Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * smc91x.c
0004  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
0005  *
0006  * Copyright (C) 1996 by Erik Stahlman
0007  * Copyright (C) 2001 Standard Microsystems Corporation
0008  *  Developed by Simple Network Magic Corporation
0009  * Copyright (C) 2003 Monta Vista Software, Inc.
0010  *  Unified SMC91x driver by Nicolas Pitre
0011  *
0012  * Arguments:
0013  *  io  = for the base address
0014  *  irq = for the IRQ
0015  *  nowait  = 0 for normal wait states, 1 eliminates additional wait states
0016  *
0017  * original author:
0018  *  Erik Stahlman <erik@vt.edu>
0019  *
0020  * hardware multicast code:
0021  *    Peter Cammaert <pc@denkart.be>
0022  *
0023  * contributors:
0024  *  Daris A Nevil <dnevil@snmc.com>
0025  *      Nicolas Pitre <nico@fluxnic.net>
0026  *  Russell King <rmk@arm.linux.org.uk>
0027  *
0028  * History:
0029  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
0030  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
0031  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
0032  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
0033  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
0034  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
0035  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
0036  *                                more bus abstraction, big cleanup, etc.
0037  *   29/09/03  Russell King       - add driver model support
0038  *                                - ethtool support
0039  *                                - convert to use generic MII interface
0040  *                                - add link up/down notification
0041  *                                - don't try to handle full negotiation in
0042  *                                  smc_phy_configure
0043  *                                - clean up (and fix stack overrun) in PHY
0044  *                                  MII read/write functions
0045  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
0046  */
0047 static const char version[] =
0048     "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
0049 
0050 /* Debugging level */
0051 #ifndef SMC_DEBUG
0052 #define SMC_DEBUG       0
0053 #endif
0054 
0055 
0056 #include <linux/module.h>
0057 #include <linux/kernel.h>
0058 #include <linux/sched.h>
0059 #include <linux/delay.h>
0060 #include <linux/interrupt.h>
0061 #include <linux/irq.h>
0062 #include <linux/errno.h>
0063 #include <linux/ioport.h>
0064 #include <linux/crc32.h>
0065 #include <linux/platform_device.h>
0066 #include <linux/spinlock.h>
0067 #include <linux/ethtool.h>
0068 #include <linux/mii.h>
0069 #include <linux/workqueue.h>
0070 #include <linux/of.h>
0071 #include <linux/of_device.h>
0072 #include <linux/of_gpio.h>
0073 
0074 #include <linux/netdevice.h>
0075 #include <linux/etherdevice.h>
0076 #include <linux/skbuff.h>
0077 
0078 #include <asm/io.h>
0079 
0080 #include "smc91x.h"
0081 
0082 #if defined(CONFIG_ASSABET_NEPONSET)
0083 #include <mach/assabet.h>
0084 #include <mach/neponset.h>
0085 #endif
0086 
0087 #ifndef SMC_NOWAIT
0088 # define SMC_NOWAIT     0
0089 #endif
0090 static int nowait = SMC_NOWAIT;
0091 module_param(nowait, int, 0400);
0092 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
0093 
0094 /*
0095  * Transmit timeout, default 5 seconds.
0096  */
0097 static int watchdog = 1000;
0098 module_param(watchdog, int, 0400);
0099 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
0100 
0101 MODULE_LICENSE("GPL");
0102 MODULE_ALIAS("platform:smc91x");
0103 
0104 /*
0105  * The internal workings of the driver.  If you are changing anything
0106  * here with the SMC stuff, you should have the datasheet and know
0107  * what you are doing.
0108  */
0109 #define CARDNAME "smc91x"
0110 
0111 /*
0112  * Use power-down feature of the chip
0113  */
0114 #define POWER_DOWN      1
0115 
0116 /*
0117  * Wait time for memory to be free.  This probably shouldn't be
0118  * tuned that much, as waiting for this means nothing else happens
0119  * in the system
0120  */
0121 #define MEMORY_WAIT_TIME    16
0122 
0123 /*
0124  * The maximum number of processing loops allowed for each call to the
0125  * IRQ handler.
0126  */
0127 #define MAX_IRQ_LOOPS       8
0128 
0129 /*
0130  * This selects whether TX packets are sent one by one to the SMC91x internal
0131  * memory and throttled until transmission completes.  This may prevent
0132  * RX overruns a litle by keeping much of the memory free for RX packets
0133  * but to the expense of reduced TX throughput and increased IRQ overhead.
0134  * Note this is not a cure for a too slow data bus or too high IRQ latency.
0135  */
0136 #define THROTTLE_TX_PKTS    0
0137 
0138 /*
0139  * The MII clock high/low times.  2x this number gives the MII clock period
0140  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
0141  */
0142 #define MII_DELAY       1
0143 
0144 #define DBG(n, dev, fmt, ...)                   \
0145     do {                            \
0146         if (SMC_DEBUG >= (n))               \
0147             netdev_dbg(dev, fmt, ##__VA_ARGS__);    \
0148     } while (0)
0149 
0150 #define PRINTK(dev, fmt, ...)                   \
0151     do {                            \
0152         if (SMC_DEBUG > 0)              \
0153             netdev_info(dev, fmt, ##__VA_ARGS__);   \
0154         else                        \
0155             netdev_dbg(dev, fmt, ##__VA_ARGS__);    \
0156     } while (0)
0157 
0158 #if SMC_DEBUG > 3
0159 static void PRINT_PKT(u_char *buf, int length)
0160 {
0161     int i;
0162     int remainder;
0163     int lines;
0164 
0165     lines = length / 16;
0166     remainder = length % 16;
0167 
0168     for (i = 0; i < lines ; i ++) {
0169         int cur;
0170         printk(KERN_DEBUG);
0171         for (cur = 0; cur < 8; cur++) {
0172             u_char a, b;
0173             a = *buf++;
0174             b = *buf++;
0175             pr_cont("%02x%02x ", a, b);
0176         }
0177         pr_cont("\n");
0178     }
0179     printk(KERN_DEBUG);
0180     for (i = 0; i < remainder/2 ; i++) {
0181         u_char a, b;
0182         a = *buf++;
0183         b = *buf++;
0184         pr_cont("%02x%02x ", a, b);
0185     }
0186     pr_cont("\n");
0187 }
0188 #else
0189 static inline void PRINT_PKT(u_char *buf, int length) { }
0190 #endif
0191 
0192 
0193 /* this enables an interrupt in the interrupt mask register */
0194 #define SMC_ENABLE_INT(lp, x) do {                  \
0195     unsigned char mask;                     \
0196     unsigned long smc_enable_flags;                 \
0197     spin_lock_irqsave(&lp->lock, smc_enable_flags);         \
0198     mask = SMC_GET_INT_MASK(lp);                    \
0199     mask |= (x);                            \
0200     SMC_SET_INT_MASK(lp, mask);                 \
0201     spin_unlock_irqrestore(&lp->lock, smc_enable_flags);        \
0202 } while (0)
0203 
0204 /* this disables an interrupt from the interrupt mask register */
0205 #define SMC_DISABLE_INT(lp, x) do {                 \
0206     unsigned char mask;                     \
0207     unsigned long smc_disable_flags;                \
0208     spin_lock_irqsave(&lp->lock, smc_disable_flags);        \
0209     mask = SMC_GET_INT_MASK(lp);                    \
0210     mask &= ~(x);                           \
0211     SMC_SET_INT_MASK(lp, mask);                 \
0212     spin_unlock_irqrestore(&lp->lock, smc_disable_flags);       \
0213 } while (0)
0214 
0215 /*
0216  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
0217  * if at all, but let's avoid deadlocking the system if the hardware
0218  * decides to go south.
0219  */
0220 #define SMC_WAIT_MMU_BUSY(lp) do {                  \
0221     if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {      \
0222         unsigned long timeout = jiffies + 2;            \
0223         while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {     \
0224             if (time_after(jiffies, timeout)) {     \
0225                 netdev_dbg(dev, "timeout %s line %d\n", \
0226                        __FILE__, __LINE__);     \
0227                 break;                  \
0228             }                       \
0229             cpu_relax();                    \
0230         }                           \
0231     }                               \
0232 } while (0)
0233 
0234 
0235 /*
0236  * this does a soft reset on the device
0237  */
0238 static void smc_reset(struct net_device *dev)
0239 {
0240     struct smc_local *lp = netdev_priv(dev);
0241     void __iomem *ioaddr = lp->base;
0242     unsigned int ctl, cfg;
0243     struct sk_buff *pending_skb;
0244 
0245     DBG(2, dev, "%s\n", __func__);
0246 
0247     /* Disable all interrupts, block TX tasklet */
0248     spin_lock_irq(&lp->lock);
0249     SMC_SELECT_BANK(lp, 2);
0250     SMC_SET_INT_MASK(lp, 0);
0251     pending_skb = lp->pending_tx_skb;
0252     lp->pending_tx_skb = NULL;
0253     spin_unlock_irq(&lp->lock);
0254 
0255     /* free any pending tx skb */
0256     if (pending_skb) {
0257         dev_kfree_skb(pending_skb);
0258         dev->stats.tx_errors++;
0259         dev->stats.tx_aborted_errors++;
0260     }
0261 
0262     /*
0263      * This resets the registers mostly to defaults, but doesn't
0264      * affect EEPROM.  That seems unnecessary
0265      */
0266     SMC_SELECT_BANK(lp, 0);
0267     SMC_SET_RCR(lp, RCR_SOFTRST);
0268 
0269     /*
0270      * Setup the Configuration Register
0271      * This is necessary because the CONFIG_REG is not affected
0272      * by a soft reset
0273      */
0274     SMC_SELECT_BANK(lp, 1);
0275 
0276     cfg = CONFIG_DEFAULT;
0277 
0278     /*
0279      * Setup for fast accesses if requested.  If the card/system
0280      * can't handle it then there will be no recovery except for
0281      * a hard reset or power cycle
0282      */
0283     if (lp->cfg.flags & SMC91X_NOWAIT)
0284         cfg |= CONFIG_NO_WAIT;
0285 
0286     /*
0287      * Release from possible power-down state
0288      * Configuration register is not affected by Soft Reset
0289      */
0290     cfg |= CONFIG_EPH_POWER_EN;
0291 
0292     SMC_SET_CONFIG(lp, cfg);
0293 
0294     /* this should pause enough for the chip to be happy */
0295     /*
0296      * elaborate?  What does the chip _need_? --jgarzik
0297      *
0298      * This seems to be undocumented, but something the original
0299      * driver(s) have always done.  Suspect undocumented timing
0300      * info/determined empirically. --rmk
0301      */
0302     udelay(1);
0303 
0304     /* Disable transmit and receive functionality */
0305     SMC_SELECT_BANK(lp, 0);
0306     SMC_SET_RCR(lp, RCR_CLEAR);
0307     SMC_SET_TCR(lp, TCR_CLEAR);
0308 
0309     SMC_SELECT_BANK(lp, 1);
0310     ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
0311 
0312     /*
0313      * Set the control register to automatically release successfully
0314      * transmitted packets, to make the best use out of our limited
0315      * memory
0316      */
0317     if(!THROTTLE_TX_PKTS)
0318         ctl |= CTL_AUTO_RELEASE;
0319     else
0320         ctl &= ~CTL_AUTO_RELEASE;
0321     SMC_SET_CTL(lp, ctl);
0322 
0323     /* Reset the MMU */
0324     SMC_SELECT_BANK(lp, 2);
0325     SMC_SET_MMU_CMD(lp, MC_RESET);
0326     SMC_WAIT_MMU_BUSY(lp);
0327 }
0328 
0329 /*
0330  * Enable Interrupts, Receive, and Transmit
0331  */
0332 static void smc_enable(struct net_device *dev)
0333 {
0334     struct smc_local *lp = netdev_priv(dev);
0335     void __iomem *ioaddr = lp->base;
0336     int mask;
0337 
0338     DBG(2, dev, "%s\n", __func__);
0339 
0340     /* see the header file for options in TCR/RCR DEFAULT */
0341     SMC_SELECT_BANK(lp, 0);
0342     SMC_SET_TCR(lp, lp->tcr_cur_mode);
0343     SMC_SET_RCR(lp, lp->rcr_cur_mode);
0344 
0345     SMC_SELECT_BANK(lp, 1);
0346     SMC_SET_MAC_ADDR(lp, dev->dev_addr);
0347 
0348     /* now, enable interrupts */
0349     mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
0350     if (lp->version >= (CHIP_91100 << 4))
0351         mask |= IM_MDINT;
0352     SMC_SELECT_BANK(lp, 2);
0353     SMC_SET_INT_MASK(lp, mask);
0354 
0355     /*
0356      * From this point the register bank must _NOT_ be switched away
0357      * to something else than bank 2 without proper locking against
0358      * races with any tasklet or interrupt handlers until smc_shutdown()
0359      * or smc_reset() is called.
