Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2018 Solarflare Communications Inc.
0005  *
0006  * This program is free software; you can redistribute it and/or modify it
0007  * under the terms of the GNU General Public License version 2 as published
0008  * by the Free Software Foundation, incorporated herein by reference.
0009  */
0010 
0011 #include "net_driver.h"
0012 #include <linux/module.h>
0013 #include <linux/iommu.h>
0014 #include "efx.h"
0015 #include "nic.h"
0016 #include "rx_common.h"
0017 
0018 /* This is the percentage fill level below which new RX descriptors
0019  * will be added to the RX descriptor ring.
0020  */
0021 static unsigned int rx_refill_threshold;
0022 module_param(rx_refill_threshold, uint, 0444);
0023 MODULE_PARM_DESC(rx_refill_threshold,
0024          "RX descriptor ring refill threshold (%)");
0025 
0026 /* RX maximum head room required.
0027  *
0028  * This must be at least 1 to prevent overflow, plus one packet-worth
0029  * to allow pipelined receives.
0030  */
0031 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
0032 
0033 /* Check the RX page recycle ring for a page that can be reused. */
0034 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
0035 {
0036     struct efx_nic *efx = rx_queue->efx;
0037     struct efx_rx_page_state *state;
0038     unsigned int index;
0039     struct page *page;
0040 
0041     if (unlikely(!rx_queue->page_ring))
0042         return NULL;
0043     index = rx_queue->page_remove & rx_queue->page_ptr_mask;
0044     page = rx_queue->page_ring[index];
0045     if (page == NULL)
0046         return NULL;
0047 
0048     rx_queue->page_ring[index] = NULL;
0049     /* page_remove cannot exceed page_add. */
0050     if (rx_queue->page_remove != rx_queue->page_add)
0051         ++rx_queue->page_remove;
0052 
0053     /* If page_count is 1 then we hold the only reference to this page. */
0054     if (page_count(page) == 1) {
0055         ++rx_queue->page_recycle_count;
0056         return page;
0057     } else {
0058         state = page_address(page);
0059         dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
0060                    PAGE_SIZE << efx->rx_buffer_order,
0061                    DMA_FROM_DEVICE);
0062         put_page(page);
0063         ++rx_queue->page_recycle_failed;
0064     }
0065 
0066     return NULL;
0067 }
0068 
0069 /* Attempt to recycle the page if there is an RX recycle ring; the page can
0070  * only be added if this is the final RX buffer, to prevent pages being used in
0071  * the descriptor ring and appearing in the recycle ring simultaneously.
0072  */
0073 static void efx_recycle_rx_page(struct efx_channel *channel,
0074                 struct efx_rx_buffer *rx_buf)
0075 {
0076     struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
0077     struct efx_nic *efx = rx_queue->efx;
0078     struct page *page = rx_buf->page;
0079     unsigned int index;
0080 
0081     /* Only recycle the page after processing the final buffer. */
0082     if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
0083         return;
0084 
0085     index = rx_queue->page_add & rx_queue->page_ptr_mask;
0086     if (rx_queue->page_ring[index] == NULL) {
0087         unsigned int read_index = rx_queue->page_remove &
0088             rx_queue->page_ptr_mask;
0089 
0090         /* The next slot in the recycle ring is available, but
0091          * increment page_remove if the read pointer currently
0092          * points here.
