, 0);
0438         return;
0439     }
0440 
0441     stmmac_reset_eee_mode(priv, priv->hw);
0442     del_timer_sync(&priv->eee_ctrl_timer);
0443     priv->tx_path_in_lpi_mode = false;
0444 }
0445 
0446 /**
0447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
0448  * @t:  timer_list struct containing private info
0449  * Description:
0450  *  if there is no data transfer and if we are not in LPI state,
0451  *  then MAC Transmitter can be moved to LPI state.
0452  */
0453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
0454 {
0455     struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
0456 
0457     if (stmmac_enable_eee_mode(priv))
0458         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
0459 }
0460 
0461 /**
0462  * stmmac_eee_init - init EEE
0463  * @priv: driver private structure
0464  * Description:
0465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
0466  *  can also manage EEE, this function enable the LPI state and start related
0467  *  timer.
0468  */
0469 bool stmmac_eee_init(struct stmmac_priv *priv)
0470 {
0471     int eee_tw_timer = priv->eee_tw_timer;
0472 
0473     /* Using PCS we cannot dial with the phy registers at this stage
0474      * so we do not support extra feature like EEE.
0475      */
0476     if (priv->hw->pcs == STMMAC_PCS_TBI ||
0477         priv->hw->pcs == STMMAC_PCS_RTBI)
0478         return false;
0479 
0480     /* Check if MAC core supports the EEE feature. */
0481     if (!priv->dma_cap.eee)
0482         return false;
0483 
0484     mutex_lock(&priv->lock);
0485 
0486     /* Check if it needs to be deactivated */
0487     if (!priv->eee_active) {
0488         if (priv->eee_enabled) {
0489             netdev_dbg(priv->dev, "disable EEE\n");
0490             stmmac_lpi_entry_timer_config(priv, 0);
0491             del_timer_sync(&priv->eee_ctrl_timer);
0492             stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
0493             if (priv->hw->xpcs)
0494                 xpcs_config_eee(priv->hw->xpcs,
0495                         priv->plat->mult_fact_100ns,
0496                         false);
0497         }
0498         mutex_unlock(&priv->lock);
0499         return false;
0500     }
0501 
0502     if (priv->eee_active && !priv->eee_enabled) {
0503         timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
0504         stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
0505                      eee_tw_timer);
0506         if (priv->hw->xpcs)
0507             xpcs_config_eee(priv->hw->xpcs,
0508                     priv->plat->mult_fact_100ns,
0509                     true);
0510     }
0511 
0512     if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
0513         del_timer_sync(&priv->eee_ctrl_timer);
0514         priv->tx_path_in_lpi_mode = false;
0515         stmmac_lpi_entry_timer_config(priv, 1);
0516     } else {
0517         stmmac_lpi_entry_timer_config(priv, 0);
0518         mod_timer(&priv->eee_ctrl_timer,
0519               STMMAC_LPI_T(priv->tx_lpi_timer));
0520     }
0521 
0522     mutex_unlock(&priv->lock);
0523     netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
0524     return true;
0525 }
0526 
0527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
0528  * @priv: driver private structure
0529  * @p : descriptor pointer
0530  * @skb : the socket buffer
0531  * Description :
0532  * This function will read timestamp from the descriptor & pass it to stack.
0533  * and also perform some sanity checks.
0534  */
0535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
0536                    struct dma_desc *p, struct sk_buff *skb)
0537 {
0538     struct skb_shared_hwtstamps shhwtstamp;
0539     bool found = false;
0540     u64 ns = 0;
0541 
0542     if (!priv->hwts_tx_en)
0543         return;
0544 
0545     /* exit if skb doesn't support hw tstamp */
0546     if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
0547         return;
0548 
0549     /* check tx tstamp status */
0550     if (stmmac_get_tx_timestamp_status(priv, p)) {
0551         stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
0552         found = true;
0553     } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
0554         found = true;
0555     }
0556 
0557     if (found) {
0558         ns -= priv->plat->cdc_error_adj;
0559 
0560         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
0561         shhwtstamp.hwtstamp = ns_to_ktime(ns);
0562 
0563         netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
0564         /* pass tstamp to stack */
0565         skb_tstamp_tx(skb, &shhwtstamp);
0566     }
0567 }
0568 
0569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
0570  * @priv: driver private structure
0571  * @p : descriptor pointer
0572  * @np : next descriptor pointer
0573  * @skb : the socket buffer
0574  * Description :
0575  * This function will read received packet's timestamp from the descriptor
0576  * and pass it to stack. It also perform some sanity checks.
0577  */
0578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
0579                    struct dma_desc *np, struct sk_buff *skb)
0580 {
0581     struct skb_shared_hwtstamps *shhwtstamp = NULL;
0582     struct dma_desc *desc = p;
0583     u64 ns = 0;
0584 
0585     if (!priv->hwts_rx_en)
0586         return;
0587     /* For GMAC4, the valid timestamp is from CTX next desc. */
0588     if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
0589         desc = np;
0590 
0591     /* Check if timestamp is available */
0592     if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
0593         stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
0594 
0595         ns -= priv->plat->cdc_error_adj;
0596 
0597         netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
0598         shhwtstamp = skb_hwtstamps(skb);
0599         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
0600         shhwtstamp->hwtstamp = ns_to_ktime(ns);
0601     } else  {
0602         netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
0603     }
0604 }
0605 
0606 /**
0607  *  stmmac_hwtstamp_set - control hardware timestamping.
0608  *  @dev: device pointer.
0609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
0610  *  a proprietary structure used to pass information to the driver.
0611  *  Description:
0612  *  This function configures the MAC to enable/disable both outgoing(TX)
0613  *  and incoming(RX) packets time stamping based on user input.
0614  *  Return Value:
0615  *  0 on success and an appropriate -ve integer on failure.
0616  */
0617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
0618 {
0619     struct stmmac_priv *priv = netdev_priv(dev);
0620     struct hwtstamp_config config;
0621     u32 ptp_v2 = 0;
0622     u32 tstamp_all = 0;
0623     u32 ptp_over_ipv4_udp = 0;
0624     u32 ptp_over_ipv6_udp = 0;
0625     u32 ptp_over_ethernet = 0;
0626     u32 snap_type_sel = 0;
0627     u32 ts_master_en = 0;
0628     u32 ts_event_en = 0;
0629 
0630     if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
0631         netdev_alert(priv->dev, "No support for HW time stamping\n");
0632         priv->hwts_tx_en = 0;
0633         priv->hwts_rx_en = 0;
0634 
0635         return -EOPNOTSUPP;
0636     }
0637 
0638     if (copy_from_user(&config, ifr->ifr_data,
0639                sizeof(config)))
0640         return -EFAULT;
0641 
0642     netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
0643            __func__, config.flags, config.tx_type, config.rx_filter);
0644 
0645     if (config.tx_type != HWTSTAMP_TX_OFF &&
0646         config.tx_type != HWTSTAMP_TX_ON)
0647         return -ERANGE;
0648 
0649     if (priv->adv_ts) {
0650         switch (config.rx_filter) {
0651         case HWTSTAMP_FILTER_NONE:
0652             /* time stamp no incoming packet at all */
0653             config.rx_filter = HWTSTAMP_FILTER_NONE;
0654             break;
0655 
0656         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
0657             /* PTP v1, UDP, any kind of event packet */
0658             config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
0659             /* 'xmac' hardware can support Sync, Pdelay_Req and
0660              * Pdelay_resp by setting bit14 and bits17/16 to 01
0661              * This leaves Delay_Req timestamps out.
0662              * Enable all events *and* general purpose message
0663              * timestamping
0664              */
0665             snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
0666             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0667             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0668             break;
0669 
0670         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
0671             /* PTP v1, UDP, Sync packet */
0672             config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
0673             /* take time stamp for SYNC messages only */
0674             ts_event_en = PTP_TCR_TSEVNTENA;
0675 
0676             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0677             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0678             break;
0679 
0680         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
0681             /* PTP v1, UDP, Delay_req packet */
0682             config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
0683             /* take time stamp for Delay_Req messages only */
0684             ts_master_en = PTP_TCR_TSMSTRENA;
0685             ts_event_en = PTP_TCR_TSEVNTENA;
0686 
0687             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0688             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0689             break;
0690 
0691         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
0692             /* PTP v2, UDP, any kind of event packet */
0693             config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
0694             ptp_v2 = PTP_TCR_TSVER2ENA;
0695             /* take time stamp for all event messages */
0696             snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
0697 
0698             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0699             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0700             break;
0701 
0702         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
0703             /* PTP v2, UDP, Sync packet */
0704             config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
0705             ptp_v2 = PTP_TCR_TSVER2ENA;
0706             /* take time stamp for SYNC messages only */
0707             ts_event_en = PTP_TCR_TSEVNTENA;
0708 
0709             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0710             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0711             break;
0712 
0713         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
0714             /* PTP v2, UDP, Delay_req packet */
0715             config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
0716             ptp_v2 = PTP_TCR_TSVER2ENA;
0717             /* take time stamp for Delay_Req messages only */
0718             ts_master_en = PTP_TCR_TSMSTRENA;
0719             ts_event_en = PTP_TCR_TSEVNTENA;
0720 
0721             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0722             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0723             break;
0724 
0725         case HWTSTAMP_FILTER_PTP_V2_EVENT:
0726             /* PTP v2/802.AS1 any layer, any kind of event packet */
0727             config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
0728             ptp_v2 = PTP_TCR_TSVER2ENA;
0729             snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
0730             if (priv->synopsys_id < DWMAC_CORE_4_10)
0731                 ts_event_en = PTP_TCR_TSEVNTENA;
0732             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0733             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0734             ptp_over_ethernet = PTP_TCR_TSIPENA;
0735             break;
0736 
0737         case HWTSTAMP_FILTER_PTP_V2_SYNC:
0738             /* PTP v2/802.AS1, any layer, Sync packet */
0739             config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
0740             ptp_v2 = PTP_TCR_TSVER2ENA;
0741             /* take time stamp for SYNC messages only */
0742             ts_event_en = PTP_TCR_TSEVNTENA;
0743 
0744             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0745             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0746             ptp_over_ethernet = PTP_TCR_TSIPENA;
0747             break;
0748 
0749         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
0750             /* PTP v2/802.AS1, any layer, Delay_req packet */
0751             config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
0752             ptp_v2 = PTP_TCR_TSVER2ENA;
0753             /* take time stamp for Delay_Req messages only */
0754             ts_master_en = PTP_TCR_TSMSTRENA;
0755             ts_event_en = PTP_TCR_TSEVNTENA;
0756 
0757             ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
0758             ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
0759             ptp_over_ethernet = PTP_TCR_TSIPENA;
0760             break;
0761 
0762         case HWTSTAMP_FILTER_NTP_ALL:
0763         case HWTSTAMP_FILTER_ALL:
0764             /* time stamp any incoming packet */
0765             config.rx_filter = HWTSTAMP_FILTER_ALL;
0766             tstamp_all = PTP_TCR_TSENALL;
0767             break;
0768 
0769         default:
0770             return -ERANGE;
0771         }
0772     } else {
0773         switch (config.rx_filter) {
0774         case HWTSTAMP_FILTER_NONE:
0775             config.rx_filter = HWTSTAMP_FILTER_NONE;
0776             break;
0777         default:
0778             /* PTP v1, UDP, any kind of event packet */
0779             config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
0780             break;
0781         }
0782     }
0783     priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
0784     priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
0785 
0786     priv->systime_flags = STMMAC_HWTS_ACTIVE;
0787 
0788     if (priv->hwts_tx_en || priv->hwts_rx_en) {
0789         priv->systime_flags |= tstamp_all | ptp_v2 |
0790                        ptp_over_ethernet | ptp_over_ipv6_udp |
0791                        ptp_over_ipv4_udp | ts_event_en |
0792                        ts_master_en | snap_type_sel;
0793     }
0794 
0795     stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
0796 
0797     memcpy(&priv->tstamp_config, &config, sizeof(config));
0798 
0799     return copy_to_user(ifr->ifr_data, &config,
0800                 sizeof(config)) ? -EFAULT : 0;
0801 }
0802 
0803 /**
0804  *  stmmac_hwtstamp_get - read hardware timestamping.
0805  *  @dev: device pointer.
0806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
0807  *  a proprietary structure used to pass information to the driver.
0808  *  Description:
0809  *  This function obtain the current hardware timestamping settings
0810  *  as requested.
0811  */
0812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
0813 {
0814     struct stmmac_priv *priv = netdev_priv(dev);
0815     struct hwtstamp_config *config = &priv->tstamp_config;
0816 
0817     if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
0818         return -EOPNOTSUPP;
0819 
0820     return copy_to_user(ifr->ifr_data, config,
0821                 sizeof(*config)) ? -EFAULT : 0;
0822 }
0823 
0824 /**
0825  * stmmac_init_tstamp_counter - init hardware timestamping counter
0826  * @priv: driver private structure
0827  * @systime_flags: timestamping flags
0828  * Description:
0829  * Initialize hardware counter for packet timestamping.
0830  * This is valid as long as the interface is open and not suspended.
0831  * Will be rerun after resuming from suspend, case in which the timestamping
0832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
0833  */
0834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
0835 {
0836     bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
0837     struct timespec64 now;
0838     u32 sec_inc = 0;
0839     u64 temp = 0;
0840 
0841     if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
0842         return -EOPNOTSUPP;
0843 
0844     stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
0845     priv->systime_flags = systime_flags;
0846 
0847     /* program Sub Second Increment reg */
0848     stmmac_config_sub_second_increment(priv, priv->ptpaddr,
0849                        priv->plat->clk_ptp_rate,
0850                        xmac, &sec_inc);
0851     temp = div_u64(1000000000ULL, sec_inc);
0852 
0853     /* Store sub second increment for later use */
0854     priv->sub_second_inc = sec_inc;
0855 
0856     /* calculate default added value:
0857      * formula is :
0858      * addend = (2^32)/freq_div_ratio;
0859      * where, freq_div_ratio = 1e9ns/sec_inc
0860      */
0861     temp = (u64)(temp << 32);
0862     priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
0863     stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
0864 
0865     /* initialize system time */
0866     ktime_get_real_ts64(&now);
0867 
0868     /* lower 32 bits of tv_sec are safe until y2106 */
0869     stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
0870 
0871     return 0;
0872 }
0873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
0874 
0875 /**
0876  * stmmac_init_ptp - init PTP
0877  * @priv: driver private structure
0878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
0879  * This is done by looking at the HW cap. register.
0880  * This function also registers the ptp driver.
0881  */
0882 static int stmmac_init_ptp(struct stmmac_priv *priv)
0883 {
0884     bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
0885     int ret;
0886 
0887     if (priv->plat->ptp_clk_freq_config)
0888         priv->plat->ptp_clk_freq_config(priv);
0889 
0890     ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
0891     if (ret)
0892         return ret;
0893 
0894     priv->adv_ts = 0;
0895     /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
0896     if (xmac && priv->dma_cap.atime_stamp)
0897         priv->adv_ts = 1;
0898     /* Dwmac 3.x core with extend_desc can support adv_ts */
0899     else if (priv->extend_desc && priv->dma_cap.atime_stamp)
0900         priv->adv_ts = 1;
0901 
0902     if (priv->dma_cap.time_stamp)
0903         netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
0904 
0905     if (priv->adv_ts)
0906         netdev_info(priv->dev,
0907                 "IEEE 1588-2008 Advanced Timestamp supported\n");
0908 
0909     priv->hwts_tx_en = 0;
0910     priv->hwts_rx_en = 0;
0911 
0912     return 0;
0913 }
0914 
0915 static void stmmac_release_ptp(struct stmmac_priv *priv)
0916 {
0917     clk_disable_unprepare(priv->plat->clk_ptp_ref);
0918     stmmac_ptp_unregister(priv);
0919 }
0920 
0921 /**
0922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
0923  *  @priv: driver private structure
0924  *  @duplex: duplex passed to the next function
0925  *  Description: It is used for configuring the flow control in all queues
0926  */
0927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
0928 {
0929     u32 tx_cnt = priv->plat->tx_queues_to_use;
0930 
0931     stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
0932             priv->pause, tx_cnt);
0933 }
0934 
0935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
0936                          phy_interface_t interface)
0937 {
0938     struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
0939 
0940     if (!priv->hw->xpcs)
0941         return NULL;
0942 
0943     return &priv->hw->xpcs->pcs;
0944 }
0945 
0946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
0947                   const struct phylink_link_state *state)
0948 {
0949     /* Nothing to do, xpcs_config() handles everything */
0950 }
0951 
0952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
0953 {
0954     struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
0955     enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
0956     enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
0957     bool *hs_enable = &fpe_cfg->hs_enable;
0958 
0959     if (is_up && *hs_enable) {
0960         stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
0961     } else {
0962         *lo_state = FPE_STATE_OFF;
0963         *lp_state = FPE_STATE_OFF;
0964     }
0965 }
0966 
0967 static void stmmac_mac_link_down(struct phylink_config *config,
0968                  unsigned int mode, phy_interface_t interface)
0969 {
0970     struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
0971 
0972     stmmac_mac_set(priv, priv->ioaddr, false);
0973     priv->eee_active = false;
0974     priv->tx_lpi_enabled = false;
0975     priv->eee_enabled = stmmac_eee_init(priv);
0976     stmmac_set_eee_pls(priv, priv->hw, false);
0977 
0978     if (priv->dma_cap.fpesel)
0979         stmmac_fpe_link_state_handle(priv, false);
0980 }
0981 
0982 static void stmmac_mac_link_up(struct phylink_config *config,
0983                    struct phy_device *phy,
0984                    unsigned int mode, phy_interface_t interface,
0985                    int speed, int duplex,
0986                    bool tx_pause, bool rx_pause)
0987 {
0988     struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
0989     u32 old_ctrl, ctrl;
0990 
0991     old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
0992     ctrl = old_ctrl & ~priv->hw->link.speed_mask;
0993 
0994     if (interface == PHY_INTERFACE_MODE_USXGMII) {
0995         switch (speed) {
0996         case SPEED_10000:
0997             ctrl |= priv->hw->link.xgmii.speed10000;
0998             break;
0999         case SPEED_5000:
1000             ctrl |= priv->hw->link.xgmii.speed5000;
1001             break;
1002         case SPEED_2500:
1003             ctrl |= priv->hw->link.xgmii.speed2500;
1004             break;
1005         default:
1006             return;
1007         }
1008     } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1009         switch (speed) {
1010         case SPEED_100000:
1011             ctrl |= priv->hw->link.xlgmii.speed100000;
1012             break;
1013         case SPEED_50000:
1014             ctrl |= priv->hw->link.xlgmii.speed50000;
1015             break;
1016         case SPEED_40000:
1017             ctrl |= priv->hw->link.xlgmii.speed40000;
1018             break;
1019         case SPEED_25000:
1020             ctrl |= priv->hw->link.xlgmii.speed25000;
1021             break;
1022         case SPEED_10000:
1023             ctrl |= priv->hw->link.xgmii.speed10000;
1024             break;
1025         case SPEED_2500:
1026             ctrl |= priv->hw->link.speed2500;
1027             break;
1028         case SPEED_1000:
1029             ctrl |= priv->hw->link.speed1000;
1030             break;
1031         default:
1032             return;
1033         }
1034     } else {
1035         switch (speed) {
1036         case SPEED_2500:
1037             ctrl |= priv->hw->link.speed2500;
1038             break;
1039         case SPEED_1000:
1040             ctrl |= priv->hw->link.speed1000;
1041             break;
1042         case SPEED_100:
1043             ctrl |= priv->hw->link.speed100;
1044             break;
1045         case SPEED_10:
1046             ctrl |= priv->hw->link.speed10;
1047             break;
1048         default:
1049             return;
1050         }
1051     }
1052 
1053     priv->speed = speed;
1054 
1055     if (priv->plat->fix_mac_speed)
1056         priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1057 
1058     if (!duplex)
1059         ctrl &= ~priv->hw->link.duplex;
1060     else
1061         ctrl |= priv->hw->link.duplex;
1062 
1063     /* Flow Control operation */
1064     if (tx_pause && rx_pause)
1065         stmmac_mac_flow_ctrl(priv, duplex);
1066 
1067     if (ctrl != old_ctrl)
1068         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1069 
1070     stmmac_mac_set(priv, priv->ioaddr, true);
1071     if (phy && priv->dma_cap.eee) {
1072         priv->eee_active = phy_init_eee(phy, 1) >= 0;
1073         priv->eee_enabled = stmmac_eee_init(priv);
1074         priv->tx_lpi_enabled = priv->eee_enabled;
1075         stmmac_set_eee_pls(priv, priv->hw, true);
1076     }
1077 
1078     if (priv->dma_cap.fpesel)
1079         stmmac_fpe_link_state_handle(priv, true);
1080 }
1081 
1082 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1083     .validate = phylink_generic_validate,
1084     .mac_select_pcs = stmmac_mac_select_pcs,
1085     .mac_config = stmmac_mac_config,
1086     .mac_link_down = stmmac_mac_link_down,
1087     .mac_link_up = stmmac_mac_link_up,
1088 };
1089 
1090 /**
1091  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1092  * @priv: driver private structure
1093  * Description: this is to verify if the HW supports the PCS.
1094  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1095  * configured for the TBI, RTBI, or SGMII PHY interface.
1096  */
1097 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1098 {
1099     int interface = priv->plat->interface;
1100 
1101     if (priv->dma_cap.pcs) {
1102         if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1103             (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1104             (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1105             (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1106             netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1107             priv->hw->pcs = STMMAC_PCS_RGMII;
1108         } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1109             netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1110             priv->hw->pcs = STMMAC_PCS_SGMII;
1111         }
1112     }
1113 }
1114 
1115 /**
1116  * stmmac_init_phy - PHY initialization
1117  * @dev: net device structure
1118  * Description: it initializes the driver's PHY state, and attaches the PHY
1119  * to the mac driver.
1120  *  Return value:
1121  *  0 on success
1122  */
1123 static int stmmac_init_phy(struct net_device *dev)
1124 {
1125     struct stmmac_priv *priv = netdev_priv(dev);
1126     struct fwnode_handle *fwnode;
1127     int ret;
1128 
1129     fwnode = of_fwnode_handle(priv->plat->phylink_node);
1130     if (!fwnode)
1131         fwnode = dev_fwnode(priv->device);
1132 
1133     if (fwnode)
1134         ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1135 
1136     /* Some DT bindings do not set-up the PHY handle. Let's try to
1137      * manually parse it
1138      */
1139     if (!fwnode || ret) {
1140         int addr = priv->plat->phy_addr;
1141         struct phy_device *phydev;
1142 
1143         phydev = mdiobus_get_phy(priv->mii, addr);
1144         if (!phydev) {
1145             netdev_err(priv->dev, "no phy at addr %d\n", addr);
1146             return -ENODEV;
1147         }
1148 
1149         ret = phylink_connect_phy(priv->phylink, phydev);
1150     }
1151 
1152     if (!priv->plat->pmt) {
1153         struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1154 
1155         phylink_ethtool_get_wol(priv->phylink, &wol);
1156         device_set_wakeup_capable(priv->device, !!wol.supported);
1157     }
1158 
1159     return ret;
1160 }
1161 
1162 static int stmmac_phy_setup(struct stmmac_priv *priv)
1163 {
1164     struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1165     struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1166     int max_speed = priv->plat->max_speed;
1167     int mode = priv->plat->phy_interface;
1168     struct phylink *phylink;
1169 
1170     priv->phylink_config.dev = &priv->dev->dev;
1171     priv->phylink_config.type = PHYLINK_NETDEV;
1172     if (priv->plat->mdio_bus_data)
1173         priv->phylink_config.ovr_an_inband =
1174             mdio_bus_data->xpcs_an_inband;
1175 
1176     if (!fwnode)
1177         fwnode = dev_fwnode(priv->device);
1178 
1179     /* Set the platform/firmware specified interface mode */
1180     __set_bit(mode, priv->phylink_config.supported_interfaces);
1181 
1182     /* If we have an xpcs, it defines which PHY interfaces are supported. */
1183     if (priv->hw->xpcs)
1184         xpcs_get_interfaces(priv->hw->xpcs,
1185                     priv->phylink_config.supported_interfaces);
1186 
1187     priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1188         MAC_10 | MAC_100;
1189 
1190     if (!max_speed || max_speed >= 1000)
1191         priv->phylink_config.mac_capabilities |= MAC_1000;
1192 
1193     if (priv->plat->has_gmac4) {
1194         if (!max_speed || max_speed >= 2500)
1195             priv->phylink_config.mac_capabilities |= MAC_2500FD;
1196     } else if (priv->plat->has_xgmac) {
1197         if (!max_speed || max_speed >= 2500)
1198             priv->phylink_config.mac_capabilities |= MAC_2500FD;
1199         if (!max_speed || max_speed >= 5000)
1200             priv->phylink_config.mac_capabilities |= MAC_5000FD;
1201         if (!max_speed || max_speed >= 10000)
1202             priv->phylink_config.mac_capabilities |= MAC_10000FD;
1203         if (!max_speed || max_speed >= 25000)
1204             priv->phylink_config.mac_capabilities |= MAC_25000FD;
1205         if (!max_speed || max_speed >= 40000)
1206             priv->phylink_config.mac_capabilities |= MAC_40000FD;
1207         if (!max_speed || max_speed >= 50000)
1208             priv->phylink_config.mac_capabilities |= MAC_50000FD;
1209         if (!max_speed || max_speed >= 100000)
1210             priv->phylink_config.mac_capabilities |= MAC_100000FD;
1211     }
1212 
1213     /* Half-Duplex can only work with single queue */
1214     if (priv->plat->tx_queues_to_use > 1)
1215         priv->phylink_config.mac_capabilities &=
1216             ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1217 
1218     phylink = phylink_create(&priv->phylink_config, fwnode,
1219                  mode, &stmmac_phylink_mac_ops);
1220     if (IS_ERR(phylink))
1221         return PTR_ERR(phylink);
1222 
1223     priv->phylink = phylink;
1224     return 0;
1225 }
1226 
1227 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1228                     struct stmmac_dma_conf *dma_conf)
1229 {
1230     u32 rx_cnt = priv->plat->rx_queues_to_use;
1231     unsigned int desc_size;
1232     void *head_rx;
1233     u32 queue;
1234 
1235     /* Display RX rings */
1236     for (queue = 0; queue < rx_cnt; queue++) {
1237         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1238 
1239         pr_info("\tRX Queue %u rings\n", queue);
1240 
1241         if (priv->extend_desc) {
1242             head_rx = (void *)rx_q->dma_erx;
1243             desc_size = sizeof(struct dma_extended_desc);
1244         } else {
1245             head_rx = (void *)rx_q->dma_rx;
1246             desc_size = sizeof(struct dma_desc);
1247         }
1248 
1249         /* Display RX ring */
1250         stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1251                     rx_q->dma_rx_phy, desc_size);
1252     }
1253 }
1254 
1255 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1256                     struct stmmac_dma_conf *dma_conf)
1257 {
1258     u32 tx_cnt = priv->plat->tx_queues_to_use;
1259     unsigned int desc_size;
1260     void *head_tx;
1261     u32 queue;
1262 
1263     /* Display TX rings */
1264     for (queue = 0; queue < tx_cnt; queue++) {
1265         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1266 
1267         pr_info("\tTX Queue %d rings\n", queue);
1268 
1269         if (priv->extend_desc) {
1270             head_tx = (void *)tx_q->dma_etx;
1271             desc_size = sizeof(struct dma_extended_desc);
1272         } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1273             head_tx = (void *)tx_q->dma_entx;
1274             desc_size = sizeof(struct dma_edesc);
1275         } else {
1276             head_tx = (void *)tx_q->dma_tx;
1277             desc_size = sizeof(struct dma_desc);
1278         }
1279 
1280         stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1281                     tx_q->dma_tx_phy, desc_size);
1282     }
1283 }
1284 
1285 static void stmmac_display_rings(struct stmmac_priv *priv,
1286                  struct stmmac_dma_conf *dma_conf)
1287 {
1288     /* Display RX ring */
1289     stmmac_display_rx_rings(priv, dma_conf);
1290 
1291     /* Display TX ring */
1292     stmmac_display_tx_rings(priv, dma_conf);
1293 }
1294 
1295 static int stmmac_set_bfsize(int mtu, int bufsize)
1296 {
1297     int ret = bufsize;
1298 
1299     if (mtu >= BUF_SIZE_8KiB)
1300         ret = BUF_SIZE_16KiB;
1301     else if (mtu >= BUF_SIZE_4KiB)
1302         ret = BUF_SIZE_8KiB;
1303     else if (mtu >= BUF_SIZE_2KiB)
1304         ret = BUF_SIZE_4KiB;
1305     else if (mtu > DEFAULT_BUFSIZE)
1306         ret = BUF_SIZE_2KiB;
1307     else
1308         ret = DEFAULT_BUFSIZE;
1309 
1310     return ret;
1311 }
1312 
1313 /**
1314  * stmmac_clear_rx_descriptors - clear RX descriptors
1315  * @priv: driver private structure
1316  * @dma_conf: structure to take the dma data
1317  * @queue: RX queue index
1318  * Description: this function is called to clear the RX descriptors
1319  * in case of both basic and extended descriptors are used.
