Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-only */
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2005-2006 Fen Systems Ltd.
0005  * Copyright 2005-2013 Solarflare Communications Inc.
0006  */
0007 
0008 /* Common definitions for all Efx net driver code */
0009 
0010 #ifndef EFX_NET_DRIVER_H
0011 #define EFX_NET_DRIVER_H
0012 
0013 #include <linux/netdevice.h>
0014 #include <linux/etherdevice.h>
0015 #include <linux/ethtool.h>
0016 #include <linux/if_vlan.h>
0017 #include <linux/timer.h>
0018 #include <linux/mdio.h>
0019 #include <linux/list.h>
0020 #include <linux/pci.h>
0021 #include <linux/device.h>
0022 #include <linux/highmem.h>
0023 #include <linux/workqueue.h>
0024 #include <linux/mutex.h>
0025 #include <linux/rwsem.h>
0026 #include <linux/vmalloc.h>
0027 #include <linux/mtd/mtd.h>
0028 #include <net/busy_poll.h>
0029 #include <net/xdp.h>
0030 
0031 #include "enum.h"
0032 #include "bitfield.h"
0033 #include "filter.h"
0034 
0035 /**************************************************************************
0036  *
0037  * Build definitions
0038  *
0039  **************************************************************************/
0040 
0041 #ifdef DEBUG
0042 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
0043 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
0044 #else
0045 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
0046 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
0047 #endif
0048 
0049 /**************************************************************************
0050  *
0051  * Efx data structures
0052  *
0053  **************************************************************************/
0054 
0055 #define EFX_MAX_CHANNELS 32U
0056 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
0057 #define EFX_EXTRA_CHANNEL_IOV   0
0058 #define EFX_EXTRA_CHANNEL_PTP   1
0059 #define EFX_MAX_EXTRA_CHANNELS  2U
0060 
0061 /* Checksum generation is a per-queue option in hardware, so each
0062  * queue visible to the networking core is backed by two hardware TX
0063  * queues. */
0064 #define EFX_MAX_TX_TC       2
0065 #define EFX_MAX_CORE_TX_QUEUES  (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
0066 #define EFX_TXQ_TYPE_OUTER_CSUM 1   /* Outer checksum offload */
0067 #define EFX_TXQ_TYPE_INNER_CSUM 2   /* Inner checksum offload */
0068 #define EFX_TXQ_TYPE_HIGHPRI    4   /* High-priority (for TC) */
0069 #define EFX_TXQ_TYPES       8
0070 /* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
0071 #define EFX_MAX_TXQ_PER_CHANNEL 4
0072 #define EFX_MAX_TX_QUEUES   (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
0073 
0074 /* Maximum possible MTU the driver supports */
0075 #define EFX_MAX_MTU (9 * 1024)
0076 
0077 /* Minimum MTU, from RFC791 (IP) */
0078 #define EFX_MIN_MTU 68
0079 
0080 /* Maximum total header length for TSOv2 */
0081 #define EFX_TSO2_MAX_HDRLEN 208
0082 
0083 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
0084  * and should be a multiple of the cache line size.
0085  */
0086 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
0087 
0088 /* If possible, we should ensure cache line alignment at start and end
0089  * of every buffer.  Otherwise, we just need to ensure 4-byte
0090  * alignment of the network header.
0091  */
0092 #if NET_IP_ALIGN == 0
0093 #define EFX_RX_BUF_ALIGNMENT    L1_CACHE_BYTES
0094 #else
0095 #define EFX_RX_BUF_ALIGNMENT    4
0096 #endif
0097 
0098 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
0099  * still fit two standard MTU size packets into a single 4K page.
0100  */
0101 #define EFX_XDP_HEADROOM    128
0102 #define EFX_XDP_TAILROOM    SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
0103 
0104 /* Forward declare Precision Time Protocol (PTP) support structure. */
0105 struct efx_ptp_data;
0106 struct hwtstamp_config;
0107 
0108 struct efx_self_tests;
0109 
0110 /**
0111  * struct efx_buffer - A general-purpose DMA buffer
0112  * @addr: host base address of the buffer
0113  * @dma_addr: DMA base address of the buffer
0114  * @len: Buffer length, in bytes
0115  *
0116  * The NIC uses these buffers for its interrupt status registers and
0117  * MAC stats dumps.
0118  */
0119 struct efx_buffer {
0120     void *addr;
0121     dma_addr_t dma_addr;
0122     unsigned int len;
0123 };
0124 
0125 /**
0126  * struct efx_special_buffer - DMA buffer entered into buffer table
0127  * @buf: Standard &struct efx_buffer
0128  * @index: Buffer index within controller;s buffer table
0129  * @entries: Number of buffer table entries
0130  *
0131  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
0132  * Event and descriptor rings are addressed via one or more buffer
0133  * table entries (and so can be physically non-contiguous, although we
0134  * currently do not take advantage of that).  On Falcon and Siena we
0135  * have to take care of allocating and initialising the entries
0136  * ourselves.  On later hardware this is managed by the firmware and
0137  * @index and @entries are left as 0.
0138  */
0139 struct efx_special_buffer {
0140     struct efx_buffer buf;
0141     unsigned int index;
0142     unsigned int entries;
0143 };
0144 
0145 /**
0146  * struct efx_tx_buffer - buffer state for a TX descriptor
0147  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
0148  *  freed when descriptor completes
0149  * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
0150  *  member is the associated buffer to drop a page reference on.
0151  * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
0152  *  descriptor.
0153  * @dma_addr: DMA address of the fragment.
0154  * @flags: Flags for allocation and DMA mapping type
0155  * @len: Length of this fragment.
0156  *  This field is zero when the queue slot is empty.
0157  * @unmap_len: Length of this fragment to unmap
0158  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
0159  * Only valid if @unmap_len != 0.
0160  */
0161 struct efx_tx_buffer {
0162     union {
0163         const struct sk_buff *skb;
0164         struct xdp_frame *xdpf;
0165     };
0166     union {
0167         efx_qword_t option;    /* EF10 */
0168         dma_addr_t dma_addr;
0169     };
0170     unsigned short flags;
0171     unsigned short len;
0172     unsigned short unmap_len;
0173     unsigned short dma_offset;
0174 };
0175 #define EFX_TX_BUF_CONT     1   /* not last descriptor of packet */
0176 #define EFX_TX_BUF_SKB      2   /* buffer is last part of skb */
0177 #define EFX_TX_BUF_MAP_SINGLE   8   /* buffer was mapped with dma_map_single() */
0178 #define EFX_TX_BUF_OPTION   0x10    /* empty buffer for option descriptor */
0179 #define EFX_TX_BUF_XDP      0x20    /* buffer was sent with XDP */
0180 #define EFX_TX_BUF_TSO_V3   0x40    /* empty buffer for a TSO_V3 descriptor */
0181 
0182 /**
0183  * struct efx_tx_queue - An Efx TX queue
0184  *
0185  * This is a ring buffer of TX fragments.
0186  * Since the TX completion path always executes on the same
0187  * CPU and the xmit path can operate on different CPUs,
0188  * performance is increased by ensuring that the completion
0189  * path and the xmit path operate on different cache lines.
0190  * This is particularly important if the xmit path is always
0191  * executing on one CPU which is different from the completion
0192  * path.  There is also a cache line for members which are
0193  * read but not written on the fast path.
0194  *
0195  * @efx: The associated Efx NIC
0196  * @queue: DMA queue number
0197  * @label: Label for TX completion events.
0198  *  Is our index within @channel->tx_queue array.
0199  * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
0200  * @tso_version: Version of TSO in use for this queue.
0201  * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
0202  * @channel: The associated channel
0203  * @core_txq: The networking core TX queue structure
0204  * @buffer: The software buffer ring
0205  * @cb_page: Array of pages of copy buffers.  Carved up according to
0206  *  %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
0207  * @txd: The hardware descriptor ring
0208  * @ptr_mask: The size of the ring minus 1.
0209  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
0210  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
0211  * @initialised: Has hardware queue been initialised?
0212  * @timestamping: Is timestamping enabled for this channel?
0213  * @xdp_tx: Is this an XDP tx queue?
0214  * @read_count: Current read pointer.
0215  *  This is the number of buffers that have been removed from both rings.
0216  * @old_write_count: The value of @write_count when last checked.
0217  *  This is here for performance reasons.  The xmit path will
0218  *  only get the up-to-date value of @write_count if this
0219  *  variable indicates that the queue is empty.  This is to
0220  *  avoid cache-line ping-pong between the xmit path and the
0221  *  completion path.