0093          */
0094         if (read_index == index)
0095             ++rx_queue->page_remove;
0096         rx_queue->page_ring[index] = page;
0097         ++rx_queue->page_add;
0098         return;
0099     }
0100     ++rx_queue->page_recycle_full;
0101     efx_unmap_rx_buffer(efx, rx_buf);
0102     put_page(rx_buf->page);
0103 }
0104 
0105 /* Recycle the pages that are used by buffers that have just been received. */
0106 void efx_recycle_rx_pages(struct efx_channel *channel,
0107               struct efx_rx_buffer *rx_buf,
0108               unsigned int n_frags)
0109 {
0110     struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
0111 
0112     if (unlikely(!rx_queue->page_ring))
0113         return;
0114 
0115     do {
0116         efx_recycle_rx_page(channel, rx_buf);
0117         rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
0118     } while (--n_frags);
0119 }
0120 
0121 void efx_discard_rx_packet(struct efx_channel *channel,
0122                struct efx_rx_buffer *rx_buf,
0123                unsigned int n_frags)
0124 {
0125     struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
0126 
0127     efx_recycle_rx_pages(channel, rx_buf, n_frags);
0128 
0129     efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
0130 }
0131 
0132 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
0133 {
0134     unsigned int bufs_in_recycle_ring, page_ring_size;
0135     struct efx_nic *efx = rx_queue->efx;
0136 
0137     bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
0138     page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
0139                         efx->rx_bufs_per_page);
0140     rx_queue->page_ring = kcalloc(page_ring_size,
0141                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
0142     if (!rx_queue->page_ring)
0143         rx_queue->page_ptr_mask = 0;
0144     else
0145         rx_queue->page_ptr_mask = page_ring_size - 1;
0146 }
0147 
0148 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
0149 {
0150     struct efx_nic *efx = rx_queue->efx;
0151     int i;
0152 
0153     if (unlikely(!rx_queue->page_ring))
0154         return;
0155 
0156     /* Unmap and release the pages in the recycle ring. Remove the ring. */
0157     for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
0158         struct page *page = rx_queue->page_ring[i];
0159         struct efx_rx_page_state *state;
0160 
0161         if (page == NULL)
0162             continue;
0163 
0164         state = page_address(page);
0165         dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
0166                    PAGE_SIZE << efx->rx_buffer_order,
0167                    DMA_FROM_DEVICE);
0168         put_page(page);
0169     }
0170     kfree(rx_queue->page_ring);
0171     rx_queue->page_ring = NULL;
0172 }
0173 
0174 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
0175                    struct efx_rx_buffer *rx_buf)
0176 {
0177     /* Release the page reference we hold for the buffer. */
0178     if (rx_buf->page)
0179         put_page(rx_buf->page);
0180 
0181     /* If this is the last buffer in a page, unmap and free it. */
0182     if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
0183         efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
0184         efx_free_rx_buffers(rx_queue, rx_buf, 1);
0185     }
0186     rx_buf->page = NULL;
0187 }
0188 
0189 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
0190 {
0191     struct efx_nic *efx = rx_queue->efx;
0192     unsigned int entries;
0193     int rc;
0194 
0195     /* Create the smallest power-of-two aligned ring */
0196     entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
0197     EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
0198     rx_queue->ptr_mask = entries - 1;
0199 
0200     netif_dbg(efx, probe, efx->net_dev,
0201           "creating RX queue %d size %#x mask %#x\n",
0202           efx_rx_queue_index(rx_queue), efx->rxq_entries,
0203           rx_queue->ptr_mask);
0204 
0205     /* Allocate RX buffers */
0206     rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
0207                    GFP_KERNEL);
0208     if (!rx_queue->buffer)
0209         return -ENOMEM;
0210 
0211     rc = efx_nic_probe_rx(rx_queue);
0212     if (rc) {
0213         kfree(rx_queue->buffer);
0214         rx_queue->buffer = NULL;
0215     }
0216 
0217     return rc;
0218 }
0219 
0220 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
0221 {
0222     unsigned int max_fill, trigger, max_trigger;
0223     struct efx_nic *efx = rx_queue->efx;
0224     int rc = 0;
0225 
0226     netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
0227           "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
0228 
0229     /* Initialise ptr fields */
0230     rx_queue->added_count = 0;
0231     rx_queue->notified_count = 0;
0232     rx_queue->removed_count = 0;
0233     rx_queue->min_fill = -1U;
0234     efx_init_rx_recycle_ring(rx_queue);
0235 
0236     rx_queue->page_remove = 0;
0237     rx_queue->page_add = rx_queue->page_ptr_mask + 1;
0238     rx_queue->page_recycle_count = 0;
0239     rx_queue->page_recycle_failed = 0;
0240     rx_queue->page_recycle_full = 0;
0241 
0242     /* Initialise limit fields */
0243     max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
0244     max_trigger =
0245         max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
0246     if (rx_refill_threshold != 0) {
0247         trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
0248         if (trigger > max_trigger)
0249             trigger = max_trigger;
0250     } else {
0251         trigger = max_trigger;
0252     }
0253 
0254     rx_queue->max_fill = max_fill;
0255     rx_queue->fast_fill_trigger = trigger;
0256     rx_queue->refill_enabled = true;
0257 
0258     /* Initialise XDP queue information */
0259     rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
0260                   rx_queue->core_index, 0);
0261 
0262     if (rc) {
0263         netif_err(efx, rx_err, efx->net_dev,
0264               "Failure to initialise XDP queue information rc=%d\n",
0265               rc);
0266         efx->xdp_rxq_info_failed = true;
0267     } else {
0268         rx_queue->xdp_rxq_info_valid = true;
0269     }
0270 
0271     /* Set up RX descriptor ring */
0272     efx_nic_init_rx(rx_queue);
0273 }
0274 
0275 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
0276 {
