Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-only */
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2005-2006 Fen Systems Ltd.
0005  * Copyright 2005-2013 Solarflare Communications Inc.
0006  */
0007 
0008 /* Common definitions for all Efx net driver code */
0009 
0010 #ifndef EFX_NET_DRIVER_H
0011 #define EFX_NET_DRIVER_H
0012 
0013 #include <linux/netdevice.h>
0014 #include <linux/etherdevice.h>
0015 #include <linux/ethtool.h>
0016 #include <linux/if_vlan.h>
0017 #include <linux/timer.h>
0018 #include <linux/mdio.h>
0019 #include <linux/list.h>
0020 #include <linux/pci.h>
0021 #include <linux/device.h>
0022 #include <linux/highmem.h>
0023 #include <linux/workqueue.h>
0024 #include <linux/mutex.h>
0025 #include <linux/rwsem.h>
0026 #include <linux/vmalloc.h>
0027 #include <linux/mtd/mtd.h>
0028 #include <net/busy_poll.h>
0029 #include <net/xdp.h>
0030 
0031 #include "enum.h"
0032 #include "bitfield.h"
0033 #include "filter.h"
0034 
0035 /**************************************************************************
0036  *
0037  * Build definitions
0038  *
0039  **************************************************************************/
0040 
0041 #ifdef DEBUG
0042 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
0043 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
0044 #else
0045 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
0046 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
0047 #endif
0048 
0049 /**************************************************************************
0050  *
0051  * Efx data structures
0052  *
0053  **************************************************************************/
0054 
0055 #define EFX_MAX_CHANNELS 32U
0056 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
0057 #define EFX_EXTRA_CHANNEL_IOV   0
0058 #define EFX_EXTRA_CHANNEL_PTP   1
0059 #define EFX_MAX_EXTRA_CHANNELS  2U
0060 
0061 /* Checksum generation is a per-queue option in hardware, so each
0062  * queue visible to the networking core is backed by two hardware TX
0063  * queues. */
0064 #define EFX_MAX_TX_TC       2
0065 #define EFX_MAX_CORE_TX_QUEUES  (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
0066 #define EFX_TXQ_TYPE_OUTER_CSUM 1   /* Outer checksum offload */
0067 #define EFX_TXQ_TYPE_INNER_CSUM 2   /* Inner checksum offload */
0068 #define EFX_TXQ_TYPE_HIGHPRI    4   /* High-priority (for TC) */
0069 #define EFX_TXQ_TYPES       8
0070 /* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
0071 #define EFX_MAX_TXQ_PER_CHANNEL 4
0072 #define EFX_MAX_TX_QUEUES   (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
0073 
0074 /* Maximum possible MTU the driver supports */
0075 #define EFX_MAX_MTU (9 * 1024)
0076 
0077 /* Minimum MTU, from RFC791 (IP) */
0078 #define EFX_MIN_MTU 68
0079 
0080 /* Maximum total header length for TSOv2 */
0081 #define EFX_TSO2_MAX_HDRLEN 208
0082 
0083 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
0084  * and should be a multiple of the cache line size.
0085  */
0086 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
0087 
0088 /* If possible, we should ensure cache line alignment at start and end
0089  * of every buffer.  Otherwise, we just need to ensure 4-byte
0090  * alignment of the network header.
0091  */
0092 #if NET_IP_ALIGN == 0
0093 #define EFX_RX_BUF_ALIGNMENT    L1_CACHE_BYTES
0094 #else
0095 #define EFX_RX_BUF_ALIGNMENT    4
0096 #endif
0097 
0098 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
0099  * still fit two standard MTU size packets into a single 4K page.
0100  */
0101 #define EFX_XDP_HEADROOM    128
0102 #define EFX_XDP_TAILROOM    SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
0103 
0104 /* Forward declare Precision Time Protocol (PTP) support structure. */
0105 struct efx_ptp_data;
0106 struct hwtstamp_config;
0107 
0108 struct efx_self_tests;
0109 
0110 /**
0111  * struct efx_buffer - A general-purpose DMA buffer
0112  * @addr: host base address of the buffer
0113  * @dma_addr: DMA base address of the buffer
0114  * @len: Buffer length, in bytes
0115  *
0116  * The NIC uses these buffers for its interrupt status registers and
0117  * MAC stats dumps.
0118  */
0119 struct efx_buffer {
0120     void *addr;
0121     dma_addr_t dma_addr;
0122     unsigned int len;
0123 };
0124 
0125 /**
0126  * struct efx_special_buffer - DMA buffer entered into buffer table
0127  * @buf: Standard &struct efx_buffer
0128  * @index: Buffer index within controller;s buffer table
0129  * @entries: Number of buffer table entries
0130  *
0131  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
0132  * Event and descriptor rings are addressed via one or more buffer
0133  * table entries (and so can be physically non-contiguous, although we
0134  * currently do not take advantage of that).  On Falcon and Siena we
0135  * have to take care of allocating and initialising the entries
0136  * ourselves.  On later hardware this is managed by the firmware and
0137  * @index and @entries are left as 0.
0138  */
0139 struct efx_special_buffer {
0140     struct efx_buffer buf;
0141     unsigned int index;
0142     unsigned int entries;
0143 };
0144 
0145 /**
0146  * struct efx_tx_buffer - buffer state for a TX descriptor
0147  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
0148  *  freed when descriptor completes
0149  * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
0150  *  member is the associated buffer to drop a page reference on.
0151  * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
0152  *  descriptor.
0153  * @dma_addr: DMA address of the fragment.
0154  * @flags: Flags for allocation and DMA mapping type
0155  * @len: Length of this fragment.
0156  *  This field is zero when the queue slot is empty.
0157  * @unmap_len: Length of this fragment to unmap
0158  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
0159  * Only valid if @unmap_len != 0.
0160  */
0161 struct efx_tx_buffer {
0162     union {
0163         const struct sk_buff *skb;
0164         struct xdp_frame *xdpf;
0165     };
0166     union {
0167         efx_qword_t option;    /* EF10 */
0168         dma_addr_t dma_addr;
0169     };
0170     unsigned short flags;
0171     unsigned short len;
0172     unsigned short unmap_len;
0173     unsigned short dma_offset;
0174 };
0175 #define EFX_TX_BUF_CONT     1   /* not last descriptor of packet */
0176 #define EFX_TX_BUF_SKB      2   /* buffer is last part of skb */
0177 #define EFX_TX_BUF_MAP_SINGLE   8   /* buffer was mapped with dma_map_single() */
0178 #define EFX_TX_BUF_OPTION   0x10    /* empty buffer for option descriptor */
0179 #define EFX_TX_BUF_XDP      0x20    /* buffer was sent with XDP */
0180 #define EFX_TX_BUF_TSO_V3   0x40    /* empty buffer for a TSO_V3 descriptor */
0181 #define EFX_TX_BUF_EFV      0x100   /* buffer was sent from representor */
0182 
0183 /**
0184  * struct efx_tx_queue - An Efx TX queue
0185  *
0186  * This is a ring buffer of TX fragments.
0187  * Since the TX completion path always executes on the same
0188  * CPU and the xmit path can operate on different CPUs,
0189  * performance is increased by ensuring that the completion
0190  * path and the xmit path operate on different cache lines.
0191  * This is particularly important if the xmit path is always
0192  * executing on one CPU which is different from the completion
0193  * path.  There is also a cache line for members which are
0194  * read but not written on the fast path.
0195  *
0196  * @efx: The associated Efx NIC
0197  * @queue: DMA queue number
0198  * @label: Label for TX completion events.
0199  *  Is our index within @channel->tx_queue array.
0200  * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
0201  * @tso_version: Version of TSO in use for this queue.
0202  * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
0203  * @channel: The associated channel
0204  * @core_txq: The networking core TX queue structure
0205  * @buffer: The software buffer ring
0206  * @cb_page: Array of pages of copy buffers.  Carved up according to
0207  *  %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
0208  * @txd: The hardware descriptor ring
0209  * @ptr_mask: The size of the ring minus 1.
0210  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
0211  *  Size of the region is efx_piobuf_size.
0212  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
0213  * @initialised: Has hardware queue been initialised?
0214  * @timestamping: Is timestamping enabled for this channel?
0215  * @xdp_tx: Is this an XDP tx queue?
0216  * @read_count: Current read pointer.
0217  *  This is the number of buffers that have been removed from both rings.
0218  * @old_write_count: The value of @write_count when last checked.
0219  *  This is here for performance reasons.  The xmit path will
0220  *  only get the up-to-date value of @write_count if this
0221  *  variable indicates that the queue is empty.  This is to
0222  *  avoid cache-line ping-pong between the xmit path and the
0223  *  completion path.
0224  * @merge_events: Number of TX merged completion events
0225  * @completed_timestamp_major: Top part of the most recent tx timestamp.
