Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2011-2013 Solarflare Communications Inc.
0005  */
0006 
0007 /* Theory of operation:
0008  *
0009  * PTP support is assisted by firmware running on the MC, which provides
0010  * the hardware timestamping capabilities.  Both transmitted and received
0011  * PTP event packets are queued onto internal queues for subsequent processing;
0012  * this is because the MC operations are relatively long and would block
0013  * block NAPI/interrupt operation.
0014  *
0015  * Receive event processing:
0016  *  The event contains the packet's UUID and sequence number, together
0017  *  with the hardware timestamp.  The PTP receive packet queue is searched
0018  *  for this UUID/sequence number and, if found, put on a pending queue.
0019  *  Packets not matching are delivered without timestamps (MCDI events will
0020  *  always arrive after the actual packet).
0021  *  It is important for the operation of the PTP protocol that the ordering
0022  *  of packets between the event and general port is maintained.
0023  *
0024  * Work queue processing:
0025  *  If work waiting, synchronise host/hardware time
0026  *
0027  *  Transmit: send packet through MC, which returns the transmission time
0028  *  that is converted to an appropriate timestamp.
0029  *
0030  *  Receive: the packet's reception time is converted to an appropriate
0031  *  timestamp.
0032  */
0033 #include <linux/ip.h>
0034 #include <linux/udp.h>
0035 #include <linux/time.h>
0036 #include <linux/ktime.h>
0037 #include <linux/module.h>
0038 #include <linux/pps_kernel.h>
0039 #include <linux/ptp_clock_kernel.h>
0040 #include "net_driver.h"
0041 #include "efx.h"
0042 #include "mcdi.h"
0043 #include "mcdi_pcol.h"
0044 #include "io.h"
0045 #include "farch_regs.h"
0046 #include "tx.h"
0047 #include "nic.h" /* indirectly includes ptp.h */
0048 
0049 /* Maximum number of events expected to make up a PTP event */
0050 #define MAX_EVENT_FRAGS         3
0051 
0052 /* Maximum delay, ms, to begin synchronisation */
0053 #define MAX_SYNCHRONISE_WAIT_MS     2
0054 
0055 /* How long, at most, to spend synchronising */
0056 #define SYNCHRONISE_PERIOD_NS       250000
0057 
0058 /* How often to update the shared memory time */
0059 #define SYNCHRONISATION_GRANULARITY_NS  200
0060 
0061 /* Minimum permitted length of a (corrected) synchronisation time */
0062 #define DEFAULT_MIN_SYNCHRONISATION_NS  120
0063 
0064 /* Maximum permitted length of a (corrected) synchronisation time */
0065 #define MAX_SYNCHRONISATION_NS      1000
0066 
0067 /* How many (MC) receive events that can be queued */
0068 #define MAX_RECEIVE_EVENTS      8
0069 
0070 /* Length of (modified) moving average. */
0071 #define AVERAGE_LENGTH          16
0072 
0073 /* How long an unmatched event or packet can be held */
0074 #define PKT_EVENT_LIFETIME_MS       10
0075 
0076 /* Offsets into PTP packet for identification.  These offsets are from the
0077  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
0078  * PTP V2 permit the use of IPV4 options.
0079  */
0080 #define PTP_DPORT_OFFSET    22
0081 
0082 #define PTP_V1_VERSION_LENGTH   2
0083 #define PTP_V1_VERSION_OFFSET   28
0084 
0085 #define PTP_V1_UUID_LENGTH  6
0086 #define PTP_V1_UUID_OFFSET  50
0087 
0088 #define PTP_V1_SEQUENCE_LENGTH  2
0089 #define PTP_V1_SEQUENCE_OFFSET  58
0090 
0091 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
0092  * includes IP header.
0093  */
0094 #define PTP_V1_MIN_LENGTH   64
0095 
0096 #define PTP_V2_VERSION_LENGTH   1
0097 #define PTP_V2_VERSION_OFFSET   29
0098 
0099 #define PTP_V2_UUID_LENGTH  8
0100 #define PTP_V2_UUID_OFFSET  48
0101 
0102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
0103  * the MC only captures the last six bytes of the clock identity. These values
0104  * reflect those, not the ones used in the standard.  The standard permits
0105  * mapping of V1 UUIDs to V2 UUIDs with these same values.
0106  */
0107 #define PTP_V2_MC_UUID_LENGTH   6
0108 #define PTP_V2_MC_UUID_OFFSET   50
0109 
0110 #define PTP_V2_SEQUENCE_LENGTH  2
0111 #define PTP_V2_SEQUENCE_OFFSET  58
0112 
0113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
0114  * includes IP header.
0115  */
0116 #define PTP_V2_MIN_LENGTH   63
0117 
0118 #define PTP_MIN_LENGTH      63
0119 
0120 #define PTP_ADDRESS     0xe0000181  /* 224.0.1.129 */
0121 #define PTP_EVENT_PORT      319
0122 #define PTP_GENERAL_PORT    320
0123 
0124 /* Annoyingly the format of the version numbers are different between
0125  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
0126  */
0127 #define PTP_VERSION_V1      1
0128 
0129 #define PTP_VERSION_V2      2
0130 #define PTP_VERSION_V2_MASK 0x0f
0131 
0132 enum ptp_packet_state {
0133     PTP_PACKET_STATE_UNMATCHED = 0,
0134     PTP_PACKET_STATE_MATCHED,
0135     PTP_PACKET_STATE_TIMED_OUT,
0136     PTP_PACKET_STATE_MATCH_UNWANTED
0137 };
0138 
0139 /* NIC synchronised with single word of time only comprising
0140  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
0141  */
0142 #define MC_NANOSECOND_BITS  30
0143 #define MC_NANOSECOND_MASK  ((1 << MC_NANOSECOND_BITS) - 1)
0144 #define MC_SECOND_MASK      ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
0145 
0146 /* Maximum parts-per-billion adjustment that is acceptable */
0147 #define MAX_PPB         1000000
0148 
0149 /* Precalculate scale word to avoid long long division at runtime */
0150 /* This is equivalent to 2^66 / 10^9. */
0151 #define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
0152 
0153 /* How much to shift down after scaling to convert to FP40 */
0154 #define PPB_SHIFT_FP40      26
0155 /* ... and FP44. */
0156 #define PPB_SHIFT_FP44      22
0157 
0158 #define PTP_SYNC_ATTEMPTS   4
0159 
0160 /**
0161  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
0162  * @words: UUID and (partial) sequence number
0163  * @expiry: Time after which the packet should be delivered irrespective of
0164  *            event arrival.
0165  * @state: The state of the packet - whether it is ready for processing or
0166  *         whether that is of no interest.
0167  */
0168 struct efx_ptp_match {
0169     u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
0170     unsigned long expiry;
0171     enum ptp_packet_state state;
0172 };
0173 
0174 /**
0175  * struct efx_ptp_event_rx - A PTP receive event (from MC)
0176  * @link: list of events
0177  * @seq0: First part of (PTP) UUID
0178  * @seq1: Second part of (PTP) UUID and sequence number
0179  * @hwtimestamp: Event timestamp
0180  * @expiry: Time which the packet arrived
0181  */
0182 struct efx_ptp_event_rx {
0183     struct list_head link;
0184     u32 seq0;
0185     u32 seq1;
0186     ktime_t hwtimestamp;
0187     unsigned long expiry;
0188 };
0189 
0190 /**
0191  * struct efx_ptp_timeset - Synchronisation between host and MC
0192  * @host_start: Host time immediately before hardware timestamp taken
0193  * @major: Hardware timestamp, major
0194  * @minor: Hardware timestamp, minor
0195  * @host_end: Host time immediately after hardware timestamp taken
0196  * @wait: Number of NIC clock ticks between hardware timestamp being read and
0197  *          host end time being seen
0198  * @window: Difference of host_end and host_start
0199  * @valid: Whether this timeset is valid
0200  */
0201 struct efx_ptp_timeset {
0202     u32 host_start;
0203     u32 major;
0204     u32 minor;
0205     u32 host_end;
0206     u32 wait;
0207     u32 window; /* Derived: end - start, allowing for wrap */
0208 };
0209 
0210 /**
0211  * struct efx_ptp_data - Precision Time Protocol (PTP) state
0212  * @efx: The NIC context
0213  * @channel: The PTP channel (Siena only)
0214  * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
0215  *  separate events)
0216  * @rxq: Receive SKB queue (awaiting timestamps)
0217  * @txq: Transmit SKB queue
0218  * @evt_list: List of MC receive events awaiting packets
0219  * @evt_free_list: List of free events
0220  * @evt_lock: Lock for manipulating evt_list and evt_free_list
0221  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
0222  * @workwq: Work queue for processing pending PTP operations
0223  * @work: Work task
0224  * @reset_required: A serious error has occurred and the PTP task needs to be
0225  *                  reset (disable, enable).
0226  * @rxfilter_event: Receive filter when operating
0227  * @rxfilter_general: Receive filter when operating
0228  * @rxfilter_installed: Receive filter installed
0229  * @config: Current timestamp configuration
0230  * @enabled: PTP operation enabled
0231  * @mode: Mode in which PTP operating (PTP version)
0232  * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
0233  * @nic_to_kernel_time: Function to convert from NIC to kernel time
0234  * @nic_time: contains time details
0235  * @nic_time.minor_max: Wrap point for NIC minor times
0236  * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
0237  * in packet prefix and last MCDI time sync event i.e. how much earlier than
0238  * the last sync event time a packet timestamp can be.