0277     struct efx_rx_buffer *rx_buf;
0278     int i;
0279 
0280     netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
0281           "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
0282 
0283     del_timer_sync(&rx_queue->slow_fill);
0284 
0285     /* Release RX buffers from the current read ptr to the write ptr */
0286     if (rx_queue->buffer) {
0287         for (i = rx_queue->removed_count; i < rx_queue->added_count;
0288              i++) {
0289             unsigned int index = i & rx_queue->ptr_mask;
0290 
0291             rx_buf = efx_rx_buffer(rx_queue, index);
0292             efx_fini_rx_buffer(rx_queue, rx_buf);
0293         }
0294     }
0295 
0296     efx_fini_rx_recycle_ring(rx_queue);
0297 
0298     if (rx_queue->xdp_rxq_info_valid)
0299         xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
0300 
0301     rx_queue->xdp_rxq_info_valid = false;
0302 }
0303 
0304 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
0305 {
0306     netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
0307           "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
0308 
0309     efx_nic_remove_rx(rx_queue);
0310 
0311     kfree(rx_queue->buffer);
0312     rx_queue->buffer = NULL;
0313 }
0314 
0315 /* Unmap a DMA-mapped page.  This function is only called for the final RX
0316  * buffer in a page.
0317  */
0318 void efx_unmap_rx_buffer(struct efx_nic *efx,
0319              struct efx_rx_buffer *rx_buf)
0320 {
0321     struct page *page = rx_buf->page;
0322 
0323     if (page) {
0324         struct efx_rx_page_state *state = page_address(page);
0325 
0326         dma_unmap_page(&efx->pci_dev->dev,
0327                    state->dma_addr,
0328                    PAGE_SIZE << efx->rx_buffer_order,
0329                    DMA_FROM_DEVICE);
0330     }
0331 }
0332 
0333 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
0334              struct efx_rx_buffer *rx_buf,
0335              unsigned int num_bufs)
0336 {
0337     do {
0338         if (rx_buf->page) {
0339             put_page(rx_buf->page);
0340             rx_buf->page = NULL;
0341         }
0342         rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
0343     } while (--num_bufs);
0344 }
0345 
0346 void efx_rx_slow_fill(struct timer_list *t)
0347 {
0348     struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
0349 
0350     /* Post an event to cause NAPI to run and refill the queue */
0351     efx_nic_generate_fill_event(rx_queue);
0352     ++rx_queue->slow_fill_count;
0353 }
0354 
0355 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
0356 {
0357     mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
0358 }
0359 
0360 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
0361  *
0362  * @rx_queue:       Efx RX queue
0363  *
0364  * This allocates a batch of pages, maps them for DMA, and populates
0365  * struct efx_rx_buffers for each one. Return a negative error code or
0366  * 0 on success. If a single page can be used for multiple buffers,
0367  * then the page will either be inserted fully, or not at all.
0368  */
0369 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
0370 {
0371     unsigned int page_offset, index, count;
0372     struct efx_nic *efx = rx_queue->efx;
0373     struct efx_rx_page_state *state;
0374     struct efx_rx_buffer *rx_buf;
0375     dma_addr_t dma_addr;
0376     struct page *page;
0377 
0378     count = 0;
0379     do {
0380         page = efx_reuse_page(rx_queue);
0381         if (page == NULL) {
0382             page = alloc_pages(__GFP_COMP |
0383                        (atomic ? GFP_ATOMIC : GFP_KERNEL),
0384                        efx->rx_buffer_order);
0385             if (unlikely(page == NULL))
0386                 return -ENOMEM;
0387             dma_addr =
0388                 dma_map_page(&efx->pci_dev->dev, page, 0,
0389                          PAGE_SIZE << efx->rx_buffer_order,
0390                          DMA_FROM_DEVICE);
0391             if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
0392                                dma_addr))) {
0393                 __free_pages(page, efx->rx_buffer_order);
0394                 return -EIO;
0395             }
0396             state = page_address(page);
0397             state->dma_addr = dma_addr;
0398         } else {
0399             state = page_address(page);
0400             dma_addr = state->dma_addr;
0401         }
0402 
0403         dma_addr += sizeof(struct efx_rx_page_state);
0404         page_offset = sizeof(struct efx_rx_page_state);
0405 
0406         do {
0407             index = rx_queue->added_count & rx_queue->ptr_mask;
0408             rx_buf = efx_rx_buffer(rx_queue, index);
0409             rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
0410                        EFX_XDP_HEADROOM;
0411             rx_buf->page = page;
0412             rx_buf->page_offset = page_offset + efx->rx_ip_align +
0413                           EFX_XDP_HEADROOM;
0414             rx_buf->len = efx->rx_dma_len;
0415             rx_buf->flags = 0;
0416             ++rx_queue->added_count;
0417             get_page(page);
0418             dma_addr += efx->rx_page_buf_step;
0419             page_offset += efx->rx_page_buf_step;
0420         } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
0421 
0422         rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
0423     } while (++count < efx->rx_pages_per_batch);
0424 
0425     return 0;
0426 }
0427 
0428 void efx_rx_config_page_split(struct efx_nic *efx)
0429 {
0430     efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
0431                       EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
0432                       EFX_RX_BUF_ALIGNMENT);
0433     efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
0434         ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
0435         efx->rx_page_buf_step);
0436     efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
0437         efx->rx_bufs_per_page;
0438     efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
0439                            efx->rx_bufs_per_page);
0440 }
0441 
0442 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
0443  * @rx_queue:       RX descriptor queue
0444  *
0445  * This will aim to fill the RX descriptor queue up to
0446  * @rx_queue->@max_fill. If there is insufficient atomic
0447  * memory to do so, a slow fill will be scheduled.