0360      */
0361 }
0362 
0363 /*
0364  * this puts the device in an inactive state
0365  */
0366 static void smc_shutdown(struct net_device *dev)
0367 {
0368     struct smc_local *lp = netdev_priv(dev);
0369     void __iomem *ioaddr = lp->base;
0370     struct sk_buff *pending_skb;
0371 
0372     DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
0373 
0374     /* no more interrupts for me */
0375     spin_lock_irq(&lp->lock);
0376     SMC_SELECT_BANK(lp, 2);
0377     SMC_SET_INT_MASK(lp, 0);
0378     pending_skb = lp->pending_tx_skb;
0379     lp->pending_tx_skb = NULL;
0380     spin_unlock_irq(&lp->lock);
0381     dev_kfree_skb(pending_skb);
0382 
0383     /* and tell the card to stay away from that nasty outside world */
0384     SMC_SELECT_BANK(lp, 0);
0385     SMC_SET_RCR(lp, RCR_CLEAR);
0386     SMC_SET_TCR(lp, TCR_CLEAR);
0387 
0388 #ifdef POWER_DOWN
0389     /* finally, shut the chip down */
0390     SMC_SELECT_BANK(lp, 1);
0391     SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
0392 #endif
0393 }
0394 
0395 /*
0396  * This is the procedure to handle the receipt of a packet.
0397  */
0398 static inline void  smc_rcv(struct net_device *dev)
0399 {
0400     struct smc_local *lp = netdev_priv(dev);
0401     void __iomem *ioaddr = lp->base;
0402     unsigned int packet_number, status, packet_len;
0403 
0404     DBG(3, dev, "%s\n", __func__);
0405 
0406     packet_number = SMC_GET_RXFIFO(lp);
0407     if (unlikely(packet_number & RXFIFO_REMPTY)) {
0408         PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
0409         return;
0410     }
0411 
0412     /* read from start of packet */
0413     SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
0414 
0415     /* First two words are status and packet length */
0416     SMC_GET_PKT_HDR(lp, status, packet_len);
0417     packet_len &= 0x07ff;  /* mask off top bits */
0418     DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
0419         packet_number, status, packet_len, packet_len);
0420 
0421     back:
0422     if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
0423         if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
0424             /* accept VLAN packets */
0425             status &= ~RS_TOOLONG;
0426             goto back;
0427         }
0428         if (packet_len < 6) {
0429             /* bloody hardware */
0430             netdev_err(dev, "fubar (rxlen %u status %x\n",
0431                    packet_len, status);
0432             status |= RS_TOOSHORT;
0433         }
0434         SMC_WAIT_MMU_BUSY(lp);
0435         SMC_SET_MMU_CMD(lp, MC_RELEASE);
0436         dev->stats.rx_errors++;
0437         if (status & RS_ALGNERR)
0438             dev->stats.rx_frame_errors++;
0439         if (status & (RS_TOOSHORT | RS_TOOLONG))
0440             dev->stats.rx_length_errors++;
0441         if (status & RS_BADCRC)
0442             dev->stats.rx_crc_errors++;
0443     } else {
0444         struct sk_buff *skb;
0445         unsigned char *data;
0446         unsigned int data_len;
0447 
0448         /* set multicast stats */
0449         if (status & RS_MULTICAST)
0450             dev->stats.multicast++;
0451 
0452         /*
0453          * Actual payload is packet_len - 6 (or 5 if odd byte).
0454          * We want skb_reserve(2) and the final ctrl word
0455          * (2 bytes, possibly containing the payload odd byte).
0456          * Furthermore, we add 2 bytes to allow rounding up to
0457          * multiple of 4 bytes on 32 bit buses.
0458          * Hence packet_len - 6 + 2 + 2 + 2.
0459          */
0460         skb = netdev_alloc_skb(dev, packet_len);
0461         if (unlikely(skb == NULL)) {
0462             SMC_WAIT_MMU_BUSY(lp);
0463             SMC_SET_MMU_CMD(lp, MC_RELEASE);
0464             dev->stats.rx_dropped++;
0465             return;
0466         }
0467 
0468         /* Align IP header to 32 bits */
0469         skb_reserve(skb, 2);
0470 
0471         /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
0472         if (lp->version == 0x90)
0473             status |= RS_ODDFRAME;
0474 
0475         /*
0476          * If odd length: packet_len - 5,
0477          * otherwise packet_len - 6.
0478          * With the trailing ctrl byte it's packet_len - 4.
0479          */
0480         data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
0481         data = skb_put(skb, data_len);
0482         SMC_PULL_DATA(lp, data, packet_len - 4);
0483 
0484         SMC_WAIT_MMU_BUSY(lp);
0485         SMC_SET_MMU_CMD(lp, MC_RELEASE);
0486 
0487         PRINT_PKT(data, packet_len - 4);
0488 
0489         skb->protocol = eth_type_trans(skb, dev);
0490         netif_rx(skb);
0491         dev->stats.rx_packets++;
0492         dev->stats.rx_bytes += data_len;
0493     }
0494 }
0495 
0496 #ifdef CONFIG_SMP
0497 /*
0498  * On SMP we have the following problem:
0499  *
0500  *  A = smc_hardware_send_pkt()
0501  *  B = smc_hard_start_xmit()
0502  *  C = smc_interrupt()
0503  *
0504  * A and B can never be executed simultaneously.  However, at least on UP,
0505  * it is possible (and even desirable) for C to interrupt execution of
0506  * A or B in order to have better RX reliability and avoid overruns.
0507  * C, just like A and B, must have exclusive access to the chip and
0508  * each of them must lock against any other concurrent access.
0509  * Unfortunately this is not possible to have C suspend execution of A or
0510  * B taking place on another CPU. On UP this is no an issue since A and B
0511  * are run from softirq context and C from hard IRQ context, and there is
0512  * no other CPU where concurrent access can happen.
0513  * If ever there is a way to force at least B and C to always be executed
0514  * on the same CPU then we could use read/write locks to protect against
0515  * any other concurrent access and C would always interrupt B. But life
0516  * isn't that easy in a SMP world...
0517  */
0518 #define smc_special_trylock(lock, flags)                \
0519 ({                                  \
0520     int __ret;                          \
0521     local_irq_save(flags);                      \
0522     __ret = spin_trylock(lock);                 \
0523     if (!__ret)                         \
0524         local_irq_restore(flags);               \
0525     __ret;                              \
0526 })
0527 #define smc_special_lock(lock, flags)       spin_lock_irqsave(lock, flags)
0528 #define smc_special_unlock(lock, flags)     spin_unlock_irqrestore(lock, flags)
0529 #else
0530 #define smc_special_trylock(lock, flags)    ((void)flags, true)
0531 #define smc_special_lock(lock, flags)       do { flags = 0; } while (0)
0532 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
0533 #endif
0534 
0535 /*
0536  * This is called to actually send a packet to the chip.
0537  */
0538 static void smc_hardware_send_pkt(struct tasklet_struct *t)
0539 {
0540     struct smc_local *lp = from_tasklet(lp, t, tx_task);
0541     struct net_device *dev = lp->dev;
0542     void __iomem *ioaddr = lp->base;
0543     struct sk_buff *skb;
0544     unsigned int packet_no, len;
0545     unsigned char *buf;
0546     unsigned long flags;
0547 
0548     DBG(3, dev, "%s\n", __func__);
0549 
0550     if (!smc_special_trylock(&lp->lock, flags)) {
0551         netif_stop_queue(dev);
0552         tasklet_schedule(&lp->tx_task);
0553         return;
0554     }
0555 
0556     skb = lp->pending_tx_skb;
0557     if (unlikely(!skb)) {
0558         smc_special_unlock(&lp->lock, flags);
0559         return;
0560     }
0561     lp->pending_tx_skb = NULL;
0562 
0563     packet_no = SMC_GET_AR(lp);
0564     if (unlikely(packet_no & AR_FAILED)) {
0565         netdev_err(dev, "Memory allocation failed.\n");
0566         dev->stats.tx_errors++;
0567         dev->stats.tx_fifo_errors++;
0568         smc_special_unlock(&lp->lock, flags);
0569         goto done;
0570     }
0571 
0572     /* point to the beginning of the packet */
0573     SMC_SET_PN(lp, packet_no);
0574     SMC_SET_PTR(lp, PTR_AUTOINC);
0575 
0576     buf = skb->data;
0577     len = skb->len;
0578     DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
0579         packet_no, len, len, buf);
0580     PRINT_PKT(buf, len);
0581 
0582     /*
0583      * Send the packet length (+6 for status words, length, and ctl.
