Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2005-2006 Fen Systems Ltd.
0005  * Copyright 2006-2013 Solarflare Communications Inc.
0006  */
0007 
0008 #include <linux/bitops.h>
0009 #include <linux/delay.h>
0010 #include <linux/interrupt.h>
0011 #include <linux/pci.h>
0012 #include <linux/module.h>
0013 #include <linux/seq_file.h>
0014 #include <linux/crc32.h>
0015 #include "net_driver.h"
0016 #include "bitfield.h"
0017 #include "efx.h"
0018 #include "rx_common.h"
0019 #include "tx_common.h"
0020 #include "nic.h"
0021 #include "farch_regs.h"
0022 #include "sriov.h"
0023 #include "siena_sriov.h"
0024 #include "io.h"
0025 #include "workarounds.h"
0026 
0027 /* Falcon-architecture (SFC9000-family) support */
0028 
0029 /**************************************************************************
0030  *
0031  * Configurable values
0032  *
0033  **************************************************************************
0034  */
0035 
0036 /* This is set to 16 for a good reason.  In summary, if larger than
0037  * 16, the descriptor cache holds more than a default socket
0038  * buffer's worth of packets (for UDP we can only have at most one
0039  * socket buffer's worth outstanding).  This combined with the fact
0040  * that we only get 1 TX event per descriptor cache means the NIC
0041  * goes idle.
0042  */
0043 #define TX_DC_ENTRIES 16
0044 #define TX_DC_ENTRIES_ORDER 1
0045 
0046 #define RX_DC_ENTRIES 64
0047 #define RX_DC_ENTRIES_ORDER 3
0048 
0049 /* If EFX_MAX_INT_ERRORS internal errors occur within
0050  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
0051  * disable it.
0052  */
0053 #define EFX_INT_ERROR_EXPIRE 3600
0054 #define EFX_MAX_INT_ERRORS 5
0055 
0056 /* Depth of RX flush request fifo */
0057 #define EFX_RX_FLUSH_COUNT 4
0058 
0059 /* Driver generated events */
0060 #define _EFX_CHANNEL_MAGIC_TEST     0x000101
0061 #define _EFX_CHANNEL_MAGIC_FILL     0x000102
0062 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
0063 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
0064 
0065 #define _EFX_CHANNEL_MAGIC(_code, _data)    ((_code) << 8 | (_data))
0066 #define _EFX_CHANNEL_MAGIC_CODE(_magic)     ((_magic) >> 8)
0067 
0068 #define EFX_CHANNEL_MAGIC_TEST(_channel)                \
0069     _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
0070 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)               \
0071     _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,         \
0072                efx_rx_queue_index(_rx_queue))
0073 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)               \
0074     _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,         \
0075                efx_rx_queue_index(_rx_queue))
0076 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)               \
0077     _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,         \
0078                (_tx_queue)->queue)
0079 
0080 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
0081 
0082 /**************************************************************************
0083  *
0084  * Hardware access
0085  *
0086  **************************************************************************/
0087 
0088 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
0089                      unsigned int index)
0090 {
0091     efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
0092             value, index);
0093 }
0094 
0095 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
0096                      const efx_oword_t *mask)
0097 {
0098     return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
0099         ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
0100 }
0101 
0102 int efx_farch_test_registers(struct efx_nic *efx,
0103                  const struct efx_farch_register_test *regs,
0104                  size_t n_regs)
0105 {
0106     unsigned address = 0;
0107     int i, j;
0108     efx_oword_t mask, imask, original, reg, buf;
0109 
0110     for (i = 0; i < n_regs; ++i) {
0111         address = regs[i].address;
0112         mask = imask = regs[i].mask;
0113         EFX_INVERT_OWORD(imask);
0114 
0115         efx_reado(efx, &original, address);
0116 
0117         /* bit sweep on and off */
0118         for (j = 0; j < 128; j++) {
0119             if (!EFX_EXTRACT_OWORD32(mask, j, j))
0120                 continue;
0121 
0122             /* Test this testable bit can be set in isolation */
0123             EFX_AND_OWORD(reg, original, mask);
0124             EFX_SET_OWORD32(reg, j, j, 1);
0125 
0126             efx_writeo(efx, &reg, address);
0127             efx_reado(efx, &buf, address);
0128 
0129             if (efx_masked_compare_oword(&reg, &buf, &mask))
0130                 goto fail;
0131 
0132             /* Test this testable bit can be cleared in isolation */
0133             EFX_OR_OWORD(reg, original, mask);
0134             EFX_SET_OWORD32(reg, j, j, 0);
0135 
0136             efx_writeo(efx, &reg, address);
0137             efx_reado(efx, &buf, address);
0138 
0139             if (efx_masked_compare_oword(&reg, &buf, &mask))
0140                 goto fail;
0141         }
0142 
0143         efx_writeo(efx, &original, address);
0144     }
0145 
0146     return 0;
0147 
0148 fail:
0149     netif_err(efx, hw, efx->net_dev,
0150           "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
0151           " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
0152           EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
0153     return -EIO;
0154 }
0155 
0156 /**************************************************************************
0157  *
0158  * Special buffer handling
0159  * Special buffers are used for event queues and the TX and RX
0160  * descriptor rings.
0161  *
0162  *************************************************************************/
0163 
0164 /*
0165  * Initialise a special buffer
0166  *
0167  * This will define a buffer (previously allocated via
0168  * efx_alloc_special_buffer()) in the buffer table, allowing
0169  * it to be used for event queues, descriptor rings etc.
0170  */
0171 static void
0172 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
0173 {
0174     efx_qword_t buf_desc;
0175     unsigned int index;
0176     dma_addr_t dma_addr;
0177     int i;
0178 
0179     EFX_WARN_ON_PARANOID(!buffer->buf.addr);
0180 
0181     /* Write buffer descriptors to NIC */
0182     for (i = 0; i < buffer->entries; i++) {
0183         index = buffer->index + i;
0184         dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
0185         netif_dbg(efx, probe, efx->net_dev,
0186               "mapping special buffer %d at %llx\n",
0187               index, (unsigned long long)dma_addr);
0188         EFX_POPULATE_QWORD_3(buf_desc,
0189                      FRF_AZ_BUF_ADR_REGION, 0,
0190                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
0191                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
0192         efx_write_buf_tbl(efx, &buf_desc, index);
0193     }
0194 }
0195 
0196 /* Unmaps a buffer and clears the buffer table entries */
0197 static void
0198 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
0199 {
0200     efx_oword_t buf_tbl_upd;
0201     unsigned int start = buffer->index;
0202     unsigned int end = (buffer->index + buffer->entries - 1);
0203 
0204     if (!buffer->entries)
0205         return;
0206 
0207     netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
0208           buffer->index, buffer->index + buffer->entries - 1);
0209 
0210     EFX_POPULATE_OWORD_4(buf_tbl_upd,
0211                  FRF_AZ_BUF_UPD_CMD, 0,
0212                  FRF_AZ_BUF_CLR_CMD, 1,
0213                  FRF_AZ_BUF_CLR_END_ID, end,
0214                  FRF_AZ_BUF_CLR_START_ID, start);
0215     efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
0216 }
0217 
0218 /*
0219  * Allocate a new special buffer
0220  *
0221  * This allocates memory for a new buffer, clears it and allocates a
0222  * new buffer ID range.  It does not write into the buffer table.
0223  *
0224  * This call will allocate 4KB buffers, since 8KB buffers can't be
0225  * used for event queues and descriptor rings.
0226  */
0227 static int efx_alloc_special_buffer(struct efx_nic *efx,
0228                     struct efx_special_buffer *buffer,
0229                     unsigned int len)
0230 {
0231 #ifdef CONFIG_SFC_SIENA_SRIOV
0232     struct siena_nic_data *nic_data = efx->nic_data;
0233 #endif
0234     len = ALIGN(len, EFX_BUF_SIZE);
0235 
0236     if (efx_siena_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
0237         return -ENOMEM;
0238     buffer->entries = len / EFX_BUF_SIZE;
0239     BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
0240 
0241     /* Select new buffer ID */
0242     buffer->index = efx->next_buffer_table;
0243     efx->next_buffer_table += buffer->entries;
0244 #ifdef CONFIG_SFC_SIENA_SRIOV
0245     BUG_ON(efx_siena_sriov_enabled(efx) &&
0246            nic_data->vf_buftbl_base < efx->next_buffer_table);
0247 #endif
0248 
0249     netif_dbg(efx, probe, efx->net_dev,
0250           "allocating special buffers %d-%d at %llx+%x "
0251           "(virt %p phys %llx)\n", buffer->index,
0252           buffer->index + buffer->entries - 1,
0253           (u64)buffer->buf.dma_addr, len,
0254           buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
0255 
0256     return 0;
0257 }
0258 
0259 static void
0260 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
0261 {
0262     if (!buffer->buf.addr)
0263         return;
0264 
0265     netif_dbg(efx, hw, efx->net_dev,
0266           "deallocating special buffers %d-%d at %llx+%x "
0267           "(virt %p phys %llx)\n", buffer->index,
0268           buffer->index + buffer->entries - 1,
0269           (u64)buffer->buf.dma_addr, buffer->buf.len,
0270           buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
0271 
0272     efx_siena_free_buffer(efx, &buffer->buf);
0273     buffer->entries = 0;
0274 }
0275 
0276 /**************************************************************************
0277  *
0278  * TX path
0279  *
0280  **************************************************************************/
0281 
0282 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
0283 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
0284 {
0285     unsigned write_ptr;
0286     efx_dword_t reg;
0287 
0288     write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
0289     EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
0290     efx_writed_page(tx_queue->efx, &reg,
0291             FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
0292 }
0293 
0294 /* Write pointer and first descriptor for TX descriptor ring */
0295 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
0296                       const efx_qword_t *txd)
0297 {
0298     unsigned write_ptr;
0299     efx_oword_t reg;
0300 
0301     BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
0302     BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
0303 
0304     write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
0305     EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
0306                  FRF_AZ_TX_DESC_WPTR, write_ptr);
0307     reg.qword[0] = *txd;
0308     efx_writeo_page(tx_queue->efx, &reg,
0309             FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
0310 }
0311 
0312 
0313 /* For each entry inserted into the software descriptor ring, create a
0314  * descriptor in the hardware TX descriptor ring (in host memory), and
0315  * write a doorbell.
