Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2011-2013 Solarflare Communications Inc.
0005  */
0006 
0007 /* Theory of operation:
0008  *
0009  * PTP support is assisted by firmware running on the MC, which provides
0010  * the hardware timestamping capabilities.  Both transmitted and received
0011  * PTP event packets are queued onto internal queues for subsequent processing;
0012  * this is because the MC operations are relatively long and would block
0013  * block NAPI/interrupt operation.
0014  *
0015  * Receive event processing:
0016  *  The event contains the packet's UUID and sequence number, together
0017  *  with the hardware timestamp.  The PTP receive packet queue is searched
0018  *  for this UUID/sequence number and, if found, put on a pending queue.
0019  *  Packets not matching are delivered without timestamps (MCDI events will
0020  *  always arrive after the actual packet).
0021  *  It is important for the operation of the PTP protocol that the ordering
0022  *  of packets between the event and general port is maintained.
0023  *
0024  * Work queue processing:
0025  *  If work waiting, synchronise host/hardware time
0026  *
0027  *  Transmit: send packet through MC, which returns the transmission time
0028  *  that is converted to an appropriate timestamp.
0029  *
0030  *  Receive: the packet's reception time is converted to an appropriate
0031  *  timestamp.
0032  */
0033 #include <linux/ip.h>
0034 #include <linux/udp.h>
0035 #include <linux/time.h>
0036 #include <linux/ktime.h>
0037 #include <linux/module.h>
0038 #include <linux/pps_kernel.h>
0039 #include <linux/ptp_clock_kernel.h>
0040 #include "net_driver.h"
0041 #include "efx.h"
0042 #include "mcdi.h"
0043 #include "mcdi_pcol.h"
0044 #include "io.h"
0045 #include "farch_regs.h"
0046 #include "tx.h"
0047 #include "nic.h" /* indirectly includes ptp.h */
0048 #include "efx_channels.h"
0049 
0050 /* Maximum number of events expected to make up a PTP event */
0051 #define MAX_EVENT_FRAGS         3
0052 
0053 /* Maximum delay, ms, to begin synchronisation */
0054 #define MAX_SYNCHRONISE_WAIT_MS     2
0055 
0056 /* How long, at most, to spend synchronising */
0057 #define SYNCHRONISE_PERIOD_NS       250000
0058 
0059 /* How often to update the shared memory time */
0060 #define SYNCHRONISATION_GRANULARITY_NS  200
0061 
0062 /* Minimum permitted length of a (corrected) synchronisation time */
0063 #define DEFAULT_MIN_SYNCHRONISATION_NS  120
0064 
0065 /* Maximum permitted length of a (corrected) synchronisation time */
0066 #define MAX_SYNCHRONISATION_NS      1000
0067 
0068 /* How many (MC) receive events that can be queued */
0069 #define MAX_RECEIVE_EVENTS      8
0070 
0071 /* Length of (modified) moving average. */
0072 #define AVERAGE_LENGTH          16
0073 
0074 /* How long an unmatched event or packet can be held */
0075 #define PKT_EVENT_LIFETIME_MS       10
0076 
0077 /* Offsets into PTP packet for identification.  These offsets are from the
0078  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
0079  * PTP V2 permit the use of IPV4 options.
0080  */
0081 #define PTP_DPORT_OFFSET    22
0082 
0083 #define PTP_V1_VERSION_LENGTH   2
0084 #define PTP_V1_VERSION_OFFSET   28
0085 
0086 #define PTP_V1_UUID_LENGTH  6
0087 #define PTP_V1_UUID_OFFSET  50
0088 
0089 #define PTP_V1_SEQUENCE_LENGTH  2
0090 #define PTP_V1_SEQUENCE_OFFSET  58
0091 
0092 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
0093  * includes IP header.
0094  */
0095 #define PTP_V1_MIN_LENGTH   64
0096 
0097 #define PTP_V2_VERSION_LENGTH   1
0098 #define PTP_V2_VERSION_OFFSET   29
0099 
0100 #define PTP_V2_UUID_LENGTH  8
0101 #define PTP_V2_UUID_OFFSET  48
0102 
0103 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
0104  * the MC only captures the last six bytes of the clock identity. These values
0105  * reflect those, not the ones used in the standard.  The standard permits
0106  * mapping of V1 UUIDs to V2 UUIDs with these same values.
0107  */
0108 #define PTP_V2_MC_UUID_LENGTH   6
0109 #define PTP_V2_MC_UUID_OFFSET   50
0110 
0111 #define PTP_V2_SEQUENCE_LENGTH  2
0112 #define PTP_V2_SEQUENCE_OFFSET  58
0113 
0114 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
0115  * includes IP header.
0116  */
0117 #define PTP_V2_MIN_LENGTH   63
0118 
0119 #define PTP_MIN_LENGTH      63
0120 
0121 #define PTP_ADDRESS     0xe0000181  /* 224.0.1.129 */
0122 #define PTP_EVENT_PORT      319
0123 #define PTP_GENERAL_PORT    320
0124 
0125 /* Annoyingly the format of the version numbers are different between
0126  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
0127  */
0128 #define PTP_VERSION_V1      1
0129 
0130 #define PTP_VERSION_V2      2
0131 #define PTP_VERSION_V2_MASK 0x0f
0132 
0133 enum ptp_packet_state {
0134     PTP_PACKET_STATE_UNMATCHED = 0,
0135     PTP_PACKET_STATE_MATCHED,
0136     PTP_PACKET_STATE_TIMED_OUT,
0137     PTP_PACKET_STATE_MATCH_UNWANTED
0138 };
0139 
0140 /* NIC synchronised with single word of time only comprising
0141  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
0142  */
0143 #define MC_NANOSECOND_BITS  30
0144 #define MC_NANOSECOND_MASK  ((1 << MC_NANOSECOND_BITS) - 1)
0145 #define MC_SECOND_MASK      ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
0146 
0147 /* Maximum parts-per-billion adjustment that is acceptable */
0148 #define MAX_PPB         1000000
0149 
0150 /* Precalculate scale word to avoid long long division at runtime */
0151 /* This is equivalent to 2^66 / 10^9. */
0152 #define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
0153 
0154 /* How much to shift down after scaling to convert to FP40 */
0155 #define PPB_SHIFT_FP40      26
0156 /* ... and FP44. */
0157 #define PPB_SHIFT_FP44      22
0158 
0159 #define PTP_SYNC_ATTEMPTS   4
0160 
0161 /**
0162  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
0163  * @words: UUID and (partial) sequence number
0164  * @expiry: Time after which the packet should be delivered irrespective of
0165  *            event arrival.
0166  * @state: The state of the packet - whether it is ready for processing or
0167  *         whether that is of no interest.
0168  */
0169 struct efx_ptp_match {
0170     u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
0171     unsigned long expiry;
0172     enum ptp_packet_state state;
0173 };
0174 
0175 /**
0176  * struct efx_ptp_event_rx - A PTP receive event (from MC)
0177  * @link: list of events
0178  * @seq0: First part of (PTP) UUID
0179  * @seq1: Second part of (PTP) UUID and sequence number
0180  * @hwtimestamp: Event timestamp
0181  * @expiry: Time which the packet arrived
0182  */
0183 struct efx_ptp_event_rx {
0184     struct list_head link;
0185     u32 seq0;
0186     u32 seq1;
0187     ktime_t hwtimestamp;
0188     unsigned long expiry;
0189 };
0190 
0191 /**
0192  * struct efx_ptp_timeset - Synchronisation between host and MC
0193  * @host_start: Host time immediately before hardware timestamp taken
0194  * @major: Hardware timestamp, major
0195  * @minor: Hardware timestamp, minor
0196  * @host_end: Host time immediately after hardware timestamp taken
0197  * @wait: Number of NIC clock ticks between hardware timestamp being read and
0198  *          host end time being seen
0199  * @window: Difference of host_end and host_start
0200  * @valid: Whether this timeset is valid
0201  */
0202 struct efx_ptp_timeset {
0203     u32 host_start;
0204     u32 major;
0205     u32 minor;
0206     u32 host_end;
0207     u32 wait;
0208     u32 window; /* Derived: end - start, allowing for wrap */
0209 };
0210 
0211 /**
0212  * struct efx_ptp_data - Precision Time Protocol (PTP) state
0213  * @efx: The NIC context
0214  * @channel: The PTP channel (Siena only)
0215  * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
0216  *  separate events)
0217  * @rxq: Receive SKB queue (awaiting timestamps)
0218  * @txq: Transmit SKB queue
0219  * @evt_list: List of MC receive events awaiting packets
0220  * @evt_free_list: List of free events
0221  * @evt_lock: Lock for manipulating evt_list and evt_free_list
0222  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
0223  * @workwq: Work queue for processing pending PTP operations
0224  * @work: Work task
0225  * @reset_required: A serious error has occurred and the PTP task needs to be
0226  *                  reset (disable, enable).
0227  * @rxfilter_event: Receive filter when operating
0228  * @rxfilter_general: Receive filter when operating
0229  * @rxfilter_installed: Receive filter installed
0230  * @config: Current timestamp configuration
0231  * @enabled: PTP operation enabled
0232  * @mode: Mode in which PTP operating (PTP version)
0233  * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
0234  * @nic_to_kernel_time: Function to convert from NIC to kernel time
0235  * @nic_time: contains time details
0236  * @nic_time.minor_max: Wrap point for NIC minor times
0237  * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
0238  * in packet prefix and last MCDI time sync event i.e. how much earlier than
0239  * the last sync event time a packet timestamp can be.
