0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/bitops.h>
0009 #include <linux/delay.h>
0010 #include <linux/interrupt.h>
0011 #include <linux/pci.h>
0012 #include <linux/module.h>
0013 #include <linux/seq_file.h>
0014 #include <linux/cpu_rmap.h>
0015 #include "net_driver.h"
0016 #include "bitfield.h"
0017 #include "efx.h"
0018 #include "nic.h"
0019 #include "farch_regs.h"
0020 #include "io.h"
0021 #include "workarounds.h"
0022 #include "mcdi_pcol.h"
0023
0024
0025
0026
0027
0028
0029
0030
0031 int efx_siena_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
0032 unsigned int len, gfp_t gfp_flags)
0033 {
0034 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
0035 &buffer->dma_addr, gfp_flags);
0036 if (!buffer->addr)
0037 return -ENOMEM;
0038 buffer->len = len;
0039 return 0;
0040 }
0041
0042 void efx_siena_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
0043 {
0044 if (buffer->addr) {
0045 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
0046 buffer->addr, buffer->dma_addr);
0047 buffer->addr = NULL;
0048 }
0049 }
0050
0051
0052
0053
0054 bool efx_siena_event_present(struct efx_channel *channel)
0055 {
0056 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
0057 }
0058
0059 void efx_siena_event_test_start(struct efx_channel *channel)
0060 {
0061 channel->event_test_cpu = -1;
0062 smp_wmb();
0063 channel->efx->type->ev_test_generate(channel);
0064 }
0065
0066 int efx_siena_irq_test_start(struct efx_nic *efx)
0067 {
0068 efx->last_irq_cpu = -1;
0069 smp_wmb();
0070 return efx->type->irq_test_generate(efx);
0071 }
0072
0073
0074
0075
0076 int efx_siena_init_interrupt(struct efx_nic *efx)
0077 {
0078 struct efx_channel *channel;
0079 unsigned int n_irqs;
0080 int rc;
0081
0082 if (!EFX_INT_MODE_USE_MSI(efx)) {
0083 rc = request_irq(efx->legacy_irq,
0084 efx->type->irq_handle_legacy, IRQF_SHARED,
0085 efx->name, efx);
0086 if (rc) {
0087 netif_err(efx, drv, efx->net_dev,
0088 "failed to hook legacy IRQ %d\n",
0089 efx->pci_dev->irq);
0090 goto fail1;
0091 }
0092 efx->irqs_hooked = true;
0093 return 0;
0094 }
0095
0096 #ifdef CONFIG_RFS_ACCEL
0097 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
0098 efx->net_dev->rx_cpu_rmap =
0099 alloc_irq_cpu_rmap(efx->n_rx_channels);
0100 if (!efx->net_dev->rx_cpu_rmap) {
0101 rc = -ENOMEM;
0102 goto fail1;
0103 }
0104 }
0105 #endif
0106
0107
0108 n_irqs = 0;
0109 efx_for_each_channel(channel, efx) {
0110 rc = request_irq(channel->irq, efx->type->irq_handle_msi,
0111 IRQF_PROBE_SHARED,
0112 efx->msi_context[channel->channel].name,
0113 &efx->msi_context[channel->channel]);
0114 if (rc) {
0115 netif_err(efx, drv, efx->net_dev,
0116 "failed to hook IRQ %d\n", channel->irq);
0117 goto fail2;
0118 }
0119 ++n_irqs;
0120
0121 #ifdef CONFIG_RFS_ACCEL
0122 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
0123 channel->channel < efx->n_rx_channels) {
0124 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
0125 channel->irq);
0126 if (rc)
0127 goto fail2;
0128 }
0129 #endif
0130 }
0131
0132 efx->irqs_hooked = true;
0133 return 0;
0134
0135 fail2:
0136 #ifdef CONFIG_RFS_ACCEL
0137 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
0138 efx->net_dev->rx_cpu_rmap = NULL;
0139 #endif
0140 efx_for_each_channel(channel, efx) {
0141 if (n_irqs-- == 0)
0142 break;
0143 free_irq(channel->irq, &efx->msi_context[channel->channel]);
0144 }
0145 fail1:
0146 return rc;
0147 }
0148
0149 void efx_siena_fini_interrupt(struct efx_nic *efx)
0150 {
0151 struct efx_channel *channel;
0152
0153 #ifdef CONFIG_RFS_ACCEL
0154 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
0155 efx->net_dev->rx_cpu_rmap = NULL;
0156 #endif
0157
0158 if (!efx->irqs_hooked)
0159 return;
0160 if (EFX_INT_MODE_USE_MSI(efx)) {
0161
0162 efx_for_each_channel(channel, efx)
0163 free_irq(channel->irq,
0164 &efx->msi_context[channel->channel]);
0165 } else {
0166
0167 free_irq(efx->legacy_irq, efx);
0168 }
0169 efx->irqs_hooked = false;
0170 }
0171
0172
0173
0174 #define REGISTER_REVISION_FA 1
0175 #define REGISTER_REVISION_FB 2
0176 #define REGISTER_REVISION_FC 3
0177 #define REGISTER_REVISION_FZ 3
0178 #define REGISTER_REVISION_ED 4
0179 #define REGISTER_REVISION_EZ 4
0180
0181 struct efx_nic_reg {
0182 u32 offset:24;
0183 u32 min_revision:3, max_revision:3;
0184 };
0185
0186 #define REGISTER(name, arch, min_rev, max_rev) { \
0187 arch ## R_ ## min_rev ## max_rev ## _ ## name, \
0188 REGISTER_REVISION_ ## arch ## min_rev, \
0189 REGISTER_REVISION_ ## arch ## max_rev \
0190 }
0191 #define REGISTER_AA(name) REGISTER(name, F, A, A)
0192 #define REGISTER_AB(name) REGISTER(name, F, A, B)
0193 #define REGISTER_AZ(name) REGISTER(name, F, A, Z)
0194 #define REGISTER_BB(name) REGISTER(name, F, B, B)
0195 #define REGISTER_BZ(name) REGISTER(name, F, B, Z)
0196 #define REGISTER_CZ(name) REGISTER(name, F, C, Z)
0197
0198 static const struct efx_nic_reg efx_nic_regs[] = {
0199 REGISTER_AZ(ADR_REGION),
0200 REGISTER_AZ(INT_EN_KER),
0201 REGISTER_BZ(INT_EN_CHAR),
0202 REGISTER_AZ(INT_ADR_KER),
0203 REGISTER_BZ(INT_ADR_CHAR),
0204
0205
0206 REGISTER_AZ(HW_INIT),
0207 REGISTER_CZ(USR_EV_CFG),
0208 REGISTER_AB(EE_SPI_HCMD),
0209 REGISTER_AB(EE_SPI_HADR),
0210 REGISTER_AB(EE_SPI_HDATA),
0211 REGISTER_AB(EE_BASE_PAGE),
0212 REGISTER_AB(EE_VPD_CFG0),
0213
0214
0215
0216 REGISTER_AB(NIC_STAT),
0217 REGISTER_AB(GPIO_CTL),
0218 REGISTER_AB(GLB_CTL),
0219
0220 REGISTER_BZ(DP_CTRL),
0221 REGISTER_AZ(MEM_STAT),
0222 REGISTER_AZ(CS_DEBUG),
0223 REGISTER_AZ(ALTERA_BUILD),
0224 REGISTER_AZ(CSR_SPARE),
0225 REGISTER_AB(PCIE_SD_CTL0123),
0226 REGISTER_AB(PCIE_SD_CTL45),
0227 REGISTER_AB(PCIE_PCS_CTL_STAT),
0228
0229
0230 REGISTER_AZ(EVQ_CTL),
0231 REGISTER_AZ(EVQ_CNT1),
0232 REGISTER_AZ(EVQ_CNT2),
0233 REGISTER_AZ(BUF_TBL_CFG),
0234 REGISTER_AZ(SRM_RX_DC_CFG),
0235 REGISTER_AZ(SRM_TX_DC_CFG),
0236 REGISTER_AZ(SRM_CFG),
0237
0238 REGISTER_AZ(SRM_UPD_EVQ),
0239 REGISTER_AZ(SRAM_PARITY),
0240 REGISTER_AZ(RX_CFG),
0241 REGISTER_BZ(RX_FILTER_CTL),
0242
0243 REGISTER_AZ(RX_DC_CFG),
0244 REGISTER_AZ(RX_DC_PF_WM),
0245 REGISTER_BZ(RX_RSS_TKEY),
0246
0247 REGISTER_AA(RX_SELF_RST),
0248
0249 REGISTER_CZ(RX_RSS_IPV6_REG1),
0250 REGISTER_CZ(RX_RSS_IPV6_REG2),
0251 REGISTER_CZ(RX_RSS_IPV6_REG3),
0252
0253 REGISTER_AZ(TX_DC_CFG),
0254 REGISTER_AA(TX_CHKSM_CFG),
0255 REGISTER_AZ(TX_CFG),
0256
0257 REGISTER_AZ(TX_RESERVED),
0258 REGISTER_BZ(TX_PACE),
0259
0260 REGISTER_BB(TX_VLAN),
0261 REGISTER_BZ(TX_IPFIL_PORTEN),
0262 REGISTER_AB(MD_TXD),
0263 REGISTER_AB(MD_RXD),
0264 REGISTER_AB(MD_CS),
0265 REGISTER_AB(MD_PHY_ADR),
0266 REGISTER_AB(MD_ID),
0267
0268 REGISTER_AB(MAC_STAT_DMA),
0269 REGISTER_AB(MAC_CTRL),
0270 REGISTER_BB(GEN_MODE),
0271 REGISTER_AB(MAC_MC_HASH_REG0),
0272 REGISTER_AB(MAC_MC_HASH_REG1),
0273 REGISTER_AB(GM_CFG1),
