Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2005-2006 Fen Systems Ltd.
0005  * Copyright 2006-2013 Solarflare Communications Inc.
0006  */
0007 
0008 #include <linux/bitops.h>
0009 #include <linux/delay.h>
0010 #include <linux/interrupt.h>
0011 #include <linux/pci.h>
0012 #include <linux/module.h>
0013 #include <linux/seq_file.h>
0014 #include <linux/crc32.h>
0015 #include "net_driver.h"
0016 #include "bitfield.h"
0017 #include "efx.h"
0018 #include "nic.h"
0019 #include "farch_regs.h"
0020 #include "io.h"
0021 #include "workarounds.h"
0022 
0023 /* Falcon-architecture (SFC4000) support */
0024 
0025 /**************************************************************************
0026  *
0027  * Configurable values
0028  *
0029  **************************************************************************
0030  */
0031 
0032 /* This is set to 16 for a good reason.  In summary, if larger than
0033  * 16, the descriptor cache holds more than a default socket
0034  * buffer's worth of packets (for UDP we can only have at most one
0035  * socket buffer's worth outstanding).  This combined with the fact
0036  * that we only get 1 TX event per descriptor cache means the NIC
0037  * goes idle.
0038  */
0039 #define TX_DC_ENTRIES 16
0040 #define TX_DC_ENTRIES_ORDER 1
0041 
0042 #define RX_DC_ENTRIES 64
0043 #define RX_DC_ENTRIES_ORDER 3
0044 
0045 /* If EF4_MAX_INT_ERRORS internal errors occur within
0046  * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
0047  * disable it.
0048  */
0049 #define EF4_INT_ERROR_EXPIRE 3600
0050 #define EF4_MAX_INT_ERRORS 5
0051 
0052 /* Depth of RX flush request fifo */
0053 #define EF4_RX_FLUSH_COUNT 4
0054 
0055 /* Driver generated events */
0056 #define _EF4_CHANNEL_MAGIC_TEST     0x000101
0057 #define _EF4_CHANNEL_MAGIC_FILL     0x000102
0058 #define _EF4_CHANNEL_MAGIC_RX_DRAIN 0x000103
0059 #define _EF4_CHANNEL_MAGIC_TX_DRAIN 0x000104
0060 
0061 #define _EF4_CHANNEL_MAGIC(_code, _data)    ((_code) << 8 | (_data))
0062 #define _EF4_CHANNEL_MAGIC_CODE(_magic)     ((_magic) >> 8)
0063 
0064 #define EF4_CHANNEL_MAGIC_TEST(_channel)                \
0065     _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
0066 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue)               \
0067     _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL,         \
0068                ef4_rx_queue_index(_rx_queue))
0069 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)               \
0070     _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN,         \
0071                ef4_rx_queue_index(_rx_queue))
0072 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)               \
0073     _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN,         \
0074                (_tx_queue)->queue)
0075 
0076 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
0077 
0078 /**************************************************************************
0079  *
0080  * Hardware access
0081  *
0082  **************************************************************************/
0083 
0084 static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
0085                      unsigned int index)
0086 {
0087     ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
0088             value, index);
0089 }
0090 
0091 static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
0092                      const ef4_oword_t *mask)
0093 {
0094     return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
0095         ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
0096 }
0097 
0098 int ef4_farch_test_registers(struct ef4_nic *efx,
0099                  const struct ef4_farch_register_test *regs,
0100                  size_t n_regs)
0101 {
0102     unsigned address = 0;
0103     int i, j;
0104     ef4_oword_t mask, imask, original, reg, buf;
0105 
0106     for (i = 0; i < n_regs; ++i) {
0107         address = regs[i].address;
0108         mask = imask = regs[i].mask;
0109         EF4_INVERT_OWORD(imask);
0110 
0111         ef4_reado(efx, &original, address);
0112 
0113         /* bit sweep on and off */
0114         for (j = 0; j < 128; j++) {
0115             if (!EF4_EXTRACT_OWORD32(mask, j, j))
0116                 continue;
0117 
0118             /* Test this testable bit can be set in isolation */
0119             EF4_AND_OWORD(reg, original, mask);
0120             EF4_SET_OWORD32(reg, j, j, 1);
0121 
0122             ef4_writeo(efx, &reg, address);
0123             ef4_reado(efx, &buf, address);
0124 
0125             if (ef4_masked_compare_oword(&reg, &buf, &mask))
0126                 goto fail;
0127 
0128             /* Test this testable bit can be cleared in isolation */
0129             EF4_OR_OWORD(reg, original, mask);
0130             EF4_SET_OWORD32(reg, j, j, 0);
0131 
0132             ef4_writeo(efx, &reg, address);
0133             ef4_reado(efx, &buf, address);
0134 
0135             if (ef4_masked_compare_oword(&reg, &buf, &mask))
0136                 goto fail;
0137         }
0138 
0139         ef4_writeo(efx, &original, address);
0140     }
0141 
0142     return 0;
0143 
0144 fail:
0145     netif_err(efx, hw, efx->net_dev,
0146           "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
0147           " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
0148           EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
0149     return -EIO;
0150 }
0151 
0152 /**************************************************************************
0153  *
0154  * Special buffer handling
0155  * Special buffers are used for event queues and the TX and RX
0156  * descriptor rings.
0157  *
0158  *************************************************************************/
0159 
0160 /*
0161  * Initialise a special buffer
0162  *
0163  * This will define a buffer (previously allocated via
0164  * ef4_alloc_special_buffer()) in the buffer table, allowing
0165  * it to be used for event queues, descriptor rings etc.
0166  */
0167 static void
0168 ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
0169 {
0170     ef4_qword_t buf_desc;
0171     unsigned int index;
0172     dma_addr_t dma_addr;
0173     int i;
0174 
0175     EF4_BUG_ON_PARANOID(!buffer->buf.addr);
0176 
0177     /* Write buffer descriptors to NIC */
0178     for (i = 0; i < buffer->entries; i++) {
0179         index = buffer->index + i;
0180         dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
0181         netif_dbg(efx, probe, efx->net_dev,
0182               "mapping special buffer %d at %llx\n",
0183               index, (unsigned long long)dma_addr);
0184         EF4_POPULATE_QWORD_3(buf_desc,
0185                      FRF_AZ_BUF_ADR_REGION, 0,
0186                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
0187                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
0188         ef4_write_buf_tbl(efx, &buf_desc, index);
0189     }
0190 }
0191 
0192 /* Unmaps a buffer and clears the buffer table entries */
0193 static void
0194 ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
0195 {
0196     ef4_oword_t buf_tbl_upd;
0197     unsigned int start = buffer->index;
0198     unsigned int end = (buffer->index + buffer->entries - 1);
0199 
0200     if (!buffer->entries)
0201         return;
0202 
0203     netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
0204           buffer->index, buffer->index + buffer->entries - 1);
0205 
0206     EF4_POPULATE_OWORD_4(buf_tbl_upd,
0207                  FRF_AZ_BUF_UPD_CMD, 0,
0208                  FRF_AZ_BUF_CLR_CMD, 1,
0209                  FRF_AZ_BUF_CLR_END_ID, end,
0210                  FRF_AZ_BUF_CLR_START_ID, start);
0211     ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
0212 }
0213 
0214 /*
0215  * Allocate a new special buffer
0216  *
0217  * This allocates memory for a new buffer, clears it and allocates a
0218  * new buffer ID range.  It does not write into the buffer table.
0219  *
0220  * This call will allocate 4KB buffers, since 8KB buffers can't be
0221  * used for event queues and descriptor rings.
0222  */
0223 static int ef4_alloc_special_buffer(struct ef4_nic *efx,
0224                     struct ef4_special_buffer *buffer,
0225                     unsigned int len)
0226 {
0227     len = ALIGN(len, EF4_BUF_SIZE);
0228 
0229     if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
0230         return -ENOMEM;
0231     buffer->entries = len / EF4_BUF_SIZE;
0232     BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
0233 
0234     /* Select new buffer ID */
0235     buffer->index = efx->next_buffer_table;
0236     efx->next_buffer_table += buffer->entries;
0237 
0238     netif_dbg(efx, probe, efx->net_dev,
0239           "allocating special buffers %d-%d at %llx+%x "
0240           "(virt %p phys %llx)\n", buffer->index,
0241           buffer->index + buffer->entries - 1,
0242           (u64)buffer->buf.dma_addr, len,
0243           buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
0244 
0245     return 0;
0246 }
0247 
0248 static void
0249 ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
0250 {
0251     if (!buffer->buf.addr)
0252         return;
0253 
0254     netif_dbg(efx, hw, efx->net_dev,
0255           "deallocating special buffers %d-%d at %llx+%x "
0256           "(virt %p phys %llx)\n", buffer->index,
0257           buffer->index + buffer->entries - 1,
0258           (u64)buffer->buf.dma_addr, buffer->buf.len,
0259           buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
0260 
0261     ef4_nic_free_buffer(efx, &buffer->buf);
0262     buffer->entries = 0;
0263 }
0264 
0265 /**************************************************************************
0266  *
0267  * TX path
0268  *
0269  **************************************************************************/
0270 
0271 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
0272 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
0273 {
0274     unsigned write_ptr;
0275     ef4_dword_t reg;
0276 
0277     write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
0278     EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
0279     ef4_writed_page(tx_queue->efx, &reg,
0280             FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
0281 }
0282 
0283 /* Write pointer and first descriptor for TX descriptor ring */
0284 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
0285                       const ef4_qword_t *txd)
0286 {
0287     unsigned write_ptr;
0288     ef4_oword_t reg;
0289 
0290     BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
0291     BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
0292 
0293     write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
0294     EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
0295                  FRF_AZ_TX_DESC_WPTR, write_ptr);
0296     reg.qword[0] = *txd;
0297     ef4_writeo_page(tx_queue->efx, &reg,
0298             FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
0299 }
0300 
0301 
0302 /* For each entry inserted into the software descriptor ring, create a
0303  * descriptor in the hardware TX descriptor ring (in host memory), and
0304  * write a doorbell.