0240  * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
0241  * in packet prefix and last MCDI time sync event i.e. how much later than
0242  * the last sync event time a packet timestamp can be.
0243  * @nic_time.sync_event_minor_shift: Shift required to make minor time from
0244  * field in MCDI time sync event.
0245  * @min_synchronisation_ns: Minimum acceptable corrected sync window
0246  * @capabilities: Capabilities flags from the NIC
0247  * @ts_corrections: contains corrections details
0248  * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
0249  *                         timestamps
0250  * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
0251  *                         timestamps
0252  * @ts_corrections.pps_out: PPS output error (information only)
0253  * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
0254  * @ts_corrections.general_tx: Required driver correction of general packet
0255  *                             transmit timestamps
0256  * @ts_corrections.general_rx: Required driver correction of general packet
0257  *                             receive timestamps
0258  * @evt_frags: Partly assembled PTP events
0259  * @evt_frag_idx: Current fragment number
0260  * @evt_code: Last event code
0261  * @start: Address at which MC indicates ready for synchronisation
0262  * @host_time_pps: Host time at last PPS
0263  * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
0264  * frequency adjustment into a fixed point fractional nanosecond format.
0265  * @current_adjfreq: Current ppb adjustment.
0266  * @phc_clock: Pointer to registered phc device (if primary function)
0267  * @phc_clock_info: Registration structure for phc device
0268  * @pps_work: pps work task for handling pps events
0269  * @pps_workwq: pps work queue
0270  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
0271  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
0272  *         allocations in main data path).
0273  * @good_syncs: Number of successful synchronisations.
0274  * @fast_syncs: Number of synchronisations requiring short delay
0275  * @bad_syncs: Number of failed synchronisations.
0276  * @sync_timeouts: Number of synchronisation timeouts
0277  * @no_time_syncs: Number of synchronisations with no good times.
0278  * @invalid_sync_windows: Number of sync windows with bad durations.
0279  * @undersize_sync_windows: Number of corrected sync windows that are too small
0280  * @oversize_sync_windows: Number of corrected sync windows that are too large
0281  * @rx_no_timestamp: Number of packets received without a timestamp.
0282  * @timeset: Last set of synchronisation statistics.
0283  * @xmit_skb: Transmit SKB function.
0284  */
0285 struct efx_ptp_data {
0286     struct efx_nic *efx;
0287     struct efx_channel *channel;
0288     bool rx_ts_inline;
0289     struct sk_buff_head rxq;
0290     struct sk_buff_head txq;
0291     struct list_head evt_list;
0292     struct list_head evt_free_list;
0293     spinlock_t evt_lock;
0294     struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
0295     struct workqueue_struct *workwq;
0296     struct work_struct work;
0297     bool reset_required;
0298     u32 rxfilter_event;
0299     u32 rxfilter_general;
0300     bool rxfilter_installed;
0301     struct hwtstamp_config config;
0302     bool enabled;
0303     unsigned int mode;
0304     void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
0305     ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
0306                       s32 correction);
0307     struct {
0308         u32 minor_max;
0309         u32 sync_event_diff_min;
0310         u32 sync_event_diff_max;
0311         unsigned int sync_event_minor_shift;
0312     } nic_time;
0313     unsigned int min_synchronisation_ns;
0314     unsigned int capabilities;
0315     struct {
0316         s32 ptp_tx;
0317         s32 ptp_rx;
0318         s32 pps_out;
0319         s32 pps_in;
0320         s32 general_tx;
0321         s32 general_rx;
0322     } ts_corrections;
0323     efx_qword_t evt_frags[MAX_EVENT_FRAGS];
0324     int evt_frag_idx;
0325     int evt_code;
0326     struct efx_buffer start;
0327     struct pps_event_time host_time_pps;
0328     unsigned int adjfreq_ppb_shift;
0329     s64 current_adjfreq;
0330     struct ptp_clock *phc_clock;
0331     struct ptp_clock_info phc_clock_info;
0332     struct work_struct pps_work;
0333     struct workqueue_struct *pps_workwq;
0334     bool nic_ts_enabled;
0335     efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
0336 
0337     unsigned int good_syncs;
0338     unsigned int fast_syncs;
0339     unsigned int bad_syncs;
0340     unsigned int sync_timeouts;
0341     unsigned int no_time_syncs;
0342     unsigned int invalid_sync_windows;
0343     unsigned int undersize_sync_windows;
0344     unsigned int oversize_sync_windows;
0345     unsigned int rx_no_timestamp;
0346     struct efx_ptp_timeset
0347     timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
0348     void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
0349 };
0350 
0351 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
0352 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
0353 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
0354 static int efx_phc_settime(struct ptp_clock_info *ptp,
0355                const struct timespec64 *e_ts);
0356 static int efx_phc_enable(struct ptp_clock_info *ptp,
0357               struct ptp_clock_request *request, int on);
0358 
0359 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
0360 {
0361     return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
0362 }
0363 
0364 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
0365  * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
0366  */
0367 static bool efx_ptp_want_txqs(struct efx_channel *channel)
0368 {
0369     return efx_ptp_use_mac_tx_timestamps(channel->efx);
0370 }
0371 
0372 #define PTP_SW_STAT(ext_name, field_name)               \
0373     { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
0374 #define PTP_MC_STAT(ext_name, mcdi_name)                \
0375     { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
0376 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
0377     PTP_SW_STAT(ptp_good_syncs, good_syncs),
0378     PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
0379     PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
0380     PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
0381     PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
0382     PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
0383     PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
0384     PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
0385     PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
0386     PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
0387     PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
0388     PTP_MC_STAT(ptp_timestamp_packets, TS),
0389     PTP_MC_STAT(ptp_filter_matches, FM),
0390     PTP_MC_STAT(ptp_non_filter_matches, NFM),
0391 };
0392 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
0393 static const unsigned long efx_ptp_stat_mask[] = {
0394     [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
0395 };
0396 
0397 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
0398 {
0399     if (!efx->ptp_data)
0400         return 0;
0401 
0402     return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
0403                       efx_ptp_stat_mask, strings);
0404 }
0405 
0406 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
0407 {
0408     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
0409     MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
0410     size_t i;
0411     int rc;
0412 
0413     if (!efx->ptp_data)
0414         return 0;
0415 
0416     /* Copy software statistics */
0417     for (i = 0; i < PTP_STAT_COUNT; i++) {
0418         if (efx_ptp_stat_desc[i].dma_width)
0419             continue;
0420         stats[i] = *(unsigned int *)((char *)efx->ptp_data +
0421                          efx_ptp_stat_desc[i].offset);
0422     }
0423 
0424     /* Fetch MC statistics.  We *must* fill in all statistics or
0425      * risk leaking kernel memory to userland, so if the MCDI
0426      * request fails we pretend we got zeroes.
0427      */
0428     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
0429     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0430     rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0431               outbuf, sizeof(outbuf), NULL);
0432     if (rc)
0433         memset(outbuf, 0, sizeof(outbuf));
0434     efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
0435                  efx_ptp_stat_mask,
0436                  stats, _MCDI_PTR(outbuf, 0), false);
0437 
0438     return PTP_STAT_COUNT;
0439 }
0440 
0441 /* For Siena platforms NIC time is s and ns */
0442 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
0443 {
0444     struct timespec64 ts = ns_to_timespec64(ns);
0445     *nic_major = (u32)ts.tv_sec;
0446     *nic_minor = ts.tv_nsec;
0447 }
0448 
0449 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
0450                         s32 correction)
0451 {
0452     ktime_t kt = ktime_set(nic_major, nic_minor);
0453     if (correction >= 0)
0454         kt = ktime_add_ns(kt, (u64)correction);
0455     else
0456         kt = ktime_sub_ns(kt, (u64)-correction);
0457     return kt;
0458 }
0459 
0460 /* To convert from s27 format to ns we multiply then divide by a power of 2.
0461  * For the conversion from ns to s27, the operation is also converted to a
0462  * multiply and shift.
0463  */
0464 #define S27_TO_NS_SHIFT (27)
0465 #define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
0466 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
0467 #define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
0468 
0469 /* For Huntington platforms NIC time is in seconds and fractions of a second
0470  * where the minor register only uses 27 bits in units of 2^-27s.
0471  */
0472 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
0473 {
0474     struct timespec64 ts = ns_to_timespec64(ns);
0475     u32 maj = (u32)ts.tv_sec;
0476     u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
0477              (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
0478 
0479     /* The conversion can result in the minor value exceeding the maximum.
0480      * In this case, round up to the next second.