0239  * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
0240  * in packet prefix and last MCDI time sync event i.e. how much later than
0241  * the last sync event time a packet timestamp can be.
0242  * @nic_time.sync_event_minor_shift: Shift required to make minor time from
0243  * field in MCDI time sync event.
0244  * @min_synchronisation_ns: Minimum acceptable corrected sync window
0245  * @capabilities: Capabilities flags from the NIC
0246  * @ts_corrections: contains corrections details
0247  * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
0248  *                         timestamps
0249  * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
0250  *                         timestamps
0251  * @ts_corrections.pps_out: PPS output error (information only)
0252  * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
0253  * @ts_corrections.general_tx: Required driver correction of general packet
0254  *                             transmit timestamps
0255  * @ts_corrections.general_rx: Required driver correction of general packet
0256  *                             receive timestamps
0257  * @evt_frags: Partly assembled PTP events
0258  * @evt_frag_idx: Current fragment number
0259  * @evt_code: Last event code
0260  * @start: Address at which MC indicates ready for synchronisation
0261  * @host_time_pps: Host time at last PPS
0262  * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
0263  * frequency adjustment into a fixed point fractional nanosecond format.
0264  * @current_adjfreq: Current ppb adjustment.
0265  * @phc_clock: Pointer to registered phc device (if primary function)
0266  * @phc_clock_info: Registration structure for phc device
0267  * @pps_work: pps work task for handling pps events
0268  * @pps_workwq: pps work queue
0269  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
0270  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
0271  *         allocations in main data path).
0272  * @good_syncs: Number of successful synchronisations.
0273  * @fast_syncs: Number of synchronisations requiring short delay
0274  * @bad_syncs: Number of failed synchronisations.
0275  * @sync_timeouts: Number of synchronisation timeouts
0276  * @no_time_syncs: Number of synchronisations with no good times.
0277  * @invalid_sync_windows: Number of sync windows with bad durations.
0278  * @undersize_sync_windows: Number of corrected sync windows that are too small
0279  * @oversize_sync_windows: Number of corrected sync windows that are too large
0280  * @rx_no_timestamp: Number of packets received without a timestamp.
0281  * @timeset: Last set of synchronisation statistics.
0282  * @xmit_skb: Transmit SKB function.
0283  */
0284 struct efx_ptp_data {
0285     struct efx_nic *efx;
0286     struct efx_channel *channel;
0287     bool rx_ts_inline;
0288     struct sk_buff_head rxq;
0289     struct sk_buff_head txq;
0290     struct list_head evt_list;
0291     struct list_head evt_free_list;
0292     spinlock_t evt_lock;
0293     struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
0294     struct workqueue_struct *workwq;
0295     struct work_struct work;
0296     bool reset_required;
0297     u32 rxfilter_event;
0298     u32 rxfilter_general;
0299     bool rxfilter_installed;
0300     struct hwtstamp_config config;
0301     bool enabled;
0302     unsigned int mode;
0303     void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
0304     ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
0305                       s32 correction);
0306     struct {
0307         u32 minor_max;
0308         u32 sync_event_diff_min;
0309         u32 sync_event_diff_max;
0310         unsigned int sync_event_minor_shift;
0311     } nic_time;
0312     unsigned int min_synchronisation_ns;
0313     unsigned int capabilities;
0314     struct {
0315         s32 ptp_tx;
0316         s32 ptp_rx;
0317         s32 pps_out;
0318         s32 pps_in;
0319         s32 general_tx;
0320         s32 general_rx;
0321     } ts_corrections;
0322     efx_qword_t evt_frags[MAX_EVENT_FRAGS];
0323     int evt_frag_idx;
0324     int evt_code;
0325     struct efx_buffer start;
0326     struct pps_event_time host_time_pps;
0327     unsigned int adjfreq_ppb_shift;
0328     s64 current_adjfreq;
0329     struct ptp_clock *phc_clock;
0330     struct ptp_clock_info phc_clock_info;
0331     struct work_struct pps_work;
0332     struct workqueue_struct *pps_workwq;
0333     bool nic_ts_enabled;
0334     efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
0335 
0336     unsigned int good_syncs;
0337     unsigned int fast_syncs;
0338     unsigned int bad_syncs;
0339     unsigned int sync_timeouts;
0340     unsigned int no_time_syncs;
0341     unsigned int invalid_sync_windows;
0342     unsigned int undersize_sync_windows;
0343     unsigned int oversize_sync_windows;
0344     unsigned int rx_no_timestamp;
0345     struct efx_ptp_timeset
0346     timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
0347     void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
0348 };
0349 
0350 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
0351 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
0352 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
0353 static int efx_phc_settime(struct ptp_clock_info *ptp,
0354                const struct timespec64 *e_ts);
0355 static int efx_phc_enable(struct ptp_clock_info *ptp,
0356               struct ptp_clock_request *request, int on);
0357 
0358 bool efx_siena_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
0359 {
0360     return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
0361 }
0362 
0363 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
0364  * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
0365  */
0366 static bool efx_ptp_want_txqs(struct efx_channel *channel)
0367 {
0368     return efx_siena_ptp_use_mac_tx_timestamps(channel->efx);
0369 }
0370 
0371 #define PTP_SW_STAT(ext_name, field_name)               \
0372     { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
0373 #define PTP_MC_STAT(ext_name, mcdi_name)                \
0374     { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
0375 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
0376     PTP_SW_STAT(ptp_good_syncs, good_syncs),
0377     PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
0378     PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
0379     PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
0380     PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
0381     PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
0382     PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
0383     PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
0384     PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
0385     PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
0386     PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
0387     PTP_MC_STAT(ptp_timestamp_packets, TS),
0388     PTP_MC_STAT(ptp_filter_matches, FM),
0389     PTP_MC_STAT(ptp_non_filter_matches, NFM),
0390 };
0391 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
0392 static const unsigned long efx_ptp_stat_mask[] = {
0393     [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
0394 };
0395 
0396 size_t efx_siena_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
0397 {
0398     if (!efx->ptp_data)
0399         return 0;
0400 
0401     return efx_siena_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
0402                     efx_ptp_stat_mask, strings);
0403 }
0404 
0405 size_t efx_siena_ptp_update_stats(struct efx_nic *efx, u64 *stats)
0406 {
0407     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
0408     MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
0409     size_t i;
0410     int rc;
0411 
0412     if (!efx->ptp_data)
0413         return 0;
0414 
0415     /* Copy software statistics */
0416     for (i = 0; i < PTP_STAT_COUNT; i++) {
0417         if (efx_ptp_stat_desc[i].dma_width)
0418             continue;
0419         stats[i] = *(unsigned int *)((char *)efx->ptp_data +
0420                          efx_ptp_stat_desc[i].offset);
0421     }
0422 
0423     /* Fetch MC statistics.  We *must* fill in all statistics or
0424      * risk leaking kernel memory to userland, so if the MCDI
0425      * request fails we pretend we got zeroes.
0426      */
0427     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
0428     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0429     rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0430                 outbuf, sizeof(outbuf), NULL);
0431     if (rc)
0432         memset(outbuf, 0, sizeof(outbuf));
0433     efx_siena_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
0434                    efx_ptp_stat_mask,
0435                    stats, _MCDI_PTR(outbuf, 0), false);
0436 
0437     return PTP_STAT_COUNT;
0438 }
0439 
0440 /* For Siena platforms NIC time is s and ns */
0441 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
0442 {
0443     struct timespec64 ts = ns_to_timespec64(ns);
0444     *nic_major = (u32)ts.tv_sec;
0445     *nic_minor = ts.tv_nsec;
0446 }
0447 
0448 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
0449                         s32 correction)
0450 {
0451     ktime_t kt = ktime_set(nic_major, nic_minor);
0452     if (correction >= 0)
0453         kt = ktime_add_ns(kt, (u64)correction);
0454     else
0455         kt = ktime_sub_ns(kt, (u64)-correction);
0456     return kt;
0457 }
0458 
0459 /* To convert from s27 format to ns we multiply then divide by a power of 2.
0460  * For the conversion from ns to s27, the operation is also converted to a
0461  * multiply and shift.
0462  */
0463 #define S27_TO_NS_SHIFT (27)
0464 #define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
0465 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
0466 #define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
0467 
0468 /* For Huntington platforms NIC time is in seconds and fractions of a second
0469  * where the minor register only uses 27 bits in units of 2^-27s.
0470  */
0471 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
0472 {
0473     struct timespec64 ts = ns_to_timespec64(ns);
0474     u32 maj = (u32)ts.tv_sec;
0475     u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
0476              (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
0477 
0478     /* The conversion can result in the minor value exceeding the maximum.
0479      * In this case, round up to the next second.