0448  *
0449  * The caller must provide serialisation (none is used here). In practise,
0450  * this means this function must run from the NAPI handler, or be called
0451  * when NAPI is disabled.
0452  */
0453 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
0454 {
0455     struct efx_nic *efx = rx_queue->efx;
0456     unsigned int fill_level, batch_size;
0457     int space, rc = 0;
0458 
0459     if (!rx_queue->refill_enabled)
0460         return;
0461 
0462     /* Calculate current fill level, and exit if we don't need to fill */
0463     fill_level = (rx_queue->added_count - rx_queue->removed_count);
0464     EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
0465     if (fill_level >= rx_queue->fast_fill_trigger)
0466         goto out;
0467 
0468     /* Record minimum fill level */
0469     if (unlikely(fill_level < rx_queue->min_fill)) {
0470         if (fill_level)
0471             rx_queue->min_fill = fill_level;
0472     }
0473 
0474     batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
0475     space = rx_queue->max_fill - fill_level;
0476     EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
0477 
0478     netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
0479            "RX queue %d fast-filling descriptor ring from"
0480            " level %d to level %d\n",
0481            efx_rx_queue_index(rx_queue), fill_level,
0482            rx_queue->max_fill);
0483 
0484     do {
0485         rc = efx_init_rx_buffers(rx_queue, atomic);
0486         if (unlikely(rc)) {
0487             /* Ensure that we don't leave the rx queue empty */
0488             efx_schedule_slow_fill(rx_queue);
0489             goto out;
0490         }
0491     } while ((space -= batch_size) >= batch_size);
0492 
0493     netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
0494            "RX queue %d fast-filled descriptor ring "
0495            "to level %d\n", efx_rx_queue_index(rx_queue),
0496            rx_queue->added_count - rx_queue->removed_count);
0497 
0498  out:
0499     if (rx_queue->notified_count != rx_queue->added_count)
0500         efx_nic_notify_rx_desc(rx_queue);
0501 }
0502 
0503 /* Pass a received packet up through GRO.  GRO can handle pages
0504  * regardless of checksum state and skbs with a good checksum.