0481      */
0482     if (min >= S27_MINOR_MAX) {
0483         min -= S27_MINOR_MAX;
0484         maj++;
0485     }
0486 
0487     *nic_major = maj;
0488     *nic_minor = min;
0489 }
0490 
0491 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
0492 {
0493     u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
0494             (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
0495     return ktime_set(nic_major, ns);
0496 }
0497 
0498 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
0499                            s32 correction)
0500 {
0501     /* Apply the correction and deal with carry */
0502     nic_minor += correction;
0503     if ((s32)nic_minor < 0) {
0504         nic_minor += S27_MINOR_MAX;
0505         nic_major--;
0506     } else if (nic_minor >= S27_MINOR_MAX) {
0507         nic_minor -= S27_MINOR_MAX;
0508         nic_major++;
0509     }
0510 
0511     return efx_ptp_s27_to_ktime(nic_major, nic_minor);
0512 }
0513 
0514 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
0515 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
0516 {
0517     struct timespec64 ts = ns_to_timespec64(ns);
0518 
0519     *nic_major = (u32)ts.tv_sec;
0520     *nic_minor = ts.tv_nsec * 4;
0521 }
0522 
0523 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
0524                          s32 correction)
0525 {
0526     ktime_t kt;
0527 
0528     nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
0529     correction = DIV_ROUND_CLOSEST(correction, 4);
0530 
0531     kt = ktime_set(nic_major, nic_minor);
0532 
0533     if (correction >= 0)
0534         kt = ktime_add_ns(kt, (u64)correction);
0535     else
0536         kt = ktime_sub_ns(kt, (u64)-correction);
0537     return kt;
0538 }
0539 
0540 struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
0541 {
0542     return efx->ptp_data ? efx->ptp_data->channel : NULL;
0543 }
0544 
0545 void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel)
0546 {
0547     if (efx->ptp_data)
0548         efx->ptp_data->channel = channel;
0549 }
0550 
0551 static u32 last_sync_timestamp_major(struct efx_nic *efx)
0552 {
0553     struct efx_channel *channel = efx_ptp_channel(efx);
0554     u32 major = 0;
0555 
0556     if (channel)
0557         major = channel->sync_timestamp_major;
0558     return major;
0559 }
0560 
0561 /* The 8000 series and later can provide the time from the MAC, which is only
0562  * 48 bits long and provides meta-information in the top 2 bits.
0563  */
0564 static ktime_t
0565 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
0566                     struct efx_ptp_data *ptp,
0567                     u32 nic_major, u32 nic_minor,
0568                     s32 correction)
0569 {
0570     u32 sync_timestamp;
0571     ktime_t kt = { 0 };
0572     s16 delta;
0573 
0574     if (!(nic_major & 0x80000000)) {
0575         WARN_ON_ONCE(nic_major >> 16);
0576 
0577         /* Medford provides 48 bits of timestamp, so we must get the top
0578          * 16 bits from the timesync event state.
0579          *
0580          * We only have the lower 16 bits of the time now, but we do
0581          * have a full resolution timestamp at some point in past. As
0582          * long as the difference between the (real) now and the sync
0583          * is less than 2^15, then we can reconstruct the difference
0584          * between those two numbers using only the lower 16 bits of
0585          * each.
0586          *
0587          * Put another way
0588          *
0589          * a - b = ((a mod k) - b) mod k
0590          *
0591          * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
0592          * (a mod k) and b, so can calculate the delta, a - b.
0593          *
0594          */
0595         sync_timestamp = last_sync_timestamp_major(efx);
0596 
0597         /* Because delta is s16 this does an implicit mask down to
0598          * 16 bits which is what we need, assuming
0599          * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
0600          * we can deal with the (unlikely) case of sync timestamps
0601          * arriving from the future.
0602          */
0603         delta = nic_major - sync_timestamp;
0604 
0605         /* Recover the fully specified time now, by applying the offset
0606          * to the (fully specified) sync time.
0607          */
0608         nic_major = sync_timestamp + delta;
0609 
0610         kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
0611                          correction);
0612     }
0613     return kt;
0614 }
0615 
0616 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
0617 {
0618     struct efx_nic *efx = tx_queue->efx;
0619     struct efx_ptp_data *ptp = efx->ptp_data;
0620     ktime_t kt;
0621 
0622     if (efx_ptp_use_mac_tx_timestamps(efx))
0623         kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
0624                 tx_queue->completed_timestamp_major,
0625                 tx_queue->completed_timestamp_minor,
0626                 ptp->ts_corrections.general_tx);
0627     else
0628         kt = ptp->nic_to_kernel_time(
0629                 tx_queue->completed_timestamp_major,
0630                 tx_queue->completed_timestamp_minor,
0631                 ptp->ts_corrections.general_tx);
0632     return kt;
0633 }
0634 
0635 /* Get PTP attributes and set up time conversions */
0636 static int efx_ptp_get_attributes(struct efx_nic *efx)
0637 {
0638     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
0639     MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
0640     struct efx_ptp_data *ptp = efx->ptp_data;
0641     int rc;
0642     u32 fmt;
0643     size_t out_len;
0644 
0645     /* Get the PTP attributes. If the NIC doesn't support the operation we
0646      * use the default format for compatibility with older NICs i.e.
0647      * seconds and nanoseconds.
0648      */
0649     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
0650     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0651     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0652                 outbuf, sizeof(outbuf), &out_len);
0653     if (rc == 0) {
0654         fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
0655     } else if (rc == -EINVAL) {
0656         fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
0657     } else if (rc == -EPERM) {
0658         pci_info(efx->pci_dev, "no PTP support\n");
0659         return rc;
0660     } else {
0661         efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
0662                        outbuf, sizeof(outbuf), rc);
0663         return rc;
0664     }
0665 
0666     switch (fmt) {
0667     case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
0668         ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
0669         ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
0670         ptp->nic_time.minor_max = 1 << 27;
0671         ptp->nic_time.sync_event_minor_shift = 19;
0672         break;
0673     case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
0674         ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
0675         ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
0676         ptp->nic_time.minor_max = 1000000000;
0677         ptp->nic_time.sync_event_minor_shift = 22;
0678         break;
0679     case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
0680         ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
0681         ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
0682         ptp->nic_time.minor_max = 4000000000UL;
0683         ptp->nic_time.sync_event_minor_shift = 24;
0684         break;
0685     default:
0686         return -ERANGE;
0687     }
0688 
0689     /* Precalculate acceptable difference between the minor time in the
0690      * packet prefix and the last MCDI time sync event. We expect the
0691      * packet prefix timestamp to be after of sync event by up to one
0692      * sync event interval (0.25s) but we allow it to exceed this by a
0693      * fuzz factor of (0.1s)
0694      */
0695     ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
0696         - (ptp->nic_time.minor_max / 10);
0697     ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
0698         + (ptp->nic_time.minor_max / 10);
0699 
0700     /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
0701      * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
0702      * a value to use for the minimum acceptable corrected synchronization
0703      * window and may return further capabilities.
0704      * If we have the extra information store it. For older firmware that
0705      * does not implement the extended command use the default value.
0706      */
0707     if (rc == 0 &&
0708         out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
0709         ptp->min_synchronisation_ns =
0710             MCDI_DWORD(outbuf,
0711                    PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
0712     else
0713         ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
0714 
0715     if (rc == 0 &&
0716         out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
0717         ptp->capabilities = MCDI_DWORD(outbuf,
0718                     PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
0719     else
0720         ptp->capabilities = 0;
0721 
0722     /* Set up the shift for conversion between frequency
0723      * adjustments in parts-per-billion and the fixed-point
0724      * fractional ns format that the adapter uses.
0725      */
0726     if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
0727         ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
0728     else
0729         ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
0730 
0731     return 0;
0732 }
0733 
0734 /* Get PTP timestamp corrections */
0735 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
0736 {
0737     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
0738     MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
0739     int rc;
0740     size_t out_len;
0741 
0742     /* Get the timestamp corrections from the NIC. If this operation is
0743      * not supported (older NICs) then no correction is required.
0744      */
0745     MCDI_SET_DWORD(inbuf, PTP_IN_OP,
0746                MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
0747     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0748 
0749     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0750                 outbuf, sizeof(outbuf), &out_len);
0751     if (rc == 0) {
0752         efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
0753             PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
0754         efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
0755             PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
0756         efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
0757             PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
0758         efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
0759             PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
0760 
0761         if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
0762             efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
0763                 outbuf,
0764                 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
0765             efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
0766                 outbuf,
0767                 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
0768         } else {
0769             efx->ptp_data->ts_corrections.general_tx =
0770                 efx->ptp_data->ts_corrections.ptp_tx;
0771             efx->ptp_data->ts_corrections.general_rx =
0772                 efx->ptp_data->ts_corrections.ptp_rx;
0773         }
0774     } else if (rc == -EINVAL) {
0775         efx->ptp_data->ts_corrections.ptp_tx = 0;
0776         efx->ptp_data->ts_corrections.ptp_rx = 0;
0777         efx->ptp_data->ts_corrections.pps_out = 0;
0778         efx->ptp_data->ts_corrections.pps_in = 0;
0779         efx->ptp_data->ts_corrections.general_tx = 0;
0780         efx->ptp_data->ts_corrections.general_rx = 0;
0781     } else {
0782         efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
0783                        sizeof(outbuf), rc);
0784         return rc;
0785     }
0786 
0787     return 0;
0788 }
0789 
0790 /* Enable MCDI PTP support. */
0791 static int efx_ptp_enable(struct efx_nic *efx)
0792 {
0793     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
0794     MCDI_DECLARE_BUF_ERR(outbuf);
0795     int rc;
0796 
0797     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
0798     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0799     MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
0800                efx->ptp_data->channel ?