0222  * @merge_events: Number of TX merged completion events
0223  * @completed_timestamp_major: Top part of the most recent tx timestamp.
0224  * @completed_timestamp_minor: Low part of the most recent tx timestamp.
0225  * @insert_count: Current insert pointer
0226  *  This is the number of buffers that have been added to the
0227  *  software ring.
0228  * @write_count: Current write pointer
0229  *  This is the number of buffers that have been added to the
0230  *  hardware ring.
0231  * @packet_write_count: Completable write pointer
0232  *  This is the write pointer of the last packet written.
0233  *  Normally this will equal @write_count, but as option descriptors
0234  *  don't produce completion events, they won't update this.
0235  *  Filled in iff @efx->type->option_descriptors; only used for PIO.
0236  *  Thus, this is written and used on EF10, and neither on farch.
0237  * @old_read_count: The value of read_count when last checked.
0238  *  This is here for performance reasons.  The xmit path will
0239  *  only get the up-to-date value of read_count if this
0240  *  variable indicates that the queue is full.  This is to
0241  *  avoid cache-line ping-pong between the xmit path and the
0242  *  completion path.
0243  * @tso_bursts: Number of times TSO xmit invoked by kernel
0244  * @tso_long_headers: Number of packets with headers too long for standard
0245  *  blocks
0246  * @tso_packets: Number of packets via the TSO xmit path
0247  * @tso_fallbacks: Number of times TSO fallback used
0248  * @pushes: Number of times the TX push feature has been used
0249  * @pio_packets: Number of times the TX PIO feature has been used
0250  * @xmit_pending: Are any packets waiting to be pushed to the NIC
0251  * @cb_packets: Number of times the TX copybreak feature has been used
0252  * @notify_count: Count of notified descriptors to the NIC
0253  * @empty_read_count: If the completion path has seen the queue as empty
0254  *  and the transmission path has not yet checked this, the value of
0255  *  @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
0256  */
0257 struct efx_tx_queue {
0258     /* Members which don't change on the fast path */
0259     struct efx_nic *efx ____cacheline_aligned_in_smp;
0260     unsigned int queue;
0261     unsigned int label;
0262     unsigned int type;
0263     unsigned int tso_version;
0264     bool tso_encap;
0265     struct efx_channel *channel;
0266     struct netdev_queue *core_txq;
0267     struct efx_tx_buffer *buffer;
0268     struct efx_buffer *cb_page;
0269     struct efx_special_buffer txd;
0270     unsigned int ptr_mask;
0271     void __iomem *piobuf;
0272     unsigned int piobuf_offset;
0273     bool initialised;
0274     bool timestamping;
0275     bool xdp_tx;
0276 
0277     /* Members used mainly on the completion path */
0278     unsigned int read_count ____cacheline_aligned_in_smp;
0279     unsigned int old_write_count;
0280     unsigned int merge_events;
0281     unsigned int bytes_compl;
0282     unsigned int pkts_compl;
0283     u32 completed_timestamp_major;
0284     u32 completed_timestamp_minor;
0285 
0286     /* Members used only on the xmit path */
0287     unsigned int insert_count ____cacheline_aligned_in_smp;
0288     unsigned int write_count;
0289     unsigned int packet_write_count;
0290     unsigned int old_read_count;
0291     unsigned int tso_bursts;
0292     unsigned int tso_long_headers;
0293     unsigned int tso_packets;
0294     unsigned int tso_fallbacks;
0295     unsigned int pushes;
0296     unsigned int pio_packets;
0297     bool xmit_pending;
0298     unsigned int cb_packets;
0299     unsigned int notify_count;
0300     /* Statistics to supplement MAC stats */
0301     unsigned long tx_packets;
0302 
0303     /* Members shared between paths and sometimes updated */
0304     unsigned int empty_read_count ____cacheline_aligned_in_smp;
0305 #define EFX_EMPTY_COUNT_VALID 0x80000000
0306     atomic_t flush_outstanding;
0307 };
0308 
0309 #define EFX_TX_CB_ORDER 7
0310 #define EFX_TX_CB_SIZE  (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
0311 
0312 /**
0313  * struct efx_rx_buffer - An Efx RX data buffer
0314  * @dma_addr: DMA base address of the buffer
0315  * @page: The associated page buffer.
0316  *  Will be %NULL if the buffer slot is currently free.
0317  * @page_offset: If pending: offset in @page of DMA base address.
0318  *  If completed: offset in @page of Ethernet header.
0319  * @len: If pending: length for DMA descriptor.
0320  *  If completed: received length, excluding hash prefix.
0321  * @flags: Flags for buffer and packet state.  These are only set on the
0322  *  first buffer of a scattered packet.
0323  */
0324 struct efx_rx_buffer {
0325     dma_addr_t dma_addr;
0326     struct page *page;
0327     u16 page_offset;
0328     u16 len;
0329     u16 flags;
0330 };
0331 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
0332 #define EFX_RX_PKT_CSUMMED  0x0002
0333 #define EFX_RX_PKT_DISCARD  0x0004
0334 #define EFX_RX_PKT_TCP      0x0040
0335 #define EFX_RX_PKT_PREFIX_LEN   0x0080  /* length is in prefix only */
0336 #define EFX_RX_PKT_CSUM_LEVEL   0x0200
0337 
0338 /**
0339  * struct efx_rx_page_state - Page-based rx buffer state
0340  *
0341  * Inserted at the start of every page allocated for receive buffers.
0342  * Used to facilitate sharing dma mappings between recycled rx buffers
0343  * and those passed up to the kernel.
0344  *
0345  * @dma_addr: The dma address of this page.
0346  */
0347 struct efx_rx_page_state {
0348     dma_addr_t dma_addr;
0349 
0350     unsigned int __pad[] ____cacheline_aligned;
0351 };
0352 
0353 /**
0354  * struct efx_rx_queue - An Efx RX queue
0355  * @efx: The associated Efx NIC
0356  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
0357  *  is associated with a real RX queue.
0358  * @buffer: The software buffer ring
0359  * @rxd: The hardware descriptor ring
0360  * @ptr_mask: The size of the ring minus 1.
0361  * @refill_enabled: Enable refill whenever fill level is low
0362  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
0363  *  @rxq_flush_pending.
0364  * @added_count: Number of buffers added to the receive queue.
0365  * @notified_count: Number of buffers given to NIC (<= @added_count).
0366  * @removed_count: Number of buffers removed from the receive queue.
0367  * @scatter_n: Used by NIC specific receive code.
0368  * @scatter_len: Used by NIC specific receive code.
0369  * @page_ring: The ring to store DMA mapped pages for reuse.
0370  * @page_add: Counter to calculate the write pointer for the recycle ring.
0371  * @page_remove: Counter to calculate the read pointer for the recycle ring.
0372  * @page_recycle_count: The number of pages that have been recycled.
0373  * @page_recycle_failed: The number of pages that couldn't be recycled because
0374  *      the kernel still held a reference to them.
0375  * @page_recycle_full: The number of pages that were released because the
0376  *      recycle ring was full.
0377  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
0378  * @max_fill: RX descriptor maximum fill level (<= ring size)
0379  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
0380  *  (<= @max_fill)
0381  * @min_fill: RX descriptor minimum non-zero fill level.
0382  *  This records the minimum fill level observed when a ring
0383  *  refill was triggered.
0384  * @recycle_count: RX buffer recycle counter.
0385  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
0386  * @xdp_rxq_info: XDP specific RX queue information.
0387  * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
0388  */
0389 struct efx_rx_queue {
0390     struct efx_nic *efx;
0391     int core_index;
0392     struct efx_rx_buffer *buffer;
0393     struct efx_special_buffer rxd;
0394     unsigned int ptr_mask;
0395     bool refill_enabled;
0396     bool flush_pending;
0397 
0398     unsigned int added_count;
0399     unsigned int notified_count;
0400     unsigned int removed_count;
0401     unsigned int scatter_n;
0402     unsigned int scatter_len;
0403     struct page **page_ring;
0404     unsigned int page_add;
0405     unsigned int page_remove;
0406     unsigned int page_recycle_count;
0407     unsigned int page_recycle_failed;
0408     unsigned int page_recycle_full;
0409     unsigned int page_ptr_mask;
0410     unsigned int max_fill;
0411     unsigned int fast_fill_trigger;
0412     unsigned int min_fill;
0413     unsigned int min_overfill;
0414     unsigned int recycle_count;
0415     struct timer_list slow_fill;
0416     unsigned int slow_fill_count;
0417     /* Statistics to supplement MAC stats */
0418     unsigned long rx_packets;
0419     struct xdp_rxq_info xdp_rxq_info;
0420     bool xdp_rxq_info_valid;
0421 };
0422 
0423 enum efx_sync_events_state {
0424     SYNC_EVENTS_DISABLED = 0,
0425     SYNC_EVENTS_QUIESCENT,
0426     SYNC_EVENTS_REQUESTED,
0427     SYNC_EVENTS_VALID,
0428 };
0429 
0430 /**
0431  * struct efx_channel - An Efx channel
0432  *
0433  * A channel comprises an event queue, at least one TX queue, at least
0434  * one RX queue, and an associated tasklet for processing the event
0435  * queue.