0505  */
0506 void
0507 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
0508           unsigned int n_frags, u8 *eh, __wsum csum)
0509 {
0510     struct napi_struct *napi = &channel->napi_str;
0511     struct efx_nic *efx = channel->efx;
0512     struct sk_buff *skb;
0513 
0514     skb = napi_get_frags(napi);
0515     if (unlikely(!skb)) {
0516         struct efx_rx_queue *rx_queue;
0517 
0518         rx_queue = efx_channel_get_rx_queue(channel);
0519         efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
0520         return;
0521     }
0522 
0523     if (efx->net_dev->features & NETIF_F_RXHASH &&
0524         efx_rx_buf_hash_valid(efx, eh))
0525         skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
0526                  PKT_HASH_TYPE_L3);
0527     if (csum) {
0528         skb->csum = csum;
0529         skb->ip_summed = CHECKSUM_COMPLETE;
0530     } else {
0531         skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
0532                   CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
0533     }
0534     skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
0535 
0536     for (;;) {
0537         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
0538                    rx_buf->page, rx_buf->page_offset,
0539                    rx_buf->len);
0540         rx_buf->page = NULL;
0541         skb->len += rx_buf->len;
0542         if (skb_shinfo(skb)->nr_frags == n_frags)
0543             break;
0544 
0545         rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
0546     }
0547 
0548     skb->data_len = skb->len;
0549     skb->truesize += n_frags * efx->rx_buffer_truesize;
0550 
0551     skb_record_rx_queue(skb, channel->rx_queue.core_index);
0552 
0553     napi_gro_frags(napi);
0554 }
0555 
0556 /* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
0557  * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
0558  */
0559 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
0560 {
0561     struct list_head *head = &efx->rss_context.list;
0562     struct efx_rss_context *ctx, *new;
0563     u32 id = 1; /* Don't use zero, that refers to the master RSS context */
0564 
0565     WARN_ON(!mutex_is_locked(&efx->rss_lock));
0566 
0567     /* Search for first gap in the numbering */
0568     list_for_each_entry(ctx, head, list) {
0569         if (ctx->user_id != id)
0570             break;
0571         id++;
0572         /* Check for wrap.  If this happens, we have nearly 2^32
0573          * allocated RSS contexts, which seems unlikely.
0574          */
0575         if (WARN_ON_ONCE(!id))
0576             return NULL;
0577     }
0578 
0579     /* Create the new entry */
0580     new = kmalloc(sizeof(*new), GFP_KERNEL);
0581     if (!new)
0582         return NULL;
0583     new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
0584     new->rx_hash_udp_4tuple = false;
0585 
0586     /* Insert the new entry into the gap */
0587     new->user_id = id;
0588     list_add_tail(&new->list, &ctx->list);
0589     return new;
0590 }
0591 
0592 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
0593 {
0594     struct list_head *head = &efx->rss_context.list;
0595     struct efx_rss_context *ctx;
0596 
0597     WARN_ON(!mutex_is_locked(&efx->rss_lock));
0598 
0599     list_for_each_entry(ctx, head, list)
0600         if (ctx->user_id == id)
0601             return ctx;
0602     return NULL;
0603 }
0604 
0605 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
0606 {
0607     list_del(&ctx->list);
0608     kfree(ctx);
0609 }
0610 
0611 void efx_set_default_rx_indir_table(struct efx_nic *efx,
0612                     struct efx_rss_context *ctx)
0613 {
0614     size_t i;
0615 
0616     for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
0617         ctx->rx_indir_table[i] =
0618             ethtool_rxfh_indir_default(i, efx->rss_spread);
0619 }
0620 
0621 /**
0622  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
0623  * @spec: Specification to test
0624  *
0625  * Return: %true if the specification is a non-drop RX filter that
0626  * matches a local MAC address I/G bit value of 1 or matches a local
0627  * IPv4 or IPv6 address value in the respective multicast address
0628  * range.  Otherwise %false.
0629  */
0630 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
0631 {
0632     if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
0633         spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
0634         return false;
0635 
0636     if (spec->match_flags &
0637         (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
0638         is_multicast_ether_addr(spec->loc_mac))
0639         return true;
0640 
0641     if ((spec->match_flags &
0642          (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
0643         (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
0644         if (spec->ether_type == htons(ETH_P_IP) &&
0645             ipv4_is_multicast(spec->loc_host[0]))
0646             return true;
0647         if (spec->ether_type == htons(ETH_P_IPV6) &&
0648             ((const u8 *)spec->loc_host)[0] == 0xff)
0649             return true;
0650     }
0651 
0652     return false;
0653 }
0654 
0655 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
0656                const struct efx_filter_spec *right)
0657 {
0658     if ((left->match_flags ^ right->match_flags) |
0659         ((left->flags ^ right->flags) &
0660          (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
0661         return false;
0662 
0663     return memcmp(&left->outer_vid, &right->outer_vid,
0664               sizeof(struct efx_filter_spec) -
0665               offsetof(struct efx_filter_spec, outer_vid)) == 0;
0666 }
0667 
0668 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
0669 {
0670     BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
0671     return jhash2((const u32 *)&spec->outer_vid,
0672               (sizeof(struct efx_filter_spec) -
0673                offsetof(struct efx_filter_spec, outer_vid)) / 4,
0674               0);
0675 }
0676 
0677 #ifdef CONFIG_RFS_ACCEL
0678 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
0679             bool *force)
0680 {
0681     if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
0682         /* ARFS is currently updating this entry, leave it */
0683         return false;
0684     }
0685     if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
0686         /* ARFS tried and failed to update this, so it's probably out
0687          * of date.  Remove the filter and the ARFS rule entry.