0226  * @completed_timestamp_minor: Low part of the most recent tx timestamp.
0227  * @insert_count: Current insert pointer
0228  *  This is the number of buffers that have been added to the
0229  *  software ring.
0230  * @write_count: Current write pointer
0231  *  This is the number of buffers that have been added to the
0232  *  hardware ring.
0233  * @packet_write_count: Completable write pointer
0234  *  This is the write pointer of the last packet written.
0235  *  Normally this will equal @write_count, but as option descriptors
0236  *  don't produce completion events, they won't update this.
0237  *  Filled in iff @efx->type->option_descriptors; only used for PIO.
0238  *  Thus, this is written and used on EF10, and neither on farch.
0239  * @old_read_count: The value of read_count when last checked.
0240  *  This is here for performance reasons.  The xmit path will
0241  *  only get the up-to-date value of read_count if this
0242  *  variable indicates that the queue is full.  This is to
0243  *  avoid cache-line ping-pong between the xmit path and the
0244  *  completion path.
0245  * @tso_bursts: Number of times TSO xmit invoked by kernel
0246  * @tso_long_headers: Number of packets with headers too long for standard
0247  *  blocks
0248  * @tso_packets: Number of packets via the TSO xmit path
0249  * @tso_fallbacks: Number of times TSO fallback used
0250  * @pushes: Number of times the TX push feature has been used
0251  * @pio_packets: Number of times the TX PIO feature has been used
0252  * @xmit_pending: Are any packets waiting to be pushed to the NIC
0253  * @cb_packets: Number of times the TX copybreak feature has been used
0254  * @notify_count: Count of notified descriptors to the NIC
0255  * @empty_read_count: If the completion path has seen the queue as empty
0256  *  and the transmission path has not yet checked this, the value of
0257  *  @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
0258  */
0259 struct efx_tx_queue {
0260     /* Members which don't change on the fast path */
0261     struct efx_nic *efx ____cacheline_aligned_in_smp;
0262     unsigned int queue;
0263     unsigned int label;
0264     unsigned int type;
0265     unsigned int tso_version;
0266     bool tso_encap;
0267     struct efx_channel *channel;
0268     struct netdev_queue *core_txq;
0269     struct efx_tx_buffer *buffer;
0270     struct efx_buffer *cb_page;
0271     struct efx_special_buffer txd;
0272     unsigned int ptr_mask;
0273     void __iomem *piobuf;
0274     unsigned int piobuf_offset;
0275     bool initialised;
0276     bool timestamping;
0277     bool xdp_tx;
0278 
0279     /* Members used mainly on the completion path */
0280     unsigned int read_count ____cacheline_aligned_in_smp;
0281     unsigned int old_write_count;
0282     unsigned int merge_events;
0283     unsigned int bytes_compl;
0284     unsigned int pkts_compl;
0285     u32 completed_timestamp_major;
0286     u32 completed_timestamp_minor;
0287 
0288     /* Members used only on the xmit path */
0289     unsigned int insert_count ____cacheline_aligned_in_smp;
0290     unsigned int write_count;
0291     unsigned int packet_write_count;
0292     unsigned int old_read_count;
0293     unsigned int tso_bursts;
0294     unsigned int tso_long_headers;
0295     unsigned int tso_packets;
0296     unsigned int tso_fallbacks;
0297     unsigned int pushes;
0298     unsigned int pio_packets;
0299     bool xmit_pending;
0300     unsigned int cb_packets;
0301     unsigned int notify_count;
0302     /* Statistics to supplement MAC stats */
0303     unsigned long tx_packets;
0304 
0305     /* Members shared between paths and sometimes updated */
0306     unsigned int empty_read_count ____cacheline_aligned_in_smp;
0307 #define EFX_EMPTY_COUNT_VALID 0x80000000
0308     atomic_t flush_outstanding;
0309 };
0310 
0311 #define EFX_TX_CB_ORDER 7
0312 #define EFX_TX_CB_SIZE  (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
0313 
0314 /**
0315  * struct efx_rx_buffer - An Efx RX data buffer
0316  * @dma_addr: DMA base address of the buffer
0317  * @page: The associated page buffer.
0318  *  Will be %NULL if the buffer slot is currently free.
0319  * @page_offset: If pending: offset in @page of DMA base address.
0320  *  If completed: offset in @page of Ethernet header.
0321  * @len: If pending: length for DMA descriptor.
0322  *  If completed: received length, excluding hash prefix.
0323  * @flags: Flags for buffer and packet state.  These are only set on the
0324  *  first buffer of a scattered packet.
0325  */
0326 struct efx_rx_buffer {
0327     dma_addr_t dma_addr;
0328     struct page *page;
0329     u16 page_offset;
0330     u16 len;
0331     u16 flags;
0332 };
0333 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
0334 #define EFX_RX_PKT_CSUMMED  0x0002
0335 #define EFX_RX_PKT_DISCARD  0x0004
0336 #define EFX_RX_PKT_TCP      0x0040
0337 #define EFX_RX_PKT_PREFIX_LEN   0x0080  /* length is in prefix only */
0338 #define EFX_RX_PKT_CSUM_LEVEL   0x0200
0339 
0340 /**
0341  * struct efx_rx_page_state - Page-based rx buffer state
0342  *
0343  * Inserted at the start of every page allocated for receive buffers.
0344  * Used to facilitate sharing dma mappings between recycled rx buffers
0345  * and those passed up to the kernel.
0346  *
0347  * @dma_addr: The dma address of this page.
0348  */
0349 struct efx_rx_page_state {
0350     dma_addr_t dma_addr;
0351 
0352     unsigned int __pad[] ____cacheline_aligned;
0353 };
0354 
0355 /**
0356  * struct efx_rx_queue - An Efx RX queue
0357  * @efx: The associated Efx NIC
0358  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
0359  *  is associated with a real RX queue.
0360  * @buffer: The software buffer ring
0361  * @rxd: The hardware descriptor ring
0362  * @ptr_mask: The size of the ring minus 1.
0363  * @refill_enabled: Enable refill whenever fill level is low
0364  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
0365  *  @rxq_flush_pending.
0366  * @added_count: Number of buffers added to the receive queue.
0367  * @notified_count: Number of buffers given to NIC (<= @added_count).
0368  * @removed_count: Number of buffers removed from the receive queue.
0369  * @scatter_n: Used by NIC specific receive code.
0370  * @scatter_len: Used by NIC specific receive code.
0371  * @page_ring: The ring to store DMA mapped pages for reuse.
0372  * @page_add: Counter to calculate the write pointer for the recycle ring.
0373  * @page_remove: Counter to calculate the read pointer for the recycle ring.
0374  * @page_recycle_count: The number of pages that have been recycled.
0375  * @page_recycle_failed: The number of pages that couldn't be recycled because
0376  *      the kernel still held a reference to them.
0377  * @page_recycle_full: The number of pages that were released because the
0378  *      recycle ring was full.
0379  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
0380  * @max_fill: RX descriptor maximum fill level (<= ring size)
0381  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
0382  *  (<= @max_fill)
0383  * @min_fill: RX descriptor minimum non-zero fill level.
0384  *  This records the minimum fill level observed when a ring
0385  *  refill was triggered.
0386  * @recycle_count: RX buffer recycle counter.
0387  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
0388  * @xdp_rxq_info: XDP specific RX queue information.
0389  * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
0390  */
0391 struct efx_rx_queue {
0392     struct efx_nic *efx;
0393     int core_index;
0394     struct efx_rx_buffer *buffer;
0395     struct efx_special_buffer rxd;
0396     unsigned int ptr_mask;
0397     bool refill_enabled;
0398     bool flush_pending;
0399 
0400     unsigned int added_count;
0401     unsigned int notified_count;
0402     unsigned int removed_count;
0403     unsigned int scatter_n;
0404     unsigned int scatter_len;
0405     struct page **page_ring;
0406     unsigned int page_add;
0407     unsigned int page_remove;
0408     unsigned int page_recycle_count;
0409     unsigned int page_recycle_failed;
0410     unsigned int page_recycle_full;
0411     unsigned int page_ptr_mask;
0412     unsigned int max_fill;
0413     unsigned int fast_fill_trigger;
0414     unsigned int min_fill;
0415     unsigned int min_overfill;
0416     unsigned int recycle_count;
0417     struct timer_list slow_fill;
0418     unsigned int slow_fill_count;
0419     /* Statistics to supplement MAC stats */
0420     unsigned long rx_packets;
0421     struct xdp_rxq_info xdp_rxq_info;
0422     bool xdp_rxq_info_valid;
0423 };
0424 
0425 enum efx_sync_events_state {
0426     SYNC_EVENTS_DISABLED = 0,
0427     SYNC_EVENTS_QUIESCENT,
0428     SYNC_EVENTS_REQUESTED,
0429     SYNC_EVENTS_VALID,
0430 };
0431 
0432 /**
0433  * struct efx_channel - An Efx channel
0434  *
0435  * A channel comprises an event queue, at least one TX queue, at least
0436  * one RX queue, and an associated tasklet for processing the event
0437  * queue.