0274 REGISTER_AB(GM_CFG2),
0275
0276 REGISTER_AB(GM_MAX_FLEN),
0277
0278 REGISTER_AB(GM_ADR1),
0279 REGISTER_AB(GM_ADR2),
0280 REGISTER_AB(GMF_CFG0),
0281 REGISTER_AB(GMF_CFG1),
0282 REGISTER_AB(GMF_CFG2),
0283 REGISTER_AB(GMF_CFG3),
0284 REGISTER_AB(GMF_CFG4),
0285 REGISTER_AB(GMF_CFG5),
0286 REGISTER_BB(TX_SRC_MAC_CTL),
0287 REGISTER_AB(XM_ADR_LO),
0288 REGISTER_AB(XM_ADR_HI),
0289 REGISTER_AB(XM_GLB_CFG),
0290 REGISTER_AB(XM_TX_CFG),
0291 REGISTER_AB(XM_RX_CFG),
0292 REGISTER_AB(XM_MGT_INT_MASK),
0293 REGISTER_AB(XM_FC),
0294 REGISTER_AB(XM_PAUSE_TIME),
0295 REGISTER_AB(XM_TX_PARAM),
0296 REGISTER_AB(XM_RX_PARAM),
0297
0298 REGISTER_AB(XX_PWR_RST),
0299 REGISTER_AB(XX_SD_CTL),
0300 REGISTER_AB(XX_TXDRV_CTL),
0301
0302
0303 };
0304
0305 struct efx_nic_reg_table {
0306 u32 offset:24;
0307 u32 min_revision:3, max_revision:3;
0308 u32 step:6, rows:21;
0309 };
0310
0311 #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
0312 offset, \
0313 REGISTER_REVISION_ ## arch ## min_rev, \
0314 REGISTER_REVISION_ ## arch ## max_rev, \
0315 step, rows \
0316 }
0317 #define REGISTER_TABLE(name, arch, min_rev, max_rev) \
0318 REGISTER_TABLE_DIMENSIONS( \
0319 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
0320 arch, min_rev, max_rev, \
0321 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
0322 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
0323 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
0324 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
0325 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
0326 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
0327 #define REGISTER_TABLE_BB_CZ(name) \
0328 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B, \
0329 FR_BZ_ ## name ## _STEP, \
0330 FR_BB_ ## name ## _ROWS), \
0331 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z, \
0332 FR_BZ_ ## name ## _STEP, \
0333 FR_CZ_ ## name ## _ROWS)
0334 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
0335
0336 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
0337
0338
0339 REGISTER_TABLE_BB(TX_IPFIL_TBL),
0340 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
0341 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
0342 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
0343 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
0344 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
0345 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
0346 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
0347
0348
0349
0350
0351 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
0352 F, A, A, 8, 1024),
0353 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
0354 F, B, Z, 8, 1024),
0355 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
0356 REGISTER_TABLE_BB_CZ(TIMER_TBL),
0357 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
0358 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
0359
0360 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
0361 REGISTER_TABLE_CZ(MC_TREG_SMEM),
0362
0363
0364 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
0365 };
0366
0367 size_t efx_siena_get_regs_len(struct efx_nic *efx)
0368 {
0369 const struct efx_nic_reg *reg;
0370 const struct efx_nic_reg_table *table;
0371 size_t len = 0;
0372
0373 for (reg = efx_nic_regs;
0374 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
0375 reg++)
0376 if (efx->type->revision >= reg->min_revision &&