0584      * The card will pad to 64 bytes with zeroes if packet is too small.
0585      */
0586     SMC_PUT_PKT_HDR(lp, 0, len + 6);
0587 
0588     /* send the actual data */
0589     SMC_PUSH_DATA(lp, buf, len & ~1);
0590 
0591     /* Send final ctl word with the last byte if there is one */
0592     SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
0593          DATA_REG(lp));
0594 
0595     /*
0596      * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
0597      * have the effect of having at most one packet queued for TX
0598      * in the chip's memory at all time.
0599      *
0600      * If THROTTLE_TX_PKTS is not set then the queue is stopped only
0601      * when memory allocation (MC_ALLOC) does not succeed right away.
0602      */
0603     if (THROTTLE_TX_PKTS)
0604         netif_stop_queue(dev);
0605 
0606     /* queue the packet for TX */
0607     SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
0608     smc_special_unlock(&lp->lock, flags);
0609 
0610     netif_trans_update(dev);
0611     dev->stats.tx_packets++;
0612     dev->stats.tx_bytes += len;
0613 
0614     SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
0615 
0616 done:   if (!THROTTLE_TX_PKTS)
0617         netif_wake_queue(dev);
0618 
0619     dev_consume_skb_any(skb);
0620 }
0621 
0622 /*
0623  * Since I am not sure if I will have enough room in the chip's ram
0624  * to store the packet, I call this routine which either sends it
0625  * now, or set the card to generates an interrupt when ready
0626  * for the packet.
0627  */
0628 static netdev_tx_t
0629 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
0630 {
0631     struct smc_local *lp = netdev_priv(dev);
0632     void __iomem *ioaddr = lp->base;
0633     unsigned int numPages, poll_count, status;
0634     unsigned long flags;
0635 
0636     DBG(3, dev, "%s\n", __func__);
0637 
0638     BUG_ON(lp->pending_tx_skb != NULL);
0639 
0640     /*
0641      * The MMU wants the number of pages to be the number of 256 bytes
0642      * 'pages', minus 1 (since a packet can't ever have 0 pages :))
0643      *
0644      * The 91C111 ignores the size bits, but earlier models don't.
0645      *
0646      * Pkt size for allocating is data length +6 (for additional status
0647      * words, length and ctl)
0648      *
0649      * If odd size then last byte is included in ctl word.
0650      */
0651     numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
0652     if (unlikely(numPages > 7)) {
0653         netdev_warn(dev, "Far too big packet error.\n");
0654         dev->stats.tx_errors++;
0655         dev->stats.tx_dropped++;
0656         dev_kfree_skb_any(skb);
0657         return NETDEV_TX_OK;
0658     }
0659 
0660     smc_special_lock(&lp->lock, flags);
0661 
0662     /* now, try to allocate the memory */
0663     SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
0664 
0665     /*
0666      * Poll the chip for a short amount of time in case the
0667      * allocation succeeds quickly.
0668      */
0669     poll_count = MEMORY_WAIT_TIME;
0670     do {
0671         status = SMC_GET_INT(lp);
0672         if (status & IM_ALLOC_INT) {
0673             SMC_ACK_INT(lp, IM_ALLOC_INT);
0674             break;
0675         }
0676     } while (--poll_count);
0677 
0678     smc_special_unlock(&lp->lock, flags);
0679 
0680     lp->pending_tx_skb = skb;
0681     if (!poll_count) {
0682         /* oh well, wait until the chip finds memory later */
0683         netif_stop_queue(dev);
0684         DBG(2, dev, "TX memory allocation deferred.\n");
0685         SMC_ENABLE_INT(lp, IM_ALLOC_INT);
0686     } else {
0687         /*
0688          * Allocation succeeded: push packet to the chip's own memory
0689          * immediately.
0690          */
0691         smc_hardware_send_pkt(&lp->tx_task);
0692     }
0693 
0694     return NETDEV_TX_OK;
0695 }
0696 
0697 /*
0698  * This handles a TX interrupt, which is only called when:
0699  * - a TX error occurred, or
0700  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
0701  */
0702 static void smc_tx(struct net_device *dev)
0703 {
0704     struct smc_local *lp = netdev_priv(dev);
0705     void __iomem *ioaddr = lp->base;
0706     unsigned int saved_packet, packet_no, tx_status;
0707     unsigned int pkt_len __always_unused;
0708 
0709     DBG(3, dev, "%s\n", __func__);
0710 
0711     /* If the TX FIFO is empty then nothing to do */
0712     packet_no = SMC_GET_TXFIFO(lp);
0713     if (unlikely(packet_no & TXFIFO_TEMPTY)) {
0714         PRINTK(dev, "smc_tx with nothing on FIFO.\n");
0715         return;
0716     }
0717 
0718     /* select packet to read from */
0719     saved_packet = SMC_GET_PN(lp);
0720     SMC_SET_PN(lp, packet_no);
0721 
0722     /* read the first word (status word) from this packet */
0723     SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
0724     SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
0725     DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
0726         tx_status, packet_no);
0727 
0728     if (!(tx_status & ES_TX_SUC))
0729         dev->stats.tx_errors++;
0730 
0731     if (tx_status & ES_LOSTCARR)
0732         dev->stats.tx_carrier_errors++;
0733 
0734     if (tx_status & (ES_LATCOL | ES_16COL)) {
0735         PRINTK(dev, "%s occurred on last xmit\n",
0736                (tx_status & ES_LATCOL) ?
0737             "late collision" : "too many collisions");
0738         dev->stats.tx_window_errors++;
0739         if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
0740             netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
0741         }
0742     }
0743 
0744     /* kill the packet */
0745     SMC_WAIT_MMU_BUSY(lp);
0746     SMC_SET_MMU_CMD(lp, MC_FREEPKT);
0747 
0748     /* Don't restore Packet Number Reg until busy bit is cleared */
0749     SMC_WAIT_MMU_BUSY(lp);
0750     SMC_SET_PN(lp, saved_packet);
0751 
0752     /* re-enable transmit */
0753     SMC_SELECT_BANK(lp, 0);
0754     SMC_SET_TCR(lp, lp->tcr_cur_mode);
0755     SMC_SELECT_BANK(lp, 2);
0756 }
0757 
0758 
0759 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
0760 
0761 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
0762 {
0763     struct smc_local *lp = netdev_priv(dev);
0764     void __iomem *ioaddr = lp->base;
0765     unsigned int mii_reg, mask;
0766 
0767     mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
0768     mii_reg |= MII_MDOE;
0769 
0770     for (mask = 1 << (bits - 1); mask; mask >>= 1) {
0771         if (val & mask)
0772             mii_reg |= MII_MDO;
0773         else
0774             mii_reg &= ~MII_MDO;
0775 
0776         SMC_SET_MII(lp, mii_reg);
0777         udelay(MII_DELAY);
0778         SMC_SET_MII(lp, mii_reg | MII_MCLK);
0779         udelay(MII_DELAY);
0780     }
0781 }
0782 
0783 static unsigned int smc_mii_in(struct net_device *dev, int bits)
0784 {
0785     struct smc_local *lp = netdev_priv(dev);
0786     void __iomem *ioaddr = lp->base;
0787     unsigned int mii_reg, mask, val;
0788 
0789     mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
0790     SMC_SET_MII(lp, mii_reg);
0791 
0792     for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
0793         if (SMC_GET_MII(lp) & MII_MDI)
0794             val |= mask;
0795 
0796         SMC_SET_MII(lp, mii_reg);
0797         udelay(MII_DELAY);
0798         SMC_SET_MII(lp, mii_reg | MII_MCLK);
0799         udelay(MII_DELAY);
0800     }
0801 
0802     return val;
0803 }
0804 
0805 /*
0806  * Reads a register from the MII Management serial interface
0807  */
0808 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
0809 {
0810     struct smc_local *lp = netdev_priv(dev);
0811     void __iomem *ioaddr = lp->base;
0812     unsigned int phydata;
0813 
0814     SMC_SELECT_BANK(lp, 3);
0815 
0816     /* Idle - 32 ones */
0817     smc_mii_out(dev, 0xffffffff, 32);
0818 
0819     /* Start code (01) + read (10) + phyaddr + phyreg */
0820     smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
0821 
0822     /* Turnaround (2bits) + phydata */
0823     phydata = smc_mii_in(dev, 18);
0824 
0825     /* Return to idle state */
0826     SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
0827 
0828     DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
0829         __func__, phyaddr, phyreg, phydata);
0830 
0831     SMC_SELECT_BANK(lp, 2);
0832     return phydata;
0833 }
0834 
0835 /*
0836  * Writes a register to the MII Management serial interface
0837  */
0838 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
0839               int phydata)
0840 {
0841     struct smc_local *lp = netdev_priv(dev);
0842     void __iomem *ioaddr = lp->base;
0843 
0844     SMC_SELECT_BANK(lp, 3);
0845 
0846     /* Idle - 32 ones */
0847     smc_mii_out(dev, 0xffffffff, 32);
0848 
0849     /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
0850     smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
0851 
0852     /* Return to idle state */
0853     SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
0854 
0855     DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
0856         __func__, phyaddr, phyreg, phydata);
0857 
0858     SMC_SELECT_BANK(lp, 2);
0859 }
0860 
0861 /*
0862  * Finds and reports the PHY address
0863  */
0864 static void smc_phy_detect(struct net_device *dev)
0865 {
0866     struct smc_local *lp = netdev_priv(dev);
0867     int phyaddr;
0868 
0869     DBG(2, dev, "%s\n", __func__);
0870 
0871     lp->phy_type = 0;
0872 
0873     /*
0874      * Scan all 32 PHY addresses if necessary, starting at
0875      * PHY#1 to PHY#31, and then PHY#0 last.