0438  *
0439  * @efx: Associated Efx NIC
0440  * @channel: Channel instance number
0441  * @type: Channel type definition
0442  * @eventq_init: Event queue initialised flag
0443  * @enabled: Channel enabled indicator
0444  * @irq: IRQ number (MSI and MSI-X only)
0445  * @irq_moderation_us: IRQ moderation value (in microseconds)
0446  * @napi_dev: Net device used with NAPI
0447  * @napi_str: NAPI control structure
0448  * @state: state for NAPI vs busy polling
0449  * @state_lock: lock protecting @state
0450  * @eventq: Event queue buffer
0451  * @eventq_mask: Event queue pointer mask
0452  * @eventq_read_ptr: Event queue read pointer
0453  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
0454  * @irq_count: Number of IRQs since last adaptive moderation decision
0455  * @irq_mod_score: IRQ moderation score
0456  * @rfs_filter_count: number of accelerated RFS filters currently in place;
0457  *  equals the count of @rps_flow_id slots filled
0458  * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
0459  *  were checked for expiry
0460  * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
0461  * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
0462  * @n_rfs_failed: number of failed accelerated RFS filter insertions
0463  * @filter_work: Work item for efx_filter_rfs_expire()
0464  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
0465  *      indexed by filter ID
0466  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
0467  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
0468  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
0469  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
0470  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
0471  * @n_rx_overlength: Count of RX_OVERLENGTH errors
0472  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
0473  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
0474  *  lack of descriptors
0475  * @n_rx_merge_events: Number of RX merged completion events
0476  * @n_rx_merge_packets: Number of RX packets completed by merged events
0477  * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
0478  * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
0479  * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
0480  * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
0481  * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was
0482  *  not recognised
0483  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
0484  *  __efx_rx_packet(), or zero if there is none
0485  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
0486  *  by __efx_rx_packet(), if @rx_pkt_n_frags != 0
0487  * @rx_list: list of SKBs from current RX, awaiting processing
0488  * @rx_queue: RX queue for this channel
0489  * @tx_queue: TX queues for this channel
0490  * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
0491  * @sync_events_state: Current state of sync events on this channel
0492  * @sync_timestamp_major: Major part of the last ptp sync event
0493  * @sync_timestamp_minor: Minor part of the last ptp sync event
0494  */
0495 struct efx_channel {
0496     struct efx_nic *efx;
0497     int channel;
0498     const struct efx_channel_type *type;
0499     bool eventq_init;
0500     bool enabled;
0501     int irq;
0502     unsigned int irq_moderation_us;
0503     struct net_device *napi_dev;
0504     struct napi_struct napi_str;
0505 #ifdef CONFIG_NET_RX_BUSY_POLL
0506     unsigned long busy_poll_state;
0507 #endif
0508     struct efx_special_buffer eventq;
0509     unsigned int eventq_mask;
0510     unsigned int eventq_read_ptr;
0511     int event_test_cpu;
0512 
0513     unsigned int irq_count;
0514     unsigned int irq_mod_score;
0515 #ifdef CONFIG_RFS_ACCEL
0516     unsigned int rfs_filter_count;
0517     unsigned int rfs_last_expiry;
0518     unsigned int rfs_expire_index;
0519     unsigned int n_rfs_succeeded;
0520     unsigned int n_rfs_failed;
0521     struct delayed_work filter_work;
0522 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
0523     u32 *rps_flow_id;
0524 #endif
0525 
0526     unsigned int n_rx_tobe_disc;
0527     unsigned int n_rx_ip_hdr_chksum_err;
0528     unsigned int n_rx_tcp_udp_chksum_err;
0529     unsigned int n_rx_outer_ip_hdr_chksum_err;
0530     unsigned int n_rx_outer_tcp_udp_chksum_err;
0531     unsigned int n_rx_inner_ip_hdr_chksum_err;
0532     unsigned int n_rx_inner_tcp_udp_chksum_err;
0533     unsigned int n_rx_eth_crc_err;
0534     unsigned int n_rx_mcast_mismatch;
0535     unsigned int n_rx_frm_trunc;
0536     unsigned int n_rx_overlength;
0537     unsigned int n_skbuff_leaks;
0538     unsigned int n_rx_nodesc_trunc;
0539     unsigned int n_rx_merge_events;
0540     unsigned int n_rx_merge_packets;
0541     unsigned int n_rx_xdp_drops;
0542     unsigned int n_rx_xdp_bad_drops;
0543     unsigned int n_rx_xdp_tx;
0544     unsigned int n_rx_xdp_redirect;
0545     unsigned int n_rx_mport_bad;
0546 
0547     unsigned int rx_pkt_n_frags;
0548     unsigned int rx_pkt_index;
0549 
0550     struct list_head *rx_list;
0551 
0552     struct efx_rx_queue rx_queue;
0553     struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
0554     struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
0555 
0556     enum efx_sync_events_state sync_events_state;
0557     u32 sync_timestamp_major;
0558     u32 sync_timestamp_minor;
0559 };
0560 
0561 /**
0562  * struct efx_msi_context - Context for each MSI
0563  * @efx: The associated NIC
0564  * @index: Index of the channel/IRQ
0565  * @name: Name of the channel/IRQ
0566  *
0567  * Unlike &struct efx_channel, this is never reallocated and is always
0568  * safe for the IRQ handler to access.
0569  */
0570 struct efx_msi_context {
0571     struct efx_nic *efx;
0572     unsigned int index;
0573     char name[IFNAMSIZ + 6];
0574 };
0575 
0576 /**
0577  * struct efx_channel_type - distinguishes traffic and extra channels
0578  * @handle_no_channel: Handle failure to allocate an extra channel
0579  * @pre_probe: Set up extra state prior to initialisation
0580  * @post_remove: Tear down extra state after finalisation, if allocated.
0581  *  May be called on channels that have not been probed.
0582  * @get_name: Generate the channel's name (used for its IRQ handler)
0583  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
0584  *  reallocation is not supported.
0585  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
0586  * @want_txqs: Determine whether this channel should have TX queues
0587  *  created.  If %NULL, TX queues are not created.
0588  * @keep_eventq: Flag for whether event queue should be kept initialised
0589  *  while the device is stopped
0590  * @want_pio: Flag for whether PIO buffers should be linked to this
0591  *  channel's TX queues.