0436  *
0437  * @efx: Associated Efx NIC
0438  * @channel: Channel instance number
0439  * @type: Channel type definition
0440  * @eventq_init: Event queue initialised flag
0441  * @enabled: Channel enabled indicator
0442  * @irq: IRQ number (MSI and MSI-X only)
0443  * @irq_moderation_us: IRQ moderation value (in microseconds)
0444  * @napi_dev: Net device used with NAPI
0445  * @napi_str: NAPI control structure
0446  * @state: state for NAPI vs busy polling
0447  * @state_lock: lock protecting @state
0448  * @eventq: Event queue buffer
0449  * @eventq_mask: Event queue pointer mask
0450  * @eventq_read_ptr: Event queue read pointer
0451  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
0452  * @irq_count: Number of IRQs since last adaptive moderation decision
0453  * @irq_mod_score: IRQ moderation score
0454  * @rfs_filter_count: number of accelerated RFS filters currently in place;
0455  *  equals the count of @rps_flow_id slots filled
0456  * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
0457  *  were checked for expiry
0458  * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
0459  * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
0460  * @n_rfs_failed: number of failed accelerated RFS filter insertions
0461  * @filter_work: Work item for efx_filter_rfs_expire()
0462  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
0463  *      indexed by filter ID
0464  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
0465  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
0466  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
0467  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
0468  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
0469  * @n_rx_overlength: Count of RX_OVERLENGTH errors
0470  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
0471  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
0472  *  lack of descriptors
0473  * @n_rx_merge_events: Number of RX merged completion events
0474  * @n_rx_merge_packets: Number of RX packets completed by merged events
0475  * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
0476  * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
0477  * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
0478  * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
0479  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
0480  *  __efx_siena_rx_packet(), or zero if there is none
0481  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
0482  *  by __efx_siena_rx_packet(), if @rx_pkt_n_frags != 0
0483  * @rx_list: list of SKBs from current RX, awaiting processing
0484  * @rx_queue: RX queue for this channel
0485  * @tx_queue: TX queues for this channel
0486  * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
0487  * @sync_events_state: Current state of sync events on this channel
0488  * @sync_timestamp_major: Major part of the last ptp sync event
0489  * @sync_timestamp_minor: Minor part of the last ptp sync event
0490  */
0491 struct efx_channel {
0492     struct efx_nic *efx;
0493     int channel;
0494     const struct efx_channel_type *type;
0495     bool eventq_init;
0496     bool enabled;
0497     int irq;
0498     unsigned int irq_moderation_us;
0499     struct net_device *napi_dev;
0500     struct napi_struct napi_str;
0501 #ifdef CONFIG_NET_RX_BUSY_POLL
0502     unsigned long busy_poll_state;
0503 #endif
0504     struct efx_special_buffer eventq;
0505     unsigned int eventq_mask;
0506     unsigned int eventq_read_ptr;
0507     int event_test_cpu;
0508 
0509     unsigned int irq_count;
0510     unsigned int irq_mod_score;
0511 #ifdef CONFIG_RFS_ACCEL
0512     unsigned int rfs_filter_count;
0513     unsigned int rfs_last_expiry;
0514     unsigned int rfs_expire_index;
0515     unsigned int n_rfs_succeeded;
0516     unsigned int n_rfs_failed;
0517     struct delayed_work filter_work;
0518 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
0519     u32 *rps_flow_id;
0520 #endif
0521 
0522     unsigned int n_rx_tobe_disc;
0523     unsigned int n_rx_ip_hdr_chksum_err;
0524     unsigned int n_rx_tcp_udp_chksum_err;
0525     unsigned int n_rx_outer_ip_hdr_chksum_err;
0526     unsigned int n_rx_outer_tcp_udp_chksum_err;
0527     unsigned int n_rx_inner_ip_hdr_chksum_err;
0528     unsigned int n_rx_inner_tcp_udp_chksum_err;
0529     unsigned int n_rx_eth_crc_err;
0530     unsigned int n_rx_mcast_mismatch;
0531     unsigned int n_rx_frm_trunc;
0532     unsigned int n_rx_overlength;
0533     unsigned int n_skbuff_leaks;
0534     unsigned int n_rx_nodesc_trunc;
0535     unsigned int n_rx_merge_events;
0536     unsigned int n_rx_merge_packets;
0537     unsigned int n_rx_xdp_drops;
0538     unsigned int n_rx_xdp_bad_drops;
0539     unsigned int n_rx_xdp_tx;
0540     unsigned int n_rx_xdp_redirect;
0541 
0542     unsigned int rx_pkt_n_frags;
0543     unsigned int rx_pkt_index;
0544 
0545     struct list_head *rx_list;
0546 
0547     struct efx_rx_queue rx_queue;
0548     struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
0549     struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
0550 
0551     enum efx_sync_events_state sync_events_state;
0552     u32 sync_timestamp_major;
0553     u32 sync_timestamp_minor;
0554 };
0555 
0556 /**
0557  * struct efx_msi_context - Context for each MSI
0558  * @efx: The associated NIC
0559  * @index: Index of the channel/IRQ
0560  * @name: Name of the channel/IRQ
0561  *
0562  * Unlike &struct efx_channel, this is never reallocated and is always
0563  * safe for the IRQ handler to access.
0564  */
0565 struct efx_msi_context {
0566     struct efx_nic *efx;
0567     unsigned int index;
0568     char name[IFNAMSIZ + 6];
0569 };
0570 
0571 /**
0572  * struct efx_channel_type - distinguishes traffic and extra channels
0573  * @handle_no_channel: Handle failure to allocate an extra channel
0574  * @pre_probe: Set up extra state prior to initialisation
0575  * @post_remove: Tear down extra state after finalisation, if allocated.
0576  *  May be called on channels that have not been probed.
0577  * @get_name: Generate the channel's name (used for its IRQ handler)
0578  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
0579  *  reallocation is not supported.
0580  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
0581  * @want_txqs: Determine whether this channel should have TX queues
0582  *  created.  If %NULL, TX queues are not created.
0583  * @keep_eventq: Flag for whether event queue should be kept initialised
0584  *  while the device is stopped
0585  * @want_pio: Flag for whether PIO buffers should be linked to this
0586  *  channel's TX queues.