0305  */
0306 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
0307 {
0308     struct ef4_tx_buffer *buffer;
0309     ef4_qword_t *txd;
0310     unsigned write_ptr;
0311     unsigned old_write_count = tx_queue->write_count;
0312 
0313     tx_queue->xmit_more_available = false;
0314     if (unlikely(tx_queue->write_count == tx_queue->insert_count))
0315         return;
0316 
0317     do {
0318         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
0319         buffer = &tx_queue->buffer[write_ptr];
0320         txd = ef4_tx_desc(tx_queue, write_ptr);
0321         ++tx_queue->write_count;
0322 
0323         EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
0324 
0325         /* Create TX descriptor ring entry */
0326         BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
0327         EF4_POPULATE_QWORD_4(*txd,
0328                      FSF_AZ_TX_KER_CONT,
0329                      buffer->flags & EF4_TX_BUF_CONT,
0330                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
0331                      FSF_AZ_TX_KER_BUF_REGION, 0,
0332                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
0333     } while (tx_queue->write_count != tx_queue->insert_count);
0334 
0335     wmb(); /* Ensure descriptors are written before they are fetched */
0336 
0337     if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
0338         txd = ef4_tx_desc(tx_queue,
0339                   old_write_count & tx_queue->ptr_mask);
0340         ef4_farch_push_tx_desc(tx_queue, txd);
0341         ++tx_queue->pushes;
0342     } else {
0343         ef4_farch_notify_tx_desc(tx_queue);
0344     }
0345 }
0346 
0347 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
0348                     dma_addr_t dma_addr, unsigned int len)
0349 {
0350     /* Don't cross 4K boundaries with descriptors. */
0351     unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
0352 
0353     len = min(limit, len);
0354 
0355     if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
0356         len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
0357 
0358     return len;
0359 }
0360 
0361 
0362 /* Allocate hardware resources for a TX queue */
0363 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
0364 {
0365     struct ef4_nic *efx = tx_queue->efx;
0366     unsigned entries;
0367 
0368     entries = tx_queue->ptr_mask + 1;
0369     return ef4_alloc_special_buffer(efx, &tx_queue->txd,
0370                     entries * sizeof(ef4_qword_t));
0371 }
0372 
0373 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
0374 {
0375     struct ef4_nic *efx = tx_queue->efx;
0376     ef4_oword_t reg;
0377 
0378     /* Pin TX descriptor ring */
0379     ef4_init_special_buffer(efx, &tx_queue->txd);
0380 
0381     /* Push TX descriptor ring to card */
0382     EF4_POPULATE_OWORD_10(reg,
0383                   FRF_AZ_TX_DESCQ_EN, 1,
0384                   FRF_AZ_TX_ISCSI_DDIG_EN, 0,
0385                   FRF_AZ_TX_ISCSI_HDIG_EN, 0,
0386                   FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
0387                   FRF_AZ_TX_DESCQ_EVQ_ID,
0388                   tx_queue->channel->channel,
0389                   FRF_AZ_TX_DESCQ_OWNER_ID, 0,
0390                   FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
0391                   FRF_AZ_TX_DESCQ_SIZE,
0392                   __ffs(tx_queue->txd.entries),
0393                   FRF_AZ_TX_DESCQ_TYPE, 0,
0394                   FRF_BZ_TX_NON_IP_DROP_DIS, 1);
0395 
0396     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
0397         int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
0398         EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
0399         EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
0400                     !csum);
0401     }
0402 
0403     ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
0404              tx_queue->queue);
0405 
0406     if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
0407         /* Only 128 bits in this register */
0408         BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
0409 
0410         ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
0411         if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
0412             __clear_bit_le(tx_queue->queue, &reg);
0413         else
0414             __set_bit_le(tx_queue->queue, &reg);
0415         ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
0416     }
0417 
0418     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
0419         EF4_POPULATE_OWORD_1(reg,
0420                      FRF_BZ_TX_PACE,
0421                      (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
0422                      FFE_BZ_TX_PACE_OFF :
0423                      FFE_BZ_TX_PACE_RESERVED);
0424         ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
0425                  tx_queue->queue);
0426     }
0427 }
0428 
0429 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
0430 {
0431     struct ef4_nic *efx = tx_queue->efx;
0432     ef4_oword_t tx_flush_descq;
0433 
0434     WARN_ON(atomic_read(&tx_queue->flush_outstanding));
0435     atomic_set(&tx_queue->flush_outstanding, 1);
0436 
0437     EF4_POPULATE_OWORD_2(tx_flush_descq,
0438                  FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
0439                  FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
0440     ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
0441 }
0442 
0443 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
0444 {
0445     struct ef4_nic *efx = tx_queue->efx;
0446     ef4_oword_t tx_desc_ptr;
0447 
0448     /* Remove TX descriptor ring from card */
0449     EF4_ZERO_OWORD(tx_desc_ptr);
0450     ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
0451              tx_queue->queue);
0452 
0453     /* Unpin TX descriptor ring */
0454     ef4_fini_special_buffer(efx, &tx_queue->txd);
0455 }
0456 
0457 /* Free buffers backing TX queue */
0458 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
0459 {
0460     ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
0461 }
0462 
0463 /**************************************************************************
0464  *
0465  * RX path
0466  *
0467  **************************************************************************/
0468 
0469 /* This creates an entry in the RX descriptor queue */
0470 static inline void
0471 ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
0472 {
0473     struct ef4_rx_buffer *rx_buf;
0474     ef4_qword_t *rxd;
0475 
0476     rxd = ef4_rx_desc(rx_queue, index);
0477     rx_buf = ef4_rx_buffer(rx_queue, index);
0478     EF4_POPULATE_QWORD_3(*rxd,
0479                  FSF_AZ_RX_KER_BUF_SIZE,
0480                  rx_buf->len -
0481                  rx_queue->efx->type->rx_buffer_padding,
0482                  FSF_AZ_RX_KER_BUF_REGION, 0,
0483                  FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
0484 }
0485 
0486 /* This writes to the RX_DESC_WPTR register for the specified receive
0487  * descriptor ring.
0488  */
0489 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
0490 {
0491     struct ef4_nic *efx = rx_queue->efx;
0492     ef4_dword_t reg;
0493     unsigned write_ptr;
0494 
0495     while (rx_queue->notified_count != rx_queue->added_count) {
0496         ef4_farch_build_rx_desc(
0497             rx_queue,
0498             rx_queue->notified_count & rx_queue->ptr_mask);
0499         ++rx_queue->notified_count;
0500     }
0501 
0502     wmb();
0503     write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
0504     EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
0505     ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
0506             ef4_rx_queue_index(rx_queue));
0507 }
0508 
0509 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
0510 {
0511     struct ef4_nic *efx = rx_queue->efx;
0512     unsigned entries;
0513 
0514     entries = rx_queue->ptr_mask + 1;
0515     return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
0516                     entries * sizeof(ef4_qword_t));
0517 }
0518 
0519 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
0520 {
0521     ef4_oword_t rx_desc_ptr;
0522     struct ef4_nic *efx = rx_queue->efx;
0523     bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
0524     bool iscsi_digest_en = is_b0;
0525     bool jumbo_en;
0526 
0527     /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
0528      * DMA to continue after a PCIe page boundary (and scattering
0529      * is not possible).  In Falcon B0 and Siena, it enables
0530      * scatter.
0531      */
0532     jumbo_en = !is_b0 || efx->rx_scatter;
0533 
0534     netif_dbg(efx, hw, efx->net_dev,
0535           "RX queue %d ring in special buffers %d-%d\n",
0536           ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
0537           rx_queue->rxd.index + rx_queue->rxd.entries - 1);
0538 
0539     rx_queue->scatter_n = 0;
0540 
0541     /* Pin RX descriptor ring */
0542     ef4_init_special_buffer(efx, &rx_queue->rxd);
0543 
0544     /* Push RX descriptor ring to card */
0545     EF4_POPULATE_OWORD_10(rx_desc_ptr,
0546                   FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
0547                   FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
0548                   FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
0549                   FRF_AZ_RX_DESCQ_EVQ_ID,
0550                   ef4_rx_queue_channel(rx_queue)->channel,
0551                   FRF_AZ_RX_DESCQ_OWNER_ID, 0,
0552                   FRF_AZ_RX_DESCQ_LABEL,
0553                   ef4_rx_queue_index(rx_queue),
0554                   FRF_AZ_RX_DESCQ_SIZE,
0555                   __ffs(rx_queue->rxd.entries),
0556                   FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
0557                   FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
0558                   FRF_AZ_RX_DESCQ_EN, 1);
0559     ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
0560              ef4_rx_queue_index(rx_queue));
0561 }
0562 
0563 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
0564 {
0565     struct ef4_nic *efx = rx_queue->efx;
0566     ef4_oword_t rx_flush_descq;
0567 
0568     EF4_POPULATE_OWORD_2(rx_flush_descq,
0569                  FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
0570                  FRF_AZ_RX_FLUSH_DESCQ,
0571                  ef4_rx_queue_index(rx_queue));
0572     ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
0573 }
0574 
0575 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
0576 {
0577     ef4_oword_t rx_desc_ptr;
0578     struct ef4_nic *efx = rx_queue->efx;
0579 
0580     /* Remove RX descriptor ring from card */
0581     EF4_ZERO_OWORD(rx_desc_ptr);
0582     ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
0583              ef4_rx_queue_index(rx_queue));
0584 
0585     /* Unpin RX descriptor ring */
0586     ef4_fini_special_buffer(efx, &rx_queue->rxd);
0587 }
0588 
0589 /* Free buffers backing RX queue */
0590 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
0591 {
0592     ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
0593 }
0594 
0595 /**************************************************************************
0596  *
0597  * Flush handling
0598  *
0599  **************************************************************************/
0600 
0601 /* ef4_farch_flush_queues() must be woken up when all flushes are completed,
0602  * or more RX flushes can be kicked off.