0801                efx->ptp_data->channel->channel : 0);
0802     MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
0803 
0804     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0805                 outbuf, sizeof(outbuf), NULL);
0806     rc = (rc == -EALREADY) ? 0 : rc;
0807     if (rc)
0808         efx_mcdi_display_error(efx, MC_CMD_PTP,
0809                        MC_CMD_PTP_IN_ENABLE_LEN,
0810                        outbuf, sizeof(outbuf), rc);
0811     return rc;
0812 }
0813 
0814 /* Disable MCDI PTP support.
0815  *
0816  * Note that this function should never rely on the presence of ptp_data -
0817  * may be called before that exists.
0818  */
0819 static int efx_ptp_disable(struct efx_nic *efx)
0820 {
0821     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
0822     MCDI_DECLARE_BUF_ERR(outbuf);
0823     int rc;
0824 
0825     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
0826     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
0827     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
0828                 outbuf, sizeof(outbuf), NULL);
0829     rc = (rc == -EALREADY) ? 0 : rc;
0830     /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
0831      * should only have been called during probe.
0832      */
0833     if (rc == -ENOSYS || rc == -EPERM)
0834         pci_info(efx->pci_dev, "no PTP support\n");
0835     else if (rc)
0836         efx_mcdi_display_error(efx, MC_CMD_PTP,
0837                        MC_CMD_PTP_IN_DISABLE_LEN,
0838                        outbuf, sizeof(outbuf), rc);
0839     return rc;
0840 }
0841 
0842 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
0843 {
0844     struct sk_buff *skb;
0845 
0846     while ((skb = skb_dequeue(q))) {
0847         local_bh_disable();
0848         netif_receive_skb(skb);
0849         local_bh_enable();
0850     }
0851 }
0852 
0853 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
0854 {
0855     netif_err(efx, drv, efx->net_dev,
0856           "ERROR: PTP requires MSI-X and 1 additional interrupt"
0857           "vector. PTP disabled\n");
0858 }
0859 
0860 /* Repeatedly send the host time to the MC which will capture the hardware
0861  * time.
0862  */
0863 static void efx_ptp_send_times(struct efx_nic *efx,
0864                    struct pps_event_time *last_time)
0865 {
0866     struct pps_event_time now;
0867     struct timespec64 limit;
0868     struct efx_ptp_data *ptp = efx->ptp_data;
0869     int *mc_running = ptp->start.addr;
0870 
0871     pps_get_ts(&now);
0872     limit = now.ts_real;
0873     timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
0874 
0875     /* Write host time for specified period or until MC is done */
0876     while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
0877            READ_ONCE(*mc_running)) {
0878         struct timespec64 update_time;
0879         unsigned int host_time;
0880 
0881         /* Don't update continuously to avoid saturating the PCIe bus */
0882         update_time = now.ts_real;
0883         timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
0884         do {
0885             pps_get_ts(&now);
0886         } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
0887              READ_ONCE(*mc_running));
0888 
0889         /* Synchronise NIC with single word of time only */
0890         host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
0891                  now.ts_real.tv_nsec);
0892         /* Update host time in NIC memory */
0893         efx->type->ptp_write_host_time(efx, host_time);
0894     }
0895     *last_time = now;
0896 }
0897 
0898 /* Read a timeset from the MC's results and partial process. */
0899 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
0900                  struct efx_ptp_timeset *timeset)
0901 {
0902     unsigned start_ns, end_ns;
0903 
0904     timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
0905     timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
0906     timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
0907     timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
0908     timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
0909 
0910     /* Ignore seconds */
0911     start_ns = timeset->host_start & MC_NANOSECOND_MASK;
0912     end_ns = timeset->host_end & MC_NANOSECOND_MASK;
0913     /* Allow for rollover */
0914     if (end_ns < start_ns)
0915         end_ns += NSEC_PER_SEC;
0916     /* Determine duration of operation */
0917     timeset->window = end_ns - start_ns;
0918 }
0919 
0920 /* Process times received from MC.
0921  *
0922  * Extract times from returned results, and establish the minimum value
0923  * seen.  The minimum value represents the "best" possible time and events
0924  * too much greater than this are rejected - the machine is, perhaps, too
0925  * busy. A number of readings are taken so that, hopefully, at least one good
0926  * synchronisation will be seen in the results.
0927  */
0928 static int
0929 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
0930               size_t response_length,
0931               const struct pps_event_time *last_time)
0932 {
0933     unsigned number_readings =
0934         MCDI_VAR_ARRAY_LEN(response_length,
0935                    PTP_OUT_SYNCHRONIZE_TIMESET);
0936     unsigned i;
0937     unsigned ngood = 0;
0938     unsigned last_good = 0;
0939     struct efx_ptp_data *ptp = efx->ptp_data;
0940     u32 last_sec;
0941     u32 start_sec;
0942     struct timespec64 delta;
0943     ktime_t mc_time;
0944 
0945     if (number_readings == 0)
0946         return -EAGAIN;
0947 
0948     /* Read the set of results and find the last good host-MC
0949      * synchronization result. The MC times when it finishes reading the
0950      * host time so the corrected window time should be fairly constant
0951      * for a given platform. Increment stats for any results that appear
0952      * to be erroneous.
0953      */
0954     for (i = 0; i < number_readings; i++) {
0955         s32 window, corrected;
0956         struct timespec64 wait;
0957 
0958         efx_ptp_read_timeset(
0959             MCDI_ARRAY_STRUCT_PTR(synch_buf,
0960                           PTP_OUT_SYNCHRONIZE_TIMESET, i),
0961             &ptp->timeset[i]);
0962 
0963         wait = ktime_to_timespec64(
0964             ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
0965         window = ptp->timeset[i].window;
0966         corrected = window - wait.tv_nsec;
0967 
0968         /* We expect the uncorrected synchronization window to be at
0969          * least as large as the interval between host start and end
0970          * times. If it is smaller than this then this is mostly likely
0971          * to be a consequence of the host's time being adjusted.
0972          * Check that the corrected sync window is in a reasonable
0973          * range. If it is out of range it is likely to be because an
0974          * interrupt or other delay occurred between reading the system
0975          * time and writing it to MC memory.
0976          */
0977         if (window < SYNCHRONISATION_GRANULARITY_NS) {
0978             ++ptp->invalid_sync_windows;
0979         } else if (corrected >= MAX_SYNCHRONISATION_NS) {
0980             ++ptp->oversize_sync_windows;
0981         } else if (corrected < ptp->min_synchronisation_ns) {
0982             ++ptp->undersize_sync_windows;
0983         } else {
0984             ngood++;
0985             last_good = i;
0986         }
0987     }
0988 
0989     if (ngood == 0) {
0990         netif_warn(efx, drv, efx->net_dev,
0991                "PTP no suitable synchronisations\n");
0992         return -EAGAIN;
0993     }
0994 
0995     /* Calculate delay from last good sync (host time) to last_time.
0996      * It is possible that the seconds rolled over between taking
0997      * the start reading and the last value written by the host.  The
0998      * timescales are such that a gap of more than one second is never
0999      * expected.  delta is *not* normalised.
1000      */
1001     start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
1002     last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
1003     if (start_sec != last_sec &&
1004         ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
1005         netif_warn(efx, hw, efx->net_dev,
1006                "PTP bad synchronisation seconds\n");
1007         return -EAGAIN;
1008     }
1009     delta.tv_sec = (last_sec - start_sec) & 1;
1010     delta.tv_nsec =
1011         last_time->ts_real.tv_nsec -
1012         (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1013 
1014     /* Convert the NIC time at last good sync into kernel time.
1015      * No correction is required - this time is the output of a
1016      * firmware process.
1017      */
1018     mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1019                       ptp->timeset[last_good].minor, 0);
1020 
1021     /* Calculate delay from NIC top of second to last_time */
1022     delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1023 
1024     /* Set PPS timestamp to match NIC top of second */
1025     ptp->host_time_pps = *last_time;
1026     pps_sub_ts(&ptp->host_time_pps, delta);
1027 
1028     return 0;
1029 }
1030 
1031 /* Synchronize times between the host and the MC */
1032 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1033 {
1034     struct efx_ptp_data *ptp = efx->ptp_data;
1035     MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1036     size_t response_length;
1037     int rc;
1038     unsigned long timeout;
1039     struct pps_event_time last_time = {};
1040     unsigned int loops = 0;
1041     int *start = ptp->start.addr;
1042 
1043     MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1044     MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1045     MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1046                num_readings);
1047     MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1048                ptp->start.dma_addr);
1049 
1050     /* Clear flag that signals MC ready */
1051     WRITE_ONCE(*start, 0);
1052     rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1053                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1054     EFX_WARN_ON_ONCE_PARANOID(rc);
1055 
1056     /* Wait for start from MCDI (or timeout) */
1057     timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1058     while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1059         udelay(20); /* Usually start MCDI execution quickly */
1060         loops++;
1061     }
1062 
1063     if (loops <= 1)
1064         ++ptp->fast_syncs;
1065     if (!time_before(jiffies, timeout))
1066         ++ptp->sync_timeouts;
1067 
1068     if (READ_ONCE(*start))
1069         efx_ptp_send_times(efx, &last_time);
1070 
1071     /* Collect results */
1072     rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1073                  MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1074                  synch_buf, sizeof(synch_buf),
1075                  &response_length);
1076     if (rc == 0) {
1077         rc = efx_ptp_process_times(efx, synch_buf, response_length,
1078                        &last_time);
1079         if (rc == 0)
1080             ++ptp->good_syncs;
1081         else
1082             ++ptp->no_time_syncs;
1083     }
1084 
1085     /* Increment the bad syncs counter if the synchronize fails, whatever
1086      * the reason.