0592  */
0593 struct efx_channel_type {
0594     void (*handle_no_channel)(struct efx_nic *);
0595     int (*pre_probe)(struct efx_channel *);
0596     void (*post_remove)(struct efx_channel *);
0597     void (*get_name)(struct efx_channel *, char *buf, size_t len);
0598     struct efx_channel *(*copy)(const struct efx_channel *);
0599     bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
0600     bool (*want_txqs)(struct efx_channel *);
0601     bool keep_eventq;
0602     bool want_pio;
0603 };
0604 
0605 enum efx_led_mode {
0606     EFX_LED_OFF = 0,
0607     EFX_LED_ON  = 1,
0608     EFX_LED_DEFAULT = 2
0609 };
0610 
0611 #define STRING_TABLE_LOOKUP(val, member) \
0612     ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
0613 
0614 extern const char *const efx_loopback_mode_names[];
0615 extern const unsigned int efx_loopback_mode_max;
0616 #define LOOPBACK_MODE(efx) \
0617     STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
0618 
0619 enum efx_int_mode {
0620     /* Be careful if altering to correct macro below */
0621     EFX_INT_MODE_MSIX = 0,
0622     EFX_INT_MODE_MSI = 1,
0623     EFX_INT_MODE_LEGACY = 2,
0624     EFX_INT_MODE_MAX    /* Insert any new items before this */
0625 };
0626 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
0627 
0628 enum nic_state {
0629     STATE_UNINIT = 0,   /* device being probed/removed */
0630     STATE_PROBED,       /* hardware probed */
0631     STATE_NET_DOWN,     /* netdev registered */
0632     STATE_NET_UP,       /* ready for traffic */
0633     STATE_DISABLED,     /* device disabled due to hardware errors */
0634 
0635     STATE_RECOVERY = 0x100,/* recovering from PCI error */
0636     STATE_FROZEN = 0x200,   /* frozen by power management */
0637 };
0638 
0639 static inline bool efx_net_active(enum nic_state state)
0640 {
0641     return state == STATE_NET_DOWN || state == STATE_NET_UP;
0642 }
0643 
0644 static inline bool efx_frozen(enum nic_state state)
0645 {
0646     return state & STATE_FROZEN;
0647 }
0648 
0649 static inline bool efx_recovering(enum nic_state state)
0650 {
0651     return state & STATE_RECOVERY;
0652 }
0653 
0654 static inline enum nic_state efx_freeze(enum nic_state state)
0655 {
0656     WARN_ON(!efx_net_active(state));
0657     return state | STATE_FROZEN;
0658 }
0659 
0660 static inline enum nic_state efx_thaw(enum nic_state state)
0661 {
0662     WARN_ON(!efx_frozen(state));
0663     return state & ~STATE_FROZEN;
0664 }
0665 
0666 static inline enum nic_state efx_recover(enum nic_state state)
0667 {
0668     WARN_ON(!efx_net_active(state));
0669     return state | STATE_RECOVERY;
0670 }
0671 
0672 static inline enum nic_state efx_recovered(enum nic_state state)
0673 {
0674     WARN_ON(!efx_recovering(state));
0675     return state & ~STATE_RECOVERY;
0676 }
0677 
0678 /* Forward declaration */
0679 struct efx_nic;
0680 
0681 /* Pseudo bit-mask flow control field */
0682 #define EFX_FC_RX   FLOW_CTRL_RX
0683 #define EFX_FC_TX   FLOW_CTRL_TX
0684 #define EFX_FC_AUTO 4
0685 
0686 /**
0687  * struct efx_link_state - Current state of the link
0688  * @up: Link is up
0689  * @fd: Link is full-duplex
0690  * @fc: Actual flow control flags
0691  * @speed: Link speed (Mbps)
0692  */
0693 struct efx_link_state {
0694     bool up;
0695     bool fd;
0696     u8 fc;
0697     unsigned int speed;
0698 };
0699 
0700 static inline bool efx_link_state_equal(const struct efx_link_state *left,
0701                     const struct efx_link_state *right)
0702 {
0703     return left->up == right->up && left->fd == right->fd &&
0704         left->fc == right->fc && left->speed == right->speed;
0705 }
0706 
0707 /**
0708  * enum efx_phy_mode - PHY operating mode flags
0709  * @PHY_MODE_NORMAL: on and should pass traffic
0710  * @PHY_MODE_TX_DISABLED: on with TX disabled
0711  * @PHY_MODE_LOW_POWER: set to low power through MDIO
0712  * @PHY_MODE_OFF: switched off through external control
0713  * @PHY_MODE_SPECIAL: on but will not pass traffic
0714  */
0715 enum efx_phy_mode {
0716     PHY_MODE_NORMAL     = 0,
0717     PHY_MODE_TX_DISABLED    = 1,
0718     PHY_MODE_LOW_POWER  = 2,
0719     PHY_MODE_OFF        = 4,
0720     PHY_MODE_SPECIAL    = 8,
0721 };
0722 
0723 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
0724 {
0725     return !!(mode & ~PHY_MODE_TX_DISABLED);
0726 }
0727 
0728 /**
0729  * struct efx_hw_stat_desc - Description of a hardware statistic
0730  * @name: Name of the statistic as visible through ethtool, or %NULL if
0731  *  it should not be exposed
0732  * @dma_width: Width in bits (0 for non-DMA statistics)
0733  * @offset: Offset within stats (ignored for non-DMA statistics)
0734  */
0735 struct efx_hw_stat_desc {
0736     const char *name;
0737     u16 dma_width;
0738     u16 offset;
0739 };
0740 
0741 /* Number of bits used in a multicast filter hash address */
0742 #define EFX_MCAST_HASH_BITS 8
0743 
0744 /* Number of (single-bit) entries in a multicast filter hash */
0745 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
0746 
0747 /* An Efx multicast filter hash */
0748 union efx_multicast_hash {
0749     u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
0750     efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
0751 };
0752 
0753 struct vfdi_status;
0754 
0755 /* The reserved RSS context value */
0756 #define EFX_MCDI_RSS_CONTEXT_INVALID    0xffffffff
0757 /**
0758  * struct efx_rss_context - A user-defined RSS context for filtering
0759  * @list: node of linked list on which this struct is stored
0760  * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
0761  *  %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
0762  *  For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
0763  * @user_id: the rss_context ID exposed to userspace over ethtool.
0764  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
0765  * @rx_hash_key: Toeplitz hash key for this RSS context
0766  * @indir_table: Indirection table for this RSS context
0767  */
0768 struct efx_rss_context {
0769     struct list_head list;
0770     u32 context_id;
0771     u32 user_id;
0772     bool rx_hash_udp_4tuple;
0773     u8 rx_hash_key[40];
0774     u32 rx_indir_table[128];
0775 };
0776 
0777 #ifdef CONFIG_RFS_ACCEL
0778 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
0779  * is used to test if filter does or will exist.
0780  */
0781 #define EFX_ARFS_FILTER_ID_PENDING  -1
0782 #define EFX_ARFS_FILTER_ID_ERROR    -2
0783 #define EFX_ARFS_FILTER_ID_REMOVING -3
0784 /**
0785  * struct efx_arfs_rule - record of an ARFS filter and its IDs
0786  * @node: linkage into hash table
0787  * @spec: details of the filter (used as key for hash table).  Use efx->type to
0788  *  determine which member to use.
0789  * @rxq_index: channel to which the filter will steer traffic.
0790  * @arfs_id: filter ID which was returned to ARFS
0791  * @filter_id: index in software filter table.  May be
0792  *  %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
0793  *  %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
0794  *  %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
0795  */
0796 struct efx_arfs_rule {
0797     struct hlist_node node;
0798     struct efx_filter_spec spec;
0799     u16 rxq_index;
0800     u16 arfs_id;
0801     s32 filter_id;
0802 };
0803 
0804 /* Size chosen so that the table is one page (4kB) */
0805 #define EFX_ARFS_HASH_TABLE_SIZE    512
0806 
0807 /**
0808  * struct efx_async_filter_insertion - Request to asynchronously insert a filter
0809  * @net_dev: Reference to the netdevice
0810  * @spec: The filter to insert
0811  * @work: Workitem for this request
0812  * @rxq_index: Identifies the channel for which this request was made
0813  * @flow_id: Identifies the kernel-side flow for which this request was made
0814  */
0815 struct efx_async_filter_insertion {
0816     struct net_device *net_dev;
0817     struct efx_filter_spec spec;
0818     struct work_struct work;
0819     u16 rxq_index;
0820     u32 flow_id;
0821 };
0822 
0823 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
0824 #define EFX_RPS_MAX_IN_FLIGHT   8
0825 #endif /* CONFIG_RFS_ACCEL */
0826 
0827 enum efx_xdp_tx_queues_mode {
0828     EFX_XDP_TX_QUEUES_DEDICATED,    /* one queue per core, locking not needed */
0829     EFX_XDP_TX_QUEUES_SHARED,   /* each queue used by more than 1 core */
0830     EFX_XDP_TX_QUEUES_BORROWED  /* queues borrowed from net stack */
0831 };
0832 
0833 /**
0834  * struct efx_nic - an Efx NIC
0835  * @name: Device name (net device name or bus id before net device registered)
0836  * @pci_dev: The PCI device
0837  * @node: List node for maintaning primary/secondary function lists
0838  * @primary: &struct efx_nic instance for the primary function of this
0839  *  controller.  May be the same structure, and may be %NULL if no
0840  *  primary function is bound.  Serialised by rtnl_lock.
0841  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
0842  *  functions of the controller, if this is for the primary function.
0843  *  Serialised by rtnl_lock.
0844  * @type: Controller type attributes
0845  * @legacy_irq: IRQ number
0846  * @workqueue: Workqueue for port reconfigures and the HW monitor.
0847  *  Work items do not hold and must not acquire RTNL.
0848  * @workqueue_name: Name of workqueue
0849  * @reset_work: Scheduled reset workitem
0850  * @membase_phys: Memory BAR value as physical address
0851  * @membase: Memory BAR value
0852  * @vi_stride: step between per-VI registers / memory regions
0853  * @interrupt_mode: Interrupt mode
0854  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
0855  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
0856  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
0857  * @irqs_hooked: Channel interrupts are hooked
0858  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
0859  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
0860  * @msg_enable: Log message enable flags
0861  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
0862  * @reset_pending: Bitmask for pending resets
0863  * @tx_queue: TX DMA queues
0864  * @rx_queue: RX DMA queues
0865  * @channel: Channels
0866  * @msi_context: Context for each MSI
0867  * @extra_channel_types: Types of extra (non-traffic) channels that
0868  *  should be allocated for this NIC
0869  * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
0870  * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
0871  * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
0872  * @rxq_entries: Size of receive queues requested by user.
0873  * @txq_entries: Size of transmit queues requested by user.