0603  */
0604 static bool ef4_farch_flush_wake(struct ef4_nic *efx)
0605 {
0606     /* Ensure that all updates are visible to ef4_farch_flush_queues() */
0607     smp_mb();
0608 
0609     return (atomic_read(&efx->active_queues) == 0 ||
0610         (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
0611          && atomic_read(&efx->rxq_flush_pending) > 0));
0612 }
0613 
0614 static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
0615 {
0616     bool i = true;
0617     ef4_oword_t txd_ptr_tbl;
0618     struct ef4_channel *channel;
0619     struct ef4_tx_queue *tx_queue;
0620 
0621     ef4_for_each_channel(channel, efx) {
0622         ef4_for_each_channel_tx_queue(tx_queue, channel) {
0623             ef4_reado_table(efx, &txd_ptr_tbl,
0624                     FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
0625             if (EF4_OWORD_FIELD(txd_ptr_tbl,
0626                         FRF_AZ_TX_DESCQ_FLUSH) ||
0627                 EF4_OWORD_FIELD(txd_ptr_tbl,
0628                         FRF_AZ_TX_DESCQ_EN)) {
0629                 netif_dbg(efx, hw, efx->net_dev,
0630                       "flush did not complete on TXQ %d\n",
0631                       tx_queue->queue);
0632                 i = false;
0633             } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
0634                           1, 0)) {
0635                 /* The flush is complete, but we didn't
0636                  * receive a flush completion event
0637                  */
0638                 netif_dbg(efx, hw, efx->net_dev,
0639                       "flush complete on TXQ %d, so drain "
0640                       "the queue\n", tx_queue->queue);
0641                 /* Don't need to increment active_queues as it
0642                  * has already been incremented for the queues
0643                  * which did not drain
0644                  */
0645                 ef4_farch_magic_event(channel,
0646                               EF4_CHANNEL_MAGIC_TX_DRAIN(
0647                                   tx_queue));
0648             }
0649         }
0650     }
0651 
0652     return i;
0653 }
0654 
0655 /* Flush all the transmit queues, and continue flushing receive queues until
0656  * they're all flushed. Wait for the DRAIN events to be received so that there
0657  * are no more RX and TX events left on any channel. */
0658 static int ef4_farch_do_flush(struct ef4_nic *efx)
0659 {
0660     unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
0661     struct ef4_channel *channel;
0662     struct ef4_rx_queue *rx_queue;
0663     struct ef4_tx_queue *tx_queue;
0664     int rc = 0;
0665 
0666     ef4_for_each_channel(channel, efx) {
0667         ef4_for_each_channel_tx_queue(tx_queue, channel) {
0668             ef4_farch_flush_tx_queue(tx_queue);
0669         }
0670         ef4_for_each_channel_rx_queue(rx_queue, channel) {
0671             rx_queue->flush_pending = true;
0672             atomic_inc(&efx->rxq_flush_pending);
0673         }
0674     }
0675 
0676     while (timeout && atomic_read(&efx->active_queues) > 0) {
0677         /* The hardware supports four concurrent rx flushes, each of
0678          * which may need to be retried if there is an outstanding
0679          * descriptor fetch
0680          */
0681         ef4_for_each_channel(channel, efx) {
0682             ef4_for_each_channel_rx_queue(rx_queue, channel) {
0683                 if (atomic_read(&efx->rxq_flush_outstanding) >=
0684                     EF4_RX_FLUSH_COUNT)
0685                     break;
0686 
0687                 if (rx_queue->flush_pending) {
0688                     rx_queue->flush_pending = false;
0689                     atomic_dec(&efx->rxq_flush_pending);
0690                     atomic_inc(&efx->rxq_flush_outstanding);
0691                     ef4_farch_flush_rx_queue(rx_queue);
0692                 }
0693             }
0694         }
0695 
0696         timeout = wait_event_timeout(efx->flush_wq,
0697                          ef4_farch_flush_wake(efx),
0698                          timeout);
0699     }
0700 
0701     if (atomic_read(&efx->active_queues) &&
0702         !ef4_check_tx_flush_complete(efx)) {
0703         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
0704               "(rx %d+%d)\n", atomic_read(&efx->active_queues),
0705               atomic_read(&efx->rxq_flush_outstanding),
0706               atomic_read(&efx->rxq_flush_pending));
0707         rc = -ETIMEDOUT;
0708 
0709         atomic_set(&efx->active_queues, 0);
0710         atomic_set(&efx->rxq_flush_pending, 0);
0711         atomic_set(&efx->rxq_flush_outstanding, 0);
0712     }
0713 
0714     return rc;
0715 }
0716 
0717 int ef4_farch_fini_dmaq(struct ef4_nic *efx)
0718 {
0719     struct ef4_channel *channel;
0720     struct ef4_tx_queue *tx_queue;
0721     struct ef4_rx_queue *rx_queue;
0722     int rc = 0;
0723 
0724     /* Do not attempt to write to the NIC during EEH recovery */
0725     if (efx->state != STATE_RECOVERY) {
0726         /* Only perform flush if DMA is enabled */
0727         if (efx->pci_dev->is_busmaster) {
0728             efx->type->prepare_flush(efx);
0729             rc = ef4_farch_do_flush(efx);
0730             efx->type->finish_flush(efx);
0731         }
0732 
0733         ef4_for_each_channel(channel, efx) {
0734             ef4_for_each_channel_rx_queue(rx_queue, channel)
0735                 ef4_farch_rx_fini(rx_queue);
0736             ef4_for_each_channel_tx_queue(tx_queue, channel)
0737                 ef4_farch_tx_fini(tx_queue);
0738         }
0739     }
0740 
0741     return rc;
0742 }
0743 
0744 /* Reset queue and flush accounting after FLR
0745  *
0746  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
0747  * mastering was disabled), in which case we don't receive (RXQ) flush
0748  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
0749  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
0750  * events were received, and we didn't go through ef4_check_tx_flush_complete())
0751  * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
0752  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
0753  * for batched flush requests; and the efx->active_queues gets messed up because
0754  * we keep incrementing for the newly initialised queues, but it never went to
0755  * zero previously.  Then we get a timeout every time we try to restart the
0756  * queues, as it doesn't go back to zero when we should be flushing the queues.
0757  */
0758 void ef4_farch_finish_flr(struct ef4_nic *efx)
0759 {
0760     atomic_set(&efx->rxq_flush_pending, 0);
0761     atomic_set(&efx->rxq_flush_outstanding, 0);
0762     atomic_set(&efx->active_queues, 0);
0763 }
0764 
0765 
0766 /**************************************************************************
0767  *
0768  * Event queue processing
0769  * Event queues are processed by per-channel tasklets.
0770  *
0771  **************************************************************************/
0772 
0773 /* Update a channel's event queue's read pointer (RPTR) register
0774  *
0775  * This writes the EVQ_RPTR_REG register for the specified channel's
0776  * event queue.
0777  */
0778 void ef4_farch_ev_read_ack(struct ef4_channel *channel)
0779 {
0780     ef4_dword_t reg;
0781     struct ef4_nic *efx = channel->efx;
0782 
0783     EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
0784                  channel->eventq_read_ptr & channel->eventq_mask);
0785 
0786     /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
0787      * of 4 bytes, but it is really 16 bytes just like later revisions.
0788      */
0789     ef4_writed(efx, &reg,
0790            efx->type->evq_rptr_tbl_base +
0791            FR_BZ_EVQ_RPTR_STEP * channel->channel);
0792 }
0793 
0794 /* Use HW to insert a SW defined event */
0795 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
0796                   ef4_qword_t *event)
0797 {
0798     ef4_oword_t drv_ev_reg;
0799 
0800     BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
0801              FRF_AZ_DRV_EV_DATA_WIDTH != 64);
0802     drv_ev_reg.u32[0] = event->u32[0];
0803     drv_ev_reg.u32[1] = event->u32[1];
0804     drv_ev_reg.u32[2] = 0;
0805     drv_ev_reg.u32[3] = 0;
0806     EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
0807     ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
0808 }
0809 
0810 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
0811 {
0812     ef4_qword_t event;
0813 
0814     EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
0815                  FSE_AZ_EV_CODE_DRV_GEN_EV,
0816                  FSF_AZ_DRV_GEN_EV_MAGIC, magic);
0817     ef4_farch_generate_event(channel->efx, channel->channel, &event);
0818 }
0819 
0820 /* Handle a transmit completion event
0821  *
0822  * The NIC batches TX completion events; the message we receive is of
0823  * the form "complete all TX events up to this index".
0824  */
0825 static int
0826 ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
0827 {
0828     unsigned int tx_ev_desc_ptr;
0829     unsigned int tx_ev_q_label;
0830     struct ef4_tx_queue *tx_queue;
0831     struct ef4_nic *efx = channel->efx;
0832     int tx_packets = 0;
0833 
0834     if (unlikely(READ_ONCE(efx->reset_pending)))
0835         return 0;
0836 
0837     if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
0838         /* Transmit completion */
0839         tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
0840         tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
0841         tx_queue = ef4_channel_get_tx_queue(
0842             channel, tx_ev_q_label % EF4_TXQ_TYPES);
0843         tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
0844                   tx_queue->ptr_mask);
0845         ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
0846     } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
0847         /* Rewrite the FIFO write pointer */
0848         tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
0849         tx_queue = ef4_channel_get_tx_queue(
0850             channel, tx_ev_q_label % EF4_TXQ_TYPES);
0851 
0852         netif_tx_lock(efx->net_dev);
0853         ef4_farch_notify_tx_desc(tx_queue);
0854         netif_tx_unlock(efx->net_dev);
0855     } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
0856         ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
0857     } else {
0858         netif_err(efx, tx_err, efx->net_dev,
0859               "channel %d unexpected TX event "
0860               EF4_QWORD_FMT"\n", channel->channel,
0861               EF4_QWORD_VAL(*event));
0862     }
0863 
0864     return tx_packets;
0865 }
0866 
0867 /* Detect errors included in the rx_evt_pkt_ok bit. */
0868 static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
0869                       const ef4_qword_t *event)
0870 {
0871     struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
0872     struct ef4_nic *efx = rx_queue->efx;
0873     bool __maybe_unused rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
0874     bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
0875     bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
0876     bool rx_ev_pause_frm;
0877 
0878     rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
0879     rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
0880                          FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
0881     rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
0882                           FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
0883     rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
0884                            FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
0885     rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
0886     rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
0887     rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
0888               0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
0889     rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
0890 
0891 
0892     /* Count errors that are not in MAC stats.  Ignore expected
0893      * checksum errors during self-test. */
0894     if (rx_ev_frm_trunc)
0895         ++channel->n_rx_frm_trunc;
0896     else if (rx_ev_tobe_disc)
0897         ++channel->n_rx_tobe_disc;
0898     else if (!efx->loopback_selftest) {
0899         if (rx_ev_ip_hdr_chksum_err)
0900             ++channel->n_rx_ip_hdr_chksum_err;
0901         else if (rx_ev_tcp_udp_chksum_err)
0902             ++channel->n_rx_tcp_udp_chksum_err;
0903     }
0904 
0905     /* TOBE_DISC is expected on unicast mismatches; don't print out an
0906      * error message.  FRM_TRUNC indicates RXDP dropped the packet due
0907      * to a FIFO overflow.
0908      */
0909 #ifdef DEBUG
0910     {
0911     /* Every error apart from tobe_disc and pause_frm */
0912 
0913     bool rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
0914                 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
0915                 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
0916 
0917     if (rx_ev_other_err && net_ratelimit()) {
0918         netif_dbg(efx, rx_err, efx->net_dev,
0919               " RX queue %d unexpected RX event "
0920               EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
0921               ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
0922               rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
0923               rx_ev_ip_hdr_chksum_err ?
0924               " [IP_HDR_CHKSUM_ERR]" : "",
0925               rx_ev_tcp_udp_chksum_err ?
0926               " [TCP_UDP_CHKSUM_ERR]" : "",
0927               rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
0928               rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
0929               rx_ev_drib_nib ? " [DRIB_NIB]" : "",
0930               rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
0931               rx_ev_pause_frm ? " [PAUSE]" : "");
0932     }
0933     }
0934 #endif
0935 
0936     /* The frame must be discarded if any of these are true. */
0937     return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
0938         rx_ev_tobe_disc | rx_ev_pause_frm) ?
0939         EF4_RX_PKT_DISCARD : 0;
0940 }
0941 
0942 /* Handle receive events that are not in-order. Return true if this
0943  * can be handled as a partial packet discard, false if it's more
0944  * serious.
0945  */
0946 static bool
0947 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
0948 {
0949     struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
0950     struct ef4_nic *efx = rx_queue->efx;
0951     unsigned expected, dropped;
0952 
0953     if (rx_queue->scatter_n &&
0954         index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
0955               rx_queue->ptr_mask)) {
0956         ++channel->n_rx_nodesc_trunc;
0957         return true;
0958     }
0959 
0960     expected = rx_queue->removed_count & rx_queue->ptr_mask;
0961     dropped = (index - expected) & rx_queue->ptr_mask;
0962     netif_info(efx, rx_err, efx->net_dev,
0963            "dropped %d events (index=%d expected=%d)\n",
0964            dropped, index, expected);
0965 
0966     ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
0967                RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
0968     return false;
0969 }
0970 
0971 /* Handle a packet received event
0972  *
0973  * The NIC gives a "discard" flag if it's a unicast packet with the
0974  * wrong destination address
0975  * Also "is multicast" and "matches multicast filter" flags can be used to
0976  * discard non-matching multicast packets.