0316  */
0317 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
0318 {
0319     struct efx_tx_buffer *buffer;
0320     efx_qword_t *txd;
0321     unsigned write_ptr;
0322     unsigned old_write_count = tx_queue->write_count;
0323 
0324     tx_queue->xmit_pending = false;
0325     if (unlikely(tx_queue->write_count == tx_queue->insert_count))
0326         return;
0327 
0328     do {
0329         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
0330         buffer = &tx_queue->buffer[write_ptr];
0331         txd = efx_tx_desc(tx_queue, write_ptr);
0332         ++tx_queue->write_count;
0333 
0334         EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
0335 
0336         /* Create TX descriptor ring entry */
0337         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
0338         EFX_POPULATE_QWORD_4(*txd,
0339                      FSF_AZ_TX_KER_CONT,
0340                      buffer->flags & EFX_TX_BUF_CONT,
0341                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
0342                      FSF_AZ_TX_KER_BUF_REGION, 0,
0343                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
0344     } while (tx_queue->write_count != tx_queue->insert_count);
0345 
0346     wmb(); /* Ensure descriptors are written before they are fetched */
0347 
0348     if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
0349         txd = efx_tx_desc(tx_queue,
0350                   old_write_count & tx_queue->ptr_mask);
0351         efx_farch_push_tx_desc(tx_queue, txd);
0352         ++tx_queue->pushes;
0353     } else {
0354         efx_farch_notify_tx_desc(tx_queue);
0355     }
0356 }
0357 
0358 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
0359                     dma_addr_t dma_addr, unsigned int len)
0360 {
0361     /* Don't cross 4K boundaries with descriptors. */
0362     unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
0363 
0364     len = min(limit, len);
0365 
0366     return len;
0367 }
0368 
0369 
0370 /* Allocate hardware resources for a TX queue */
0371 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
0372 {
0373     struct efx_nic *efx = tx_queue->efx;
0374     unsigned entries;
0375 
0376     tx_queue->type = ((tx_queue->label & 1) ? EFX_TXQ_TYPE_OUTER_CSUM : 0) |
0377              ((tx_queue->label & 2) ? EFX_TXQ_TYPE_HIGHPRI : 0);
0378     entries = tx_queue->ptr_mask + 1;
0379     return efx_alloc_special_buffer(efx, &tx_queue->txd,
0380                     entries * sizeof(efx_qword_t));
0381 }
0382 
0383 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
0384 {
0385     int csum = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
0386     struct efx_nic *efx = tx_queue->efx;
0387     efx_oword_t reg;
0388 
0389     /* Pin TX descriptor ring */
0390     efx_init_special_buffer(efx, &tx_queue->txd);
0391 
0392     /* Push TX descriptor ring to card */
0393     EFX_POPULATE_OWORD_10(reg,
0394                   FRF_AZ_TX_DESCQ_EN, 1,
0395                   FRF_AZ_TX_ISCSI_DDIG_EN, 0,
0396                   FRF_AZ_TX_ISCSI_HDIG_EN, 0,
0397                   FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
0398                   FRF_AZ_TX_DESCQ_EVQ_ID,
0399                   tx_queue->channel->channel,
0400                   FRF_AZ_TX_DESCQ_OWNER_ID, 0,
0401                   FRF_AZ_TX_DESCQ_LABEL, tx_queue->label,
0402                   FRF_AZ_TX_DESCQ_SIZE,
0403                   __ffs(tx_queue->txd.entries),
0404                   FRF_AZ_TX_DESCQ_TYPE, 0,
0405                   FRF_BZ_TX_NON_IP_DROP_DIS, 1);
0406 
0407     EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
0408     EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
0409 
0410     efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
0411              tx_queue->queue);
0412 
0413     EFX_POPULATE_OWORD_1(reg,
0414                  FRF_BZ_TX_PACE,
0415                  (tx_queue->type & EFX_TXQ_TYPE_HIGHPRI) ?
0416                  FFE_BZ_TX_PACE_OFF :
0417                  FFE_BZ_TX_PACE_RESERVED);
0418     efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
0419 
0420     tx_queue->tso_version = 1;
0421 }
0422 
0423 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
0424 {
0425     struct efx_nic *efx = tx_queue->efx;
0426     efx_oword_t tx_flush_descq;
0427 
0428     WARN_ON(atomic_read(&tx_queue->flush_outstanding));
0429     atomic_set(&tx_queue->flush_outstanding, 1);
0430 
0431     EFX_POPULATE_OWORD_2(tx_flush_descq,
0432                  FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
0433                  FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
0434     efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
0435 }
0436 
0437 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
0438 {
0439     struct efx_nic *efx = tx_queue->efx;
0440     efx_oword_t tx_desc_ptr;
0441 
0442     /* Remove TX descriptor ring from card */
0443     EFX_ZERO_OWORD(tx_desc_ptr);
0444     efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
0445              tx_queue->queue);
0446 
0447     /* Unpin TX descriptor ring */
0448     efx_fini_special_buffer(efx, &tx_queue->txd);
0449 }
0450 
0451 /* Free buffers backing TX queue */
0452 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
0453 {
0454     efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
0455 }
0456 
0457 /**************************************************************************
0458  *
0459  * RX path
0460  *
0461  **************************************************************************/
0462 
0463 /* This creates an entry in the RX descriptor queue */
0464 static inline void
0465 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
0466 {
0467     struct efx_rx_buffer *rx_buf;
0468     efx_qword_t *rxd;
0469 
0470     rxd = efx_rx_desc(rx_queue, index);
0471     rx_buf = efx_rx_buffer(rx_queue, index);
0472     EFX_POPULATE_QWORD_3(*rxd,
0473                  FSF_AZ_RX_KER_BUF_SIZE,
0474                  rx_buf->len -
0475                  rx_queue->efx->type->rx_buffer_padding,
0476                  FSF_AZ_RX_KER_BUF_REGION, 0,
0477                  FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
0478 }
0479 
0480 /* This writes to the RX_DESC_WPTR register for the specified receive
0481  * descriptor ring.
0482  */
0483 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
0484 {
0485     struct efx_nic *efx = rx_queue->efx;
0486     efx_dword_t reg;
0487     unsigned write_ptr;
0488 
0489     while (rx_queue->notified_count != rx_queue->added_count) {
0490         efx_farch_build_rx_desc(
0491             rx_queue,
0492             rx_queue->notified_count & rx_queue->ptr_mask);
0493         ++rx_queue->notified_count;
0494     }
0495 
0496     wmb();
0497     write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
0498     EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
0499     efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
0500             efx_rx_queue_index(rx_queue));
0501 }
0502 
0503 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
0504 {
0505     struct efx_nic *efx = rx_queue->efx;
0506     unsigned entries;
0507 
0508     entries = rx_queue->ptr_mask + 1;
0509     return efx_alloc_special_buffer(efx, &rx_queue->rxd,
0510                     entries * sizeof(efx_qword_t));
0511 }
0512 
0513 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
0514 {
0515     efx_oword_t rx_desc_ptr;
0516     struct efx_nic *efx = rx_queue->efx;
0517     bool jumbo_en;
0518 
0519     /* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
0520     jumbo_en = efx->rx_scatter;
0521 
0522     netif_dbg(efx, hw, efx->net_dev,
0523           "RX queue %d ring in special buffers %d-%d\n",
0524           efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
0525           rx_queue->rxd.index + rx_queue->rxd.entries - 1);
0526 
0527     rx_queue->scatter_n = 0;
0528 
0529     /* Pin RX descriptor ring */
0530     efx_init_special_buffer(efx, &rx_queue->rxd);
0531 
0532     /* Push RX descriptor ring to card */
0533     EFX_POPULATE_OWORD_10(rx_desc_ptr,
0534                   FRF_AZ_RX_ISCSI_DDIG_EN, true,
0535                   FRF_AZ_RX_ISCSI_HDIG_EN, true,
0536                   FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
0537                   FRF_AZ_RX_DESCQ_EVQ_ID,
0538                   efx_rx_queue_channel(rx_queue)->channel,
0539                   FRF_AZ_RX_DESCQ_OWNER_ID, 0,
0540                   FRF_AZ_RX_DESCQ_LABEL,
0541                   efx_rx_queue_index(rx_queue),
0542                   FRF_AZ_RX_DESCQ_SIZE,
0543                   __ffs(rx_queue->rxd.entries),
0544                   FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
0545                   FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
0546                   FRF_AZ_RX_DESCQ_EN, 1);
0547     efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
0548              efx_rx_queue_index(rx_queue));
0549 }
0550 
0551 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
0552 {
0553     struct efx_nic *efx = rx_queue->efx;
0554     efx_oword_t rx_flush_descq;
0555 
0556     EFX_POPULATE_OWORD_2(rx_flush_descq,
0557                  FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
0558                  FRF_AZ_RX_FLUSH_DESCQ,
0559                  efx_rx_queue_index(rx_queue));
0560     efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
0561 }
0562 
0563 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
0564 {
0565     efx_oword_t rx_desc_ptr;
0566     struct efx_nic *efx = rx_queue->efx;
0567 
0568     /* Remove RX descriptor ring from card */
0569     EFX_ZERO_OWORD(rx_desc_ptr);
0570     efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
0571              efx_rx_queue_index(rx_queue));
0572 
0573     /* Unpin RX descriptor ring */
0574     efx_fini_special_buffer(efx, &rx_queue->rxd);
0575 }
0576 
0577 /* Free buffers backing RX queue */
0578 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
0579 {
0580     efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
0581 }
0582 
0583 /**************************************************************************
0584  *
0585  * Flush handling
0586  *
0587  **************************************************************************/
0588 
0589 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
0590  * or more RX flushes can be kicked off.
0591  */
0592 static bool efx_farch_flush_wake(struct efx_nic *efx)
0593 {
0594     /* Ensure that all updates are visible to efx_farch_flush_queues() */
0595     smp_mb();
0596 
0597     return (atomic_read(&efx->active_queues) == 0 ||
0598         (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
0599          && atomic_read(&efx->rxq_flush_pending) > 0));
0600 }
0601 
0602 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
0603 {
0604     bool i = true;
0605     efx_oword_t txd_ptr_tbl;
0606     struct efx_channel *channel;
0607     struct efx_tx_queue *tx_queue;
0608 
0609     efx_for_each_channel(channel, efx) {
0610         efx_for_each_channel_tx_queue(tx_queue, channel) {
0611             efx_reado_table(efx, &txd_ptr_tbl,
0612                     FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
0613             if (EFX_OWORD_FIELD(txd_ptr_tbl,
0614                         FRF_AZ_TX_DESCQ_FLUSH) ||
0615                 EFX_OWORD_FIELD(txd_ptr_tbl,
0616                         FRF_AZ_TX_DESCQ_EN)) {
0617                 netif_dbg(efx, hw, efx->net_dev,
0618                       "flush did not complete on TXQ %d\n",
0619                       tx_queue->queue);
0620                 i = false;
0621             } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
0622                           1, 0)) {
0623                 /* The flush is complete, but we didn't
0624                  * receive a flush completion event
0625                  */
0626                 netif_dbg(efx, hw, efx->net_dev,
0627                       "flush complete on TXQ %d, so drain "
0628                       "the queue\n", tx_queue->queue);
0629                 /* Don't need to increment active_queues as it
0630                  * has already been incremented for the queues
0631                  * which did not drain
0632                  */
0633                 efx_farch_magic_event(channel,
0634                               EFX_CHANNEL_MAGIC_TX_DRAIN(
0635                                   tx_queue));
0636             }
0637         }
0638     }
0639 
0640     return i;
0641 }
0642 
0643 /* Flush all the transmit queues, and continue flushing receive queues until
0644  * they're all flushed. Wait for the DRAIN events to be received so that there
0645  * are no more RX and TX events left on any channel. */
0646 static int efx_farch_do_flush(struct efx_nic *efx)
0647 {
0648     unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
0649     struct efx_channel *channel;
0650     struct efx_rx_queue *rx_queue;
0651     struct efx_tx_queue *tx_queue;
0652     int rc = 0;
0653 
0654     efx_for_each_channel(channel, efx) {
0655         efx_for_each_channel_tx_queue(tx_queue, channel) {
0656             efx_farch_flush_tx_queue(tx_queue);
0657         }
0658         efx_for_each_channel_rx_queue(rx_queue, channel) {
0659             rx_queue->flush_pending = true;
0660             atomic_inc(&efx->rxq_flush_pending);
0661         }
0662     }
0663 
0664     while (timeout && atomic_read(&efx->active_queues) > 0) {
0665         /* If SRIOV is enabled, then offload receive queue flushing to
0666          * the firmware (though we will still have to poll for
0667          * completion). If that fails, fall back to the old scheme.