0874  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
0875  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
0876  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
0877  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
0878  * @sram_lim_qw: Qword address limit of SRAM
0879  * @next_buffer_table: First available buffer table id
0880  * @n_channels: Number of channels in use
0881  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
0882  * @n_tx_channels: Number of channels used for TX
0883  * @n_extra_tx_channels: Number of extra channels with TX queues
0884  * @tx_queues_per_channel: number of TX queues probed on each channel
0885  * @n_xdp_channels: Number of channels used for XDP TX
0886  * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
0887  * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
0888  * @rx_ip_align: RX DMA address offset to have IP header aligned in
0889  *  in accordance with NET_IP_ALIGN
0890  * @rx_dma_len: Current maximum RX DMA length
0891  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
0892  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
0893  *  for use in sk_buff::truesize
0894  * @rx_prefix_size: Size of RX prefix before packet data
0895  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
0896  *  (valid only if @rx_prefix_size != 0; always negative)
0897  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
0898  *  (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
0899  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
0900  *  (valid only if channel->sync_timestamps_enabled; always negative)
0901  * @rx_scatter: Scatter mode enabled for receives
0902  * @rss_context: Main RSS context.  Its @list member is the head of the list of
0903  *  RSS contexts created by user requests
0904  * @rss_lock: Protects custom RSS context software state in @rss_context.list
0905  * @vport_id: The function's vport ID, only relevant for PFs
0906  * @int_error_count: Number of internal errors seen recently
0907  * @int_error_expire: Time at which error count will be expired
0908  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
0909  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
0910  *  acknowledge but do nothing else.
0911  * @irq_status: Interrupt status buffer
0912  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
0913  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
0914  * @selftest_work: Work item for asynchronous self-test
0915  * @mtd_list: List of MTDs attached to the NIC
0916  * @nic_data: Hardware dependent state
0917  * @mcdi: Management-Controller-to-Driver Interface state
0918  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
0919  *  efx_monitor() and efx_reconfigure_port()
0920  * @port_enabled: Port enabled indicator.
0921  *  Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
0922  *  efx_mac_work() with kernel interfaces. Safe to read under any
0923  *  one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
0924  *  be held to modify it.
0925  * @port_initialized: Port initialized?
0926  * @net_dev: Operating system network device. Consider holding the rtnl lock
0927  * @fixed_features: Features which cannot be turned off
0928  * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
0929  *  field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
0930  * @stats_buffer: DMA buffer for statistics
0931  * @phy_type: PHY type
0932  * @phy_data: PHY private data (including PHY-specific stats)
0933  * @mdio: PHY MDIO interface
0934  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
0935  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
0936  * @link_advertising: Autonegotiation advertising flags
0937  * @fec_config: Forward Error Correction configuration flags.  For bit positions
0938  *  see &enum ethtool_fec_config_bits.
0939  * @link_state: Current state of the link
0940  * @n_link_state_changes: Number of times the link has changed state
0941  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
0942  *  Protected by @mac_lock.
0943  * @multicast_hash: Multicast hash table for Falcon-arch.
0944  *  Protected by @mac_lock.
0945  * @wanted_fc: Wanted flow control flags
0946  * @fc_disable: When non-zero flow control is disabled. Typically used to
0947  *  ensure that network back pressure doesn't delay dma queue flushes.
0948  *  Serialised by the rtnl lock.
0949  * @mac_work: Work item for changing MAC promiscuity and multicast hash
0950  * @loopback_mode: Loopback status
0951  * @loopback_modes: Supported loopback mode bitmask
0952  * @loopback_selftest: Offline self-test private state
0953  * @xdp_prog: Current XDP programme for this interface
0954  * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
0955  * @filter_state: Architecture-dependent filter table state
0956  * @rps_mutex: Protects RPS state of all channels
0957  * @rps_slot_map: bitmap of in-flight entries in @rps_slot
0958  * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
0959  * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
0960  *  @rps_next_id).
0961  * @rps_hash_table: Mapping between ARFS filters and their various IDs
0962  * @rps_next_id: next arfs_id for an ARFS filter
0963  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
0964  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
0965  *  Decremented when the efx_flush_rx_queue() is called.
0966  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
0967  *  completed (either success or failure). Not used when MCDI is used to
0968  *  flush receive queues.
0969  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
0970  * @vf_count: Number of VFs intended to be enabled.
0971  * @vf_init_count: Number of VFs that have been fully initialised.
0972  * @vi_scale: log2 number of vnics per VF.
0973  * @vf_reps_lock: Protects vf_reps list
0974  * @vf_reps: local VF reps
0975  * @ptp_data: PTP state data
0976  * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
0977  * @vpd_sn: Serial number read from VPD
0978  * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
0979  *      xdp_rxq_info structures?
0980  * @netdev_notifier: Netdevice notifier.
0981  * @tc: state for TC offload (EF100).
0982  * @mem_bar: The BAR that is mapped into membase.
0983  * @reg_base: Offset from the start of the bar to the function control window.
0984  * @monitor_work: Hardware monitor workitem
0985  * @biu_lock: BIU (bus interface unit) lock
0986  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
0987  *  field is used by efx_test_interrupts() to verify that an
0988  *  interrupt has occurred.
0989  * @stats_lock: Statistics update lock. Must be held when calling
0990  *  efx_nic_type::{update,start,stop}_stats.
0991  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
0992  *
0993  * This is stored in the private area of the &struct net_device.
0994  */
0995 struct efx_nic {
0996     /* The following fields should be written very rarely */
0997 
0998     char name[IFNAMSIZ];
0999     struct list_head node;
1000     struct efx_nic *primary;
1001     struct list_head secondary_list;
1002     struct pci_dev *pci_dev;
1003     unsigned int port_num;
1004     const struct efx_nic_type *type;
1005     int legacy_irq;
1006     bool eeh_disabled_legacy_irq;
1007     struct workqueue_struct *workqueue;
1008     char workqueue_name[16];
1009     struct work_struct reset_work;
1010     resource_size_t membase_phys;
1011     void __iomem *membase;
1012 
1013     unsigned int vi_stride;
1014 
1015     enum efx_int_mode interrupt_mode;
1016     unsigned int timer_quantum_ns;
1017     unsigned int timer_max_ns;
1018     bool irq_rx_adaptive;
1019     bool irqs_hooked;
1020     unsigned int irq_mod_step_us;
1021     unsigned int irq_rx_moderation_us;
1022     u32 msg_enable;
1023 
1024     enum nic_state state;
1025     unsigned long reset_pending;
1026 
1027     struct efx_channel *channel[EFX_MAX_CHANNELS];
1028     struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1029     const struct efx_channel_type *
1030     extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
1031 
1032     unsigned int xdp_tx_queue_count;
1033     struct efx_tx_queue **xdp_tx_queues;
1034     enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
1035 
1036     unsigned rxq_entries;
1037     unsigned txq_entries;
1038     unsigned int txq_stop_thresh;
1039     unsigned int txq_wake_thresh;
1040 
1041     unsigned tx_dc_base;
1042     unsigned rx_dc_base;
1043     unsigned sram_lim_qw;
1044     unsigned next_buffer_table;
1045 
1046     unsigned int max_channels;
1047     unsigned int max_vis;
1048     unsigned int max_tx_channels;
1049     unsigned n_channels;
1050     unsigned n_rx_channels;
1051     unsigned rss_spread;
1052     unsigned tx_channel_offset;
1053     unsigned n_tx_channels;
1054     unsigned n_extra_tx_channels;
1055     unsigned int tx_queues_per_channel;
1056     unsigned int n_xdp_channels;
1057     unsigned int xdp_channel_offset;
1058     unsigned int xdp_tx_per_channel;
1059     unsigned int rx_ip_align;
1060     unsigned int rx_dma_len;
1061     unsigned int rx_buffer_order;
1062     unsigned int rx_buffer_truesize;
1063     unsigned int rx_page_buf_step;
1064     unsigned int rx_bufs_per_page;
1065     unsigned int rx_pages_per_batch;
1066     unsigned int rx_prefix_size;
1067     int rx_packet_hash_offset;
1068     int rx_packet_len_offset;
1069     int rx_packet_ts_offset;
1070     bool rx_scatter;
1071     struct efx_rss_context rss_context;
1072     struct mutex rss_lock;
1073     u32 vport_id;
1074 
1075     unsigned int_error_count;
1076     unsigned long int_error_expire;
1077 
1078     bool must_realloc_vis;
1079     bool irq_soft_enabled;
1080     struct efx_buffer irq_status;
1081     unsigned irq_zero_count;
1082     unsigned irq_level;
1083     struct delayed_work selftest_work;
1084 
1085 #ifdef CONFIG_SFC_MTD
1086     struct list_head mtd_list;
1087 #endif
1088 
1089     void *nic_data;
1090     struct efx_mcdi_data *mcdi;
1091 
1092     struct mutex mac_lock;
1093     struct work_struct mac_work;
1094     bool port_enabled;
1095 
1096     bool mc_bist_for_other_fn;
1097     bool port_initialized;
1098     struct net_device *net_dev;
1099 
1100     netdev_features_t fixed_features;
1101 
1102     u16 num_mac_stats;
1103     struct efx_buffer stats_buffer;
1104     u64 rx_nodesc_drops_total;
1105     u64 rx_nodesc_drops_while_down;
1106     bool rx_nodesc_drops_prev_state;
1107 
1108     unsigned int phy_type;
1109     void *phy_data;
1110     struct mdio_if_info mdio;
1111     unsigned int mdio_bus;
1112     enum efx_phy_mode phy_mode;
1113 
1114     __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1115     u32 fec_config;
1116     struct efx_link_state link_state;
1117     unsigned int n_link_state_changes;
1118 
1119     bool unicast_filter;
1120     union efx_multicast_hash multicast_hash;
1121     u8 wanted_fc;
1122     unsigned fc_disable;
1123 
1124     atomic_t rx_reset;
1125     enum efx_loopback_mode loopback_mode;
1126     u64 loopback_modes;
1127 
1128     void *loopback_selftest;
1129     /* We access loopback_selftest immediately before running XDP,
1130      * so we want them next to each other.