1087      */
1088     if (rc != 0)
1089         ++ptp->bad_syncs;
1090 
1091     return rc;
1092 }
1093 
1094 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1095 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1096 {
1097     struct efx_ptp_data *ptp_data = efx->ptp_data;
1098     u8 type = efx_tx_csum_type_skb(skb);
1099     struct efx_tx_queue *tx_queue;
1100 
1101     tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1102     if (tx_queue && tx_queue->timestamping) {
1103         /* This code invokes normal driver TX code which is always
1104          * protected from softirqs when called from generic TX code,
1105          * which in turn disables preemption. Look at __dev_queue_xmit
1106          * which uses rcu_read_lock_bh disabling preemption for RCU
1107          * plus disabling softirqs. We do not need RCU reader
1108          * protection here.
1109          *
1110          * Although it is theoretically safe for current PTP TX/RX code
1111          * running without disabling softirqs, there are three good
1112          * reasond for doing so:
1113          *
1114          *      1) The code invoked is mainly implemented for non-PTP
1115          *         packets and it is always executed with softirqs
1116          *         disabled.
1117          *      2) This being a single PTP packet, better to not
1118          *         interrupt its processing by softirqs which can lead
1119          *         to high latencies.
1120          *      3) netdev_xmit_more checks preemption is disabled and
1121          *         triggers a BUG_ON if not.
1122          */
1123         local_bh_disable();
1124         efx_enqueue_skb(tx_queue, skb);
1125         local_bh_enable();
1126     } else {
1127         WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1128         dev_kfree_skb_any(skb);
1129     }
1130 }
1131 
1132 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1133 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1134 {
1135     struct efx_ptp_data *ptp_data = efx->ptp_data;
1136     struct skb_shared_hwtstamps timestamps;
1137     int rc = -EIO;
1138     MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1139     size_t len;
1140 
1141     MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1142     MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1143     MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1144     if (skb_shinfo(skb)->nr_frags != 0) {
1145         rc = skb_linearize(skb);
1146         if (rc != 0)
1147             goto fail;
1148     }
1149 
1150     if (skb->ip_summed == CHECKSUM_PARTIAL) {
1151         rc = skb_checksum_help(skb);
1152         if (rc != 0)
1153             goto fail;
1154     }
1155     skb_copy_from_linear_data(skb,
1156                   MCDI_PTR(ptp_data->txbuf,
1157                        PTP_IN_TRANSMIT_PACKET),
1158                   skb->len);
1159     rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1160               ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1161               txtime, sizeof(txtime), &len);
1162     if (rc != 0)
1163         goto fail;
1164 
1165     memset(&timestamps, 0, sizeof(timestamps));
1166     timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1167         MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1168         MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1169         ptp_data->ts_corrections.ptp_tx);
1170 
1171     skb_tstamp_tx(skb, &timestamps);
1172 
1173     rc = 0;
1174 
1175 fail:
1176     dev_kfree_skb_any(skb);
1177 
1178     return;
1179 }
1180 
1181 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1182 {
1183     struct efx_ptp_data *ptp = efx->ptp_data;
1184     struct list_head *cursor;
1185     struct list_head *next;
1186 
1187     if (ptp->rx_ts_inline)
1188         return;
1189 
1190     /* Drop time-expired events */
1191     spin_lock_bh(&ptp->evt_lock);
1192     list_for_each_safe(cursor, next, &ptp->evt_list) {
1193         struct efx_ptp_event_rx *evt;
1194 
1195         evt = list_entry(cursor, struct efx_ptp_event_rx,
1196                  link);
1197         if (time_after(jiffies, evt->expiry)) {
1198             list_move(&evt->link, &ptp->evt_free_list);
1199             netif_warn(efx, hw, efx->net_dev,
1200                    "PTP rx event dropped\n");
1201         }
1202     }
1203     spin_unlock_bh(&ptp->evt_lock);
1204 }
1205 
1206 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1207                           struct sk_buff *skb)
1208 {
1209     struct efx_ptp_data *ptp = efx->ptp_data;
1210     bool evts_waiting;
1211     struct list_head *cursor;
1212     struct list_head *next;
1213     struct efx_ptp_match *match;
1214     enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1215 
1216     WARN_ON_ONCE(ptp->rx_ts_inline);
1217 
1218     spin_lock_bh(&ptp->evt_lock);
1219     evts_waiting = !list_empty(&ptp->evt_list);
1220     spin_unlock_bh(&ptp->evt_lock);
1221 
1222     if (!evts_waiting)
1223         return PTP_PACKET_STATE_UNMATCHED;
1224 
1225     match = (struct efx_ptp_match *)skb->cb;
1226     /* Look for a matching timestamp in the event queue */
1227     spin_lock_bh(&ptp->evt_lock);
1228     list_for_each_safe(cursor, next, &ptp->evt_list) {
1229         struct efx_ptp_event_rx *evt;
1230 
1231         evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1232         if ((evt->seq0 == match->words[0]) &&
1233             (evt->seq1 == match->words[1])) {
1234             struct skb_shared_hwtstamps *timestamps;
1235 
1236             /* Match - add in hardware timestamp */
1237             timestamps = skb_hwtstamps(skb);
1238             timestamps->hwtstamp = evt->hwtimestamp;
1239 
1240             match->state = PTP_PACKET_STATE_MATCHED;
1241             rc = PTP_PACKET_STATE_MATCHED;
1242             list_move(&evt->link, &ptp->evt_free_list);
1243             break;
1244         }
1245     }
1246     spin_unlock_bh(&ptp->evt_lock);
1247 
1248     return rc;
1249 }
1250 
1251 /* Process any queued receive events and corresponding packets
1252  *
1253  * q is returned with all the packets that are ready for delivery.
1254  */
1255 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1256 {
1257     struct efx_ptp_data *ptp = efx->ptp_data;
1258     struct sk_buff *skb;
1259 
1260     while ((skb = skb_dequeue(&ptp->rxq))) {
1261         struct efx_ptp_match *match;
1262 
1263         match = (struct efx_ptp_match *)skb->cb;
1264         if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1265             __skb_queue_tail(q, skb);
1266         } else if (efx_ptp_match_rx(efx, skb) ==
1267                PTP_PACKET_STATE_MATCHED) {
1268             __skb_queue_tail(q, skb);
1269         } else if (time_after(jiffies, match->expiry)) {
1270             match->state = PTP_PACKET_STATE_TIMED_OUT;
1271             ++ptp->rx_no_timestamp;
1272             __skb_queue_tail(q, skb);
1273         } else {
1274             /* Replace unprocessed entry and stop */
1275             skb_queue_head(&ptp->rxq, skb);
1276             break;
1277         }
1278     }
1279 }
1280 
1281 /* Complete processing of a received packet */
1282 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1283 {
1284     local_bh_disable();
1285     netif_receive_skb(skb);
1286     local_bh_enable();
1287 }
1288 
1289 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1290 {
1291     struct efx_ptp_data *ptp = efx->ptp_data;
1292 
1293     if (ptp->rxfilter_installed) {
1294         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1295                       ptp->rxfilter_general);
1296         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1297                       ptp->rxfilter_event);
1298         ptp->rxfilter_installed = false;
1299     }
1300 }
1301 
1302 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1303 {
1304     struct efx_ptp_data *ptp = efx->ptp_data;
1305     struct efx_filter_spec rxfilter;
1306     int rc;
1307 
1308     if (!ptp->channel || ptp->rxfilter_installed)
1309         return 0;
1310 
1311     /* Must filter on both event and general ports to ensure
1312      * that there is no packet re-ordering.