0480      */
0481     if (min >= S27_MINOR_MAX) {
0482         min -= S27_MINOR_MAX;
0483         maj++;
0484     }
0485 
0486     *nic_major = maj;
0487     *nic_minor = min;
0488 }
0489 
0490 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
0491 {
0492     u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
0493             (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
0494     return ktime_set(nic_major, ns);
0495 }
0496 
0497 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
0498                            s32 correction)
0499 {
0500     /* Apply the correction and deal with carry */
0501     nic_minor += correction;
0502     if ((s32)nic_minor < 0) {
0503         nic_minor += S27_MINOR_MAX;
0504         nic_major--;
0505     } else if (nic_minor >= S27_MINOR_MAX) {
0506         nic_minor -= S27_MINOR_MAX;
0507         nic_major++;
0508     }
0509 
0510     return efx_ptp_s27_to_ktime(nic_major, nic_minor);
0511 }
0512 
0513 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
0514 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
0515 {
0516     struct timespec64 ts = ns_to_timespec64(ns);
0517 
0518     *nic_major = (u32)ts.tv_sec;
0519     *nic_minor = ts.tv_nsec * 4;
0520 }
0521 
0522 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
0523                          s32 correction)
0524 {
0525     ktime_t kt;
0526 
0527     nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
0528     correction = DIV_ROUND_CLOSEST(correction, 4);
0529 
0530     kt = ktime_set(nic_major, nic_minor);
0531 
0532     if (correction >= 0)
0533         kt = ktime_add_ns(kt, (u64)correction);
0534     else
0535         kt = ktime_sub_ns(kt, (u64)-correction);
0536     return kt;
0537 }
0538 
0539 struct efx_channel *efx_siena_ptp_channel(struct efx_nic *efx)
0540 {
0541     return efx->ptp_data ? efx->ptp_data->channel : NULL;
0542 }
0543 
0544 static u32 last_sync_timestamp_major(struct efx_nic *efx)
0545 {
0546     struct efx_channel *channel = efx_siena_ptp_channel(efx);
0547     u32 major = 0;
0548 
0549     if (channel)
0550         major = channel->sync_timestamp_major;
0551     return major;
0552 }
0553 
0554 /* The 8000 series and later can provide the time from the MAC, which is only
0555  * 48 bits long and provides meta-information in the top 2 bits.
0556  */
0557 static ktime_t
0558 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
0559                     struct efx_ptp_data *ptp,
0560                     u32 nic_major, u32 nic_minor,
0561                     s32 correction)
0562 {
0563     u32 sync_timestamp;
0564     ktime_t kt = { 0 };
0565     s16 delta;
0566 
0567     if (!(nic_major & 0x80000000)) {
0568         WARN_ON_ONCE(nic_major >> 16);
0569 
0570         /* Medford provides 48 bits of timestamp, so we must get the top
0571          * 16 bits from the timesync event state.
0572          *
0573          * We only have the lower 16 bits of the time now, but we do
0574          * have a full resolution timestamp at some point in past. As
0575          * long as the difference between the (real) now and the sync
0576          * is less than 2^15, then we can reconstruct the difference
0577          * between those two numbers using only the lower 16 bits of
0578          * each.
0579          *
0580          * Put another way
0581          *
0582          * a - b = ((a mod k) - b) mod k
0583          *
0584          * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
0585          * (a mod k) and b, so can calculate the delta, a - b.
0586          *
0587          */
0588         sync_timestamp = last_sync_timestamp_major(efx);
0589 
0590         /* Because delta is s16 this does an implicit mask down to
0591          * 16 bits which is what we need, assuming
0592          * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
0593          * we can deal with the (unlikely) case of sync timestamps
0594          * arriving from the future.
0595          */
0596         delta = nic_major - sync_timestamp;
0597 
0598         /* Recover the fully specified time now, by applying the offset
0599          * to the (fully specified) sync time.
0600          */
0601         nic_major = sync_timestamp + delta;
0602 
0603         kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
0604                          correction);
0605     }
0606     return kt;
0607 }
0608 
0609 ktime_t efx_siena_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
0610 {
0611     struct efx_nic *efx = tx_queue->efx;
0612     struct efx_ptp_data *ptp = efx->ptp_data;
0613     ktime_t kt;
0614 
0615     if (efx_siena_ptp_use_mac_tx_timestamps(efx))
0616         kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
0617                 tx_queue->completed_timestamp_major,
0618                 tx_queue->completed_timestamp_minor,
0619                 ptp->ts_corrections.general_tx);
0620     else
0621         kt = ptp->nic_to_kernel_time(
0622                 tx_queue->completed_timestamp_major,
0623                 tx_queue->completed_timestamp_minor,
0624                 ptp->ts_corrections.general_tx);
0625     return kt;
0626 }
0627 
0628 /* Get PTP attributes and set up time conversions */
0629 static int efx_ptp_get_attributes(struct efx_nic *efx)
0630 {
0631     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
0632     MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
0633     struct efx_ptp_data *ptp = efx->ptp_data;
0634     int rc;
0635     u32 fmt;
0636     size_t out_len;
0637 
0638     /* Get the PTP attributes. If the NIC doesn't support the operation we
0639      * use the default format for compatibility with older NICs i.e.
0640      * seconds and nanoseconds.
0641      */
0642     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
0643     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0644     rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0645                       outbuf, sizeof(outbuf), &out_len);
0646     if (rc == 0) {
0647         fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
0648     } else if (rc == -EINVAL) {
0649         fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
0650     } else if (rc == -EPERM) {
0651         pci_info(efx->pci_dev, "no PTP support\n");
0652         return rc;
0653     } else {
0654         efx_siena_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
0655                          outbuf, sizeof(outbuf), rc);
0656         return rc;
0657     }
0658 
0659     switch (fmt) {
0660     case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
0661         ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
0662         ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
0663         ptp->nic_time.minor_max = 1 << 27;
0664         ptp->nic_time.sync_event_minor_shift = 19;
0665         break;
0666     case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
0667         ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
0668         ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
0669         ptp->nic_time.minor_max = 1000000000;
0670         ptp->nic_time.sync_event_minor_shift = 22;
0671         break;
0672     case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
0673         ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
0674         ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
0675         ptp->nic_time.minor_max = 4000000000UL;
0676         ptp->nic_time.sync_event_minor_shift = 24;
0677         break;
0678     default:
0679         return -ERANGE;
0680     }
0681 
0682     /* Precalculate acceptable difference between the minor time in the
0683      * packet prefix and the last MCDI time sync event. We expect the
0684      * packet prefix timestamp to be after of sync event by up to one
0685      * sync event interval (0.25s) but we allow it to exceed this by a
0686      * fuzz factor of (0.1s)
0687      */
0688     ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
0689         - (ptp->nic_time.minor_max / 10);
0690     ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
0691         + (ptp->nic_time.minor_max / 10);
0692 
0693     /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
0694      * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
0695      * a value to use for the minimum acceptable corrected synchronization
0696      * window and may return further capabilities.
0697      * If we have the extra information store it. For older firmware that
0698      * does not implement the extended command use the default value.
0699      */
0700     if (rc == 0 &&
0701         out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
0702         ptp->min_synchronisation_ns =
0703             MCDI_DWORD(outbuf,
0704                    PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
0705     else
0706         ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
0707 
0708     if (rc == 0 &&
0709         out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
0710         ptp->capabilities = MCDI_DWORD(outbuf,
0711                     PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
0712     else
0713         ptp->capabilities = 0;
0714 
0715     /* Set up the shift for conversion between frequency
0716      * adjustments in parts-per-billion and the fixed-point
0717      * fractional ns format that the adapter uses.
0718      */
0719     if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
0720         ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
0721     else
0722         ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
0723 
0724     return 0;
0725 }
0726 
0727 /* Get PTP timestamp corrections */
0728 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
0729 {
0730     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
0731     MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
0732     int rc;
0733     size_t out_len;
0734 
0735     /* Get the timestamp corrections from the NIC. If this operation is
0736      * not supported (older NICs) then no correction is required.
0737      */
0738     MCDI_SET_DWORD(inbuf, PTP_IN_OP,
0739                MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
0740     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0741 
0742     rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0743                       outbuf, sizeof(outbuf), &out_len);
0744     if (rc == 0) {
0745         efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
0746             PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
0747         efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
0748             PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
0749         efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
0750             PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
0751         efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
0752             PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
0753 
0754         if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
0755             efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
0756                 outbuf,
0757                 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
0758             efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
0759                 outbuf,
0760                 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
0761         } else {
0762             efx->ptp_data->ts_corrections.general_tx =
0763                 efx->ptp_data->ts_corrections.ptp_tx;
0764             efx->ptp_data->ts_corrections.general_rx =
0765                 efx->ptp_data->ts_corrections.ptp_rx;
0766         }
0767     } else if (rc == -EINVAL) {
0768         efx->ptp_data->ts_corrections.ptp_tx = 0;
0769         efx->ptp_data->ts_corrections.ptp_rx = 0;
0770         efx->ptp_data->ts_corrections.pps_out = 0;
0771         efx->ptp_data->ts_corrections.pps_in = 0;
0772         efx->ptp_data->ts_corrections.general_tx = 0;
0773         efx->ptp_data->ts_corrections.general_rx = 0;
0774     } else {
0775         efx_siena_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
0776                          outbuf, sizeof(outbuf), rc);
0777         return rc;
0778     }
0779 
0780     return 0;
0781 }
0782 
0783 /* Enable MCDI PTP support. */
0784 static int efx_ptp_enable(struct efx_nic *efx)
0785 {
0786     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
0787     MCDI_DECLARE_BUF_ERR(outbuf);
0788     int rc;
0789 
0790     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
0791     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0792     MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
0793                efx->ptp_data->channel ?