0587  */
0588 struct efx_channel_type {
0589     void (*handle_no_channel)(struct efx_nic *);
0590     int (*pre_probe)(struct efx_channel *);
0591     void (*post_remove)(struct efx_channel *);
0592     void (*get_name)(struct efx_channel *, char *buf, size_t len);
0593     struct efx_channel *(*copy)(const struct efx_channel *);
0594     bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
0595     bool (*want_txqs)(struct efx_channel *);
0596     bool keep_eventq;
0597     bool want_pio;
0598 };
0599 
0600 enum efx_led_mode {
0601     EFX_LED_OFF = 0,
0602     EFX_LED_ON  = 1,
0603     EFX_LED_DEFAULT = 2
0604 };
0605 
0606 #define STRING_TABLE_LOOKUP(val, member) \
0607     ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
0608 
0609 extern const char *const efx_siena_loopback_mode_names[];
0610 extern const unsigned int efx_siena_loopback_mode_max;
0611 #define LOOPBACK_MODE(efx) \
0612     STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_siena_loopback_mode)
0613 
0614 enum efx_int_mode {
0615     /* Be careful if altering to correct macro below */
0616     EFX_INT_MODE_MSIX = 0,
0617     EFX_INT_MODE_MSI = 1,
0618     EFX_INT_MODE_LEGACY = 2,
0619     EFX_INT_MODE_MAX    /* Insert any new items before this */
0620 };
0621 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
0622 
0623 enum nic_state {
0624     STATE_UNINIT = 0,   /* device being probed/removed or is frozen */
0625     STATE_READY = 1,    /* hardware ready and netdev registered */
0626     STATE_DISABLED = 2, /* device disabled due to hardware errors */
0627     STATE_RECOVERY = 3, /* device recovering from PCI error */
0628 };
0629 
0630 /* Forward declaration */
0631 struct efx_nic;
0632 
0633 /* Pseudo bit-mask flow control field */
0634 #define EFX_FC_RX   FLOW_CTRL_RX
0635 #define EFX_FC_TX   FLOW_CTRL_TX
0636 #define EFX_FC_AUTO 4
0637 
0638 /**
0639  * struct efx_link_state - Current state of the link
0640  * @up: Link is up
0641  * @fd: Link is full-duplex
0642  * @fc: Actual flow control flags
0643  * @speed: Link speed (Mbps)
0644  */
0645 struct efx_link_state {
0646     bool up;
0647     bool fd;
0648     u8 fc;
0649     unsigned int speed;
0650 };
0651 
0652 static inline bool efx_link_state_equal(const struct efx_link_state *left,
0653                     const struct efx_link_state *right)
0654 {
0655     return left->up == right->up && left->fd == right->fd &&
0656         left->fc == right->fc && left->speed == right->speed;
0657 }
0658 
0659 /**
0660  * enum efx_phy_mode - PHY operating mode flags
0661  * @PHY_MODE_NORMAL: on and should pass traffic
0662  * @PHY_MODE_TX_DISABLED: on with TX disabled
0663  * @PHY_MODE_LOW_POWER: set to low power through MDIO
0664  * @PHY_MODE_OFF: switched off through external control
0665  * @PHY_MODE_SPECIAL: on but will not pass traffic
0666  */
0667 enum efx_phy_mode {
0668     PHY_MODE_NORMAL     = 0,
0669     PHY_MODE_TX_DISABLED    = 1,
0670     PHY_MODE_LOW_POWER  = 2,
0671     PHY_MODE_OFF        = 4,
0672     PHY_MODE_SPECIAL    = 8,
0673 };
0674 
0675 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
0676 {
0677     return !!(mode & ~PHY_MODE_TX_DISABLED);
0678 }
0679 
0680 /**
0681  * struct efx_hw_stat_desc - Description of a hardware statistic
0682  * @name: Name of the statistic as visible through ethtool, or %NULL if
0683  *  it should not be exposed
0684  * @dma_width: Width in bits (0 for non-DMA statistics)
0685  * @offset: Offset within stats (ignored for non-DMA statistics)
0686  */
0687 struct efx_hw_stat_desc {
0688     const char *name;
0689     u16 dma_width;
0690     u16 offset;
0691 };
0692 
0693 /* Number of bits used in a multicast filter hash address */
0694 #define EFX_MCAST_HASH_BITS 8
0695 
0696 /* Number of (single-bit) entries in a multicast filter hash */
0697 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
0698 
0699 /* An Efx multicast filter hash */
0700 union efx_multicast_hash {
0701     u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
0702     efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
0703 };
0704 
0705 struct vfdi_status;
0706 
0707 /* The reserved RSS context value */
0708 #define EFX_MCDI_RSS_CONTEXT_INVALID    0xffffffff
0709 /**
0710  * struct efx_rss_context - A user-defined RSS context for filtering
0711  * @list: node of linked list on which this struct is stored
0712  * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
0713  *  %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
0714  *  For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
0715  * @user_id: the rss_context ID exposed to userspace over ethtool.
0716  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
0717  * @rx_hash_key: Toeplitz hash key for this RSS context
0718  * @indir_table: Indirection table for this RSS context
0719  */
0720 struct efx_rss_context {
0721     struct list_head list;
0722     u32 context_id;
0723     u32 user_id;
0724     bool rx_hash_udp_4tuple;
0725     u8 rx_hash_key[40];
0726     u32 rx_indir_table[128];
0727 };
0728 
0729 #ifdef CONFIG_RFS_ACCEL
0730 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
0731  * is used to test if filter does or will exist.
0732  */
0733 #define EFX_ARFS_FILTER_ID_PENDING  -1
0734 #define EFX_ARFS_FILTER_ID_ERROR    -2
0735 #define EFX_ARFS_FILTER_ID_REMOVING -3
0736 /**
0737  * struct efx_arfs_rule - record of an ARFS filter and its IDs
0738  * @node: linkage into hash table
0739  * @spec: details of the filter (used as key for hash table).  Use efx->type to
0740  *  determine which member to use.
0741  * @rxq_index: channel to which the filter will steer traffic.
0742  * @arfs_id: filter ID which was returned to ARFS
0743  * @filter_id: index in software filter table.  May be
0744  *  %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
0745  *  %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
0746  *  %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
0747  */
0748 struct efx_arfs_rule {
0749     struct hlist_node node;
0750     struct efx_filter_spec spec;
0751     u16 rxq_index;
0752     u16 arfs_id;
0753     s32 filter_id;
0754 };
0755 
0756 /* Size chosen so that the table is one page (4kB) */
0757 #define EFX_ARFS_HASH_TABLE_SIZE    512
0758 
0759 /**
0760  * struct efx_async_filter_insertion - Request to asynchronously insert a filter
0761  * @net_dev: Reference to the netdevice
0762  * @spec: The filter to insert
0763  * @work: Workitem for this request
0764  * @rxq_index: Identifies the channel for which this request was made
0765  * @flow_id: Identifies the kernel-side flow for which this request was made
0766  */
0767 struct efx_async_filter_insertion {
0768     struct net_device *net_dev;
0769     struct efx_filter_spec spec;
0770     struct work_struct work;
0771     u16 rxq_index;
0772     u32 flow_id;
0773 };
0774 
0775 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
0776 #define EFX_RPS_MAX_IN_FLIGHT   8
0777 #endif /* CONFIG_RFS_ACCEL */
0778 
0779 enum efx_xdp_tx_queues_mode {
0780     EFX_XDP_TX_QUEUES_DEDICATED,    /* one queue per core, locking not needed */
0781     EFX_XDP_TX_QUEUES_SHARED,   /* each queue used by more than 1 core */
0782     EFX_XDP_TX_QUEUES_BORROWED  /* queues borrowed from net stack */
0783 };
0784 
0785 /**
0786  * struct efx_nic - an Efx NIC
0787  * @name: Device name (net device name or bus id before net device registered)
0788  * @pci_dev: The PCI device
0789  * @node: List node for maintaning primary/secondary function lists
0790  * @primary: &struct efx_nic instance for the primary function of this
0791  *  controller.  May be the same structure, and may be %NULL if no
0792  *  primary function is bound.  Serialised by rtnl_lock.
0793  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
0794  *  functions of the controller, if this is for the primary function.
0795  *  Serialised by rtnl_lock.
0796  * @type: Controller type attributes
0797  * @legacy_irq: IRQ number
0798  * @workqueue: Workqueue for port reconfigures and the HW monitor.
0799  *  Work items do not hold and must not acquire RTNL.
0800  * @workqueue_name: Name of workqueue
0801  * @reset_work: Scheduled reset workitem
0802  * @membase_phys: Memory BAR value as physical address
0803  * @membase: Memory BAR value
0804  * @vi_stride: step between per-VI registers / memory regions
0805  * @interrupt_mode: Interrupt mode
0806  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
0807  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
0808  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
0809  * @irqs_hooked: Channel interrupts are hooked
0810  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
0811  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
0812  * @msg_enable: Log message enable flags
0813  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
0814  * @reset_pending: Bitmask for pending resets
0815  * @tx_queue: TX DMA queues
0816  * @rx_queue: RX DMA queues
0817  * @channel: Channels
0818  * @msi_context: Context for each MSI
0819  * @extra_channel_types: Types of extra (non-traffic) channels that
0820  *  should be allocated for this NIC
0821  * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
0822  * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
0823  * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
0824  * @rxq_entries: Size of receive queues requested by user.
0825  * @txq_entries: Size of transmit queues requested by user.