0668          */
0669         if (efx_siena_sriov_enabled(efx)) {
0670             rc = efx_siena_mcdi_flush_rxqs(efx);
0671             if (!rc)
0672                 goto wait;
0673         }
0674 
0675         /* The hardware supports four concurrent rx flushes, each of
0676          * which may need to be retried if there is an outstanding
0677          * descriptor fetch
0678          */
0679         efx_for_each_channel(channel, efx) {
0680             efx_for_each_channel_rx_queue(rx_queue, channel) {
0681                 if (atomic_read(&efx->rxq_flush_outstanding) >=
0682                     EFX_RX_FLUSH_COUNT)
0683                     break;
0684 
0685                 if (rx_queue->flush_pending) {
0686                     rx_queue->flush_pending = false;
0687                     atomic_dec(&efx->rxq_flush_pending);
0688                     atomic_inc(&efx->rxq_flush_outstanding);
0689                     efx_farch_flush_rx_queue(rx_queue);
0690                 }
0691             }
0692         }
0693 
0694     wait:
0695         timeout = wait_event_timeout(efx->flush_wq,
0696                          efx_farch_flush_wake(efx),
0697                          timeout);
0698     }
0699 
0700     if (atomic_read(&efx->active_queues) &&
0701         !efx_check_tx_flush_complete(efx)) {
0702         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
0703               "(rx %d+%d)\n", atomic_read(&efx->active_queues),
0704               atomic_read(&efx->rxq_flush_outstanding),
0705               atomic_read(&efx->rxq_flush_pending));
0706         rc = -ETIMEDOUT;
0707 
0708         atomic_set(&efx->active_queues, 0);
0709         atomic_set(&efx->rxq_flush_pending, 0);
0710         atomic_set(&efx->rxq_flush_outstanding, 0);
0711     }
0712 
0713     return rc;
0714 }
0715 
0716 int efx_farch_fini_dmaq(struct efx_nic *efx)
0717 {
0718     struct efx_channel *channel;
0719     struct efx_tx_queue *tx_queue;
0720     struct efx_rx_queue *rx_queue;
0721     int rc = 0;
0722 
0723     /* Do not attempt to write to the NIC during EEH recovery */
0724     if (efx->state != STATE_RECOVERY) {
0725         /* Only perform flush if DMA is enabled */
0726         if (efx->pci_dev->is_busmaster) {
0727             efx->type->prepare_flush(efx);
0728             rc = efx_farch_do_flush(efx);
0729             efx->type->finish_flush(efx);
0730         }
0731 
0732         efx_for_each_channel(channel, efx) {
0733             efx_for_each_channel_rx_queue(rx_queue, channel)
0734                 efx_farch_rx_fini(rx_queue);
0735             efx_for_each_channel_tx_queue(tx_queue, channel)
0736                 efx_farch_tx_fini(tx_queue);
0737         }
0738     }
0739 
0740     return rc;
0741 }
0742 
0743 /* Reset queue and flush accounting after FLR
0744  *
0745  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
0746  * mastering was disabled), in which case we don't receive (RXQ) flush
0747  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
0748  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
0749  * events were received, and we didn't go through efx_check_tx_flush_complete())
0750  * If we don't fix this up, on the next call to efx_siena_realloc_channels() we
0751  * won't flush any RX queues because efx->rxq_flush_outstanding is at the limit
0752  * of 4 for batched flush requests; and the efx->active_queues gets messed up
0753  * because we keep incrementing for the newly initialised queues, but it never
0754  * went to zero previously.  Then we get a timeout every time we try to restart
0755  * the queues, as it doesn't go back to zero when we should be flushing the
0756  * queues.
0757  */
0758 void efx_farch_finish_flr(struct efx_nic *efx)
0759 {
0760     atomic_set(&efx->rxq_flush_pending, 0);
0761     atomic_set(&efx->rxq_flush_outstanding, 0);
0762     atomic_set(&efx->active_queues, 0);
0763 }
0764 
0765 
0766 /**************************************************************************
0767  *
0768  * Event queue processing
0769  * Event queues are processed by per-channel tasklets.
0770  *
0771  **************************************************************************/
0772 
0773 /* Update a channel's event queue's read pointer (RPTR) register
0774  *
0775  * This writes the EVQ_RPTR_REG register for the specified channel's
0776  * event queue.
0777  */
0778 void efx_farch_ev_read_ack(struct efx_channel *channel)
0779 {
0780     efx_dword_t reg;
0781     struct efx_nic *efx = channel->efx;
0782 
0783     EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
0784                  channel->eventq_read_ptr & channel->eventq_mask);
0785 
0786     /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
0787      * of 4 bytes, but it is really 16 bytes just like later revisions.
0788      */
0789     efx_writed(efx, &reg,
0790            efx->type->evq_rptr_tbl_base +
0791            FR_BZ_EVQ_RPTR_STEP * channel->channel);
0792 }
0793 
0794 /* Use HW to insert a SW defined event */
0795 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
0796                   efx_qword_t *event)
0797 {
0798     efx_oword_t drv_ev_reg;
0799 
0800     BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
0801              FRF_AZ_DRV_EV_DATA_WIDTH != 64);
0802     drv_ev_reg.u32[0] = event->u32[0];
0803     drv_ev_reg.u32[1] = event->u32[1];
0804     drv_ev_reg.u32[2] = 0;
0805     drv_ev_reg.u32[3] = 0;
0806     EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
0807     efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
0808 }
0809 
0810 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
0811 {
0812     efx_qword_t event;
0813 
0814     EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
0815                  FSE_AZ_EV_CODE_DRV_GEN_EV,
0816                  FSF_AZ_DRV_GEN_EV_MAGIC, magic);
0817     efx_farch_generate_event(channel->efx, channel->channel, &event);
0818 }
0819 
0820 /* Handle a transmit completion event
0821  *
0822  * The NIC batches TX completion events; the message we receive is of
0823  * the form "complete all TX events up to this index".
0824  */
0825 static void
0826 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
0827 {
0828     unsigned int tx_ev_desc_ptr;
0829     unsigned int tx_ev_q_label;
0830     struct efx_tx_queue *tx_queue;
0831     struct efx_nic *efx = channel->efx;
0832 
0833     if (unlikely(READ_ONCE(efx->reset_pending)))
0834         return;
0835 
0836     if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
0837         /* Transmit completion */
0838         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
0839         tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
0840         tx_queue = channel->tx_queue +
0841                 (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
0842         efx_siena_xmit_done(tx_queue, tx_ev_desc_ptr);
0843     } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
0844         /* Rewrite the FIFO write pointer */
0845         tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
0846         tx_queue = channel->tx_queue +
0847                 (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
0848 
0849         netif_tx_lock(efx->net_dev);
0850         efx_farch_notify_tx_desc(tx_queue);
0851         netif_tx_unlock(efx->net_dev);
0852     } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
0853         efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
0854     } else {
0855         netif_err(efx, tx_err, efx->net_dev,
0856               "channel %d unexpected TX event "
0857               EFX_QWORD_FMT"\n", channel->channel,
0858               EFX_QWORD_VAL(*event));
0859     }
0860 }
0861 
0862 /* Detect errors included in the rx_evt_pkt_ok bit. */
0863 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
0864                       const efx_qword_t *event)
0865 {
0866     struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
0867     struct efx_nic *efx = rx_queue->efx;
0868     bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
0869     bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
0870     bool rx_ev_frm_trunc, rx_ev_tobe_disc;
0871     bool rx_ev_other_err, rx_ev_pause_frm;
0872 
0873     rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
0874     rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
0875                          FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
0876     rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
0877                           FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
0878     rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
0879                            FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
0880     rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
0881     rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
0882     rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
0883 
0884     /* Every error apart from tobe_disc and pause_frm */
0885     rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
0886                rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
0887                rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
0888 
0889     /* Count errors that are not in MAC stats.  Ignore expected
0890      * checksum errors during self-test. */
0891     if (rx_ev_frm_trunc)
0892         ++channel->n_rx_frm_trunc;
0893     else if (rx_ev_tobe_disc)
0894         ++channel->n_rx_tobe_disc;
0895     else if (!efx->loopback_selftest) {
0896         if (rx_ev_ip_hdr_chksum_err)
0897             ++channel->n_rx_ip_hdr_chksum_err;
0898         else if (rx_ev_tcp_udp_chksum_err)
0899             ++channel->n_rx_tcp_udp_chksum_err;
0900     }
0901 
0902     /* TOBE_DISC is expected on unicast mismatches; don't print out an
0903      * error message.  FRM_TRUNC indicates RXDP dropped the packet due
0904      * to a FIFO overflow.
0905      */
0906 #ifdef DEBUG
0907     if (rx_ev_other_err && net_ratelimit()) {
0908         netif_dbg(efx, rx_err, efx->net_dev,
0909               " RX queue %d unexpected RX event "
0910               EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
0911               efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
0912               rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
0913               rx_ev_ip_hdr_chksum_err ?
0914               " [IP_HDR_CHKSUM_ERR]" : "",
0915               rx_ev_tcp_udp_chksum_err ?
0916               " [TCP_UDP_CHKSUM_ERR]" : "",
0917               rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
0918               rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
0919               rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
0920               rx_ev_pause_frm ? " [PAUSE]" : "");
0921     }
0922 #else
0923     (void) rx_ev_other_err;
0924 #endif
0925 
0926     if (efx->net_dev->features & NETIF_F_RXALL)
0927         /* don't discard frame for CRC error */
0928         rx_ev_eth_crc_err = false;
0929 
0930     /* The frame must be discarded if any of these are true. */
0931     return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
0932         rx_ev_tobe_disc | rx_ev_pause_frm) ?
0933         EFX_RX_PKT_DISCARD : 0;
0934 }
0935 
0936 /* Handle receive events that are not in-order. Return true if this
0937  * can be handled as a partial packet discard, false if it's more
0938  * serious.
0939  */
0940 static bool
0941 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
0942 {
0943     struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
0944     struct efx_nic *efx = rx_queue->efx;
0945     unsigned expected, dropped;
0946 
0947     if (rx_queue->scatter_n &&
0948         index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
0949               rx_queue->ptr_mask)) {
0950         ++channel->n_rx_nodesc_trunc;
0951         return true;
0952     }
0953 
0954     expected = rx_queue->removed_count & rx_queue->ptr_mask;
0955     dropped = (index - expected) & rx_queue->ptr_mask;
0956     netif_info(efx, rx_err, efx->net_dev,
0957            "dropped %d events (index=%d expected=%d)\n",
0958            dropped, index, expected);
0959 
0960     efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
0961     return false;
0962 }
0963 
0964 /* Handle a packet received event
0965  *
0966  * The NIC gives a "discard" flag if it's a unicast packet with the
0967  * wrong destination address
0968  * Also "is multicast" and "matches multicast filter" flags can be used to
0969  * discard non-matching multicast packets.
0970  */
0971 static void
0972 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
0973 {
0974     unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
0975     unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
0976     unsigned expected_ptr;
0977     bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
0978     u16 flags;
0979     struct efx_rx_queue *rx_queue;
0980     struct efx_nic *efx = channel->efx;
0981 
0982     if (unlikely(READ_ONCE(efx->reset_pending)))
0983         return;
0984 
0985     rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
0986     rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
0987     WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
0988         channel->channel);
0989 
0990     rx_queue = efx_channel_get_rx_queue(channel);
0991 
0992     rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
0993     expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
0994             rx_queue->ptr_mask);
0995 
0996     /* Check for partial drops and other errors */
0997     if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
0998         unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
0999         if (rx_ev_desc_ptr != expected_ptr &&
1000             !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1001             return;
1002 
1003         /* Discard all pending fragments */
1004         if (rx_queue->scatter_n) {
1005             efx_siena_rx_packet(
1006                 rx_queue,
1007                 rx_queue->removed_count & rx_queue->ptr_mask,
1008                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1009             rx_queue->removed_count += rx_queue->scatter_n;
1010             rx_queue->scatter_n = 0;
1011         }
1012 
1013         /* Return if there is no new fragment */
1014         if (rx_ev_desc_ptr != expected_ptr)
1015             return;
1016 
1017         /* Discard new fragment if not SOP */
1018         if (!rx_ev_sop) {
1019             efx_siena_rx_packet(
1020                 rx_queue,
1021                 rx_queue->removed_count & rx_queue->ptr_mask,
1022                 1, 0, EFX_RX_PKT_DISCARD);
1023             ++rx_queue->removed_count;
1024             return;
1025         }
1026     }
1027 
1028     ++rx_queue->scatter_n;
1029     if (rx_ev_cont)
1030         return;
1031 
1032     rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1033     rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1034     rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1035 
1036     if (likely(rx_ev_pkt_ok)) {
1037         /* If packet is marked as OK then we can rely on the
1038          * hardware checksum and classification.
1039          */
1040         flags = 0;
1041         switch (rx_ev_hdr_type) {
1042         case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1043             flags |= EFX_RX_PKT_TCP;
1044             fallthrough;
1045         case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1046             flags |= EFX_RX_PKT_CSUMMED;
1047             fallthrough;
1048         case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1049         case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1050             break;
1051         }
1052     } else {
1053         flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1054     }
1055 
1056     /* Detect multicast packets that didn't match the filter */
1057     rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1058     if (rx_ev_mcast_pkt) {
1059         unsigned int rx_ev_mcast_hash_match =
1060             EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1061 
1062         if (unlikely(!rx_ev_mcast_hash_match)) {
1063             ++channel->n_rx_mcast_mismatch;
1064             flags |= EFX_RX_PKT_DISCARD;
1065         }
1066     }
1067 
1068     channel->irq_mod_score += 2;
1069 
1070     /* Handle received packet */
1071     efx_siena_rx_packet(rx_queue,
1072                 rx_queue->removed_count & rx_queue->ptr_mask,
1073                 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1074     rx_queue->removed_count += rx_queue->scatter_n;
1075     rx_queue->scatter_n = 0;
1076 }
1077 
1078 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1079  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1080  * of all transmit completions.