0794                efx->ptp_data->channel->channel : 0);
0795     MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
0796 
0797     rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0798                       outbuf, sizeof(outbuf), NULL);
0799     rc = (rc == -EALREADY) ? 0 : rc;
0800     if (rc)
0801         efx_siena_mcdi_display_error(efx, MC_CMD_PTP,
0802                          MC_CMD_PTP_IN_ENABLE_LEN,
0803                          outbuf, sizeof(outbuf), rc);
0804     return rc;
0805 }
0806 
0807 /* Disable MCDI PTP support.
0808  *
0809  * Note that this function should never rely on the presence of ptp_data -
0810  * may be called before that exists.
0811  */
0812 static int efx_ptp_disable(struct efx_nic *efx)
0813 {
0814     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
0815     MCDI_DECLARE_BUF_ERR(outbuf);
0816     int rc;
0817 
0818     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
0819     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0820     rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0821                       outbuf, sizeof(outbuf), NULL);
0822     rc = (rc == -EALREADY) ? 0 : rc;
0823     /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
0824      * should only have been called during probe.
0825      */
0826     if (rc == -ENOSYS || rc == -EPERM)
0827         pci_info(efx->pci_dev, "no PTP support\n");
0828     else if (rc)
0829         efx_siena_mcdi_display_error(efx, MC_CMD_PTP,
0830                          MC_CMD_PTP_IN_DISABLE_LEN,
0831                          outbuf, sizeof(outbuf), rc);
0832     return rc;
0833 }
0834 
0835 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
0836 {
0837     struct sk_buff *skb;
0838 
0839     while ((skb = skb_dequeue(q))) {
0840         local_bh_disable();
0841         netif_receive_skb(skb);
0842         local_bh_enable();
0843     }
0844 }
0845 
0846 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
0847 {
0848     netif_err(efx, drv, efx->net_dev,
0849           "ERROR: PTP requires MSI-X and 1 additional interrupt"
0850           "vector. PTP disabled\n");
0851 }
0852 
0853 /* Repeatedly send the host time to the MC which will capture the hardware
0854  * time.
0855  */
0856 static void efx_ptp_send_times(struct efx_nic *efx,
0857                    struct pps_event_time *last_time)
0858 {
0859     struct pps_event_time now;
0860     struct timespec64 limit;
0861     struct efx_ptp_data *ptp = efx->ptp_data;
0862     int *mc_running = ptp->start.addr;
0863 
0864     pps_get_ts(&now);
0865     limit = now.ts_real;
0866     timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
0867 
0868     /* Write host time for specified period or until MC is done */
0869     while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
0870            READ_ONCE(*mc_running)) {
0871         struct timespec64 update_time;
0872         unsigned int host_time;
0873 
0874         /* Don't update continuously to avoid saturating the PCIe bus */
0875         update_time = now.ts_real;
0876         timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
0877         do {
0878             pps_get_ts(&now);
0879         } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
0880              READ_ONCE(*mc_running));
0881 
0882         /* Synchronise NIC with single word of time only */
0883         host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
0884                  now.ts_real.tv_nsec);
0885         /* Update host time in NIC memory */
0886         efx->type->ptp_write_host_time(efx, host_time);
0887     }
0888     *last_time = now;
0889 }
0890 
0891 /* Read a timeset from the MC's results and partial process. */
0892 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
0893                  struct efx_ptp_timeset *timeset)
0894 {
0895     unsigned start_ns, end_ns;
0896 
0897     timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
0898     timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
0899     timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
0900     timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
0901     timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
0902 
0903     /* Ignore seconds */
0904     start_ns = timeset->host_start & MC_NANOSECOND_MASK;
0905     end_ns = timeset->host_end & MC_NANOSECOND_MASK;
0906     /* Allow for rollover */
0907     if (end_ns < start_ns)
0908         end_ns += NSEC_PER_SEC;
0909     /* Determine duration of operation */
0910     timeset->window = end_ns - start_ns;
0911 }
0912 
0913 /* Process times received from MC.
0914  *
0915  * Extract times from returned results, and establish the minimum value
0916  * seen.  The minimum value represents the "best" possible time and events
0917  * too much greater than this are rejected - the machine is, perhaps, too
0918  * busy. A number of readings are taken so that, hopefully, at least one good
0919  * synchronisation will be seen in the results.
0920  */
0921 static int
0922 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
0923               size_t response_length,
0924               const struct pps_event_time *last_time)
0925 {
0926     unsigned number_readings =
0927         MCDI_VAR_ARRAY_LEN(response_length,
0928                    PTP_OUT_SYNCHRONIZE_TIMESET);
0929     unsigned i;
0930     unsigned ngood = 0;
0931     unsigned last_good = 0;
0932     struct efx_ptp_data *ptp = efx->ptp_data;
0933     u32 last_sec;
0934     u32 start_sec;
0935     struct timespec64 delta;
0936     ktime_t mc_time;
0937 
0938     if (number_readings == 0)
0939         return -EAGAIN;
0940 
0941     /* Read the set of results and find the last good host-MC
0942      * synchronization result. The MC times when it finishes reading the
0943      * host time so the corrected window time should be fairly constant
0944      * for a given platform. Increment stats for any results that appear
0945      * to be erroneous.
0946      */
0947     for (i = 0; i < number_readings; i++) {
0948         s32 window, corrected;
0949         struct timespec64 wait;
0950 
0951         efx_ptp_read_timeset(
0952             MCDI_ARRAY_STRUCT_PTR(synch_buf,
0953                           PTP_OUT_SYNCHRONIZE_TIMESET, i),
0954             &ptp->timeset[i]);
0955 
0956         wait = ktime_to_timespec64(
0957             ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
0958         window = ptp->timeset[i].window;
0959         corrected = window - wait.tv_nsec;
0960 
0961         /* We expect the uncorrected synchronization window to be at
0962          * least as large as the interval between host start and end
0963          * times. If it is smaller than this then this is mostly likely
0964          * to be a consequence of the host's time being adjusted.
0965          * Check that the corrected sync window is in a reasonable
0966          * range. If it is out of range it is likely to be because an
0967          * interrupt or other delay occurred between reading the system
0968          * time and writing it to MC memory.
0969          */
0970         if (window < SYNCHRONISATION_GRANULARITY_NS) {
0971             ++ptp->invalid_sync_windows;
0972         } else if (corrected >= MAX_SYNCHRONISATION_NS) {
0973             ++ptp->oversize_sync_windows;
0974         } else if (corrected < ptp->min_synchronisation_ns) {
0975             ++ptp->undersize_sync_windows;
0976         } else {
0977             ngood++;
0978             last_good = i;
0979         }
0980     }
0981 
0982     if (ngood == 0) {
0983         netif_warn(efx, drv, efx->net_dev,
0984                "PTP no suitable synchronisations\n");
0985         return -EAGAIN;
0986     }
0987 
0988     /* Calculate delay from last good sync (host time) to last_time.
0989      * It is possible that the seconds rolled over between taking
0990      * the start reading and the last value written by the host.  The
0991      * timescales are such that a gap of more than one second is never
0992      * expected.  delta is *not* normalised.
0993      */
0994     start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
0995     last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
0996     if (start_sec != last_sec &&
0997         ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
0998         netif_warn(efx, hw, efx->net_dev,
0999                "PTP bad synchronisation seconds\n");
1000         return -EAGAIN;
1001     }
1002     delta.tv_sec = (last_sec - start_sec) & 1;
1003     delta.tv_nsec =
1004         last_time->ts_real.tv_nsec -
1005         (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1006 
1007     /* Convert the NIC time at last good sync into kernel time.
1008      * No correction is required - this time is the output of a
1009      * firmware process.
1010      */
1011     mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1012                       ptp->timeset[last_good].minor, 0);
1013 
1014     /* Calculate delay from NIC top of second to last_time */
1015     delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1016 
1017     /* Set PPS timestamp to match NIC top of second */
1018     ptp->host_time_pps = *last_time;
1019     pps_sub_ts(&ptp->host_time_pps, delta);
1020 
1021     return 0;
1022 }
1023 
1024 /* Synchronize times between the host and the MC */
1025 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1026 {
1027     struct efx_ptp_data *ptp = efx->ptp_data;
1028     MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1029     size_t response_length;
1030     int rc;
1031     unsigned long timeout;
1032     struct pps_event_time last_time = {};
1033     unsigned int loops = 0;
1034     int *start = ptp->start.addr;
1035 
1036     MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1037     MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1038     MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1039                num_readings);
1040     MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1041                ptp->start.dma_addr);
1042 
1043     /* Clear flag that signals MC ready */
1044     WRITE_ONCE(*start, 0);
1045     rc = efx_siena_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1046                       MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1047     EFX_WARN_ON_ONCE_PARANOID(rc);
1048 
1049     /* Wait for start from MCDI (or timeout) */
1050     timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1051     while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1052         udelay(20); /* Usually start MCDI execution quickly */
1053         loops++;
1054     }
1055 
1056     if (loops <= 1)
1057         ++ptp->fast_syncs;
1058     if (!time_before(jiffies, timeout))
1059         ++ptp->sync_timeouts;
1060 
1061     if (READ_ONCE(*start))
1062         efx_ptp_send_times(efx, &last_time);
1063 
1064     /* Collect results */
1065     rc = efx_siena_mcdi_rpc_finish(efx, MC_CMD_PTP,
1066                        MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1067                        synch_buf, sizeof(synch_buf),
1068                        &response_length);
1069     if (rc == 0) {
1070         rc = efx_ptp_process_times(efx, synch_buf, response_length,
1071                        &last_time);
1072         if (rc == 0)
1073             ++ptp->good_syncs;
1074         else
1075             ++ptp->no_time_syncs;
1076     }
1077 
1078     /* Increment the bad syncs counter if the synchronize fails, whatever
1079      * the reason.