1131      */
1132     struct bpf_prog __rcu *xdp_prog;
1133 
1134     struct rw_semaphore filter_sem;
1135     void *filter_state;
1136 #ifdef CONFIG_RFS_ACCEL
1137     struct mutex rps_mutex;
1138     unsigned long rps_slot_map;
1139     struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1140     spinlock_t rps_hash_lock;
1141     struct hlist_head *rps_hash_table;
1142     u32 rps_next_id;
1143 #endif
1144 
1145     atomic_t active_queues;
1146     atomic_t rxq_flush_pending;
1147     atomic_t rxq_flush_outstanding;
1148     wait_queue_head_t flush_wq;
1149 
1150 #ifdef CONFIG_SFC_SRIOV
1151     unsigned vf_count;
1152     unsigned vf_init_count;
1153     unsigned vi_scale;
1154 #endif
1155     spinlock_t vf_reps_lock;
1156     struct list_head vf_reps;
1157 
1158     struct efx_ptp_data *ptp_data;
1159     bool ptp_warned;
1160 
1161     char *vpd_sn;
1162     bool xdp_rxq_info_failed;
1163 
1164     struct notifier_block netdev_notifier;
1165     struct efx_tc_state *tc;
1166 
1167     unsigned int mem_bar;
1168     u32 reg_base;
1169 
1170     /* The following fields may be written more often */
1171 
1172     struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1173     spinlock_t biu_lock;
1174     int last_irq_cpu;
1175     spinlock_t stats_lock;
1176     atomic_t n_rx_noskb_drops;
1177 };
1178 
1179 /**
1180  * struct efx_probe_data - State after hardware probe
1181  * @pci_dev: The PCI device
1182  * @efx: Efx NIC details
1183  */
1184 struct efx_probe_data {
1185     struct pci_dev *pci_dev;
1186     struct efx_nic efx;
1187 };
1188 
1189 static inline struct efx_nic *efx_netdev_priv(struct net_device *dev)
1190 {
1191     struct efx_probe_data **probe_ptr = netdev_priv(dev);
1192     struct efx_probe_data *probe_data = *probe_ptr;
1193 
1194     return &probe_data->efx;
1195 }
1196 
1197 static inline int efx_dev_registered(struct efx_nic *efx)
1198 {
1199     return efx->net_dev->reg_state == NETREG_REGISTERED;
1200 }
1201 
1202 static inline unsigned int efx_port_num(struct efx_nic *efx)
1203 {
1204     return efx->port_num;
1205 }
1206 
1207 struct efx_mtd_partition {
1208     struct list_head node;
1209     struct mtd_info mtd;
1210     const char *dev_type_name;
1211     const char *type_name;
1212     char name[IFNAMSIZ + 20];
1213 };
1214 
1215 struct efx_udp_tunnel {
1216 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff
1217     u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1218     __be16 port;
1219 };
1220 
1221 /**
1222  * struct efx_nic_type - Efx device type definition
1223  * @mem_bar: Get the memory BAR
1224  * @mem_map_size: Get memory BAR mapped size
1225  * @probe: Probe the controller
1226  * @remove: Free resources allocated by probe()
1227  * @init: Initialise the controller
1228  * @dimension_resources: Dimension controller resources (buffer table,
1229  *  and VIs once the available interrupt resources are clear)
1230  * @fini: Shut down the controller
1231  * @monitor: Periodic function for polling link state and hardware monitor
1232  * @map_reset_reason: Map ethtool reset reason to a reset method
1233  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1234  * @reset: Reset the controller hardware and possibly the PHY.  This will
1235  *  be called while the controller is uninitialised.
1236  * @probe_port: Probe the MAC and PHY
1237  * @remove_port: Free resources allocated by probe_port()
1238  * @handle_global_event: Handle a "global" event (may be %NULL)
1239  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1240  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1241  *  (for Falcon architecture)
1242  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1243  *  architecture)
1244  * @prepare_flr: Prepare for an FLR
1245  * @finish_flr: Clean up after an FLR
1246  * @describe_stats: Describe statistics for ethtool
1247  * @update_stats: Update statistics not provided by event handling.
1248  *  Either argument may be %NULL.
1249  * @update_stats_atomic: Update statistics while in atomic context, if that
1250  *  is more limiting than @update_stats.  Otherwise, leave %NULL and
1251  *  driver core will call @update_stats.
1252  * @start_stats: Start the regular fetching of statistics
1253  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1254  * @stop_stats: Stop the regular fetching of statistics
1255  * @push_irq_moderation: Apply interrupt moderation value
1256  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1257  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1258  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1259  *  to the hardware.  Serialised by the mac_lock.
1260  * @check_mac_fault: Check MAC fault state. True if fault present.
1261  * @get_wol: Get WoL configuration from driver state
1262  * @set_wol: Push WoL configuration to the NIC
1263  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1264  * @get_fec_stats: Get standard FEC statistics.
1265  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1266  *  expected to reset the NIC.
1267  * @test_nvram: Test validity of NVRAM contents
1268  * @mcdi_request: Send an MCDI request with the given header and SDU.
1269  *  The SDU length may be any value from 0 up to the protocol-
1270  *  defined maximum, but its buffer will be padded to a multiple
1271  *  of 4 bytes.
1272  * @mcdi_poll_response: Test whether an MCDI response is available.
1273  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1274  *  be a multiple of 4.  The length may not be, but the buffer
1275  *  will be padded so it is safe to round up.
1276  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1277  *  return an appropriate error code for aborting any current
1278  *  request; otherwise return 0.
1279  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1280  *  be separately enabled after this.
1281  * @irq_test_generate: Generate a test IRQ
1282  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1283  *  queue must be separately disabled before this.
1284  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1285  *  a pointer to the &struct efx_msi_context for the channel.
1286  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1287  *  is a pointer to the &struct efx_nic.
1288  * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1289  * @tx_init: Initialise TX queue on the NIC
1290  * @tx_remove: Free resources for TX queue
1291  * @tx_write: Write TX descriptors and doorbell
1292  * @tx_enqueue: Add an SKB to TX queue
1293  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1294  * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1295  * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1296  *  user RSS context to the NIC
1297  * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1298  *  RSS context back from the NIC
1299  * @rx_probe: Allocate resources for RX queue
1300  * @rx_init: Initialise RX queue on the NIC
1301  * @rx_remove: Free resources for RX queue
1302  * @rx_write: Write RX descriptors and doorbell
1303  * @rx_defer_refill: Generate a refill reminder event
1304  * @rx_packet: Receive the queued RX buffer on a channel
1305  * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1306  * @ev_probe: Allocate resources for event queue
1307  * @ev_init: Initialise event queue on the NIC
1308  * @ev_fini: Deinitialise event queue on the NIC
1309  * @ev_remove: Free resources for event queue
1310  * @ev_process: Process events for a queue, up to the given NAPI quota
1311  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1312  * @ev_test_generate: Generate a test event
1313  * @filter_table_probe: Probe filter capabilities and set up filter software state
1314  * @filter_table_restore: Restore filters removed from hardware
1315  * @filter_table_remove: Remove filters from hardware and tear down software state
1316  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1317  * @filter_insert: add or replace a filter
1318  * @filter_remove_safe: remove a filter by ID, carefully
1319  * @filter_get_safe: retrieve a filter by ID, carefully
1320  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1321  *  equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1322  * @filter_count_rx_used: Get the number of filters in use at a given priority
1323  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1324  * @filter_get_rx_ids: Get list of RX filters at a given priority
1325  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1326  *  This must check whether the specified table entry is used by RFS
1327  *  and that rps_may_expire_flow() returns true for it.