0876      */
0877     for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
0878         unsigned int id1, id2;
0879 
0880         /* Read the PHY identifiers */
0881         id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
0882         id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
0883 
0884         DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
0885             id1, id2);
0886 
0887         /* Make sure it is a valid identifier */
0888         if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
0889             id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
0890             /* Save the PHY's address */
0891             lp->mii.phy_id = phyaddr & 31;
0892             lp->phy_type = id1 << 16 | id2;
0893             break;
0894         }
0895     }
0896 }
0897 
0898 /*
0899  * Sets the PHY to a configuration as determined by the user
0900  */
0901 static int smc_phy_fixed(struct net_device *dev)
0902 {
0903     struct smc_local *lp = netdev_priv(dev);
0904     void __iomem *ioaddr = lp->base;
0905     int phyaddr = lp->mii.phy_id;
0906     int bmcr, cfg1;
0907 
0908     DBG(3, dev, "%s\n", __func__);
0909 
0910     /* Enter Link Disable state */
0911     cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
0912     cfg1 |= PHY_CFG1_LNKDIS;
0913     smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
0914 
0915     /*
0916      * Set our fixed capabilities
0917      * Disable auto-negotiation
0918      */
0919     bmcr = 0;
0920 
0921     if (lp->ctl_rfduplx)
0922         bmcr |= BMCR_FULLDPLX;
0923 
0924     if (lp->ctl_rspeed == 100)
0925         bmcr |= BMCR_SPEED100;
0926 
0927     /* Write our capabilities to the phy control register */
0928     smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
0929 
0930     /* Re-Configure the Receive/Phy Control register */
0931     SMC_SELECT_BANK(lp, 0);
0932     SMC_SET_RPC(lp, lp->rpc_cur_mode);
0933     SMC_SELECT_BANK(lp, 2);
0934 
0935     return 1;
0936 }
0937 
0938 /**
0939  * smc_phy_reset - reset the phy
0940  * @dev: net device
0941  * @phy: phy address
0942  *
0943  * Issue a software reset for the specified PHY and
0944  * wait up to 100ms for the reset to complete.  We should
0945  * not access the PHY for 50ms after issuing the reset.
0946  *
0947  * The time to wait appears to be dependent on the PHY.
0948  *
0949  * Must be called with lp->lock locked.
0950  */
0951 static int smc_phy_reset(struct net_device *dev, int phy)
0952 {
0953     struct smc_local *lp = netdev_priv(dev);
0954     unsigned int bmcr;
0955     int timeout;
0956 
0957     smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
0958 
0959     for (timeout = 2; timeout; timeout--) {
0960         spin_unlock_irq(&lp->lock);
0961         msleep(50);
0962         spin_lock_irq(&lp->lock);
0963 
0964         bmcr = smc_phy_read(dev, phy, MII_BMCR);
0965         if (!(bmcr & BMCR_RESET))
0966             break;
0967     }
0968 
0969     return bmcr & BMCR_RESET;
0970 }
0971 
0972 /**
0973  * smc_phy_powerdown - powerdown phy
0974  * @dev: net device
0975  *
0976  * Power down the specified PHY
0977  */
0978 static void smc_phy_powerdown(struct net_device *dev)
0979 {
0980     struct smc_local *lp = netdev_priv(dev);
0981     unsigned int bmcr;
0982     int phy = lp->mii.phy_id;
0983 
0984     if (lp->phy_type == 0)
0985         return;
0986 
0987     /* We need to ensure that no calls to smc_phy_configure are
0988        pending.
0989     */
0990     cancel_work_sync(&lp->phy_configure);
0991 
0992     bmcr = smc_phy_read(dev, phy, MII_BMCR);
0993     smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
0994 }
0995 
0996 /**
0997  * smc_phy_check_media - check the media status and adjust TCR
0998  * @dev: net device
0999  * @init: set true for initialisation
1000  *
1001  * Select duplex mode depending on negotiation state.  This
1002  * also updates our carrier state.
1003  */
1004 static void smc_phy_check_media(struct net_device *dev, int init)
1005 {
1006     struct smc_local *lp = netdev_priv(dev);
1007     void __iomem *ioaddr = lp->base;
1008 
1009     if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1010         /* duplex state has changed */
1011         if (lp->mii.full_duplex) {
1012             lp->tcr_cur_mode |= TCR_SWFDUP;
1013         } else {
1014             lp->tcr_cur_mode &= ~TCR_SWFDUP;
1015         }
1016 
1017         SMC_SELECT_BANK(lp, 0);
1018         SMC_SET_TCR(lp, lp->tcr_cur_mode);
1019     }
1020 }
1021 
1022 /*
1023  * Configures the specified PHY through the MII management interface
1024  * using Autonegotiation.
1025  * Calls smc_phy_fixed() if the user has requested a certain config.
1026  * If RPC ANEG bit is set, the media selection is dependent purely on
1027  * the selection by the MII (either in the MII BMCR reg or the result
1028  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1029  * is controlled by the RPC SPEED and RPC DPLX bits.
1030  */
1031 static void smc_phy_configure(struct work_struct *work)
1032 {
1033     struct smc_local *lp =
1034         container_of(work, struct smc_local, phy_configure);
1035     struct net_device *dev = lp->dev;
1036     void __iomem *ioaddr = lp->base;
1037     int phyaddr = lp->mii.phy_id;
1038     int my_phy_caps; /* My PHY capabilities */
1039     int my_ad_caps; /* My Advertised capabilities */
1040 
1041     DBG(3, dev, "smc_program_phy()\n");
1042 
1043     spin_lock_irq(&lp->lock);
1044 
1045     /*
1046      * We should not be called if phy_type is zero.
1047      */
1048     if (lp->phy_type == 0)
1049         goto smc_phy_configure_exit;
1050 
1051     if (smc_phy_reset(dev, phyaddr)) {
1052         netdev_info(dev, "PHY reset timed out\n");
1053         goto smc_phy_configure_exit;
1054     }
1055 
1056     /*
1057      * Enable PHY Interrupts (for register 18)
1058      * Interrupts listed here are disabled
1059      */
1060     smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1061         PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1062         PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1063         PHY_INT_SPDDET | PHY_INT_DPLXDET);
1064 
1065     /* Configure the Receive/Phy Control register */
1066     SMC_SELECT_BANK(lp, 0);
1067     SMC_SET_RPC(lp, lp->rpc_cur_mode);
1068 
1069     /* If the user requested no auto neg, then go set his request */
1070     if (lp->mii.force_media) {
1071         smc_phy_fixed(dev);
1072         goto smc_phy_configure_exit;
1073     }
1074 
1075     /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1076     my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1077 
1078     if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1079         netdev_info(dev, "Auto negotiation NOT supported\n");
1080         smc_phy_fixed(dev);
1081         goto smc_phy_configure_exit;
1082     }
1083 
1084     my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1085 
1086     if (my_phy_caps & BMSR_100BASE4)
1087         my_ad_caps |= ADVERTISE_100BASE4;
1088     if (my_phy_caps & BMSR_100FULL)
1089         my_ad_caps |= ADVERTISE_100FULL;
1090     if (my_phy_caps & BMSR_100HALF)
1091         my_ad_caps |= ADVERTISE_100HALF;
1092     if (my_phy_caps & BMSR_10FULL)
1093         my_ad_caps |= ADVERTISE_10FULL;
1094     if (my_phy_caps & BMSR_10HALF)
1095         my_ad_caps |= ADVERTISE_10HALF;
1096 
1097     /* Disable capabilities not selected by our user */
1098     if (lp->ctl_rspeed != 100)
1099         my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1100 
1101     if (!lp->ctl_rfduplx)
1102         my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1103 
1104     /* Update our Auto-Neg Advertisement Register */
1105     smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1106     lp->mii.advertising = my_ad_caps;
1107 
1108     /*
1109      * Read the register back.  Without this, it appears that when
1110      * auto-negotiation is restarted, sometimes it isn't ready and
1111      * the link does not come up.
1112      */
1113     smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1114 
1115     DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1116     DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1117 
1118     /* Restart auto-negotiation process in order to advertise my caps */
1119     smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1120 
1121     smc_phy_check_media(dev, 1);
1122 
1123 smc_phy_configure_exit:
1124     SMC_SELECT_BANK(lp, 2);
1125     spin_unlock_irq(&lp->lock);
1126 }
1127 
1128 /*
1129  * smc_phy_interrupt
1130  *
1131  * Purpose:  Handle interrupts relating to PHY register 18. This is
1132  *  called from the "hard" interrupt handler under our private spinlock.
1133  */
1134 static void smc_phy_interrupt(struct net_device *dev)
1135 {
1136     struct smc_local *lp = netdev_priv(dev);
1137     int phyaddr = lp->mii.phy_id;
1138     int phy18;
1139 
1140     DBG(2, dev, "%s\n", __func__);
1141 
1142     if (lp->phy_type == 0)
1143         return;
1144 
1145     for(;;) {
1146         smc_phy_check_media(dev, 0);
1147 
1148         /* Read PHY Register 18, Status Output */
1149         phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1150         if ((phy18 & PHY_INT_INT) == 0)
1151             break;
1152     }
1153 }
1154 
1155 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1156 
1157 static void smc_10bt_check_media(struct net_device *dev, int init)
1158 {
1159     struct smc_local *lp = netdev_priv(dev);
1160     void __iomem *ioaddr = lp->base;
1161     unsigned int old_carrier, new_carrier;
1162 
1163     old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1164 
1165     SMC_SELECT_BANK(lp, 0);
1166     new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1167     SMC_SELECT_BANK(lp, 2);
1168 
1169     if (init || (old_carrier != new_carrier)) {
1170         if (!new_carrier) {
1171             netif_carrier_off(dev);
1172         } else {
1173             netif_carrier_on(dev);
1174         }
1175         if (netif_msg_link(lp))
1176             netdev_info(dev, "link %s\n",
1177                     new_carrier ? "up" : "down");
1178     }
1179 }
1180 
1181 static void smc_eph_interrupt(struct net_device *dev)
1182 {
1183     struct smc_local *lp = netdev_priv(dev);
1184     void __iomem *ioaddr = lp->base;
1185     unsigned int ctl;
1186 
1187     smc_10bt_check_media(dev, 0);
1188 
1189     SMC_SELECT_BANK(lp, 1);
1190     ctl = SMC_GET_CTL(lp);
1191     SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1192     SMC_SET_CTL(lp, ctl);
1193     SMC_SELECT_BANK(lp, 2);
1194 }
1195 
1196 /*
1197  * This is the main routine of the driver, to handle the device when
1198  * it needs some attention.