1320  */
1321 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1322                     struct stmmac_dma_conf *dma_conf,
1323                     u32 queue)
1324 {
1325     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1326     int i;
1327 
1328     /* Clear the RX descriptors */
1329     for (i = 0; i < dma_conf->dma_rx_size; i++)
1330         if (priv->extend_desc)
1331             stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1332                     priv->use_riwt, priv->mode,
1333                     (i == dma_conf->dma_rx_size - 1),
1334                     dma_conf->dma_buf_sz);
1335         else
1336             stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1337                     priv->use_riwt, priv->mode,
1338                     (i == dma_conf->dma_rx_size - 1),
1339                     dma_conf->dma_buf_sz);
1340 }
1341 
1342 /**
1343  * stmmac_clear_tx_descriptors - clear tx descriptors
1344  * @priv: driver private structure
1345  * @dma_conf: structure to take the dma data
1346  * @queue: TX queue index.
1347  * Description: this function is called to clear the TX descriptors
1348  * in case of both basic and extended descriptors are used.
1349  */
1350 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1351                     struct stmmac_dma_conf *dma_conf,
1352                     u32 queue)
1353 {
1354     struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1355     int i;
1356 
1357     /* Clear the TX descriptors */
1358     for (i = 0; i < dma_conf->dma_tx_size; i++) {
1359         int last = (i == (dma_conf->dma_tx_size - 1));
1360         struct dma_desc *p;
1361 
1362         if (priv->extend_desc)
1363             p = &tx_q->dma_etx[i].basic;
1364         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1365             p = &tx_q->dma_entx[i].basic;
1366         else
1367             p = &tx_q->dma_tx[i];
1368 
1369         stmmac_init_tx_desc(priv, p, priv->mode, last);
1370     }
1371 }
1372 
1373 /**
1374  * stmmac_clear_descriptors - clear descriptors
1375  * @priv: driver private structure
1376  * @dma_conf: structure to take the dma data
1377  * Description: this function is called to clear the TX and RX descriptors
1378  * in case of both basic and extended descriptors are used.
1379  */
1380 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1381                      struct stmmac_dma_conf *dma_conf)
1382 {
1383     u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1384     u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1385     u32 queue;
1386 
1387     /* Clear the RX descriptors */
1388     for (queue = 0; queue < rx_queue_cnt; queue++)
1389         stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1390 
1391     /* Clear the TX descriptors */
1392     for (queue = 0; queue < tx_queue_cnt; queue++)
1393         stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1394 }
1395 
1396 /**
1397  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1398  * @priv: driver private structure
1399  * @dma_conf: structure to take the dma data
1400  * @p: descriptor pointer
1401  * @i: descriptor index
1402  * @flags: gfp flag
1403  * @queue: RX queue index
1404  * Description: this function is called to allocate a receive buffer, perform
1405  * the DMA mapping and init the descriptor.
1406  */
1407 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1408                   struct stmmac_dma_conf *dma_conf,
1409                   struct dma_desc *p,
1410                   int i, gfp_t flags, u32 queue)
1411 {
1412     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1413     struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1414     gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1415 
1416     if (priv->dma_cap.addr64 <= 32)
1417         gfp |= GFP_DMA32;
1418 
1419     if (!buf->page) {
1420         buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1421         if (!buf->page)
1422             return -ENOMEM;
1423         buf->page_offset = stmmac_rx_offset(priv);
1424     }
1425 
1426     if (priv->sph && !buf->sec_page) {
1427         buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1428         if (!buf->sec_page)
1429             return -ENOMEM;
1430 
1431         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1432         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1433     } else {
1434         buf->sec_page = NULL;
1435         stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1436     }
1437 
1438     buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1439 
1440     stmmac_set_desc_addr(priv, p, buf->addr);
1441     if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1442         stmmac_init_desc3(priv, p);
1443 
1444     return 0;
1445 }
1446 
1447 /**
1448  * stmmac_free_rx_buffer - free RX dma buffers
1449  * @priv: private structure
1450  * @rx_q: RX queue
1451  * @i: buffer index.
1452  */
1453 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1454                   struct stmmac_rx_queue *rx_q,
1455                   int i)
1456 {
1457     struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1458 
1459     if (buf->page)
1460         page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1461     buf->page = NULL;
1462 
1463     if (buf->sec_page)
1464         page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1465     buf->sec_page = NULL;
1466 }
1467 
1468 /**
1469  * stmmac_free_tx_buffer - free RX dma buffers
1470  * @priv: private structure
1471  * @dma_conf: structure to take the dma data
1472  * @queue: RX queue index
1473  * @i: buffer index.
1474  */
1475 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1476                   struct stmmac_dma_conf *dma_conf,
1477                   u32 queue, int i)
1478 {
1479     struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1480 
1481     if (tx_q->tx_skbuff_dma[i].buf &&
1482         tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1483         if (tx_q->tx_skbuff_dma[i].map_as_page)
1484             dma_unmap_page(priv->device,
1485                        tx_q->tx_skbuff_dma[i].buf,
1486                        tx_q->tx_skbuff_dma[i].len,
1487                        DMA_TO_DEVICE);
1488         else
1489             dma_unmap_single(priv->device,
1490                      tx_q->tx_skbuff_dma[i].buf,
1491                      tx_q->tx_skbuff_dma[i].len,
1492                      DMA_TO_DEVICE);
1493     }
1494 
1495     if (tx_q->xdpf[i] &&
1496         (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1497          tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1498         xdp_return_frame(tx_q->xdpf[i]);
1499         tx_q->xdpf[i] = NULL;
1500     }
1501 
1502     if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1503         tx_q->xsk_frames_done++;
1504 
1505     if (tx_q->tx_skbuff[i] &&
1506         tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1507         dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1508         tx_q->tx_skbuff[i] = NULL;
1509     }
1510 
1511     tx_q->tx_skbuff_dma[i].buf = 0;
1512     tx_q->tx_skbuff_dma[i].map_as_page = false;
1513 }
1514 
1515 /**
1516  * dma_free_rx_skbufs - free RX dma buffers
1517  * @priv: private structure
1518  * @dma_conf: structure to take the dma data
1519  * @queue: RX queue index
1520  */
1521 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1522                    struct stmmac_dma_conf *dma_conf,
1523                    u32 queue)
1524 {
1525     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1526     int i;
1527 
1528     for (i = 0; i < dma_conf->dma_rx_size; i++)
1529         stmmac_free_rx_buffer(priv, rx_q, i);
1530 }
1531 
1532 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1533                    struct stmmac_dma_conf *dma_conf,
1534                    u32 queue, gfp_t flags)
1535 {
1536     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1537     int i;
1538 
1539     for (i = 0; i < dma_conf->dma_rx_size; i++) {
1540         struct dma_desc *p;
1541         int ret;
1542 
1543         if (priv->extend_desc)
1544             p = &((rx_q->dma_erx + i)->basic);
1545         else
1546             p = rx_q->dma_rx + i;
1547 
1548         ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1549                          queue);
1550         if (ret)
1551             return ret;
1552 
1553         rx_q->buf_alloc_num++;
1554     }
1555 
1556     return 0;
1557 }
1558 
1559 /**
1560  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1561  * @priv: private structure
1562  * @dma_conf: structure to take the dma data
1563  * @queue: RX queue index
1564  */
1565 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1566                 struct stmmac_dma_conf *dma_conf,
1567                 u32 queue)
1568 {
1569     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1570     int i;
1571 
1572     for (i = 0; i < dma_conf->dma_rx_size; i++) {
1573         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1574 
1575         if (!buf->xdp)
1576             continue;
1577 
1578         xsk_buff_free(buf->xdp);
1579         buf->xdp = NULL;
1580     }
1581 }
1582 
1583 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1584                       struct stmmac_dma_conf *dma_conf,
1585                       u32 queue)
1586 {
1587     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1588     int i;
1589 
1590     for (i = 0; i < dma_conf->dma_rx_size; i++) {
1591         struct stmmac_rx_buffer *buf;
1592         dma_addr_t dma_addr;
1593         struct dma_desc *p;
1594 
1595         if (priv->extend_desc)
1596             p = (struct dma_desc *)(rx_q->dma_erx + i);
1597         else
1598             p = rx_q->dma_rx + i;
1599 
1600         buf = &rx_q->buf_pool[i];
1601 
1602         buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1603         if (!buf->xdp)
1604             return -ENOMEM;
1605 
1606         dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1607         stmmac_set_desc_addr(priv, p, dma_addr);
1608         rx_q->buf_alloc_num++;
1609     }
1610 
1611     return 0;
1612 }
1613 
1614 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1615 {
1616     if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1617         return NULL;
1618 
1619     return xsk_get_pool_from_qid(priv->dev, queue);
1620 }
1621 
1622 /**
1623  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1624  * @priv: driver private structure
1625  * @dma_conf: structure to take the dma data
1626  * @queue: RX queue index
1627  * @flags: gfp flag.
1628  * Description: this function initializes the DMA RX descriptors
1629  * and allocates the socket buffers. It supports the chained and ring
1630  * modes.
1631  */
1632 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1633                     struct stmmac_dma_conf *dma_conf,
1634                     u32 queue, gfp_t flags)
1635 {
1636     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1637     int ret;
1638 
1639     netif_dbg(priv, probe, priv->dev,
1640           "(%s) dma_rx_phy=0x%08x\n", __func__,
1641           (u32)rx_q->dma_rx_phy);
1642 
1643     stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1644 
1645     xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1646 
1647     rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1648 
1649     if (rx_q->xsk_pool) {
1650         WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1651                            MEM_TYPE_XSK_BUFF_POOL,
1652                            NULL));
1653         netdev_info(priv->dev,
1654                 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1655                 rx_q->queue_index);
1656         xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1657     } else {
1658         WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1659                            MEM_TYPE_PAGE_POOL,
1660                            rx_q->page_pool));
1661         netdev_info(priv->dev,
1662                 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1663                 rx_q->queue_index);
1664     }
1665 
1666     if (rx_q->xsk_pool) {
1667         /* RX XDP ZC buffer pool may not be populated, e.g.
1668          * xdpsock TX-only.
1669          */
1670         stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1671     } else {
1672         ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1673         if (ret < 0)
1674             return -ENOMEM;
1675     }
1676 
1677     /* Setup the chained descriptor addresses */
1678     if (priv->mode == STMMAC_CHAIN_MODE) {
1679         if (priv->extend_desc)
1680             stmmac_mode_init(priv, rx_q->dma_erx,
1681                      rx_q->dma_rx_phy,
1682                      dma_conf->dma_rx_size, 1);
1683         else
1684             stmmac_mode_init(priv, rx_q->dma_rx,
1685                      rx_q->dma_rx_phy,
1686                      dma_conf->dma_rx_size, 0);
1687     }
1688 
1689     return 0;
1690 }
1691 
1692 static int init_dma_rx_desc_rings(struct net_device *dev,
1693                   struct stmmac_dma_conf *dma_conf,
1694                   gfp_t flags)
1695 {
1696     struct stmmac_priv *priv = netdev_priv(dev);
1697     u32 rx_count = priv->plat->rx_queues_to_use;
1698     int queue;
1699     int ret;
1700 
1701     /* RX INITIALIZATION */
1702     netif_dbg(priv, probe, priv->dev,
1703           "SKB addresses:\nskb\t\tskb data\tdma data\n");
1704 
1705     for (queue = 0; queue < rx_count; queue++) {
1706         ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1707         if (ret)
1708             goto err_init_rx_buffers;
1709     }
1710 
1711     return 0;
1712 
1713 err_init_rx_buffers:
1714     while (queue >= 0) {
1715         struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1716 
1717         if (rx_q->xsk_pool)
1718             dma_free_rx_xskbufs(priv, dma_conf, queue);
1719         else
1720             dma_free_rx_skbufs(priv, dma_conf, queue);
1721 
1722         rx_q->buf_alloc_num = 0;
1723         rx_q->xsk_pool = NULL;
1724 
1725         queue--;
1726     }
1727 
1728     return ret;
1729 }
1730 
1731 /**
1732  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1733  * @priv: driver private structure
1734  * @dma_conf: structure to take the dma data
1735  * @queue: TX queue index
1736  * Description: this function initializes the DMA TX descriptors
1737  * and allocates the socket buffers. It supports the chained and ring
1738  * modes.
1739  */
1740 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1741                     struct stmmac_dma_conf *dma_conf,
1742                     u32 queue)
1743 {
1744     struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1745     int i;
1746 
1747     netif_dbg(priv, probe, priv->dev,
1748           "(%s) dma_tx_phy=0x%08x\n", __func__,
1749           (u32)tx_q->dma_tx_phy);
1750 
1751     /* Setup the chained descriptor addresses */
1752     if (priv->mode == STMMAC_CHAIN_MODE) {
1753         if (priv->extend_desc)
1754             stmmac_mode_init(priv, tx_q->dma_etx,
1755                      tx_q->dma_tx_phy,
1756                      dma_conf->dma_tx_size, 1);
1757         else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1758             stmmac_mode_init(priv, tx_q->dma_tx,
1759                      tx_q->dma_tx_phy,
1760                      dma_conf->dma_tx_size, 0);
1761     }
1762 
1763     tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1764 
1765     for (i = 0; i < dma_conf->dma_tx_size; i++) {
1766         struct dma_desc *p;
1767 
1768         if (priv->extend_desc)
1769             p = &((tx_q->dma_etx + i)->basic);
1770         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1771             p = &((tx_q->dma_entx + i)->basic);
1772         else
1773             p = tx_q->dma_tx + i;
1774 
1775         stmmac_clear_desc(priv, p);
1776 
1777         tx_q->tx_skbuff_dma[i].buf = 0;
1778         tx_q->tx_skbuff_dma[i].map_as_page = false;
1779         tx_q->tx_skbuff_dma[i].len = 0;
1780         tx_q->tx_skbuff_dma[i].last_segment = false;
1781         tx_q->tx_skbuff[i] = NULL;
1782     }
1783 
1784     return 0;
1785 }
1786 
1787 static int init_dma_tx_desc_rings(struct net_device *dev,
1788                   struct stmmac_dma_conf *dma_conf)
1789 {
1790     struct stmmac_priv *priv = netdev_priv(dev);
1791     u32 tx_queue_cnt;
1792     u32 queue;
1793 
1794     tx_queue_cnt = priv->plat->tx_queues_to_use;
1795 
1796     for (queue = 0; queue < tx_queue_cnt; queue++)
1797         __init_dma_tx_desc_rings(priv, dma_conf, queue);
1798 
1799     return 0;
1800 }
1801 
1802 /**
1803  * init_dma_desc_rings - init the RX/TX descriptor rings
1804  * @dev: net device structure
1805  * @dma_conf: structure to take the dma data
1806  * @flags: gfp flag.
1807  * Description: this function initializes the DMA RX/TX descriptors
1808  * and allocates the socket buffers. It supports the chained and ring
1809  * modes.
1810  */
1811 static int init_dma_desc_rings(struct net_device *dev,
1812                    struct stmmac_dma_conf *dma_conf,
1813                    gfp_t flags)
1814 {
1815     struct stmmac_priv *priv = netdev_priv(dev);
1816     int ret;
1817 
1818     ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1819     if (ret)
1820         return ret;
1821 
1822     ret = init_dma_tx_desc_rings(dev, dma_conf);
1823 
1824     stmmac_clear_descriptors(priv, dma_conf);
1825 
1826     if (netif_msg_hw(priv))
1827         stmmac_display_rings(priv, dma_conf);
1828 
1829     return ret;
1830 }
1831 
1832 /**
1833  * dma_free_tx_skbufs - free TX dma buffers
1834  * @priv: private structure
1835  * @dma_conf: structure to take the dma data
1836  * @queue: TX queue index
1837  */
1838 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1839                    struct stmmac_dma_conf *dma_conf,
1840                    u32 queue)
1841 {
1842     struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1843     int i;
1844 
1845     tx_q->xsk_frames_done = 0;
1846 
1847     for (i = 0; i < dma_conf->dma_tx_size; i++)
1848         stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1849 
1850     if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1851         xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1852         tx_q->xsk_frames_done = 0;
1853         tx_q->xsk_pool = NULL;
1854     }
1855 }
1856 
1857 /**
1858  * stmmac_free_tx_skbufs - free TX skb buffers
1859  * @priv: private structure
1860  */
1861 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1862 {
1863     u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1864     u32 queue;
1865 
1866     for (queue = 0; queue < tx_queue_cnt; queue++)
1867         dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1868 }
1869 
1870 /**
1871  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1872  * @priv: private structure
1873  * @dma_conf: structure to take the dma data
1874  * @queue: RX queue index
1875  */
1876 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1877                      struct stmmac_dma_conf *dma_conf,
1878                      u32 queue)
1879 {
1880     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1881 
1882     /* Release the DMA RX socket buffers */
1883     if (rx_q->xsk_pool)
1884         dma_free_rx_xskbufs(priv, dma_conf, queue);
1885     else
1886         dma_free_rx_skbufs(priv, dma_conf, queue);
1887 
1888     rx_q->buf_alloc_num = 0;
1889     rx_q->xsk_pool = NULL;
1890 
1891     /* Free DMA regions of consistent memory previously allocated */
1892     if (!priv->extend_desc)
1893         dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1894                   sizeof(struct dma_desc),
1895                   rx_q->dma_rx, rx_q->dma_rx_phy);
1896     else
1897         dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1898                   sizeof(struct dma_extended_desc),
1899                   rx_q->dma_erx, rx_q->dma_rx_phy);
1900 
1901     if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1902         xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1903 
1904     kfree(rx_q->buf_pool);
1905     if (rx_q->page_pool)
1906         page_pool_destroy(rx_q->page_pool);
1907 }
1908 
1909 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1910                        struct stmmac_dma_conf *dma_conf)
1911 {
1912     u32 rx_count = priv->plat->rx_queues_to_use;
1913     u32 queue;
1914 
1915     /* Free RX queue resources */
1916     for (queue = 0; queue < rx_count; queue++)
1917         __free_dma_rx_desc_resources(priv, dma_conf, queue);
1918 }
1919 
1920 /**
1921  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1922  * @priv: private structure
1923  * @dma_conf: structure to take the dma data
1924  * @queue: TX queue index
1925  */
1926 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1927                      struct stmmac_dma_conf *dma_conf,
1928                      u32 queue)
1929 {
1930     struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1931     size_t size;
1932     void *addr;
1933 
1934     /* Release the DMA TX socket buffers */
1935     dma_free_tx_skbufs(priv, dma_conf, queue);
1936 
1937     if (priv->extend_desc) {
1938         size = sizeof(struct dma_extended_desc);
1939         addr = tx_q->dma_etx;
1940     } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1941         size = sizeof(struct dma_edesc);
1942         addr = tx_q->dma_entx;
1943     } else {
1944         size = sizeof(struct dma_desc);
1945         addr = tx_q->dma_tx;
1946     }
1947 
1948     size *= dma_conf->dma_tx_size;
1949 
1950     dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1951 
1952     kfree(tx_q->tx_skbuff_dma);
1953     kfree(tx_q->tx_skbuff);
1954 }
1955 
1956 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1957                        struct stmmac_dma_conf *dma_conf)
1958 {
1959     u32 tx_count = priv->plat->tx_queues_to_use;
1960     u32 queue;
1961 
1962     /* Free TX queue resources */
1963     for (queue = 0; queue < tx_count; queue++)
1964         __free_dma_tx_desc_resources(priv, dma_conf, queue);
1965 }
1966 
1967 /**
1968  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1969  * @priv: private structure
1970  * @dma_conf: structure to take the dma data
1971  * @queue: RX queue index
1972  * Description: according to which descriptor can be used (extend or basic)
1973  * this function allocates the resources for TX and RX paths. In case of
1974  * reception, for example, it pre-allocated the RX socket buffer in order to
1975  * allow zero-copy mechanism.
1976  */
1977 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1978                      struct stmmac_dma_conf *dma_conf,
1979                      u32 queue)
1980 {
1981     struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1982     struct stmmac_channel *ch = &priv->channel[queue];
1983     bool xdp_prog = stmmac_xdp_is_enabled(priv);
1984     struct page_pool_params pp_params = { 0 };
1985     unsigned int num_pages;
1986     unsigned int napi_id;
1987     int ret;
1988 
1989     rx_q->queue_index = queue;
1990     rx_q->priv_data = priv;
1991 
1992     pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1993     pp_params.pool_size = dma_conf->dma_rx_size;
1994     num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
1995     pp_params.order = ilog2(num_pages);
1996     pp_params.nid = dev_to_node(priv->device);
1997     pp_params.dev = priv->device;
1998     pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1999     pp_params.offset = stmmac_rx_offset(priv);
2000     pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2001 
2002     rx_q->page_pool = page_pool_create(&pp_params);
2003     if (IS_ERR(rx_q->page_pool)) {
2004         ret = PTR_ERR(rx_q->page_pool);
2005         rx_q->page_pool = NULL;
2006         return ret;
2007     }
2008 
2009     rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2010                  sizeof(*rx_q->buf_pool),
2011                  GFP_KERNEL);
2012     if (!rx_q->buf_pool)
2013         return -ENOMEM;
2014 
2015     if (priv->extend_desc) {
2016         rx_q->dma_erx = dma_alloc_coherent(priv->device,
2017                            dma_conf->dma_rx_size *
2018                            sizeof(struct dma_extended_desc),
2019                            &rx_q->dma_rx_phy,
2020                            GFP_KERNEL);
2021         if (!rx_q->dma_erx)
2022             return -ENOMEM;
2023 
2024     } else {
2025         rx_q->dma_rx = dma_alloc_coherent(priv->device,
2026                           dma_conf->dma_rx_size *
2027                           sizeof(struct dma_desc),
2028                           &rx_q->dma_rx_phy,
2029                           GFP_KERNEL);
2030         if (!rx_q->dma_rx)
2031             return -ENOMEM;
2032     }
2033 
2034     if (stmmac_xdp_is_enabled(priv) &&
2035         test_bit(queue, priv->af_xdp_zc_qps))
2036         napi_id = ch->rxtx_napi.napi_id;
2037     else
2038         napi_id = ch->rx_napi.napi_id;
2039 
2040     ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2041                    rx_q->queue_index,
2042                    napi_id);
2043     if (ret) {
2044         netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2045         return -EINVAL;
2046     }
2047 
2048     return 0;
2049 }
2050 
2051 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2052                        struct stmmac_dma_conf *dma_conf)
2053 {
2054     u32 rx_count = priv->plat->rx_queues_to_use;
2055     u32 queue;
2056     int ret;
2057 
2058     /* RX queues buffers and DMA */
2059     for (queue = 0; queue < rx_count; queue++) {
2060         ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2061         if (ret)
2062             goto err_dma;
2063     }
2064 
2065     return 0;
2066 
2067 err_dma:
2068     free_dma_rx_desc_resources(priv, dma_conf);
2069 
2070     return ret;
2071 }
2072 
2073 /**
2074  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2075  * @priv: private structure
2076  * @dma_conf: structure to take the dma data
2077  * @queue: TX queue index
2078  * Description: according to which descriptor can be used (extend or basic)
2079  * this function allocates the resources for TX and RX paths. In case of
2080  * reception, for example, it pre-allocated the RX socket buffer in order to
2081  * allow zero-copy mechanism.
2082  */
2083 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2084                      struct stmmac_dma_conf *dma_conf,
2085                      u32 queue)
2086 {
2087     struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2088     size_t size;
2089     void *addr;
2090 
2091     tx_q->queue_index = queue;
2092     tx_q->priv_data = priv;
2093 
2094     tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2095                       sizeof(*tx_q->tx_skbuff_dma),
2096                       GFP_KERNEL);
2097     if (!tx_q->tx_skbuff_dma)
2098         return -ENOMEM;
2099 
2100     tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2101                   sizeof(struct sk_buff *),
2102                   GFP_KERNEL);
2103     if (!tx_q->tx_skbuff)
2104         return -ENOMEM;
2105 
2106     if (priv->extend_desc)
2107         size = sizeof(struct dma_extended_desc);
2108     else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2109         size = sizeof(struct dma_edesc);
2110     else
2111         size = sizeof(struct dma_desc);
2112 
2113     size *= dma_conf->dma_tx_size;
2114 
2115     addr = dma_alloc_coherent(priv->device, size,
2116                   &tx_q->dma_tx_phy, GFP_KERNEL);
2117     if (!addr)
2118         return -ENOMEM;
2119 
2120     if (priv->extend_desc)
2121         tx_q->dma_etx = addr;
2122     else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2123         tx_q->dma_entx = addr;
2124     else
2125         tx_q->dma_tx = addr;
2126 
2127     return 0;
2128 }
2129 
2130 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2131                        struct stmmac_dma_conf *dma_conf)
2132 {
2133     u32 tx_count = priv->plat->tx_queues_to_use;
2134     u32 queue;
2135     int ret;
2136 
2137     /* TX queues buffers and DMA */
2138     for (queue = 0; queue < tx_count; queue++) {
2139         ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2140         if (ret)
2141             goto err_dma;
2142     }
2143 
2144     return 0;
2145 
2146 err_dma:
2147     free_dma_tx_desc_resources(priv, dma_conf);
2148     return ret;
2149 }
2150 
2151 /**
2152  * alloc_dma_desc_resources - alloc TX/RX resources.
2153  * @priv: private structure
2154  * @dma_conf: structure to take the dma data
2155  * Description: according to which descriptor can be used (extend or basic)
2156  * this function allocates the resources for TX and RX paths. In case of
2157  * reception, for example, it pre-allocated the RX socket buffer in order to
2158  * allow zero-copy mechanism.
2159  */
2160 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2161                     struct stmmac_dma_conf *dma_conf)
2162 {
2163     /* RX Allocation */
2164     int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2165 
2166     if (ret)
2167         return ret;
2168 
2169     ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2170 
2171     return ret;
2172 }
2173 
2174 /**
2175  * free_dma_desc_resources - free dma desc resources
2176  * @priv: private structure
2177  * @dma_conf: structure to take the dma data
2178  */
2179 static void free_dma_desc_resources(struct stmmac_priv *priv,
2180                     struct stmmac_dma_conf *dma_conf)
2181 {
2182     /* Release the DMA TX socket buffers */
2183     free_dma_tx_desc_resources(priv, dma_conf);
2184 
2185     /* Release the DMA RX socket buffers later
2186      * to ensure all pending XDP_TX buffers are returned.