1081  */
1082 static void
1083 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1084 {
1085     struct efx_tx_queue *tx_queue;
1086     struct efx_channel *channel;
1087     int qid;
1088 
1089     qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1090     if (qid < EFX_MAX_TXQ_PER_CHANNEL * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1091         channel = efx_get_tx_channel(efx, qid / EFX_MAX_TXQ_PER_CHANNEL);
1092         tx_queue = channel->tx_queue + (qid % EFX_MAX_TXQ_PER_CHANNEL);
1093         if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0))
1094             efx_farch_magic_event(tx_queue->channel,
1095                           EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1096     }
1097 }
1098 
1099 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1100  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1101  * the RX queue back to the mask of RX queues in need of flushing.
1102  */
1103 static void
1104 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1105 {
1106     struct efx_channel *channel;
1107     struct efx_rx_queue *rx_queue;
1108     int qid;
1109     bool failed;
1110 
1111     qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1112     failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1113     if (qid >= efx->n_channels)
1114         return;
1115     channel = efx_get_channel(efx, qid);
1116     if (!efx_channel_has_rx_queue(channel))
1117         return;
1118     rx_queue = efx_channel_get_rx_queue(channel);
1119 
1120     if (failed) {
1121         netif_info(efx, hw, efx->net_dev,
1122                "RXQ %d flush retry\n", qid);
1123         rx_queue->flush_pending = true;
1124         atomic_inc(&efx->rxq_flush_pending);
1125     } else {
1126         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1127                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1128     }
1129     atomic_dec(&efx->rxq_flush_outstanding);
1130     if (efx_farch_flush_wake(efx))
1131         wake_up(&efx->flush_wq);
1132 }
1133 
1134 static void
1135 efx_farch_handle_drain_event(struct efx_channel *channel)
1136 {
1137     struct efx_nic *efx = channel->efx;
1138 
1139     WARN_ON(atomic_read(&efx->active_queues) == 0);
1140     atomic_dec(&efx->active_queues);
1141     if (efx_farch_flush_wake(efx))
1142         wake_up(&efx->flush_wq);
1143 }
1144 
1145 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1146                          efx_qword_t *event)
1147 {
1148     struct efx_nic *efx = channel->efx;
1149     struct efx_rx_queue *rx_queue =
1150         efx_channel_has_rx_queue(channel) ?
1151         efx_channel_get_rx_queue(channel) : NULL;
1152     unsigned magic, code;
1153 
1154     magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1155     code = _EFX_CHANNEL_MAGIC_CODE(magic);
1156 
1157     if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1158         channel->event_test_cpu = raw_smp_processor_id();
1159     } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1160         /* The queue must be empty, so we won't receive any rx
1161          * events, so efx_process_channel() won't refill the
1162          * queue. Refill it here */
1163         efx_siena_fast_push_rx_descriptors(rx_queue, true);
1164     } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1165         efx_farch_handle_drain_event(channel);
1166     } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1167         efx_farch_handle_drain_event(channel);
1168     } else {
1169         netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1170               "generated event "EFX_QWORD_FMT"\n",
1171               channel->channel, EFX_QWORD_VAL(*event));
1172     }
1173 }
1174 
1175 static void
1176 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1177 {
1178     struct efx_nic *efx = channel->efx;
1179     unsigned int ev_sub_code;
1180     unsigned int ev_sub_data;
1181 
1182     ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1183     ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1184 
1185     switch (ev_sub_code) {
1186     case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1187         netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1188                channel->channel, ev_sub_data);
1189         efx_farch_handle_tx_flush_done(efx, event);
1190 #ifdef CONFIG_SFC_SIENA_SRIOV
1191         efx_siena_sriov_tx_flush_done(efx, event);
1192 #endif
1193         break;
1194     case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1195         netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1196                channel->channel, ev_sub_data);
1197         efx_farch_handle_rx_flush_done(efx, event);
1198 #ifdef CONFIG_SFC_SIENA_SRIOV
1199         efx_siena_sriov_rx_flush_done(efx, event);
1200 #endif
1201         break;
1202     case FSE_AZ_EVQ_INIT_DONE_EV:
1203         netif_dbg(efx, hw, efx->net_dev,
1204               "channel %d EVQ %d initialised\n",
1205               channel->channel, ev_sub_data);
1206         break;
1207     case FSE_AZ_SRM_UPD_DONE_EV:
1208         netif_vdbg(efx, hw, efx->net_dev,
1209                "channel %d SRAM update done\n", channel->channel);
1210         break;
1211     case FSE_AZ_WAKE_UP_EV:
1212         netif_vdbg(efx, hw, efx->net_dev,
1213                "channel %d RXQ %d wakeup event\n",
1214                channel->channel, ev_sub_data);
1215         break;
1216     case FSE_AZ_TIMER_EV:
1217         netif_vdbg(efx, hw, efx->net_dev,
1218                "channel %d RX queue %d timer expired\n",
1219                channel->channel, ev_sub_data);
1220         break;
1221     case FSE_AA_RX_RECOVER_EV:
1222         netif_err(efx, rx_err, efx->net_dev,
1223               "channel %d seen DRIVER RX_RESET event. "
1224             "Resetting.\n", channel->channel);
1225         atomic_inc(&efx->rx_reset);
1226         efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
1227         break;
1228     case FSE_BZ_RX_DSC_ERROR_EV:
1229         if (ev_sub_data < EFX_VI_BASE) {
1230             netif_err(efx, rx_err, efx->net_dev,
1231                   "RX DMA Q %d reports descriptor fetch error."
1232                   " RX Q %d is disabled.\n", ev_sub_data,
1233                   ev_sub_data);
1234             efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1235         }
1236 #ifdef CONFIG_SFC_SIENA_SRIOV
1237         else
1238             efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1239 #endif
1240         break;
1241     case FSE_BZ_TX_DSC_ERROR_EV:
1242         if (ev_sub_data < EFX_VI_BASE) {
1243             netif_err(efx, tx_err, efx->net_dev,
1244                   "TX DMA Q %d reports descriptor fetch error."
1245                   " TX Q %d is disabled.\n", ev_sub_data,
1246                   ev_sub_data);
1247             efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1248         }
1249 #ifdef CONFIG_SFC_SIENA_SRIOV
1250         else
1251             efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1252 #endif
1253         break;
1254     default:
1255         netif_vdbg(efx, hw, efx->net_dev,
1256                "channel %d unknown driver event code %d "
1257                "data %04x\n", channel->channel, ev_sub_code,
1258                ev_sub_data);
1259         break;
1260     }
1261 }
1262 
1263 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1264 {
1265     struct efx_nic *efx = channel->efx;
1266     unsigned int read_ptr;
1267     efx_qword_t event, *p_event;
1268     int ev_code;
1269     int spent = 0;
1270 
1271     if (budget <= 0)
1272         return spent;
1273 
1274     read_ptr = channel->eventq_read_ptr;
1275 
1276     for (;;) {
1277         p_event = efx_event(channel, read_ptr);
1278         event = *p_event;
1279 
1280         if (!efx_event_present(&event))
1281             /* End of events */
1282             break;
1283 
1284         netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1285                "channel %d event is "EFX_QWORD_FMT"\n",
1286                channel->channel, EFX_QWORD_VAL(event));
1287 
1288         /* Clear this event by marking it all ones */
1289         EFX_SET_QWORD(*p_event);
1290 
1291         ++read_ptr;
1292 
1293         ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1294 
1295         switch (ev_code) {
1296         case FSE_AZ_EV_CODE_RX_EV:
1297             efx_farch_handle_rx_event(channel, &event);
1298             if (++spent == budget)
1299                 goto out;
1300             break;
1301         case FSE_AZ_EV_CODE_TX_EV:
1302             efx_farch_handle_tx_event(channel, &event);
1303             break;
1304         case FSE_AZ_EV_CODE_DRV_GEN_EV:
1305             efx_farch_handle_generated_event(channel, &event);
1306             break;
1307         case FSE_AZ_EV_CODE_DRIVER_EV:
1308             efx_farch_handle_driver_event(channel, &event);
1309             break;
1310 #ifdef CONFIG_SFC_SIENA_SRIOV
1311         case FSE_CZ_EV_CODE_USER_EV:
1312             efx_siena_sriov_event(channel, &event);
1313             break;
1314 #endif
1315         case FSE_CZ_EV_CODE_MCDI_EV:
1316             efx_siena_mcdi_process_event(channel, &event);
1317             break;
1318         case FSE_AZ_EV_CODE_GLOBAL_EV:
1319             if (efx->type->handle_global_event &&
1320                 efx->type->handle_global_event(channel, &event))
1321                 break;
1322             fallthrough;
1323         default:
1324             netif_err(channel->efx, hw, channel->efx->net_dev,
1325                   "channel %d unknown event type %d (data "
1326                   EFX_QWORD_FMT ")\n", channel->channel,
1327                   ev_code, EFX_QWORD_VAL(event));
1328         }
1329     }
1330 
1331 out:
1332     channel->eventq_read_ptr = read_ptr;
1333     return spent;
1334 }
1335 
1336 /* Allocate buffer table entries for event queue */
1337 int efx_farch_ev_probe(struct efx_channel *channel)
1338 {
1339     struct efx_nic *efx = channel->efx;
1340     unsigned entries;
1341 
1342     entries = channel->eventq_mask + 1;
1343     return efx_alloc_special_buffer(efx, &channel->eventq,
1344                     entries * sizeof(efx_qword_t));
1345 }
1346 
1347 int efx_farch_ev_init(struct efx_channel *channel)
1348 {
1349     efx_oword_t reg;
1350     struct efx_nic *efx = channel->efx;
1351 
1352     netif_dbg(efx, hw, efx->net_dev,
1353           "channel %d event queue in special buffers %d-%d\n",
1354           channel->channel, channel->eventq.index,
1355           channel->eventq.index + channel->eventq.entries - 1);
1356 
1357     EFX_POPULATE_OWORD_3(reg,
1358                  FRF_CZ_TIMER_Q_EN, 1,
1359                  FRF_CZ_HOST_NOTIFY_MODE, 0,
1360                  FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1361     efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1362 
1363     /* Pin event queue buffer */
1364     efx_init_special_buffer(efx, &channel->eventq);
1365 
1366     /* Fill event queue with all ones (i.e. empty events) */
1367     memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1368 
1369     /* Push event queue to card */
1370     EFX_POPULATE_OWORD_3(reg,
1371                  FRF_AZ_EVQ_EN, 1,
1372                  FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1373                  FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1374     efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1375              channel->channel);
1376 
1377     return 0;
1378 }
1379 
1380 void efx_farch_ev_fini(struct efx_channel *channel)
1381 {
1382     efx_oword_t reg;
1383     struct efx_nic *efx = channel->efx;
1384 
1385     /* Remove event queue from card */
1386     EFX_ZERO_OWORD(reg);
1387     efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1388              channel->channel);
1389     efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1390 
1391     /* Unpin event queue */
1392     efx_fini_special_buffer(efx, &channel->eventq);
1393 }
1394 
1395 /* Free buffers backing event queue */
1396 void efx_farch_ev_remove(struct efx_channel *channel)
1397 {
1398     efx_free_special_buffer(channel->efx, &channel->eventq);
1399 }
1400 
1401 
1402 void efx_farch_ev_test_generate(struct efx_channel *channel)
1403 {
1404     efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1405 }
1406 
1407 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1408 {
1409     efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1410                   EFX_CHANNEL_MAGIC_FILL(rx_queue));
1411 }
1412 
1413 /**************************************************************************
1414  *
1415  * Hardware interrupts
1416  * The hardware interrupt handler does very little work; all the event
1417  * queue processing is carried out by per-channel tasklets.