1328  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1329  *   using efx_mtd_add()
1330  * @mtd_rename: Set an MTD partition name using the net device name
1331  * @mtd_read: Read from an MTD partition
1332  * @mtd_erase: Erase part of an MTD partition
1333  * @mtd_write: Write to an MTD partition
1334  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1335  *  also notifies the driver that a writer has finished using this
1336  *  partition.
1337  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1338  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1339  *  timestamping, possibly only temporarily for the purposes of a reset.
1340  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1341  *  and tx_type will already have been validated but this operation
1342  *  must validate and update rx_filter.
1343  * @get_phys_port_id: Get the underlying physical port id.
1344  * @set_mac_address: Set the MAC address of the device
1345  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1346  *  If %NULL, then device does not support any TSO version.
1347  * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1348  * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1349  * @print_additional_fwver: Dump NIC-specific additional FW version info
1350  * @sensor_event: Handle a sensor event from MCDI
1351  * @rx_recycle_ring_size: Size of the RX recycle ring
1352  * @revision: Hardware architecture revision
1353  * @txd_ptr_tbl_base: TX descriptor ring base address
1354  * @rxd_ptr_tbl_base: RX descriptor ring base address
1355  * @buf_tbl_base: Buffer table base address
1356  * @evq_ptr_tbl_base: Event queue pointer table base address
1357  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1358  * @max_dma_mask: Maximum possible DMA mask
1359  * @rx_prefix_size: Size of RX prefix before packet data
1360  * @rx_hash_offset: Offset of RX flow hash within prefix
1361  * @rx_ts_offset: Offset of timestamp within prefix
1362  * @rx_buffer_padding: Size of padding at end of RX packet
1363  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1364  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1365  * @option_descriptors: NIC supports TX option descriptors
1366  * @min_interrupt_mode: Lowest capability interrupt mode supported
1367  *  from &enum efx_int_mode.
1368  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1369  * @offload_features: net_device feature flags for protocol offload
1370  *  features implemented in hardware
1371  * @mcdi_max_ver: Maximum MCDI version supported
1372  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1373  */
1374 struct efx_nic_type {
1375     bool is_vf;
1376     unsigned int (*mem_bar)(struct efx_nic *efx);
1377     unsigned int (*mem_map_size)(struct efx_nic *efx);
1378     int (*probe)(struct efx_nic *efx);
1379     void (*remove)(struct efx_nic *efx);
1380     int (*init)(struct efx_nic *efx);
1381     int (*dimension_resources)(struct efx_nic *efx);
1382     void (*fini)(struct efx_nic *efx);
1383     void (*monitor)(struct efx_nic *efx);
1384     enum reset_type (*map_reset_reason)(enum reset_type reason);
1385     int (*map_reset_flags)(u32 *flags);
1386     int (*reset)(struct efx_nic *efx, enum reset_type method);
1387     int (*probe_port)(struct efx_nic *efx);
1388     void (*remove_port)(struct efx_nic *efx);
1389     bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1390     int (*fini_dmaq)(struct efx_nic *efx);
1391     void (*prepare_flush)(struct efx_nic *efx);
1392     void (*finish_flush)(struct efx_nic *efx);
1393     void (*prepare_flr)(struct efx_nic *efx);
1394     void (*finish_flr)(struct efx_nic *efx);
1395     size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1396     size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1397                    struct rtnl_link_stats64 *core_stats);
1398     size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1399                       struct rtnl_link_stats64 *core_stats);
1400     void (*start_stats)(struct efx_nic *efx);
1401     void (*pull_stats)(struct efx_nic *efx);
1402     void (*stop_stats)(struct efx_nic *efx);
1403     void (*push_irq_moderation)(struct efx_channel *channel);
1404     int (*reconfigure_port)(struct efx_nic *efx);
1405     void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1406     int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1407     bool (*check_mac_fault)(struct efx_nic *efx);
1408     void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1409     int (*set_wol)(struct efx_nic *efx, u32 type);
1410     void (*resume_wol)(struct efx_nic *efx);
1411     void (*get_fec_stats)(struct efx_nic *efx,
1412                   struct ethtool_fec_stats *fec_stats);
1413     unsigned int (*check_caps)(const struct efx_nic *efx,
1414                    u8 flag,
1415                    u32 offset);
1416     int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1417     int (*test_nvram)(struct efx_nic *efx);
1418     void (*mcdi_request)(struct efx_nic *efx,
1419                  const efx_dword_t *hdr, size_t hdr_len,
1420                  const efx_dword_t *sdu, size_t sdu_len);
1421     bool (*mcdi_poll_response)(struct efx_nic *efx);
1422     void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1423                    size_t pdu_offset, size_t pdu_len);
1424     int (*mcdi_poll_reboot)(struct efx_nic *efx);
1425     void (*mcdi_reboot_detected)(struct efx_nic *efx);
1426     void (*irq_enable_master)(struct efx_nic *efx);
1427     int (*irq_test_generate)(struct efx_nic *efx);
1428     void (*irq_disable_non_ev)(struct efx_nic *efx);
1429     irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1430     irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1431     int (*tx_probe)(struct efx_tx_queue *tx_queue);
1432     void (*tx_init)(struct efx_tx_queue *tx_queue);
1433     void (*tx_remove)(struct efx_tx_queue *tx_queue);
1434     void (*tx_write)(struct efx_tx_queue *tx_queue);
1435     netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1436     unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1437                      dma_addr_t dma_addr, unsigned int len);
1438     int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1439                   const u32 *rx_indir_table, const u8 *key);
1440     int (*rx_pull_rss_config)(struct efx_nic *efx);
1441     int (*rx_push_rss_context_config)(struct efx_nic *efx,
1442                       struct efx_rss_context *ctx,
1443                       const u32 *rx_indir_table,
1444                       const u8 *key);
1445     int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1446                       struct efx_rss_context *ctx);
1447     void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1448     int (*rx_probe)(struct efx_rx_queue *rx_queue);
1449     void (*rx_init)(struct efx_rx_queue *rx_queue);
1450     void (*rx_remove)(struct efx_rx_queue *rx_queue);
1451     void (*rx_write)(struct efx_rx_queue *rx_queue);
1452     void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1453     void (*rx_packet)(struct efx_channel *channel);
1454     bool (*rx_buf_hash_valid)(const u8 *prefix);
1455     int (*ev_probe)(struct efx_channel *channel);
1456     int (*ev_init)(struct efx_channel *channel);
1457     void (*ev_fini)(struct efx_channel *channel);
1458     void (*ev_remove)(struct efx_channel *channel);
1459     int (*ev_process)(struct efx_channel *channel, int quota);
1460     void (*ev_read_ack)(struct efx_channel *channel);
1461     void (*ev_test_generate)(struct efx_channel *channel);
1462     int (*filter_table_probe)(struct efx_nic *efx);
1463     void (*filter_table_restore)(struct efx_nic *efx);
1464     void (*filter_table_remove)(struct efx_nic *efx);
1465     void (*filter_update_rx_scatter)(struct efx_nic *efx);
1466     s32 (*filter_insert)(struct efx_nic *efx,
1467                  struct efx_filter_spec *spec, bool replace);
1468     int (*filter_remove_safe)(struct efx_nic *efx,
1469                   enum efx_filter_priority priority,
1470                   u32 filter_id);
1471     int (*filter_get_safe)(struct efx_nic *efx,
1472                    enum efx_filter_priority priority,
1473                    u32 filter_id, struct efx_filter_spec *);
1474     int (*filter_clear_rx)(struct efx_nic *efx,
1475                    enum efx_filter_priority priority);
1476     u32 (*filter_count_rx_used)(struct efx_nic *efx,
1477                     enum efx_filter_priority priority);
1478     u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1479     s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1480                  enum efx_filter_priority priority,
1481                  u32 *buf, u32 size);
1482 #ifdef CONFIG_RFS_ACCEL
1483     bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1484                       unsigned int index);
1485 #endif
1486 #ifdef CONFIG_SFC_MTD
1487     int (*mtd_probe)(struct efx_nic *efx);
1488     void (*mtd_rename)(struct efx_mtd_partition *part);
1489     int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1490             size_t *retlen, u8 *buffer);
1491     int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1492     int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1493              size_t *retlen, const u8 *buffer);
1494     int (*mtd_sync)(struct mtd_info *mtd);
1495 #endif
1496     void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1497     int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1498     int (*ptp_set_ts_config)(struct efx_nic *efx,
1499                  struct hwtstamp_config *init);
1500     int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1501     int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1502     int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1503     int (*get_phys_port_id)(struct efx_nic *efx,
1504                 struct netdev_phys_item_id *ppid);
1505     int (*sriov_init)(struct efx_nic *efx);
1506     void (*sriov_fini)(struct efx_nic *efx);
1507     bool (*sriov_wanted)(struct efx_nic *efx);
1508     void (*sriov_reset)(struct efx_nic *efx);
1509     void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1510     int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
1511     int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1512                  u8 qos);