2187      */
2188     free_dma_rx_desc_resources(priv, dma_conf);
2189 }
2190 
2191 /**
2192  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2193  *  @priv: driver private structure
2194  *  Description: It is used for enabling the rx queues in the MAC
2195  */
2196 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2197 {
2198     u32 rx_queues_count = priv->plat->rx_queues_to_use;
2199     int queue;
2200     u8 mode;
2201 
2202     for (queue = 0; queue < rx_queues_count; queue++) {
2203         mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2204         stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2205     }
2206 }
2207 
2208 /**
2209  * stmmac_start_rx_dma - start RX DMA channel
2210  * @priv: driver private structure
2211  * @chan: RX channel index
2212  * Description:
2213  * This starts a RX DMA channel
2214  */
2215 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2216 {
2217     netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2218     stmmac_start_rx(priv, priv->ioaddr, chan);
2219 }
2220 
2221 /**
2222  * stmmac_start_tx_dma - start TX DMA channel
2223  * @priv: driver private structure
2224  * @chan: TX channel index
2225  * Description:
2226  * This starts a TX DMA channel
2227  */
2228 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2229 {
2230     netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2231     stmmac_start_tx(priv, priv->ioaddr, chan);
2232 }
2233 
2234 /**
2235  * stmmac_stop_rx_dma - stop RX DMA channel
2236  * @priv: driver private structure
2237  * @chan: RX channel index
2238  * Description:
2239  * This stops a RX DMA channel
2240  */
2241 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2242 {
2243     netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2244     stmmac_stop_rx(priv, priv->ioaddr, chan);
2245 }
2246 
2247 /**
2248  * stmmac_stop_tx_dma - stop TX DMA channel
2249  * @priv: driver private structure
2250  * @chan: TX channel index
2251  * Description:
2252  * This stops a TX DMA channel
2253  */
2254 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2255 {
2256     netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2257     stmmac_stop_tx(priv, priv->ioaddr, chan);
2258 }
2259 
2260 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2261 {
2262     u32 rx_channels_count = priv->plat->rx_queues_to_use;
2263     u32 tx_channels_count = priv->plat->tx_queues_to_use;
2264     u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2265     u32 chan;
2266 
2267     for (chan = 0; chan < dma_csr_ch; chan++) {
2268         struct stmmac_channel *ch = &priv->channel[chan];
2269         unsigned long flags;
2270 
2271         spin_lock_irqsave(&ch->lock, flags);
2272         stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2273         spin_unlock_irqrestore(&ch->lock, flags);
2274     }
2275 }
2276 
2277 /**
2278  * stmmac_start_all_dma - start all RX and TX DMA channels
2279  * @priv: driver private structure
2280  * Description:
2281  * This starts all the RX and TX DMA channels
2282  */
2283 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2284 {
2285     u32 rx_channels_count = priv->plat->rx_queues_to_use;
2286     u32 tx_channels_count = priv->plat->tx_queues_to_use;
2287     u32 chan = 0;
2288 
2289     for (chan = 0; chan < rx_channels_count; chan++)
2290         stmmac_start_rx_dma(priv, chan);
2291 
2292     for (chan = 0; chan < tx_channels_count; chan++)
2293         stmmac_start_tx_dma(priv, chan);
2294 }
2295 
2296 /**
2297  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2298  * @priv: driver private structure
2299  * Description:
2300  * This stops the RX and TX DMA channels
2301  */
2302 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2303 {
2304     u32 rx_channels_count = priv->plat->rx_queues_to_use;
2305     u32 tx_channels_count = priv->plat->tx_queues_to_use;
2306     u32 chan = 0;
2307 
2308     for (chan = 0; chan < rx_channels_count; chan++)
2309         stmmac_stop_rx_dma(priv, chan);
2310 
2311     for (chan = 0; chan < tx_channels_count; chan++)
2312         stmmac_stop_tx_dma(priv, chan);
2313 }
2314 
2315 /**
2316  *  stmmac_dma_operation_mode - HW DMA operation mode
2317  *  @priv: driver private structure
2318  *  Description: it is used for configuring the DMA operation mode register in
2319  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2320  */
2321 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2322 {
2323     u32 rx_channels_count = priv->plat->rx_queues_to_use;
2324     u32 tx_channels_count = priv->plat->tx_queues_to_use;
2325     int rxfifosz = priv->plat->rx_fifo_size;
2326     int txfifosz = priv->plat->tx_fifo_size;
2327     u32 txmode = 0;
2328     u32 rxmode = 0;
2329     u32 chan = 0;
2330     u8 qmode = 0;
2331 
2332     if (rxfifosz == 0)
2333         rxfifosz = priv->dma_cap.rx_fifo_size;
2334     if (txfifosz == 0)
2335         txfifosz = priv->dma_cap.tx_fifo_size;
2336 
2337     /* Adjust for real per queue fifo size */
2338     rxfifosz /= rx_channels_count;
2339     txfifosz /= tx_channels_count;
2340 
2341     if (priv->plat->force_thresh_dma_mode) {
2342         txmode = tc;
2343         rxmode = tc;
2344     } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2345         /*
2346          * In case of GMAC, SF mode can be enabled
2347          * to perform the TX COE in HW. This depends on:
2348          * 1) TX COE if actually supported
2349          * 2) There is no bugged Jumbo frame support
2350          *    that needs to not insert csum in the TDES.
2351          */
2352         txmode = SF_DMA_MODE;
2353         rxmode = SF_DMA_MODE;
2354         priv->xstats.threshold = SF_DMA_MODE;
2355     } else {
2356         txmode = tc;
2357         rxmode = SF_DMA_MODE;
2358     }
2359 
2360     /* configure all channels */
2361     for (chan = 0; chan < rx_channels_count; chan++) {
2362         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2363         u32 buf_size;
2364 
2365         qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2366 
2367         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2368                 rxfifosz, qmode);
2369 
2370         if (rx_q->xsk_pool) {
2371             buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2372             stmmac_set_dma_bfsize(priv, priv->ioaddr,
2373                           buf_size,
2374                           chan);
2375         } else {
2376             stmmac_set_dma_bfsize(priv, priv->ioaddr,
2377                           priv->dma_conf.dma_buf_sz,
2378                           chan);
2379         }
2380     }
2381 
2382     for (chan = 0; chan < tx_channels_count; chan++) {
2383         qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2384 
2385         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2386                 txfifosz, qmode);
2387     }
2388 }
2389 
2390 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2391 {
2392     struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2393     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2394     struct xsk_buff_pool *pool = tx_q->xsk_pool;
2395     unsigned int entry = tx_q->cur_tx;
2396     struct dma_desc *tx_desc = NULL;
2397     struct xdp_desc xdp_desc;
2398     bool work_done = true;
2399 
2400     /* Avoids TX time-out as we are sharing with slow path */
2401     txq_trans_cond_update(nq);
2402 
2403     budget = min(budget, stmmac_tx_avail(priv, queue));
2404 
2405     while (budget-- > 0) {
2406         dma_addr_t dma_addr;
2407         bool set_ic;
2408 
2409         /* We are sharing with slow path and stop XSK TX desc submission when
2410          * available TX ring is less than threshold.
2411          */
2412         if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2413             !netif_carrier_ok(priv->dev)) {
2414             work_done = false;
2415             break;
2416         }
2417 
2418         if (!xsk_tx_peek_desc(pool, &xdp_desc))
2419             break;
2420 
2421         if (likely(priv->extend_desc))
2422             tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2423         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2424             tx_desc = &tx_q->dma_entx[entry].basic;
2425         else
2426             tx_desc = tx_q->dma_tx + entry;
2427 
2428         dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2429         xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2430 
2431         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2432 
2433         /* To return XDP buffer to XSK pool, we simple call
2434          * xsk_tx_completed(), so we don't need to fill up
2435          * 'buf' and 'xdpf'.
2436          */
2437         tx_q->tx_skbuff_dma[entry].buf = 0;
2438         tx_q->xdpf[entry] = NULL;
2439 
2440         tx_q->tx_skbuff_dma[entry].map_as_page = false;
2441         tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2442         tx_q->tx_skbuff_dma[entry].last_segment = true;
2443         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2444 
2445         stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2446 
2447         tx_q->tx_count_frames++;
2448 
2449         if (!priv->tx_coal_frames[queue])
2450             set_ic = false;
2451         else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2452             set_ic = true;
2453         else
2454             set_ic = false;
2455 
2456         if (set_ic) {
2457             tx_q->tx_count_frames = 0;
2458             stmmac_set_tx_ic(priv, tx_desc);
2459             priv->xstats.tx_set_ic_bit++;
2460         }
2461 
2462         stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2463                        true, priv->mode, true, true,
2464                        xdp_desc.len);
2465 
2466         stmmac_enable_dma_transmission(priv, priv->ioaddr);
2467 
2468         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2469         entry = tx_q->cur_tx;
2470     }
2471 
2472     if (tx_desc) {
2473         stmmac_flush_tx_descriptors(priv, queue);
2474         xsk_tx_release(pool);
2475     }
2476 
2477     /* Return true if all of the 3 conditions are met
2478      *  a) TX Budget is still available
2479      *  b) work_done = true when XSK TX desc peek is empty (no more
2480      *     pending XSK TX for transmission)
2481      */
2482     return !!budget && work_done;
2483 }
2484 
2485 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2486 {
2487     if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2488         tc += 64;
2489 
2490         if (priv->plat->force_thresh_dma_mode)
2491             stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2492         else
2493             stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2494                               chan);
2495 
2496         priv->xstats.threshold = tc;
2497     }
2498 }
2499 
2500 /**
2501  * stmmac_tx_clean - to manage the transmission completion
2502  * @priv: driver private structure
2503  * @budget: napi budget limiting this functions packet handling
2504  * @queue: TX queue index
2505  * Description: it reclaims the transmit resources after transmission completes.
2506  */
2507 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2508 {
2509     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2510     unsigned int bytes_compl = 0, pkts_compl = 0;
2511     unsigned int entry, xmits = 0, count = 0;
2512 
2513     __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2514 
2515     priv->xstats.tx_clean++;
2516 
2517     tx_q->xsk_frames_done = 0;
2518 
2519     entry = tx_q->dirty_tx;
2520 
2521     /* Try to clean all TX complete frame in 1 shot */
2522     while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2523         struct xdp_frame *xdpf;
2524         struct sk_buff *skb;
2525         struct dma_desc *p;
2526         int status;
2527 
2528         if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2529             tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2530             xdpf = tx_q->xdpf[entry];
2531             skb = NULL;
2532         } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2533             xdpf = NULL;
2534             skb = tx_q->tx_skbuff[entry];
2535         } else {
2536             xdpf = NULL;
2537             skb = NULL;
2538         }
2539 
2540         if (priv->extend_desc)
2541             p = (struct dma_desc *)(tx_q->dma_etx + entry);
2542         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2543             p = &tx_q->dma_entx[entry].basic;
2544         else
2545             p = tx_q->dma_tx + entry;
2546 
2547         status = stmmac_tx_status(priv, &priv->dev->stats,
2548                 &priv->xstats, p, priv->ioaddr);
2549         /* Check if the descriptor is owned by the DMA */
2550         if (unlikely(status & tx_dma_own))
2551             break;
2552 
2553         count++;
2554 
2555         /* Make sure descriptor fields are read after reading
2556          * the own bit.
2557          */
2558         dma_rmb();
2559 
2560         /* Just consider the last segment and ...*/
2561         if (likely(!(status & tx_not_ls))) {
2562             /* ... verify the status error condition */
2563             if (unlikely(status & tx_err)) {
2564                 priv->dev->stats.tx_errors++;
2565                 if (unlikely(status & tx_err_bump_tc))
2566                     stmmac_bump_dma_threshold(priv, queue);
2567             } else {
2568                 priv->dev->stats.tx_packets++;
2569                 priv->xstats.tx_pkt_n++;
2570                 priv->xstats.txq_stats[queue].tx_pkt_n++;
2571             }
2572             if (skb)
2573                 stmmac_get_tx_hwtstamp(priv, p, skb);
2574         }
2575 
2576         if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2577                tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2578             if (tx_q->tx_skbuff_dma[entry].map_as_page)
2579                 dma_unmap_page(priv->device,
2580                            tx_q->tx_skbuff_dma[entry].buf,
2581                            tx_q->tx_skbuff_dma[entry].len,
2582                            DMA_TO_DEVICE);
2583             else
2584                 dma_unmap_single(priv->device,
2585                          tx_q->tx_skbuff_dma[entry].buf,
2586                          tx_q->tx_skbuff_dma[entry].len,
2587                          DMA_TO_DEVICE);
2588             tx_q->tx_skbuff_dma[entry].buf = 0;
2589             tx_q->tx_skbuff_dma[entry].len = 0;
2590             tx_q->tx_skbuff_dma[entry].map_as_page = false;
2591         }
2592 
2593         stmmac_clean_desc3(priv, tx_q, p);
2594 
2595         tx_q->tx_skbuff_dma[entry].last_segment = false;
2596         tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2597 
2598         if (xdpf &&
2599             tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2600             xdp_return_frame_rx_napi(xdpf);
2601             tx_q->xdpf[entry] = NULL;
2602         }
2603 
2604         if (xdpf &&
2605             tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2606             xdp_return_frame(xdpf);
2607             tx_q->xdpf[entry] = NULL;
2608         }
2609 
2610         if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2611             tx_q->xsk_frames_done++;
2612 
2613         if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2614             if (likely(skb)) {
2615                 pkts_compl++;
2616                 bytes_compl += skb->len;
2617                 dev_consume_skb_any(skb);
2618                 tx_q->tx_skbuff[entry] = NULL;
2619             }
2620         }
2621 
2622         stmmac_release_tx_desc(priv, p, priv->mode);
2623 
2624         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2625     }
2626     tx_q->dirty_tx = entry;
2627 
2628     netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2629                   pkts_compl, bytes_compl);
2630 
2631     if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2632                                 queue))) &&
2633         stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2634 
2635         netif_dbg(priv, tx_done, priv->dev,
2636               "%s: restart transmit\n", __func__);
2637         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2638     }
2639 
2640     if (tx_q->xsk_pool) {
2641         bool work_done;
2642 
2643         if (tx_q->xsk_frames_done)
2644             xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2645 
2646         if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2647             xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2648 
2649         /* For XSK TX, we try to send as many as possible.
2650          * If XSK work done (XSK TX desc empty and budget still
2651          * available), return "budget - 1" to reenable TX IRQ.
2652          * Else, return "budget" to make NAPI continue polling.
2653          */
2654         work_done = stmmac_xdp_xmit_zc(priv, queue,
2655                            STMMAC_XSK_TX_BUDGET_MAX);
2656         if (work_done)
2657             xmits = budget - 1;
2658         else
2659             xmits = budget;
2660     }
2661 
2662     if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2663         priv->eee_sw_timer_en) {
2664         if (stmmac_enable_eee_mode(priv))
2665             mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2666     }
2667 
2668     /* We still have pending packets, let's call for a new scheduling */
2669     if (tx_q->dirty_tx != tx_q->cur_tx)
2670         hrtimer_start(&tx_q->txtimer,
2671                   STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2672                   HRTIMER_MODE_REL);
2673 
2674     __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2675 
2676     /* Combine decisions from TX clean and XSK TX */
2677     return max(count, xmits);
2678 }
2679 
2680 /**
2681  * stmmac_tx_err - to manage the tx error
2682  * @priv: driver private structure
2683  * @chan: channel index
2684  * Description: it cleans the descriptors and restarts the transmission
2685  * in case of transmission errors.
2686  */
2687 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2688 {
2689     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2690 
2691     netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2692 
2693     stmmac_stop_tx_dma(priv, chan);
2694     dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2695     stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2696     stmmac_reset_tx_queue(priv, chan);
2697     stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2698                 tx_q->dma_tx_phy, chan);
2699     stmmac_start_tx_dma(priv, chan);
2700 
2701     priv->dev->stats.tx_errors++;
2702     netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2703 }
2704 
2705 /**
2706  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2707  *  @priv: driver private structure
2708  *  @txmode: TX operating mode
2709  *  @rxmode: RX operating mode
2710  *  @chan: channel index
2711  *  Description: it is used for configuring of the DMA operation mode in
2712  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2713  *  mode.
2714  */
2715 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2716                       u32 rxmode, u32 chan)
2717 {
2718     u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2719     u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2720     u32 rx_channels_count = priv->plat->rx_queues_to_use;
2721     u32 tx_channels_count = priv->plat->tx_queues_to_use;
2722     int rxfifosz = priv->plat->rx_fifo_size;
2723     int txfifosz = priv->plat->tx_fifo_size;
2724 
2725     if (rxfifosz == 0)
2726         rxfifosz = priv->dma_cap.rx_fifo_size;
2727     if (txfifosz == 0)
2728         txfifosz = priv->dma_cap.tx_fifo_size;
2729 
2730     /* Adjust for real per queue fifo size */
2731     rxfifosz /= rx_channels_count;
2732     txfifosz /= tx_channels_count;
2733 
2734     stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2735     stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2736 }
2737 
2738 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2739 {
2740     int ret;
2741 
2742     ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2743             priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2744     if (ret && (ret != -EINVAL)) {
2745         stmmac_global_err(priv);
2746         return true;
2747     }
2748 
2749     return false;
2750 }
2751 
2752 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2753 {
2754     int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2755                          &priv->xstats, chan, dir);
2756     struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2757     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2758     struct stmmac_channel *ch = &priv->channel[chan];
2759     struct napi_struct *rx_napi;
2760     struct napi_struct *tx_napi;
2761     unsigned long flags;
2762 
2763     rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2764     tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2765 
2766     if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2767         if (napi_schedule_prep(rx_napi)) {
2768             spin_lock_irqsave(&ch->lock, flags);
2769             stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2770             spin_unlock_irqrestore(&ch->lock, flags);
2771             __napi_schedule(rx_napi);
2772         }
2773     }
2774 
2775     if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2776         if (napi_schedule_prep(tx_napi)) {
2777             spin_lock_irqsave(&ch->lock, flags);
2778             stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2779             spin_unlock_irqrestore(&ch->lock, flags);
2780             __napi_schedule(tx_napi);
2781         }
2782     }
2783 
2784     return status;
2785 }
2786 
2787 /**
2788  * stmmac_dma_interrupt - DMA ISR
2789  * @priv: driver private structure
2790  * Description: this is the DMA ISR. It is called by the main ISR.
2791  * It calls the dwmac dma routine and schedule poll method in case of some
2792  * work can be done.
2793  */
2794 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2795 {
2796     u32 tx_channel_count = priv->plat->tx_queues_to_use;
2797     u32 rx_channel_count = priv->plat->rx_queues_to_use;
2798     u32 channels_to_check = tx_channel_count > rx_channel_count ?
2799                 tx_channel_count : rx_channel_count;
2800     u32 chan;
2801     int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2802 
2803     /* Make sure we never check beyond our status buffer. */
2804     if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2805         channels_to_check = ARRAY_SIZE(status);
2806 
2807     for (chan = 0; chan < channels_to_check; chan++)
2808         status[chan] = stmmac_napi_check(priv, chan,
2809                          DMA_DIR_RXTX);
2810 
2811     for (chan = 0; chan < tx_channel_count; chan++) {
2812         if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2813             /* Try to bump up the dma threshold on this failure */
2814             stmmac_bump_dma_threshold(priv, chan);
2815         } else if (unlikely(status[chan] == tx_hard_error)) {
2816             stmmac_tx_err(priv, chan);
2817         }
2818     }
2819 }
2820 
2821 /**
2822  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2823  * @priv: driver private structure
2824  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2825  */
2826 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2827 {
2828     unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2829                 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2830 
2831     stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2832 
2833     if (priv->dma_cap.rmon) {
2834         stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2835         memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2836     } else
2837         netdev_info(priv->dev, "No MAC Management Counters available\n");
2838 }
2839 
2840 /**
2841  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2842  * @priv: driver private structure
2843  * Description:
2844  *  new GMAC chip generations have a new register to indicate the
2845  *  presence of the optional feature/functions.
2846  *  This can be also used to override the value passed through the
2847  *  platform and necessary for old MAC10/100 and GMAC chips.
2848  */
2849 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2850 {
2851     return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2852 }
2853 
2854 /**
2855  * stmmac_check_ether_addr - check if the MAC addr is valid
2856  * @priv: driver private structure
2857  * Description:
2858  * it is to verify if the MAC address is valid, in case of failures it
2859  * generates a random MAC address
2860  */
2861 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2862 {
2863     u8 addr[ETH_ALEN];
2864 
2865     if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2866         stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2867         if (is_valid_ether_addr(addr))
2868             eth_hw_addr_set(priv->dev, addr);
2869         else
2870             eth_hw_addr_random(priv->dev);
2871         dev_info(priv->device, "device MAC address %pM\n",
2872              priv->dev->dev_addr);
2873     }
2874 }
2875 
2876 /**
2877  * stmmac_init_dma_engine - DMA init.
2878  * @priv: driver private structure
2879  * Description:
2880  * It inits the DMA invoking the specific MAC/GMAC callback.
2881  * Some DMA parameters can be passed from the platform;
2882  * in case of these are not passed a default is kept for the MAC or GMAC.
2883  */
2884 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2885 {
2886     u32 rx_channels_count = priv->plat->rx_queues_to_use;
2887     u32 tx_channels_count = priv->plat->tx_queues_to_use;
2888     u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2889     struct stmmac_rx_queue *rx_q;
2890     struct stmmac_tx_queue *tx_q;
2891     u32 chan = 0;
2892     int atds = 0;
2893     int ret = 0;
2894 
2895     if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2896         dev_err(priv->device, "Invalid DMA configuration\n");
2897         return -EINVAL;
2898     }
2899 
2900     if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2901         atds = 1;
2902 
2903     ret = stmmac_reset(priv, priv->ioaddr);
2904     if (ret) {
2905         dev_err(priv->device, "Failed to reset the dma\n");
2906         return ret;
2907     }
2908 
2909     /* DMA Configuration */
2910     stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2911 
2912     if (priv->plat->axi)
2913         stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2914 
2915     /* DMA CSR Channel configuration */
2916     for (chan = 0; chan < dma_csr_ch; chan++) {
2917         stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2918         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2919     }
2920 
2921     /* DMA RX Channel Configuration */
2922     for (chan = 0; chan < rx_channels_count; chan++) {
2923         rx_q = &priv->dma_conf.rx_queue[chan];
2924 
2925         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2926                     rx_q->dma_rx_phy, chan);
2927 
2928         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2929                      (rx_q->buf_alloc_num *
2930                       sizeof(struct dma_desc));
2931         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2932                        rx_q->rx_tail_addr, chan);
2933     }
2934 
2935     /* DMA TX Channel Configuration */
2936     for (chan = 0; chan < tx_channels_count; chan++) {
2937         tx_q = &priv->dma_conf.tx_queue[chan];
2938 
2939         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2940                     tx_q->dma_tx_phy, chan);
2941 
2942         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2943         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2944                        tx_q->tx_tail_addr, chan);
2945     }
2946 
2947     return ret;
2948 }
2949 
2950 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2951 {
2952     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2953 
2954     hrtimer_start(&tx_q->txtimer,
2955               STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2956               HRTIMER_MODE_REL);
2957 }
2958 
2959 /**
2960  * stmmac_tx_timer - mitigation sw timer for tx.
2961  * @t: data pointer
2962  * Description:
2963  * This is the timer handler to directly invoke the stmmac_tx_clean.
2964  */
2965 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2966 {
2967     struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2968     struct stmmac_priv *priv = tx_q->priv_data;
2969     struct stmmac_channel *ch;
2970     struct napi_struct *napi;
2971 
2972     ch = &priv->channel[tx_q->queue_index];
2973     napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2974 
2975     if (likely(napi_schedule_prep(napi))) {
2976         unsigned long flags;
2977 
2978         spin_lock_irqsave(&ch->lock, flags);
2979         stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2980         spin_unlock_irqrestore(&ch->lock, flags);
2981         __napi_schedule(napi);
2982     }
2983 
2984     return HRTIMER_NORESTART;
2985 }
2986 
2987 /**
2988  * stmmac_init_coalesce - init mitigation options.
2989  * @priv: driver private structure
2990  * Description:
2991  * This inits the coalesce parameters: i.e. timer rate,
2992  * timer handler and default threshold used for enabling the
2993  * interrupt on completion bit.
2994  */
2995 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2996 {
2997     u32 tx_channel_count = priv->plat->tx_queues_to_use;
2998     u32 rx_channel_count = priv->plat->rx_queues_to_use;
2999     u32 chan;
3000 
3001     for (chan = 0; chan < tx_channel_count; chan++) {
3002         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3003 
3004         priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3005         priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3006 
3007         hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3008         tx_q->txtimer.function = stmmac_tx_timer;
3009     }
3010 
3011     for (chan = 0; chan < rx_channel_count; chan++)
3012         priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3013 }
3014 
3015 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3016 {
3017     u32 rx_channels_count = priv->plat->rx_queues_to_use;
3018     u32 tx_channels_count = priv->plat->tx_queues_to_use;
3019     u32 chan;
3020 
3021     /* set TX ring length */
3022     for (chan = 0; chan < tx_channels_count; chan++)
3023         stmmac_set_tx_ring_len(priv, priv->ioaddr,
3024                        (priv->dma_conf.dma_tx_size - 1), chan);
3025 
3026     /* set RX ring length */
3027     for (chan = 0; chan < rx_channels_count; chan++)
3028         stmmac_set_rx_ring_len(priv, priv->ioaddr,
3029                        (priv->dma_conf.dma_rx_size - 1), chan);
3030 }
3031 
3032 /**
3033  *  stmmac_set_tx_queue_weight - Set TX queue weight
3034  *  @priv: driver private structure
3035  *  Description: It is used for setting TX queues weight
3036  */
3037 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3038 {
3039     u32 tx_queues_count = priv->plat->tx_queues_to_use;
3040     u32 weight;
3041     u32 queue;
3042 
3043     for (queue = 0; queue < tx_queues_count; queue++) {
3044         weight = priv->plat->tx_queues_cfg[queue].weight;
3045         stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3046     }
3047 }
3048 
3049 /**
3050  *  stmmac_configure_cbs - Configure CBS in TX queue
3051  *  @priv: driver private structure
3052  *  Description: It is used for configuring CBS in AVB TX queues
3053  */
3054 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3055 {
3056     u32 tx_queues_count = priv->plat->tx_queues_to_use;
3057     u32 mode_to_use;
3058     u32 queue;
3059 
3060     /* queue 0 is reserved for legacy traffic */
3061     for (queue = 1; queue < tx_queues_count; queue++) {
3062         mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3063         if (mode_to_use == MTL_QUEUE_DCB)
3064             continue;
3065 
3066         stmmac_config_cbs(priv, priv->hw,
3067                 priv->plat->tx_queues_cfg[queue].send_slope,
3068                 priv->plat->tx_queues_cfg[queue].idle_slope,
3069                 priv->plat->tx_queues_cfg[queue].high_credit,
3070                 priv->plat->tx_queues_cfg[queue].low_credit,
3071                 queue);
3072     }
3073 }
3074 
3075 /**
3076  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3077  *  @priv: driver private structure
3078  *  Description: It is used for mapping RX queues to RX dma channels
3079  */
3080 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3081 {
3082     u32 rx_queues_count = priv->plat->rx_queues_to_use;
3083     u32 queue;
3084     u32 chan;
3085 
3086     for (queue = 0; queue < rx_queues_count; queue++) {
3087         chan = priv->plat->rx_queues_cfg[queue].chan;
3088         stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3089     }
3090 }
3091 
3092 /**
3093  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3094  *  @priv: driver private structure
3095  *  Description: It is used for configuring the RX Queue Priority
3096  */
3097 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3098 {
3099     u32 rx_queues_count = priv->plat->rx_queues_to_use;
3100     u32 queue;
3101     u32 prio;
3102 
3103     for (queue = 0; queue < rx_queues_count; queue++) {
3104         if (!priv->plat->rx_queues_cfg[queue].use_prio)
3105             continue;
3106 
3107         prio = priv->plat->rx_queues_cfg[queue].prio;
3108         stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3109     }
3110 }
3111 
3112 /**
3113  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3114  *  @priv: driver private structure
3115  *  Description: It is used for configuring the TX Queue Priority
3116  */
3117 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3118 {
3119     u32 tx_queues_count = priv->plat->tx_queues_to_use;
3120     u32 queue;
3121     u32 prio;
3122 
3123     for (queue = 0; queue < tx_queues_count; queue++) {
3124         if (!priv->plat->tx_queues_cfg[queue].use_prio)
3125             continue;
3126 
3127         prio = priv->plat->tx_queues_cfg[queue].prio;
3128         stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3129     }
3130 }
3131 
3132 /**
3133  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3134  *  @priv: driver private structure
3135  *  Description: It is used for configuring the RX queue routing
3136  */
3137 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3138 {
3139     u32 rx_queues_count = priv->plat->rx_queues_to_use;
3140     u32 queue;
3141     u8 packet;
3142 
3143     for (queue = 0; queue < rx_queues_count; queue++) {
3144         /* no specific packet type routing specified for the queue */
3145         if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3146             continue;
3147 
3148         packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3149         stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3150     }
3151 }
3152 
3153 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3154 {
3155     if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3156         priv->rss.enable = false;
3157         return;
3158     }
3159 
3160     if (priv->dev->features & NETIF_F_RXHASH)
3161         priv->rss.enable = true;
3162     else
3163         priv->rss.enable = false;
3164 
3165     stmmac_rss_configure(priv, priv->hw, &priv->rss,
3166                  priv->plat->rx_queues_to_use);
3167 }
3168 
3169 /**
3170  *  stmmac_mtl_configuration - Configure MTL
3171  *  @priv: driver private structure
3172  *  Description: It is used for configurring MTL
3173  */
3174 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3175 {
3176     u32 rx_queues_count = priv->plat->rx_queues_to_use;
3177     u32 tx_queues_count = priv->plat->tx_queues_to_use;
3178 
3179     if (tx_queues_count > 1)
3180         stmmac_set_tx_queue_weight(priv);
3181 
3182     /* Configure MTL RX algorithms */
3183     if (rx_queues_count > 1)
3184         stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3185                 priv->plat->rx_sched_algorithm);
3186 
3187     /* Configure MTL TX algorithms */
3188     if (tx_queues_count > 1)
3189         stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3190                 priv->plat->tx_sched_algorithm);
3191 
3192     /* Configure CBS in AVB TX queues */
3193     if (tx_queues_count > 1)
3194         stmmac_configure_cbs(priv);
3195 
3196     /* Map RX MTL to DMA channels */
3197     stmmac_rx_queue_dma_chan_map(priv);
3198 
3199     /* Enable MAC RX Queues */
3200     stmmac_mac_enable_rx_queues(priv);
3201 
3202     /* Set RX priorities */
3203     if (rx_queues_count > 1)
3204         stmmac_mac_config_rx_queues_prio(priv);
3205 
3206     /* Set TX priorities */
3207     if (tx_queues_count > 1)
3208         stmmac_mac_config_tx_queues_prio(priv);
3209 
3210     /* Set RX routing */
3211     if (rx_queues_count > 1)
3212         stmmac_mac_config_rx_queues_routing(priv);
3213 
3214     /* Receive Side Scaling */
3215     if (rx_queues_count > 1)
3216         stmmac_mac_config_rss(priv);
3217 }
3218 
3219 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3220 {
3221     if (priv->dma_cap.asp) {
3222         netdev_info(priv->dev, "Enabling Safety Features\n");
3223         stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3224                       priv->plat->safety_feat_cfg);
3225     } else {
3226         netdev_info(priv->dev, "No Safety Features support found\n");
3227     }
3228 }
3229 
3230 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3231 {
3232     char *name;
3233 
3234     clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3235     clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3236 
3237     name = priv->wq_name;
3238     sprintf(name, "%s-fpe", priv->dev->name);
3239 
3240     priv->fpe_wq = create_singlethread_workqueue(name);
3241     if (!priv->fpe_wq) {
3242         netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3243 
3244         return -ENOMEM;
3245     }
3246     netdev_info(priv->dev, "FPE workqueue start");
3247 
3248     return 0;
3249 }
3250 
3251 /**
3252  * stmmac_hw_setup - setup mac in a usable state.