0826  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
0827  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
0828  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
0829  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
0830  * @sram_lim_qw: Qword address limit of SRAM
0831  * @next_buffer_table: First available buffer table id
0832  * @n_channels: Number of channels in use
0833  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
0834  * @n_tx_channels: Number of channels used for TX
0835  * @n_extra_tx_channels: Number of extra channels with TX queues
0836  * @tx_queues_per_channel: number of TX queues probed on each channel
0837  * @n_xdp_channels: Number of channels used for XDP TX
0838  * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
0839  * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
0840  * @rx_ip_align: RX DMA address offset to have IP header aligned in
0841  *  accordance with NET_IP_ALIGN
0842  * @rx_dma_len: Current maximum RX DMA length
0843  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
0844  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
0845  *  for use in sk_buff::truesize
0846  * @rx_prefix_size: Size of RX prefix before packet data
0847  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
0848  *  (valid only if @rx_prefix_size != 0; always negative)
0849  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
0850  *  (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
0851  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
0852  *  (valid only if channel->sync_timestamps_enabled; always negative)
0853  * @rx_scatter: Scatter mode enabled for receives
0854  * @rss_context: Main RSS context.  Its @list member is the head of the list of
0855  *  RSS contexts created by user requests
0856  * @rss_lock: Protects custom RSS context software state in @rss_context.list
0857  * @vport_id: The function's vport ID, only relevant for PFs
0858  * @int_error_count: Number of internal errors seen recently
0859  * @int_error_expire: Time at which error count will be expired
0860  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
0861  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
0862  *  acknowledge but do nothing else.
0863  * @irq_status: Interrupt status buffer
0864  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
0865  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
0866  * @selftest_work: Work item for asynchronous self-test
0867  * @mtd_list: List of MTDs attached to the NIC
0868  * @nic_data: Hardware dependent state
0869  * @mcdi: Management-Controller-to-Driver Interface state
0870  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
0871  *  efx_monitor() and efx_siena_reconfigure_port()
0872  * @port_enabled: Port enabled indicator.
0873  *  Serialises efx_siena_stop_all(), efx_siena_start_all(),
0874  *  efx_monitor() and efx_mac_work() with kernel interfaces.
0875  *  Safe to read under any one of the rtnl_lock, mac_lock, or netif_tx_lock,
0876  *  but all three must be held to modify it.
0877  * @port_initialized: Port initialized?
0878  * @net_dev: Operating system network device. Consider holding the rtnl lock
0879  * @fixed_features: Features which cannot be turned off
0880  * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
0881  *  field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
0882  * @stats_buffer: DMA buffer for statistics
0883  * @phy_type: PHY type
0884  * @phy_data: PHY private data (including PHY-specific stats)
0885  * @mdio: PHY MDIO interface
0886  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
0887  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
0888  * @link_advertising: Autonegotiation advertising flags
0889  * @fec_config: Forward Error Correction configuration flags.  For bit positions
0890  *  see &enum ethtool_fec_config_bits.
0891  * @link_state: Current state of the link
0892  * @n_link_state_changes: Number of times the link has changed state
0893  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
0894  *  Protected by @mac_lock.
0895  * @multicast_hash: Multicast hash table for Falcon-arch.
0896  *  Protected by @mac_lock.
0897  * @wanted_fc: Wanted flow control flags
0898  * @fc_disable: When non-zero flow control is disabled. Typically used to
0899  *  ensure that network back pressure doesn't delay dma queue flushes.
0900  *  Serialised by the rtnl lock.
0901  * @mac_work: Work item for changing MAC promiscuity and multicast hash
0902  * @loopback_mode: Loopback status
0903  * @loopback_modes: Supported loopback mode bitmask
0904  * @loopback_selftest: Offline self-test private state
0905  * @xdp_prog: Current XDP programme for this interface
0906  * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
0907  * @filter_state: Architecture-dependent filter table state
0908  * @rps_mutex: Protects RPS state of all channels
0909  * @rps_slot_map: bitmap of in-flight entries in @rps_slot
0910  * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
0911  * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
0912  *  @rps_next_id).
0913  * @rps_hash_table: Mapping between ARFS filters and their various IDs
0914  * @rps_next_id: next arfs_id for an ARFS filter
0915  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
0916  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
0917  *  Decremented when the efx_flush_rx_queue() is called.
0918  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
0919  *  completed (either success or failure). Not used when MCDI is used to
0920  *  flush receive queues.
0921  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
0922  * @vf_count: Number of VFs intended to be enabled.
0923  * @vf_init_count: Number of VFs that have been fully initialised.
0924  * @vi_scale: log2 number of vnics per VF.
0925  * @ptp_data: PTP state data
0926  * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
0927  * @vpd_sn: Serial number read from VPD
0928  * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
0929  *      xdp_rxq_info structures?
0930  * @netdev_notifier: Netdevice notifier.
0931  * @mem_bar: The BAR that is mapped into membase.
0932  * @reg_base: Offset from the start of the bar to the function control window.
0933  * @monitor_work: Hardware monitor workitem
0934  * @biu_lock: BIU (bus interface unit) lock
0935  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
0936  *  field is used by efx_test_interrupts() to verify that an
0937  *  interrupt has occurred.
0938  * @stats_lock: Statistics update lock. Must be held when calling
0939  *  efx_nic_type::{update,start,stop}_stats.
0940  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
0941  *
0942  * This is stored in the private area of the &struct net_device.
0943  */
0944 struct efx_nic {
0945     /* The following fields should be written very rarely */
0946 
0947     char name[IFNAMSIZ];
0948     struct list_head node;
0949     struct efx_nic *primary;
0950     struct list_head secondary_list;
0951     struct pci_dev *pci_dev;
0952     unsigned int port_num;
0953     const struct efx_nic_type *type;
0954     int legacy_irq;
0955     bool eeh_disabled_legacy_irq;
0956     struct workqueue_struct *workqueue;
0957     char workqueue_name[16];
0958     struct work_struct reset_work;
0959     resource_size_t membase_phys;
0960     void __iomem *membase;
0961 
0962     unsigned int vi_stride;
0963 
0964     enum efx_int_mode interrupt_mode;
0965     unsigned int timer_quantum_ns;
0966     unsigned int timer_max_ns;
0967     bool irq_rx_adaptive;
0968     bool irqs_hooked;
0969     unsigned int irq_mod_step_us;
0970     unsigned int irq_rx_moderation_us;
0971     u32 msg_enable;
0972 
0973     enum nic_state state;
0974     unsigned long reset_pending;
0975 
0976     struct efx_channel *channel[EFX_MAX_CHANNELS];
0977     struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
0978     const struct efx_channel_type *
0979     extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
0980 
0981     unsigned int xdp_tx_queue_count;
0982     struct efx_tx_queue **xdp_tx_queues;
0983     enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
0984 
0985     unsigned rxq_entries;
0986     unsigned txq_entries;
0987     unsigned int txq_stop_thresh;
0988     unsigned int txq_wake_thresh;
0989 
0990     unsigned tx_dc_base;
0991     unsigned rx_dc_base;
0992     unsigned sram_lim_qw;
0993     unsigned next_buffer_table;
0994 
0995     unsigned int max_channels;
0996     unsigned int max_vis;
0997     unsigned int max_tx_channels;
0998     unsigned n_channels;
0999     unsigned n_rx_channels;
1000     unsigned rss_spread;
1001     unsigned tx_channel_offset;
1002     unsigned n_tx_channels;
1003     unsigned n_extra_tx_channels;
1004     unsigned int tx_queues_per_channel;
1005     unsigned int n_xdp_channels;
1006     unsigned int xdp_channel_offset;
1007     unsigned int xdp_tx_per_channel;
1008     unsigned int rx_ip_align;
1009     unsigned int rx_dma_len;
1010     unsigned int rx_buffer_order;
1011     unsigned int rx_buffer_truesize;
1012     unsigned int rx_page_buf_step;
1013     unsigned int rx_bufs_per_page;
1014     unsigned int rx_pages_per_batch;
1015     unsigned int rx_prefix_size;
1016     int rx_packet_hash_offset;
1017     int rx_packet_len_offset;
1018     int rx_packet_ts_offset;
1019     bool rx_scatter;
1020     struct efx_rss_context rss_context;
1021     struct mutex rss_lock;
1022     u32 vport_id;
1023 
1024     unsigned int_error_count;
1025     unsigned long int_error_expire;
1026 
1027     bool must_realloc_vis;
1028     bool irq_soft_enabled;
1029     struct efx_buffer irq_status;
1030     unsigned irq_zero_count;
1031     unsigned irq_level;
1032     struct delayed_work selftest_work;
1033 
1034 #ifdef CONFIG_SFC_SIENA_MTD
1035     struct list_head mtd_list;
1036 #endif
1037 
1038     void *nic_data;
1039     struct efx_mcdi_data *mcdi;
1040 
1041     struct mutex mac_lock;
1042     struct work_struct mac_work;
1043     bool port_enabled;
1044 
1045     bool mc_bist_for_other_fn;
1046     bool port_initialized;
1047     struct net_device *net_dev;
1048 
1049     netdev_features_t fixed_features;
1050 
1051     u16 num_mac_stats;
1052     struct efx_buffer stats_buffer;
1053     u64 rx_nodesc_drops_total;
1054     u64 rx_nodesc_drops_while_down;
1055     bool rx_nodesc_drops_prev_state;
1056 
1057     unsigned int phy_type;
1058     void *phy_data;
1059     struct mdio_if_info mdio;
1060     unsigned int mdio_bus;
1061     enum efx_phy_mode phy_mode;
1062 
1063     __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1064     u32 fec_config;
1065     struct efx_link_state link_state;
1066     unsigned int n_link_state_changes;
1067 
1068     bool unicast_filter;
1069     union efx_multicast_hash multicast_hash;
1070     u8 wanted_fc;
1071     unsigned fc_disable;
1072 
1073     atomic_t rx_reset;
1074     enum efx_loopback_mode loopback_mode;
1075     u64 loopback_modes;
1076 
1077     void *loopback_selftest;
1078     /* We access loopback_selftest immediately before running XDP,
1079      * so we want them next to each other.