0977  */
0978 static void
0979 ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
0980 {
0981     unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
0982     unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
0983     unsigned expected_ptr;
0984     bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
0985     u16 flags;
0986     struct ef4_rx_queue *rx_queue;
0987     struct ef4_nic *efx = channel->efx;
0988 
0989     if (unlikely(READ_ONCE(efx->reset_pending)))
0990         return;
0991 
0992     rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
0993     rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
0994     WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
0995         channel->channel);
0996 
0997     rx_queue = ef4_channel_get_rx_queue(channel);
0998 
0999     rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1000     expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1001             rx_queue->ptr_mask);
1002 
1003     /* Check for partial drops and other errors */
1004     if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1005         unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1006         if (rx_ev_desc_ptr != expected_ptr &&
1007             !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1008             return;
1009 
1010         /* Discard all pending fragments */
1011         if (rx_queue->scatter_n) {
1012             ef4_rx_packet(
1013                 rx_queue,
1014                 rx_queue->removed_count & rx_queue->ptr_mask,
1015                 rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1016             rx_queue->removed_count += rx_queue->scatter_n;
1017             rx_queue->scatter_n = 0;
1018         }
1019 
1020         /* Return if there is no new fragment */
1021         if (rx_ev_desc_ptr != expected_ptr)
1022             return;
1023 
1024         /* Discard new fragment if not SOP */
1025         if (!rx_ev_sop) {
1026             ef4_rx_packet(
1027                 rx_queue,
1028                 rx_queue->removed_count & rx_queue->ptr_mask,
1029                 1, 0, EF4_RX_PKT_DISCARD);
1030             ++rx_queue->removed_count;
1031             return;
1032         }
1033     }
1034 
1035     ++rx_queue->scatter_n;
1036     if (rx_ev_cont)
1037         return;
1038 
1039     rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1040     rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1041     rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1042 
1043     if (likely(rx_ev_pkt_ok)) {
1044         /* If packet is marked as OK then we can rely on the
1045          * hardware checksum and classification.
1046          */
1047         flags = 0;
1048         switch (rx_ev_hdr_type) {
1049         case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1050             flags |= EF4_RX_PKT_TCP;
1051             fallthrough;
1052         case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1053             flags |= EF4_RX_PKT_CSUMMED;
1054             fallthrough;
1055         case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1056         case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1057             break;
1058         }
1059     } else {
1060         flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1061     }
1062 
1063     /* Detect multicast packets that didn't match the filter */
1064     rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1065     if (rx_ev_mcast_pkt) {
1066         unsigned int rx_ev_mcast_hash_match =
1067             EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1068 
1069         if (unlikely(!rx_ev_mcast_hash_match)) {
1070             ++channel->n_rx_mcast_mismatch;
1071             flags |= EF4_RX_PKT_DISCARD;
1072         }
1073     }
1074 
1075     channel->irq_mod_score += 2;
1076 
1077     /* Handle received packet */
1078     ef4_rx_packet(rx_queue,
1079               rx_queue->removed_count & rx_queue->ptr_mask,
1080               rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1081     rx_queue->removed_count += rx_queue->scatter_n;
1082     rx_queue->scatter_n = 0;
1083 }
1084 
1085 /* If this flush done event corresponds to a &struct ef4_tx_queue, then
1086  * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1087  * of all transmit completions.
1088  */
1089 static void
1090 ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1091 {
1092     struct ef4_tx_queue *tx_queue;
1093     int qid;
1094 
1095     qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1096     if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1097         tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1098                         qid % EF4_TXQ_TYPES);
1099         if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1100             ef4_farch_magic_event(tx_queue->channel,
1101                           EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1102         }
1103     }
1104 }
1105 
1106 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1107  * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1108  * the RX queue back to the mask of RX queues in need of flushing.
1109  */
1110 static void
1111 ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1112 {
1113     struct ef4_channel *channel;
1114     struct ef4_rx_queue *rx_queue;
1115     int qid;
1116     bool failed;
1117 
1118     qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1119     failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1120     if (qid >= efx->n_channels)
1121         return;
1122     channel = ef4_get_channel(efx, qid);
1123     if (!ef4_channel_has_rx_queue(channel))
1124         return;
1125     rx_queue = ef4_channel_get_rx_queue(channel);
1126 
1127     if (failed) {
1128         netif_info(efx, hw, efx->net_dev,
1129                "RXQ %d flush retry\n", qid);
1130         rx_queue->flush_pending = true;
1131         atomic_inc(&efx->rxq_flush_pending);
1132     } else {
1133         ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1134                       EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1135     }
1136     atomic_dec(&efx->rxq_flush_outstanding);
1137     if (ef4_farch_flush_wake(efx))
1138         wake_up(&efx->flush_wq);
1139 }
1140 
1141 static void
1142 ef4_farch_handle_drain_event(struct ef4_channel *channel)
1143 {
1144     struct ef4_nic *efx = channel->efx;
1145 
1146     WARN_ON(atomic_read(&efx->active_queues) == 0);
1147     atomic_dec(&efx->active_queues);
1148     if (ef4_farch_flush_wake(efx))
1149         wake_up(&efx->flush_wq);
1150 }
1151 
1152 static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1153                          ef4_qword_t *event)
1154 {
1155     struct ef4_nic *efx = channel->efx;
1156     struct ef4_rx_queue *rx_queue =
1157         ef4_channel_has_rx_queue(channel) ?
1158         ef4_channel_get_rx_queue(channel) : NULL;
1159     unsigned magic, code;
1160 
1161     magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1162     code = _EF4_CHANNEL_MAGIC_CODE(magic);
1163 
1164     if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1165         channel->event_test_cpu = raw_smp_processor_id();
1166     } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1167         /* The queue must be empty, so we won't receive any rx
1168          * events, so ef4_process_channel() won't refill the
1169          * queue. Refill it here */
1170         ef4_fast_push_rx_descriptors(rx_queue, true);
1171     } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1172         ef4_farch_handle_drain_event(channel);
1173     } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1174         ef4_farch_handle_drain_event(channel);
1175     } else {
1176         netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1177               "generated event "EF4_QWORD_FMT"\n",
1178               channel->channel, EF4_QWORD_VAL(*event));
1179     }
1180 }
1181 
1182 static void
1183 ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1184 {
1185     struct ef4_nic *efx = channel->efx;
1186     unsigned int ev_sub_code;
1187     unsigned int ev_sub_data;
1188 
1189     ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1190     ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1191 
1192     switch (ev_sub_code) {
1193     case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1194         netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1195                channel->channel, ev_sub_data);
1196         ef4_farch_handle_tx_flush_done(efx, event);
1197         break;
1198     case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1199         netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1200                channel->channel, ev_sub_data);
1201         ef4_farch_handle_rx_flush_done(efx, event);
1202         break;
1203     case FSE_AZ_EVQ_INIT_DONE_EV:
1204         netif_dbg(efx, hw, efx->net_dev,
1205               "channel %d EVQ %d initialised\n",
1206               channel->channel, ev_sub_data);
1207         break;
1208     case FSE_AZ_SRM_UPD_DONE_EV:
1209         netif_vdbg(efx, hw, efx->net_dev,
1210                "channel %d SRAM update done\n", channel->channel);
1211         break;
1212     case FSE_AZ_WAKE_UP_EV:
1213         netif_vdbg(efx, hw, efx->net_dev,
1214                "channel %d RXQ %d wakeup event\n",
1215                channel->channel, ev_sub_data);
1216         break;
1217     case FSE_AZ_TIMER_EV:
1218         netif_vdbg(efx, hw, efx->net_dev,
1219                "channel %d RX queue %d timer expired\n",
1220                channel->channel, ev_sub_data);
1221         break;
1222     case FSE_AA_RX_RECOVER_EV:
1223         netif_err(efx, rx_err, efx->net_dev,
1224               "channel %d seen DRIVER RX_RESET event. "
1225             "Resetting.\n", channel->channel);
1226         atomic_inc(&efx->rx_reset);
1227         ef4_schedule_reset(efx,
1228                    EF4_WORKAROUND_6555(efx) ?
1229                    RESET_TYPE_RX_RECOVERY :
1230                    RESET_TYPE_DISABLE);
1231         break;
1232     case FSE_BZ_RX_DSC_ERROR_EV:
1233         netif_err(efx, rx_err, efx->net_dev,
1234               "RX DMA Q %d reports descriptor fetch error."
1235               " RX Q %d is disabled.\n", ev_sub_data,
1236               ev_sub_data);
1237         ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1238         break;
1239     case FSE_BZ_TX_DSC_ERROR_EV:
1240         netif_err(efx, tx_err, efx->net_dev,
1241               "TX DMA Q %d reports descriptor fetch error."