1199  */
1200 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1201 {
1202     struct net_device *dev = dev_id;
1203     struct smc_local *lp = netdev_priv(dev);
1204     void __iomem *ioaddr = lp->base;
1205     int status, mask, timeout, card_stats;
1206     int saved_pointer;
1207 
1208     DBG(3, dev, "%s\n", __func__);
1209 
1210     spin_lock(&lp->lock);
1211 
1212     /* A preamble may be used when there is a potential race
1213      * between the interruptible transmit functions and this
1214      * ISR. */
1215     SMC_INTERRUPT_PREAMBLE;
1216 
1217     saved_pointer = SMC_GET_PTR(lp);
1218     mask = SMC_GET_INT_MASK(lp);
1219     SMC_SET_INT_MASK(lp, 0);
1220 
1221     /* set a timeout value, so I don't stay here forever */
1222     timeout = MAX_IRQ_LOOPS;
1223 
1224     do {
1225         status = SMC_GET_INT(lp);
1226 
1227         DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1228             status, mask,
1229             ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1230                meminfo = SMC_GET_MIR(lp);
1231                SMC_SELECT_BANK(lp, 2); meminfo; }),
1232             SMC_GET_FIFO(lp));
1233 
1234         status &= mask;
1235         if (!status)
1236             break;
1237 
1238         if (status & IM_TX_INT) {
1239             /* do this before RX as it will free memory quickly */
1240             DBG(3, dev, "TX int\n");
1241             smc_tx(dev);
1242             SMC_ACK_INT(lp, IM_TX_INT);
1243             if (THROTTLE_TX_PKTS)
1244                 netif_wake_queue(dev);
1245         } else if (status & IM_RCV_INT) {
1246             DBG(3, dev, "RX irq\n");
1247             smc_rcv(dev);
1248         } else if (status & IM_ALLOC_INT) {
1249             DBG(3, dev, "Allocation irq\n");
1250             tasklet_hi_schedule(&lp->tx_task);
1251             mask &= ~IM_ALLOC_INT;
1252         } else if (status & IM_TX_EMPTY_INT) {
1253             DBG(3, dev, "TX empty\n");
1254             mask &= ~IM_TX_EMPTY_INT;
1255 
1256             /* update stats */
1257             SMC_SELECT_BANK(lp, 0);
1258             card_stats = SMC_GET_COUNTER(lp);
1259             SMC_SELECT_BANK(lp, 2);
1260 
1261             /* single collisions */
1262             dev->stats.collisions += card_stats & 0xF;
1263             card_stats >>= 4;
1264 
1265             /* multiple collisions */
1266             dev->stats.collisions += card_stats & 0xF;
1267         } else if (status & IM_RX_OVRN_INT) {
1268             DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1269                 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1270                    eph_st = SMC_GET_EPH_STATUS(lp);
1271                    SMC_SELECT_BANK(lp, 2); eph_st; }));
1272             SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1273             dev->stats.rx_errors++;
1274             dev->stats.rx_fifo_errors++;
1275         } else if (status & IM_EPH_INT) {
1276             smc_eph_interrupt(dev);
1277         } else if (status & IM_MDINT) {
1278             SMC_ACK_INT(lp, IM_MDINT);
1279             smc_phy_interrupt(dev);
1280         } else if (status & IM_ERCV_INT) {
1281             SMC_ACK_INT(lp, IM_ERCV_INT);
1282             PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1283         }
1284     } while (--timeout);
1285 
1286     /* restore register states */
1287     SMC_SET_PTR(lp, saved_pointer);
1288     SMC_SET_INT_MASK(lp, mask);
1289     spin_unlock(&lp->lock);
1290 
1291 #ifndef CONFIG_NET_POLL_CONTROLLER
1292     if (timeout == MAX_IRQ_LOOPS)
1293         PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1294                mask);
1295 #endif
1296     DBG(3, dev, "Interrupt done (%d loops)\n",
1297         MAX_IRQ_LOOPS - timeout);
1298 
1299     /*
1300      * We return IRQ_HANDLED unconditionally here even if there was
1301      * nothing to do.  There is a possibility that a packet might
1302      * get enqueued into the chip right after TX_EMPTY_INT is raised
1303      * but just before the CPU acknowledges the IRQ.
1304      * Better take an unneeded IRQ in some occasions than complexifying
1305      * the code for all cases.
1306      */
1307     return IRQ_HANDLED;
1308 }
1309 
1310 #ifdef CONFIG_NET_POLL_CONTROLLER
1311 /*
1312  * Polling receive - used by netconsole and other diagnostic tools
1313  * to allow network i/o with interrupts disabled.
1314  */
1315 static void smc_poll_controller(struct net_device *dev)
1316 {
1317     disable_irq(dev->irq);
1318     smc_interrupt(dev->irq, dev);
1319     enable_irq(dev->irq);
1320 }
1321 #endif
1322 
1323 /* Our watchdog timed out. Called by the networking layer */
1324 static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1325 {
1326     struct smc_local *lp = netdev_priv(dev);
1327     void __iomem *ioaddr = lp->base;
1328     int status, mask, eph_st, meminfo, fifo;
1329 
1330     DBG(2, dev, "%s\n", __func__);
1331 
1332     spin_lock_irq(&lp->lock);
1333     status = SMC_GET_INT(lp);
1334     mask = SMC_GET_INT_MASK(lp);
1335     fifo = SMC_GET_FIFO(lp);
1336     SMC_SELECT_BANK(lp, 0);
1337     eph_st = SMC_GET_EPH_STATUS(lp);
1338     meminfo = SMC_GET_MIR(lp);
1339     SMC_SELECT_BANK(lp, 2);
1340     spin_unlock_irq(&lp->lock);
1341     PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1342            status, mask, meminfo, fifo, eph_st);
1343 
1344     smc_reset(dev);
1345     smc_enable(dev);
1346 
1347     /*
1348      * Reconfiguring the PHY doesn't seem like a bad idea here, but
1349      * smc_phy_configure() calls msleep() which calls schedule_timeout()
1350      * which calls schedule().  Hence we use a work queue.
1351      */
1352     if (lp->phy_type != 0)
1353         schedule_work(&lp->phy_configure);
1354 
1355     /* We can accept TX packets again */
1356     netif_trans_update(dev); /* prevent tx timeout */
1357     netif_wake_queue(dev);
1358 }
1359 
1360 /*
1361  * This routine will, depending on the values passed to it,
1362  * either make it accept multicast packets, go into
1363  * promiscuous mode (for TCPDUMP and cousins) or accept
1364  * a select set of multicast packets
1365  */
1366 static void smc_set_multicast_list(struct net_device *dev)
1367 {
1368     struct smc_local *lp = netdev_priv(dev);
1369     void __iomem *ioaddr = lp->base;
1370     unsigned char multicast_table[8];
1371     int update_multicast = 0;
1372 
1373     DBG(2, dev, "%s\n", __func__);
1374 
1375     if (dev->flags & IFF_PROMISC) {
1376         DBG(2, dev, "RCR_PRMS\n");
1377         lp->rcr_cur_mode |= RCR_PRMS;
1378     }
1379 
1380 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1381    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1382    when promiscuous mode is turned on.
1383 */
1384 
1385     /*
1386      * Here, I am setting this to accept all multicast packets.
1387      * I don't need to zero the multicast table, because the flag is
1388      * checked before the table is
1389      */
1390     else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1391         DBG(2, dev, "RCR_ALMUL\n");
1392         lp->rcr_cur_mode |= RCR_ALMUL;
1393     }
1394 
1395     /*
1396      * This sets the internal hardware table to filter out unwanted
1397      * multicast packets before they take up memory.
1398      *
1399      * The SMC chip uses a hash table where the high 6 bits of the CRC of
1400      * address are the offset into the table.  If that bit is 1, then the
1401      * multicast packet is accepted.  Otherwise, it's dropped silently.
1402      *
1403      * To use the 6 bits as an offset into the table, the high 3 bits are
1404      * the number of the 8 bit register, while the low 3 bits are the bit
1405      * within that register.
1406      */
1407     else if (!netdev_mc_empty(dev)) {
1408         struct netdev_hw_addr *ha;
1409 
1410         /* table for flipping the order of 3 bits */
1411         static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1412 
1413         /* start with a table of all zeros: reject all */
1414         memset(multicast_table, 0, sizeof(multicast_table));
1415 
1416         netdev_for_each_mc_addr(ha, dev) {
1417             int position;
1418 
1419             /* only use the low order bits */
1420             position = crc32_le(~0, ha->addr, 6) & 0x3f;
1421 
1422             /* do some messy swapping to put the bit in the right spot */
1423             multicast_table[invert3[position&7]] |=
1424                 (1<<invert3[(position>>3)&7]);
1425         }
1426 
1427         /* be sure I get rid of flags I might have set */
1428         lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1429 
1430         /* now, the table can be loaded into the chipset */
1431         update_multicast = 1;
1432     } else  {
1433         DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1434         lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1435 
1436         /*
1437          * since I'm disabling all multicast entirely, I need to
1438          * clear the multicast list
1439          */
1440         memset(multicast_table, 0, sizeof(multicast_table));
1441         update_multicast = 1;
1442     }
1443 
1444     spin_lock_irq(&lp->lock);
1445     SMC_SELECT_BANK(lp, 0);
1446     SMC_SET_RCR(lp, lp->rcr_cur_mode);
1447     if (update_multicast) {
1448         SMC_SELECT_BANK(lp, 3);
1449         SMC_SET_MCAST(lp, multicast_table);
1450     }
1451     SMC_SELECT_BANK(lp, 2);
1452     spin_unlock_irq(&lp->lock);
1453 }
1454 
1455 
1456 /*
1457  * Open and Initialize the board
1458  *
1459  * Set up everything, reset the card, etc..
1460  */
1461 static int
1462 smc_open(struct net_device *dev)
1463 {
1464     struct smc_local *lp = netdev_priv(dev);
1465 
1466     DBG(2, dev, "%s\n", __func__);
1467 
1468     /* Setup the default Register Modes */
1469     lp->tcr_cur_mode = TCR_DEFAULT;
1470     lp->rcr_cur_mode = RCR_DEFAULT;
1471     lp->rpc_cur_mode = RPC_DEFAULT |
1472                 lp->cfg.leda << RPC_LSXA_SHFT |
1473                 lp->cfg.ledb << RPC_LSXB_SHFT;
1474 
1475     /*
1476      * If we are not using a MII interface, we need to
1477      * monitor our own carrier signal to detect faults.