0688          */
0689         rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
0690         *force = true;
0691         return true;
0692     } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
0693         /* ARFS has moved on, so old filter is not needed.  Since we did
0694          * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
0695          * not be removed by efx_rps_hash_del() subsequently.
0696          */
0697         *force = true;
0698         return true;
0699     }
0700     /* Remove it iff ARFS wants to. */
0701     return true;
0702 }
0703 
0704 static
0705 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
0706                        const struct efx_filter_spec *spec)
0707 {
0708     u32 hash = efx_filter_spec_hash(spec);
0709 
0710     lockdep_assert_held(&efx->rps_hash_lock);
0711     if (!efx->rps_hash_table)
0712         return NULL;
0713     return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
0714 }
0715 
0716 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
0717                     const struct efx_filter_spec *spec)
0718 {
0719     struct efx_arfs_rule *rule;
0720     struct hlist_head *head;
0721     struct hlist_node *node;
0722 
0723     head = efx_rps_hash_bucket(efx, spec);
0724     if (!head)
0725         return NULL;
0726     hlist_for_each(node, head) {
0727         rule = container_of(node, struct efx_arfs_rule, node);
0728         if (efx_filter_spec_equal(spec, &rule->spec))
0729             return rule;
0730     }
0731     return NULL;
0732 }
0733 
0734 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
0735                        const struct efx_filter_spec *spec,
0736                        bool *new)
0737 {
0738     struct efx_arfs_rule *rule;
0739     struct hlist_head *head;
0740     struct hlist_node *node;
0741 
0742     head = efx_rps_hash_bucket(efx, spec);
0743     if (!head)
0744         return NULL;
0745     hlist_for_each(node, head) {
0746         rule = container_of(node, struct efx_arfs_rule, node);
0747         if (efx_filter_spec_equal(spec, &rule->spec)) {
0748             *new = false;
0749             return rule;
0750         }
0751     }
0752     rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
0753     *new = true;
0754     if (rule) {
0755         memcpy(&rule->spec, spec, sizeof(rule->spec));
0756         hlist_add_head(&rule->node, head);
0757     }
0758     return rule;
0759 }
0760 
0761 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
0762 {
0763     struct efx_arfs_rule *rule;
0764     struct hlist_head *head;
0765     struct hlist_node *node;
0766 
0767     head = efx_rps_hash_bucket(efx, spec);
0768     if (WARN_ON(!head))
0769         return;
0770     hlist_for_each(node, head) {
0771         rule = container_of(node, struct efx_arfs_rule, node);
0772         if (efx_filter_spec_equal(spec, &rule->spec)) {
0773             /* Someone already reused the entry.  We know that if
0774              * this check doesn't fire (i.e. filter_id == REMOVING)
0775              * then the REMOVING mark was put there by our caller,
0776              * because caller is holding a lock on filter table and
0777              * only holders of that lock set REMOVING.
0778              */
0779             if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
0780                 return;
0781             hlist_del(node);
0782             kfree(rule);
0783             return;
0784         }
0785     }
0786     /* We didn't find it. */
0787     WARN_ON(1);
0788 }
0789 #endif
0790 
0791 int efx_probe_filters(struct efx_nic *efx)
0792 {
0793     int rc;
0794 
0795     mutex_lock(&efx->mac_lock);
0796     rc = efx->type->filter_table_probe(efx);
0797     if (rc)
0798         goto out_unlock;
0799 
0800 #ifdef CONFIG_RFS_ACCEL
0801     if (efx->type->offload_features & NETIF_F_NTUPLE) {
0802         struct efx_channel *channel;
0803         int i, success = 1;
0804 
0805         efx_for_each_channel(channel, efx) {
0806             channel->rps_flow_id =
0807                 kcalloc(efx->type->max_rx_ip_filters,
0808                     sizeof(*channel->rps_flow_id),
0809                     GFP_KERNEL);
0810             if (!channel->rps_flow_id)
0811                 success = 0;
0812             else
0813                 for (i = 0;
0814                      i < efx->type->max_rx_ip_filters;
0815                      ++i)
0816                     channel->rps_flow_id[i] =
0817                         RPS_FLOW_ID_INVALID;
0818             channel->rfs_expire_index = 0;
0819             channel->rfs_filter_count = 0;
0820         }
0821 
0822         if (!success) {
0823             efx_for_each_channel(channel, efx)