3253  *  @dev : pointer to the device structure.
3254  *  @ptp_register: register PTP if set
3255  *  Description:
3256  *  this is the main function to setup the HW in a usable state because the
3257  *  dma engine is reset, the core registers are configured (e.g. AXI,
3258  *  Checksum features, timers). The DMA is ready to start receiving and
3259  *  transmitting.
3260  *  Return value:
3261  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3262  *  file on failure.
3263  */
3264 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3265 {
3266     struct stmmac_priv *priv = netdev_priv(dev);
3267     u32 rx_cnt = priv->plat->rx_queues_to_use;
3268     u32 tx_cnt = priv->plat->tx_queues_to_use;
3269     bool sph_en;
3270     u32 chan;
3271     int ret;
3272 
3273     /* DMA initialization and SW reset */
3274     ret = stmmac_init_dma_engine(priv);
3275     if (ret < 0) {
3276         netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3277                __func__);
3278         return ret;
3279     }
3280 
3281     /* Copy the MAC addr into the HW  */
3282     stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3283 
3284     /* PS and related bits will be programmed according to the speed */
3285     if (priv->hw->pcs) {
3286         int speed = priv->plat->mac_port_sel_speed;
3287 
3288         if ((speed == SPEED_10) || (speed == SPEED_100) ||
3289             (speed == SPEED_1000)) {
3290             priv->hw->ps = speed;
3291         } else {
3292             dev_warn(priv->device, "invalid port speed\n");
3293             priv->hw->ps = 0;
3294         }
3295     }
3296 
3297     /* Initialize the MAC Core */
3298     stmmac_core_init(priv, priv->hw, dev);
3299 
3300     /* Initialize MTL*/
3301     stmmac_mtl_configuration(priv);
3302 
3303     /* Initialize Safety Features */
3304     stmmac_safety_feat_configuration(priv);
3305 
3306     ret = stmmac_rx_ipc(priv, priv->hw);
3307     if (!ret) {
3308         netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3309         priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3310         priv->hw->rx_csum = 0;
3311     }
3312 
3313     /* Enable the MAC Rx/Tx */
3314     stmmac_mac_set(priv, priv->ioaddr, true);
3315 
3316     /* Set the HW DMA mode and the COE */
3317     stmmac_dma_operation_mode(priv);
3318 
3319     stmmac_mmc_setup(priv);
3320 
3321     if (ptp_register) {
3322         ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3323         if (ret < 0)
3324             netdev_warn(priv->dev,
3325                     "failed to enable PTP reference clock: %pe\n",
3326                     ERR_PTR(ret));
3327     }
3328 
3329     ret = stmmac_init_ptp(priv);
3330     if (ret == -EOPNOTSUPP)
3331         netdev_info(priv->dev, "PTP not supported by HW\n");
3332     else if (ret)
3333         netdev_warn(priv->dev, "PTP init failed\n");
3334     else if (ptp_register)
3335         stmmac_ptp_register(priv);
3336 
3337     priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3338 
3339     /* Convert the timer from msec to usec */
3340     if (!priv->tx_lpi_timer)
3341         priv->tx_lpi_timer = eee_timer * 1000;
3342 
3343     if (priv->use_riwt) {
3344         u32 queue;
3345 
3346         for (queue = 0; queue < rx_cnt; queue++) {
3347             if (!priv->rx_riwt[queue])
3348                 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3349 
3350             stmmac_rx_watchdog(priv, priv->ioaddr,
3351                        priv->rx_riwt[queue], queue);
3352         }
3353     }
3354 
3355     if (priv->hw->pcs)
3356         stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3357 
3358     /* set TX and RX rings length */
3359     stmmac_set_rings_length(priv);
3360 
3361     /* Enable TSO */
3362     if (priv->tso) {
3363         for (chan = 0; chan < tx_cnt; chan++) {
3364             struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3365 
3366             /* TSO and TBS cannot co-exist */
3367             if (tx_q->tbs & STMMAC_TBS_AVAIL)
3368                 continue;
3369 
3370             stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3371         }
3372     }
3373 
3374     /* Enable Split Header */
3375     sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3376     for (chan = 0; chan < rx_cnt; chan++)
3377         stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3378 
3379 
3380     /* VLAN Tag Insertion */
3381     if (priv->dma_cap.vlins)
3382         stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3383 
3384     /* TBS */
3385     for (chan = 0; chan < tx_cnt; chan++) {
3386         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3387         int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3388 
3389         stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3390     }
3391 
3392     /* Configure real RX and TX queues */
3393     netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3394     netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3395 
3396     /* Start the ball rolling... */
3397     stmmac_start_all_dma(priv);
3398 
3399     if (priv->dma_cap.fpesel) {
3400         stmmac_fpe_start_wq(priv);
3401 
3402         if (priv->plat->fpe_cfg->enable)
3403             stmmac_fpe_handshake(priv, true);
3404     }
3405 
3406     return 0;
3407 }
3408 
3409 static void stmmac_hw_teardown(struct net_device *dev)
3410 {
3411     struct stmmac_priv *priv = netdev_priv(dev);
3412 
3413     clk_disable_unprepare(priv->plat->clk_ptp_ref);
3414 }
3415 
3416 static void stmmac_free_irq(struct net_device *dev,
3417                 enum request_irq_err irq_err, int irq_idx)
3418 {
3419     struct stmmac_priv *priv = netdev_priv(dev);
3420     int j;
3421 
3422     switch (irq_err) {
3423     case REQ_IRQ_ERR_ALL:
3424         irq_idx = priv->plat->tx_queues_to_use;
3425         fallthrough;
3426     case REQ_IRQ_ERR_TX:
3427         for (j = irq_idx - 1; j >= 0; j--) {
3428             if (priv->tx_irq[j] > 0) {
3429                 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3430                 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3431             }
3432         }
3433         irq_idx = priv->plat->rx_queues_to_use;
3434         fallthrough;
3435     case REQ_IRQ_ERR_RX:
3436         for (j = irq_idx - 1; j >= 0; j--) {
3437             if (priv->rx_irq[j] > 0) {
3438                 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3439                 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3440             }
3441         }
3442 
3443         if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3444             free_irq(priv->sfty_ue_irq, dev);
3445         fallthrough;
3446     case REQ_IRQ_ERR_SFTY_UE:
3447         if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3448             free_irq(priv->sfty_ce_irq, dev);
3449         fallthrough;
3450     case REQ_IRQ_ERR_SFTY_CE:
3451         if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3452             free_irq(priv->lpi_irq, dev);
3453         fallthrough;
3454     case REQ_IRQ_ERR_LPI:
3455         if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3456             free_irq(priv->wol_irq, dev);
3457         fallthrough;
3458     case REQ_IRQ_ERR_WOL:
3459         free_irq(dev->irq, dev);
3460         fallthrough;
3461     case REQ_IRQ_ERR_MAC:
3462     case REQ_IRQ_ERR_NO:
3463         /* If MAC IRQ request error, no more IRQ to free */
3464         break;
3465     }
3466 }
3467 
3468 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3469 {
3470     struct stmmac_priv *priv = netdev_priv(dev);
3471     enum request_irq_err irq_err;
3472     cpumask_t cpu_mask;
3473     int irq_idx = 0;
3474     char *int_name;
3475     int ret;
3476     int i;
3477 
3478     /* For common interrupt */
3479     int_name = priv->int_name_mac;
3480     sprintf(int_name, "%s:%s", dev->name, "mac");
3481     ret = request_irq(dev->irq, stmmac_mac_interrupt,
3482               0, int_name, dev);
3483     if (unlikely(ret < 0)) {
3484         netdev_err(priv->dev,
3485                "%s: alloc mac MSI %d (error: %d)\n",
3486                __func__, dev->irq, ret);
3487         irq_err = REQ_IRQ_ERR_MAC;
3488         goto irq_error;
3489     }
3490 
3491     /* Request the Wake IRQ in case of another line
3492      * is used for WoL
3493      */
3494     if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3495         int_name = priv->int_name_wol;
3496         sprintf(int_name, "%s:%s", dev->name, "wol");
3497         ret = request_irq(priv->wol_irq,
3498                   stmmac_mac_interrupt,
3499                   0, int_name, dev);
3500         if (unlikely(ret < 0)) {
3501             netdev_err(priv->dev,
3502                    "%s: alloc wol MSI %d (error: %d)\n",
3503                    __func__, priv->wol_irq, ret);
3504             irq_err = REQ_IRQ_ERR_WOL;
3505             goto irq_error;
3506         }
3507     }
3508 
3509     /* Request the LPI IRQ in case of another line
3510      * is used for LPI
3511      */
3512     if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3513         int_name = priv->int_name_lpi;
3514         sprintf(int_name, "%s:%s", dev->name, "lpi");
3515         ret = request_irq(priv->lpi_irq,
3516                   stmmac_mac_interrupt,
3517                   0, int_name, dev);
3518         if (unlikely(ret < 0)) {
3519             netdev_err(priv->dev,
3520                    "%s: alloc lpi MSI %d (error: %d)\n",
3521                    __func__, priv->lpi_irq, ret);
3522             irq_err = REQ_IRQ_ERR_LPI;
3523             goto irq_error;
3524         }
3525     }
3526 
3527     /* Request the Safety Feature Correctible Error line in
3528      * case of another line is used
3529      */
3530     if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3531         int_name = priv->int_name_sfty_ce;
3532         sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3533         ret = request_irq(priv->sfty_ce_irq,
3534                   stmmac_safety_interrupt,
3535                   0, int_name, dev);
3536         if (unlikely(ret < 0)) {
3537             netdev_err(priv->dev,
3538                    "%s: alloc sfty ce MSI %d (error: %d)\n",
3539                    __func__, priv->sfty_ce_irq, ret);
3540             irq_err = REQ_IRQ_ERR_SFTY_CE;
3541             goto irq_error;
3542         }
3543     }
3544 
3545     /* Request the Safety Feature Uncorrectible Error line in
3546      * case of another line is used
3547      */
3548     if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3549         int_name = priv->int_name_sfty_ue;
3550         sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3551         ret = request_irq(priv->sfty_ue_irq,
3552                   stmmac_safety_interrupt,
3553                   0, int_name, dev);
3554         if (unlikely(ret < 0)) {
3555             netdev_err(priv->dev,
3556                    "%s: alloc sfty ue MSI %d (error: %d)\n",
3557                    __func__, priv->sfty_ue_irq, ret);
3558             irq_err = REQ_IRQ_ERR_SFTY_UE;
3559             goto irq_error;
3560         }
3561     }
3562 
3563     /* Request Rx MSI irq */
3564     for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3565         if (i >= MTL_MAX_RX_QUEUES)
3566             break;
3567         if (priv->rx_irq[i] == 0)
3568             continue;
3569 
3570         int_name = priv->int_name_rx_irq[i];
3571         sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3572         ret = request_irq(priv->rx_irq[i],
3573                   stmmac_msi_intr_rx,
3574                   0, int_name, &priv->dma_conf.rx_queue[i]);
3575         if (unlikely(ret < 0)) {
3576             netdev_err(priv->dev,
3577                    "%s: alloc rx-%d  MSI %d (error: %d)\n",
3578                    __func__, i, priv->rx_irq[i], ret);
3579             irq_err = REQ_IRQ_ERR_RX;
3580             irq_idx = i;
3581             goto irq_error;
3582         }
3583         cpumask_clear(&cpu_mask);
3584         cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3585         irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3586     }
3587 
3588     /* Request Tx MSI irq */
3589     for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3590         if (i >= MTL_MAX_TX_QUEUES)
3591             break;
3592         if (priv->tx_irq[i] == 0)
3593             continue;
3594 
3595         int_name = priv->int_name_tx_irq[i];
3596         sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3597         ret = request_irq(priv->tx_irq[i],
3598                   stmmac_msi_intr_tx,
3599                   0, int_name, &priv->dma_conf.tx_queue[i]);
3600         if (unlikely(ret < 0)) {
3601             netdev_err(priv->dev,
3602                    "%s: alloc tx-%d  MSI %d (error: %d)\n",
3603                    __func__, i, priv->tx_irq[i], ret);
3604             irq_err = REQ_IRQ_ERR_TX;
3605             irq_idx = i;
3606             goto irq_error;
3607         }
3608         cpumask_clear(&cpu_mask);
3609         cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3610         irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3611     }
3612 
3613     return 0;
3614 
3615 irq_error:
3616     stmmac_free_irq(dev, irq_err, irq_idx);
3617     return ret;
3618 }
3619 
3620 static int stmmac_request_irq_single(struct net_device *dev)
3621 {
3622     struct stmmac_priv *priv = netdev_priv(dev);
3623     enum request_irq_err irq_err;
3624     int ret;
3625 
3626     ret = request_irq(dev->irq, stmmac_interrupt,
3627               IRQF_SHARED, dev->name, dev);
3628     if (unlikely(ret < 0)) {
3629         netdev_err(priv->dev,
3630                "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3631                __func__, dev->irq, ret);
3632         irq_err = REQ_IRQ_ERR_MAC;
3633         goto irq_error;
3634     }
3635 
3636     /* Request the Wake IRQ in case of another line
3637      * is used for WoL
3638      */
3639     if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3640         ret = request_irq(priv->wol_irq, stmmac_interrupt,
3641                   IRQF_SHARED, dev->name, dev);
3642         if (unlikely(ret < 0)) {
3643             netdev_err(priv->dev,
3644                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3645                    __func__, priv->wol_irq, ret);
3646             irq_err = REQ_IRQ_ERR_WOL;
3647             goto irq_error;
3648         }
3649     }
3650 
3651     /* Request the IRQ lines */
3652     if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3653         ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3654                   IRQF_SHARED, dev->name, dev);
3655         if (unlikely(ret < 0)) {
3656             netdev_err(priv->dev,
3657                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3658                    __func__, priv->lpi_irq, ret);
3659             irq_err = REQ_IRQ_ERR_LPI;
3660             goto irq_error;
3661         }
3662     }
3663 
3664     return 0;
3665 
3666 irq_error:
3667     stmmac_free_irq(dev, irq_err, 0);
3668     return ret;
3669 }
3670 
3671 static int stmmac_request_irq(struct net_device *dev)
3672 {
3673     struct stmmac_priv *priv = netdev_priv(dev);
3674     int ret;
3675 
3676     /* Request the IRQ lines */
3677     if (priv->plat->multi_msi_en)
3678         ret = stmmac_request_irq_multi_msi(dev);
3679     else
3680         ret = stmmac_request_irq_single(dev);
3681 
3682     return ret;
3683 }
3684 
3685 /**
3686  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3687  *  @priv: driver private structure
3688  *  @mtu: MTU to setup the dma queue and buf with
3689  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3690  *  Allocate the Tx/Rx DMA queue and init them.
3691  *  Return value:
3692  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3693  */
3694 static struct stmmac_dma_conf *
3695 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3696 {
3697     struct stmmac_dma_conf *dma_conf;
3698     int chan, bfsize, ret;
3699 
3700     dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3701     if (!dma_conf) {
3702         netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3703                __func__);
3704         return ERR_PTR(-ENOMEM);
3705     }
3706 
3707     bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3708     if (bfsize < 0)
3709         bfsize = 0;
3710 
3711     if (bfsize < BUF_SIZE_16KiB)
3712         bfsize = stmmac_set_bfsize(mtu, 0);
3713 
3714     dma_conf->dma_buf_sz = bfsize;
3715     /* Chose the tx/rx size from the already defined one in the
3716      * priv struct. (if defined)
3717      */
3718     dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3719     dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3720 
3721     if (!dma_conf->dma_tx_size)
3722         dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3723     if (!dma_conf->dma_rx_size)
3724         dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3725 
3726     /* Earlier check for TBS */
3727     for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3728         struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3729         int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3730 
3731         /* Setup per-TXQ tbs flag before TX descriptor alloc */
3732         tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3733     }
3734 
3735     ret = alloc_dma_desc_resources(priv, dma_conf);
3736     if (ret < 0) {
3737         netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3738                __func__);
3739         goto alloc_error;
3740     }
3741 
3742     ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3743     if (ret < 0) {
3744         netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3745                __func__);
3746         goto init_error;
3747     }
3748 
3749     return dma_conf;
3750 
3751 init_error:
3752     free_dma_desc_resources(priv, dma_conf);
3753 alloc_error:
3754     kfree(dma_conf);
3755     return ERR_PTR(ret);
3756 }
3757 
3758 /**
3759  *  __stmmac_open - open entry point of the driver
3760  *  @dev : pointer to the device structure.
3761  *  @dma_conf :  structure to take the dma data
3762  *  Description:
3763  *  This function is the open entry point of the driver.
3764  *  Return value:
3765  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3766  *  file on failure.
3767  */
3768 static int __stmmac_open(struct net_device *dev,
3769              struct stmmac_dma_conf *dma_conf)
3770 {
3771     struct stmmac_priv *priv = netdev_priv(dev);
3772     int mode = priv->plat->phy_interface;
3773     u32 chan;
3774     int ret;
3775 
3776     ret = pm_runtime_resume_and_get(priv->device);
3777     if (ret < 0)
3778         return ret;
3779 
3780     if (priv->hw->pcs != STMMAC_PCS_TBI &&
3781         priv->hw->pcs != STMMAC_PCS_RTBI &&
3782         (!priv->hw->xpcs ||
3783          xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3784         ret = stmmac_init_phy(dev);
3785         if (ret) {
3786             netdev_err(priv->dev,
3787                    "%s: Cannot attach to PHY (error: %d)\n",
3788                    __func__, ret);
3789             goto init_phy_error;
3790         }
3791     }
3792 
3793     /* Extra statistics */
3794     memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3795     priv->xstats.threshold = tc;
3796 
3797     priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3798 
3799     buf_sz = dma_conf->dma_buf_sz;
3800     memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3801 
3802     stmmac_reset_queues_param(priv);
3803 
3804     if (priv->plat->serdes_powerup) {
3805         ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3806         if (ret < 0) {
3807             netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3808                    __func__);
3809             goto init_error;
3810         }
3811     }
3812 
3813     ret = stmmac_hw_setup(dev, true);
3814     if (ret < 0) {
3815         netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3816         goto init_error;
3817     }
3818 
3819     stmmac_init_coalesce(priv);
3820 
3821     phylink_start(priv->phylink);
3822     /* We may have called phylink_speed_down before */
3823     phylink_speed_up(priv->phylink);
3824 
3825     ret = stmmac_request_irq(dev);
3826     if (ret)
3827         goto irq_error;
3828 
3829     stmmac_enable_all_queues(priv);
3830     netif_tx_start_all_queues(priv->dev);
3831     stmmac_enable_all_dma_irq(priv);
3832 
3833     return 0;
3834 
3835 irq_error:
3836     phylink_stop(priv->phylink);
3837 
3838     for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3839         hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3840 
3841     stmmac_hw_teardown(dev);
3842 init_error:
3843     free_dma_desc_resources(priv, &priv->dma_conf);
3844     phylink_disconnect_phy(priv->phylink);
3845 init_phy_error:
3846     pm_runtime_put(priv->device);
3847     return ret;
3848 }
3849 
3850 static int stmmac_open(struct net_device *dev)
3851 {
3852     struct stmmac_priv *priv = netdev_priv(dev);
3853     struct stmmac_dma_conf *dma_conf;
3854     int ret;
3855 
3856     dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3857     if (IS_ERR(dma_conf))
3858         return PTR_ERR(dma_conf);
3859 
3860     ret = __stmmac_open(dev, dma_conf);
3861     kfree(dma_conf);
3862     return ret;
3863 }
3864 
3865 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3866 {
3867     set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3868 
3869     if (priv->fpe_wq)
3870         destroy_workqueue(priv->fpe_wq);
3871 
3872     netdev_info(priv->dev, "FPE workqueue stop");
3873 }
3874 
3875 /**
3876  *  stmmac_release - close entry point of the driver
3877  *  @dev : device pointer.
3878  *  Description:
3879  *  This is the stop entry point of the driver.
3880  */
3881 static int stmmac_release(struct net_device *dev)
3882 {
3883     struct stmmac_priv *priv = netdev_priv(dev);
3884     u32 chan;
3885 
3886     if (device_may_wakeup(priv->device))
3887         phylink_speed_down(priv->phylink, false);
3888     /* Stop and disconnect the PHY */
3889     phylink_stop(priv->phylink);
3890     phylink_disconnect_phy(priv->phylink);
3891 
3892     stmmac_disable_all_queues(priv);
3893 
3894     for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3895         hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3896 
3897     netif_tx_disable(dev);
3898 
3899     /* Free the IRQ lines */
3900     stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3901 
3902     if (priv->eee_enabled) {
3903         priv->tx_path_in_lpi_mode = false;
3904         del_timer_sync(&priv->eee_ctrl_timer);
3905     }
3906 
3907     /* Stop TX/RX DMA and clear the descriptors */
3908     stmmac_stop_all_dma(priv);
3909 
3910     /* Release and free the Rx/Tx resources */
3911     free_dma_desc_resources(priv, &priv->dma_conf);
3912 
3913     /* Disable the MAC Rx/Tx */
3914     stmmac_mac_set(priv, priv->ioaddr, false);
3915 
3916     /* Powerdown Serdes if there is */
3917     if (priv->plat->serdes_powerdown)
3918         priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3919 
3920     netif_carrier_off(dev);
3921 
3922     stmmac_release_ptp(priv);
3923 
3924     pm_runtime_put(priv->device);
3925 
3926     if (priv->dma_cap.fpesel)
3927         stmmac_fpe_stop_wq(priv);
3928 
3929     return 0;
3930 }
3931 
3932 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3933                    struct stmmac_tx_queue *tx_q)
3934 {
3935     u16 tag = 0x0, inner_tag = 0x0;
3936     u32 inner_type = 0x0;
3937     struct dma_desc *p;
3938 
3939     if (!priv->dma_cap.vlins)
3940         return false;
3941     if (!skb_vlan_tag_present(skb))
3942         return false;
3943     if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3944         inner_tag = skb_vlan_tag_get(skb);
3945         inner_type = STMMAC_VLAN_INSERT;
3946     }
3947 
3948     tag = skb_vlan_tag_get(skb);
3949 
3950     if (tx_q->tbs & STMMAC_TBS_AVAIL)
3951         p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3952     else
3953         p = &tx_q->dma_tx[tx_q->cur_tx];
3954 
3955     if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3956         return false;
3957 
3958     stmmac_set_tx_owner(priv, p);
3959     tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3960     return true;
3961 }
3962 
3963 /**
3964  *  stmmac_tso_allocator - close entry point of the driver
3965  *  @priv: driver private structure
3966  *  @des: buffer start address
3967  *  @total_len: total length to fill in descriptors
3968  *  @last_segment: condition for the last descriptor
3969  *  @queue: TX queue index
3970  *  Description:
3971  *  This function fills descriptor and request new descriptors according to
3972  *  buffer length to fill
3973  */
3974 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3975                  int total_len, bool last_segment, u32 queue)
3976 {
3977     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3978     struct dma_desc *desc;
3979     u32 buff_size;
3980     int tmp_len;
3981 
3982     tmp_len = total_len;
3983 
3984     while (tmp_len > 0) {
3985         dma_addr_t curr_addr;
3986 
3987         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3988                         priv->dma_conf.dma_tx_size);
3989         WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3990 
3991         if (tx_q->tbs & STMMAC_TBS_AVAIL)
3992             desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3993         else
3994             desc = &tx_q->dma_tx[tx_q->cur_tx];
3995 
3996         curr_addr = des + (total_len - tmp_len);
3997         if (priv->dma_cap.addr64 <= 32)
3998             desc->des0 = cpu_to_le32(curr_addr);
3999         else
4000             stmmac_set_desc_addr(priv, desc, curr_addr);
4001 
4002         buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4003                 TSO_MAX_BUFF_SIZE : tmp_len;
4004 
4005         stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4006                 0, 1,
4007                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4008                 0, 0);
4009 
4010         tmp_len -= TSO_MAX_BUFF_SIZE;
4011     }
4012 }
4013 
4014 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4015 {
4016     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4017     int desc_size;
4018 
4019     if (likely(priv->extend_desc))
4020         desc_size = sizeof(struct dma_extended_desc);
4021     else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4022         desc_size = sizeof(struct dma_edesc);
4023     else
4024         desc_size = sizeof(struct dma_desc);
4025 
4026     /* The own bit must be the latest setting done when prepare the
4027      * descriptor and then barrier is needed to make sure that
4028      * all is coherent before granting the DMA engine.
4029      */
4030     wmb();
4031 
4032     tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4033     stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4034 }
4035 
4036 /**
4037  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4038  *  @skb : the socket buffer
4039  *  @dev : device pointer
4040  *  Description: this is the transmit function that is called on TSO frames
4041  *  (support available on GMAC4 and newer chips).
4042  *  Diagram below show the ring programming in case of TSO frames:
4043  *
4044  *  First Descriptor
4045  *   --------
4046  *   | DES0 |---> buffer1 = L2/L3/L4 header
4047  *   | DES1 |---> TCP Payload (can continue on next descr...)
4048  *   | DES2 |---> buffer 1 and 2 len
4049  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4050  *   --------
4051  *  |
4052  *     ...