1313      */
1314     efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1315                efx_rx_queue_index(
1316                    efx_channel_get_rx_queue(ptp->channel)));
1317     rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1318                        htonl(PTP_ADDRESS),
1319                        htons(PTP_EVENT_PORT));
1320     if (rc != 0)
1321         return rc;
1322 
1323     rc = efx_filter_insert_filter(efx, &rxfilter, true);
1324     if (rc < 0)
1325         return rc;
1326     ptp->rxfilter_event = rc;
1327 
1328     efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1329                efx_rx_queue_index(
1330                    efx_channel_get_rx_queue(ptp->channel)));
1331     rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1332                        htonl(PTP_ADDRESS),
1333                        htons(PTP_GENERAL_PORT));
1334     if (rc != 0)
1335         goto fail;
1336 
1337     rc = efx_filter_insert_filter(efx, &rxfilter, true);
1338     if (rc < 0)
1339         goto fail;
1340     ptp->rxfilter_general = rc;
1341 
1342     ptp->rxfilter_installed = true;
1343     return 0;
1344 
1345 fail:
1346     efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1347                   ptp->rxfilter_event);
1348     return rc;
1349 }
1350 
1351 static int efx_ptp_start(struct efx_nic *efx)
1352 {
1353     struct efx_ptp_data *ptp = efx->ptp_data;
1354     int rc;
1355 
1356     ptp->reset_required = false;
1357 
1358     rc = efx_ptp_insert_multicast_filters(efx);
1359     if (rc)
1360         return rc;
1361 
1362     rc = efx_ptp_enable(efx);
1363     if (rc != 0)
1364         goto fail;
1365 
1366     ptp->evt_frag_idx = 0;
1367     ptp->current_adjfreq = 0;
1368 
1369     return 0;
1370 
1371 fail:
1372     efx_ptp_remove_multicast_filters(efx);
1373     return rc;
1374 }
1375 
1376 static int efx_ptp_stop(struct efx_nic *efx)
1377 {
1378     struct efx_ptp_data *ptp = efx->ptp_data;
1379     struct list_head *cursor;
1380     struct list_head *next;
1381     int rc;
1382 
1383     if (ptp == NULL)
1384         return 0;
1385 
1386     rc = efx_ptp_disable(efx);
1387 
1388     efx_ptp_remove_multicast_filters(efx);
1389 
1390     /* Make sure RX packets are really delivered */
1391     efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1392     skb_queue_purge(&efx->ptp_data->txq);
1393 
1394     /* Drop any pending receive events */
1395     spin_lock_bh(&efx->ptp_data->evt_lock);
1396     list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1397         list_move(cursor, &efx->ptp_data->evt_free_list);
1398     }
1399     spin_unlock_bh(&efx->ptp_data->evt_lock);
1400 
1401     return rc;
1402 }
1403 
1404 static int efx_ptp_restart(struct efx_nic *efx)
1405 {
1406     if (efx->ptp_data && efx->ptp_data->enabled)
1407         return efx_ptp_start(efx);
1408     return 0;
1409 }
1410 
1411 static void efx_ptp_pps_worker(struct work_struct *work)
1412 {
1413     struct efx_ptp_data *ptp =
1414         container_of(work, struct efx_ptp_data, pps_work);
1415     struct efx_nic *efx = ptp->efx;
1416     struct ptp_clock_event ptp_evt;
1417 
1418     if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1419         return;
1420 
1421     ptp_evt.type = PTP_CLOCK_PPSUSR;
1422     ptp_evt.pps_times = ptp->host_time_pps;
1423     ptp_clock_event(ptp->phc_clock, &ptp_evt);
1424 }
1425 
1426 static void efx_ptp_worker(struct work_struct *work)
1427 {
1428     struct efx_ptp_data *ptp_data =
1429         container_of(work, struct efx_ptp_data, work);
1430     struct efx_nic *efx = ptp_data->efx;
1431     struct sk_buff *skb;
1432     struct sk_buff_head tempq;
1433 
1434     if (ptp_data->reset_required) {
1435         efx_ptp_stop(efx);
1436         efx_ptp_start(efx);
1437         return;
1438     }
1439 
1440     efx_ptp_drop_time_expired_events(efx);
1441 
1442     __skb_queue_head_init(&tempq);
1443     efx_ptp_process_events(efx, &tempq);
1444 
1445     while ((skb = skb_dequeue(&ptp_data->txq)))
1446         ptp_data->xmit_skb(efx, skb);
1447 
1448     while ((skb = __skb_dequeue(&tempq)))
1449         efx_ptp_process_rx(efx, skb);
1450 }
1451 
1452 static const struct ptp_clock_info efx_phc_clock_info = {
1453     .owner      = THIS_MODULE,
1454     .name       = "sfc",
1455     .max_adj    = MAX_PPB,
1456     .n_alarm    = 0,
1457     .n_ext_ts   = 0,
1458     .n_per_out  = 0,
1459     .n_pins     = 0,
1460     .pps        = 1,
1461     .adjfreq    = efx_phc_adjfreq,
1462     .adjtime    = efx_phc_adjtime,
1463     .gettime64  = efx_phc_gettime,
1464     .settime64  = efx_phc_settime,
1465     .enable     = efx_phc_enable,
1466 };
1467 
1468 /* Initialise PTP state. */
1469 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1470 {
1471     struct efx_ptp_data *ptp;
1472     int rc = 0;
1473     unsigned int pos;
1474 
1475     if (efx->ptp_data) {
1476         efx->ptp_data->channel = channel;
1477         return 0;
1478     }
1479 
1480     ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1481     efx->ptp_data = ptp;
1482     if (!efx->ptp_data)
1483         return -ENOMEM;
1484 
1485     ptp->efx = efx;
1486     ptp->channel = channel;
1487     ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1488 
1489     rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1490     if (rc != 0)
1491         goto fail1;
1492 
1493     skb_queue_head_init(&ptp->rxq);
1494     skb_queue_head_init(&ptp->txq);
1495     ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1496     if (!ptp->workwq) {
1497         rc = -ENOMEM;
1498         goto fail2;
1499     }
1500 
1501     if (efx_ptp_use_mac_tx_timestamps(efx)) {
1502         ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1503         /* Request sync events on this channel. */
1504         channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1505     } else {
1506         ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1507     }
1508 
1509     INIT_WORK(&ptp->work, efx_ptp_worker);
1510     ptp->config.flags = 0;
1511     ptp->config.tx_type = HWTSTAMP_TX_OFF;
1512     ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1513     INIT_LIST_HEAD(&ptp->evt_list);
1514     INIT_LIST_HEAD(&ptp->evt_free_list);
1515     spin_lock_init(&ptp->evt_lock);
1516     for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1517         list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1518 
1519     /* Get the NIC PTP attributes and set up time conversions */
1520     rc = efx_ptp_get_attributes(efx);
1521     if (rc < 0)
1522         goto fail3;
1523 
1524     /* Get the timestamp corrections */
1525     rc = efx_ptp_get_timestamp_corrections(efx);
1526     if (rc < 0)
1527         goto fail3;
1528 
1529     if (efx->mcdi->fn_flags &
1530         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1531         ptp->phc_clock_info = efx_phc_clock_info;
1532         ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1533                             &efx->pci_dev->dev);
1534         if (IS_ERR(ptp->phc_clock)) {
1535             rc = PTR_ERR(ptp->phc_clock);
1536             goto fail3;
1537         } else if (ptp->phc_clock) {
1538             INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1539             ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1540             if (!ptp->pps_workwq) {
1541                 rc = -ENOMEM;
1542                 goto fail4;
1543             }
1544         }
1545     }
1546     ptp->nic_ts_enabled = false;
1547 
1548     return 0;
1549 fail4:
1550     ptp_clock_unregister(efx->ptp_data->phc_clock);
1551 
1552 fail3:
1553     destroy_workqueue(efx->ptp_data->workwq);
1554 
1555 fail2:
1556     efx_nic_free_buffer(efx, &ptp->start);
1557 
1558 fail1:
1559     kfree(efx->ptp_data);
1560     efx->ptp_data = NULL;
1561 
1562     return rc;
1563 }
1564 
1565 /* Initialise PTP channel.
1566  *
1567  * Setting core_index to zero causes the queue to be initialised and doesn't
1568  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1569  */
1570 static int efx_ptp_probe_channel(struct efx_channel *channel)
1571 {
1572     struct efx_nic *efx = channel->efx;
1573     int rc;
1574 
1575     channel->irq_moderation_us = 0;
1576     channel->rx_queue.core_index = 0;
1577 
1578     rc = efx_ptp_probe(efx, channel);
1579     /* Failure to probe PTP is not fatal; this channel will just not be
1580      * used for anything.
1581      * In the case of EPERM, efx_ptp_probe will print its own message (in
1582      * efx_ptp_get_attributes()), so we don't need to.
1583      */
1584     if (rc && rc != -EPERM)
1585         netif_warn(efx, drv, efx->net_dev,
1586                "Failed to probe PTP, rc=%d\n", rc);
1587     return 0;
1588 }
1589 
1590 void efx_ptp_remove(struct efx_nic *efx)
1591 {
1592     if (!efx->ptp_data)
1593         return;
1594 
1595     (void)efx_ptp_disable(efx);
1596 
1597     cancel_work_sync(&efx->ptp_data->work);
1598     if (efx->ptp_data->pps_workwq)
1599         cancel_work_sync(&efx->ptp_data->pps_work);
1600 
1601     skb_queue_purge(&efx->ptp_data->rxq);
1602     skb_queue_purge(&efx->ptp_data->txq);
1603 
1604     if (efx->ptp_data->phc_clock) {
1605         destroy_workqueue(efx->ptp_data->pps_workwq);
1606         ptp_clock_unregister(efx->ptp_data->phc_clock);
1607     }
1608 
1609     destroy_workqueue(efx->ptp_data->workwq);
1610 
1611     efx_nic_free_buffer(efx, &efx->ptp_data->start);
1612     kfree(efx->ptp_data);
1613     efx->ptp_data = NULL;
1614 }
1615 
1616 static void efx_ptp_remove_channel(struct efx_channel *channel)
1617 {
1618     efx_ptp_remove(channel->efx);
1619 }
1620 
1621 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1622                      char *buf, size_t len)
1623 {
1624     snprintf(buf, len, "%s-ptp", channel->efx->name);
1625 }
1626 
1627 /* Determine whether this packet should be processed by the PTP module
1628  * or transmitted conventionally.
1629  */
1630 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1631 {
1632     return efx->ptp_data &&
1633         efx->ptp_data->enabled &&
1634         skb->len >= PTP_MIN_LENGTH &&
1635         skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1636         likely(skb->protocol == htons(ETH_P_IP)) &&
1637         skb_transport_header_was_set(skb) &&
1638         skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1639         ip_hdr(skb)->protocol == IPPROTO_UDP &&
1640         skb_headlen(skb) >=
1641         skb_transport_offset(skb) + sizeof(struct udphdr) &&
1642         udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1643 }
1644 
1645 /* Receive a PTP packet.  Packets are queued until the arrival of
1646  * the receive timestamp from the MC - this will probably occur after the
1647  * packet arrival because of the processing in the MC.