1513     int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1514                      bool spoofchk);
1515     int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1516                    struct ifla_vf_info *ivi);
1517     int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1518                        int link_state);
1519     int (*vswitching_probe)(struct efx_nic *efx);
1520     int (*vswitching_restore)(struct efx_nic *efx);
1521     void (*vswitching_remove)(struct efx_nic *efx);
1522     int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1523     int (*set_mac_address)(struct efx_nic *efx);
1524     u32 (*tso_versions)(struct efx_nic *efx);
1525     int (*udp_tnl_push_ports)(struct efx_nic *efx);
1526     bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1527     size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1528                      size_t len);
1529     void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1530     unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1531 
1532     int revision;
1533     unsigned int txd_ptr_tbl_base;
1534     unsigned int rxd_ptr_tbl_base;
1535     unsigned int buf_tbl_base;
1536     unsigned int evq_ptr_tbl_base;
1537     unsigned int evq_rptr_tbl_base;
1538     u64 max_dma_mask;
1539     unsigned int rx_prefix_size;
1540     unsigned int rx_hash_offset;
1541     unsigned int rx_ts_offset;
1542     unsigned int rx_buffer_padding;
1543     bool can_rx_scatter;
1544     bool always_rx_scatter;
1545     bool option_descriptors;
1546     unsigned int min_interrupt_mode;
1547     unsigned int timer_period_max;
1548     netdev_features_t offload_features;
1549     int mcdi_max_ver;
1550     unsigned int max_rx_ip_filters;
1551     u32 hwtstamp_filters;
1552     unsigned int rx_hash_key_size;
1553 };
1554 
1555 /**************************************************************************
1556  *
1557  * Prototypes and inline functions
1558  *
1559  *************************************************************************/
1560 
1561 static inline struct efx_channel *
1562 efx_get_channel(struct efx_nic *efx, unsigned index)
1563 {
1564     EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1565     return efx->channel[index];
1566 }
1567 
1568 /* Iterate over all used channels */
1569 #define efx_for_each_channel(_channel, _efx)                \
1570     for (_channel = (_efx)->channel[0];             \
1571          _channel;                          \
1572          _channel = (_channel->channel + 1 < (_efx)->n_channels) ?  \
1573              (_efx)->channel[_channel->channel + 1] : NULL)
1574 
1575 /* Iterate over all used channels in reverse */
1576 #define efx_for_each_channel_rev(_channel, _efx)            \
1577     for (_channel = (_efx)->channel[(_efx)->n_channels - 1];    \
1578          _channel;                          \
1579          _channel = _channel->channel ?             \
1580              (_efx)->channel[_channel->channel - 1] : NULL)
1581 
1582 static inline struct efx_channel *
1583 efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1584 {
1585     EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1586     return efx->channel[efx->tx_channel_offset + index];
1587 }
1588 
1589 static inline struct efx_channel *
1590 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1591 {
1592     EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1593     return efx->channel[efx->xdp_channel_offset + index];
1594 }
1595 
1596 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1597 {
1598     return channel->channel - channel->efx->xdp_channel_offset <
1599            channel->efx->n_xdp_channels;
1600 }
1601 
1602 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1603 {
1604     return channel && channel->channel >= channel->efx->tx_channel_offset;
1605 }
1606 
1607 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1608 {
1609     if (efx_channel_is_xdp_tx(channel))
1610         return channel->efx->xdp_tx_per_channel;
1611     return channel->efx->tx_queues_per_channel;
1612 }
1613 
1614 static inline struct efx_tx_queue *
1615 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1616 {
1617     EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1618     return channel->tx_queue_by_type[type];
1619 }
1620 
1621 static inline struct efx_tx_queue *
1622 efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1623 {
1624     struct efx_channel *channel = efx_get_tx_channel(efx, index);
1625 
1626     return efx_channel_get_tx_queue(channel, type);
1627 }
1628 
1629 /* Iterate over all TX queues belonging to a channel */
1630 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)      \
1631     if (!efx_channel_has_tx_queues(_channel))           \
1632         ;                           \
1633     else                                \
1634         for (_tx_queue = (_channel)->tx_queue;          \
1635              _tx_queue < (_channel)->tx_queue +         \
1636                  efx_channel_num_tx_queues(_channel);       \
1637              _tx_queue++)
1638 
1639 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1640 {
1641     return channel->rx_queue.core_index >= 0;
1642 }
1643 
1644 static inline struct efx_rx_queue *
1645 efx_channel_get_rx_queue(struct efx_channel *channel)
1646 {
1647     EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1648     return &channel->rx_queue;
1649 }
1650 
1651 /* Iterate over all RX queues belonging to a channel */
1652 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)      \
1653     if (!efx_channel_has_rx_queue(_channel))            \
1654         ;                           \
1655     else                                \
1656         for (_rx_queue = &(_channel)->rx_queue;         \
1657              _rx_queue;                     \
1658              _rx_queue = NULL)
1659 
1660 static inline struct efx_channel *
1661 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1662 {
1663     return container_of(rx_queue, struct efx_channel, rx_queue);
1664 }
1665 
1666 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1667 {
1668     return efx_rx_queue_channel(rx_queue)->channel;
1669 }
1670 
1671 /* Returns a pointer to the specified receive buffer in the RX
1672  * descriptor queue.
1673  */
1674 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1675                           unsigned int index)
1676 {
1677     return &rx_queue->buffer[index];
1678 }
1679 
1680 static inline struct efx_rx_buffer *
1681 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1682 {
1683     if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1684         return efx_rx_buffer(rx_queue, 0);
1685     else
1686         return rx_buf + 1;
1687 }
1688 
1689 /**
1690  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1691  *
1692  * This calculates the maximum frame length that will be used for a
1693  * given MTU.  The frame length will be equal to the MTU plus a
1694  * constant amount of header space and padding.  This is the quantity
1695  * that the net driver will program into the MAC as the maximum frame
1696  * length.
1697  *
1698  * The 10G MAC requires 8-byte alignment on the frame
1699  * length, so we round up to the nearest 8.
1700  *
1701  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1702  * XGMII cycle).  If the frame length reaches the maximum value in the
1703  * same cycle, the XMAC can miss the IPG altogether.  We work around
1704  * this by adding a further 16 bytes.
1705  */
1706 #define EFX_FRAME_PAD   16
1707 #define EFX_MAX_FRAME_LEN(mtu) \
1708     (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1709 
1710 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1711 {
1712     return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1713 }
1714 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1715 {
1716     skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1717 }
1718 
1719 /* Get the max fill level of the TX queues on this channel */
1720 static inline unsigned int
1721 efx_channel_tx_fill_level(struct efx_channel *channel)
1722 {
1723     struct efx_tx_queue *tx_queue;
1724     unsigned int fill_level = 0;
1725 
1726     efx_for_each_channel_tx_queue(tx_queue, channel)
1727         fill_level = max(fill_level,
1728                  tx_queue->insert_count - tx_queue->read_count);
1729 
1730     return fill_level;
1731 }
1732 
1733 /* Conservative approximation of efx_channel_tx_fill_level using cached value */
1734 static inline unsigned int
1735 efx_channel_tx_old_fill_level(struct efx_channel *channel)
1736 {
1737     struct efx_tx_queue *tx_queue;
1738     unsigned int fill_level = 0;
1739 
1740     efx_for_each_channel_tx_queue(tx_queue, channel)
1741         fill_level = max(fill_level,
1742                  tx_queue->insert_count - tx_queue->old_read_count);
1743 
1744     return fill_level;
1745 }
1746 
1747 /* Get all supported features.
1748  * If a feature is not fixed, it is present in hw_features.
1749  * If a feature is fixed, it does not present in hw_features, but
1750  * always in features.
1751  */
1752 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1753 {
1754     const struct net_device *net_dev = efx->net_dev;
1755 
1756     return net_dev->features | net_dev->hw_features;
1757 }
1758 
1759 /* Get the current TX queue insert index. */
1760 static inline unsigned int
1761 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1762 {
1763     return tx_queue->insert_count & tx_queue->ptr_mask;
1764 }
1765 
1766 /* Get a TX buffer. */
1767 static inline struct efx_tx_buffer *
1768 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1769 {
1770     return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1771 }
1772 
1773 /* Get a TX buffer, checking it's not currently in use. */
1774 static inline struct efx_tx_buffer *
1775 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1776 {
1777     struct efx_tx_buffer *buffer =
1778         __efx_tx_queue_get_insert_buffer(tx_queue);
1779 
1780     EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1781     EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1782     EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1783 
1784     return buffer;
1785 }
1786 
1787 #endif /* EFX_NET_DRIVER_H */