4053  *  |
4054  *   --------
4055  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4056  *   | DES1 | --|
4057  *   | DES2 | --> buffer 1 and 2 len
4058  *   | DES3 |
4059  *   --------
4060  *
4061  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4062  */
4063 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4064 {
4065     struct dma_desc *desc, *first, *mss_desc = NULL;
4066     struct stmmac_priv *priv = netdev_priv(dev);
4067     int nfrags = skb_shinfo(skb)->nr_frags;
4068     u32 queue = skb_get_queue_mapping(skb);
4069     unsigned int first_entry, tx_packets;
4070     int tmp_pay_len = 0, first_tx;
4071     struct stmmac_tx_queue *tx_q;
4072     bool has_vlan, set_ic;
4073     u8 proto_hdr_len, hdr;
4074     u32 pay_len, mss;
4075     dma_addr_t des;
4076     int i;
4077 
4078     tx_q = &priv->dma_conf.tx_queue[queue];
4079     first_tx = tx_q->cur_tx;
4080 
4081     /* Compute header lengths */
4082     if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4083         proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4084         hdr = sizeof(struct udphdr);
4085     } else {
4086         proto_hdr_len = skb_tcp_all_headers(skb);
4087         hdr = tcp_hdrlen(skb);
4088     }
4089 
4090     /* Desc availability based on threshold should be enough safe */
4091     if (unlikely(stmmac_tx_avail(priv, queue) <
4092         (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4093         if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4094             netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4095                                 queue));
4096             /* This is a hard error, log it. */
4097             netdev_err(priv->dev,
4098                    "%s: Tx Ring full when queue awake\n",
4099                    __func__);
4100         }
4101         return NETDEV_TX_BUSY;
4102     }
4103 
4104     pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4105 
4106     mss = skb_shinfo(skb)->gso_size;
4107 
4108     /* set new MSS value if needed */
4109     if (mss != tx_q->mss) {
4110         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4111             mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4112         else
4113             mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4114 
4115         stmmac_set_mss(priv, mss_desc, mss);
4116         tx_q->mss = mss;
4117         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4118                         priv->dma_conf.dma_tx_size);
4119         WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4120     }
4121 
4122     if (netif_msg_tx_queued(priv)) {
4123         pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4124             __func__, hdr, proto_hdr_len, pay_len, mss);
4125         pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4126             skb->data_len);
4127     }
4128 
4129     /* Check if VLAN can be inserted by HW */
4130     has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4131 
4132     first_entry = tx_q->cur_tx;
4133     WARN_ON(tx_q->tx_skbuff[first_entry]);
4134 
4135     if (tx_q->tbs & STMMAC_TBS_AVAIL)
4136         desc = &tx_q->dma_entx[first_entry].basic;
4137     else
4138         desc = &tx_q->dma_tx[first_entry];
4139     first = desc;
4140 
4141     if (has_vlan)
4142         stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4143 
4144     /* first descriptor: fill Headers on Buf1 */
4145     des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4146                  DMA_TO_DEVICE);
4147     if (dma_mapping_error(priv->device, des))
4148         goto dma_map_err;
4149 
4150     tx_q->tx_skbuff_dma[first_entry].buf = des;
4151     tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4152     tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4153     tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4154 
4155     if (priv->dma_cap.addr64 <= 32) {
4156         first->des0 = cpu_to_le32(des);
4157 
4158         /* Fill start of payload in buff2 of first descriptor */
4159         if (pay_len)
4160             first->des1 = cpu_to_le32(des + proto_hdr_len);
4161 
4162         /* If needed take extra descriptors to fill the remaining payload */
4163         tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4164     } else {
4165         stmmac_set_desc_addr(priv, first, des);
4166         tmp_pay_len = pay_len;
4167         des += proto_hdr_len;
4168         pay_len = 0;
4169     }
4170 
4171     stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4172 
4173     /* Prepare fragments */
4174     for (i = 0; i < nfrags; i++) {
4175         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4176 
4177         des = skb_frag_dma_map(priv->device, frag, 0,
4178                        skb_frag_size(frag),
4179                        DMA_TO_DEVICE);
4180         if (dma_mapping_error(priv->device, des))
4181             goto dma_map_err;
4182 
4183         stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4184                      (i == nfrags - 1), queue);
4185 
4186         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4187         tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4188         tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4189         tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4190     }
4191 
4192     tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4193 
4194     /* Only the last descriptor gets to point to the skb. */
4195     tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4196     tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4197 
4198     /* Manage tx mitigation */
4199     tx_packets = (tx_q->cur_tx + 1) - first_tx;
4200     tx_q->tx_count_frames += tx_packets;
4201 
4202     if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4203         set_ic = true;
4204     else if (!priv->tx_coal_frames[queue])
4205         set_ic = false;
4206     else if (tx_packets > priv->tx_coal_frames[queue])
4207         set_ic = true;
4208     else if ((tx_q->tx_count_frames %
4209           priv->tx_coal_frames[queue]) < tx_packets)
4210         set_ic = true;
4211     else
4212         set_ic = false;
4213 
4214     if (set_ic) {
4215         if (tx_q->tbs & STMMAC_TBS_AVAIL)
4216             desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4217         else
4218             desc = &tx_q->dma_tx[tx_q->cur_tx];
4219 
4220         tx_q->tx_count_frames = 0;
4221         stmmac_set_tx_ic(priv, desc);
4222         priv->xstats.tx_set_ic_bit++;
4223     }
4224 
4225     /* We've used all descriptors we need for this skb, however,
4226      * advance cur_tx so that it references a fresh descriptor.
4227      * ndo_start_xmit will fill this descriptor the next time it's
4228      * called and stmmac_tx_clean may clean up to this descriptor.
4229      */
4230     tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4231 
4232     if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4233         netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4234               __func__);
4235         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4236     }
4237 
4238     dev->stats.tx_bytes += skb->len;
4239     priv->xstats.tx_tso_frames++;
4240     priv->xstats.tx_tso_nfrags += nfrags;
4241 
4242     if (priv->sarc_type)
4243         stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4244 
4245     skb_tx_timestamp(skb);
4246 
4247     if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4248              priv->hwts_tx_en)) {
4249         /* declare that device is doing timestamping */
4250         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4251         stmmac_enable_tx_timestamp(priv, first);
4252     }
4253 
4254     /* Complete the first descriptor before granting the DMA */
4255     stmmac_prepare_tso_tx_desc(priv, first, 1,
4256             proto_hdr_len,
4257             pay_len,
4258             1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4259             hdr / 4, (skb->len - proto_hdr_len));
4260 
4261     /* If context desc is used to change MSS */
4262     if (mss_desc) {
4263         /* Make sure that first descriptor has been completely
4264          * written, including its own bit. This is because MSS is
4265          * actually before first descriptor, so we need to make
4266          * sure that MSS's own bit is the last thing written.
4267          */
4268         dma_wmb();
4269         stmmac_set_tx_owner(priv, mss_desc);
4270     }
4271 
4272     if (netif_msg_pktdata(priv)) {
4273         pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4274             __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4275             tx_q->cur_tx, first, nfrags);
4276         pr_info(">>> frame to be transmitted: ");
4277         print_pkt(skb->data, skb_headlen(skb));
4278     }
4279 
4280     netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4281 
4282     stmmac_flush_tx_descriptors(priv, queue);
4283     stmmac_tx_timer_arm(priv, queue);
4284 
4285     return NETDEV_TX_OK;
4286 
4287 dma_map_err:
4288     dev_err(priv->device, "Tx dma map failed\n");
4289     dev_kfree_skb(skb);
4290     priv->dev->stats.tx_dropped++;
4291     return NETDEV_TX_OK;
4292 }
4293 
4294 /**
4295  *  stmmac_xmit - Tx entry point of the driver
4296  *  @skb : the socket buffer
4297  *  @dev : device pointer
4298  *  Description : this is the tx entry point of the driver.
4299  *  It programs the chain or the ring and supports oversized frames
4300  *  and SG feature.
4301  */
4302 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4303 {
4304     unsigned int first_entry, tx_packets, enh_desc;
4305     struct stmmac_priv *priv = netdev_priv(dev);
4306     unsigned int nopaged_len = skb_headlen(skb);
4307     int i, csum_insertion = 0, is_jumbo = 0;
4308     u32 queue = skb_get_queue_mapping(skb);
4309     int nfrags = skb_shinfo(skb)->nr_frags;
4310     int gso = skb_shinfo(skb)->gso_type;
4311     struct dma_edesc *tbs_desc = NULL;
4312     struct dma_desc *desc, *first;
4313     struct stmmac_tx_queue *tx_q;
4314     bool has_vlan, set_ic;
4315     int entry, first_tx;
4316     dma_addr_t des;
4317 
4318     tx_q = &priv->dma_conf.tx_queue[queue];
4319     first_tx = tx_q->cur_tx;
4320 
4321     if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4322         stmmac_disable_eee_mode(priv);
4323 
4324     /* Manage oversized TCP frames for GMAC4 device */
4325     if (skb_is_gso(skb) && priv->tso) {
4326         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4327             return stmmac_tso_xmit(skb, dev);
4328         if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4329             return stmmac_tso_xmit(skb, dev);
4330     }
4331 
4332     if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4333         if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4334             netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4335                                 queue));
4336             /* This is a hard error, log it. */
4337             netdev_err(priv->dev,
4338                    "%s: Tx Ring full when queue awake\n",
4339                    __func__);
4340         }
4341         return NETDEV_TX_BUSY;
4342     }
4343 
4344     /* Check if VLAN can be inserted by HW */
4345     has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4346 
4347     entry = tx_q->cur_tx;
4348     first_entry = entry;
4349     WARN_ON(tx_q->tx_skbuff[first_entry]);
4350 
4351     csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4352 
4353     if (likely(priv->extend_desc))
4354         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4355     else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4356         desc = &tx_q->dma_entx[entry].basic;
4357     else
4358         desc = tx_q->dma_tx + entry;
4359 
4360     first = desc;
4361 
4362     if (has_vlan)
4363         stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4364 
4365     enh_desc = priv->plat->enh_desc;
4366     /* To program the descriptors according to the size of the frame */
4367     if (enh_desc)
4368         is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4369 
4370     if (unlikely(is_jumbo)) {
4371         entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4372         if (unlikely(entry < 0) && (entry != -EINVAL))
4373             goto dma_map_err;
4374     }
4375 
4376     for (i = 0; i < nfrags; i++) {
4377         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4378         int len = skb_frag_size(frag);
4379         bool last_segment = (i == (nfrags - 1));
4380 
4381         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4382         WARN_ON(tx_q->tx_skbuff[entry]);
4383 
4384         if (likely(priv->extend_desc))
4385             desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4386         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4387             desc = &tx_q->dma_entx[entry].basic;
4388         else
4389             desc = tx_q->dma_tx + entry;
4390 
4391         des = skb_frag_dma_map(priv->device, frag, 0, len,
4392                        DMA_TO_DEVICE);
4393         if (dma_mapping_error(priv->device, des))
4394             goto dma_map_err; /* should reuse desc w/o issues */
4395 
4396         tx_q->tx_skbuff_dma[entry].buf = des;
4397 
4398         stmmac_set_desc_addr(priv, desc, des);
4399 
4400         tx_q->tx_skbuff_dma[entry].map_as_page = true;
4401         tx_q->tx_skbuff_dma[entry].len = len;
4402         tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4403         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4404 
4405         /* Prepare the descriptor and set the own bit too */
4406         stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4407                 priv->mode, 1, last_segment, skb->len);
4408     }
4409 
4410     /* Only the last descriptor gets to point to the skb. */
4411     tx_q->tx_skbuff[entry] = skb;
4412     tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4413 
4414     /* According to the coalesce parameter the IC bit for the latest
4415      * segment is reset and the timer re-started to clean the tx status.
4416      * This approach takes care about the fragments: desc is the first
4417      * element in case of no SG.
4418      */
4419     tx_packets = (entry + 1) - first_tx;
4420     tx_q->tx_count_frames += tx_packets;
4421 
4422     if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4423         set_ic = true;
4424     else if (!priv->tx_coal_frames[queue])
4425         set_ic = false;
4426     else if (tx_packets > priv->tx_coal_frames[queue])
4427         set_ic = true;
4428     else if ((tx_q->tx_count_frames %
4429           priv->tx_coal_frames[queue]) < tx_packets)
4430         set_ic = true;
4431     else
4432         set_ic = false;
4433 
4434     if (set_ic) {
4435         if (likely(priv->extend_desc))
4436             desc = &tx_q->dma_etx[entry].basic;
4437         else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4438             desc = &tx_q->dma_entx[entry].basic;
4439         else
4440             desc = &tx_q->dma_tx[entry];
4441 
4442         tx_q->tx_count_frames = 0;
4443         stmmac_set_tx_ic(priv, desc);
4444         priv->xstats.tx_set_ic_bit++;
4445     }
4446 
4447     /* We've used all descriptors we need for this skb, however,
4448      * advance cur_tx so that it references a fresh descriptor.
4449      * ndo_start_xmit will fill this descriptor the next time it's
4450      * called and stmmac_tx_clean may clean up to this descriptor.
4451      */
4452     entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4453     tx_q->cur_tx = entry;
4454 
4455     if (netif_msg_pktdata(priv)) {
4456         netdev_dbg(priv->dev,
4457                "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4458                __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4459                entry, first, nfrags);
4460 
4461         netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4462         print_pkt(skb->data, skb->len);
4463     }
4464 
4465     if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4466         netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4467               __func__);
4468         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4469     }
4470 
4471     dev->stats.tx_bytes += skb->len;
4472 
4473     if (priv->sarc_type)
4474         stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4475 
4476     skb_tx_timestamp(skb);
4477 
4478     /* Ready to fill the first descriptor and set the OWN bit w/o any
4479      * problems because all the descriptors are actually ready to be
4480      * passed to the DMA engine.
4481      */
4482     if (likely(!is_jumbo)) {
4483         bool last_segment = (nfrags == 0);
4484 
4485         des = dma_map_single(priv->device, skb->data,
4486                      nopaged_len, DMA_TO_DEVICE);
4487         if (dma_mapping_error(priv->device, des))
4488             goto dma_map_err;
4489 
4490         tx_q->tx_skbuff_dma[first_entry].buf = des;
4491         tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4492         tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4493 
4494         stmmac_set_desc_addr(priv, first, des);
4495 
4496         tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4497         tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4498 
4499         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4500                  priv->hwts_tx_en)) {
4501             /* declare that device is doing timestamping */
4502             skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4503             stmmac_enable_tx_timestamp(priv, first);
4504         }
4505 
4506         /* Prepare the first descriptor setting the OWN bit too */
4507         stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4508                 csum_insertion, priv->mode, 0, last_segment,
4509                 skb->len);
4510     }
4511 
4512     if (tx_q->tbs & STMMAC_TBS_EN) {
4513         struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4514 
4515         tbs_desc = &tx_q->dma_entx[first_entry];
4516         stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4517     }
4518 
4519     stmmac_set_tx_owner(priv, first);
4520 
4521     netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4522 
4523     stmmac_enable_dma_transmission(priv, priv->ioaddr);
4524 
4525     stmmac_flush_tx_descriptors(priv, queue);
4526     stmmac_tx_timer_arm(priv, queue);
4527 
4528     return NETDEV_TX_OK;
4529 
4530 dma_map_err:
4531     netdev_err(priv->dev, "Tx DMA map failed\n");
4532     dev_kfree_skb(skb);
4533     priv->dev->stats.tx_dropped++;
4534     return NETDEV_TX_OK;
4535 }
4536 
4537 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4538 {
4539     struct vlan_ethhdr *veth;
4540     __be16 vlan_proto;
4541     u16 vlanid;
4542 
4543     veth = (struct vlan_ethhdr *)skb->data;
4544     vlan_proto = veth->h_vlan_proto;
4545 
4546     if ((vlan_proto == htons(ETH_P_8021Q) &&
4547          dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4548         (vlan_proto == htons(ETH_P_8021AD) &&
4549          dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4550         /* pop the vlan tag */
4551         vlanid = ntohs(veth->h_vlan_TCI);
4552         memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4553         skb_pull(skb, VLAN_HLEN);
4554         __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4555     }
4556 }
4557 
4558 /**
4559  * stmmac_rx_refill - refill used skb preallocated buffers
4560  * @priv: driver private structure
4561  * @queue: RX queue index
4562  * Description : this is to reallocate the skb for the reception process
4563  * that is based on zero-copy.
4564  */
4565 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4566 {
4567     struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4568     int dirty = stmmac_rx_dirty(priv, queue);
4569     unsigned int entry = rx_q->dirty_rx;
4570     gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4571 
4572     if (priv->dma_cap.addr64 <= 32)
4573         gfp |= GFP_DMA32;
4574 
4575     while (dirty-- > 0) {
4576         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4577         struct dma_desc *p;
4578         bool use_rx_wd;
4579 
4580         if (priv->extend_desc)
4581             p = (struct dma_desc *)(rx_q->dma_erx + entry);
4582         else
4583             p = rx_q->dma_rx + entry;
4584 
4585         if (!buf->page) {
4586             buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4587             if (!buf->page)
4588                 break;
4589         }
4590 
4591         if (priv->sph && !buf->sec_page) {
4592             buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4593             if (!buf->sec_page)
4594                 break;
4595 
4596             buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4597         }
4598 
4599         buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4600 
4601         stmmac_set_desc_addr(priv, p, buf->addr);
4602         if (priv->sph)
4603             stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4604         else
4605             stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4606         stmmac_refill_desc3(priv, rx_q, p);
4607 
4608         rx_q->rx_count_frames++;
4609         rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4610         if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4611             rx_q->rx_count_frames = 0;
4612 
4613         use_rx_wd = !priv->rx_coal_frames[queue];
4614         use_rx_wd |= rx_q->rx_count_frames > 0;
4615         if (!priv->use_riwt)
4616             use_rx_wd = false;
4617 
4618         dma_wmb();
4619         stmmac_set_rx_owner(priv, p, use_rx_wd);
4620 
4621         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4622     }
4623     rx_q->dirty_rx = entry;
4624     rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4625                 (rx_q->dirty_rx * sizeof(struct dma_desc));
4626     stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4627 }
4628 
4629 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4630                        struct dma_desc *p,
4631                        int status, unsigned int len)
4632 {
4633     unsigned int plen = 0, hlen = 0;
4634     int coe = priv->hw->rx_csum;
4635 
4636     /* Not first descriptor, buffer is always zero */
4637     if (priv->sph && len)
4638         return 0;
4639 
4640     /* First descriptor, get split header length */
4641     stmmac_get_rx_header_len(priv, p, &hlen);
4642     if (priv->sph && hlen) {
4643         priv->xstats.rx_split_hdr_pkt_n++;
4644         return hlen;
4645     }
4646 
4647     /* First descriptor, not last descriptor and not split header */
4648     if (status & rx_not_ls)
4649         return priv->dma_conf.dma_buf_sz;
4650 
4651     plen = stmmac_get_rx_frame_len(priv, p, coe);
4652 
4653     /* First descriptor and last descriptor and not split header */
4654     return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4655 }
4656 
4657 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4658                        struct dma_desc *p,
4659                        int status, unsigned int len)
4660 {
4661     int coe = priv->hw->rx_csum;
4662     unsigned int plen = 0;
4663 
4664     /* Not split header, buffer is not available */
4665     if (!priv->sph)
4666         return 0;
4667 
4668     /* Not last descriptor */
4669     if (status & rx_not_ls)
4670         return priv->dma_conf.dma_buf_sz;
4671 
4672     plen = stmmac_get_rx_frame_len(priv, p, coe);
4673 
4674     /* Last descriptor */
4675     return plen - len;
4676 }
4677 
4678 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4679                 struct xdp_frame *xdpf, bool dma_map)
4680 {
4681     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4682     unsigned int entry = tx_q->cur_tx;
4683     struct dma_desc *tx_desc;
4684     dma_addr_t dma_addr;
4685     bool set_ic;
4686 
4687     if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4688         return STMMAC_XDP_CONSUMED;
4689 
4690     if (likely(priv->extend_desc))
4691         tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4692     else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4693         tx_desc = &tx_q->dma_entx[entry].basic;
4694     else
4695         tx_desc = tx_q->dma_tx + entry;
4696 
4697     if (dma_map) {
4698         dma_addr = dma_map_single(priv->device, xdpf->data,
4699                       xdpf->len, DMA_TO_DEVICE);
4700         if (dma_mapping_error(priv->device, dma_addr))
4701             return STMMAC_XDP_CONSUMED;
4702 
4703         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4704     } else {
4705         struct page *page = virt_to_page(xdpf->data);
4706 
4707         dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4708                xdpf->headroom;
4709         dma_sync_single_for_device(priv->device, dma_addr,
4710                        xdpf->len, DMA_BIDIRECTIONAL);
4711 
4712         tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4713     }
4714 
4715     tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4716     tx_q->tx_skbuff_dma[entry].map_as_page = false;
4717     tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4718     tx_q->tx_skbuff_dma[entry].last_segment = true;
4719     tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4720 
4721     tx_q->xdpf[entry] = xdpf;
4722 
4723     stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4724 
4725     stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4726                    true, priv->mode, true, true,
4727                    xdpf->len);
4728 
4729     tx_q->tx_count_frames++;
4730 
4731     if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4732         set_ic = true;
4733     else
4734         set_ic = false;
4735 
4736     if (set_ic) {
4737         tx_q->tx_count_frames = 0;
4738         stmmac_set_tx_ic(priv, tx_desc);
4739         priv->xstats.tx_set_ic_bit++;
4740     }
4741 
4742     stmmac_enable_dma_transmission(priv, priv->ioaddr);
4743 
4744     entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4745     tx_q->cur_tx = entry;
4746 
4747     return STMMAC_XDP_TX;
4748 }
4749 
4750 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4751                    int cpu)
4752 {
4753     int index = cpu;
4754 
4755     if (unlikely(index < 0))
4756         index = 0;
4757 
4758     while (index >= priv->plat->tx_queues_to_use)
4759         index -= priv->plat->tx_queues_to_use;
4760 
4761     return index;
4762 }
4763 
4764 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4765                 struct xdp_buff *xdp)
4766 {
4767     struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4768     int cpu = smp_processor_id();
4769     struct netdev_queue *nq;
4770     int queue;
4771     int res;
4772 
4773     if (unlikely(!xdpf))
4774         return STMMAC_XDP_CONSUMED;
4775 
4776     queue = stmmac_xdp_get_tx_queue(priv, cpu);
4777     nq = netdev_get_tx_queue(priv->dev, queue);
4778 
4779     __netif_tx_lock(nq, cpu);
4780     /* Avoids TX time-out as we are sharing with slow path */
4781     txq_trans_cond_update(nq);
4782 
4783     res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4784     if (res == STMMAC_XDP_TX)
4785         stmmac_flush_tx_descriptors(priv, queue);
4786 
4787     __netif_tx_unlock(nq);
4788 
4789     return res;
4790 }
4791 
4792 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4793                  struct bpf_prog *prog,
4794                  struct xdp_buff *xdp)
4795 {
4796     u32 act;
4797     int res;
4798 
4799     act = bpf_prog_run_xdp(prog, xdp);
4800     switch (act) {
4801     case XDP_PASS:
4802         res = STMMAC_XDP_PASS;
4803         break;
4804     case XDP_TX:
4805         res = stmmac_xdp_xmit_back(priv, xdp);
4806         break;
4807     case XDP_REDIRECT:
4808         if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4809             res = STMMAC_XDP_CONSUMED;
4810         else
4811             res = STMMAC_XDP_REDIRECT;
4812         break;
4813     default:
4814         bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4815         fallthrough;
4816     case XDP_ABORTED:
4817         trace_xdp_exception(priv->dev, prog, act);
4818         fallthrough;
4819     case XDP_DROP:
4820         res = STMMAC_XDP_CONSUMED;
4821         break;
4822     }
4823 
4824     return res;
4825 }
4826 
4827 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4828                        struct xdp_buff *xdp)
4829 {
4830     struct bpf_prog *prog;
4831     int res;
4832 
4833     prog = READ_ONCE(priv->xdp_prog);
4834     if (!prog) {
4835         res = STMMAC_XDP_PASS;
4836         goto out;
4837     }
4838 
4839     res = __stmmac_xdp_run_prog(priv, prog, xdp);
4840 out:
4841     return ERR_PTR(-res);
4842 }
4843 
4844 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4845                    int xdp_status)
4846 {
4847     int cpu = smp_processor_id();
4848     int queue;
4849 
4850     queue = stmmac_xdp_get_tx_queue(priv, cpu);
4851 
4852     if (xdp_status & STMMAC_XDP_TX)
4853         stmmac_tx_timer_arm(priv, queue);
4854 
4855     if (xdp_status & STMMAC_XDP_REDIRECT)
4856         xdp_do_flush();
4857 }
4858 
4859 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4860                            struct xdp_buff *xdp)
4861 {
4862     unsigned int metasize = xdp->data - xdp->data_meta;
4863     unsigned int datasize = xdp->data_end - xdp->data;
4864     struct sk_buff *skb;
4865 
4866     skb = __napi_alloc_skb(&ch->rxtx_napi,
4867                    xdp->data_end - xdp->data_hard_start,
4868                    GFP_ATOMIC | __GFP_NOWARN);
4869     if (unlikely(!skb))
4870         return NULL;
4871 
4872     skb_reserve(skb, xdp->data - xdp->data_hard_start);
4873     memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4874     if (metasize)
4875         skb_metadata_set(skb, metasize);
4876 
4877     return skb;
4878 }
4879 
4880 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4881                    struct dma_desc *p, struct dma_desc *np,
4882                    struct xdp_buff *xdp)
4883 {
4884     struct stmmac_channel *ch = &priv->channel[queue];
4885     unsigned int len = xdp->data_end - xdp->data;
4886     enum pkt_hash_types hash_type;
4887     int coe = priv->hw->rx_csum;
4888     struct sk_buff *skb;
4889     u32 hash;
4890 
4891     skb = stmmac_construct_skb_zc(ch, xdp);
4892     if (!skb) {
4893         priv->dev->stats.rx_dropped++;
4894         return;
4895     }
4896 
4897     stmmac_get_rx_hwtstamp(priv, p, np, skb);
4898     stmmac_rx_vlan(priv->dev, skb);
4899     skb->protocol = eth_type_trans(skb, priv->dev);
4900 
4901     if (unlikely(!coe))
4902         skb_checksum_none_assert(skb);
4903     else
4904         skb->ip_summed = CHECKSUM_UNNECESSARY;
4905 
4906     if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4907         skb_set_hash(skb, hash, hash_type);
4908 
4909     skb_record_rx_queue(skb, queue);
4910     napi_gro_receive(&ch->rxtx_napi, skb);
4911 
4912     priv->dev->stats.rx_packets++;
4913     priv->dev->stats.rx_bytes += len;
4914 }
4915 
4916 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4917 {
4918     struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4919     unsigned int entry = rx_q->dirty_rx;
4920     struct dma_desc *rx_desc = NULL;
4921     bool ret = true;
4922 
4923     budget = min(budget, stmmac_rx_dirty(priv, queue));
4924 
4925     while (budget-- > 0 && entry != rx_q->cur_rx) {
4926         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4927         dma_addr_t dma_addr;
4928         bool use_rx_wd;
4929 
4930         if (!buf->xdp) {
4931             buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4932             if (!buf->xdp) {
4933                 ret = false;
4934                 break;
4935             }
4936         }
4937 
4938         if (priv->extend_desc)
4939             rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4940         else
4941             rx_desc = rx_q->dma_rx + entry;
4942 
4943         dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4944         stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4945         stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4946         stmmac_refill_desc3(priv, rx_q, rx_desc);
4947 
4948         rx_q->rx_count_frames++;
4949         rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4950         if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4951             rx_q->rx_count_frames = 0;
4952 
4953         use_rx_wd = !priv->rx_coal_frames[queue];
4954         use_rx_wd |= rx_q->rx_count_frames > 0;
4955         if (!priv->use_riwt)
4956             use_rx_wd = false;
4957 
4958         dma_wmb();
4959         stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4960 
4961         entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4962     }
4963 
4964     if (rx_desc) {
4965         rx_q->dirty_rx = entry;
4966         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4967                      (rx_q->dirty_rx * sizeof(struct dma_desc));
4968         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4969     }
4970 
4971     return ret;
4972 }
4973 
4974 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4975 {
4976     struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4977     unsigned int count = 0, error = 0, len = 0;
4978     int dirty = stmmac_rx_dirty(priv, queue);
4979     unsigned int next_entry = rx_q->cur_rx;
4980     unsigned int desc_size;
4981     struct bpf_prog *prog;
4982     bool failure = false;
4983     int xdp_status = 0;
4984     int status = 0;
4985 
4986     if (netif_msg_rx_status(priv)) {
4987         void *rx_head;
4988 
4989         netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4990         if (priv->extend_desc) {
4991             rx_head = (void *)rx_q->dma_erx;
4992             desc_size = sizeof(struct dma_extended_desc);
4993         } else {
4994             rx_head = (void *)rx_q->dma_rx;
4995             desc_size = sizeof(struct dma_desc);
4996         }
4997 
4998         stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
4999                     rx_q->dma_rx_phy, desc_size);
5000     }
5001     while (count < limit) {
5002         struct stmmac_rx_buffer *buf;
5003         unsigned int buf1_len = 0;
5004         struct dma_desc *np, *p;
5005         int entry;
5006         int res;
5007 
5008         if (!count && rx_q->state_saved) {
5009             error = rx_q->state.error;
5010             len = rx_q->state.len;
5011         } else {
5012             rx_q->state_saved = false;
5013             error = 0;
5014             len = 0;
5015         }
5016 
5017         if (count >= limit)
5018             break;
5019 
5020 read_again:
5021         buf1_len = 0;
5022         entry = next_entry;
5023         buf = &rx_q->buf_pool[entry];
5024 
5025         if (dirty >= STMMAC_RX_FILL_BATCH) {
5026             failure = failure ||
5027                   !stmmac_rx_refill_zc(priv, queue, dirty);
5028             dirty = 0;
5029         }
5030 
5031         if (priv->extend_desc)
5032             p = (struct dma_desc *)(rx_q->dma_erx + entry);
5033         else
5034             p = rx_q->dma_rx + entry;
5035 
5036         /* read the status of the incoming frame */
5037         status = stmmac_rx_status(priv, &priv->dev->stats,
5038                       &priv->xstats, p);
5039         /* check if managed by the DMA otherwise go ahead */
5040         if (unlikely(status & dma_own))
5041             break;
5042 
5043         /* Prefetch the next RX descriptor */
5044         rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5045                         priv->dma_conf.dma_rx_size);
5046         next_entry = rx_q->cur_rx;
5047 
5048         if (priv->extend_desc)
5049             np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5050         else
5051             np = rx_q->dma_rx + next_entry;
5052 
5053         prefetch(np);
5054 
5055         /* Ensure a valid XSK buffer before proceed */
5056         if (!buf->xdp)
5057             break;
5058 
5059         if (priv->extend_desc)
5060             stmmac_rx_extended_status(priv, &priv->dev->stats,
5061                           &priv->xstats,
5062                           rx_q->dma_erx + entry);
5063         if (unlikely(status == discard_frame)) {
5064             xsk_buff_free(buf->xdp);
5065             buf->xdp = NULL;
5066             dirty++;
5067             error = 1;
5068             if (!priv->hwts_rx_en)
5069                 priv->dev->stats.rx_errors++;
5070         }
5071 
5072         if (unlikely(error && (status & rx_not_ls)))
5073             goto read_again;
5074         if (unlikely(error)) {
5075             count++;
5076             continue;
5077         }
5078 
5079         /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5080         if (likely(status & rx_not_ls)) {
5081             xsk_buff_free(buf->xdp);
5082             buf->xdp = NULL;
5083             dirty++;
5084             count++;
5085             goto read_again;
5086         }
5087 
5088         /* XDP ZC Frame only support primary buffers for now */
5089         buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5090         len += buf1_len;
5091 
5092         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5093          * Type frames (LLC/LLC-SNAP)
5094          *
5095          * llc_snap is never checked in GMAC >= 4, so this ACS
5096          * feature is always disabled and packets need to be
5097          * stripped manually.