0824                 kfree(channel->rps_flow_id);
0825             efx->type->filter_table_remove(efx);
0826             rc = -ENOMEM;
0827             goto out_unlock;
0828         }
0829     }
0830 #endif
0831 out_unlock:
0832     mutex_unlock(&efx->mac_lock);
0833     return rc;
0834 }
0835 
0836 void efx_remove_filters(struct efx_nic *efx)
0837 {
0838 #ifdef CONFIG_RFS_ACCEL
0839     struct efx_channel *channel;
0840 
0841     efx_for_each_channel(channel, efx) {
0842         cancel_delayed_work_sync(&channel->filter_work);
0843         kfree(channel->rps_flow_id);
0844         channel->rps_flow_id = NULL;
0845     }
0846 #endif
0847     efx->type->filter_table_remove(efx);
0848 }
0849 
0850 #ifdef CONFIG_RFS_ACCEL
0851 
0852 static void efx_filter_rfs_work(struct work_struct *data)
0853 {
0854     struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
0855                                   work);
0856     struct efx_nic *efx = efx_netdev_priv(req->net_dev);
0857     struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
0858     int slot_idx = req - efx->rps_slot;
0859     struct efx_arfs_rule *rule;
0860     u16 arfs_id = 0;
0861     int rc;
0862 
0863     rc = efx->type->filter_insert(efx, &req->spec, true);
0864     if (rc >= 0)
0865         /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
0866         rc %= efx->type->max_rx_ip_filters;
0867     if (efx->rps_hash_table) {
0868         spin_lock_bh(&efx->rps_hash_lock);
0869         rule = efx_rps_hash_find(efx, &req->spec);
0870         /* The rule might have already gone, if someone else's request
0871          * for the same spec was already worked and then expired before
0872          * we got around to our work.  In that case we have nothing
0873          * tying us to an arfs_id, meaning that as soon as the filter
0874          * is considered for expiry it will be removed.
0875          */
0876         if (rule) {
0877             if (rc < 0)
0878                 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
0879             else
0880                 rule->filter_id = rc;
0881             arfs_id = rule->arfs_id;
0882         }
0883         spin_unlock_bh(&efx->rps_hash_lock);
0884     }
0885     if (rc >= 0) {
0886         /* Remember this so we can check whether to expire the filter
0887          * later.
0888          */
0889         mutex_lock(&efx->rps_mutex);
0890         if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
0891             channel->rfs_filter_count++;
0892         channel->rps_flow_id[rc] = req->flow_id;
0893         mutex_unlock(&efx->rps_mutex);
0894 
0895         if (req->spec.ether_type == htons(ETH_P_IP))
0896             netif_info(efx, rx_status, efx->net_dev,
0897                    "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
0898                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
0899                    req->spec.rem_host, ntohs(req->spec.rem_port),
0900                    req->spec.loc_host, ntohs(req->spec.loc_port),
0901                    req->rxq_index, req->flow_id, rc, arfs_id);
0902         else
0903             netif_info(efx, rx_status, efx->net_dev,
0904                    "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
0905                    (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
0906                    req->spec.rem_host, ntohs(req->spec.rem_port),
0907                    req->spec.loc_host, ntohs(req->spec.loc_port),
0908                    req->rxq_index, req->flow_id, rc, arfs_id);
0909         channel->n_rfs_succeeded++;
0910     } else {
0911         if (req->spec.ether_type == htons(ETH_P_IP))
0912             netif_dbg(efx, rx_status, efx->net_dev,
0913                   "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
0914                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
0915                   req->spec.rem_host, ntohs(req->spec.rem_port),
0916                   req->spec.loc_host, ntohs(req->spec.loc_port),
0917                   req->rxq_index, req->flow_id, rc, arfs_id);
0918         else
0919             netif_dbg(efx, rx_status, efx->net_dev,
0920                   "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
0921                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
0922                   req->spec.rem_host, ntohs(req->spec.rem_port),
0923                   req->spec.loc_host, ntohs(req->spec.loc_port),
0924                   req->rxq_index, req->flow_id, rc, arfs_id);
0925         channel->n_rfs_failed++;
0926         /* We're overloading the NIC's filter tables, so let's do a
0927          * chunk of extra expiry work.