1242               " TX Q %d is disabled.\n", ev_sub_data,
1243               ev_sub_data);
1244         ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1245         break;
1246     default:
1247         netif_vdbg(efx, hw, efx->net_dev,
1248                "channel %d unknown driver event code %d "
1249                "data %04x\n", channel->channel, ev_sub_code,
1250                ev_sub_data);
1251         break;
1252     }
1253 }
1254 
1255 int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1256 {
1257     struct ef4_nic *efx = channel->efx;
1258     unsigned int read_ptr;
1259     ef4_qword_t event, *p_event;
1260     int ev_code;
1261     int tx_packets = 0;
1262     int spent = 0;
1263 
1264     if (budget <= 0)
1265         return spent;
1266 
1267     read_ptr = channel->eventq_read_ptr;
1268 
1269     for (;;) {
1270         p_event = ef4_event(channel, read_ptr);
1271         event = *p_event;
1272 
1273         if (!ef4_event_present(&event))
1274             /* End of events */
1275             break;
1276 
1277         netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1278                "channel %d event is "EF4_QWORD_FMT"\n",
1279                channel->channel, EF4_QWORD_VAL(event));
1280 
1281         /* Clear this event by marking it all ones */
1282         EF4_SET_QWORD(*p_event);
1283 
1284         ++read_ptr;
1285 
1286         ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1287 
1288         switch (ev_code) {
1289         case FSE_AZ_EV_CODE_RX_EV:
1290             ef4_farch_handle_rx_event(channel, &event);
1291             if (++spent == budget)
1292                 goto out;
1293             break;
1294         case FSE_AZ_EV_CODE_TX_EV:
1295             tx_packets += ef4_farch_handle_tx_event(channel,
1296                                 &event);
1297             if (tx_packets > efx->txq_entries) {
1298                 spent = budget;
1299                 goto out;
1300             }
1301             break;
1302         case FSE_AZ_EV_CODE_DRV_GEN_EV:
1303             ef4_farch_handle_generated_event(channel, &event);
1304             break;
1305         case FSE_AZ_EV_CODE_DRIVER_EV:
1306             ef4_farch_handle_driver_event(channel, &event);
1307             break;
1308         case FSE_AZ_EV_CODE_GLOBAL_EV:
1309             if (efx->type->handle_global_event &&
1310                 efx->type->handle_global_event(channel, &event))
1311                 break;
1312             fallthrough;
1313         default:
1314             netif_err(channel->efx, hw, channel->efx->net_dev,
1315                   "channel %d unknown event type %d (data "
1316                   EF4_QWORD_FMT ")\n", channel->channel,
1317                   ev_code, EF4_QWORD_VAL(event));
1318         }
1319     }
1320 
1321 out:
1322     channel->eventq_read_ptr = read_ptr;
1323     return spent;
1324 }
1325 
1326 /* Allocate buffer table entries for event queue */
1327 int ef4_farch_ev_probe(struct ef4_channel *channel)
1328 {
1329     struct ef4_nic *efx = channel->efx;
1330     unsigned entries;
1331 
1332     entries = channel->eventq_mask + 1;
1333     return ef4_alloc_special_buffer(efx, &channel->eventq,
1334                     entries * sizeof(ef4_qword_t));
1335 }
1336 
1337 int ef4_farch_ev_init(struct ef4_channel *channel)
1338 {
1339     ef4_oword_t reg;
1340     struct ef4_nic *efx = channel->efx;
1341 
1342     netif_dbg(efx, hw, efx->net_dev,
1343           "channel %d event queue in special buffers %d-%d\n",
1344           channel->channel, channel->eventq.index,
1345           channel->eventq.index + channel->eventq.entries - 1);
1346 
1347     /* Pin event queue buffer */
1348     ef4_init_special_buffer(efx, &channel->eventq);
1349 
1350     /* Fill event queue with all ones (i.e. empty events) */
1351     memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1352 
1353     /* Push event queue to card */
1354     EF4_POPULATE_OWORD_3(reg,
1355                  FRF_AZ_EVQ_EN, 1,
1356                  FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1357                  FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1358     ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1359              channel->channel);
1360 
1361     return 0;
1362 }
1363 
1364 void ef4_farch_ev_fini(struct ef4_channel *channel)
1365 {
1366     ef4_oword_t reg;
1367     struct ef4_nic *efx = channel->efx;
1368 
1369     /* Remove event queue from card */
1370     EF4_ZERO_OWORD(reg);
1371     ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1372              channel->channel);
1373 
1374     /* Unpin event queue */
1375     ef4_fini_special_buffer(efx, &channel->eventq);
1376 }
1377 
1378 /* Free buffers backing event queue */
1379 void ef4_farch_ev_remove(struct ef4_channel *channel)
1380 {
1381     ef4_free_special_buffer(channel->efx, &channel->eventq);
1382 }
1383 
1384 
1385 void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1386 {
1387     ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1388 }
1389 
1390 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1391 {
1392     ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1393                   EF4_CHANNEL_MAGIC_FILL(rx_queue));
1394 }
1395 
1396 /**************************************************************************
1397  *
1398  * Hardware interrupts
1399  * The hardware interrupt handler does very little work; all the event
1400  * queue processing is carried out by per-channel tasklets.
1401  *
1402  **************************************************************************/
1403 
1404 /* Enable/disable/generate interrupts */
1405 static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1406                       bool enabled, bool force)
1407 {
1408     ef4_oword_t int_en_reg_ker;
1409 
1410     EF4_POPULATE_OWORD_3(int_en_reg_ker,
1411                  FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1412                  FRF_AZ_KER_INT_KER, force,
1413                  FRF_AZ_DRV_INT_EN_KER, enabled);
1414     ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1415 }
1416 
1417 void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1418 {
1419     EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1420     wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1421 
1422     ef4_farch_interrupts(efx, true, false);
1423 }
1424 
1425 void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1426 {
1427     /* Disable interrupts */
1428     ef4_farch_interrupts(efx, false, false);
1429 }
1430 
1431 /* Generate a test interrupt
1432  * Interrupt must already have been enabled, otherwise nasty things
1433  * may happen.
1434  */
1435 int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1436 {
1437     ef4_farch_interrupts(efx, true, true);
1438     return 0;
1439 }
1440 
1441 /* Process a fatal interrupt
1442  * Disable bus mastering ASAP and schedule a reset
1443  */
1444 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1445 {
1446     struct falcon_nic_data *nic_data = efx->nic_data;
1447     ef4_oword_t *int_ker = efx->irq_status.addr;
1448     ef4_oword_t fatal_intr;
1449     int error, mem_perr;
1450 
1451     ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1452     error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1453 
1454     netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1455           EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1456           EF4_OWORD_VAL(fatal_intr),
1457           error ? "disabling bus mastering" : "no recognised error");
1458 
1459     /* If this is a memory parity error dump which blocks are offending */
1460     mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1461             EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1462     if (mem_perr) {
1463         ef4_oword_t reg;
1464         ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1465         netif_err(efx, hw, efx->net_dev,
1466               "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1467               EF4_OWORD_VAL(reg));
1468     }
1469 
1470     /* Disable both devices */
1471     pci_clear_master(efx->pci_dev);
1472     if (ef4_nic_is_dual_func(efx))
1473         pci_clear_master(nic_data->pci_dev2);
1474     ef4_farch_irq_disable_master(efx);
1475 
1476     /* Count errors and reset or disable the NIC accordingly */
1477     if (efx->int_error_count == 0 ||
1478         time_after(jiffies, efx->int_error_expire)) {
1479         efx->int_error_count = 0;
1480         efx->int_error_expire =
1481             jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1482     }
1483     if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1484         netif_err(efx, hw, efx->net_dev,
1485               "SYSTEM ERROR - reset scheduled\n");
1486         ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1487     } else {
1488         netif_err(efx, hw, efx->net_dev,
1489               "SYSTEM ERROR - max number of errors seen."
1490               "NIC will be disabled\n");
1491         ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1492     }
1493 
1494     return IRQ_HANDLED;
1495 }
1496 
1497 /* Handle a legacy interrupt
1498  * Acknowledges the interrupt and schedule event queue processing.
1499  */
1500 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1501 {
1502     struct ef4_nic *efx = dev_id;
1503     bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1504     ef4_oword_t *int_ker = efx->irq_status.addr;
1505     irqreturn_t result = IRQ_NONE;
1506     struct ef4_channel *channel;
1507     ef4_dword_t reg;
1508     u32 queues;
1509     int syserr;
1510 
1511     /* Read the ISR which also ACKs the interrupts */
1512     ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1513     queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1514 
1515     /* Legacy interrupts are disabled too late by the EEH kernel
1516      * code. Disable them earlier.
1517      * If an EEH error occurred, the read will have returned all ones.
1518      */
1519     if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1520         !efx->eeh_disabled_legacy_irq) {
1521         disable_irq_nosync(efx->legacy_irq);
1522         efx->eeh_disabled_legacy_irq = true;
1523     }
1524 
1525     /* Handle non-event-queue sources */
1526     if (queues & (1U << efx->irq_level) && soft_enabled) {
1527         syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1528         if (unlikely(syserr))
1529             return ef4_farch_fatal_interrupt(efx);
1530         efx->last_irq_cpu = raw_smp_processor_id();
1531     }
1532 
1533     if (queues != 0) {
1534         efx->irq_zero_count = 0;
1535 
1536         /* Schedule processing of any interrupting queues */
1537         if (likely(soft_enabled)) {
1538             ef4_for_each_channel(channel, efx) {
1539                 if (queues & 1)
1540                     ef4_schedule_channel_irq(channel);
1541                 queues >>= 1;
1542             }
1543         }
1544         result = IRQ_HANDLED;
1545 
1546     } else {
1547         ef4_qword_t *event;
1548 
1549         /* Legacy ISR read can return zero once (SF bug 15783) */
1550 
1551         /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1552          * because this might be a shared interrupt. */
1553         if (efx->irq_zero_count++ == 0)
1554             result = IRQ_HANDLED;
1555 
1556         /* Ensure we schedule or rearm all event queues */
1557         if (likely(soft_enabled)) {
1558             ef4_for_each_channel(channel, efx) {
1559                 event = ef4_event(channel,
1560                           channel->eventq_read_ptr);
1561                 if (ef4_event_present(event))
1562                     ef4_schedule_channel_irq(channel);
1563                 else
1564                     ef4_farch_ev_read_ack(channel);
1565             }
1566         }
1567     }
1568 
1569     if (result == IRQ_HANDLED)
1570         netif_vdbg(efx, intr, efx->net_dev,
1571                "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1572                irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1573 
1574     return result;
1575 }
1576 
1577 /* Handle an MSI interrupt
1578  *
1579  * Handle an MSI hardware interrupt.  This routine schedules event
1580  * queue processing.  No interrupt acknowledgement cycle is necessary.
1581  * Also, we never need to check that the interrupt is for us, since
1582  * MSI interrupts cannot be shared.
1583  */
1584 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1585 {
1586     struct ef4_msi_context *context = dev_id;
1587     struct ef4_nic *efx = context->efx;
1588     ef4_oword_t *int_ker = efx->irq_status.addr;
1589     int syserr;
1590 
1591     netif_vdbg(efx, intr, efx->net_dev,
1592            "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1593            irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1594 
1595     if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1596         return IRQ_HANDLED;
1597 
1598     /* Handle non-event-queue sources */
1599     if (context->index == efx->irq_level) {
1600         syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1601         if (unlikely(syserr))
1602             return ef4_farch_fatal_interrupt(efx);
1603         efx->last_irq_cpu = raw_smp_processor_id();
1604     }
1605 
1606     /* Schedule processing of the channel */
1607     ef4_schedule_channel_irq(efx->channel[context->index]);
1608 
1609     return IRQ_HANDLED;
1610 }
1611 
1612 /* Setup RSS indirection table.
1613  * This maps from the hash value of the packet to RXQ
1614  */
1615 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1616 {
1617     size_t i = 0;
1618     ef4_dword_t dword;
1619 
1620     BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1621 
1622     BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1623              FR_BZ_RX_INDIRECTION_TBL_ROWS);
1624 
1625     for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1626         EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1627                      efx->rx_indir_table[i]);
1628         ef4_writed(efx, &dword,
1629                FR_BZ_RX_INDIRECTION_TBL +
1630                FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1631     }
1632 }
1633 
1634 /* Looks at available SRAM resources and works out how many queues we
1635  * can support, and where things like descriptor caches should live.
1636  *
1637  * SRAM is split up as follows:
1638  * 0                          buftbl entries for channels
1639  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1640  * efx->rx_dc_base            RX descriptor caches
1641  * efx->tx_dc_base            TX descriptor caches
1642  */
1643 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1644 {
1645     unsigned vi_count;
1646 
1647     /* Account for the buffer table entries backing the datapath channels
1648      * and the descriptor caches for those channels.