1080      */
1081     if (rc != 0)
1082         ++ptp->bad_syncs;
1083 
1084     return rc;
1085 }
1086 
1087 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1088 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1089 {
1090     struct efx_ptp_data *ptp_data = efx->ptp_data;
1091     u8 type = efx_tx_csum_type_skb(skb);
1092     struct efx_tx_queue *tx_queue;
1093 
1094     tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1095     if (tx_queue && tx_queue->timestamping) {
1096         efx_enqueue_skb(tx_queue, skb);
1097     } else {
1098         WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1099         dev_kfree_skb_any(skb);
1100     }
1101 }
1102 
1103 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1104 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1105 {
1106     struct efx_ptp_data *ptp_data = efx->ptp_data;
1107     struct skb_shared_hwtstamps timestamps;
1108     int rc = -EIO;
1109     MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1110     size_t len;
1111 
1112     MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1113     MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1114     MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1115     if (skb_shinfo(skb)->nr_frags != 0) {
1116         rc = skb_linearize(skb);
1117         if (rc != 0)
1118             goto fail;
1119     }
1120 
1121     if (skb->ip_summed == CHECKSUM_PARTIAL) {
1122         rc = skb_checksum_help(skb);
1123         if (rc != 0)
1124             goto fail;
1125     }
1126     skb_copy_from_linear_data(skb,
1127                   MCDI_PTR(ptp_data->txbuf,
1128                        PTP_IN_TRANSMIT_PACKET),
1129                   skb->len);
1130     rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, ptp_data->txbuf,
1131                 MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), txtime,
1132                 sizeof(txtime), &len);
1133     if (rc != 0)
1134         goto fail;
1135 
1136     memset(&timestamps, 0, sizeof(timestamps));
1137     timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1138         MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1139         MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1140         ptp_data->ts_corrections.ptp_tx);
1141 
1142     skb_tstamp_tx(skb, &timestamps);
1143 
1144     rc = 0;
1145 
1146 fail:
1147     dev_kfree_skb_any(skb);
1148 
1149     return;
1150 }
1151 
1152 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1153 {
1154     struct efx_ptp_data *ptp = efx->ptp_data;
1155     struct list_head *cursor;
1156     struct list_head *next;
1157 
1158     if (ptp->rx_ts_inline)
1159         return;
1160 
1161     /* Drop time-expired events */
1162     spin_lock_bh(&ptp->evt_lock);
1163     list_for_each_safe(cursor, next, &ptp->evt_list) {
1164         struct efx_ptp_event_rx *evt;
1165 
1166         evt = list_entry(cursor, struct efx_ptp_event_rx,
1167                  link);
1168         if (time_after(jiffies, evt->expiry)) {
1169             list_move(&evt->link, &ptp->evt_free_list);
1170             netif_warn(efx, hw, efx->net_dev,
1171                    "PTP rx event dropped\n");
1172         }
1173     }
1174     spin_unlock_bh(&ptp->evt_lock);
1175 }
1176 
1177 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1178                           struct sk_buff *skb)
1179 {
1180     struct efx_ptp_data *ptp = efx->ptp_data;
1181     bool evts_waiting;
1182     struct list_head *cursor;
1183     struct list_head *next;
1184     struct efx_ptp_match *match;
1185     enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1186 
1187     WARN_ON_ONCE(ptp->rx_ts_inline);
1188 
1189     spin_lock_bh(&ptp->evt_lock);
1190     evts_waiting = !list_empty(&ptp->evt_list);
1191     spin_unlock_bh(&ptp->evt_lock);
1192 
1193     if (!evts_waiting)
1194         return PTP_PACKET_STATE_UNMATCHED;
1195 
1196     match = (struct efx_ptp_match *)skb->cb;
1197     /* Look for a matching timestamp in the event queue */
1198     spin_lock_bh(&ptp->evt_lock);
1199     list_for_each_safe(cursor, next, &ptp->evt_list) {
1200         struct efx_ptp_event_rx *evt;
1201 
1202         evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1203         if ((evt->seq0 == match->words[0]) &&
1204             (evt->seq1 == match->words[1])) {
1205             struct skb_shared_hwtstamps *timestamps;
1206 
1207             /* Match - add in hardware timestamp */
1208             timestamps = skb_hwtstamps(skb);
1209             timestamps->hwtstamp = evt->hwtimestamp;
1210 
1211             match->state = PTP_PACKET_STATE_MATCHED;
1212             rc = PTP_PACKET_STATE_MATCHED;
1213             list_move(&evt->link, &ptp->evt_free_list);
1214             break;
1215         }
1216     }
1217     spin_unlock_bh(&ptp->evt_lock);
1218 
1219     return rc;
1220 }
1221 
1222 /* Process any queued receive events and corresponding packets
1223  *
1224  * q is returned with all the packets that are ready for delivery.
1225  */
1226 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1227 {
1228     struct efx_ptp_data *ptp = efx->ptp_data;
1229     struct sk_buff *skb;
1230 
1231     while ((skb = skb_dequeue(&ptp->rxq))) {
1232         struct efx_ptp_match *match;
1233 
1234         match = (struct efx_ptp_match *)skb->cb;
1235         if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1236             __skb_queue_tail(q, skb);
1237         } else if (efx_ptp_match_rx(efx, skb) ==
1238                PTP_PACKET_STATE_MATCHED) {
1239             __skb_queue_tail(q, skb);
1240         } else if (time_after(jiffies, match->expiry)) {
1241             match->state = PTP_PACKET_STATE_TIMED_OUT;
1242             ++ptp->rx_no_timestamp;
1243             __skb_queue_tail(q, skb);
1244         } else {
1245             /* Replace unprocessed entry and stop */
1246             skb_queue_head(&ptp->rxq, skb);
1247             break;
1248         }
1249     }
1250 }
1251 
1252 /* Complete processing of a received packet */
1253 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1254 {
1255     local_bh_disable();
1256     netif_receive_skb(skb);
1257     local_bh_enable();
1258 }
1259 
1260 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1261 {
1262     struct efx_ptp_data *ptp = efx->ptp_data;
1263 
1264     if (ptp->rxfilter_installed) {
1265         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1266                       ptp->rxfilter_general);
1267         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1268                       ptp->rxfilter_event);
1269         ptp->rxfilter_installed = false;
1270     }
1271 }
1272 
1273 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1274 {
1275     struct efx_ptp_data *ptp = efx->ptp_data;
1276     struct efx_filter_spec rxfilter;
1277     int rc;
1278 
1279     if (!ptp->channel || ptp->rxfilter_installed)
1280         return 0;
1281 
1282     /* Must filter on both event and general ports to ensure
1283      * that there is no packet re-ordering.