1478      */
1479     if (lp->phy_type == 0)
1480         lp->tcr_cur_mode |= TCR_MON_CSN;
1481 
1482     /* reset the hardware */
1483     smc_reset(dev);
1484     smc_enable(dev);
1485 
1486     /* Configure the PHY, initialize the link state */
1487     if (lp->phy_type != 0)
1488         smc_phy_configure(&lp->phy_configure);
1489     else {
1490         spin_lock_irq(&lp->lock);
1491         smc_10bt_check_media(dev, 1);
1492         spin_unlock_irq(&lp->lock);
1493     }
1494 
1495     netif_start_queue(dev);
1496     return 0;
1497 }
1498 
1499 /*
1500  * smc_close
1501  *
1502  * this makes the board clean up everything that it can
1503  * and not talk to the outside world.   Caused by
1504  * an 'ifconfig ethX down'
1505  */
1506 static int smc_close(struct net_device *dev)
1507 {
1508     struct smc_local *lp = netdev_priv(dev);
1509 
1510     DBG(2, dev, "%s\n", __func__);
1511 
1512     netif_stop_queue(dev);
1513     netif_carrier_off(dev);
1514 
1515     /* clear everything */
1516     smc_shutdown(dev);
1517     tasklet_kill(&lp->tx_task);
1518     smc_phy_powerdown(dev);
1519     return 0;
1520 }
1521 
1522 /*
1523  * Ethtool support
1524  */
1525 static int
1526 smc_ethtool_get_link_ksettings(struct net_device *dev,
1527                    struct ethtool_link_ksettings *cmd)
1528 {
1529     struct smc_local *lp = netdev_priv(dev);
1530 
1531     if (lp->phy_type != 0) {
1532         spin_lock_irq(&lp->lock);
1533         mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1534         spin_unlock_irq(&lp->lock);
1535     } else {
1536         u32 supported = SUPPORTED_10baseT_Half |
1537                  SUPPORTED_10baseT_Full |
1538                  SUPPORTED_TP | SUPPORTED_AUI;
1539 
1540         if (lp->ctl_rspeed == 10)
1541             cmd->base.speed = SPEED_10;
1542         else if (lp->ctl_rspeed == 100)
1543             cmd->base.speed = SPEED_100;
1544 
1545         cmd->base.autoneg = AUTONEG_DISABLE;
1546         cmd->base.port = 0;
1547         cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1548             DUPLEX_FULL : DUPLEX_HALF;
1549 
1550         ethtool_convert_legacy_u32_to_link_mode(
1551             cmd->link_modes.supported, supported);
1552     }
1553 
1554     return 0;
1555 }
1556 
1557 static int
1558 smc_ethtool_set_link_ksettings(struct net_device *dev,
1559                    const struct ethtool_link_ksettings *cmd)
1560 {
1561     struct smc_local *lp = netdev_priv(dev);
1562     int ret;
1563 
1564     if (lp->phy_type != 0) {
1565         spin_lock_irq(&lp->lock);
1566         ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1567         spin_unlock_irq(&lp->lock);
1568     } else {
1569         if (cmd->base.autoneg != AUTONEG_DISABLE ||
1570             cmd->base.speed != SPEED_10 ||
1571             (cmd->base.duplex != DUPLEX_HALF &&
1572              cmd->base.duplex != DUPLEX_FULL) ||
1573             (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1574             return -EINVAL;
1575 
1576 //      lp->port = cmd->base.port;
1577         lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1578 
1579 //      if (netif_running(dev))
1580 //          smc_set_port(dev);
1581 
1582         ret = 0;
1583     }
1584 
1585     return ret;
1586 }
1587 
1588 static void
1589 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1590 {
1591     strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1592     strlcpy(info->version, version, sizeof(info->version));
1593     strlcpy(info->bus_info, dev_name(dev->dev.parent),
1594         sizeof(info->bus_info));
1595 }
1596 
1597 static int smc_ethtool_nwayreset(struct net_device *dev)
1598 {
1599     struct smc_local *lp = netdev_priv(dev);
1600     int ret = -EINVAL;
1601 
1602     if (lp->phy_type != 0) {
1603         spin_lock_irq(&lp->lock);
1604         ret = mii_nway_restart(&lp->mii);
1605         spin_unlock_irq(&lp->lock);
1606     }
1607 
1608     return ret;
1609 }
1610 
1611 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1612 {
1613     struct smc_local *lp = netdev_priv(dev);
1614     return lp->msg_enable;
1615 }
1616 
1617 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1618 {
1619     struct smc_local *lp = netdev_priv(dev);
1620     lp->msg_enable = level;
1621 }
1622 
1623 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1624 {
1625     u16 ctl;
1626     struct smc_local *lp = netdev_priv(dev);
1627     void __iomem *ioaddr = lp->base;
1628 
1629     spin_lock_irq(&lp->lock);
1630     /* load word into GP register */
1631     SMC_SELECT_BANK(lp, 1);
1632     SMC_SET_GP(lp, word);
1633     /* set the address to put the data in EEPROM */
1634     SMC_SELECT_BANK(lp, 2);
1635     SMC_SET_PTR(lp, addr);
1636     /* tell it to write */
1637     SMC_SELECT_BANK(lp, 1);
1638     ctl = SMC_GET_CTL(lp);
1639     SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1640     /* wait for it to finish */
1641     do {
1642         udelay(1);
1643     } while (SMC_GET_CTL(lp) & CTL_STORE);
1644     /* clean up */
1645     SMC_SET_CTL(lp, ctl);
1646     SMC_SELECT_BANK(lp, 2);
1647     spin_unlock_irq(&lp->lock);
1648     return 0;
1649 }
1650 
1651 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1652 {
1653     u16 ctl;
1654     struct smc_local *lp = netdev_priv(dev);
1655     void __iomem *ioaddr = lp->base;
1656 
1657     spin_lock_irq(&lp->lock);
1658     /* set the EEPROM address to get the data from */
1659     SMC_SELECT_BANK(lp, 2);
1660     SMC_SET_PTR(lp, addr | PTR_READ);
1661     /* tell it to load */
1662     SMC_SELECT_BANK(lp, 1);
1663     SMC_SET_GP(lp, 0xffff); /* init to known */
1664     ctl = SMC_GET_CTL(lp);
1665     SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1666     /* wait for it to finish */
1667     do {
1668         udelay(1);
1669     } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1670     /* read word from GP register */
1671     *word = SMC_GET_GP(lp);
1672     /* clean up */
1673     SMC_SET_CTL(lp, ctl);
1674     SMC_SELECT_BANK(lp, 2);
1675     spin_unlock_irq(&lp->lock);
1676     return 0;
1677 }
1678 
1679 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1680 {
1681     return 0x23 * 2;
1682 }
1683 
1684 static int smc_ethtool_geteeprom(struct net_device *dev,
1685         struct ethtool_eeprom *eeprom, u8 *data)
1686 {
1687     int i;
1688     int imax;
1689 
1690     DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1691         eeprom->len, eeprom->offset, eeprom->offset);
1692     imax = smc_ethtool_geteeprom_len(dev);
1693     for (i = 0; i < eeprom->len; i += 2) {
1694         int ret;
1695         u16 wbuf;
1696         int offset = i + eeprom->offset;
1697         if (offset > imax)
1698             break;
1699         ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1700         if (ret != 0)
1701             return ret;
1702         DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1703         data[i] = (wbuf >> 8) & 0xff;
1704         data[i+1] = wbuf & 0xff;
1705     }
1706     return 0;
1707 }
1708 
1709 static int smc_ethtool_seteeprom(struct net_device *dev,
1710         struct ethtool_eeprom *eeprom, u8 *data)
1711 {
1712     int i;
1713     int imax;
1714 
1715     DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1716         eeprom->len, eeprom->offset, eeprom->offset);
1717     imax = smc_ethtool_geteeprom_len(dev);
1718     for (i = 0; i < eeprom->len; i += 2) {
1719         int ret;
1720         u16 wbuf;
1721         int offset = i + eeprom->offset;
1722         if (offset > imax)
1723             break;
1724         wbuf = (data[i] << 8) | data[i + 1];
1725         DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1726         ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1727         if (ret != 0)
1728             return ret;
1729     }
1730     return 0;
1731 }
1732 
1733 
1734 static const struct ethtool_ops smc_ethtool_ops = {
1735     .get_drvinfo    = smc_ethtool_getdrvinfo,
1736 
1737     .get_msglevel   = smc_ethtool_getmsglevel,
1738     .set_msglevel   = smc_ethtool_setmsglevel,
1739     .nway_reset = smc_ethtool_nwayreset,
1740     .get_link   = ethtool_op_get_link,
1741     .get_eeprom_len = smc_ethtool_geteeprom_len,
1742     .get_eeprom = smc_ethtool_geteeprom,
1743     .set_eeprom = smc_ethtool_seteeprom,
1744     .get_link_ksettings = smc_ethtool_get_link_ksettings,
1745     .set_link_ksettings = smc_ethtool_set_link_ksettings,
1746 };
1747 
1748 static const struct net_device_ops smc_netdev_ops = {
1749     .ndo_open       = smc_open,
1750     .ndo_stop       = smc_close,
1751     .ndo_start_xmit     = smc_hard_start_xmit,
1752     .ndo_tx_timeout     = smc_timeout,
1753     .ndo_set_rx_mode    = smc_set_multicast_list,
1754     .ndo_validate_addr  = eth_validate_addr,
1755     .ndo_set_mac_address    = eth_mac_addr,
1756 #ifdef CONFIG_NET_POLL_CONTROLLER
1757     .ndo_poll_controller    = smc_poll_controller,
1758 #endif
1759 };
1760 
1761 /*
1762  * smc_findirq
1763  *
1764  * This routine has a simple purpose -- make the SMC chip generate an
1765  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1766  */
1767 /*
1768  * does this still work?
1769  *
1770  * I just deleted auto_irq.c, since it was never built...
1771  *   --jgarzik
1772  */
1773 static int smc_findirq(struct smc_local *lp)
1774 {
1775     void __iomem *ioaddr = lp->base;
1776     int timeout = 20;
1777     unsigned long cookie;
1778 
1779     DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1780 
1781     cookie = probe_irq_on();
1782 
1783     /*
1784      * What I try to do here is trigger an ALLOC_INT. This is done
1785      * by allocating a small chunk of memory, which will give an interrupt
1786      * when done.
1787      */
1788     /* enable ALLOCation interrupts ONLY */
1789     SMC_SELECT_BANK(lp, 2);
1790     SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1791 
1792     /*
1793      * Allocate 512 bytes of memory.  Note that the chip was just
1794      * reset so all the memory is available
1795      */
1796     SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1797 
1798     /*
1799      * Wait until positive that the interrupt has been generated
1800      */
1801     do {
1802         int int_status;
1803         udelay(10);
1804         int_status = SMC_GET_INT(lp);
1805         if (int_status & IM_ALLOC_INT)
1806             break;      /* got the interrupt */
1807     } while (--timeout);
1808 
1809     /*
1810      * there is really nothing that I can do here if timeout fails,
1811      * as autoirq_report will return a 0 anyway, which is what I
1812      * want in this case.   Plus, the clean up is needed in both
1813      * cases.