1418  *
1419  **************************************************************************/
1420 
1421 /* Enable/disable/generate interrupts */
1422 static inline void efx_farch_interrupts(struct efx_nic *efx,
1423                       bool enabled, bool force)
1424 {
1425     efx_oword_t int_en_reg_ker;
1426 
1427     EFX_POPULATE_OWORD_3(int_en_reg_ker,
1428                  FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1429                  FRF_AZ_KER_INT_KER, force,
1430                  FRF_AZ_DRV_INT_EN_KER, enabled);
1431     efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1432 }
1433 
1434 void efx_farch_irq_enable_master(struct efx_nic *efx)
1435 {
1436     EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1437     wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1438 
1439     efx_farch_interrupts(efx, true, false);
1440 }
1441 
1442 void efx_farch_irq_disable_master(struct efx_nic *efx)
1443 {
1444     /* Disable interrupts */
1445     efx_farch_interrupts(efx, false, false);
1446 }
1447 
1448 /* Generate a test interrupt
1449  * Interrupt must already have been enabled, otherwise nasty things
1450  * may happen.
1451  */
1452 int efx_farch_irq_test_generate(struct efx_nic *efx)
1453 {
1454     efx_farch_interrupts(efx, true, true);
1455     return 0;
1456 }
1457 
1458 /* Process a fatal interrupt
1459  * Disable bus mastering ASAP and schedule a reset
1460  */
1461 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1462 {
1463     efx_oword_t *int_ker = efx->irq_status.addr;
1464     efx_oword_t fatal_intr;
1465     int error, mem_perr;
1466 
1467     efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1468     error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1469 
1470     netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1471           EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1472           EFX_OWORD_VAL(fatal_intr),
1473           error ? "disabling bus mastering" : "no recognised error");
1474 
1475     /* If this is a memory parity error dump which blocks are offending */
1476     mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1477             EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1478     if (mem_perr) {
1479         efx_oword_t reg;
1480         efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1481         netif_err(efx, hw, efx->net_dev,
1482               "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1483               EFX_OWORD_VAL(reg));
1484     }
1485 
1486     /* Disable both devices */
1487     pci_clear_master(efx->pci_dev);
1488     efx_farch_irq_disable_master(efx);
1489 
1490     /* Count errors and reset or disable the NIC accordingly */
1491     if (efx->int_error_count == 0 ||
1492         time_after(jiffies, efx->int_error_expire)) {
1493         efx->int_error_count = 0;
1494         efx->int_error_expire =
1495             jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1496     }
1497     if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1498         netif_err(efx, hw, efx->net_dev,
1499               "SYSTEM ERROR - reset scheduled\n");
1500         efx_siena_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1501     } else {
1502         netif_err(efx, hw, efx->net_dev,
1503               "SYSTEM ERROR - max number of errors seen."
1504               "NIC will be disabled\n");
1505         efx_siena_schedule_reset(efx, RESET_TYPE_DISABLE);
1506     }
1507 
1508     return IRQ_HANDLED;
1509 }
1510 
1511 /* Handle a legacy interrupt
1512  * Acknowledges the interrupt and schedule event queue processing.
1513  */
1514 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1515 {
1516     struct efx_nic *efx = dev_id;
1517     bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1518     efx_oword_t *int_ker = efx->irq_status.addr;
1519     irqreturn_t result = IRQ_NONE;
1520     struct efx_channel *channel;
1521     efx_dword_t reg;
1522     u32 queues;
1523     int syserr;
1524 
1525     /* Read the ISR which also ACKs the interrupts */
1526     efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1527     queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1528 
1529     /* Legacy interrupts are disabled too late by the EEH kernel
1530      * code. Disable them earlier.
1531      * If an EEH error occurred, the read will have returned all ones.
1532      */
1533     if (EFX_DWORD_IS_ALL_ONES(reg) && efx_siena_try_recovery(efx) &&
1534         !efx->eeh_disabled_legacy_irq) {
1535         disable_irq_nosync(efx->legacy_irq);
1536         efx->eeh_disabled_legacy_irq = true;
1537     }
1538 
1539     /* Handle non-event-queue sources */
1540     if (queues & (1U << efx->irq_level) && soft_enabled) {
1541         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1542         if (unlikely(syserr))
1543             return efx_farch_fatal_interrupt(efx);
1544         efx->last_irq_cpu = raw_smp_processor_id();
1545     }
1546 
1547     if (queues != 0) {
1548         efx->irq_zero_count = 0;
1549 
1550         /* Schedule processing of any interrupting queues */
1551         if (likely(soft_enabled)) {
1552             efx_for_each_channel(channel, efx) {
1553                 if (queues & 1)
1554                     efx_schedule_channel_irq(channel);
1555                 queues >>= 1;
1556             }
1557         }
1558         result = IRQ_HANDLED;
1559 
1560     } else {
1561         efx_qword_t *event;
1562 
1563         /* Legacy ISR read can return zero once (SF bug 15783) */
1564 
1565         /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1566          * because this might be a shared interrupt. */
1567         if (efx->irq_zero_count++ == 0)
1568             result = IRQ_HANDLED;
1569 
1570         /* Ensure we schedule or rearm all event queues */
1571         if (likely(soft_enabled)) {
1572             efx_for_each_channel(channel, efx) {
1573                 event = efx_event(channel,
1574                           channel->eventq_read_ptr);
1575                 if (efx_event_present(event))
1576                     efx_schedule_channel_irq(channel);
1577                 else
1578                     efx_farch_ev_read_ack(channel);
1579             }
1580         }
1581     }
1582 
1583     if (result == IRQ_HANDLED)
1584         netif_vdbg(efx, intr, efx->net_dev,
1585                "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1586                irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1587 
1588     return result;
1589 }
1590 
1591 /* Handle an MSI interrupt
1592  *
1593  * Handle an MSI hardware interrupt.  This routine schedules event
1594  * queue processing.  No interrupt acknowledgement cycle is necessary.
1595  * Also, we never need to check that the interrupt is for us, since
1596  * MSI interrupts cannot be shared.
1597  */
1598 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1599 {
1600     struct efx_msi_context *context = dev_id;
1601     struct efx_nic *efx = context->efx;
1602     efx_oword_t *int_ker = efx->irq_status.addr;
1603     int syserr;
1604 
1605     netif_vdbg(efx, intr, efx->net_dev,
1606            "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1607            irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1608 
1609     if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1610         return IRQ_HANDLED;
1611 
1612     /* Handle non-event-queue sources */
1613     if (context->index == efx->irq_level) {
1614         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1615         if (unlikely(syserr))
1616             return efx_farch_fatal_interrupt(efx);
1617         efx->last_irq_cpu = raw_smp_processor_id();
1618     }
1619 
1620     /* Schedule processing of the channel */
1621     efx_schedule_channel_irq(efx->channel[context->index]);
1622 
1623     return IRQ_HANDLED;
1624 }
1625 
1626 /* Setup RSS indirection table.
1627  * This maps from the hash value of the packet to RXQ
1628  */
1629 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1630 {
1631     size_t i = 0;
1632     efx_dword_t dword;
1633 
1634     BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1635              FR_BZ_RX_INDIRECTION_TBL_ROWS);
1636 
1637     for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1638         EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1639                      efx->rss_context.rx_indir_table[i]);
1640         efx_writed(efx, &dword,
1641                FR_BZ_RX_INDIRECTION_TBL +
1642                FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1643     }
1644 }
1645 
1646 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1647 {
1648     size_t i = 0;
1649     efx_dword_t dword;
1650 
1651     BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1652              FR_BZ_RX_INDIRECTION_TBL_ROWS);
1653 
1654     for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1655         efx_readd(efx, &dword,
1656                FR_BZ_RX_INDIRECTION_TBL +
1657                FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1658         efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1659     }
1660 }
1661 
1662 /* Looks at available SRAM resources and works out how many queues we
1663  * can support, and where things like descriptor caches should live.
1664  *
1665  * SRAM is split up as follows:
1666  * 0                          buftbl entries for channels
1667  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1668  * efx->rx_dc_base            RX descriptor caches
1669  * efx->tx_dc_base            TX descriptor caches
1670  */
1671 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1672 {
1673     unsigned vi_count, total_tx_channels;
1674 #ifdef CONFIG_SFC_SIENA_SRIOV
1675     struct siena_nic_data *nic_data;
1676     unsigned buftbl_min;
1677 #endif
1678 
1679     total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1680     vi_count = max(efx->n_channels, total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL);
1681 
1682 #ifdef CONFIG_SFC_SIENA_SRIOV
1683     nic_data = efx->nic_data;
1684     /* Account for the buffer table entries backing the datapath channels
1685      * and the descriptor caches for those channels.
1686      */
1687     buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1688                total_tx_channels * EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_DMAQ_SIZE +
1689                efx->n_channels * EFX_MAX_EVQ_SIZE)
1690               * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1691     if (efx->type->sriov_wanted) {
1692         if (efx->type->sriov_wanted(efx)) {
1693             unsigned vi_dc_entries, buftbl_free;
1694             unsigned entries_per_vf, vf_limit;
1695 
1696             nic_data->vf_buftbl_base = buftbl_min;
1697 
1698             vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1699             vi_count = max(vi_count, EFX_VI_BASE);
1700             buftbl_free = (sram_lim_qw - buftbl_min -
1701                        vi_count * vi_dc_entries);
1702 
1703             entries_per_vf = ((vi_dc_entries +
1704                        EFX_VF_BUFTBL_PER_VI) *
1705                       efx_vf_size(efx));
1706             vf_limit = min(buftbl_free / entries_per_vf,
1707                        (1024U - EFX_VI_BASE) >> efx->vi_scale);
1708 
1709             if (efx->vf_count > vf_limit) {
1710                 netif_err(efx, probe, efx->net_dev,
1711                       "Reducing VF count from from %d to %d\n",
1712                       efx->vf_count, vf_limit);
1713                 efx->vf_count = vf_limit;
1714             }
1715             vi_count += efx->vf_count * efx_vf_size(efx);
1716         }
1717     }
1718 #endif
1719 
1720     efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1721     efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1722 }
1723 
1724 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1725 {
1726     efx_oword_t altera_build;
1727     efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1728     return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1729 }
1730 
1731 void efx_farch_init_common(struct efx_nic *efx)
1732 {
1733     efx_oword_t temp;
1734 
1735     /* Set positions of descriptor caches in SRAM. */
1736     EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1737     efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1738     EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1739     efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1740 
1741     /* Set TX descriptor cache size. */
1742     BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1743     EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1744     efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1745 
1746     /* Set RX descriptor cache size.  Set low watermark to size-8, as
1747      * this allows most efficient prefetching.
1748      */
1749     BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1750     EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1751     efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1752     EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1753     efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1754 
1755     /* Program INT_KER address */
1756     EFX_POPULATE_OWORD_2(temp,
1757                  FRF_AZ_NORM_INT_VEC_DIS_KER,
1758                  EFX_INT_MODE_USE_MSI(efx),
1759                  FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1760     efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1761 
1762     if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1763         /* Use an interrupt level unused by event queues */
1764         efx->irq_level = 0x1f;
1765     else
1766         /* Use a valid MSI-X vector */
1767         efx->irq_level = 0;
1768 
1769     /* Enable all the genuinely fatal interrupts.  (They are still
1770      * masked by the overall interrupt mask, controlled by
1771      * falcon_interrupts()).
1772      *
1773      * Note: All other fatal interrupts are enabled
1774      */
1775     EFX_POPULATE_OWORD_3(temp,
1776                  FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1777                  FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1778                  FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1779     EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1780     EFX_INVERT_OWORD(temp);
1781     efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1782 
1783     /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1784      * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1785      */
1786     efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1787     EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1788     EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1789     EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1790     EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1791     EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1792     /* Enable SW_EV to inherit in char driver - assume harmless here */
1793     EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1794     /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1795     EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1796     /* Disable hardware watchdog which can misfire */
1797     EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1798     /* Squash TX of packets of 16 bytes or less */
1799     EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1800     efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1801 
1802     EFX_POPULATE_OWORD_4(temp,
1803                  /* Default values */
1804                  FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1805                  FRF_BZ_TX_PACE_SB_AF, 0xb,
1806                  FRF_BZ_TX_PACE_FB_BASE, 0,
1807                  /* Allow large pace values in the fast bin. */
1808                  FRF_BZ_TX_PACE_BIN_TH,
1809                  FFE_BZ_TX_PACE_RESERVED);
1810     efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1811 }
1812 
1813 /**************************************************************************
1814  *
1815  * Filter tables
1816  *
1817  **************************************************************************
1818  */
1819 
1820 /* "Fudge factors" - difference between programmed value and actual depth.