1284      */
1285     efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1286                efx_rx_queue_index(
1287                    efx_channel_get_rx_queue(ptp->channel)));
1288     rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1289                        htonl(PTP_ADDRESS),
1290                        htons(PTP_EVENT_PORT));
1291     if (rc != 0)
1292         return rc;
1293 
1294     rc = efx_filter_insert_filter(efx, &rxfilter, true);
1295     if (rc < 0)
1296         return rc;
1297     ptp->rxfilter_event = rc;
1298 
1299     efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1300                efx_rx_queue_index(
1301                    efx_channel_get_rx_queue(ptp->channel)));
1302     rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1303                        htonl(PTP_ADDRESS),
1304                        htons(PTP_GENERAL_PORT));
1305     if (rc != 0)
1306         goto fail;
1307 
1308     rc = efx_filter_insert_filter(efx, &rxfilter, true);
1309     if (rc < 0)
1310         goto fail;
1311     ptp->rxfilter_general = rc;
1312 
1313     ptp->rxfilter_installed = true;
1314     return 0;
1315 
1316 fail:
1317     efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1318                   ptp->rxfilter_event);
1319     return rc;
1320 }
1321 
1322 static int efx_ptp_start(struct efx_nic *efx)
1323 {
1324     struct efx_ptp_data *ptp = efx->ptp_data;
1325     int rc;
1326 
1327     ptp->reset_required = false;
1328 
1329     rc = efx_ptp_insert_multicast_filters(efx);
1330     if (rc)
1331         return rc;
1332 
1333     rc = efx_ptp_enable(efx);
1334     if (rc != 0)
1335         goto fail;
1336 
1337     ptp->evt_frag_idx = 0;
1338     ptp->current_adjfreq = 0;
1339 
1340     return 0;
1341 
1342 fail:
1343     efx_ptp_remove_multicast_filters(efx);
1344     return rc;
1345 }
1346 
1347 static int efx_ptp_stop(struct efx_nic *efx)
1348 {
1349     struct efx_ptp_data *ptp = efx->ptp_data;
1350     struct list_head *cursor;
1351     struct list_head *next;
1352     int rc;
1353 
1354     if (ptp == NULL)
1355         return 0;
1356 
1357     rc = efx_ptp_disable(efx);
1358 
1359     efx_ptp_remove_multicast_filters(efx);
1360 
1361     /* Make sure RX packets are really delivered */
1362     efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1363     skb_queue_purge(&efx->ptp_data->txq);
1364 
1365     /* Drop any pending receive events */
1366     spin_lock_bh(&efx->ptp_data->evt_lock);
1367     list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1368         list_move(cursor, &efx->ptp_data->evt_free_list);
1369     }
1370     spin_unlock_bh(&efx->ptp_data->evt_lock);
1371 
1372     return rc;
1373 }
1374 
1375 static int efx_ptp_restart(struct efx_nic *efx)
1376 {
1377     if (efx->ptp_data && efx->ptp_data->enabled)
1378         return efx_ptp_start(efx);
1379     return 0;
1380 }
1381 
1382 static void efx_ptp_pps_worker(struct work_struct *work)
1383 {
1384     struct efx_ptp_data *ptp =
1385         container_of(work, struct efx_ptp_data, pps_work);
1386     struct efx_nic *efx = ptp->efx;
1387     struct ptp_clock_event ptp_evt;
1388 
1389     if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1390         return;
1391 
1392     ptp_evt.type = PTP_CLOCK_PPSUSR;
1393     ptp_evt.pps_times = ptp->host_time_pps;
1394     ptp_clock_event(ptp->phc_clock, &ptp_evt);
1395 }
1396 
1397 static void efx_ptp_worker(struct work_struct *work)
1398 {
1399     struct efx_ptp_data *ptp_data =
1400         container_of(work, struct efx_ptp_data, work);
1401     struct efx_nic *efx = ptp_data->efx;
1402     struct sk_buff *skb;
1403     struct sk_buff_head tempq;
1404 
1405     if (ptp_data->reset_required) {
1406         efx_ptp_stop(efx);
1407         efx_ptp_start(efx);
1408         return;
1409     }
1410 
1411     efx_ptp_drop_time_expired_events(efx);
1412 
1413     __skb_queue_head_init(&tempq);
1414     efx_ptp_process_events(efx, &tempq);
1415 
1416     while ((skb = skb_dequeue(&ptp_data->txq)))
1417         ptp_data->xmit_skb(efx, skb);
1418 
1419     while ((skb = __skb_dequeue(&tempq)))
1420         efx_ptp_process_rx(efx, skb);
1421 }
1422 
1423 static const struct ptp_clock_info efx_phc_clock_info = {
1424     .owner      = THIS_MODULE,
1425     .name       = "sfc_siena",
1426     .max_adj    = MAX_PPB,
1427     .n_alarm    = 0,
1428     .n_ext_ts   = 0,
1429     .n_per_out  = 0,
1430     .n_pins     = 0,
1431     .pps        = 1,
1432     .adjfreq    = efx_phc_adjfreq,
1433     .adjtime    = efx_phc_adjtime,
1434     .gettime64  = efx_phc_gettime,
1435     .settime64  = efx_phc_settime,
1436     .enable     = efx_phc_enable,
1437 };
1438 
1439 /* Initialise PTP state. */
1440 static int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1441 {
1442     struct efx_ptp_data *ptp;
1443     int rc = 0;
1444     unsigned int pos;
1445 
1446     ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1447     efx->ptp_data = ptp;
1448     if (!efx->ptp_data)
1449         return -ENOMEM;
1450 
1451     ptp->efx = efx;
1452     ptp->channel = channel;
1453     ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1454 
1455     rc = efx_siena_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1456     if (rc != 0)
1457         goto fail1;
1458 
1459     skb_queue_head_init(&ptp->rxq);
1460     skb_queue_head_init(&ptp->txq);
1461     ptp->workwq = create_singlethread_workqueue("sfc_siena_ptp");
1462     if (!ptp->workwq) {
1463         rc = -ENOMEM;
1464         goto fail2;
1465     }
1466 
1467     if (efx_siena_ptp_use_mac_tx_timestamps(efx)) {
1468         ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1469         /* Request sync events on this channel. */
1470         channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1471     } else {
1472         ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1473     }
1474 
1475     INIT_WORK(&ptp->work, efx_ptp_worker);
1476     ptp->config.flags = 0;
1477     ptp->config.tx_type = HWTSTAMP_TX_OFF;
1478     ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1479     INIT_LIST_HEAD(&ptp->evt_list);
1480     INIT_LIST_HEAD(&ptp->evt_free_list);
1481     spin_lock_init(&ptp->evt_lock);
1482     for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1483         list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1484 
1485     /* Get the NIC PTP attributes and set up time conversions */
1486     rc = efx_ptp_get_attributes(efx);
1487     if (rc < 0)
1488         goto fail3;
1489 
1490     /* Get the timestamp corrections */
1491     rc = efx_ptp_get_timestamp_corrections(efx);
1492     if (rc < 0)
1493         goto fail3;
1494 
1495     if (efx->mcdi->fn_flags &
1496         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1497         ptp->phc_clock_info = efx_phc_clock_info;
1498         ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1499                             &efx->pci_dev->dev);
1500         if (IS_ERR(ptp->phc_clock)) {
1501             rc = PTR_ERR(ptp->phc_clock);
1502             goto fail3;
1503         } else if (ptp->phc_clock) {
1504             INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1505             ptp->pps_workwq =
1506                 create_singlethread_workqueue("sfc_siena_pps");
1507             if (!ptp->pps_workwq) {
1508                 rc = -ENOMEM;
1509                 goto fail4;
1510             }
1511         }
1512     }
1513     ptp->nic_ts_enabled = false;
1514 
1515     return 0;
1516 fail4:
1517     ptp_clock_unregister(efx->ptp_data->phc_clock);
1518 
1519 fail3:
1520     destroy_workqueue(efx->ptp_data->workwq);
1521 
1522 fail2:
1523     efx_siena_free_buffer(efx, &ptp->start);
1524 
1525 fail1:
1526     kfree(efx->ptp_data);
1527     efx->ptp_data = NULL;
1528 
1529     return rc;
1530 }
1531 
1532 /* Initialise PTP channel.
1533  *
1534  * Setting core_index to zero causes the queue to be initialised and doesn't
1535  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1536  */
1537 static int efx_ptp_probe_channel(struct efx_channel *channel)
1538 {
1539     struct efx_nic *efx = channel->efx;
1540     int rc;
1541 
1542     channel->irq_moderation_us = 0;
1543     channel->rx_queue.core_index = 0;
1544 
1545     rc = efx_ptp_probe(efx, channel);
1546     /* Failure to probe PTP is not fatal; this channel will just not be
1547      * used for anything.
1548      * In the case of EPERM, efx_ptp_probe will print its own message (in
1549      * efx_ptp_get_attributes()), so we don't need to.
1550      */
1551     if (rc && rc != -EPERM)
1552         netif_warn(efx, drv, efx->net_dev,
1553                "Failed to probe PTP, rc=%d\n", rc);
1554     return 0;
1555 }
1556 
1557 static void efx_ptp_remove(struct efx_nic *efx)
1558 {
1559     if (!efx->ptp_data)
1560         return;
1561 
1562     (void)efx_ptp_disable(efx);
1563 
1564     cancel_work_sync(&efx->ptp_data->work);
1565     if (efx->ptp_data->pps_workwq)
1566         cancel_work_sync(&efx->ptp_data->pps_work);
1567 
1568     skb_queue_purge(&efx->ptp_data->rxq);
1569     skb_queue_purge(&efx->ptp_data->txq);
1570 
1571     if (efx->ptp_data->phc_clock) {
1572         destroy_workqueue(efx->ptp_data->pps_workwq);
1573         ptp_clock_unregister(efx->ptp_data->phc_clock);
1574     }
1575 
1576     destroy_workqueue(efx->ptp_data->workwq);
1577 
1578     efx_siena_free_buffer(efx, &efx->ptp_data->start);
1579     kfree(efx->ptp_data);
1580     efx->ptp_data = NULL;
1581 }
1582 
1583 static void efx_ptp_remove_channel(struct efx_channel *channel)
1584 {
1585     efx_ptp_remove(channel->efx);
1586 }
1587 
1588 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1589                      char *buf, size_t len)
1590 {
1591     snprintf(buf, len, "%s-ptp", channel->efx->name);
1592 }
1593 
1594 /* Determine whether this packet should be processed by the PTP module
1595  * or transmitted conventionally.
1596  */
1597 bool efx_siena_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1598 {
1599     return efx->ptp_data &&
1600         efx->ptp_data->enabled &&
1601         skb->len >= PTP_MIN_LENGTH &&
1602         skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1603         likely(skb->protocol == htons(ETH_P_IP)) &&
1604         skb_transport_header_was_set(skb) &&
1605         skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1606         ip_hdr(skb)->protocol == IPPROTO_UDP &&
1607         skb_headlen(skb) >=
1608         skb_transport_offset(skb) + sizeof(struct udphdr) &&
1609         udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1610 }
1611 
1612 /* Receive a PTP packet.  Packets are queued until the arrival of
1613  * the receive timestamp from the MC - this will probably occur after the
1614  * packet arrival because of the processing in the MC.