1814      */
1815 
1816     /* and disable all interrupts again */
1817     SMC_SET_INT_MASK(lp, 0);
1818 
1819     /* and return what I found */
1820     return probe_irq_off(cookie);
1821 }
1822 
1823 /*
1824  * Function: smc_probe(unsigned long ioaddr)
1825  *
1826  * Purpose:
1827  *  Tests to see if a given ioaddr points to an SMC91x chip.
1828  *  Returns a 0 on success
1829  *
1830  * Algorithm:
1831  *  (1) see if the high byte of BANK_SELECT is 0x33
1832  *  (2) compare the ioaddr with the base register's address
1833  *  (3) see if I recognize the chip ID in the appropriate register
1834  *
1835  * Here I do typical initialization tasks.
1836  *
1837  * o  Initialize the structure if needed
1838  * o  print out my vanity message if not done so already
1839  * o  print out what type of hardware is detected
1840  * o  print out the ethernet address
1841  * o  find the IRQ
1842  * o  set up my private data
1843  * o  configure the dev structure with my subroutines
1844  * o  actually GRAB the irq.
1845  * o  GRAB the region
1846  */
1847 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1848              unsigned long irq_flags)
1849 {
1850     struct smc_local *lp = netdev_priv(dev);
1851     int retval;
1852     unsigned int val, revision_register;
1853     const char *version_string;
1854     u8 addr[ETH_ALEN];
1855 
1856     DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1857 
1858     /* First, see if the high byte is 0x33 */
1859     val = SMC_CURRENT_BANK(lp);
1860     DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1861         CARDNAME, val);
1862     if ((val & 0xFF00) != 0x3300) {
1863         if ((val & 0xFF) == 0x33) {
1864             netdev_warn(dev,
1865                     "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1866                     CARDNAME, ioaddr);
1867         }
1868         retval = -ENODEV;
1869         goto err_out;
1870     }
1871 
1872     /*
1873      * The above MIGHT indicate a device, but I need to write to
1874      * further test this.
1875      */
1876     SMC_SELECT_BANK(lp, 0);
1877     val = SMC_CURRENT_BANK(lp);
1878     if ((val & 0xFF00) != 0x3300) {
1879         retval = -ENODEV;
1880         goto err_out;
1881     }
1882 
1883     /*
1884      * well, we've already written once, so hopefully another
1885      * time won't hurt.  This time, I need to switch the bank
1886      * register to bank 1, so I can access the base address
1887      * register
1888      */
1889     SMC_SELECT_BANK(lp, 1);
1890     val = SMC_GET_BASE(lp);
1891     val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1892     if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1893         netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1894                 CARDNAME, ioaddr, val);
1895     }
1896 
1897     /*
1898      * check if the revision register is something that I
1899      * recognize.  These might need to be added to later,
1900      * as future revisions could be added.
1901      */
1902     SMC_SELECT_BANK(lp, 3);
1903     revision_register = SMC_GET_REV(lp);
1904     DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1905     version_string = chip_ids[ (revision_register >> 4) & 0xF];
1906     if (!version_string || (revision_register & 0xff00) != 0x3300) {
1907         /* I don't recognize this chip, so... */
1908         netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1909                 CARDNAME, ioaddr, revision_register);
1910 
1911         retval = -ENODEV;
1912         goto err_out;
1913     }
1914 
1915     /* At this point I'll assume that the chip is an SMC91x. */
1916     pr_info_once("%s\n", version);
1917 
1918     /* fill in some of the fields */
1919     dev->base_addr = (unsigned long)ioaddr;
1920     lp->base = ioaddr;
1921     lp->version = revision_register & 0xff;
1922     spin_lock_init(&lp->lock);
1923 
1924     /* Get the MAC address */
1925     SMC_SELECT_BANK(lp, 1);
1926     SMC_GET_MAC_ADDR(lp, addr);
1927     eth_hw_addr_set(dev, addr);
1928 
1929     /* now, reset the chip, and put it into a known state */
1930     smc_reset(dev);
1931 
1932     /*
1933      * If dev->irq is 0, then the device has to be banged on to see
1934      * what the IRQ is.
1935      *
1936      * This banging doesn't always detect the IRQ, for unknown reasons.
1937      * a workaround is to reset the chip and try again.
1938      *
1939      * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1940      * be what is requested on the command line.   I don't do that, mostly
1941      * because the card that I have uses a non-standard method of accessing
1942      * the IRQs, and because this _should_ work in most configurations.
1943      *
1944      * Specifying an IRQ is done with the assumption that the user knows
1945      * what (s)he is doing.  No checking is done!!!!
1946      */
1947     if (dev->irq < 1) {
1948         int trials;
1949 
1950         trials = 3;
1951         while (trials--) {
1952             dev->irq = smc_findirq(lp);
1953             if (dev->irq)
1954                 break;
1955             /* kick the card and try again */
1956             smc_reset(dev);
1957         }
1958     }
1959     if (dev->irq == 0) {
1960         netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1961         retval = -ENODEV;
1962         goto err_out;
1963     }
1964     dev->irq = irq_canonicalize(dev->irq);
1965 
1966     dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1967     dev->netdev_ops = &smc_netdev_ops;
1968     dev->ethtool_ops = &smc_ethtool_ops;
1969 
1970     tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1971     INIT_WORK(&lp->phy_configure, smc_phy_configure);
1972     lp->dev = dev;
1973     lp->mii.phy_id_mask = 0x1f;
1974     lp->mii.reg_num_mask = 0x1f;
1975     lp->mii.force_media = 0;
1976     lp->mii.full_duplex = 0;
1977     lp->mii.dev = dev;
1978     lp->mii.mdio_read = smc_phy_read;
1979     lp->mii.mdio_write = smc_phy_write;
1980 
1981     /*
1982      * Locate the phy, if any.
1983      */
1984     if (lp->version >= (CHIP_91100 << 4))
1985         smc_phy_detect(dev);
1986 
1987     /* then shut everything down to save power */
1988     smc_shutdown(dev);
1989     smc_phy_powerdown(dev);
1990 
1991     /* Set default parameters */
1992     lp->msg_enable = NETIF_MSG_LINK;
1993     lp->ctl_rfduplx = 0;
1994     lp->ctl_rspeed = 10;
1995 
1996     if (lp->version >= (CHIP_91100 << 4)) {
1997         lp->ctl_rfduplx = 1;
1998         lp->ctl_rspeed = 100;
1999     }
2000 
2001     /* Grab the IRQ */
2002     retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2003     if (retval)
2004         goto err_out;
2005 
2006 #ifdef CONFIG_ARCH_PXA
2007 #  ifdef SMC_USE_PXA_DMA
2008     lp->cfg.flags |= SMC91X_USE_DMA;
2009 #  endif
2010     if (lp->cfg.flags & SMC91X_USE_DMA) {
2011         dma_cap_mask_t mask;
2012 
2013         dma_cap_zero(mask);
2014         dma_cap_set(DMA_SLAVE, mask);
2015         lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2016     }
2017 #endif
2018 
2019     retval = register_netdev(dev);
2020     if (retval == 0) {
2021         /* now, print out the card info, in a short format.. */
2022         netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2023                 version_string, revision_register & 0x0f,
2024                 lp->base, dev->irq);
2025 
2026         if (lp->dma_chan)
2027             pr_cont(" DMA %p", lp->dma_chan);
2028 
2029         pr_cont("%s%s\n",
2030             lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2031             THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2032 
2033         if (!is_valid_ether_addr(dev->dev_addr)) {
2034             netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2035         } else {
2036             /* Print the Ethernet address */
2037             netdev_info(dev, "Ethernet addr: %pM\n",
2038                     dev->dev_addr);
2039         }
2040 
2041         if (lp->phy_type == 0) {
2042             PRINTK(dev, "No PHY found\n");
2043         } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2044             PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2045         } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2046             PRINTK(dev, "PHY LAN83C180\n");
2047         }
2048     }
2049 
2050 err_out:
2051 #ifdef CONFIG_ARCH_PXA
2052     if (retval && lp->dma_chan)
2053         dma_release_channel(lp->dma_chan);
2054 #endif
2055     return retval;
2056 }
2057 
2058 static int smc_enable_device(struct platform_device *pdev)
2059 {
2060     struct net_device *ndev = platform_get_drvdata(pdev);
2061     struct smc_local *lp = netdev_priv(ndev);
2062     unsigned long flags;
2063     unsigned char ecor, ecsr;
2064     void __iomem *addr;
2065     struct resource * res;
2066 
2067     res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2068     if (!res)
2069         return 0;
2070 
2071     /*
2072      * Map the attribute space.  This is overkill, but clean.
2073      */
2074     addr = ioremap(res->start, ATTRIB_SIZE);
2075     if (!addr)
2076         return -ENOMEM;
2077 
2078     /*
2079      * Reset the device.  We must disable IRQs around this
2080      * since a reset causes the IRQ line become active.
2081      */
2082     local_irq_save(flags);
2083     ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2084     writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2085     readb(addr + (ECOR << SMC_IO_SHIFT));
2086 
2087     /*
2088      * Wait 100us for the chip to reset.
2089      */
2090     udelay(100);
2091 
2092     /*
2093      * The device will ignore all writes to the enable bit while
2094      * reset is asserted, even if the reset bit is cleared in the
2095      * same write.  Must clear reset first, then enable the device.
2096      */
2097     writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2098     writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2099 
2100     /*
2101      * Set the appropriate byte/word mode.
2102      */
2103     ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2104     if (!SMC_16BIT(lp))
2105         ecsr |= ECSR_IOIS8;
2106     writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2107     local_irq_restore(flags);
2108 
2109     iounmap(addr);
2110 
2111     /*
2112      * Wait for the chip to wake up.  We could poll the control
2113      * register in the main register space, but that isn't mapped
2114      * yet.  We know this is going to take 750us.