0928          */
0929         __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
0930                              100u));
0931     }
0932 
0933     /* Release references */
0934     clear_bit(slot_idx, &efx->rps_slot_map);
0935     dev_put(req->net_dev);
0936 }
0937 
0938 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
0939            u16 rxq_index, u32 flow_id)
0940 {
0941     struct efx_nic *efx = efx_netdev_priv(net_dev);
0942     struct efx_async_filter_insertion *req;
0943     struct efx_arfs_rule *rule;
0944     struct flow_keys fk;
0945     int slot_idx;
0946     bool new;
0947     int rc;
0948 
0949     /* find a free slot */
0950     for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
0951         if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
0952             break;
0953     if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
0954         return -EBUSY;
0955 
0956     if (flow_id == RPS_FLOW_ID_INVALID) {
0957         rc = -EINVAL;
0958         goto out_clear;
0959     }
0960 
0961     if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
0962         rc = -EPROTONOSUPPORT;
0963         goto out_clear;
0964     }
0965 
0966     if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
0967         rc = -EPROTONOSUPPORT;
0968         goto out_clear;
0969     }
0970     if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
0971         rc = -EPROTONOSUPPORT;
0972         goto out_clear;
0973     }
0974 
0975     req = efx->rps_slot + slot_idx;
0976     efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
0977                efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
0978                rxq_index);
0979     req->spec.match_flags =
0980         EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
0981         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
0982         EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
0983     req->spec.ether_type = fk.basic.n_proto;
0984     req->spec.ip_proto = fk.basic.ip_proto;
0985 
0986     if (fk.basic.n_proto == htons(ETH_P_IP)) {
0987         req->spec.rem_host[0] = fk.addrs.v4addrs.src;
0988         req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
0989     } else {
0990         memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
0991                sizeof(struct in6_addr));
0992         memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
0993                sizeof(struct in6_addr));
0994     }
0995 
0996     req->spec.rem_port = fk.ports.src;
0997     req->spec.loc_port = fk.ports.dst;
0998 
0999     if (efx->rps_hash_table) {
1000         /* Add it to ARFS hash table */
1001         spin_lock(&efx->rps_hash_lock);
1002         rule = efx_rps_hash_add(efx, &req->spec, &new);
1003         if (!rule) {
1004             rc = -ENOMEM;
1005             goto out_unlock;
1006         }
1007         if (new)
1008             rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1009         rc = rule->arfs_id;
1010         /* Skip if existing or pending filter already does the right thing */
1011         if (!new && rule->rxq_index == rxq_index &&
1012             rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1013             goto out_unlock;
1014         rule->rxq_index = rxq_index;
1015         rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1016         spin_unlock(&efx->rps_hash_lock);
1017     } else {
1018         /* Without an ARFS hash table, we just use arfs_id 0 for all
1019          * filters.  This means if multiple flows hash to the same
1020          * flow_id, all but the most recently touched will be eligible
1021          * for expiry.
1022          */
1023         rc = 0;
1024     }
1025 
1026     /* Queue the request */
1027     dev_hold(req->net_dev = net_dev);
1028     INIT_WORK(&req->work, efx_filter_rfs_work);
1029     req->rxq_index = rxq_index;
1030     req->flow_id = flow_id;
1031     schedule_work(&req->work);
1032     return rc;
1033 out_unlock:
1034     spin_unlock(&efx->rps_hash_lock);
1035 out_clear:
1036     clear_bit(slot_idx, &efx->rps_slot_map);
1037     return rc;
1038 }
1039 
1040 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1041 {
1042     bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1043     struct efx_nic *efx = channel->efx;
1044     unsigned int index, size, start;
1045     u32 flow_id;
1046 
1047     if (!mutex_trylock(&efx->rps_mutex))
1048         return false;
1049     expire_one = efx->type->filter_rfs_expire_one;
1050     index = channel->rfs_expire_index;
1051     start = index;
1052     size = efx->type->max_rx_ip_filters;
1053     while (quota) {
1054         flow_id = channel->rps_flow_id[index];
1055 
1056         if (flow_id != RPS_FLOW_ID_INVALID) {
1057             quota--;
1058             if (expire_one(efx, flow_id, index)) {
1059                 netif_info(efx, rx_status, efx->net_dev,
1060                        "expired filter %d [channel %u flow %u]\n",
1061                        index, channel->channel, flow_id);
1062                 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1063                 channel->rfs_filter_count--;
1064             }
1065         }
1066         if (++index == size)
1067             index = 0;
1068         /* If we were called with a quota that exceeds the total number
1069          * of filters in the table (which shouldn't happen, but could
1070          * if two callers race), ensure that we don't loop forever -
1071          * stop when we've examined every row of the table.
1072          */
1073         if (index == start)
1074             break;
1075     }
1076 
1077     channel->rfs_expire_index = index;
1078     mutex_unlock(&efx->rps_mutex);
1079     return true;
1080 }
1081 
1082 #endif /* CONFIG_RFS_ACCEL */