1615  */
1616 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1617 {
1618     struct efx_nic *efx = channel->efx;
1619     struct efx_ptp_data *ptp = efx->ptp_data;
1620     struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1621     u8 *match_data_012, *match_data_345;
1622     unsigned int version;
1623     u8 *data;
1624 
1625     match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1626 
1627     /* Correct version? */
1628     if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1629         if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1630             return false;
1631         }
1632         data = skb->data;
1633         version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1634         if (version != PTP_VERSION_V1) {
1635             return false;
1636         }
1637 
1638         /* PTP V1 uses all six bytes of the UUID to match the packet
1639          * to the timestamp
1640          */
1641         match_data_012 = data + PTP_V1_UUID_OFFSET;
1642         match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1643     } else {
1644         if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1645             return false;
1646         }
1647         data = skb->data;
1648         version = data[PTP_V2_VERSION_OFFSET];
1649         if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1650             return false;
1651         }
1652 
1653         /* The original V2 implementation uses bytes 2-7 of
1654          * the UUID to match the packet to the timestamp. This
1655          * discards two of the bytes of the MAC address used
1656          * to create the UUID (SF bug 33070).  The PTP V2
1657          * enhanced mode fixes this issue and uses bytes 0-2
1658          * and byte 5-7 of the UUID.
1659          */
1660         match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1661         if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1662             match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1663         } else {
1664             match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1665             BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1666         }
1667     }
1668 
1669     /* Does this packet require timestamping? */
1670     if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1671         match->state = PTP_PACKET_STATE_UNMATCHED;
1672 
1673         /* We expect the sequence number to be in the same position in
1674          * the packet for PTP V1 and V2
1675          */
1676         BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1677         BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1678 
1679         /* Extract UUID/Sequence information */
1680         match->words[0] = (match_data_012[0]         |
1681                    (match_data_012[1] << 8)  |
1682                    (match_data_012[2] << 16) |
1683                    (match_data_345[0] << 24));
1684         match->words[1] = (match_data_345[1]         |
1685                    (match_data_345[2] << 8)  |
1686                    (data[PTP_V1_SEQUENCE_OFFSET +
1687                      PTP_V1_SEQUENCE_LENGTH - 1] <<
1688                     16));
1689     } else {
1690         match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1691     }
1692 
1693     skb_queue_tail(&ptp->rxq, skb);
1694     queue_work(ptp->workwq, &ptp->work);
1695 
1696     return true;
1697 }
1698 
1699 /* Transmit a PTP packet.  This has to be transmitted by the MC
1700  * itself, through an MCDI call.  MCDI calls aren't permitted
1701  * in the transmit path so defer the actual transmission to a suitable worker.
1702  */
1703 int efx_siena_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1704 {
1705     struct efx_ptp_data *ptp = efx->ptp_data;
1706 
1707     skb_queue_tail(&ptp->txq, skb);
1708 
1709     if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1710         (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1711         efx_xmit_hwtstamp_pending(skb);
1712     queue_work(ptp->workwq, &ptp->work);
1713 
1714     return NETDEV_TX_OK;
1715 }
1716 
1717 int efx_siena_ptp_get_mode(struct efx_nic *efx)
1718 {
1719     return efx->ptp_data->mode;
1720 }
1721 
1722 int efx_siena_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1723                   unsigned int new_mode)
1724 {
1725     if ((enable_wanted != efx->ptp_data->enabled) ||
1726         (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1727         int rc = 0;
1728 
1729         if (enable_wanted) {
1730             /* Change of mode requires disable */
1731             if (efx->ptp_data->enabled &&
1732                 (efx->ptp_data->mode != new_mode)) {
1733                 efx->ptp_data->enabled = false;
1734                 rc = efx_ptp_stop(efx);
1735                 if (rc != 0)
1736                     return rc;
1737             }
1738 
1739             /* Set new operating mode and establish
1740              * baseline synchronisation, which must
1741              * succeed.
1742              */
1743             efx->ptp_data->mode = new_mode;
1744             if (netif_running(efx->net_dev))
1745                 rc = efx_ptp_start(efx);
1746             if (rc == 0) {
1747                 rc = efx_ptp_synchronize(efx,
1748                              PTP_SYNC_ATTEMPTS * 2);
1749                 if (rc != 0)
1750                     efx_ptp_stop(efx);
1751             }
1752         } else {
1753             rc = efx_ptp_stop(efx);
1754         }
1755 
1756         if (rc != 0)
1757             return rc;
1758 
1759         efx->ptp_data->enabled = enable_wanted;
1760     }
1761 
1762     return 0;
1763 }
1764 
1765 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1766 {
1767     int rc;
1768 
1769     if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1770         (init->tx_type != HWTSTAMP_TX_ON))
1771         return -ERANGE;
1772 
1773     rc = efx->type->ptp_set_ts_config(efx, init);
1774     if (rc)
1775         return rc;
1776 
1777     efx->ptp_data->config = *init;
1778     return 0;
1779 }
1780 
1781 void efx_siena_ptp_get_ts_info(struct efx_nic *efx,
1782                    struct ethtool_ts_info *ts_info)
1783 {
1784     struct efx_ptp_data *ptp = efx->ptp_data;
1785     struct efx_nic *primary = efx->primary;
1786 
1787     ASSERT_RTNL();
1788 
1789     if (!ptp)
1790         return;
1791 
1792     ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1793                      SOF_TIMESTAMPING_RX_HARDWARE |
1794                      SOF_TIMESTAMPING_RAW_HARDWARE);
1795     if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1796         ts_info->phc_index =
1797             ptp_clock_index(primary->ptp_data->phc_clock);
1798     ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1799     ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1800 }
1801 
1802 int efx_siena_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1803 {
1804     struct hwtstamp_config config;
1805     int rc;
1806 
1807     /* Not a PTP enabled port */
1808     if (!efx->ptp_data)
1809         return -EOPNOTSUPP;
1810 
1811     if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1812         return -EFAULT;
1813 
1814     rc = efx_ptp_ts_init(efx, &config);
1815     if (rc != 0)
1816         return rc;
1817 
1818     return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1819         ? -EFAULT : 0;
1820 }
1821 
1822 int efx_siena_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1823 {
1824     if (!efx->ptp_data)
1825         return -EOPNOTSUPP;
1826 
1827     return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1828                 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1829 }
1830 
1831 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1832 {
1833     struct efx_ptp_data *ptp = efx->ptp_data;
1834 
1835     netif_err(efx, hw, efx->net_dev,
1836         "PTP unexpected event length: got %d expected %d\n",
1837         ptp->evt_frag_idx, expected_frag_len);
1838     ptp->reset_required = true;
1839     queue_work(ptp->workwq, &ptp->work);
1840 }
1841 
1842 /* Process a completed receive event.  Put it on the event queue and
1843  * start worker thread.  This is required because event and their
1844  * correspoding packets may come in either order.
1845  */
1846 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1847 {
1848     struct efx_ptp_event_rx *evt = NULL;
1849 
1850     if (WARN_ON_ONCE(ptp->rx_ts_inline))
1851         return;
1852 
1853     if (ptp->evt_frag_idx != 3) {
1854         ptp_event_failure(efx, 3);
1855         return;
1856     }
1857 
1858     spin_lock_bh(&ptp->evt_lock);
1859     if (!list_empty(&ptp->evt_free_list)) {
1860         evt = list_first_entry(&ptp->evt_free_list,
1861                        struct efx_ptp_event_rx, link);
1862         list_del(&evt->link);
1863 
1864         evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1865         evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1866                          MCDI_EVENT_SRC)        |
1867                  (EFX_QWORD_FIELD(ptp->evt_frags[1],
1868                           MCDI_EVENT_SRC) << 8) |
1869                  (EFX_QWORD_FIELD(ptp->evt_frags[0],
1870                           MCDI_EVENT_SRC) << 16));
1871         evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1872             EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1873             EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1874             ptp->ts_corrections.ptp_rx);
1875         evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1876         list_add_tail(&evt->link, &ptp->evt_list);
1877 
1878         queue_work(ptp->workwq, &ptp->work);
1879     } else if (net_ratelimit()) {
1880         /* Log a rate-limited warning message. */
1881         netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1882     }
1883     spin_unlock_bh(&ptp->evt_lock);
1884 }
1885 
1886 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1887 {
1888     int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1889     if (ptp->evt_frag_idx != 1) {
1890         ptp_event_failure(efx, 1);
1891         return;
1892     }
1893 
1894     netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1895 }
1896 
1897 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1898 {
1899     if (ptp->nic_ts_enabled)
1900         queue_work(ptp->pps_workwq, &ptp->pps_work);
1901 }
1902 
1903 void efx_siena_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1904 {
1905     struct efx_ptp_data *ptp = efx->ptp_data;
1906     int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1907 
1908     if (!ptp) {
1909         if (!efx->ptp_warned) {
1910             netif_warn(efx, drv, efx->net_dev,
1911                    "Received PTP event but PTP not set up\n");
1912             efx->ptp_warned = true;
1913         }
1914         return;
1915     }
1916 
1917     if (!ptp->enabled)
1918         return;
1919 
1920     if (ptp->evt_frag_idx == 0) {
1921         ptp->evt_code = code;
1922     } else if (ptp->evt_code != code) {
1923         netif_err(efx, hw, efx->net_dev,
1924               "PTP out of sequence event %d\n", code);
1925         ptp->evt_frag_idx = 0;
1926     }
1927 
1928     ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1929     if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1930         /* Process resulting event */
1931         switch (code) {
1932         case MCDI_EVENT_CODE_PTP_RX:
1933             ptp_event_rx(efx, ptp);
1934             break;
1935         case MCDI_EVENT_CODE_PTP_FAULT:
1936             ptp_event_fault(efx, ptp);
1937             break;
1938         case MCDI_EVENT_CODE_PTP_PPS:
1939             ptp_event_pps(efx, ptp);
1940             break;
1941         default:
1942             netif_err(efx, hw, efx->net_dev,
1943                   "PTP unknown event %d\n", code);
1944             break;
1945         }
1946         ptp->evt_frag_idx = 0;
1947     } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1948         netif_err(efx, hw, efx->net_dev,
1949               "PTP too many event fragments\n");
1950         ptp->evt_frag_idx = 0;
1951     }
1952 }
1953 
1954 void efx_siena_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1955 {
1956     struct efx_nic *efx = channel->efx;
1957     struct efx_ptp_data *ptp = efx->ptp_data;
1958 
1959     /* When extracting the sync timestamp minor value, we should discard
1960      * the least significant two bits. These are not required in order
1961      * to reconstruct full-range timestamps and they are optionally used
1962      * to report status depending on the options supplied when subscribing
1963      * for sync events.