5098          */
5099         if (likely(!(status & rx_not_ls)) &&
5100             (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5101              unlikely(status != llc_snap))) {
5102             buf1_len -= ETH_FCS_LEN;
5103             len -= ETH_FCS_LEN;
5104         }
5105 
5106         /* RX buffer is good and fit into a XSK pool buffer */
5107         buf->xdp->data_end = buf->xdp->data + buf1_len;
5108         xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5109 
5110         prog = READ_ONCE(priv->xdp_prog);
5111         res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5112 
5113         switch (res) {
5114         case STMMAC_XDP_PASS:
5115             stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5116             xsk_buff_free(buf->xdp);
5117             break;
5118         case STMMAC_XDP_CONSUMED:
5119             xsk_buff_free(buf->xdp);
5120             priv->dev->stats.rx_dropped++;
5121             break;
5122         case STMMAC_XDP_TX:
5123         case STMMAC_XDP_REDIRECT:
5124             xdp_status |= res;
5125             break;
5126         }
5127 
5128         buf->xdp = NULL;
5129         dirty++;
5130         count++;
5131     }
5132 
5133     if (status & rx_not_ls) {
5134         rx_q->state_saved = true;
5135         rx_q->state.error = error;
5136         rx_q->state.len = len;
5137     }
5138 
5139     stmmac_finalize_xdp_rx(priv, xdp_status);
5140 
5141     priv->xstats.rx_pkt_n += count;
5142     priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5143 
5144     if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5145         if (failure || stmmac_rx_dirty(priv, queue) > 0)
5146             xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5147         else
5148             xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5149 
5150         return (int)count;
5151     }
5152 
5153     return failure ? limit : (int)count;
5154 }
5155 
5156 /**
5157  * stmmac_rx - manage the receive process
5158  * @priv: driver private structure
5159  * @limit: napi bugget
5160  * @queue: RX queue index.
5161  * Description :  this the function called by the napi poll method.
5162  * It gets all the frames inside the ring.
5163  */
5164 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5165 {
5166     struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5167     struct stmmac_channel *ch = &priv->channel[queue];
5168     unsigned int count = 0, error = 0, len = 0;
5169     int status = 0, coe = priv->hw->rx_csum;
5170     unsigned int next_entry = rx_q->cur_rx;
5171     enum dma_data_direction dma_dir;
5172     unsigned int desc_size;
5173     struct sk_buff *skb = NULL;
5174     struct xdp_buff xdp;
5175     int xdp_status = 0;
5176     int buf_sz;
5177 
5178     dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5179     buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5180 
5181     if (netif_msg_rx_status(priv)) {
5182         void *rx_head;
5183 
5184         netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5185         if (priv->extend_desc) {
5186             rx_head = (void *)rx_q->dma_erx;
5187             desc_size = sizeof(struct dma_extended_desc);
5188         } else {
5189             rx_head = (void *)rx_q->dma_rx;
5190             desc_size = sizeof(struct dma_desc);
5191         }
5192 
5193         stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5194                     rx_q->dma_rx_phy, desc_size);
5195     }
5196     while (count < limit) {
5197         unsigned int buf1_len = 0, buf2_len = 0;
5198         enum pkt_hash_types hash_type;
5199         struct stmmac_rx_buffer *buf;
5200         struct dma_desc *np, *p;
5201         int entry;
5202         u32 hash;
5203 
5204         if (!count && rx_q->state_saved) {
5205             skb = rx_q->state.skb;
5206             error = rx_q->state.error;
5207             len = rx_q->state.len;
5208         } else {
5209             rx_q->state_saved = false;
5210             skb = NULL;
5211             error = 0;
5212             len = 0;
5213         }
5214 
5215         if (count >= limit)
5216             break;
5217 
5218 read_again:
5219         buf1_len = 0;
5220         buf2_len = 0;
5221         entry = next_entry;
5222         buf = &rx_q->buf_pool[entry];
5223 
5224         if (priv->extend_desc)
5225             p = (struct dma_desc *)(rx_q->dma_erx + entry);
5226         else
5227             p = rx_q->dma_rx + entry;
5228 
5229         /* read the status of the incoming frame */
5230         status = stmmac_rx_status(priv, &priv->dev->stats,
5231                 &priv->xstats, p);
5232         /* check if managed by the DMA otherwise go ahead */
5233         if (unlikely(status & dma_own))
5234             break;
5235 
5236         rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5237                         priv->dma_conf.dma_rx_size);
5238         next_entry = rx_q->cur_rx;
5239 
5240         if (priv->extend_desc)
5241             np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5242         else
5243             np = rx_q->dma_rx + next_entry;
5244 
5245         prefetch(np);
5246 
5247         if (priv->extend_desc)
5248             stmmac_rx_extended_status(priv, &priv->dev->stats,
5249                     &priv->xstats, rx_q->dma_erx + entry);
5250         if (unlikely(status == discard_frame)) {
5251             page_pool_recycle_direct(rx_q->page_pool, buf->page);
5252             buf->page = NULL;
5253             error = 1;
5254             if (!priv->hwts_rx_en)
5255                 priv->dev->stats.rx_errors++;
5256         }
5257 
5258         if (unlikely(error && (status & rx_not_ls)))
5259             goto read_again;
5260         if (unlikely(error)) {
5261             dev_kfree_skb(skb);
5262             skb = NULL;
5263             count++;
5264             continue;
5265         }
5266 
5267         /* Buffer is good. Go on. */
5268 
5269         prefetch(page_address(buf->page) + buf->page_offset);
5270         if (buf->sec_page)
5271             prefetch(page_address(buf->sec_page));
5272 
5273         buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5274         len += buf1_len;
5275         buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5276         len += buf2_len;
5277 
5278         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5279          * Type frames (LLC/LLC-SNAP)
5280          *
5281          * llc_snap is never checked in GMAC >= 4, so this ACS
5282          * feature is always disabled and packets need to be
5283          * stripped manually.
5284          */
5285         if (likely(!(status & rx_not_ls)) &&
5286             (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5287              unlikely(status != llc_snap))) {
5288             if (buf2_len) {
5289                 buf2_len -= ETH_FCS_LEN;
5290                 len -= ETH_FCS_LEN;
5291             } else if (buf1_len) {
5292                 buf1_len -= ETH_FCS_LEN;
5293                 len -= ETH_FCS_LEN;
5294             }
5295         }
5296 
5297         if (!skb) {
5298             unsigned int pre_len, sync_len;
5299 
5300             dma_sync_single_for_cpu(priv->device, buf->addr,
5301                         buf1_len, dma_dir);
5302 
5303             xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5304             xdp_prepare_buff(&xdp, page_address(buf->page),
5305                      buf->page_offset, buf1_len, false);
5306 
5307             pre_len = xdp.data_end - xdp.data_hard_start -
5308                   buf->page_offset;
5309             skb = stmmac_xdp_run_prog(priv, &xdp);
5310             /* Due xdp_adjust_tail: DMA sync for_device
5311              * cover max len CPU touch
5312              */
5313             sync_len = xdp.data_end - xdp.data_hard_start -
5314                    buf->page_offset;
5315             sync_len = max(sync_len, pre_len);
5316 
5317             /* For Not XDP_PASS verdict */
5318             if (IS_ERR(skb)) {
5319                 unsigned int xdp_res = -PTR_ERR(skb);
5320 
5321                 if (xdp_res & STMMAC_XDP_CONSUMED) {
5322                     page_pool_put_page(rx_q->page_pool,
5323                                virt_to_head_page(xdp.data),
5324                                sync_len, true);
5325                     buf->page = NULL;
5326                     priv->dev->stats.rx_dropped++;
5327 
5328                     /* Clear skb as it was set as
5329                      * status by XDP program.
5330                      */
5331                     skb = NULL;
5332 
5333                     if (unlikely((status & rx_not_ls)))
5334                         goto read_again;
5335 
5336                     count++;
5337                     continue;
5338                 } else if (xdp_res & (STMMAC_XDP_TX |
5339                               STMMAC_XDP_REDIRECT)) {
5340                     xdp_status |= xdp_res;
5341                     buf->page = NULL;
5342                     skb = NULL;
5343                     count++;
5344                     continue;
5345                 }
5346             }
5347         }
5348 
5349         if (!skb) {
5350             /* XDP program may expand or reduce tail */
5351             buf1_len = xdp.data_end - xdp.data;
5352 
5353             skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5354             if (!skb) {
5355                 priv->dev->stats.rx_dropped++;
5356                 count++;
5357                 goto drain_data;
5358             }
5359 
5360             /* XDP program may adjust header */
5361             skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5362             skb_put(skb, buf1_len);
5363 
5364             /* Data payload copied into SKB, page ready for recycle */
5365             page_pool_recycle_direct(rx_q->page_pool, buf->page);
5366             buf->page = NULL;
5367         } else if (buf1_len) {
5368             dma_sync_single_for_cpu(priv->device, buf->addr,
5369                         buf1_len, dma_dir);
5370             skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5371                     buf->page, buf->page_offset, buf1_len,
5372                     priv->dma_conf.dma_buf_sz);
5373 
5374             /* Data payload appended into SKB */
5375             page_pool_release_page(rx_q->page_pool, buf->page);
5376             buf->page = NULL;
5377         }
5378 
5379         if (buf2_len) {
5380             dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5381                         buf2_len, dma_dir);
5382             skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5383                     buf->sec_page, 0, buf2_len,
5384                     priv->dma_conf.dma_buf_sz);
5385 
5386             /* Data payload appended into SKB */
5387             page_pool_release_page(rx_q->page_pool, buf->sec_page);
5388             buf->sec_page = NULL;
5389         }
5390 
5391 drain_data:
5392         if (likely(status & rx_not_ls))
5393             goto read_again;
5394         if (!skb)
5395             continue;
5396 
5397         /* Got entire packet into SKB. Finish it. */
5398 
5399         stmmac_get_rx_hwtstamp(priv, p, np, skb);
5400         stmmac_rx_vlan(priv->dev, skb);
5401         skb->protocol = eth_type_trans(skb, priv->dev);
5402 
5403         if (unlikely(!coe))
5404             skb_checksum_none_assert(skb);
5405         else
5406             skb->ip_summed = CHECKSUM_UNNECESSARY;
5407 
5408         if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5409             skb_set_hash(skb, hash, hash_type);
5410 
5411         skb_record_rx_queue(skb, queue);
5412         napi_gro_receive(&ch->rx_napi, skb);
5413         skb = NULL;
5414 
5415         priv->dev->stats.rx_packets++;
5416         priv->dev->stats.rx_bytes += len;
5417         count++;
5418     }
5419 
5420     if (status & rx_not_ls || skb) {
5421         rx_q->state_saved = true;
5422         rx_q->state.skb = skb;
5423         rx_q->state.error = error;
5424         rx_q->state.len = len;
5425     }
5426 
5427     stmmac_finalize_xdp_rx(priv, xdp_status);
5428 
5429     stmmac_rx_refill(priv, queue);
5430 
5431     priv->xstats.rx_pkt_n += count;
5432     priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5433 
5434     return count;
5435 }
5436 
5437 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5438 {
5439     struct stmmac_channel *ch =
5440         container_of(napi, struct stmmac_channel, rx_napi);
5441     struct stmmac_priv *priv = ch->priv_data;
5442     u32 chan = ch->index;
5443     int work_done;
5444 
5445     priv->xstats.napi_poll++;
5446 
5447     work_done = stmmac_rx(priv, budget, chan);
5448     if (work_done < budget && napi_complete_done(napi, work_done)) {
5449         unsigned long flags;
5450 
5451         spin_lock_irqsave(&ch->lock, flags);
5452         stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5453         spin_unlock_irqrestore(&ch->lock, flags);
5454     }
5455 
5456     return work_done;
5457 }
5458 
5459 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5460 {
5461     struct stmmac_channel *ch =
5462         container_of(napi, struct stmmac_channel, tx_napi);
5463     struct stmmac_priv *priv = ch->priv_data;
5464     u32 chan = ch->index;
5465     int work_done;
5466 
5467     priv->xstats.napi_poll++;
5468 
5469     work_done = stmmac_tx_clean(priv, budget, chan);
5470     work_done = min(work_done, budget);
5471 
5472     if (work_done < budget && napi_complete_done(napi, work_done)) {
5473         unsigned long flags;
5474 
5475         spin_lock_irqsave(&ch->lock, flags);
5476         stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5477         spin_unlock_irqrestore(&ch->lock, flags);
5478     }
5479 
5480     return work_done;
5481 }
5482 
5483 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5484 {
5485     struct stmmac_channel *ch =
5486         container_of(napi, struct stmmac_channel, rxtx_napi);
5487     struct stmmac_priv *priv = ch->priv_data;
5488     int rx_done, tx_done, rxtx_done;
5489     u32 chan = ch->index;
5490 
5491     priv->xstats.napi_poll++;
5492 
5493     tx_done = stmmac_tx_clean(priv, budget, chan);
5494     tx_done = min(tx_done, budget);
5495 
5496     rx_done = stmmac_rx_zc(priv, budget, chan);
5497 
5498     rxtx_done = max(tx_done, rx_done);
5499 
5500     /* If either TX or RX work is not complete, return budget
5501      * and keep pooling
5502      */
5503     if (rxtx_done >= budget)
5504         return budget;
5505 
5506     /* all work done, exit the polling mode */
5507     if (napi_complete_done(napi, rxtx_done)) {
5508         unsigned long flags;
5509 
5510         spin_lock_irqsave(&ch->lock, flags);
5511         /* Both RX and TX work done are compelte,
5512          * so enable both RX & TX IRQs.
5513          */
5514         stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5515         spin_unlock_irqrestore(&ch->lock, flags);
5516     }
5517 
5518     return min(rxtx_done, budget - 1);
5519 }
5520 
5521 /**
5522  *  stmmac_tx_timeout
5523  *  @dev : Pointer to net device structure
5524  *  @txqueue: the index of the hanging transmit queue
5525  *  Description: this function is called when a packet transmission fails to
5526  *   complete within a reasonable time. The driver will mark the error in the
5527  *   netdev structure and arrange for the device to be reset to a sane state
5528  *   in order to transmit a new packet.
5529  */
5530 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5531 {
5532     struct stmmac_priv *priv = netdev_priv(dev);
5533 
5534     stmmac_global_err(priv);
5535 }
5536 
5537 /**
5538  *  stmmac_set_rx_mode - entry point for multicast addressing
5539  *  @dev : pointer to the device structure
5540  *  Description:
5541  *  This function is a driver entry point which gets called by the kernel
5542  *  whenever multicast addresses must be enabled/disabled.
5543  *  Return value:
5544  *  void.
5545  */
5546 static void stmmac_set_rx_mode(struct net_device *dev)
5547 {
5548     struct stmmac_priv *priv = netdev_priv(dev);
5549 
5550     stmmac_set_filter(priv, priv->hw, dev);
5551 }
5552 
5553 /**
5554  *  stmmac_change_mtu - entry point to change MTU size for the device.
5555  *  @dev : device pointer.
5556  *  @new_mtu : the new MTU size for the device.
5557  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5558  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5559  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5560  *  Return value:
5561  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5562  *  file on failure.
5563  */
5564 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5565 {
5566     struct stmmac_priv *priv = netdev_priv(dev);
5567     int txfifosz = priv->plat->tx_fifo_size;
5568     struct stmmac_dma_conf *dma_conf;
5569     const int mtu = new_mtu;
5570     int ret;
5571 
5572     if (txfifosz == 0)
5573         txfifosz = priv->dma_cap.tx_fifo_size;
5574 
5575     txfifosz /= priv->plat->tx_queues_to_use;
5576 
5577     if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5578         netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5579         return -EINVAL;
5580     }
5581 
5582     new_mtu = STMMAC_ALIGN(new_mtu);
5583 
5584     /* If condition true, FIFO is too small or MTU too large */
5585     if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5586         return -EINVAL;
5587 
5588     if (netif_running(dev)) {
5589         netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5590         /* Try to allocate the new DMA conf with the new mtu */
5591         dma_conf = stmmac_setup_dma_desc(priv, mtu);
5592         if (IS_ERR(dma_conf)) {
5593             netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5594                    mtu);
5595             return PTR_ERR(dma_conf);
5596         }
5597 
5598         stmmac_release(dev);
5599 
5600         ret = __stmmac_open(dev, dma_conf);
5601         kfree(dma_conf);
5602         if (ret) {
5603             netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5604             return ret;
5605         }
5606 
5607         stmmac_set_rx_mode(dev);
5608     }
5609 
5610     dev->mtu = mtu;
5611     netdev_update_features(dev);
5612 
5613     return 0;
5614 }
5615 
5616 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5617                          netdev_features_t features)
5618 {
5619     struct stmmac_priv *priv = netdev_priv(dev);
5620 
5621     if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5622         features &= ~NETIF_F_RXCSUM;
5623 
5624     if (!priv->plat->tx_coe)
5625         features &= ~NETIF_F_CSUM_MASK;
5626 
5627     /* Some GMAC devices have a bugged Jumbo frame support that
5628      * needs to have the Tx COE disabled for oversized frames
5629      * (due to limited buffer sizes). In this case we disable
5630      * the TX csum insertion in the TDES and not use SF.
5631      */
5632     if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5633         features &= ~NETIF_F_CSUM_MASK;
5634 
5635     /* Disable tso if asked by ethtool */
5636     if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5637         if (features & NETIF_F_TSO)
5638             priv->tso = true;
5639         else
5640             priv->tso = false;
5641     }
5642 
5643     return features;
5644 }
5645 
5646 static int stmmac_set_features(struct net_device *netdev,
5647                    netdev_features_t features)
5648 {
5649     struct stmmac_priv *priv = netdev_priv(netdev);
5650 
5651     /* Keep the COE Type in case of csum is supporting */
5652     if (features & NETIF_F_RXCSUM)
5653         priv->hw->rx_csum = priv->plat->rx_coe;
5654     else
5655         priv->hw->rx_csum = 0;
5656     /* No check needed because rx_coe has been set before and it will be
5657      * fixed in case of issue.
5658      */
5659     stmmac_rx_ipc(priv, priv->hw);
5660 
5661     if (priv->sph_cap) {
5662         bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5663         u32 chan;
5664 
5665         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5666             stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5667     }
5668 
5669     return 0;
5670 }
5671 
5672 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5673 {
5674     struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5675     enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5676     enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5677     bool *hs_enable = &fpe_cfg->hs_enable;
5678 
5679     if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5680         return;
5681 
5682     /* If LP has sent verify mPacket, LP is FPE capable */
5683     if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5684         if (*lp_state < FPE_STATE_CAPABLE)
5685             *lp_state = FPE_STATE_CAPABLE;
5686 
5687         /* If user has requested FPE enable, quickly response */
5688         if (*hs_enable)
5689             stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5690                         MPACKET_RESPONSE);
5691     }
5692 
5693     /* If Local has sent verify mPacket, Local is FPE capable */
5694     if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5695         if (*lo_state < FPE_STATE_CAPABLE)
5696             *lo_state = FPE_STATE_CAPABLE;
5697     }
5698 
5699     /* If LP has sent response mPacket, LP is entering FPE ON */
5700     if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5701         *lp_state = FPE_STATE_ENTERING_ON;
5702 
5703     /* If Local has sent response mPacket, Local is entering FPE ON */
5704     if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5705         *lo_state = FPE_STATE_ENTERING_ON;
5706 
5707     if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5708         !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5709         priv->fpe_wq) {
5710         queue_work(priv->fpe_wq, &priv->fpe_task);
5711     }
5712 }
5713 
5714 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5715 {
5716     u32 rx_cnt = priv->plat->rx_queues_to_use;
5717     u32 tx_cnt = priv->plat->tx_queues_to_use;
5718     u32 queues_count;
5719     u32 queue;
5720     bool xmac;
5721 
5722     xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5723     queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5724 
5725     if (priv->irq_wake)
5726         pm_wakeup_event(priv->device, 0);
5727 
5728     if (priv->dma_cap.estsel)
5729         stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5730                       &priv->xstats, tx_cnt);
5731 
5732     if (priv->dma_cap.fpesel) {
5733         int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5734                            priv->dev);
5735 
5736         stmmac_fpe_event_status(priv, status);
5737     }
5738 
5739     /* To handle GMAC own interrupts */
5740     if ((priv->plat->has_gmac) || xmac) {
5741         int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5742 
5743         if (unlikely(status)) {
5744             /* For LPI we need to save the tx status */
5745             if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5746                 priv->tx_path_in_lpi_mode = true;
5747             if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5748                 priv->tx_path_in_lpi_mode = false;
5749         }
5750 
5751         for (queue = 0; queue < queues_count; queue++) {
5752             status = stmmac_host_mtl_irq_status(priv, priv->hw,
5753                                 queue);
5754         }
5755 
5756         /* PCS link status */
5757         if (priv->hw->pcs) {
5758             if (priv->xstats.pcs_link)
5759                 netif_carrier_on(priv->dev);
5760             else
5761                 netif_carrier_off(priv->dev);
5762         }
5763 
5764         stmmac_timestamp_interrupt(priv, priv);
5765     }
5766 }
5767 
5768 /**
5769  *  stmmac_interrupt - main ISR
5770  *  @irq: interrupt number.
5771  *  @dev_id: to pass the net device pointer.
5772  *  Description: this is the main driver interrupt service routine.
5773  *  It can call:
5774  *  o DMA service routine (to manage incoming frame reception and transmission
5775  *    status)
5776  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5777  *    interrupts.
5778  */
5779 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5780 {
5781     struct net_device *dev = (struct net_device *)dev_id;
5782     struct stmmac_priv *priv = netdev_priv(dev);
5783 
5784     /* Check if adapter is up */
5785     if (test_bit(STMMAC_DOWN, &priv->state))
5786         return IRQ_HANDLED;
5787 
5788     /* Check if a fatal error happened */
5789     if (stmmac_safety_feat_interrupt(priv))
5790         return IRQ_HANDLED;
5791 
5792     /* To handle Common interrupts */
5793     stmmac_common_interrupt(priv);
5794 
5795     /* To handle DMA interrupts */
5796     stmmac_dma_interrupt(priv);
5797 
5798     return IRQ_HANDLED;
5799 }
5800 
5801 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5802 {
5803     struct net_device *dev = (struct net_device *)dev_id;
5804     struct stmmac_priv *priv = netdev_priv(dev);
5805 
5806     if (unlikely(!dev)) {
5807         netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5808         return IRQ_NONE;
5809     }
5810 
5811     /* Check if adapter is up */
5812     if (test_bit(STMMAC_DOWN, &priv->state))
5813         return IRQ_HANDLED;
5814 
5815     /* To handle Common interrupts */
5816     stmmac_common_interrupt(priv);
5817 
5818     return IRQ_HANDLED;
5819 }
5820 
5821 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5822 {
5823     struct net_device *dev = (struct net_device *)dev_id;
5824     struct stmmac_priv *priv = netdev_priv(dev);
5825 
5826     if (unlikely(!dev)) {
5827         netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5828         return IRQ_NONE;
5829     }
5830 
5831     /* Check if adapter is up */
5832     if (test_bit(STMMAC_DOWN, &priv->state))
5833         return IRQ_HANDLED;
5834 
5835     /* Check if a fatal error happened */
5836     stmmac_safety_feat_interrupt(priv);
5837 
5838     return IRQ_HANDLED;
5839 }
5840 
5841 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5842 {
5843     struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5844     struct stmmac_dma_conf *dma_conf;
5845     int chan = tx_q->queue_index;
5846     struct stmmac_priv *priv;
5847     int status;
5848 
5849     dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5850     priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5851 
5852     if (unlikely(!data)) {
5853         netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5854         return IRQ_NONE;
5855     }
5856 
5857     /* Check if adapter is up */
5858     if (test_bit(STMMAC_DOWN, &priv->state))
5859         return IRQ_HANDLED;
5860 
5861     status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5862 
5863     if (unlikely(status & tx_hard_error_bump_tc)) {
5864         /* Try to bump up the dma threshold on this failure */
5865         stmmac_bump_dma_threshold(priv, chan);
5866     } else if (unlikely(status == tx_hard_error)) {
5867         stmmac_tx_err(priv, chan);
5868     }
5869 
5870     return IRQ_HANDLED;
5871 }
5872 
5873 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5874 {
5875     struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5876     struct stmmac_dma_conf *dma_conf;
5877     int chan = rx_q->queue_index;
5878     struct stmmac_priv *priv;
5879 
5880     dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5881     priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5882 
5883     if (unlikely(!data)) {
5884         netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5885         return IRQ_NONE;
5886     }
5887 
5888     /* Check if adapter is up */
5889     if (test_bit(STMMAC_DOWN, &priv->state))
5890         return IRQ_HANDLED;
5891 
5892     stmmac_napi_check(priv, chan, DMA_DIR_RX);
5893 
5894     return IRQ_HANDLED;
5895 }
5896 
5897 #ifdef CONFIG_NET_POLL_CONTROLLER
5898 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5899  * to allow network I/O with interrupts disabled.