1080      */
1081     struct bpf_prog __rcu *xdp_prog;
1082 
1083     struct rw_semaphore filter_sem;
1084     void *filter_state;
1085 #ifdef CONFIG_RFS_ACCEL
1086     struct mutex rps_mutex;
1087     unsigned long rps_slot_map;
1088     struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1089     spinlock_t rps_hash_lock;
1090     struct hlist_head *rps_hash_table;
1091     u32 rps_next_id;
1092 #endif
1093 
1094     atomic_t active_queues;
1095     atomic_t rxq_flush_pending;
1096     atomic_t rxq_flush_outstanding;
1097     wait_queue_head_t flush_wq;
1098 
1099 #ifdef CONFIG_SFC_SIENA_SRIOV
1100     unsigned vf_count;
1101     unsigned vf_init_count;
1102     unsigned vi_scale;
1103 #endif
1104 
1105     struct efx_ptp_data *ptp_data;
1106     bool ptp_warned;
1107 
1108     char *vpd_sn;
1109     bool xdp_rxq_info_failed;
1110 
1111     struct notifier_block netdev_notifier;
1112 
1113     unsigned int mem_bar;
1114     u32 reg_base;
1115 
1116     /* The following fields may be written more often */
1117 
1118     struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1119     spinlock_t biu_lock;
1120     int last_irq_cpu;
1121     spinlock_t stats_lock;
1122     atomic_t n_rx_noskb_drops;
1123 };
1124 
1125 static inline int efx_dev_registered(struct efx_nic *efx)
1126 {
1127     return efx->net_dev->reg_state == NETREG_REGISTERED;
1128 }
1129 
1130 static inline unsigned int efx_port_num(struct efx_nic *efx)
1131 {
1132     return efx->port_num;
1133 }
1134 
1135 struct efx_mtd_partition {
1136     struct list_head node;
1137     struct mtd_info mtd;
1138     const char *dev_type_name;
1139     const char *type_name;
1140     char name[IFNAMSIZ + 20];
1141 };
1142 
1143 struct efx_udp_tunnel {
1144 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff
1145     u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1146     __be16 port;
1147 };
1148 
1149 /**
1150  * struct efx_nic_type - Efx device type definition
1151  * @mem_bar: Get the memory BAR
1152  * @mem_map_size: Get memory BAR mapped size
1153  * @probe: Probe the controller
1154  * @remove: Free resources allocated by probe()
1155  * @init: Initialise the controller
1156  * @dimension_resources: Dimension controller resources (buffer table,
1157  *  and VIs once the available interrupt resources are clear)
1158  * @fini: Shut down the controller
1159  * @monitor: Periodic function for polling link state and hardware monitor
1160  * @map_reset_reason: Map ethtool reset reason to a reset method
1161  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1162  * @reset: Reset the controller hardware and possibly the PHY.  This will
1163  *  be called while the controller is uninitialised.
1164  * @probe_port: Probe the MAC and PHY
1165  * @remove_port: Free resources allocated by probe_port()
1166  * @handle_global_event: Handle a "global" event (may be %NULL)
1167  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1168  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1169  *  (for Falcon architecture)
1170  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1171  *  architecture)
1172  * @prepare_flr: Prepare for an FLR
1173  * @finish_flr: Clean up after an FLR
1174  * @describe_stats: Describe statistics for ethtool
1175  * @update_stats: Update statistics not provided by event handling.
1176  *  Either argument may be %NULL.
1177  * @update_stats_atomic: Update statistics while in atomic context, if that
1178  *  is more limiting than @update_stats.  Otherwise, leave %NULL and
1179  *  driver core will call @update_stats.
1180  * @start_stats: Start the regular fetching of statistics
1181  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1182  * @stop_stats: Stop the regular fetching of statistics
1183  * @push_irq_moderation: Apply interrupt moderation value
1184  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1185  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1186  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1187  *  to the hardware.  Serialised by the mac_lock.
1188  * @check_mac_fault: Check MAC fault state. True if fault present.
1189  * @get_wol: Get WoL configuration from driver state
1190  * @set_wol: Push WoL configuration to the NIC
1191  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1192  * @get_fec_stats: Get standard FEC statistics.
1193  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1194  *  expected to reset the NIC.
1195  * @test_nvram: Test validity of NVRAM contents
1196  * @mcdi_request: Send an MCDI request with the given header and SDU.
1197  *  The SDU length may be any value from 0 up to the protocol-
1198  *  defined maximum, but its buffer will be padded to a multiple
1199  *  of 4 bytes.
1200  * @mcdi_poll_response: Test whether an MCDI response is available.
1201  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1202  *  be a multiple of 4.  The length may not be, but the buffer
1203  *  will be padded so it is safe to round up.
1204  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1205  *  return an appropriate error code for aborting any current
1206  *  request; otherwise return 0.
1207  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1208  *  be separately enabled after this.
1209  * @irq_test_generate: Generate a test IRQ
1210  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1211  *  queue must be separately disabled before this.
1212  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1213  *  a pointer to the &struct efx_msi_context for the channel.
1214  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1215  *  is a pointer to the &struct efx_nic.
1216  * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1217  * @tx_init: Initialise TX queue on the NIC
1218  * @tx_remove: Free resources for TX queue
1219  * @tx_write: Write TX descriptors and doorbell
1220  * @tx_enqueue: Add an SKB to TX queue
1221  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1222  * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1223  * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1224  *  user RSS context to the NIC
1225  * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1226  *  RSS context back from the NIC
1227  * @rx_probe: Allocate resources for RX queue
1228  * @rx_init: Initialise RX queue on the NIC
1229  * @rx_remove: Free resources for RX queue
1230  * @rx_write: Write RX descriptors and doorbell
1231  * @rx_defer_refill: Generate a refill reminder event
1232  * @rx_packet: Receive the queued RX buffer on a channel
1233  * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1234  * @ev_probe: Allocate resources for event queue
1235  * @ev_init: Initialise event queue on the NIC
1236  * @ev_fini: Deinitialise event queue on the NIC
1237  * @ev_remove: Free resources for event queue
1238  * @ev_process: Process events for a queue, up to the given NAPI quota
1239  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1240  * @ev_test_generate: Generate a test event
1241  * @filter_table_probe: Probe filter capabilities and set up filter software state
1242  * @filter_table_restore: Restore filters removed from hardware
1243  * @filter_table_remove: Remove filters from hardware and tear down software state
1244  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1245  * @filter_insert: add or replace a filter
1246  * @filter_remove_safe: remove a filter by ID, carefully
1247  * @filter_get_safe: retrieve a filter by ID, carefully
1248  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1249  *  equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1250  * @filter_count_rx_used: Get the number of filters in use at a given priority
1251  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1252  * @filter_get_rx_ids: Get list of RX filters at a given priority
1253  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1254  *  This must check whether the specified table entry is used by RFS
1255  *  and that rps_may_expire_flow() returns true for it.
1256  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1257  *   using efx_siena_mtd_add()
1258  * @mtd_rename: Set an MTD partition name using the net device name
1259  * @mtd_read: Read from an MTD partition
1260  * @mtd_erase: Erase part of an MTD partition
1261  * @mtd_write: Write to an MTD partition
1262  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1263  *  also notifies the driver that a writer has finished using this
1264  *  partition.
1265  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1266  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1267  *  timestamping, possibly only temporarily for the purposes of a reset.
1268  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1269  *  and tx_type will already have been validated but this operation
1270  *  must validate and update rx_filter.