2115      */
2116     msleep(1);
2117 
2118     return 0;
2119 }
2120 
2121 static int smc_request_attrib(struct platform_device *pdev,
2122                   struct net_device *ndev)
2123 {
2124     struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2125     struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2126 
2127     if (!res)
2128         return 0;
2129 
2130     if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2131         return -EBUSY;
2132 
2133     return 0;
2134 }
2135 
2136 static void smc_release_attrib(struct platform_device *pdev,
2137                    struct net_device *ndev)
2138 {
2139     struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2140     struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2141 
2142     if (res)
2143         release_mem_region(res->start, ATTRIB_SIZE);
2144 }
2145 
2146 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2147 {
2148     if (SMC_CAN_USE_DATACS) {
2149         struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2150         struct smc_local *lp = netdev_priv(ndev);
2151 
2152         if (!res)
2153             return;
2154 
2155         if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2156             netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2157                     CARDNAME);
2158             return;
2159         }
2160 
2161         lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2162     }
2163 }
2164 
2165 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2166 {
2167     if (SMC_CAN_USE_DATACS) {
2168         struct smc_local *lp = netdev_priv(ndev);
2169         struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2170 
2171         if (lp->datacs)
2172             iounmap(lp->datacs);
2173 
2174         lp->datacs = NULL;
2175 
2176         if (res)
2177             release_mem_region(res->start, SMC_DATA_EXTENT);
2178     }
2179 }
2180 
2181 static const struct acpi_device_id smc91x_acpi_match[] = {
2182     { "LNRO0003", 0 },
2183     { }
2184 };
2185 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2186 
2187 #if IS_BUILTIN(CONFIG_OF)
2188 static const struct of_device_id smc91x_match[] = {
2189     { .compatible = "smsc,lan91c94", },
2190     { .compatible = "smsc,lan91c111", },
2191     {},
2192 };
2193 MODULE_DEVICE_TABLE(of, smc91x_match);
2194 
2195 /**
2196  * try_toggle_control_gpio - configure a gpio if it exists
2197  * @dev: net device
2198  * @desc: where to store the GPIO descriptor, if it exists
2199  * @name: name of the GPIO in DT
2200  * @index: index of the GPIO in DT
2201  * @value: set the GPIO to this value
2202  * @nsdelay: delay before setting the GPIO
2203  */
2204 static int try_toggle_control_gpio(struct device *dev,
2205                    struct gpio_desc **desc,
2206                    const char *name, int index,
2207                    int value, unsigned int nsdelay)
2208 {
2209     struct gpio_desc *gpio;
2210     enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2211 
2212     gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2213     if (IS_ERR(gpio))
2214         return PTR_ERR(gpio);
2215 
2216     if (gpio) {
2217         if (nsdelay)
2218             usleep_range(nsdelay, 2 * nsdelay);
2219         gpiod_set_value_cansleep(gpio, value);
2220     }
2221     *desc = gpio;
2222 
2223     return 0;
2224 }
2225 #endif
2226 
2227 /*
2228  * smc_init(void)
2229  *   Input parameters:
2230  *  dev->base_addr == 0, try to find all possible locations
2231  *  dev->base_addr > 0x1ff, this is the address to check
2232  *  dev->base_addr == <anything else>, return failure code
2233  *
2234  *   Output:
2235  *  0 --> there is a device
2236  *  anything else, error
2237  */
2238 static int smc_drv_probe(struct platform_device *pdev)
2239 {
2240     struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2241     const struct of_device_id *match = NULL;
2242     struct smc_local *lp;
2243     struct net_device *ndev;
2244     struct resource *res;
2245     unsigned int __iomem *addr;
2246     unsigned long irq_flags = SMC_IRQ_FLAGS;
2247     unsigned long irq_resflags;
2248     int ret;
2249 
2250     ndev = alloc_etherdev(sizeof(struct smc_local));
2251     if (!ndev) {
2252         ret = -ENOMEM;
2253         goto out;
2254     }
2255     SET_NETDEV_DEV(ndev, &pdev->dev);
2256 
2257     /* get configuration from platform data, only allow use of
2258      * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2259      */
2260 
2261     lp = netdev_priv(ndev);
2262     lp->cfg.flags = 0;
2263 
2264     if (pd) {
2265         memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2266         lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2267 
2268         if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2269             dev_err(&pdev->dev,
2270                 "at least one of 8-bit or 16-bit access support is required.\n");
2271             ret = -ENXIO;
2272             goto out_free_netdev;
2273         }
2274     }
2275 
2276 #if IS_BUILTIN(CONFIG_OF)
2277     match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2278     if (match) {
2279         u32 val;
2280 
2281         /* Optional pwrdwn GPIO configured? */
2282         ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2283                           "power", 0, 0, 100);
2284         if (ret)
2285             goto out_free_netdev;
2286 
2287         /*
2288          * Optional reset GPIO configured? Minimum 100 ns reset needed
2289          * according to LAN91C96 datasheet page 14.
2290          */
2291         ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2292                           "reset", 0, 0, 100);
2293         if (ret)
2294             goto out_free_netdev;
2295 
2296         /*
2297          * Need to wait for optional EEPROM to load, max 750 us according
2298          * to LAN91C96 datasheet page 55.
2299          */
2300         if (lp->reset_gpio)
2301             usleep_range(750, 1000);
2302 
2303         /* Combination of IO widths supported, default to 16-bit */
2304         if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2305                           &val)) {
2306             if (val & 1)
2307                 lp->cfg.flags |= SMC91X_USE_8BIT;
2308             if ((val == 0) || (val & 2))
2309                 lp->cfg.flags |= SMC91X_USE_16BIT;
2310             if (val & 4)
2311                 lp->cfg.flags |= SMC91X_USE_32BIT;
2312         } else {
2313             lp->cfg.flags |= SMC91X_USE_16BIT;
2314         }
2315         if (!device_property_read_u32(&pdev->dev, "reg-shift",
2316                           &val))
2317             lp->io_shift = val;
2318         lp->cfg.pxa_u16_align4 =
2319             device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2320     }
2321 #endif
2322 
2323     if (!pd && !match) {
2324         lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2325         lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2326         lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2327         lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2328     }
2329 
2330     if (!lp->cfg.leda && !lp->cfg.ledb) {
2331         lp->cfg.leda = RPC_LSA_DEFAULT;
2332         lp->cfg.ledb = RPC_LSB_DEFAULT;
2333     }
2334 
2335     ndev->dma = (unsigned char)-1;
2336 
2337     res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2338     if (!res)
2339         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2340     if (!res) {
2341         ret = -ENODEV;
2342         goto out_free_netdev;
2343     }
2344 
2345 
2346     if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2347         ret = -EBUSY;
2348         goto out_free_netdev;
2349     }
2350 
2351     ndev->irq = platform_get_irq(pdev, 0);
2352     if (ndev->irq < 0) {
2353         ret = ndev->irq;
2354         goto out_release_io;
2355     }
2356     /*
2357      * If this platform does not specify any special irqflags, or if
2358      * the resource supplies a trigger, override the irqflags with
2359      * the trigger flags from the resource.
2360      */
2361     irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2362     if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2363         irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2364 
2365     ret = smc_request_attrib(pdev, ndev);
2366     if (ret)
2367         goto out_release_io;
2368 #if defined(CONFIG_ASSABET_NEPONSET)
2369     if (machine_is_assabet() && machine_has_neponset())
2370         neponset_ncr_set(NCR_ENET_OSC_EN);
2371 #endif
2372     platform_set_drvdata(pdev, ndev);
2373     ret = smc_enable_device(pdev);
2374     if (ret)
2375         goto out_release_attrib;
2376 
2377     addr = ioremap(res->start, SMC_IO_EXTENT);
2378     if (!addr) {
2379         ret = -ENOMEM;
2380         goto out_release_attrib;
2381     }
2382 
2383 #ifdef CONFIG_ARCH_PXA
2384     {
2385         struct smc_local *lp = netdev_priv(ndev);
2386         lp->device = &pdev->dev;
2387         lp->physaddr = res->start;
2388 
2389     }
2390 #endif
2391 
2392     ret = smc_probe(ndev, addr, irq_flags);
2393     if (ret != 0)
2394         goto out_iounmap;
2395 
2396     smc_request_datacs(pdev, ndev);
2397 
2398     return 0;
2399 
2400  out_iounmap:
2401     iounmap(addr);
2402  out_release_attrib:
2403     smc_release_attrib(pdev, ndev);
2404  out_release_io:
2405     release_mem_region(res->start, SMC_IO_EXTENT);
2406  out_free_netdev:
2407     free_netdev(ndev);
2408  out:
2409     pr_info("%s: not found (%d).\n", CARDNAME, ret);
2410 
2411     return ret;
2412 }
2413 
2414 static int smc_drv_remove(struct platform_device *pdev)
2415 {
2416     struct net_device *ndev = platform_get_drvdata(pdev);
2417     struct smc_local *lp = netdev_priv(ndev);
2418     struct resource *res;
2419 
2420     unregister_netdev(ndev);
2421 
2422     free_irq(ndev->irq, ndev);
2423 
2424 #ifdef CONFIG_ARCH_PXA
2425     if (lp->dma_chan)
2426         dma_release_channel(lp->dma_chan);
2427 #endif
2428     iounmap(lp->base);
2429 
2430     smc_release_datacs(pdev,ndev);
2431     smc_release_attrib(pdev,ndev);
2432 
2433     res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2434     if (!res)
2435         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2436     release_mem_region(res->start, SMC_IO_EXTENT);
2437 
2438     free_netdev(ndev);
2439 
2440     return 0;
2441 }
2442 
2443 static int smc_drv_suspend(struct device *dev)
2444 {
2445     struct net_device *ndev = dev_get_drvdata(dev);
2446 
2447     if (ndev) {
2448         if (netif_running(ndev)) {
2449             netif_device_detach(ndev);
2450             smc_shutdown(ndev);
2451             smc_phy_powerdown(ndev);
2452         }
2453     }
2454     return 0;
2455 }
2456 
2457 static int smc_drv_resume(struct device *dev)
2458 {
2459     struct platform_device *pdev = to_platform_device(dev);
2460     struct net_device *ndev = platform_get_drvdata(pdev);
2461 
2462     if (ndev) {
2463         struct smc_local *lp = netdev_priv(ndev);
2464         smc_enable_device(pdev);
2465         if (netif_running(ndev)) {
2466             smc_reset(ndev);
2467             smc_enable(ndev);
2468             if (lp->phy_type != 0)
2469                 smc_phy_configure(&lp->phy_configure);
2470             netif_device_attach(ndev);
2471         }
2472     }
2473     return 0;
2474 }
2475 
2476 static const struct dev_pm_ops smc_drv_pm_ops = {
2477     .suspend    = smc_drv_suspend,
2478     .resume     = smc_drv_resume,
2479 };
2480 
2481 static struct platform_driver smc_driver = {
2482     .probe      = smc_drv_probe,
2483     .remove     = smc_drv_remove,
2484     .driver     = {
2485         .name   = CARDNAME,
2486         .pm = &smc_drv_pm_ops,
2487         .of_match_table   = of_match_ptr(smc91x_match),
2488         .acpi_match_table = smc91x_acpi_match,
2489     },
2490 };
2491 
2492 module_platform_driver(smc_driver);