1648  */
1649 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1650 {
1651     struct efx_nic *efx = channel->efx;
1652     struct efx_ptp_data *ptp = efx->ptp_data;
1653     struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1654     u8 *match_data_012, *match_data_345;
1655     unsigned int version;
1656     u8 *data;
1657 
1658     match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1659 
1660     /* Correct version? */
1661     if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1662         if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1663             return false;
1664         }
1665         data = skb->data;
1666         version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1667         if (version != PTP_VERSION_V1) {
1668             return false;
1669         }
1670 
1671         /* PTP V1 uses all six bytes of the UUID to match the packet
1672          * to the timestamp
1673          */
1674         match_data_012 = data + PTP_V1_UUID_OFFSET;
1675         match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1676     } else {
1677         if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1678             return false;
1679         }
1680         data = skb->data;
1681         version = data[PTP_V2_VERSION_OFFSET];
1682         if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1683             return false;
1684         }
1685 
1686         /* The original V2 implementation uses bytes 2-7 of
1687          * the UUID to match the packet to the timestamp. This
1688          * discards two of the bytes of the MAC address used
1689          * to create the UUID (SF bug 33070).  The PTP V2
1690          * enhanced mode fixes this issue and uses bytes 0-2
1691          * and byte 5-7 of the UUID.
1692          */
1693         match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1694         if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1695             match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1696         } else {
1697             match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1698             BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1699         }
1700     }
1701 
1702     /* Does this packet require timestamping? */
1703     if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1704         match->state = PTP_PACKET_STATE_UNMATCHED;
1705 
1706         /* We expect the sequence number to be in the same position in
1707          * the packet for PTP V1 and V2
1708          */
1709         BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1710         BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1711 
1712         /* Extract UUID/Sequence information */
1713         match->words[0] = (match_data_012[0]         |
1714                    (match_data_012[1] << 8)  |
1715                    (match_data_012[2] << 16) |
1716                    (match_data_345[0] << 24));
1717         match->words[1] = (match_data_345[1]         |
1718                    (match_data_345[2] << 8)  |
1719                    (data[PTP_V1_SEQUENCE_OFFSET +
1720                      PTP_V1_SEQUENCE_LENGTH - 1] <<
1721                     16));
1722     } else {
1723         match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1724     }
1725 
1726     skb_queue_tail(&ptp->rxq, skb);
1727     queue_work(ptp->workwq, &ptp->work);
1728 
1729     return true;
1730 }
1731 
1732 /* Transmit a PTP packet.  This has to be transmitted by the MC
1733  * itself, through an MCDI call.  MCDI calls aren't permitted
1734  * in the transmit path so defer the actual transmission to a suitable worker.
1735  */
1736 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1737 {
1738     struct efx_ptp_data *ptp = efx->ptp_data;
1739 
1740     skb_queue_tail(&ptp->txq, skb);
1741 
1742     if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1743         (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1744         efx_xmit_hwtstamp_pending(skb);
1745     queue_work(ptp->workwq, &ptp->work);
1746 
1747     return NETDEV_TX_OK;
1748 }
1749 
1750 int efx_ptp_get_mode(struct efx_nic *efx)
1751 {
1752     return efx->ptp_data->mode;
1753 }
1754 
1755 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1756             unsigned int new_mode)
1757 {
1758     if ((enable_wanted != efx->ptp_data->enabled) ||
1759         (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1760         int rc = 0;
1761 
1762         if (enable_wanted) {
1763             /* Change of mode requires disable */
1764             if (efx->ptp_data->enabled &&
1765                 (efx->ptp_data->mode != new_mode)) {
1766                 efx->ptp_data->enabled = false;
1767                 rc = efx_ptp_stop(efx);
1768                 if (rc != 0)
1769                     return rc;
1770             }
1771 
1772             /* Set new operating mode and establish
1773              * baseline synchronisation, which must
1774              * succeed.
1775              */
1776             efx->ptp_data->mode = new_mode;
1777             if (netif_running(efx->net_dev))
1778                 rc = efx_ptp_start(efx);
1779             if (rc == 0) {
1780                 rc = efx_ptp_synchronize(efx,
1781                              PTP_SYNC_ATTEMPTS * 2);
1782                 if (rc != 0)
1783                     efx_ptp_stop(efx);
1784             }
1785         } else {
1786             rc = efx_ptp_stop(efx);
1787         }
1788 
1789         if (rc != 0)
1790             return rc;
1791 
1792         efx->ptp_data->enabled = enable_wanted;
1793     }
1794 
1795     return 0;
1796 }
1797 
1798 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1799 {
1800     int rc;
1801 
1802     if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1803         (init->tx_type != HWTSTAMP_TX_ON))
1804         return -ERANGE;
1805 
1806     rc = efx->type->ptp_set_ts_config(efx, init);
1807     if (rc)
1808         return rc;
1809 
1810     efx->ptp_data->config = *init;
1811     return 0;
1812 }
1813 
1814 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1815 {
1816     struct efx_ptp_data *ptp = efx->ptp_data;
1817     struct efx_nic *primary = efx->primary;
1818 
1819     ASSERT_RTNL();
1820 
1821     if (!ptp)
1822         return;
1823 
1824     ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1825                      SOF_TIMESTAMPING_RX_HARDWARE |
1826                      SOF_TIMESTAMPING_RAW_HARDWARE);
1827     /* Check licensed features.  If we don't have the license for TX
1828      * timestamps, the NIC will not support them.
1829      */
1830     if (efx_ptp_use_mac_tx_timestamps(efx)) {
1831         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1832 
1833         if (!(nic_data->licensed_features &
1834               (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1835             ts_info->so_timestamping &=
1836                 ~SOF_TIMESTAMPING_TX_HARDWARE;
1837     }
1838     if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1839         ts_info->phc_index =
1840             ptp_clock_index(primary->ptp_data->phc_clock);
1841     ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1842     ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1843 }
1844 
1845 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1846 {
1847     struct hwtstamp_config config;
1848     int rc;
1849 
1850     /* Not a PTP enabled port */
1851     if (!efx->ptp_data)
1852         return -EOPNOTSUPP;
1853 
1854     if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1855         return -EFAULT;
1856 
1857     rc = efx_ptp_ts_init(efx, &config);
1858     if (rc != 0)
1859         return rc;
1860 
1861     return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1862         ? -EFAULT : 0;
1863 }
1864 
1865 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1866 {
1867     if (!efx->ptp_data)
1868         return -EOPNOTSUPP;
1869 
1870     return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1871                 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1872 }
1873 
1874 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1875 {
1876     struct efx_ptp_data *ptp = efx->ptp_data;
1877 
1878     netif_err(efx, hw, efx->net_dev,
1879         "PTP unexpected event length: got %d expected %d\n",
1880         ptp->evt_frag_idx, expected_frag_len);
1881     ptp->reset_required = true;
1882     queue_work(ptp->workwq, &ptp->work);
1883 }
1884 
1885 /* Process a completed receive event.  Put it on the event queue and
1886  * start worker thread.  This is required because event and their
1887  * correspoding packets may come in either order.
1888  */
1889 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1890 {
1891     struct efx_ptp_event_rx *evt = NULL;
1892 
1893     if (WARN_ON_ONCE(ptp->rx_ts_inline))
1894         return;
1895 
1896     if (ptp->evt_frag_idx != 3) {
1897         ptp_event_failure(efx, 3);
1898         return;
1899     }
1900 
1901     spin_lock_bh(&ptp->evt_lock);
1902     if (!list_empty(&ptp->evt_free_list)) {
1903         evt = list_first_entry(&ptp->evt_free_list,
1904                        struct efx_ptp_event_rx, link);
1905         list_del(&evt->link);
1906 
1907         evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1908         evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1909                          MCDI_EVENT_SRC)        |
1910                  (EFX_QWORD_FIELD(ptp->evt_frags[1],
1911                           MCDI_EVENT_SRC) << 8) |
1912                  (EFX_QWORD_FIELD(ptp->evt_frags[0],
1913                           MCDI_EVENT_SRC) << 16));
1914         evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1915             EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1916             EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1917             ptp->ts_corrections.ptp_rx);
1918         evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1919         list_add_tail(&evt->link, &ptp->evt_list);
1920 
1921         queue_work(ptp->workwq, &ptp->work);
1922     } else if (net_ratelimit()) {
1923         /* Log a rate-limited warning message. */
1924         netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1925     }
1926     spin_unlock_bh(&ptp->evt_lock);
1927 }
1928 
1929 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1930 {
1931     int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1932     if (ptp->evt_frag_idx != 1) {
1933         ptp_event_failure(efx, 1);
1934         return;
1935     }
1936 
1937     netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1938 }
1939 
1940 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1941 {
1942     if (ptp->nic_ts_enabled)
1943         queue_work(ptp->pps_workwq, &ptp->pps_work);
1944 }
1945 
1946 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1947 {
1948     struct efx_ptp_data *ptp = efx->ptp_data;
1949     int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1950 
1951     if (!ptp) {
1952         if (!efx->ptp_warned) {
1953             netif_warn(efx, drv, efx->net_dev,
1954                    "Received PTP event but PTP not set up\n");
1955             efx->ptp_warned = true;
1956         }
1957         return;
1958     }
1959 
1960     if (!ptp->enabled)
1961         return;
1962 
1963     if (ptp->evt_frag_idx == 0) {
1964         ptp->evt_code = code;
1965     } else if (ptp->evt_code != code) {
1966         netif_err(efx, hw, efx->net_dev,
1967               "PTP out of sequence event %d\n", code);
1968         ptp->evt_frag_idx = 0;
1969     }
1970 
1971     ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1972     if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1973         /* Process resulting event */
1974         switch (code) {
1975         case MCDI_EVENT_CODE_PTP_RX:
1976             ptp_event_rx(efx, ptp);
1977             break;
1978         case MCDI_EVENT_CODE_PTP_FAULT:
1979             ptp_event_fault(efx, ptp);
1980             break;
1981         case MCDI_EVENT_CODE_PTP_PPS:
1982             ptp_event_pps(efx, ptp);
1983             break;
1984         default:
1985             netif_err(efx, hw, efx->net_dev,
1986                   "PTP unknown event %d\n", code);
1987             break;
1988         }
1989         ptp->evt_frag_idx = 0;
1990     } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1991         netif_err(efx, hw, efx->net_dev,
1992               "PTP too many event fragments\n");
1993         ptp->evt_frag_idx = 0;
1994     }
1995 }
1996 
1997 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1998 {
1999     struct efx_nic *efx = channel->efx;
2000     struct efx_ptp_data *ptp = efx->ptp_data;
2001 
2002     /* When extracting the sync timestamp minor value, we should discard
2003      * the least significant two bits. These are not required in order
2004      * to reconstruct full-range timestamps and they are optionally used
2005      * to report status depending on the options supplied when subscribing
2006      * for sync events.