1821  * Due to pipelined implementation we need to program H/W with a value that
1822  * is larger than the hop limit we want.
1823  */
1824 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1825 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1826 
1827 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1828  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1829  * table is full.
1830  */
1831 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1832 
1833 /* Don't try very hard to find space for performance hints, as this is
1834  * counter-productive. */
1835 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1836 
1837 enum efx_farch_filter_type {
1838     EFX_FARCH_FILTER_TCP_FULL = 0,
1839     EFX_FARCH_FILTER_TCP_WILD,
1840     EFX_FARCH_FILTER_UDP_FULL,
1841     EFX_FARCH_FILTER_UDP_WILD,
1842     EFX_FARCH_FILTER_MAC_FULL = 4,
1843     EFX_FARCH_FILTER_MAC_WILD,
1844     EFX_FARCH_FILTER_UC_DEF = 8,
1845     EFX_FARCH_FILTER_MC_DEF,
1846     EFX_FARCH_FILTER_TYPE_COUNT,        /* number of specific types */
1847 };
1848 
1849 enum efx_farch_filter_table_id {
1850     EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1851     EFX_FARCH_FILTER_TABLE_RX_MAC,
1852     EFX_FARCH_FILTER_TABLE_RX_DEF,
1853     EFX_FARCH_FILTER_TABLE_TX_MAC,
1854     EFX_FARCH_FILTER_TABLE_COUNT,
1855 };
1856 
1857 enum efx_farch_filter_index {
1858     EFX_FARCH_FILTER_INDEX_UC_DEF,
1859     EFX_FARCH_FILTER_INDEX_MC_DEF,
1860     EFX_FARCH_FILTER_SIZE_RX_DEF,
1861 };
1862 
1863 struct efx_farch_filter_spec {
1864     u8  type:4;
1865     u8  priority:4;
1866     u8  flags;
1867     u16 dmaq_id;
1868     u32 data[3];
1869 };
1870 
1871 struct efx_farch_filter_table {
1872     enum efx_farch_filter_table_id id;
1873     u32     offset;     /* address of table relative to BAR */
1874     unsigned    size;       /* number of entries */
1875     unsigned    step;       /* step between entries */
1876     unsigned    used;       /* number currently used */
1877     unsigned long   *used_bitmap;
1878     struct efx_farch_filter_spec *spec;
1879     unsigned    search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1880 };
1881 
1882 struct efx_farch_filter_state {
1883     struct rw_semaphore lock; /* Protects table contents */
1884     struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1885 };
1886 
1887 static void
1888 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1889                    struct efx_farch_filter_table *table,
1890                    unsigned int filter_idx);
1891 
1892 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1893  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1894 static u16 efx_farch_filter_hash(u32 key)
1895 {
1896     u16 tmp;
1897 
1898     /* First 16 rounds */
1899     tmp = 0x1fff ^ key >> 16;
1900     tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1901     tmp = tmp ^ tmp >> 9;
1902     /* Last 16 rounds */
1903     tmp = tmp ^ tmp << 13 ^ key;
1904     tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1905     return tmp ^ tmp >> 9;
1906 }
1907 
1908 /* To allow for hash collisions, filter search continues at these
1909  * increments from the first possible entry selected by the hash. */
1910 static u16 efx_farch_filter_increment(u32 key)
1911 {
1912     return key * 2 - 1;
1913 }
1914 
1915 static enum efx_farch_filter_table_id
1916 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1917 {
1918     BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919              (EFX_FARCH_FILTER_TCP_FULL >> 2));
1920     BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921              (EFX_FARCH_FILTER_TCP_WILD >> 2));
1922     BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1923              (EFX_FARCH_FILTER_UDP_FULL >> 2));
1924     BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1925              (EFX_FARCH_FILTER_UDP_WILD >> 2));
1926     BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1927              (EFX_FARCH_FILTER_MAC_FULL >> 2));
1928     BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1929              (EFX_FARCH_FILTER_MAC_WILD >> 2));
1930     BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1931              EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1932     return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1933 }
1934 
1935 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1936 {
1937     struct efx_farch_filter_state *state = efx->filter_state;
1938     struct efx_farch_filter_table *table;
1939     efx_oword_t filter_ctl;
1940 
1941     efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1942 
1943     table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1944     EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1945                 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1946                 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1947     EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1948                 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1949                 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1950     EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1951                 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1952                 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1953     EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1954                 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1955                 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1956 
1957     table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1958     if (table->size) {
1959         EFX_SET_OWORD_FIELD(
1960             filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1961             table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1962             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1963         EFX_SET_OWORD_FIELD(
1964             filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1965             table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1966             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1967     }
1968 
1969     table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1970     if (table->size) {
1971         EFX_SET_OWORD_FIELD(
1972             filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1973             table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1974         EFX_SET_OWORD_FIELD(
1975             filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1976             !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1977                EFX_FILTER_FLAG_RX_RSS));
1978         EFX_SET_OWORD_FIELD(
1979             filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1980             table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1981         EFX_SET_OWORD_FIELD(
1982             filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1983             !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1984                EFX_FILTER_FLAG_RX_RSS));
1985 
1986         /* There is a single bit to enable RX scatter for all
1987          * unmatched packets.  Only set it if scatter is
1988          * enabled in both filter specs.
1989          */
1990         EFX_SET_OWORD_FIELD(
1991             filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1992             !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1993                table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1994                EFX_FILTER_FLAG_RX_SCATTER));
1995     } else {
1996         /* We don't expose 'default' filters because unmatched
1997          * packets always go to the queue number found in the
1998          * RSS table.  But we still need to set the RX scatter
1999          * bit here.
2000          */
2001         EFX_SET_OWORD_FIELD(
2002             filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2003             efx->rx_scatter);
2004     }
2005 
2006     efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2007 }
2008 
2009 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2010 {
2011     struct efx_farch_filter_state *state = efx->filter_state;
2012     struct efx_farch_filter_table *table;
2013     efx_oword_t tx_cfg;
2014 
2015     efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2016 
2017     table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2018     if (table->size) {
2019         EFX_SET_OWORD_FIELD(
2020             tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2021             table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2022             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2023         EFX_SET_OWORD_FIELD(
2024             tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2025             table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2026             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2027     }
2028 
2029     efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2030 }
2031 
2032 static int
2033 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2034                    const struct efx_filter_spec *gen_spec)
2035 {
2036     bool is_full = false;
2037 
2038     if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2039         return -EINVAL;
2040 
2041     spec->priority = gen_spec->priority;
2042     spec->flags = gen_spec->flags;
2043     spec->dmaq_id = gen_spec->dmaq_id;
2044 
2045     switch (gen_spec->match_flags) {
2046     case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047           EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2048           EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2049         is_full = true;
2050         fallthrough;
2051     case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2052           EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2053         __be32 rhost, host1, host2;
2054         __be16 rport, port1, port2;
2055 
2056         EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2057 
2058         if (gen_spec->ether_type != htons(ETH_P_IP))
2059             return -EPROTONOSUPPORT;
2060         if (gen_spec->loc_port == 0 ||
2061             (is_full && gen_spec->rem_port == 0))
2062             return -EADDRNOTAVAIL;
2063         switch (gen_spec->ip_proto) {
2064         case IPPROTO_TCP:
2065             spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2066                       EFX_FARCH_FILTER_TCP_WILD);
2067             break;
2068         case IPPROTO_UDP:
2069             spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2070                       EFX_FARCH_FILTER_UDP_WILD);
2071             break;
2072         default:
2073             return -EPROTONOSUPPORT;
2074         }
2075 
2076         /* Filter is constructed in terms of source and destination,
2077          * with the odd wrinkle that the ports are swapped in a UDP
2078          * wildcard filter.  We need to convert from local and remote
2079          * (= zero for wildcard) addresses.
2080          */
2081         rhost = is_full ? gen_spec->rem_host[0] : 0;
2082         rport = is_full ? gen_spec->rem_port : 0;
2083         host1 = rhost;
2084         host2 = gen_spec->loc_host[0];
2085         if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2086             port1 = gen_spec->loc_port;
2087             port2 = rport;
2088         } else {
2089             port1 = rport;
2090             port2 = gen_spec->loc_port;
2091         }
2092         spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2093         spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2094         spec->data[2] = ntohl(host2);
2095 
2096         break;
2097     }
2098 
2099     case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2100         is_full = true;
2101         fallthrough;
2102     case EFX_FILTER_MATCH_LOC_MAC:
2103         spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2104                   EFX_FARCH_FILTER_MAC_WILD);
2105         spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2106         spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2107                  gen_spec->loc_mac[3] << 16 |
2108                  gen_spec->loc_mac[4] << 8 |
2109                  gen_spec->loc_mac[5]);
2110         spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2111                  gen_spec->loc_mac[1]);
2112         break;
2113 
2114     case EFX_FILTER_MATCH_LOC_MAC_IG:
2115         spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2116                   EFX_FARCH_FILTER_MC_DEF :
2117                   EFX_FARCH_FILTER_UC_DEF);
2118         memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2119         break;
2120 
2121     default:
2122         return -EPROTONOSUPPORT;
2123     }
2124 
2125     return 0;
2126 }
2127 
2128 static void
2129 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2130                  const struct efx_farch_filter_spec *spec)
2131 {
2132     bool is_full = false;
2133 
2134     /* *gen_spec should be completely initialised, to be consistent
2135      * with efx_filter_init_{rx,tx}() and in case we want to copy
2136      * it back to userland.
2137      */
2138     memset(gen_spec, 0, sizeof(*gen_spec));
2139 
2140     gen_spec->priority = spec->priority;
2141     gen_spec->flags = spec->flags;
2142     gen_spec->dmaq_id = spec->dmaq_id;
2143 
2144     switch (spec->type) {
2145     case EFX_FARCH_FILTER_TCP_FULL:
2146     case EFX_FARCH_FILTER_UDP_FULL:
2147         is_full = true;
2148         fallthrough;
2149     case EFX_FARCH_FILTER_TCP_WILD:
2150     case EFX_FARCH_FILTER_UDP_WILD: {
2151         __be32 host1, host2;
2152         __be16 port1, port2;
2153 
2154         gen_spec->match_flags =
2155             EFX_FILTER_MATCH_ETHER_TYPE |
2156             EFX_FILTER_MATCH_IP_PROTO |
2157             EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2158         if (is_full)
2159             gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2160                           EFX_FILTER_MATCH_REM_PORT);
2161         gen_spec->ether_type = htons(ETH_P_IP);
2162         gen_spec->ip_proto =
2163             (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2164              spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2165             IPPROTO_TCP : IPPROTO_UDP;
2166 
2167         host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2168         port1 = htons(spec->data[0]);
2169         host2 = htonl(spec->data[2]);
2170         port2 = htons(spec->data[1] >> 16);
2171         if (spec->flags & EFX_FILTER_FLAG_TX) {
2172             gen_spec->loc_host[0] = host1;
2173             gen_spec->rem_host[0] = host2;
2174         } else {
2175             gen_spec->loc_host[0] = host2;
2176             gen_spec->rem_host[0] = host1;
2177         }
2178         if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2179             (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2180             gen_spec->loc_port = port1;
2181             gen_spec->rem_port = port2;
2182         } else {
2183             gen_spec->loc_port = port2;
2184             gen_spec->rem_port = port1;
2185         }
2186 
2187         break;
2188     }
2189 
2190     case EFX_FARCH_FILTER_MAC_FULL:
2191         is_full = true;
2192         fallthrough;
2193     case EFX_FARCH_FILTER_MAC_WILD:
2194         gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2195         if (is_full)
2196             gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2197         gen_spec->loc_mac[0] = spec->data[2] >> 8;
2198         gen_spec->loc_mac[1] = spec->data[2];
2199         gen_spec->loc_mac[2] = spec->data[1] >> 24;
2200         gen_spec->loc_mac[3] = spec->data[1] >> 16;
2201         gen_spec->loc_mac[4] = spec->data[1] >> 8;
2202         gen_spec->loc_mac[5] = spec->data[1];
2203         gen_spec->outer_vid = htons(spec->data[0]);
2204         break;
2205 
2206     case EFX_FARCH_FILTER_UC_DEF:
2207     case EFX_FARCH_FILTER_MC_DEF:
2208         gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2209         gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2210         break;
2211 
2212     default:
2213         WARN_ON(1);
2214         break;
2215     }
2216 }
2217 
2218 static void
2219 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2220                   struct efx_farch_filter_spec *spec)
2221 {
2222     /* If there's only one channel then disable RSS for non VF
2223      * traffic, thereby allowing VFs to use RSS when the PF can't.