1271  * @get_phys_port_id: Get the underlying physical port id.
1272  * @set_mac_address: Set the MAC address of the device
1273  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1274  *  If %NULL, then device does not support any TSO version.
1275  * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1276  * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1277  * @print_additional_fwver: Dump NIC-specific additional FW version info
1278  * @sensor_event: Handle a sensor event from MCDI
1279  * @rx_recycle_ring_size: Size of the RX recycle ring
1280  * @revision: Hardware architecture revision
1281  * @txd_ptr_tbl_base: TX descriptor ring base address
1282  * @rxd_ptr_tbl_base: RX descriptor ring base address
1283  * @buf_tbl_base: Buffer table base address
1284  * @evq_ptr_tbl_base: Event queue pointer table base address
1285  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1286  * @max_dma_mask: Maximum possible DMA mask
1287  * @rx_prefix_size: Size of RX prefix before packet data
1288  * @rx_hash_offset: Offset of RX flow hash within prefix
1289  * @rx_ts_offset: Offset of timestamp within prefix
1290  * @rx_buffer_padding: Size of padding at end of RX packet
1291  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1292  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1293  * @option_descriptors: NIC supports TX option descriptors
1294  * @min_interrupt_mode: Lowest capability interrupt mode supported
1295  *  from &enum efx_int_mode.
1296  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1297  * @offload_features: net_device feature flags for protocol offload
1298  *  features implemented in hardware
1299  * @mcdi_max_ver: Maximum MCDI version supported
1300  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1301  */
1302 struct efx_nic_type {
1303     bool is_vf;
1304     unsigned int (*mem_bar)(struct efx_nic *efx);
1305     unsigned int (*mem_map_size)(struct efx_nic *efx);
1306     int (*probe)(struct efx_nic *efx);
1307     void (*remove)(struct efx_nic *efx);
1308     int (*init)(struct efx_nic *efx);
1309     int (*dimension_resources)(struct efx_nic *efx);
1310     void (*fini)(struct efx_nic *efx);
1311     void (*monitor)(struct efx_nic *efx);
1312     enum reset_type (*map_reset_reason)(enum reset_type reason);
1313     int (*map_reset_flags)(u32 *flags);
1314     int (*reset)(struct efx_nic *efx, enum reset_type method);
1315     int (*probe_port)(struct efx_nic *efx);
1316     void (*remove_port)(struct efx_nic *efx);
1317     bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1318     int (*fini_dmaq)(struct efx_nic *efx);
1319     void (*prepare_flush)(struct efx_nic *efx);
1320     void (*finish_flush)(struct efx_nic *efx);
1321     void (*prepare_flr)(struct efx_nic *efx);
1322     void (*finish_flr)(struct efx_nic *efx);
1323     size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1324     size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1325                    struct rtnl_link_stats64 *core_stats);
1326     size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1327                       struct rtnl_link_stats64 *core_stats);
1328     void (*start_stats)(struct efx_nic *efx);
1329     void (*pull_stats)(struct efx_nic *efx);
1330     void (*stop_stats)(struct efx_nic *efx);
1331     void (*push_irq_moderation)(struct efx_channel *channel);
1332     int (*reconfigure_port)(struct efx_nic *efx);
1333     void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1334     int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1335     bool (*check_mac_fault)(struct efx_nic *efx);
1336     void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1337     int (*set_wol)(struct efx_nic *efx, u32 type);
1338     void (*resume_wol)(struct efx_nic *efx);
1339     void (*get_fec_stats)(struct efx_nic *efx,
1340                   struct ethtool_fec_stats *fec_stats);
1341     unsigned int (*check_caps)(const struct efx_nic *efx,
1342                    u8 flag,
1343                    u32 offset);
1344     int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1345     int (*test_nvram)(struct efx_nic *efx);
1346     void (*mcdi_request)(struct efx_nic *efx,
1347                  const efx_dword_t *hdr, size_t hdr_len,
1348                  const efx_dword_t *sdu, size_t sdu_len);
1349     bool (*mcdi_poll_response)(struct efx_nic *efx);
1350     void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1351                    size_t pdu_offset, size_t pdu_len);
1352     int (*mcdi_poll_reboot)(struct efx_nic *efx);
1353     void (*mcdi_reboot_detected)(struct efx_nic *efx);
1354     void (*irq_enable_master)(struct efx_nic *efx);
1355     int (*irq_test_generate)(struct efx_nic *efx);
1356     void (*irq_disable_non_ev)(struct efx_nic *efx);
1357     irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1358     irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1359     int (*tx_probe)(struct efx_tx_queue *tx_queue);
1360     void (*tx_init)(struct efx_tx_queue *tx_queue);
1361     void (*tx_remove)(struct efx_tx_queue *tx_queue);
1362     void (*tx_write)(struct efx_tx_queue *tx_queue);
1363     netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1364     unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1365                      dma_addr_t dma_addr, unsigned int len);
1366     int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1367                   const u32 *rx_indir_table, const u8 *key);
1368     int (*rx_pull_rss_config)(struct efx_nic *efx);
1369     int (*rx_push_rss_context_config)(struct efx_nic *efx,
1370                       struct efx_rss_context *ctx,
1371                       const u32 *rx_indir_table,
1372                       const u8 *key);
1373     int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1374                       struct efx_rss_context *ctx);
1375     void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1376     int (*rx_probe)(struct efx_rx_queue *rx_queue);
1377     void (*rx_init)(struct efx_rx_queue *rx_queue);
1378     void (*rx_remove)(struct efx_rx_queue *rx_queue);
1379     void (*rx_write)(struct efx_rx_queue *rx_queue);
1380     void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1381     void (*rx_packet)(struct efx_channel *channel);
1382     bool (*rx_buf_hash_valid)(const u8 *prefix);
1383     int (*ev_probe)(struct efx_channel *channel);
1384     int (*ev_init)(struct efx_channel *channel);
1385     void (*ev_fini)(struct efx_channel *channel);
1386     void (*ev_remove)(struct efx_channel *channel);
1387     int (*ev_process)(struct efx_channel *channel, int quota);
1388     void (*ev_read_ack)(struct efx_channel *channel);
1389     void (*ev_test_generate)(struct efx_channel *channel);
1390     int (*filter_table_probe)(struct efx_nic *efx);
1391     void (*filter_table_restore)(struct efx_nic *efx);
1392     void (*filter_table_remove)(struct efx_nic *efx);
1393     void (*filter_update_rx_scatter)(struct efx_nic *efx);
1394     s32 (*filter_insert)(struct efx_nic *efx,
1395                  struct efx_filter_spec *spec, bool replace);
1396     int (*filter_remove_safe)(struct efx_nic *efx,
1397                   enum efx_filter_priority priority,
1398                   u32 filter_id);
1399     int (*filter_get_safe)(struct efx_nic *efx,
1400                    enum efx_filter_priority priority,
1401                    u32 filter_id, struct efx_filter_spec *);
1402     int (*filter_clear_rx)(struct efx_nic *efx,
1403                    enum efx_filter_priority priority);
1404     u32 (*filter_count_rx_used)(struct efx_nic *efx,
1405                     enum efx_filter_priority priority);
1406     u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1407     s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1408                  enum efx_filter_priority priority,
1409                  u32 *buf, u32 size);
1410 #ifdef CONFIG_RFS_ACCEL
1411     bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1412                       unsigned int index);
1413 #endif
1414 #ifdef CONFIG_SFC_SIENA_MTD
1415     int (*mtd_probe)(struct efx_nic *efx);
1416     void (*mtd_rename)(struct efx_mtd_partition *part);
1417     int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1418             size_t *retlen, u8 *buffer);
1419     int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1420     int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1421              size_t *retlen, const u8 *buffer);
1422     int (*mtd_sync)(struct mtd_info *mtd);
1423 #endif
1424     void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1425     int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1426     int (*ptp_set_ts_config)(struct efx_nic *efx,
1427                  struct hwtstamp_config *init);
1428     int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1429     int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1430     int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1431     int (*get_phys_port_id)(struct efx_nic *efx,
1432                 struct netdev_phys_item_id *ppid);
1433     int (*sriov_init)(struct efx_nic *efx);
1434     void (*sriov_fini)(struct efx_nic *efx);
1435     bool (*sriov_wanted)(struct efx_nic *efx);
1436     void (*sriov_reset)(struct efx_nic *efx);
1437     void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1438     int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
1439     int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1440                  u8 qos);
1441     int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1442                      bool spoofchk);
1443     int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1444                    struct ifla_vf_info *ivi);
1445     int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1446                        int link_state);
1447     int (*vswitching_probe)(struct efx_nic *efx);