1649      */
1650     vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1651 
1652     efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1653     efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1654 }
1655 
1656 u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1657 {
1658     ef4_oword_t altera_build;
1659     ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1660     return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1661 }
1662 
1663 void ef4_farch_init_common(struct ef4_nic *efx)
1664 {
1665     ef4_oword_t temp;
1666 
1667     /* Set positions of descriptor caches in SRAM. */
1668     EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1669     ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1670     EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1671     ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1672 
1673     /* Set TX descriptor cache size. */
1674     BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1675     EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1676     ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1677 
1678     /* Set RX descriptor cache size.  Set low watermark to size-8, as
1679      * this allows most efficient prefetching.
1680      */
1681     BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1682     EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1683     ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1684     EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1685     ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1686 
1687     /* Program INT_KER address */
1688     EF4_POPULATE_OWORD_2(temp,
1689                  FRF_AZ_NORM_INT_VEC_DIS_KER,
1690                  EF4_INT_MODE_USE_MSI(efx),
1691                  FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1692     ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1693 
1694     /* Use a valid MSI-X vector */
1695     efx->irq_level = 0;
1696 
1697     /* Enable all the genuinely fatal interrupts.  (They are still
1698      * masked by the overall interrupt mask, controlled by
1699      * falcon_interrupts()).
1700      *
1701      * Note: All other fatal interrupts are enabled
1702      */
1703     EF4_POPULATE_OWORD_3(temp,
1704                  FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1705                  FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1706                  FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1707     EF4_INVERT_OWORD(temp);
1708     ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1709 
1710     /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1711      * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1712      */
1713     ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1714     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1715     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1716     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1717     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1718     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1719     /* Enable SW_EV to inherit in char driver - assume harmless here */
1720     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1721     /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1722     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1723     /* Disable hardware watchdog which can misfire */
1724     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1725     /* Squash TX of packets of 16 bytes or less */
1726     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1727         EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1728     ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1729 
1730     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1731         EF4_POPULATE_OWORD_4(temp,
1732                      /* Default values */
1733                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1734                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1735                      FRF_BZ_TX_PACE_FB_BASE, 0,
1736                      /* Allow large pace values in the
1737                       * fast bin. */
1738                      FRF_BZ_TX_PACE_BIN_TH,
1739                      FFE_BZ_TX_PACE_RESERVED);
1740         ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1741     }
1742 }
1743 
1744 /**************************************************************************
1745  *
1746  * Filter tables
1747  *
1748  **************************************************************************
1749  */
1750 
1751 /* "Fudge factors" - difference between programmed value and actual depth.
1752  * Due to pipelined implementation we need to program H/W with a value that
1753  * is larger than the hop limit we want.
1754  */
1755 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1756 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1757 
1758 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1759  * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1760  * table is full.
1761  */
1762 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1763 
1764 /* Don't try very hard to find space for performance hints, as this is
1765  * counter-productive. */
1766 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1767 
1768 enum ef4_farch_filter_type {
1769     EF4_FARCH_FILTER_TCP_FULL = 0,
1770     EF4_FARCH_FILTER_TCP_WILD,
1771     EF4_FARCH_FILTER_UDP_FULL,
1772     EF4_FARCH_FILTER_UDP_WILD,
1773     EF4_FARCH_FILTER_MAC_FULL = 4,
1774     EF4_FARCH_FILTER_MAC_WILD,
1775     EF4_FARCH_FILTER_UC_DEF = 8,
1776     EF4_FARCH_FILTER_MC_DEF,
1777     EF4_FARCH_FILTER_TYPE_COUNT,        /* number of specific types */
1778 };
1779 
1780 enum ef4_farch_filter_table_id {
1781     EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1782     EF4_FARCH_FILTER_TABLE_RX_MAC,
1783     EF4_FARCH_FILTER_TABLE_RX_DEF,
1784     EF4_FARCH_FILTER_TABLE_TX_MAC,
1785     EF4_FARCH_FILTER_TABLE_COUNT,
1786 };
1787 
1788 enum ef4_farch_filter_index {
1789     EF4_FARCH_FILTER_INDEX_UC_DEF,
1790     EF4_FARCH_FILTER_INDEX_MC_DEF,
1791     EF4_FARCH_FILTER_SIZE_RX_DEF,
1792 };
1793 
1794 struct ef4_farch_filter_spec {
1795     u8  type:4;
1796     u8  priority:4;
1797     u8  flags;
1798     u16 dmaq_id;
1799     u32 data[3];
1800 };
1801 
1802 struct ef4_farch_filter_table {
1803     enum ef4_farch_filter_table_id id;
1804     u32     offset;     /* address of table relative to BAR */
1805     unsigned    size;       /* number of entries */
1806     unsigned    step;       /* step between entries */
1807     unsigned    used;       /* number currently used */
1808     unsigned long   *used_bitmap;
1809     struct ef4_farch_filter_spec *spec;
1810     unsigned    search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1811 };
1812 
1813 struct ef4_farch_filter_state {
1814     struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1815 };
1816 
1817 static void
1818 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1819                    struct ef4_farch_filter_table *table,
1820                    unsigned int filter_idx);
1821 
1822 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1823  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1824 static u16 ef4_farch_filter_hash(u32 key)
1825 {
1826     u16 tmp;
1827 
1828     /* First 16 rounds */
1829     tmp = 0x1fff ^ key >> 16;
1830     tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1831     tmp = tmp ^ tmp >> 9;
1832     /* Last 16 rounds */
1833     tmp = tmp ^ tmp << 13 ^ key;
1834     tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1835     return tmp ^ tmp >> 9;
1836 }
1837 
1838 /* To allow for hash collisions, filter search continues at these
1839  * increments from the first possible entry selected by the hash. */
1840 static u16 ef4_farch_filter_increment(u32 key)
1841 {
1842     return key * 2 - 1;
1843 }
1844 
1845 static enum ef4_farch_filter_table_id
1846 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1847 {
1848     BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1849              (EF4_FARCH_FILTER_TCP_FULL >> 2));
1850     BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1851              (EF4_FARCH_FILTER_TCP_WILD >> 2));
1852     BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1853              (EF4_FARCH_FILTER_UDP_FULL >> 2));
1854     BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1855              (EF4_FARCH_FILTER_UDP_WILD >> 2));
1856     BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1857              (EF4_FARCH_FILTER_MAC_FULL >> 2));
1858     BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1859              (EF4_FARCH_FILTER_MAC_WILD >> 2));
1860     BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1861              EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1862     return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1863 }
1864 
1865 static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1866 {
1867     struct ef4_farch_filter_state *state = efx->filter_state;
1868     struct ef4_farch_filter_table *table;
1869     ef4_oword_t filter_ctl;
1870 
1871     ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1872 
1873     table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1874     EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1875                 table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1876                 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1877     EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1878                 table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1879                 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1880     EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1881                 table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1882                 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1883     EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1884                 table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1885                 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1886 
1887     table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1888     if (table->size) {
1889         EF4_SET_OWORD_FIELD(
1890             filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1891             table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1892             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1893         EF4_SET_OWORD_FIELD(
1894             filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1895             table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1896             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1897     }
1898 
1899     table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1900     if (table->size) {
1901         EF4_SET_OWORD_FIELD(
1902             filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1903             table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1904         EF4_SET_OWORD_FIELD(
1905             filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1906             !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1907                EF4_FILTER_FLAG_RX_RSS));
1908         EF4_SET_OWORD_FIELD(
1909             filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1910             table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1911         EF4_SET_OWORD_FIELD(
1912             filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1913             !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1914                EF4_FILTER_FLAG_RX_RSS));
1915 
1916         /* There is a single bit to enable RX scatter for all
1917          * unmatched packets.  Only set it if scatter is
1918          * enabled in both filter specs.
1919          */
1920         EF4_SET_OWORD_FIELD(
1921             filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1922             !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1923                table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1924                EF4_FILTER_FLAG_RX_SCATTER));
1925     } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1926         /* We don't expose 'default' filters because unmatched
1927          * packets always go to the queue number found in the
1928          * RSS table.  But we still need to set the RX scatter
1929          * bit here.
1930          */
1931         EF4_SET_OWORD_FIELD(
1932             filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1933             efx->rx_scatter);
1934     }
1935 
1936     ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937 }
1938 
1939 static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1940 {
1941     struct ef4_farch_filter_state *state = efx->filter_state;
1942     struct ef4_farch_filter_table *table;
1943     ef4_oword_t tx_cfg;
1944 
1945     ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1946 
1947     table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1948     if (table->size) {
1949         EF4_SET_OWORD_FIELD(
1950             tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1951             table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1952             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1953         EF4_SET_OWORD_FIELD(
1954             tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1955             table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1956             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1957     }
1958 
1959     ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1960 }
1961 
1962 static int
1963 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1964                    const struct ef4_filter_spec *gen_spec)
1965 {
1966     bool is_full = false;
1967 
1968     if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1969         gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1970         return -EINVAL;
1971 
1972     spec->priority = gen_spec->priority;
1973     spec->flags = gen_spec->flags;
1974     spec->dmaq_id = gen_spec->dmaq_id;
1975 
1976     switch (gen_spec->match_flags) {
1977     case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1978           EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1979           EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1980         is_full = true;
1981         fallthrough;
1982     case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1983           EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1984         __be32 rhost, host1, host2;
1985         __be16 rport, port1, port2;
1986 
1987         EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1988 
1989         if (gen_spec->ether_type != htons(ETH_P_IP))
1990             return -EPROTONOSUPPORT;
1991         if (gen_spec->loc_port == 0 ||
1992             (is_full && gen_spec->rem_port == 0))
1993             return -EADDRNOTAVAIL;
1994         switch (gen_spec->ip_proto) {
1995         case IPPROTO_TCP:
1996             spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
1997                       EF4_FARCH_FILTER_TCP_WILD);
1998             break;
1999         case IPPROTO_UDP:
2000             spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2001                       EF4_FARCH_FILTER_UDP_WILD);
2002             break;
2003         default:
2004             return -EPROTONOSUPPORT;
2005         }
2006 
2007         /* Filter is constructed in terms of source and destination,
2008          * with the odd wrinkle that the ports are swapped in a UDP
2009          * wildcard filter.  We need to convert from local and remote
2010          * (= zero for wildcard) addresses.
2011          */
2012         rhost = is_full ? gen_spec->rem_host[0] : 0;
2013         rport = is_full ? gen_spec->rem_port : 0;
2014         host1 = rhost;
2015         host2 = gen_spec->loc_host[0];
2016         if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2017             port1 = gen_spec->loc_port;
2018             port2 = rport;
2019         } else {
2020             port1 = rport;
2021             port2 = gen_spec->loc_port;
2022         }
2023         spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2024         spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2025         spec->data[2] = ntohl(host2);
2026 
2027         break;
2028     }
2029 
2030     case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2031         is_full = true;
2032         fallthrough;
2033     case EF4_FILTER_MATCH_LOC_MAC:
2034         spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2035                   EF4_FARCH_FILTER_MAC_WILD);
2036         spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2037         spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2038                  gen_spec->loc_mac[3] << 16 |
2039                  gen_spec->loc_mac[4] << 8 |
2040                  gen_spec->loc_mac[5]);
2041         spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2042                  gen_spec->loc_mac[1]);
2043         break;
2044 
2045     case EF4_FILTER_MATCH_LOC_MAC_IG:
2046         spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2047                   EF4_FARCH_FILTER_MC_DEF :
2048                   EF4_FARCH_FILTER_UC_DEF);
2049         memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2050         break;
2051 
2052     default:
2053         return -EPROTONOSUPPORT;
2054     }
2055 
2056     return 0;
2057 }
2058 
2059 static void
2060 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2061                  const struct ef4_farch_filter_spec *spec)
2062 {
2063     bool is_full = false;
2064 
2065     /* *gen_spec should be completely initialised, to be consistent
2066      * with ef4_filter_init_{rx,tx}() and in case we want to copy
2067      * it back to userland.