2224      */
2225     spec->priority = EFX_FILTER_PRI_AUTO;
2226     spec->flags = (EFX_FILTER_FLAG_RX |
2227                (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2228                (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2229     spec->dmaq_id = 0;
2230 }
2231 
2232 /* Build a filter entry and return its n-tuple key. */
2233 static u32 efx_farch_filter_build(efx_oword_t *filter,
2234                   struct efx_farch_filter_spec *spec)
2235 {
2236     u32 data3;
2237 
2238     switch (efx_farch_filter_spec_table_id(spec)) {
2239     case EFX_FARCH_FILTER_TABLE_RX_IP: {
2240         bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2241                    spec->type == EFX_FARCH_FILTER_UDP_WILD);
2242         EFX_POPULATE_OWORD_7(
2243             *filter,
2244             FRF_BZ_RSS_EN,
2245             !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2246             FRF_BZ_SCATTER_EN,
2247             !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2248             FRF_BZ_TCP_UDP, is_udp,
2249             FRF_BZ_RXQ_ID, spec->dmaq_id,
2250             EFX_DWORD_2, spec->data[2],
2251             EFX_DWORD_1, spec->data[1],
2252             EFX_DWORD_0, spec->data[0]);
2253         data3 = is_udp;
2254         break;
2255     }
2256 
2257     case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2258         bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2259         EFX_POPULATE_OWORD_7(
2260             *filter,
2261             FRF_CZ_RMFT_RSS_EN,
2262             !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2263             FRF_CZ_RMFT_SCATTER_EN,
2264             !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2265             FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2266             FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2267             FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2268             FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2269             FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2270         data3 = is_wild;
2271         break;
2272     }
2273 
2274     case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2275         bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2276         EFX_POPULATE_OWORD_5(*filter,
2277                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2278                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2279                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2280                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2281                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2282         data3 = is_wild | spec->dmaq_id << 1;
2283         break;
2284     }
2285 
2286     default:
2287         BUG();
2288     }
2289 
2290     return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2291 }
2292 
2293 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2294                    const struct efx_farch_filter_spec *right)
2295 {
2296     if (left->type != right->type ||
2297         memcmp(left->data, right->data, sizeof(left->data)))
2298         return false;
2299 
2300     if (left->flags & EFX_FILTER_FLAG_TX &&
2301         left->dmaq_id != right->dmaq_id)
2302         return false;
2303 
2304     return true;
2305 }
2306 
2307 /*
2308  * Construct/deconstruct external filter IDs.  At least the RX filter
2309  * IDs must be ordered by matching priority, for RX NFC semantics.
2310  *
2311  * Deconstruction needs to be robust against invalid IDs so that
2312  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2313  * accept user-provided IDs.
2314  */
2315 
2316 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT    5
2317 
2318 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2319     [EFX_FARCH_FILTER_TCP_FULL] = 0,
2320     [EFX_FARCH_FILTER_UDP_FULL] = 0,
2321     [EFX_FARCH_FILTER_TCP_WILD] = 1,
2322     [EFX_FARCH_FILTER_UDP_WILD] = 1,
2323     [EFX_FARCH_FILTER_MAC_FULL] = 2,
2324     [EFX_FARCH_FILTER_MAC_WILD] = 3,
2325     [EFX_FARCH_FILTER_UC_DEF]   = 4,
2326     [EFX_FARCH_FILTER_MC_DEF]   = 4,
2327 };
2328 
2329 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2330     EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2331     EFX_FARCH_FILTER_TABLE_RX_IP,
2332     EFX_FARCH_FILTER_TABLE_RX_MAC,
2333     EFX_FARCH_FILTER_TABLE_RX_MAC,
2334     EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2335     EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2336     EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2337 };
2338 
2339 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2340 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2341 
2342 static inline u32
2343 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2344              unsigned int index)
2345 {
2346     unsigned int range;
2347 
2348     range = efx_farch_filter_type_match_pri[spec->type];
2349     if (!(spec->flags & EFX_FILTER_FLAG_RX))
2350         range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2351 
2352     return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2353 }
2354 
2355 static inline enum efx_farch_filter_table_id
2356 efx_farch_filter_id_table_id(u32 id)
2357 {
2358     unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2359 
2360     if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2361         return efx_farch_filter_range_table[range];
2362     else
2363         return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2364 }
2365 
2366 static inline unsigned int efx_farch_filter_id_index(u32 id)
2367 {
2368     return id & EFX_FARCH_FILTER_INDEX_MASK;
2369 }
2370 
2371 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2372 {
2373     struct efx_farch_filter_state *state = efx->filter_state;
2374     unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2375     enum efx_farch_filter_table_id table_id;
2376 
2377     do {
2378         table_id = efx_farch_filter_range_table[range];
2379         if (state->table[table_id].size != 0)
2380             return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2381                 state->table[table_id].size;
2382     } while (range--);
2383 
2384     return 0;
2385 }
2386 
2387 s32 efx_farch_filter_insert(struct efx_nic *efx,
2388                 struct efx_filter_spec *gen_spec,
2389                 bool replace_equal)
2390 {
2391     struct efx_farch_filter_state *state = efx->filter_state;
2392     struct efx_farch_filter_table *table;
2393     struct efx_farch_filter_spec spec;
2394     efx_oword_t filter;
2395     int rep_index, ins_index;
2396     unsigned int depth = 0;
2397     int rc;
2398 
2399     rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2400     if (rc)
2401         return rc;
2402 
2403     down_write(&state->lock);
2404 
2405     table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2406     if (table->size == 0) {
2407         rc = -EINVAL;
2408         goto out_unlock;
2409     }
2410 
2411     netif_vdbg(efx, hw, efx->net_dev,
2412            "%s: type %d search_limit=%d", __func__, spec.type,
2413            table->search_limit[spec.type]);
2414 
2415     if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2416         /* One filter spec per type */
2417         BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2418         BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2419                  EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2420         rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2421         ins_index = rep_index;
2422     } else {
2423         /* Search concurrently for
2424          * (1) a filter to be replaced (rep_index): any filter
2425          *     with the same match values, up to the current
2426          *     search depth for this type, and
2427          * (2) the insertion point (ins_index): (1) or any
2428          *     free slot before it or up to the maximum search
2429          *     depth for this priority
2430          * We fail if we cannot find (2).
2431          *
2432          * We can stop once either
2433          * (a) we find (1), in which case we have definitely
2434          *     found (2) as well; or
2435          * (b) we have searched exhaustively for (1), and have
2436          *     either found (2) or searched exhaustively for it
2437          */
2438         u32 key = efx_farch_filter_build(&filter, &spec);
2439         unsigned int hash = efx_farch_filter_hash(key);
2440         unsigned int incr = efx_farch_filter_increment(key);
2441         unsigned int max_rep_depth = table->search_limit[spec.type];
2442         unsigned int max_ins_depth =
2443             spec.priority <= EFX_FILTER_PRI_HINT ?
2444             EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2445             EFX_FARCH_FILTER_CTL_SRCH_MAX;
2446         unsigned int i = hash & (table->size - 1);
2447 
2448         ins_index = -1;
2449         depth = 1;
2450 
2451         for (;;) {
2452             if (!test_bit(i, table->used_bitmap)) {
2453                 if (ins_index < 0)
2454                     ins_index = i;
2455             } else if (efx_farch_filter_equal(&spec,
2456                               &table->spec[i])) {
2457                 /* Case (a) */
2458                 if (ins_index < 0)
2459                     ins_index = i;
2460                 rep_index = i;
2461                 break;
2462             }
2463 
2464             if (depth >= max_rep_depth &&
2465                 (ins_index >= 0 || depth >= max_ins_depth)) {
2466                 /* Case (b) */
2467                 if (ins_index < 0) {
2468                     rc = -EBUSY;
2469                     goto out_unlock;
2470                 }
2471                 rep_index = -1;
2472                 break;
2473             }
2474 
2475             i = (i + incr) & (table->size - 1);
2476             ++depth;
2477         }
2478     }
2479 
2480     /* If we found a filter to be replaced, check whether we
2481      * should do so
2482      */
2483     if (rep_index >= 0) {
2484         struct efx_farch_filter_spec *saved_spec =
2485             &table->spec[rep_index];
2486 
2487         if (spec.priority == saved_spec->priority && !replace_equal) {
2488             rc = -EEXIST;
2489             goto out_unlock;
2490         }
2491         if (spec.priority < saved_spec->priority) {
2492             rc = -EPERM;
2493             goto out_unlock;
2494         }
2495         if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2496             saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2497             spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2498     }
2499 
2500     /* Insert the filter */
2501     if (ins_index != rep_index) {
2502         __set_bit(ins_index, table->used_bitmap);
2503         ++table->used;
2504     }
2505     table->spec[ins_index] = spec;
2506 
2507     if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2508         efx_farch_filter_push_rx_config(efx);
2509     } else {
2510         if (table->search_limit[spec.type] < depth) {
2511             table->search_limit[spec.type] = depth;
2512             if (spec.flags & EFX_FILTER_FLAG_TX)
2513                 efx_farch_filter_push_tx_limits(efx);
2514             else
2515                 efx_farch_filter_push_rx_config(efx);
2516         }
2517 
2518         efx_writeo(efx, &filter,
2519                table->offset + table->step * ins_index);
2520 
2521         /* If we were able to replace a filter by inserting
2522          * at a lower depth, clear the replaced filter
2523          */
2524         if (ins_index != rep_index && rep_index >= 0)
2525             efx_farch_filter_table_clear_entry(efx, table,
2526                                rep_index);
2527     }
2528 
2529     netif_vdbg(efx, hw, efx->net_dev,
2530            "%s: filter type %d index %d rxq %u set",
2531            __func__, spec.type, ins_index, spec.dmaq_id);
2532     rc = efx_farch_filter_make_id(&spec, ins_index);
2533 
2534 out_unlock:
2535     up_write(&state->lock);
2536     return rc;
2537 }
2538 
2539 static void
2540 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2541                    struct efx_farch_filter_table *table,
2542                    unsigned int filter_idx)
2543 {
2544     static efx_oword_t filter;
2545 
2546     EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2547     BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2548 
2549     __clear_bit(filter_idx, table->used_bitmap);
2550     --table->used;
2551     memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2552 
2553     efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2554 
2555     /* If this filter required a greater search depth than
2556      * any other, the search limit for its type can now be
2557      * decreased.  However, it is hard to determine that
2558      * unless the table has become completely empty - in
2559      * which case, all its search limits can be set to 0.