1964      */
1965     channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1966     channel->sync_timestamp_minor =
1967         (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1968             << ptp->nic_time.sync_event_minor_shift;
1969 
1970     /* if sync events have been disabled then we want to silently ignore
1971      * this event, so throw away result.
1972      */
1973     (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1974                SYNC_EVENTS_VALID);
1975 }
1976 
1977 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1978 {
1979 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1980     return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1981 #else
1982     const u8 *data = eh + efx->rx_packet_ts_offset;
1983     return (u32)data[0]       |
1984            (u32)data[1] << 8  |
1985            (u32)data[2] << 16 |
1986            (u32)data[3] << 24;
1987 #endif
1988 }
1989 
1990 void __efx_siena_rx_skb_attach_timestamp(struct efx_channel *channel,
1991                      struct sk_buff *skb)
1992 {
1993     struct efx_nic *efx = channel->efx;
1994     struct efx_ptp_data *ptp = efx->ptp_data;
1995     u32 pkt_timestamp_major, pkt_timestamp_minor;
1996     u32 diff, carry;
1997     struct skb_shared_hwtstamps *timestamps;
1998 
1999     if (channel->sync_events_state != SYNC_EVENTS_VALID)
2000         return;
2001 
2002     pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2003 
2004     /* get the difference between the packet and sync timestamps,
2005      * modulo one second
2006      */
2007     diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2008     if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2009         diff += ptp->nic_time.minor_max;
2010 
2011     /* do we roll over a second boundary and need to carry the one? */
2012     carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2013         1 : 0;
2014 
2015     if (diff <= ptp->nic_time.sync_event_diff_max) {
2016         /* packet is ahead of the sync event by a quarter of a second or
2017          * less (allowing for fuzz)
2018          */
2019         pkt_timestamp_major = channel->sync_timestamp_major + carry;
2020     } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2021         /* packet is behind the sync event but within the fuzz factor.
2022          * This means the RX packet and sync event crossed as they were
2023          * placed on the event queue, which can sometimes happen.
2024          */
2025         pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2026     } else {
2027         /* it's outside tolerance in both directions. this might be
2028          * indicative of us missing sync events for some reason, so
2029          * we'll call it an error rather than risk giving a bogus
2030          * timestamp.
2031          */
2032         netif_vdbg(efx, drv, efx->net_dev,
2033               "packet timestamp %x too far from sync event %x:%x\n",
2034               pkt_timestamp_minor, channel->sync_timestamp_major,
2035               channel->sync_timestamp_minor);
2036         return;
2037     }
2038 
2039     /* attach the timestamps to the skb */
2040     timestamps = skb_hwtstamps(skb);
2041     timestamps->hwtstamp =
2042         ptp->nic_to_kernel_time(pkt_timestamp_major,
2043                     pkt_timestamp_minor,
2044                     ptp->ts_corrections.general_rx);
2045 }
2046 
2047 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2048 {
2049     struct efx_ptp_data *ptp_data = container_of(ptp,
2050                              struct efx_ptp_data,
2051                              phc_clock_info);
2052     struct efx_nic *efx = ptp_data->efx;
2053     MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2054     s64 adjustment_ns;
2055     int rc;
2056 
2057     if (delta > MAX_PPB)
2058         delta = MAX_PPB;
2059     else if (delta < -MAX_PPB)
2060         delta = -MAX_PPB;
2061 
2062     /* Convert ppb to fixed point ns taking care to round correctly. */
2063     adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2064              (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2065             ptp_data->adjfreq_ppb_shift;
2066 
2067     MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2068     MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2069     MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2070     MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2071     MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2072     rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2073                 NULL, 0, NULL);
2074     if (rc != 0)
2075         return rc;
2076 
2077     ptp_data->current_adjfreq = adjustment_ns;
2078     return 0;
2079 }
2080 
2081 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2082 {
2083     u32 nic_major, nic_minor;
2084     struct efx_ptp_data *ptp_data = container_of(ptp,
2085                              struct efx_ptp_data,
2086                              phc_clock_info);
2087     struct efx_nic *efx = ptp_data->efx;
2088     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2089 
2090     efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2091 
2092     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2093     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2094     MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2095     MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2096     MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2097     return efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2098                   NULL, 0, NULL);
2099 }
2100 
2101 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2102 {
2103     struct efx_ptp_data *ptp_data = container_of(ptp,
2104                              struct efx_ptp_data,
2105                              phc_clock_info);
2106     struct efx_nic *efx = ptp_data->efx;
2107     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2108     MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2109     int rc;
2110     ktime_t kt;
2111 
2112     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2113     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2114 
2115     rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2116                 outbuf, sizeof(outbuf), NULL);
2117     if (rc != 0)
2118         return rc;
2119 
2120     kt = ptp_data->nic_to_kernel_time(
2121         MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2122         MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2123     *ts = ktime_to_timespec64(kt);
2124     return 0;
2125 }
2126 
2127 static int efx_phc_settime(struct ptp_clock_info *ptp,
2128                const struct timespec64 *e_ts)
2129 {
2130     /* Get the current NIC time, efx_phc_gettime.
2131      * Subtract from the desired time to get the offset
2132      * call efx_phc_adjtime with the offset
2133      */
2134     int rc;
2135     struct timespec64 time_now;
2136     struct timespec64 delta;
2137 
2138     rc = efx_phc_gettime(ptp, &time_now);
2139     if (rc != 0)
2140         return rc;
2141 
2142     delta = timespec64_sub(*e_ts, time_now);
2143 
2144     rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2145     if (rc != 0)
2146         return rc;
2147 
2148     return 0;
2149 }
2150 
2151 static int efx_phc_enable(struct ptp_clock_info *ptp,
2152               struct ptp_clock_request *request,
2153               int enable)
2154 {
2155     struct efx_ptp_data *ptp_data = container_of(ptp,
2156                              struct efx_ptp_data,
2157                              phc_clock_info);
2158     if (request->type != PTP_CLK_REQ_PPS)
2159         return -EOPNOTSUPP;
2160 
2161     ptp_data->nic_ts_enabled = !!enable;
2162     return 0;
2163 }
2164 
2165 static const struct efx_channel_type efx_ptp_channel_type = {
2166     .handle_no_channel  = efx_ptp_handle_no_channel,
2167     .pre_probe      = efx_ptp_probe_channel,
2168     .post_remove        = efx_ptp_remove_channel,
2169     .get_name       = efx_ptp_get_channel_name,
2170     /* no copy operation; there is no need to reallocate this channel */
2171     .receive_skb        = efx_ptp_rx,
2172     .want_txqs      = efx_ptp_want_txqs,
2173     .keep_eventq        = false,
2174 };
2175 
2176 void efx_siena_ptp_defer_probe_with_channel(struct efx_nic *efx)
2177 {
2178     /* Check whether PTP is implemented on this NIC.  The DISABLE
2179      * operation will succeed if and only if it is implemented.
2180      */
2181     if (efx_ptp_disable(efx) == 0)
2182         efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2183             &efx_ptp_channel_type;
2184 }
2185 
2186 void efx_siena_ptp_start_datapath(struct efx_nic *efx)
2187 {
2188     if (efx_ptp_restart(efx))
2189         netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2190     /* re-enable timestamping if it was previously enabled */
2191     if (efx->type->ptp_set_ts_sync_events)
2192         efx->type->ptp_set_ts_sync_events(efx, true, true);
2193 }
2194 
2195 void efx_siena_ptp_stop_datapath(struct efx_nic *efx)
2196 {
2197     /* temporarily disable timestamping */
2198     if (efx->type->ptp_set_ts_sync_events)
2199         efx->type->ptp_set_ts_sync_events(efx, false, true);
2200     efx_ptp_stop(efx);
2201 }