2068      */
2069     memset(gen_spec, 0, sizeof(*gen_spec));
2070 
2071     gen_spec->priority = spec->priority;
2072     gen_spec->flags = spec->flags;
2073     gen_spec->dmaq_id = spec->dmaq_id;
2074 
2075     switch (spec->type) {
2076     case EF4_FARCH_FILTER_TCP_FULL:
2077     case EF4_FARCH_FILTER_UDP_FULL:
2078         is_full = true;
2079         fallthrough;
2080     case EF4_FARCH_FILTER_TCP_WILD:
2081     case EF4_FARCH_FILTER_UDP_WILD: {
2082         __be32 host1, host2;
2083         __be16 port1, port2;
2084 
2085         gen_spec->match_flags =
2086             EF4_FILTER_MATCH_ETHER_TYPE |
2087             EF4_FILTER_MATCH_IP_PROTO |
2088             EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2089         if (is_full)
2090             gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2091                           EF4_FILTER_MATCH_REM_PORT);
2092         gen_spec->ether_type = htons(ETH_P_IP);
2093         gen_spec->ip_proto =
2094             (spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2095              spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2096             IPPROTO_TCP : IPPROTO_UDP;
2097 
2098         host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2099         port1 = htons(spec->data[0]);
2100         host2 = htonl(spec->data[2]);
2101         port2 = htons(spec->data[1] >> 16);
2102         if (spec->flags & EF4_FILTER_FLAG_TX) {
2103             gen_spec->loc_host[0] = host1;
2104             gen_spec->rem_host[0] = host2;
2105         } else {
2106             gen_spec->loc_host[0] = host2;
2107             gen_spec->rem_host[0] = host1;
2108         }
2109         if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2110             (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2111             gen_spec->loc_port = port1;
2112             gen_spec->rem_port = port2;
2113         } else {
2114             gen_spec->loc_port = port2;
2115             gen_spec->rem_port = port1;
2116         }
2117 
2118         break;
2119     }
2120 
2121     case EF4_FARCH_FILTER_MAC_FULL:
2122         is_full = true;
2123         fallthrough;
2124     case EF4_FARCH_FILTER_MAC_WILD:
2125         gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2126         if (is_full)
2127             gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2128         gen_spec->loc_mac[0] = spec->data[2] >> 8;
2129         gen_spec->loc_mac[1] = spec->data[2];
2130         gen_spec->loc_mac[2] = spec->data[1] >> 24;
2131         gen_spec->loc_mac[3] = spec->data[1] >> 16;
2132         gen_spec->loc_mac[4] = spec->data[1] >> 8;
2133         gen_spec->loc_mac[5] = spec->data[1];
2134         gen_spec->outer_vid = htons(spec->data[0]);
2135         break;
2136 
2137     case EF4_FARCH_FILTER_UC_DEF:
2138     case EF4_FARCH_FILTER_MC_DEF:
2139         gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2140         gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2141         break;
2142 
2143     default:
2144         WARN_ON(1);
2145         break;
2146     }
2147 }
2148 
2149 static void
2150 ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2151                   struct ef4_farch_filter_spec *spec)
2152 {
2153     /* If there's only one channel then disable RSS for non VF
2154      * traffic, thereby allowing VFs to use RSS when the PF can't.
2155      */
2156     spec->priority = EF4_FILTER_PRI_AUTO;
2157     spec->flags = (EF4_FILTER_FLAG_RX |
2158                (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2159                (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2160     spec->dmaq_id = 0;
2161 }
2162 
2163 /* Build a filter entry and return its n-tuple key. */
2164 static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2165                   struct ef4_farch_filter_spec *spec)
2166 {
2167     u32 data3;
2168 
2169     switch (ef4_farch_filter_spec_table_id(spec)) {
2170     case EF4_FARCH_FILTER_TABLE_RX_IP: {
2171         bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2172                    spec->type == EF4_FARCH_FILTER_UDP_WILD);
2173         EF4_POPULATE_OWORD_7(
2174             *filter,
2175             FRF_BZ_RSS_EN,
2176             !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2177             FRF_BZ_SCATTER_EN,
2178             !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2179             FRF_BZ_TCP_UDP, is_udp,
2180             FRF_BZ_RXQ_ID, spec->dmaq_id,
2181             EF4_DWORD_2, spec->data[2],
2182             EF4_DWORD_1, spec->data[1],
2183             EF4_DWORD_0, spec->data[0]);
2184         data3 = is_udp;
2185         break;
2186     }
2187 
2188     case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2189         bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2190         EF4_POPULATE_OWORD_7(
2191             *filter,
2192             FRF_CZ_RMFT_RSS_EN,
2193             !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2194             FRF_CZ_RMFT_SCATTER_EN,
2195             !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2196             FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2197             FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2198             FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2199             FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2200             FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2201         data3 = is_wild;
2202         break;
2203     }
2204 
2205     case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2206         bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2207         EF4_POPULATE_OWORD_5(*filter,
2208                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2209                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2210                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2211                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2212                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2213         data3 = is_wild | spec->dmaq_id << 1;
2214         break;
2215     }
2216 
2217     default:
2218         BUG();
2219     }
2220 
2221     return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2222 }
2223 
2224 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2225                    const struct ef4_farch_filter_spec *right)
2226 {
2227     if (left->type != right->type ||
2228         memcmp(left->data, right->data, sizeof(left->data)))
2229         return false;
2230 
2231     if (left->flags & EF4_FILTER_FLAG_TX &&
2232         left->dmaq_id != right->dmaq_id)
2233         return false;
2234 
2235     return true;
2236 }
2237 
2238 /*
2239  * Construct/deconstruct external filter IDs.  At least the RX filter
2240  * IDs must be ordered by matching priority, for RX NFC semantics.
2241  *
2242  * Deconstruction needs to be robust against invalid IDs so that
2243  * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2244  * accept user-provided IDs.
2245  */
2246 
2247 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT    5
2248 
2249 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2250     [EF4_FARCH_FILTER_TCP_FULL] = 0,
2251     [EF4_FARCH_FILTER_UDP_FULL] = 0,
2252     [EF4_FARCH_FILTER_TCP_WILD] = 1,
2253     [EF4_FARCH_FILTER_UDP_WILD] = 1,
2254     [EF4_FARCH_FILTER_MAC_FULL] = 2,
2255     [EF4_FARCH_FILTER_MAC_WILD] = 3,
2256     [EF4_FARCH_FILTER_UC_DEF]   = 4,
2257     [EF4_FARCH_FILTER_MC_DEF]   = 4,
2258 };
2259 
2260 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2261     EF4_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2262     EF4_FARCH_FILTER_TABLE_RX_IP,
2263     EF4_FARCH_FILTER_TABLE_RX_MAC,
2264     EF4_FARCH_FILTER_TABLE_RX_MAC,
2265     EF4_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2266     EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2267     EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2268 };
2269 
2270 #define EF4_FARCH_FILTER_INDEX_WIDTH 13
2271 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2272 
2273 static inline u32
2274 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2275              unsigned int index)
2276 {
2277     unsigned int range;
2278 
2279     range = ef4_farch_filter_type_match_pri[spec->type];
2280     if (!(spec->flags & EF4_FILTER_FLAG_RX))
2281         range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2282 
2283     return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2284 }
2285 
2286 static inline enum ef4_farch_filter_table_id
2287 ef4_farch_filter_id_table_id(u32 id)
2288 {
2289     unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2290 
2291     if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2292         return ef4_farch_filter_range_table[range];
2293     else
2294         return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2295 }
2296 
2297 static inline unsigned int ef4_farch_filter_id_index(u32 id)
2298 {
2299     return id & EF4_FARCH_FILTER_INDEX_MASK;
2300 }
2301 
2302 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2303 {
2304     struct ef4_farch_filter_state *state = efx->filter_state;
2305     unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2306     enum ef4_farch_filter_table_id table_id;
2307 
2308     do {
2309         table_id = ef4_farch_filter_range_table[range];
2310         if (state->table[table_id].size != 0)
2311             return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2312                 state->table[table_id].size;
2313     } while (range--);
2314 
2315     return 0;
2316 }
2317 
2318 s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2319                 struct ef4_filter_spec *gen_spec,
2320                 bool replace_equal)
2321 {
2322     struct ef4_farch_filter_state *state = efx->filter_state;
2323     struct ef4_farch_filter_table *table;
2324     struct ef4_farch_filter_spec spec;
2325     ef4_oword_t filter;
2326     int rep_index, ins_index;
2327     unsigned int depth = 0;
2328     int rc;
2329 
2330     rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2331     if (rc)
2332         return rc;
2333 
2334     table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2335     if (table->size == 0)
2336         return -EINVAL;
2337 
2338     netif_vdbg(efx, hw, efx->net_dev,
2339            "%s: type %d search_limit=%d", __func__, spec.type,
2340            table->search_limit[spec.type]);
2341 
2342     if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2343         /* One filter spec per type */
2344         BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2345         BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2346                  EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2347         rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2348         ins_index = rep_index;
2349 
2350         spin_lock_bh(&efx->filter_lock);
2351     } else {
2352         /* Search concurrently for
2353          * (1) a filter to be replaced (rep_index): any filter
2354          *     with the same match values, up to the current
2355          *     search depth for this type, and
2356          * (2) the insertion point (ins_index): (1) or any
2357          *     free slot before it or up to the maximum search
2358          *     depth for this priority
2359          * We fail if we cannot find (2).
2360          *
2361          * We can stop once either
2362          * (a) we find (1), in which case we have definitely
2363          *     found (2) as well; or
2364          * (b) we have searched exhaustively for (1), and have
2365          *     either found (2) or searched exhaustively for it
2366          */
2367         u32 key = ef4_farch_filter_build(&filter, &spec);
2368         unsigned int hash = ef4_farch_filter_hash(key);
2369         unsigned int incr = ef4_farch_filter_increment(key);
2370         unsigned int max_rep_depth = table->search_limit[spec.type];
2371         unsigned int max_ins_depth =
2372             spec.priority <= EF4_FILTER_PRI_HINT ?