5900  */
5901 static void stmmac_poll_controller(struct net_device *dev)
5902 {
5903     struct stmmac_priv *priv = netdev_priv(dev);
5904     int i;
5905 
5906     /* If adapter is down, do nothing */
5907     if (test_bit(STMMAC_DOWN, &priv->state))
5908         return;
5909 
5910     if (priv->plat->multi_msi_en) {
5911         for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5912             stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5913 
5914         for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5915             stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5916     } else {
5917         disable_irq(dev->irq);
5918         stmmac_interrupt(dev->irq, dev);
5919         enable_irq(dev->irq);
5920     }
5921 }
5922 #endif
5923 
5924 /**
5925  *  stmmac_ioctl - Entry point for the Ioctl
5926  *  @dev: Device pointer.
5927  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5928  *  a proprietary structure used to pass information to the driver.
5929  *  @cmd: IOCTL command
5930  *  Description:
5931  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5932  */
5933 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5934 {
5935     struct stmmac_priv *priv = netdev_priv (dev);
5936     int ret = -EOPNOTSUPP;
5937 
5938     if (!netif_running(dev))
5939         return -EINVAL;
5940 
5941     switch (cmd) {
5942     case SIOCGMIIPHY:
5943     case SIOCGMIIREG:
5944     case SIOCSMIIREG:
5945         ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5946         break;
5947     case SIOCSHWTSTAMP:
5948         ret = stmmac_hwtstamp_set(dev, rq);
5949         break;
5950     case SIOCGHWTSTAMP:
5951         ret = stmmac_hwtstamp_get(dev, rq);
5952         break;
5953     default:
5954         break;
5955     }
5956 
5957     return ret;
5958 }
5959 
5960 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5961                     void *cb_priv)
5962 {
5963     struct stmmac_priv *priv = cb_priv;
5964     int ret = -EOPNOTSUPP;
5965 
5966     if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5967         return ret;
5968 
5969     __stmmac_disable_all_queues(priv);
5970 
5971     switch (type) {
5972     case TC_SETUP_CLSU32:
5973         ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5974         break;
5975     case TC_SETUP_CLSFLOWER:
5976         ret = stmmac_tc_setup_cls(priv, priv, type_data);
5977         break;
5978     default:
5979         break;
5980     }
5981 
5982     stmmac_enable_all_queues(priv);
5983     return ret;
5984 }
5985 
5986 static LIST_HEAD(stmmac_block_cb_list);
5987 
5988 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5989                void *type_data)
5990 {
5991     struct stmmac_priv *priv = netdev_priv(ndev);
5992 
5993     switch (type) {
5994     case TC_SETUP_BLOCK:
5995         return flow_block_cb_setup_simple(type_data,
5996                           &stmmac_block_cb_list,
5997                           stmmac_setup_tc_block_cb,
5998                           priv, priv, true);
5999     case TC_SETUP_QDISC_CBS:
6000         return stmmac_tc_setup_cbs(priv, priv, type_data);
6001     case TC_SETUP_QDISC_TAPRIO:
6002         return stmmac_tc_setup_taprio(priv, priv, type_data);
6003     case TC_SETUP_QDISC_ETF:
6004         return stmmac_tc_setup_etf(priv, priv, type_data);
6005     default:
6006         return -EOPNOTSUPP;
6007     }
6008 }
6009 
6010 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6011                    struct net_device *sb_dev)
6012 {
6013     int gso = skb_shinfo(skb)->gso_type;
6014 
6015     if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6016         /*
6017          * There is no way to determine the number of TSO/USO
6018          * capable Queues. Let's use always the Queue 0
6019          * because if TSO/USO is supported then at least this
6020          * one will be capable.
6021          */
6022         return 0;
6023     }
6024 
6025     return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6026 }
6027 
6028 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6029 {
6030     struct stmmac_priv *priv = netdev_priv(ndev);
6031     int ret = 0;
6032 
6033     ret = pm_runtime_resume_and_get(priv->device);
6034     if (ret < 0)
6035         return ret;
6036 
6037     ret = eth_mac_addr(ndev, addr);
6038     if (ret)
6039         goto set_mac_error;
6040 
6041     stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6042 
6043 set_mac_error:
6044     pm_runtime_put(priv->device);
6045 
6046     return ret;
6047 }
6048 
6049 #ifdef CONFIG_DEBUG_FS
6050 static struct dentry *stmmac_fs_dir;
6051 
6052 static void sysfs_display_ring(void *head, int size, int extend_desc,
6053                    struct seq_file *seq, dma_addr_t dma_phy_addr)
6054 {
6055     int i;
6056     struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6057     struct dma_desc *p = (struct dma_desc *)head;
6058     dma_addr_t dma_addr;
6059 
6060     for (i = 0; i < size; i++) {
6061         if (extend_desc) {
6062             dma_addr = dma_phy_addr + i * sizeof(*ep);
6063             seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6064                    i, &dma_addr,
6065                    le32_to_cpu(ep->basic.des0),
6066                    le32_to_cpu(ep->basic.des1),
6067                    le32_to_cpu(ep->basic.des2),
6068                    le32_to_cpu(ep->basic.des3));
6069             ep++;
6070         } else {
6071             dma_addr = dma_phy_addr + i * sizeof(*p);
6072             seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6073                    i, &dma_addr,
6074                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6075                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6076             p++;
6077         }
6078         seq_printf(seq, "\n");
6079     }
6080 }
6081 
6082 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6083 {
6084     struct net_device *dev = seq->private;
6085     struct stmmac_priv *priv = netdev_priv(dev);
6086     u32 rx_count = priv->plat->rx_queues_to_use;
6087     u32 tx_count = priv->plat->tx_queues_to_use;
6088     u32 queue;
6089 
6090     if ((dev->flags & IFF_UP) == 0)
6091         return 0;
6092 
6093     for (queue = 0; queue < rx_count; queue++) {
6094         struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6095 
6096         seq_printf(seq, "RX Queue %d:\n", queue);
6097 
6098         if (priv->extend_desc) {
6099             seq_printf(seq, "Extended descriptor ring:\n");
6100             sysfs_display_ring((void *)rx_q->dma_erx,
6101                        priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6102         } else {
6103             seq_printf(seq, "Descriptor ring:\n");
6104             sysfs_display_ring((void *)rx_q->dma_rx,
6105                        priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6106         }
6107     }
6108 
6109     for (queue = 0; queue < tx_count; queue++) {
6110         struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6111 
6112         seq_printf(seq, "TX Queue %d:\n", queue);
6113 
6114         if (priv->extend_desc) {
6115             seq_printf(seq, "Extended descriptor ring:\n");
6116             sysfs_display_ring((void *)tx_q->dma_etx,
6117                        priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6118         } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6119             seq_printf(seq, "Descriptor ring:\n");
6120             sysfs_display_ring((void *)tx_q->dma_tx,
6121                        priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6122         }
6123     }
6124 
6125     return 0;
6126 }
6127 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6128 
6129 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6130 {
6131     struct net_device *dev = seq->private;
6132     struct stmmac_priv *priv = netdev_priv(dev);
6133 
6134     if (!priv->hw_cap_support) {
6135         seq_printf(seq, "DMA HW features not supported\n");
6136         return 0;
6137     }
6138 
6139     seq_printf(seq, "==============================\n");
6140     seq_printf(seq, "\tDMA HW features\n");
6141     seq_printf(seq, "==============================\n");
6142 
6143     seq_printf(seq, "\t10/100 Mbps: %s\n",
6144            (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6145     seq_printf(seq, "\t1000 Mbps: %s\n",
6146            (priv->dma_cap.mbps_1000) ? "Y" : "N");
6147     seq_printf(seq, "\tHalf duplex: %s\n",
6148            (priv->dma_cap.half_duplex) ? "Y" : "N");
6149     seq_printf(seq, "\tHash Filter: %s\n",
6150            (priv->dma_cap.hash_filter) ? "Y" : "N");
6151     seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6152            (priv->dma_cap.multi_addr) ? "Y" : "N");
6153     seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6154            (priv->dma_cap.pcs) ? "Y" : "N");
6155     seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6156            (priv->dma_cap.sma_mdio) ? "Y" : "N");
6157     seq_printf(seq, "\tPMT Remote wake up: %s\n",
6158            (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6159     seq_printf(seq, "\tPMT Magic Frame: %s\n",
6160            (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6161     seq_printf(seq, "\tRMON module: %s\n",
6162            (priv->dma_cap.rmon) ? "Y" : "N");
6163     seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6164            (priv->dma_cap.time_stamp) ? "Y" : "N");
6165     seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6166            (priv->dma_cap.atime_stamp) ? "Y" : "N");
6167     seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6168            (priv->dma_cap.eee) ? "Y" : "N");
6169     seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6170     seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6171            (priv->dma_cap.tx_coe) ? "Y" : "N");
6172     if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6173         seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6174                (priv->dma_cap.rx_coe) ? "Y" : "N");
6175     } else {
6176         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6177                (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6178         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6179                (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6180     }
6181     seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6182            (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6183     seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6184            priv->dma_cap.number_rx_channel);
6185     seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6186            priv->dma_cap.number_tx_channel);
6187     seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6188            priv->dma_cap.number_rx_queues);
6189     seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6190            priv->dma_cap.number_tx_queues);
6191     seq_printf(seq, "\tEnhanced descriptors: %s\n",
6192            (priv->dma_cap.enh_desc) ? "Y" : "N");
6193     seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6194     seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6195     seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6196     seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6197     seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6198            priv->dma_cap.pps_out_num);
6199     seq_printf(seq, "\tSafety Features: %s\n",
6200            priv->dma_cap.asp ? "Y" : "N");
6201     seq_printf(seq, "\tFlexible RX Parser: %s\n",
6202            priv->dma_cap.frpsel ? "Y" : "N");
6203     seq_printf(seq, "\tEnhanced Addressing: %d\n",
6204            priv->dma_cap.addr64);
6205     seq_printf(seq, "\tReceive Side Scaling: %s\n",
6206            priv->dma_cap.rssen ? "Y" : "N");
6207     seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6208            priv->dma_cap.vlhash ? "Y" : "N");
6209     seq_printf(seq, "\tSplit Header: %s\n",
6210            priv->dma_cap.sphen ? "Y" : "N");
6211     seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6212            priv->dma_cap.vlins ? "Y" : "N");
6213     seq_printf(seq, "\tDouble VLAN: %s\n",
6214            priv->dma_cap.dvlan ? "Y" : "N");
6215     seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6216            priv->dma_cap.l3l4fnum);
6217     seq_printf(seq, "\tARP Offloading: %s\n",
6218            priv->dma_cap.arpoffsel ? "Y" : "N");
6219     seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6220            priv->dma_cap.estsel ? "Y" : "N");
6221     seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6222            priv->dma_cap.fpesel ? "Y" : "N");
6223     seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6224            priv->dma_cap.tbssel ? "Y" : "N");
6225     return 0;
6226 }
6227 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6228 
6229 /* Use network device events to rename debugfs file entries.
6230  */
6231 static int stmmac_device_event(struct notifier_block *unused,
6232                    unsigned long event, void *ptr)
6233 {
6234     struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6235     struct stmmac_priv *priv = netdev_priv(dev);
6236 
6237     if (dev->netdev_ops != &stmmac_netdev_ops)
6238         goto done;
6239 
6240     switch (event) {
6241     case NETDEV_CHANGENAME:
6242         if (priv->dbgfs_dir)
6243             priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6244                              priv->dbgfs_dir,
6245                              stmmac_fs_dir,
6246                              dev->name);
6247         break;
6248     }
6249 done:
6250     return NOTIFY_DONE;
6251 }
6252 
6253 static struct notifier_block stmmac_notifier = {
6254     .notifier_call = stmmac_device_event,
6255 };
6256 
6257 static void stmmac_init_fs(struct net_device *dev)
6258 {
6259     struct stmmac_priv *priv = netdev_priv(dev);
6260 
6261     rtnl_lock();
6262 
6263     /* Create per netdev entries */
6264     priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6265 
6266     /* Entry to report DMA RX/TX rings */
6267     debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6268                 &stmmac_rings_status_fops);
6269 
6270     /* Entry to report the DMA HW features */
6271     debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6272                 &stmmac_dma_cap_fops);
6273 
6274     rtnl_unlock();
6275 }
6276 
6277 static void stmmac_exit_fs(struct net_device *dev)
6278 {
6279     struct stmmac_priv *priv = netdev_priv(dev);
6280 
6281     debugfs_remove_recursive(priv->dbgfs_dir);
6282 }
6283 #endif /* CONFIG_DEBUG_FS */
6284 
6285 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6286 {
6287     unsigned char *data = (unsigned char *)&vid_le;
6288     unsigned char data_byte = 0;
6289     u32 crc = ~0x0;
6290     u32 temp = 0;
6291     int i, bits;
6292 
6293     bits = get_bitmask_order(VLAN_VID_MASK);
6294     for (i = 0; i < bits; i++) {
6295         if ((i % 8) == 0)
6296             data_byte = data[i / 8];
6297 
6298         temp = ((crc & 1) ^ data_byte) & 1;
6299         crc >>= 1;
6300         data_byte >>= 1;
6301 
6302         if (temp)
6303             crc ^= 0xedb88320;
6304     }
6305 
6306     return crc;
6307 }
6308 
6309 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6310 {
6311     u32 crc, hash = 0;
6312     __le16 pmatch = 0;
6313     int count = 0;
6314     u16 vid = 0;
6315 
6316     for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6317         __le16 vid_le = cpu_to_le16(vid);
6318         crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6319         hash |= (1 << crc);
6320         count++;
6321     }
6322 
6323     if (!priv->dma_cap.vlhash) {
6324         if (count > 2) /* VID = 0 always passes filter */
6325             return -EOPNOTSUPP;
6326 
6327         pmatch = cpu_to_le16(vid);
6328         hash = 0;
6329     }
6330 
6331     return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6332 }
6333 
6334 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6335 {
6336     struct stmmac_priv *priv = netdev_priv(ndev);
6337     bool is_double = false;
6338     int ret;
6339 
6340     if (be16_to_cpu(proto) == ETH_P_8021AD)
6341         is_double = true;
6342 
6343     set_bit(vid, priv->active_vlans);
6344     ret = stmmac_vlan_update(priv, is_double);
6345     if (ret) {
6346         clear_bit(vid, priv->active_vlans);
6347         return ret;
6348     }
6349 
6350     if (priv->hw->num_vlan) {
6351         ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6352         if (ret)
6353             return ret;
6354     }
6355 
6356     return 0;
6357 }
6358 
6359 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6360 {
6361     struct stmmac_priv *priv = netdev_priv(ndev);
6362     bool is_double = false;
6363     int ret;
6364 
6365     ret = pm_runtime_resume_and_get(priv->device);
6366     if (ret < 0)
6367         return ret;
6368 
6369     if (be16_to_cpu(proto) == ETH_P_8021AD)
6370         is_double = true;
6371 
6372     clear_bit(vid, priv->active_vlans);
6373 
6374     if (priv->hw->num_vlan) {
6375         ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6376         if (ret)
6377             goto del_vlan_error;
6378     }
6379 
6380     ret = stmmac_vlan_update(priv, is_double);
6381 
6382 del_vlan_error:
6383     pm_runtime_put(priv->device);
6384 
6385     return ret;
6386 }
6387 
6388 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6389 {
6390     struct stmmac_priv *priv = netdev_priv(dev);
6391 
6392     switch (bpf->command) {
6393     case XDP_SETUP_PROG:
6394         return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6395     case XDP_SETUP_XSK_POOL:
6396         return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6397                          bpf->xsk.queue_id);
6398     default:
6399         return -EOPNOTSUPP;
6400     }
6401 }
6402 
6403 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6404                struct xdp_frame **frames, u32 flags)
6405 {
6406     struct stmmac_priv *priv = netdev_priv(dev);
6407     int cpu = smp_processor_id();
6408     struct netdev_queue *nq;
6409     int i, nxmit = 0;
6410     int queue;
6411 
6412     if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6413         return -ENETDOWN;
6414 
6415     if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6416         return -EINVAL;
6417 
6418     queue = stmmac_xdp_get_tx_queue(priv, cpu);
6419     nq = netdev_get_tx_queue(priv->dev, queue);
6420 
6421     __netif_tx_lock(nq, cpu);
6422     /* Avoids TX time-out as we are sharing with slow path */
6423     txq_trans_cond_update(nq);
6424 
6425     for (i = 0; i < num_frames; i++) {
6426         int res;
6427 
6428         res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6429         if (res == STMMAC_XDP_CONSUMED)
6430             break;
6431 
6432         nxmit++;
6433     }
6434 
6435     if (flags & XDP_XMIT_FLUSH) {
6436         stmmac_flush_tx_descriptors(priv, queue);
6437         stmmac_tx_timer_arm(priv, queue);
6438     }
6439 
6440     __netif_tx_unlock(nq);
6441 
6442     return nxmit;
6443 }
6444 
6445 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6446 {
6447     struct stmmac_channel *ch = &priv->channel[queue];
6448     unsigned long flags;
6449 
6450     spin_lock_irqsave(&ch->lock, flags);
6451     stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6452     spin_unlock_irqrestore(&ch->lock, flags);
6453 
6454     stmmac_stop_rx_dma(priv, queue);
6455     __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6456 }
6457 
6458 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6459 {
6460     struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6461     struct stmmac_channel *ch = &priv->channel[queue];
6462     unsigned long flags;
6463     u32 buf_size;
6464     int ret;
6465 
6466     ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6467     if (ret) {
6468         netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6469         return;
6470     }
6471 
6472     ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6473     if (ret) {
6474         __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6475         netdev_err(priv->dev, "Failed to init RX desc.\n");
6476         return;
6477     }
6478 
6479     stmmac_reset_rx_queue(priv, queue);
6480     stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6481 
6482     stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6483                 rx_q->dma_rx_phy, rx_q->queue_index);
6484 
6485     rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6486                  sizeof(struct dma_desc));
6487     stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6488                    rx_q->rx_tail_addr, rx_q->queue_index);
6489 
6490     if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6491         buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6492         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6493                       buf_size,
6494                       rx_q->queue_index);
6495     } else {
6496         stmmac_set_dma_bfsize(priv, priv->ioaddr,
6497                       priv->dma_conf.dma_buf_sz,
6498                       rx_q->queue_index);
6499     }
6500 
6501     stmmac_start_rx_dma(priv, queue);
6502 
6503     spin_lock_irqsave(&ch->lock, flags);
6504     stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6505     spin_unlock_irqrestore(&ch->lock, flags);
6506 }
6507 
6508 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6509 {
6510     struct stmmac_channel *ch = &priv->channel[queue];
6511     unsigned long flags;
6512 
6513     spin_lock_irqsave(&ch->lock, flags);
6514     stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6515     spin_unlock_irqrestore(&ch->lock, flags);
6516 
6517     stmmac_stop_tx_dma(priv, queue);
6518     __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6519 }
6520 
6521 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6522 {
6523     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6524     struct stmmac_channel *ch = &priv->channel[queue];
6525     unsigned long flags;
6526     int ret;
6527 
6528     ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6529     if (ret) {
6530         netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6531         return;
6532     }
6533 
6534     ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6535     if (ret) {
6536         __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6537         netdev_err(priv->dev, "Failed to init TX desc.\n");
6538         return;
6539     }
6540 
6541     stmmac_reset_tx_queue(priv, queue);
6542     stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6543 
6544     stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6545                 tx_q->dma_tx_phy, tx_q->queue_index);
6546 
6547     if (tx_q->tbs & STMMAC_TBS_AVAIL)
6548         stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6549 
6550     tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6551     stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6552                    tx_q->tx_tail_addr, tx_q->queue_index);
6553 
6554     stmmac_start_tx_dma(priv, queue);
6555 
6556     spin_lock_irqsave(&ch->lock, flags);
6557     stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6558     spin_unlock_irqrestore(&ch->lock, flags);
6559 }
6560 
6561 void stmmac_xdp_release(struct net_device *dev)
6562 {
6563     struct stmmac_priv *priv = netdev_priv(dev);
6564     u32 chan;
6565 
6566     /* Disable NAPI process */
6567     stmmac_disable_all_queues(priv);
6568 
6569     for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6570         hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6571 
6572     /* Free the IRQ lines */
6573     stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6574 
6575     /* Stop TX/RX DMA channels */
6576     stmmac_stop_all_dma(priv);
6577 
6578     /* Release and free the Rx/Tx resources */
6579     free_dma_desc_resources(priv, &priv->dma_conf);
6580 
6581     /* Disable the MAC Rx/Tx */
6582     stmmac_mac_set(priv, priv->ioaddr, false);
6583 
6584     /* set trans_start so we don't get spurious
6585      * watchdogs during reset
6586      */
6587     netif_trans_update(dev);
6588     netif_carrier_off(dev);
6589 }
6590 
6591 int stmmac_xdp_open(struct net_device *dev)
6592 {
6593     struct stmmac_priv *priv = netdev_priv(dev);
6594     u32 rx_cnt = priv->plat->rx_queues_to_use;
6595     u32 tx_cnt = priv->plat->tx_queues_to_use;
6596     u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6597     struct stmmac_rx_queue *rx_q;
6598     struct stmmac_tx_queue *tx_q;
6599     u32 buf_size;
6600     bool sph_en;
6601     u32 chan;
6602     int ret;
6603 
6604     ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6605     if (ret < 0) {
6606         netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6607                __func__);
6608         goto dma_desc_error;
6609     }
6610 
6611     ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6612     if (ret < 0) {
6613         netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6614                __func__);
6615         goto init_error;
6616     }
6617 
6618     /* DMA CSR Channel configuration */
6619     for (chan = 0; chan < dma_csr_ch; chan++) {
6620         stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6621         stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6622     }
6623 
6624     /* Adjust Split header */
6625     sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6626 
6627     /* DMA RX Channel Configuration */
6628     for (chan = 0; chan < rx_cnt; chan++) {
6629         rx_q = &priv->dma_conf.rx_queue[chan];
6630 
6631         stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6632                     rx_q->dma_rx_phy, chan);
6633 
6634         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6635                      (rx_q->buf_alloc_num *
6636                       sizeof(struct dma_desc));
6637         stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6638                        rx_q->rx_tail_addr, chan);
6639 
6640         if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6641             buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6642             stmmac_set_dma_bfsize(priv, priv->ioaddr,
6643                           buf_size,
6644                           rx_q->queue_index);
6645         } else {
6646             stmmac_set_dma_bfsize(priv, priv->ioaddr,
6647                           priv->dma_conf.dma_buf_sz,
6648                           rx_q->queue_index);
6649         }
6650 
6651         stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6652     }
6653 
6654     /* DMA TX Channel Configuration */
6655     for (chan = 0; chan < tx_cnt; chan++) {
6656         tx_q = &priv->dma_conf.tx_queue[chan];
6657 
6658         stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6659                     tx_q->dma_tx_phy, chan);
6660 
6661         tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6662         stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6663                        tx_q->tx_tail_addr, chan);
6664 
6665         hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6666         tx_q->txtimer.function = stmmac_tx_timer;
6667     }
6668 
6669     /* Enable the MAC Rx/Tx */
6670     stmmac_mac_set(priv, priv->ioaddr, true);
6671 
6672     /* Start Rx & Tx DMA Channels */
6673     stmmac_start_all_dma(priv);
6674 
6675     ret = stmmac_request_irq(dev);
6676     if (ret)
6677         goto irq_error;
6678 
6679     /* Enable NAPI process*/
6680     stmmac_enable_all_queues(priv);
6681     netif_carrier_on(dev);
6682     netif_tx_start_all_queues(dev);
6683     stmmac_enable_all_dma_irq(priv);
6684 
6685     return 0;
6686 
6687 irq_error:
6688     for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6689         hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6690 
6691     stmmac_hw_teardown(dev);
6692 init_error:
6693     free_dma_desc_resources(priv, &priv->dma_conf);
6694 dma_desc_error:
6695     return ret;
6696 }
6697 
6698 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6699 {
6700     struct stmmac_priv *priv = netdev_priv(dev);
6701     struct stmmac_rx_queue *rx_q;
6702     struct stmmac_tx_queue *tx_q;
6703     struct stmmac_channel *ch;
6704 
6705     if (test_bit(STMMAC_DOWN, &priv->state) ||
6706         !netif_carrier_ok(priv->dev))
6707         return -ENETDOWN;
6708 
6709     if (!stmmac_xdp_is_enabled(priv))
6710         return -EINVAL;
6711 
6712     if (queue >= priv->plat->rx_queues_to_use ||
6713         queue >= priv->plat->tx_queues_to_use)
6714         return -EINVAL;
6715 
6716     rx_q = &priv->dma_conf.rx_queue[queue];
6717     tx_q = &priv->dma_conf.tx_queue[queue];
6718     ch = &priv->channel[queue];
6719 
6720     if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6721         return -EINVAL;
6722 
6723     if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6724         /* EQoS does not have per-DMA channel SW interrupt,
6725          * so we schedule RX Napi straight-away.
6726          */
6727         if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6728             __napi_schedule(&ch->rxtx_napi);
6729     }
6730 
6731     return 0;
6732 }
6733 
6734 static const struct net_device_ops stmmac_netdev_ops = {
6735     .ndo_open = stmmac_open,
6736     .ndo_start_xmit = stmmac_xmit,
6737     .ndo_stop = stmmac_release,
6738     .ndo_change_mtu = stmmac_change_mtu,
6739     .ndo_fix_features = stmmac_fix_features,
6740     .ndo_set_features = stmmac_set_features,
6741     .ndo_set_rx_mode = stmmac_set_rx_mode,
6742     .ndo_tx_timeout = stmmac_tx_timeout,
6743     .ndo_eth_ioctl = stmmac_ioctl,
6744     .ndo_setup_tc = stmmac_setup_tc,
6745     .ndo_select_queue = stmmac_select_queue,
6746 #ifdef CONFIG_NET_POLL_CONTROLLER
6747     .ndo_poll_controller = stmmac_poll_controller,
6748 #endif
6749     .ndo_set_mac_address = stmmac_set_mac_address,
6750     .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6751     .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6752     .ndo_bpf = stmmac_bpf,
6753     .ndo_xdp_xmit = stmmac_xdp_xmit,
6754     .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6755 };
6756 
6757 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6758 {
6759     if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6760         return;
6761     if (test_bit(STMMAC_DOWN, &priv->state))
6762         return;
6763 
6764     netdev_err(priv->dev, "Reset adapter.\n");
6765 
6766     rtnl_lock();
6767     netif_trans_update(priv->dev);
6768     while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6769         usleep_range(1000, 2000);
6770 
6771     set_bit(STMMAC_DOWN, &priv->state);
6772     dev_close(priv->dev);
6773     dev_open(priv->dev, NULL);
6774     clear_bit(STMMAC_DOWN, &priv->state);
6775     clear_bit(STMMAC_RESETING, &priv->state);
6776     rtnl_unlock();
6777 }
6778 
6779 static void stmmac_service_task(struct work_struct *work)
6780 {
6781     struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6782             service_task);
6783 
6784     stmmac_reset_subtask(priv);
6785     clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6786 }
6787 
6788 /**
6789  *  stmmac_hw_init - Init the MAC device
6790  *  @priv: driver private structure
6791  *  Description: this function is to configure the MAC device according to
6792  *  some platform parameters or the HW capability register. It prepares the
6793  *  driver to use either ring or chain modes and to setup either enhanced or
6794  *  normal descriptors.
6795  */
6796 static int stmmac_hw_init(struct stmmac_priv *priv)
6797 {
6798     int ret;
6799 
6800     /* dwmac-sun8i only work in chain mode */
6801     if (priv->plat->has_sun8i)
6802         chain_mode = 1;
6803     priv->chain_mode = chain_mode;
6804 
6805     /* Initialize HW Interface */
6806     ret = stmmac_hwif_init(priv);
6807     if (ret)
6808         return ret;
6809 
6810     /* Get the HW capability (new GMAC newer than 3.50a) */
6811     priv->hw_cap_support = stmmac_get_hw_features(priv);
6812     if (priv->hw_cap_support) {
6813         dev_info(priv->device, "DMA HW capability register supported\n");
6814 
6815         /* We can override some gmac/dma configuration fields: e.g.