2007      */
2008     channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
2009     channel->sync_timestamp_minor =
2010         (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
2011             << ptp->nic_time.sync_event_minor_shift;
2012 
2013     /* if sync events have been disabled then we want to silently ignore
2014      * this event, so throw away result.
2015      */
2016     (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
2017                SYNC_EVENTS_VALID);
2018 }
2019 
2020 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
2021 {
2022 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2023     return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2024 #else
2025     const u8 *data = eh + efx->rx_packet_ts_offset;
2026     return (u32)data[0]       |
2027            (u32)data[1] << 8  |
2028            (u32)data[2] << 16 |
2029            (u32)data[3] << 24;
2030 #endif
2031 }
2032 
2033 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2034                    struct sk_buff *skb)
2035 {
2036     struct efx_nic *efx = channel->efx;
2037     struct efx_ptp_data *ptp = efx->ptp_data;
2038     u32 pkt_timestamp_major, pkt_timestamp_minor;
2039     u32 diff, carry;
2040     struct skb_shared_hwtstamps *timestamps;
2041 
2042     if (channel->sync_events_state != SYNC_EVENTS_VALID)
2043         return;
2044 
2045     pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2046 
2047     /* get the difference between the packet and sync timestamps,
2048      * modulo one second
2049      */
2050     diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2051     if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2052         diff += ptp->nic_time.minor_max;
2053 
2054     /* do we roll over a second boundary and need to carry the one? */
2055     carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2056         1 : 0;
2057 
2058     if (diff <= ptp->nic_time.sync_event_diff_max) {
2059         /* packet is ahead of the sync event by a quarter of a second or
2060          * less (allowing for fuzz)
2061          */
2062         pkt_timestamp_major = channel->sync_timestamp_major + carry;
2063     } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2064         /* packet is behind the sync event but within the fuzz factor.
2065          * This means the RX packet and sync event crossed as they were
2066          * placed on the event queue, which can sometimes happen.
2067          */
2068         pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2069     } else {
2070         /* it's outside tolerance in both directions. this might be
2071          * indicative of us missing sync events for some reason, so
2072          * we'll call it an error rather than risk giving a bogus
2073          * timestamp.
2074          */
2075         netif_vdbg(efx, drv, efx->net_dev,
2076               "packet timestamp %x too far from sync event %x:%x\n",
2077               pkt_timestamp_minor, channel->sync_timestamp_major,
2078               channel->sync_timestamp_minor);
2079         return;
2080     }
2081 
2082     /* attach the timestamps to the skb */
2083     timestamps = skb_hwtstamps(skb);
2084     timestamps->hwtstamp =
2085         ptp->nic_to_kernel_time(pkt_timestamp_major,
2086                     pkt_timestamp_minor,
2087                     ptp->ts_corrections.general_rx);
2088 }
2089 
2090 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2091 {
2092     struct efx_ptp_data *ptp_data = container_of(ptp,
2093                              struct efx_ptp_data,
2094                              phc_clock_info);
2095     struct efx_nic *efx = ptp_data->efx;
2096     MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2097     s64 adjustment_ns;
2098     int rc;
2099 
2100     if (delta > MAX_PPB)
2101         delta = MAX_PPB;
2102     else if (delta < -MAX_PPB)
2103         delta = -MAX_PPB;
2104 
2105     /* Convert ppb to fixed point ns taking care to round correctly. */
2106     adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2107              (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2108             ptp_data->adjfreq_ppb_shift;
2109 
2110     MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2111     MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2112     MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2113     MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2114     MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2115     rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2116               NULL, 0, NULL);
2117     if (rc != 0)
2118         return rc;
2119 
2120     ptp_data->current_adjfreq = adjustment_ns;
2121     return 0;
2122 }
2123 
2124 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2125 {
2126     u32 nic_major, nic_minor;
2127     struct efx_ptp_data *ptp_data = container_of(ptp,
2128                              struct efx_ptp_data,
2129                              phc_clock_info);
2130     struct efx_nic *efx = ptp_data->efx;
2131     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2132 
2133     efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2134 
2135     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2136     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2137     MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2138     MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2139     MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2140     return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2141                 NULL, 0, NULL);
2142 }
2143 
2144 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2145 {
2146     struct efx_ptp_data *ptp_data = container_of(ptp,
2147                              struct efx_ptp_data,
2148                              phc_clock_info);
2149     struct efx_nic *efx = ptp_data->efx;
2150     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2151     MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2152     int rc;
2153     ktime_t kt;
2154 
2155     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2156     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2157 
2158     rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2159               outbuf, sizeof(outbuf), NULL);
2160     if (rc != 0)
2161         return rc;
2162 
2163     kt = ptp_data->nic_to_kernel_time(
2164         MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2165         MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2166     *ts = ktime_to_timespec64(kt);
2167     return 0;
2168 }
2169 
2170 static int efx_phc_settime(struct ptp_clock_info *ptp,
2171                const struct timespec64 *e_ts)
2172 {
2173     /* Get the current NIC time, efx_phc_gettime.
2174      * Subtract from the desired time to get the offset
2175      * call efx_phc_adjtime with the offset
2176      */
2177     int rc;
2178     struct timespec64 time_now;
2179     struct timespec64 delta;
2180 
2181     rc = efx_phc_gettime(ptp, &time_now);
2182     if (rc != 0)
2183         return rc;
2184 
2185     delta = timespec64_sub(*e_ts, time_now);
2186 
2187     rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2188     if (rc != 0)
2189         return rc;
2190 
2191     return 0;
2192 }
2193 
2194 static int efx_phc_enable(struct ptp_clock_info *ptp,
2195               struct ptp_clock_request *request,
2196               int enable)
2197 {
2198     struct efx_ptp_data *ptp_data = container_of(ptp,
2199                              struct efx_ptp_data,
2200                              phc_clock_info);
2201     if (request->type != PTP_CLK_REQ_PPS)
2202         return -EOPNOTSUPP;
2203 
2204     ptp_data->nic_ts_enabled = !!enable;
2205     return 0;
2206 }
2207 
2208 static const struct efx_channel_type efx_ptp_channel_type = {
2209     .handle_no_channel  = efx_ptp_handle_no_channel,
2210     .pre_probe      = efx_ptp_probe_channel,
2211     .post_remove        = efx_ptp_remove_channel,
2212     .get_name       = efx_ptp_get_channel_name,
2213     .copy                   = efx_copy_channel,
2214     .receive_skb        = efx_ptp_rx,
2215     .want_txqs      = efx_ptp_want_txqs,
2216     .keep_eventq        = false,
2217 };
2218 
2219 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2220 {
2221     /* Check whether PTP is implemented on this NIC.  The DISABLE
2222      * operation will succeed if and only if it is implemented.
2223      */
2224     if (efx_ptp_disable(efx) == 0)
2225         efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2226             &efx_ptp_channel_type;
2227 }
2228 
2229 void efx_ptp_start_datapath(struct efx_nic *efx)
2230 {
2231     if (efx_ptp_restart(efx))
2232         netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2233     /* re-enable timestamping if it was previously enabled */
2234     if (efx->type->ptp_set_ts_sync_events)
2235         efx->type->ptp_set_ts_sync_events(efx, true, true);
2236 }
2237 
2238 void efx_ptp_stop_datapath(struct efx_nic *efx)
2239 {
2240     /* temporarily disable timestamping */
2241     if (efx->type->ptp_set_ts_sync_events)
2242         efx->type->ptp_set_ts_sync_events(efx, false, true);
2243     efx_ptp_stop(efx);
2244 }