2560      */
2561     if (unlikely(table->used == 0)) {
2562         memset(table->search_limit, 0, sizeof(table->search_limit));
2563         if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2564             efx_farch_filter_push_tx_limits(efx);
2565         else
2566             efx_farch_filter_push_rx_config(efx);
2567     }
2568 }
2569 
2570 static int efx_farch_filter_remove(struct efx_nic *efx,
2571                    struct efx_farch_filter_table *table,
2572                    unsigned int filter_idx,
2573                    enum efx_filter_priority priority)
2574 {
2575     struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2576 
2577     if (!test_bit(filter_idx, table->used_bitmap) ||
2578         spec->priority != priority)
2579         return -ENOENT;
2580 
2581     if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2582         efx_farch_filter_init_rx_auto(efx, spec);
2583         efx_farch_filter_push_rx_config(efx);
2584     } else {
2585         efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2586     }
2587 
2588     return 0;
2589 }
2590 
2591 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2592                  enum efx_filter_priority priority,
2593                  u32 filter_id)
2594 {
2595     struct efx_farch_filter_state *state = efx->filter_state;
2596     enum efx_farch_filter_table_id table_id;
2597     struct efx_farch_filter_table *table;
2598     unsigned int filter_idx;
2599     int rc;
2600 
2601     table_id = efx_farch_filter_id_table_id(filter_id);
2602     if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2603         return -ENOENT;
2604     table = &state->table[table_id];
2605 
2606     filter_idx = efx_farch_filter_id_index(filter_id);
2607     if (filter_idx >= table->size)
2608         return -ENOENT;
2609     down_write(&state->lock);
2610 
2611     rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612     up_write(&state->lock);
2613 
2614     return rc;
2615 }
2616 
2617 int efx_farch_filter_get_safe(struct efx_nic *efx,
2618                   enum efx_filter_priority priority,
2619                   u32 filter_id, struct efx_filter_spec *spec_buf)
2620 {
2621     struct efx_farch_filter_state *state = efx->filter_state;
2622     enum efx_farch_filter_table_id table_id;
2623     struct efx_farch_filter_table *table;
2624     struct efx_farch_filter_spec *spec;
2625     unsigned int filter_idx;
2626     int rc = -ENOENT;
2627 
2628     down_read(&state->lock);
2629 
2630     table_id = efx_farch_filter_id_table_id(filter_id);
2631     if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632         goto out_unlock;
2633     table = &state->table[table_id];
2634 
2635     filter_idx = efx_farch_filter_id_index(filter_id);
2636     if (filter_idx >= table->size)
2637         goto out_unlock;
2638     spec = &table->spec[filter_idx];
2639 
2640     if (test_bit(filter_idx, table->used_bitmap) &&
2641         spec->priority == priority) {
2642         efx_farch_filter_to_gen_spec(spec_buf, spec);
2643         rc = 0;
2644     }
2645 
2646 out_unlock:
2647     up_read(&state->lock);
2648     return rc;
2649 }
2650 
2651 static void
2652 efx_farch_filter_table_clear(struct efx_nic *efx,
2653                  enum efx_farch_filter_table_id table_id,
2654                  enum efx_filter_priority priority)
2655 {
2656     struct efx_farch_filter_state *state = efx->filter_state;
2657     struct efx_farch_filter_table *table = &state->table[table_id];
2658     unsigned int filter_idx;
2659 
2660     down_write(&state->lock);
2661     for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2662         if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2663             efx_farch_filter_remove(efx, table,
2664                         filter_idx, priority);
2665     }
2666     up_write(&state->lock);
2667 }
2668 
2669 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2670                    enum efx_filter_priority priority)
2671 {
2672     efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2673                      priority);
2674     efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2675                      priority);
2676     efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2677                      priority);
2678     return 0;
2679 }
2680 
2681 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2682                    enum efx_filter_priority priority)
2683 {
2684     struct efx_farch_filter_state *state = efx->filter_state;
2685     enum efx_farch_filter_table_id table_id;
2686     struct efx_farch_filter_table *table;
2687     unsigned int filter_idx;
2688     u32 count = 0;
2689 
2690     down_read(&state->lock);
2691 
2692     for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2693          table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2694          table_id++) {
2695         table = &state->table[table_id];
2696         for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2697             if (test_bit(filter_idx, table->used_bitmap) &&
2698                 table->spec[filter_idx].priority == priority)
2699                 ++count;
2700         }
2701     }
2702 
2703     up_read(&state->lock);
2704 
2705     return count;
2706 }
2707 
2708 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2709                 enum efx_filter_priority priority,
2710                 u32 *buf, u32 size)
2711 {
2712     struct efx_farch_filter_state *state = efx->filter_state;
2713     enum efx_farch_filter_table_id table_id;
2714     struct efx_farch_filter_table *table;
2715     unsigned int filter_idx;
2716     s32 count = 0;
2717 
2718     down_read(&state->lock);
2719 
2720     for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2721          table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2722          table_id++) {
2723         table = &state->table[table_id];
2724         for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2725             if (test_bit(filter_idx, table->used_bitmap) &&
2726                 table->spec[filter_idx].priority == priority) {
2727                 if (count == size) {
2728                     count = -EMSGSIZE;
2729                     goto out;
2730                 }
2731                 buf[count++] = efx_farch_filter_make_id(
2732                     &table->spec[filter_idx], filter_idx);
2733             }
2734         }
2735     }
2736 out:
2737     up_read(&state->lock);
2738 
2739     return count;
2740 }
2741 
2742 /* Restore filter stater after reset */
2743 void efx_farch_filter_table_restore(struct efx_nic *efx)
2744 {
2745     struct efx_farch_filter_state *state = efx->filter_state;
2746     enum efx_farch_filter_table_id table_id;
2747     struct efx_farch_filter_table *table;
2748     efx_oword_t filter;
2749     unsigned int filter_idx;
2750 
2751     down_write(&state->lock);
2752 
2753     for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2754         table = &state->table[table_id];
2755 
2756         /* Check whether this is a regular register table */
2757         if (table->step == 0)
2758             continue;
2759 
2760         for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2761             if (!test_bit(filter_idx, table->used_bitmap))
2762                 continue;
2763             efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2764             efx_writeo(efx, &filter,
2765                    table->offset + table->step * filter_idx);
2766         }
2767     }
2768 
2769     efx_farch_filter_push_rx_config(efx);
2770     efx_farch_filter_push_tx_limits(efx);
2771 
2772     up_write(&state->lock);
2773 }
2774 
2775 void efx_farch_filter_table_remove(struct efx_nic *efx)
2776 {
2777     struct efx_farch_filter_state *state = efx->filter_state;
2778     enum efx_farch_filter_table_id table_id;
2779 
2780     for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2781         bitmap_free(state->table[table_id].used_bitmap);
2782         vfree(state->table[table_id].spec);
2783     }
2784     kfree(state);
2785 }
2786 
2787 int efx_farch_filter_table_probe(struct efx_nic *efx)
2788 {
2789     struct efx_farch_filter_state *state;
2790     struct efx_farch_filter_table *table;
2791     unsigned table_id;
2792 
2793     state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2794     if (!state)
2795         return -ENOMEM;
2796     efx->filter_state = state;
2797     init_rwsem(&state->lock);
2798 
2799     table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2800     table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2801     table->offset = FR_BZ_RX_FILTER_TBL0;
2802     table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2803     table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2804 
2805     table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2806     table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2807     table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2808     table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2809     table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2810 
2811     table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2812     table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2813     table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2814 
2815     table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2816     table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2817     table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2818     table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2819     table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2820 
2821     for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2822         table = &state->table[table_id];
2823         if (table->size == 0)
2824             continue;
2825         table->used_bitmap = bitmap_zalloc(table->size, GFP_KERNEL);
2826         if (!table->used_bitmap)
2827             goto fail;
2828         table->spec = vzalloc(array_size(sizeof(*table->spec),
2829                          table->size));
2830         if (!table->spec)
2831             goto fail;
2832     }
2833 
2834     table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2835     if (table->size) {
2836         /* RX default filters must always exist */
2837         struct efx_farch_filter_spec *spec;
2838         unsigned i;
2839 
2840         for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2841             spec = &table->spec[i];
2842             spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2843             efx_farch_filter_init_rx_auto(efx, spec);
2844             __set_bit(i, table->used_bitmap);
2845         }
2846     }
2847 
2848     efx_farch_filter_push_rx_config(efx);
2849 
2850     return 0;
2851 
2852 fail:
2853     efx_farch_filter_table_remove(efx);
2854     return -ENOMEM;
2855 }
2856 
2857 /* Update scatter enable flags for filters pointing to our own RX queues */
2858 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2859 {
2860     struct efx_farch_filter_state *state = efx->filter_state;
2861     enum efx_farch_filter_table_id table_id;
2862     struct efx_farch_filter_table *table;
2863     efx_oword_t filter;
2864     unsigned int filter_idx;
2865 
2866     down_write(&state->lock);
2867 
2868     for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2869          table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2870          table_id++) {
2871         table = &state->table[table_id];
2872 
2873         for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2874             if (!test_bit(filter_idx, table->used_bitmap) ||
2875                 table->spec[filter_idx].dmaq_id >=
2876                 efx->n_rx_channels)
2877                 continue;
2878 
2879             if (efx->rx_scatter)
2880                 table->spec[filter_idx].flags |=
2881                     EFX_FILTER_FLAG_RX_SCATTER;
2882             else
2883                 table->spec[filter_idx].flags &=
2884                     ~EFX_FILTER_FLAG_RX_SCATTER;
2885 
2886             if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2887                 /* Pushed by efx_farch_filter_push_rx_config() */
2888                 continue;
2889 
2890             efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2891             efx_writeo(efx, &filter,
2892                    table->offset + table->step * filter_idx);
2893         }
2894     }
2895 
2896     efx_farch_filter_push_rx_config(efx);
2897 
2898     up_write(&state->lock);
2899 }
2900 
2901 #ifdef CONFIG_RFS_ACCEL
2902 
2903 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2904                      unsigned int index)
2905 {
2906     struct efx_farch_filter_state *state = efx->filter_state;
2907     struct efx_farch_filter_table *table;
2908     bool ret = false, force = false;
2909     u16 arfs_id;
2910 
2911     down_write(&state->lock);
2912     spin_lock_bh(&efx->rps_hash_lock);
2913     table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2914     if (test_bit(index, table->used_bitmap) &&
2915         table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2916         struct efx_arfs_rule *rule = NULL;
2917         struct efx_filter_spec spec;
2918 
2919         efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2920         if (!efx->rps_hash_table) {
2921             /* In the absence of the table, we always returned 0 to
2922              * ARFS, so use the same to query it.
2923              */
2924             arfs_id = 0;
2925         } else {
2926             rule = efx_siena_rps_hash_find(efx, &spec);
2927             if (!rule) {
2928                 /* ARFS table doesn't know of this filter, remove it */
2929                 force = true;
2930             } else {
2931                 arfs_id = rule->arfs_id;
2932                 if (!efx_siena_rps_check_rule(rule, index,
2933                                   &force))
2934                     goto out_unlock;
2935             }
2936         }
2937         if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2938                          flow_id, arfs_id)) {
2939             if (rule)
2940                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2941             efx_siena_rps_hash_del(efx, &spec);
2942             efx_farch_filter_table_clear_entry(efx, table, index);
2943             ret = true;
2944         }
2945     }
2946 out_unlock:
2947     spin_unlock_bh(&efx->rps_hash_lock);
2948     up_write(&state->lock);
2949     return ret;
2950 }
2951 
2952 #endif /* CONFIG_RFS_ACCEL */
2953 
2954 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2955 {
2956     struct net_device *net_dev = efx->net_dev;
2957     struct netdev_hw_addr *ha;
2958     union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2959     u32 crc;
2960     int bit;
2961 
2962     if (!efx_dev_registered(efx))
2963         return;
2964 
2965     netif_addr_lock_bh(net_dev);
2966 
2967     efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2968 
2969     /* Build multicast hash table */
2970     if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2971         memset(mc_hash, 0xff, sizeof(*mc_hash));
2972     } else {
2973         memset(mc_hash, 0x00, sizeof(*mc_hash));
2974         netdev_for_each_mc_addr(ha, net_dev) {
2975             crc = ether_crc_le(ETH_ALEN, ha->addr);
2976             bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2977             __set_bit_le(bit, mc_hash);
2978         }
2979 
2980         /* Broadcast packets go through the multicast hash filter.
2981          * ether_crc_le() of the broadcast address is 0xbe2612ff
2982          * so we always add bit 0xff to the mask.
2983          */
2984         __set_bit_le(0xff, mc_hash);
2985     }
2986 
2987     netif_addr_unlock_bh(net_dev);
2988 }