0377 efx->type->revision <= reg->max_revision)
0378 len += sizeof(efx_oword_t);
0379
0380 for (table = efx_nic_reg_tables;
0381 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
0382 table++)
0383 if (efx->type->revision >= table->min_revision &&
0384 efx->type->revision <= table->max_revision)
0385 len += table->rows * min_t(size_t, table->step, 16);
0386
0387 return len;
0388 }
0389
0390 void efx_siena_get_regs(struct efx_nic *efx, void *buf)
0391 {
0392 const struct efx_nic_reg *reg;
0393 const struct efx_nic_reg_table *table;
0394
0395 for (reg = efx_nic_regs;
0396 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
0397 reg++) {
0398 if (efx->type->revision >= reg->min_revision &&
0399 efx->type->revision <= reg->max_revision) {
0400 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
0401 buf += sizeof(efx_oword_t);
0402 }
0403 }
0404
0405 for (table = efx_nic_reg_tables;
0406 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
0407 table++) {
0408 size_t size, i;
0409
0410 if (!(efx->type->revision >= table->min_revision &&
0411 efx->type->revision <= table->max_revision))
0412 continue;
0413
0414 size = min_t(size_t, table->step, 16);
0415
0416 for (i = 0; i < table->rows; i++) {
0417 switch (table->step) {
0418 case 4:
0419 efx_readd(efx, buf, table->offset + 4 * i);
0420 break;
0421 case 8:
0422 efx_sram_readq(efx,
0423 efx->membase + table->offset,
0424 buf, i);
0425 break;
0426 case 16:
0427 efx_reado_table(efx, buf, table->offset, i);
0428 break;
0429 case 32:
0430 efx_reado_table(efx, buf, table->offset, 2 * i);
0431 break;
0432 default:
0433 WARN_ON(1);
0434 return;
0435 }
0436 buf += size;
0437 }
0438 }
0439 }
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452 size_t efx_siena_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
0453 const unsigned long *mask, u8 *names)
0454 {
0455 size_t visible = 0;
0456 size_t index;
0457
0458 for_each_set_bit(index, mask, count) {
0459 if (desc[index].name) {
0460 if (names) {
0461 strlcpy(names, desc[index].name,
0462 ETH_GSTRING_LEN);
0463 names += ETH_GSTRING_LEN;
0464 }
0465 ++visible;
0466 }
0467 }
0468
0469 return visible;
0470 }
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486 void efx_siena_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
0487 const unsigned long *mask,
0488 u64 *stats, const void *dma_buf, bool accumulate)
0489 {
0490 size_t index;
0491
0492 for_each_set_bit(index, mask, count) {
0493 if (desc[index].dma_width) {
0494 const void *addr = dma_buf + desc[index].offset;
0495 u64 val;
0496
0497 switch (desc[index].dma_width) {
0498 case 16:
0499 val = le16_to_cpup((__le16 *)addr);
0500 break;
0501 case 32:
0502 val = le32_to_cpup((__le32 *)addr);
0503 break;
0504 case 64:
0505 val = le64_to_cpup((__le64 *)addr);
0506 break;
0507 default:
0508 WARN_ON(1);
0509 val = 0;
0510 break;
0511 }
0512
0513 if (accumulate)
0514 stats[index] += val;
0515 else
0516 stats[index] = val;
0517 }
0518 }
0519 }
0520
0521 void efx_siena_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
0522 {
0523
0524 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
0525 efx->rx_nodesc_drops_while_down +=
0526 *rx_nodesc_drops - efx->rx_nodesc_drops_total;
0527 efx->rx_nodesc_drops_total = *rx_nodesc_drops;
0528 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
0529 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
0530 }