1448     int (*vswitching_restore)(struct efx_nic *efx);
1449     void (*vswitching_remove)(struct efx_nic *efx);
1450     int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1451     int (*set_mac_address)(struct efx_nic *efx);
1452     u32 (*tso_versions)(struct efx_nic *efx);
1453     int (*udp_tnl_push_ports)(struct efx_nic *efx);
1454     bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1455     size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1456                      size_t len);
1457     void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1458     unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1459 
1460     int revision;
1461     unsigned int txd_ptr_tbl_base;
1462     unsigned int rxd_ptr_tbl_base;
1463     unsigned int buf_tbl_base;
1464     unsigned int evq_ptr_tbl_base;
1465     unsigned int evq_rptr_tbl_base;
1466     u64 max_dma_mask;
1467     unsigned int rx_prefix_size;
1468     unsigned int rx_hash_offset;
1469     unsigned int rx_ts_offset;
1470     unsigned int rx_buffer_padding;
1471     bool can_rx_scatter;
1472     bool always_rx_scatter;
1473     bool option_descriptors;
1474     unsigned int min_interrupt_mode;
1475     unsigned int timer_period_max;
1476     netdev_features_t offload_features;
1477     int mcdi_max_ver;
1478     unsigned int max_rx_ip_filters;
1479     u32 hwtstamp_filters;
1480     unsigned int rx_hash_key_size;
1481 };
1482 
1483 /**************************************************************************
1484  *
1485  * Prototypes and inline functions
1486  *
1487  *************************************************************************/
1488 
1489 static inline struct efx_channel *
1490 efx_get_channel(struct efx_nic *efx, unsigned index)
1491 {
1492     EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1493     return efx->channel[index];
1494 }
1495 
1496 /* Iterate over all used channels */
1497 #define efx_for_each_channel(_channel, _efx)                \
1498     for (_channel = (_efx)->channel[0];             \
1499          _channel;                          \
1500          _channel = (_channel->channel + 1 < (_efx)->n_channels) ?  \
1501              (_efx)->channel[_channel->channel + 1] : NULL)
1502 
1503 /* Iterate over all used channels in reverse */
1504 #define efx_for_each_channel_rev(_channel, _efx)            \
1505     for (_channel = (_efx)->channel[(_efx)->n_channels - 1];    \
1506          _channel;                          \
1507          _channel = _channel->channel ?             \
1508              (_efx)->channel[_channel->channel - 1] : NULL)
1509 
1510 static inline struct efx_channel *
1511 efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1512 {
1513     EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1514     return efx->channel[efx->tx_channel_offset + index];
1515 }
1516 
1517 static inline struct efx_channel *
1518 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1519 {
1520     EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1521     return efx->channel[efx->xdp_channel_offset + index];
1522 }
1523 
1524 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1525 {
1526     return channel->channel - channel->efx->xdp_channel_offset <
1527            channel->efx->n_xdp_channels;
1528 }
1529 
1530 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1531 {
1532     return channel && channel->channel >= channel->efx->tx_channel_offset;
1533 }
1534 
1535 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1536 {
1537     if (efx_channel_is_xdp_tx(channel))
1538         return channel->efx->xdp_tx_per_channel;
1539     return channel->efx->tx_queues_per_channel;
1540 }
1541 
1542 static inline struct efx_tx_queue *
1543 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1544 {
1545     EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1546     return channel->tx_queue_by_type[type];
1547 }
1548 
1549 static inline struct efx_tx_queue *
1550 efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1551 {
1552     struct efx_channel *channel = efx_get_tx_channel(efx, index);
1553 
1554     return efx_channel_get_tx_queue(channel, type);
1555 }
1556 
1557 /* Iterate over all TX queues belonging to a channel */
1558 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)      \
1559     if (!efx_channel_has_tx_queues(_channel))           \
1560         ;                           \
1561     else                                \
1562         for (_tx_queue = (_channel)->tx_queue;          \
1563              _tx_queue < (_channel)->tx_queue +         \
1564                  efx_channel_num_tx_queues(_channel);       \
1565              _tx_queue++)
1566 
1567 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1568 {
1569     return channel->rx_queue.core_index >= 0;
1570 }
1571 
1572 static inline struct efx_rx_queue *
1573 efx_channel_get_rx_queue(struct efx_channel *channel)
1574 {
1575     EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1576     return &channel->rx_queue;
1577 }
1578 
1579 /* Iterate over all RX queues belonging to a channel */
1580 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)      \
1581     if (!efx_channel_has_rx_queue(_channel))            \
1582         ;                           \
1583     else                                \
1584         for (_rx_queue = &(_channel)->rx_queue;         \
1585              _rx_queue;                     \
1586              _rx_queue = NULL)
1587 
1588 static inline struct efx_channel *
1589 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1590 {
1591     return container_of(rx_queue, struct efx_channel, rx_queue);
1592 }
1593 
1594 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1595 {
1596     return efx_rx_queue_channel(rx_queue)->channel;
1597 }
1598 
1599 /* Returns a pointer to the specified receive buffer in the RX
1600  * descriptor queue.
1601  */
1602 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1603                           unsigned int index)
1604 {
1605     return &rx_queue->buffer[index];
1606 }
1607 
1608 static inline struct efx_rx_buffer *
1609 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1610 {
1611     if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1612         return efx_rx_buffer(rx_queue, 0);
1613     else
1614         return rx_buf + 1;
1615 }
1616 
1617 /**
1618  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1619  *
1620  * This calculates the maximum frame length that will be used for a
1621  * given MTU.  The frame length will be equal to the MTU plus a
1622  * constant amount of header space and padding.  This is the quantity
1623  * that the net driver will program into the MAC as the maximum frame
1624  * length.
1625  *
1626  * The 10G MAC requires 8-byte alignment on the frame
1627  * length, so we round up to the nearest 8.
1628  *
1629  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1630  * XGMII cycle).  If the frame length reaches the maximum value in the
1631  * same cycle, the XMAC can miss the IPG altogether.  We work around
1632  * this by adding a further 16 bytes.
1633  */
1634 #define EFX_FRAME_PAD   16
1635 #define EFX_MAX_FRAME_LEN(mtu) \
1636     (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1637 
1638 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1639 {
1640     return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1641 }
1642 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1643 {
1644     skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1645 }
1646 
1647 /* Get the max fill level of the TX queues on this channel */
1648 static inline unsigned int
1649 efx_channel_tx_fill_level(struct efx_channel *channel)
1650 {
1651     struct efx_tx_queue *tx_queue;
1652     unsigned int fill_level = 0;
1653 
1654     efx_for_each_channel_tx_queue(tx_queue, channel)
1655         fill_level = max(fill_level,
1656                  tx_queue->insert_count - tx_queue->read_count);
1657 
1658     return fill_level;
1659 }
1660 
1661 /* Conservative approximation of efx_channel_tx_fill_level using cached value */
1662 static inline unsigned int
1663 efx_channel_tx_old_fill_level(struct efx_channel *channel)
1664 {
1665     struct efx_tx_queue *tx_queue;
1666     unsigned int fill_level = 0;
1667 
1668     efx_for_each_channel_tx_queue(tx_queue, channel)
1669         fill_level = max(fill_level,
1670                  tx_queue->insert_count - tx_queue->old_read_count);
1671 
1672     return fill_level;
1673 }
1674 
1675 /* Get all supported features.
1676  * If a feature is not fixed, it is present in hw_features.
1677  * If a feature is fixed, it does not present in hw_features, but
1678  * always in features.
1679  */
1680 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1681 {
1682     const struct net_device *net_dev = efx->net_dev;
1683 
1684     return net_dev->features | net_dev->hw_features;
1685 }
1686 
1687 /* Get the current TX queue insert index. */
1688 static inline unsigned int
1689 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1690 {
1691     return tx_queue->insert_count & tx_queue->ptr_mask;
1692 }
1693 
1694 /* Get a TX buffer. */
1695 static inline struct efx_tx_buffer *
1696 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1697 {
1698     return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1699 }
1700 
1701 /* Get a TX buffer, checking it's not currently in use. */
1702 static inline struct efx_tx_buffer *
1703 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1704 {
1705     struct efx_tx_buffer *buffer =
1706         __efx_tx_queue_get_insert_buffer(tx_queue);
1707 
1708     EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1709     EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1710     EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1711 
1712     return buffer;
1713 }
1714 
1715 #endif /* EFX_NET_DRIVER_H */