6816          * enh_desc, tx_coe (e.g. that are passed through the
6817          * platform) with the values from the HW capability
6818          * register (if supported).
6819          */
6820         priv->plat->enh_desc = priv->dma_cap.enh_desc;
6821         priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6822                 !priv->plat->use_phy_wol;
6823         priv->hw->pmt = priv->plat->pmt;
6824         if (priv->dma_cap.hash_tb_sz) {
6825             priv->hw->multicast_filter_bins =
6826                     (BIT(priv->dma_cap.hash_tb_sz) << 5);
6827             priv->hw->mcast_bits_log2 =
6828                     ilog2(priv->hw->multicast_filter_bins);
6829         }
6830 
6831         /* TXCOE doesn't work in thresh DMA mode */
6832         if (priv->plat->force_thresh_dma_mode)
6833             priv->plat->tx_coe = 0;
6834         else
6835             priv->plat->tx_coe = priv->dma_cap.tx_coe;
6836 
6837         /* In case of GMAC4 rx_coe is from HW cap register. */
6838         priv->plat->rx_coe = priv->dma_cap.rx_coe;
6839 
6840         if (priv->dma_cap.rx_coe_type2)
6841             priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6842         else if (priv->dma_cap.rx_coe_type1)
6843             priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6844 
6845     } else {
6846         dev_info(priv->device, "No HW DMA feature register supported\n");
6847     }
6848 
6849     if (priv->plat->rx_coe) {
6850         priv->hw->rx_csum = priv->plat->rx_coe;
6851         dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6852         if (priv->synopsys_id < DWMAC_CORE_4_00)
6853             dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6854     }
6855     if (priv->plat->tx_coe)
6856         dev_info(priv->device, "TX Checksum insertion supported\n");
6857 
6858     if (priv->plat->pmt) {
6859         dev_info(priv->device, "Wake-Up On Lan supported\n");
6860         device_set_wakeup_capable(priv->device, 1);
6861     }
6862 
6863     if (priv->dma_cap.tsoen)
6864         dev_info(priv->device, "TSO supported\n");
6865 
6866     priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6867     priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6868 
6869     /* Run HW quirks, if any */
6870     if (priv->hwif_quirks) {
6871         ret = priv->hwif_quirks(priv);
6872         if (ret)
6873             return ret;
6874     }
6875 
6876     /* Rx Watchdog is available in the COREs newer than the 3.40.
6877      * In some case, for example on bugged HW this feature
6878      * has to be disable and this can be done by passing the
6879      * riwt_off field from the platform.
6880      */
6881     if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6882         (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6883         priv->use_riwt = 1;
6884         dev_info(priv->device,
6885              "Enable RX Mitigation via HW Watchdog Timer\n");
6886     }
6887 
6888     return 0;
6889 }
6890 
6891 static void stmmac_napi_add(struct net_device *dev)
6892 {
6893     struct stmmac_priv *priv = netdev_priv(dev);
6894     u32 queue, maxq;
6895 
6896     maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6897 
6898     for (queue = 0; queue < maxq; queue++) {
6899         struct stmmac_channel *ch = &priv->channel[queue];
6900 
6901         ch->priv_data = priv;
6902         ch->index = queue;
6903         spin_lock_init(&ch->lock);
6904 
6905         if (queue < priv->plat->rx_queues_to_use) {
6906             netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6907                        NAPI_POLL_WEIGHT);
6908         }
6909         if (queue < priv->plat->tx_queues_to_use) {
6910             netif_napi_add_tx(dev, &ch->tx_napi,
6911                       stmmac_napi_poll_tx);
6912         }
6913         if (queue < priv->plat->rx_queues_to_use &&
6914             queue < priv->plat->tx_queues_to_use) {
6915             netif_napi_add(dev, &ch->rxtx_napi,
6916                        stmmac_napi_poll_rxtx,
6917                        NAPI_POLL_WEIGHT);
6918         }
6919     }
6920 }
6921 
6922 static void stmmac_napi_del(struct net_device *dev)
6923 {
6924     struct stmmac_priv *priv = netdev_priv(dev);
6925     u32 queue, maxq;
6926 
6927     maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6928 
6929     for (queue = 0; queue < maxq; queue++) {
6930         struct stmmac_channel *ch = &priv->channel[queue];
6931 
6932         if (queue < priv->plat->rx_queues_to_use)
6933             netif_napi_del(&ch->rx_napi);
6934         if (queue < priv->plat->tx_queues_to_use)
6935             netif_napi_del(&ch->tx_napi);
6936         if (queue < priv->plat->rx_queues_to_use &&
6937             queue < priv->plat->tx_queues_to_use) {
6938             netif_napi_del(&ch->rxtx_napi);
6939         }
6940     }
6941 }
6942 
6943 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6944 {
6945     struct stmmac_priv *priv = netdev_priv(dev);
6946     int ret = 0;
6947 
6948     if (netif_running(dev))
6949         stmmac_release(dev);
6950 
6951     stmmac_napi_del(dev);
6952 
6953     priv->plat->rx_queues_to_use = rx_cnt;
6954     priv->plat->tx_queues_to_use = tx_cnt;
6955 
6956     stmmac_napi_add(dev);
6957 
6958     if (netif_running(dev))
6959         ret = stmmac_open(dev);
6960 
6961     return ret;
6962 }
6963 
6964 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6965 {
6966     struct stmmac_priv *priv = netdev_priv(dev);
6967     int ret = 0;
6968 
6969     if (netif_running(dev))
6970         stmmac_release(dev);
6971 
6972     priv->dma_conf.dma_rx_size = rx_size;
6973     priv->dma_conf.dma_tx_size = tx_size;
6974 
6975     if (netif_running(dev))
6976         ret = stmmac_open(dev);
6977 
6978     return ret;
6979 }
6980 
6981 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6982 static void stmmac_fpe_lp_task(struct work_struct *work)
6983 {
6984     struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6985                         fpe_task);
6986     struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6987     enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6988     enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6989     bool *hs_enable = &fpe_cfg->hs_enable;
6990     bool *enable = &fpe_cfg->enable;
6991     int retries = 20;
6992 
6993     while (retries-- > 0) {
6994         /* Bail out immediately if FPE handshake is OFF */
6995         if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6996             break;
6997 
6998         if (*lo_state == FPE_STATE_ENTERING_ON &&
6999             *lp_state == FPE_STATE_ENTERING_ON) {
7000             stmmac_fpe_configure(priv, priv->ioaddr,
7001                          priv->plat->tx_queues_to_use,
7002                          priv->plat->rx_queues_to_use,
7003                          *enable);
7004 
7005             netdev_info(priv->dev, "configured FPE\n");
7006 
7007             *lo_state = FPE_STATE_ON;
7008             *lp_state = FPE_STATE_ON;
7009             netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7010             break;
7011         }
7012 
7013         if ((*lo_state == FPE_STATE_CAPABLE ||
7014              *lo_state == FPE_STATE_ENTERING_ON) &&
7015              *lp_state != FPE_STATE_ON) {
7016             netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7017                     *lo_state, *lp_state);
7018             stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7019                         MPACKET_VERIFY);
7020         }
7021         /* Sleep then retry */
7022         msleep(500);
7023     }
7024 
7025     clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7026 }
7027 
7028 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7029 {
7030     if (priv->plat->fpe_cfg->hs_enable != enable) {
7031         if (enable) {
7032             stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7033                         MPACKET_VERIFY);
7034         } else {
7035             priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7036             priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7037         }
7038 
7039         priv->plat->fpe_cfg->hs_enable = enable;
7040     }
7041 }
7042 
7043 /**
7044  * stmmac_dvr_probe
7045  * @device: device pointer
7046  * @plat_dat: platform data pointer
7047  * @res: stmmac resource pointer
7048  * Description: this is the main probe function used to
7049  * call the alloc_etherdev, allocate the priv structure.
7050  * Return:
7051  * returns 0 on success, otherwise errno.
7052  */
7053 int stmmac_dvr_probe(struct device *device,
7054              struct plat_stmmacenet_data *plat_dat,
7055              struct stmmac_resources *res)
7056 {
7057     struct net_device *ndev = NULL;
7058     struct stmmac_priv *priv;
7059     u32 rxq;
7060     int i, ret = 0;
7061 
7062     ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7063                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7064     if (!ndev)
7065         return -ENOMEM;
7066 
7067     SET_NETDEV_DEV(ndev, device);
7068 
7069     priv = netdev_priv(ndev);
7070     priv->device = device;
7071     priv->dev = ndev;
7072 
7073     stmmac_set_ethtool_ops(ndev);
7074     priv->pause = pause;
7075     priv->plat = plat_dat;
7076     priv->ioaddr = res->addr;
7077     priv->dev->base_addr = (unsigned long)res->addr;
7078     priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7079 
7080     priv->dev->irq = res->irq;
7081     priv->wol_irq = res->wol_irq;
7082     priv->lpi_irq = res->lpi_irq;
7083     priv->sfty_ce_irq = res->sfty_ce_irq;
7084     priv->sfty_ue_irq = res->sfty_ue_irq;
7085     for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7086         priv->rx_irq[i] = res->rx_irq[i];
7087     for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7088         priv->tx_irq[i] = res->tx_irq[i];
7089 
7090     if (!is_zero_ether_addr(res->mac))
7091         eth_hw_addr_set(priv->dev, res->mac);
7092 
7093     dev_set_drvdata(device, priv->dev);
7094 
7095     /* Verify driver arguments */
7096     stmmac_verify_args();
7097 
7098     priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7099     if (!priv->af_xdp_zc_qps)
7100         return -ENOMEM;
7101 
7102     /* Allocate workqueue */
7103     priv->wq = create_singlethread_workqueue("stmmac_wq");
7104     if (!priv->wq) {
7105         dev_err(priv->device, "failed to create workqueue\n");
7106         return -ENOMEM;
7107     }
7108 
7109     INIT_WORK(&priv->service_task, stmmac_service_task);
7110 
7111     /* Initialize Link Partner FPE workqueue */
7112     INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7113 
7114     /* Override with kernel parameters if supplied XXX CRS XXX
7115      * this needs to have multiple instances
7116      */
7117     if ((phyaddr >= 0) && (phyaddr <= 31))
7118         priv->plat->phy_addr = phyaddr;
7119 
7120     if (priv->plat->stmmac_rst) {
7121         ret = reset_control_assert(priv->plat->stmmac_rst);
7122         reset_control_deassert(priv->plat->stmmac_rst);
7123         /* Some reset controllers have only reset callback instead of
7124          * assert + deassert callbacks pair.
7125          */
7126         if (ret == -ENOTSUPP)
7127             reset_control_reset(priv->plat->stmmac_rst);
7128     }
7129 
7130     ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7131     if (ret == -ENOTSUPP)
7132         dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7133             ERR_PTR(ret));
7134 
7135     /* Init MAC and get the capabilities */
7136     ret = stmmac_hw_init(priv);
7137     if (ret)
7138         goto error_hw_init;
7139 
7140     /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7141      */
7142     if (priv->synopsys_id < DWMAC_CORE_5_20)
7143         priv->plat->dma_cfg->dche = false;
7144 
7145     stmmac_check_ether_addr(priv);
7146 
7147     ndev->netdev_ops = &stmmac_netdev_ops;
7148 
7149     ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7150                 NETIF_F_RXCSUM;
7151 
7152     ret = stmmac_tc_init(priv, priv);
7153     if (!ret) {
7154         ndev->hw_features |= NETIF_F_HW_TC;
7155     }
7156 
7157     if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7158         ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7159         if (priv->plat->has_gmac4)
7160             ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7161         priv->tso = true;
7162         dev_info(priv->device, "TSO feature enabled\n");
7163     }
7164 
7165     if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7166         ndev->hw_features |= NETIF_F_GRO;
7167         priv->sph_cap = true;
7168         priv->sph = priv->sph_cap;
7169         dev_info(priv->device, "SPH feature enabled\n");
7170     }
7171 
7172     /* The current IP register MAC_HW_Feature1[ADDR64] only define
7173      * 32/40/64 bit width, but some SOC support others like i.MX8MP
7174      * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7175      * So overwrite dma_cap.addr64 according to HW real design.
7176      */
7177     if (priv->plat->addr64)
7178         priv->dma_cap.addr64 = priv->plat->addr64;
7179 
7180     if (priv->dma_cap.addr64) {
7181         ret = dma_set_mask_and_coherent(device,
7182                 DMA_BIT_MASK(priv->dma_cap.addr64));
7183         if (!ret) {
7184             dev_info(priv->device, "Using %d bits DMA width\n",
7185                  priv->dma_cap.addr64);
7186 
7187             /*
7188              * If more than 32 bits can be addressed, make sure to
7189              * enable enhanced addressing mode.
7190              */
7191             if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7192                 priv->plat->dma_cfg->eame = true;
7193         } else {
7194             ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7195             if (ret) {
7196                 dev_err(priv->device, "Failed to set DMA Mask\n");
7197                 goto error_hw_init;
7198             }
7199 
7200             priv->dma_cap.addr64 = 32;
7201         }
7202     }
7203 
7204     ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7205     ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7206 #ifdef STMMAC_VLAN_TAG_USED
7207     /* Both mac100 and gmac support receive VLAN tag detection */
7208     ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7209     if (priv->dma_cap.vlhash) {
7210         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7211         ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7212     }
7213     if (priv->dma_cap.vlins) {
7214         ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7215         if (priv->dma_cap.dvlan)
7216             ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7217     }
7218 #endif
7219     priv->msg_enable = netif_msg_init(debug, default_msg_level);
7220 
7221     /* Initialize RSS */
7222     rxq = priv->plat->rx_queues_to_use;
7223     netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7224     for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7225         priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7226 
7227     if (priv->dma_cap.rssen && priv->plat->rss_en)
7228         ndev->features |= NETIF_F_RXHASH;
7229 
7230     /* MTU range: 46 - hw-specific max */
7231     ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7232     if (priv->plat->has_xgmac)
7233         ndev->max_mtu = XGMAC_JUMBO_LEN;
7234     else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7235         ndev->max_mtu = JUMBO_LEN;
7236     else
7237         ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7238     /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7239      * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7240      */
7241     if ((priv->plat->maxmtu < ndev->max_mtu) &&
7242         (priv->plat->maxmtu >= ndev->min_mtu))
7243         ndev->max_mtu = priv->plat->maxmtu;
7244     else if (priv->plat->maxmtu < ndev->min_mtu)
7245         dev_warn(priv->device,
7246              "%s: warning: maxmtu having invalid value (%d)\n",
7247              __func__, priv->plat->maxmtu);
7248 
7249     if (flow_ctrl)
7250         priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
7251 
7252     /* Setup channels NAPI */
7253     stmmac_napi_add(ndev);
7254 
7255     mutex_init(&priv->lock);
7256 
7257     /* If a specific clk_csr value is passed from the platform
7258      * this means that the CSR Clock Range selection cannot be
7259      * changed at run-time and it is fixed. Viceversa the driver'll try to
7260      * set the MDC clock dynamically according to the csr actual
7261      * clock input.
7262      */
7263     if (priv->plat->clk_csr >= 0)
7264         priv->clk_csr = priv->plat->clk_csr;
7265     else
7266         stmmac_clk_csr_set(priv);
7267 
7268     stmmac_check_pcs_mode(priv);
7269 
7270     pm_runtime_get_noresume(device);
7271     pm_runtime_set_active(device);
7272     if (!pm_runtime_enabled(device))
7273         pm_runtime_enable(device);
7274 
7275     if (priv->hw->pcs != STMMAC_PCS_TBI &&
7276         priv->hw->pcs != STMMAC_PCS_RTBI) {
7277         /* MDIO bus Registration */
7278         ret = stmmac_mdio_register(ndev);
7279         if (ret < 0) {
7280             dev_err_probe(priv->device, ret,
7281                       "%s: MDIO bus (id: %d) registration failed\n",
7282                       __func__, priv->plat->bus_id);
7283             goto error_mdio_register;
7284         }
7285     }
7286 
7287     if (priv->plat->speed_mode_2500)
7288         priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7289 
7290     if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7291         ret = stmmac_xpcs_setup(priv->mii);
7292         if (ret)
7293             goto error_xpcs_setup;
7294     }
7295 
7296     ret = stmmac_phy_setup(priv);
7297     if (ret) {
7298         netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7299         goto error_phy_setup;
7300     }
7301 
7302     ret = register_netdev(ndev);
7303     if (ret) {
7304         dev_err(priv->device, "%s: ERROR %i registering the device\n",
7305             __func__, ret);
7306         goto error_netdev_register;
7307     }
7308 
7309 #ifdef CONFIG_DEBUG_FS
7310     stmmac_init_fs(ndev);
7311 #endif
7312 
7313     if (priv->plat->dump_debug_regs)
7314         priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7315 
7316     /* Let pm_runtime_put() disable the clocks.
7317      * If CONFIG_PM is not enabled, the clocks will stay powered.
7318      */
7319     pm_runtime_put(device);
7320 
7321     return ret;
7322 
7323 error_netdev_register:
7324     phylink_destroy(priv->phylink);
7325 error_xpcs_setup:
7326 error_phy_setup:
7327     if (priv->hw->pcs != STMMAC_PCS_TBI &&
7328         priv->hw->pcs != STMMAC_PCS_RTBI)
7329         stmmac_mdio_unregister(ndev);
7330 error_mdio_register:
7331     stmmac_napi_del(ndev);
7332 error_hw_init:
7333     destroy_workqueue(priv->wq);
7334     bitmap_free(priv->af_xdp_zc_qps);
7335 
7336     return ret;
7337 }
7338 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7339 
7340 /**
7341  * stmmac_dvr_remove
7342  * @dev: device pointer
7343  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7344  * changes the link status, releases the DMA descriptor rings.
7345  */
7346 int stmmac_dvr_remove(struct device *dev)
7347 {
7348     struct net_device *ndev = dev_get_drvdata(dev);
7349     struct stmmac_priv *priv = netdev_priv(ndev);
7350 
7351     netdev_info(priv->dev, "%s: removing driver", __func__);
7352 
7353     pm_runtime_get_sync(dev);
7354 
7355     stmmac_stop_all_dma(priv);
7356     stmmac_mac_set(priv, priv->ioaddr, false);
7357     netif_carrier_off(ndev);
7358     unregister_netdev(ndev);
7359 
7360     /* Serdes power down needs to happen after VLAN filter
7361      * is deleted that is triggered by unregister_netdev().
7362      */
7363     if (priv->plat->serdes_powerdown)
7364         priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7365 
7366 #ifdef CONFIG_DEBUG_FS
7367     stmmac_exit_fs(ndev);
7368 #endif
7369     phylink_destroy(priv->phylink);
7370     if (priv->plat->stmmac_rst)
7371         reset_control_assert(priv->plat->stmmac_rst);
7372     reset_control_assert(priv->plat->stmmac_ahb_rst);
7373     if (priv->hw->pcs != STMMAC_PCS_TBI &&
7374         priv->hw->pcs != STMMAC_PCS_RTBI)
7375         stmmac_mdio_unregister(ndev);
7376     destroy_workqueue(priv->wq);
7377     mutex_destroy(&priv->lock);
7378     bitmap_free(priv->af_xdp_zc_qps);
7379 
7380     pm_runtime_disable(dev);
7381     pm_runtime_put_noidle(dev);
7382 
7383     return 0;
7384 }
7385 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7386 
7387 /**
7388  * stmmac_suspend - suspend callback
7389  * @dev: device pointer
7390  * Description: this is the function to suspend the device and it is called
7391  * by the platform driver to stop the network queue, release the resources,
7392  * program the PMT register (for WoL), clean and release driver resources.
7393  */
7394 int stmmac_suspend(struct device *dev)
7395 {
7396     struct net_device *ndev = dev_get_drvdata(dev);
7397     struct stmmac_priv *priv = netdev_priv(ndev);
7398     u32 chan;
7399 
7400     if (!ndev || !netif_running(ndev))
7401         return 0;
7402 
7403     mutex_lock(&priv->lock);
7404 
7405     netif_device_detach(ndev);
7406 
7407     stmmac_disable_all_queues(priv);
7408 
7409     for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7410         hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7411 
7412     if (priv->eee_enabled) {
7413         priv->tx_path_in_lpi_mode = false;
7414         del_timer_sync(&priv->eee_ctrl_timer);
7415     }
7416 
7417     /* Stop TX/RX DMA */
7418     stmmac_stop_all_dma(priv);
7419 
7420     if (priv->plat->serdes_powerdown)
7421         priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7422 
7423     /* Enable Power down mode by programming the PMT regs */
7424     if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7425         stmmac_pmt(priv, priv->hw, priv->wolopts);
7426         priv->irq_wake = 1;
7427     } else {
7428         stmmac_mac_set(priv, priv->ioaddr, false);
7429         pinctrl_pm_select_sleep_state(priv->device);
7430     }
7431 
7432     mutex_unlock(&priv->lock);
7433 
7434     rtnl_lock();
7435     if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7436         phylink_suspend(priv->phylink, true);
7437     } else {
7438         if (device_may_wakeup(priv->device))
7439             phylink_speed_down(priv->phylink, false);
7440         phylink_suspend(priv->phylink, false);
7441     }
7442     rtnl_unlock();
7443 
7444     if (priv->dma_cap.fpesel) {
7445         /* Disable FPE */
7446         stmmac_fpe_configure(priv, priv->ioaddr,
7447                      priv->plat->tx_queues_to_use,
7448                      priv->plat->rx_queues_to_use, false);
7449 
7450         stmmac_fpe_handshake(priv, false);
7451         stmmac_fpe_stop_wq(priv);
7452     }
7453 
7454     priv->speed = SPEED_UNKNOWN;
7455     return 0;
7456 }
7457 EXPORT_SYMBOL_GPL(stmmac_suspend);
7458 
7459 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7460 {
7461     struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7462 
7463     rx_q->cur_rx = 0;
7464     rx_q->dirty_rx = 0;
7465 }
7466 
7467 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7468 {
7469     struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7470 
7471     tx_q->cur_tx = 0;
7472     tx_q->dirty_tx = 0;
7473     tx_q->mss = 0;
7474 
7475     netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7476 }
7477 
7478 /**
7479  * stmmac_reset_queues_param - reset queue parameters
7480  * @priv: device pointer
7481  */
7482 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7483 {
7484     u32 rx_cnt = priv->plat->rx_queues_to_use;
7485     u32 tx_cnt = priv->plat->tx_queues_to_use;
7486     u32 queue;
7487 
7488     for (queue = 0; queue < rx_cnt; queue++)
7489         stmmac_reset_rx_queue(priv, queue);
7490 
7491     for (queue = 0; queue < tx_cnt; queue++)
7492         stmmac_reset_tx_queue(priv, queue);
7493 }
7494 
7495 /**
7496  * stmmac_resume - resume callback
7497  * @dev: device pointer
7498  * Description: when resume this function is invoked to setup the DMA and CORE
7499  * in a usable state.
7500  */
7501 int stmmac_resume(struct device *dev)
7502 {
7503     struct net_device *ndev = dev_get_drvdata(dev);
7504     struct stmmac_priv *priv = netdev_priv(ndev);
7505     int ret;
7506 
7507     if (!netif_running(ndev))
7508         return 0;
7509 
7510     /* Power Down bit, into the PM register, is cleared
7511      * automatically as soon as a magic packet or a Wake-up frame
7512      * is received. Anyway, it's better to manually clear
7513      * this bit because it can generate problems while resuming
7514      * from another devices (e.g. serial console).
7515      */
7516     if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7517         mutex_lock(&priv->lock);
7518         stmmac_pmt(priv, priv->hw, 0);
7519         mutex_unlock(&priv->lock);
7520         priv->irq_wake = 0;
7521     } else {
7522         pinctrl_pm_select_default_state(priv->device);
7523         /* reset the phy so that it's ready */
7524         if (priv->mii)
7525             stmmac_mdio_reset(priv->mii);
7526     }
7527 
7528     if (priv->plat->serdes_powerup) {
7529         ret = priv->plat->serdes_powerup(ndev,
7530                          priv->plat->bsp_priv);
7531 
7532         if (ret < 0)
7533             return ret;
7534     }
7535 
7536     rtnl_lock();
7537     if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7538         phylink_resume(priv->phylink);
7539     } else {
7540         phylink_resume(priv->phylink);
7541         if (device_may_wakeup(priv->device))
7542             phylink_speed_up(priv->phylink);
7543     }
7544     rtnl_unlock();
7545 
7546     rtnl_lock();
7547     mutex_lock(&priv->lock);
7548 
7549     stmmac_reset_queues_param(priv);
7550 
7551     stmmac_free_tx_skbufs(priv);
7552     stmmac_clear_descriptors(priv, &priv->dma_conf);
7553 
7554     stmmac_hw_setup(ndev, false);
7555     stmmac_init_coalesce(priv);
7556     stmmac_set_rx_mode(ndev);
7557 
7558     stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7559 
7560     stmmac_enable_all_queues(priv);
7561     stmmac_enable_all_dma_irq(priv);
7562 
7563     mutex_unlock(&priv->lock);
7564     rtnl_unlock();
7565 
7566     netif_device_attach(ndev);
7567 
7568     return 0;
7569 }
7570 EXPORT_SYMBOL_GPL(stmmac_resume);
7571 
7572 #ifndef MODULE
7573 static int __init stmmac_cmdline_opt(char *str)
7574 {
7575     char *opt;
7576 
7577     if (!str || !*str)
7578         return 1;
7579     while ((opt = strsep(&str, ",")) != NULL) {
7580         if (!strncmp(opt, "debug:", 6)) {
7581             if (kstrtoint(opt + 6, 0, &debug))
7582                 goto err;
7583         } else if (!strncmp(opt, "phyaddr:", 8)) {
7584             if (kstrtoint(opt + 8, 0, &phyaddr))
7585                 goto err;
7586         } else if (!strncmp(opt, "buf_sz:", 7)) {
7587             if (kstrtoint(opt + 7, 0, &buf_sz))
7588                 goto err;
7589         } else if (!strncmp(opt, "tc:", 3)) {
7590             if (kstrtoint(opt + 3, 0, &tc))
7591                 goto err;
7592         } else if (!strncmp(opt, "watchdog:", 9)) {
7593             if (kstrtoint(opt + 9, 0, &watchdog))
7594                 goto err;
7595         } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7596             if (kstrtoint(opt + 10, 0, &flow_ctrl))
7597                 goto err;
7598         } else if (!strncmp(opt, "pause:", 6)) {
7599             if (kstrtoint(opt + 6, 0, &pause))
7600                 goto err;
7601         } else if (!strncmp(opt, "eee_timer:", 10)) {
7602             if (kstrtoint(opt + 10, 0, &eee_timer))
7603                 goto err;
7604         } else if (!strncmp(opt, "chain_mode:", 11)) {
7605             if (kstrtoint(opt + 11, 0, &chain_mode))
7606                 goto err;
7607         }
7608     }
7609     return 1;
7610 
7611 err:
7612     pr_err("%s: ERROR broken module parameter conversion", __func__);
7613     return 1;
7614 }
7615 
7616 __setup("stmmaceth=", stmmac_cmdline_opt);
7617 #endif /* MODULE */
7618 
7619 static int __init stmmac_init(void)
7620 {
7621 #ifdef CONFIG_DEBUG_FS
7622     /* Create debugfs main directory if it doesn't exist yet */
7623     if (!stmmac_fs_dir)
7624         stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7625     register_netdevice_notifier(&stmmac_notifier);
7626 #endif
7627 
7628     return 0;
7629 }
7630 
7631 static void __exit stmmac_exit(void)
7632 {
7633 #ifdef CONFIG_DEBUG_FS
7634     unregister_netdevice_notifier(&stmmac_notifier);
7635     debugfs_remove_recursive(stmmac_fs_dir);
7636 #endif
7637 }
7638 
7639 module_init(stmmac_init)
7640 module_exit(stmmac_exit)
7641 
7642 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7643 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7644 MODULE_LICENSE("GPL");