2373             EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2374             EF4_FARCH_FILTER_CTL_SRCH_MAX;
2375         unsigned int i = hash & (table->size - 1);
2376 
2377         ins_index = -1;
2378         depth = 1;
2379 
2380         spin_lock_bh(&efx->filter_lock);
2381 
2382         for (;;) {
2383             if (!test_bit(i, table->used_bitmap)) {
2384                 if (ins_index < 0)
2385                     ins_index = i;
2386             } else if (ef4_farch_filter_equal(&spec,
2387                               &table->spec[i])) {
2388                 /* Case (a) */
2389                 if (ins_index < 0)
2390                     ins_index = i;
2391                 rep_index = i;
2392                 break;
2393             }
2394 
2395             if (depth >= max_rep_depth &&
2396                 (ins_index >= 0 || depth >= max_ins_depth)) {
2397                 /* Case (b) */
2398                 if (ins_index < 0) {
2399                     rc = -EBUSY;
2400                     goto out;
2401                 }
2402                 rep_index = -1;
2403                 break;
2404             }
2405 
2406             i = (i + incr) & (table->size - 1);
2407             ++depth;
2408         }
2409     }
2410 
2411     /* If we found a filter to be replaced, check whether we
2412      * should do so
2413      */
2414     if (rep_index >= 0) {
2415         struct ef4_farch_filter_spec *saved_spec =
2416             &table->spec[rep_index];
2417 
2418         if (spec.priority == saved_spec->priority && !replace_equal) {
2419             rc = -EEXIST;
2420             goto out;
2421         }
2422         if (spec.priority < saved_spec->priority) {
2423             rc = -EPERM;
2424             goto out;
2425         }
2426         if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2427             saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2428             spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2429     }
2430 
2431     /* Insert the filter */
2432     if (ins_index != rep_index) {
2433         __set_bit(ins_index, table->used_bitmap);
2434         ++table->used;
2435     }
2436     table->spec[ins_index] = spec;
2437 
2438     if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2439         ef4_farch_filter_push_rx_config(efx);
2440     } else {
2441         if (table->search_limit[spec.type] < depth) {
2442             table->search_limit[spec.type] = depth;
2443             if (spec.flags & EF4_FILTER_FLAG_TX)
2444                 ef4_farch_filter_push_tx_limits(efx);
2445             else
2446                 ef4_farch_filter_push_rx_config(efx);
2447         }
2448 
2449         ef4_writeo(efx, &filter,
2450                table->offset + table->step * ins_index);
2451 
2452         /* If we were able to replace a filter by inserting
2453          * at a lower depth, clear the replaced filter
2454          */
2455         if (ins_index != rep_index && rep_index >= 0)
2456             ef4_farch_filter_table_clear_entry(efx, table,
2457                                rep_index);
2458     }
2459 
2460     netif_vdbg(efx, hw, efx->net_dev,
2461            "%s: filter type %d index %d rxq %u set",
2462            __func__, spec.type, ins_index, spec.dmaq_id);
2463     rc = ef4_farch_filter_make_id(&spec, ins_index);
2464 
2465 out:
2466     spin_unlock_bh(&efx->filter_lock);
2467     return rc;
2468 }
2469 
2470 static void
2471 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2472                    struct ef4_farch_filter_table *table,
2473                    unsigned int filter_idx)
2474 {
2475     static ef4_oword_t filter;
2476 
2477     EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2478     BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2479 
2480     __clear_bit(filter_idx, table->used_bitmap);
2481     --table->used;
2482     memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2483 
2484     ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2485 
2486     /* If this filter required a greater search depth than
2487      * any other, the search limit for its type can now be
2488      * decreased.  However, it is hard to determine that
2489      * unless the table has become completely empty - in
2490      * which case, all its search limits can be set to 0.
2491      */
2492     if (unlikely(table->used == 0)) {
2493         memset(table->search_limit, 0, sizeof(table->search_limit));
2494         if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2495             ef4_farch_filter_push_tx_limits(efx);
2496         else
2497             ef4_farch_filter_push_rx_config(efx);
2498     }
2499 }
2500 
2501 static int ef4_farch_filter_remove(struct ef4_nic *efx,
2502                    struct ef4_farch_filter_table *table,
2503                    unsigned int filter_idx,
2504                    enum ef4_filter_priority priority)
2505 {
2506     struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2507 
2508     if (!test_bit(filter_idx, table->used_bitmap) ||
2509         spec->priority != priority)
2510         return -ENOENT;
2511 
2512     if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2513         ef4_farch_filter_init_rx_auto(efx, spec);
2514         ef4_farch_filter_push_rx_config(efx);
2515     } else {
2516         ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2517     }
2518 
2519     return 0;
2520 }
2521 
2522 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2523                  enum ef4_filter_priority priority,
2524                  u32 filter_id)
2525 {
2526     struct ef4_farch_filter_state *state = efx->filter_state;
2527     enum ef4_farch_filter_table_id table_id;
2528     struct ef4_farch_filter_table *table;
2529     unsigned int filter_idx;
2530     int rc;
2531 
2532     table_id = ef4_farch_filter_id_table_id(filter_id);
2533     if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2534         return -ENOENT;
2535     table = &state->table[table_id];
2536 
2537     filter_idx = ef4_farch_filter_id_index(filter_id);
2538     if (filter_idx >= table->size)
2539         return -ENOENT;
2540 
2541     spin_lock_bh(&efx->filter_lock);
2542     rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2543     spin_unlock_bh(&efx->filter_lock);
2544 
2545     return rc;
2546 }
2547 
2548 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2549                   enum ef4_filter_priority priority,
2550                   u32 filter_id, struct ef4_filter_spec *spec_buf)
2551 {
2552     struct ef4_farch_filter_state *state = efx->filter_state;
2553     enum ef4_farch_filter_table_id table_id;
2554     struct ef4_farch_filter_table *table;
2555     struct ef4_farch_filter_spec *spec;
2556     unsigned int filter_idx;
2557     int rc;
2558 
2559     table_id = ef4_farch_filter_id_table_id(filter_id);
2560     if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2561         return -ENOENT;
2562     table = &state->table[table_id];
2563 
2564     filter_idx = ef4_farch_filter_id_index(filter_id);
2565     if (filter_idx >= table->size)
2566         return -ENOENT;
2567     spec = &table->spec[filter_idx];
2568 
2569     spin_lock_bh(&efx->filter_lock);
2570 
2571     if (test_bit(filter_idx, table->used_bitmap) &&
2572         spec->priority == priority) {
2573         ef4_farch_filter_to_gen_spec(spec_buf, spec);
2574         rc = 0;
2575     } else {
2576         rc = -ENOENT;
2577     }
2578 
2579     spin_unlock_bh(&efx->filter_lock);
2580 
2581     return rc;
2582 }
2583 
2584 static void
2585 ef4_farch_filter_table_clear(struct ef4_nic *efx,
2586                  enum ef4_farch_filter_table_id table_id,
2587                  enum ef4_filter_priority priority)
2588 {
2589     struct ef4_farch_filter_state *state = efx->filter_state;
2590     struct ef4_farch_filter_table *table = &state->table[table_id];
2591     unsigned int filter_idx;
2592 
2593     spin_lock_bh(&efx->filter_lock);
2594     for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2595         if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2596             ef4_farch_filter_remove(efx, table,
2597                         filter_idx, priority);
2598     }
2599     spin_unlock_bh(&efx->filter_lock);
2600 }
2601 
2602 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2603                    enum ef4_filter_priority priority)
2604 {
2605     ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2606                      priority);
2607     ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2608                      priority);
2609     ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2610                      priority);
2611     return 0;
2612 }
2613 
2614 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2615                    enum ef4_filter_priority priority)
2616 {
2617     struct ef4_farch_filter_state *state = efx->filter_state;
2618     enum ef4_farch_filter_table_id table_id;
2619     struct ef4_farch_filter_table *table;
2620     unsigned int filter_idx;
2621     u32 count = 0;
2622 
2623     spin_lock_bh(&efx->filter_lock);
2624 
2625     for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2626          table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2627          table_id++) {
2628         table = &state->table[table_id];
2629         for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2630             if (test_bit(filter_idx, table->used_bitmap) &&
2631                 table->spec[filter_idx].priority == priority)
2632                 ++count;
2633         }
2634     }
2635 
2636     spin_unlock_bh(&efx->filter_lock);
2637 
2638     return count;
2639 }
2640 
2641 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2642                 enum ef4_filter_priority priority,
2643                 u32 *buf, u32 size)
2644 {
2645     struct ef4_farch_filter_state *state = efx->filter_state;
2646     enum ef4_farch_filter_table_id table_id;
2647     struct ef4_farch_filter_table *table;
2648     unsigned int filter_idx;
2649     s32 count = 0;
2650 
2651     spin_lock_bh(&efx->filter_lock);
2652 
2653     for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2654          table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2655          table_id++) {
2656         table = &state->table[table_id];
2657         for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2658             if (test_bit(filter_idx, table->used_bitmap) &&
2659                 table->spec[filter_idx].priority == priority) {
2660                 if (count == size) {
2661                     count = -EMSGSIZE;
2662                     goto out;
2663                 }
2664                 buf[count++] = ef4_farch_filter_make_id(
2665                     &table->spec[filter_idx], filter_idx);
2666             }
2667         }
2668     }
2669 out:
2670     spin_unlock_bh(&efx->filter_lock);
2671 
2672     return count;
2673 }
2674 
2675 /* Restore filter stater after reset */
2676 void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2677 {
2678     struct ef4_farch_filter_state *state = efx->filter_state;
2679     enum ef4_farch_filter_table_id table_id;
2680     struct ef4_farch_filter_table *table;
2681     ef4_oword_t filter;
2682     unsigned int filter_idx;
2683 
2684     spin_lock_bh(&efx->filter_lock);
2685 
2686     for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2687         table = &state->table[table_id];
2688 
2689         /* Check whether this is a regular register table */
2690         if (table->step == 0)
2691             continue;
2692 
2693         for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694             if (!test_bit(filter_idx, table->used_bitmap))
2695                 continue;
2696             ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2697             ef4_writeo(efx, &filter,
2698                    table->offset + table->step * filter_idx);
2699         }
2700     }
2701 
2702     ef4_farch_filter_push_rx_config(efx);
2703     ef4_farch_filter_push_tx_limits(efx);
2704 
2705     spin_unlock_bh(&efx->filter_lock);
2706 }
2707 
2708 void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2709 {
2710     struct ef4_farch_filter_state *state = efx->filter_state;
2711     enum ef4_farch_filter_table_id table_id;
2712 
2713     for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2714         bitmap_free(state->table[table_id].used_bitmap);
2715         vfree(state->table[table_id].spec);
2716     }
2717     kfree(state);
2718 }
2719 
2720 int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2721 {
2722     struct ef4_farch_filter_state *state;
2723     struct ef4_farch_filter_table *table;
2724     unsigned table_id;
2725 
2726     state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2727     if (!state)
2728         return -ENOMEM;
2729     efx->filter_state = state;
2730 
2731     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2732         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2733         table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2734         table->offset = FR_BZ_RX_FILTER_TBL0;
2735         table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2736         table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2737     }
2738 
2739     for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2740         table = &state->table[table_id];
2741         if (table->size == 0)
2742             continue;
2743         table->used_bitmap = bitmap_zalloc(table->size, GFP_KERNEL);
2744         if (!table->used_bitmap)
2745             goto fail;
2746         table->spec = vzalloc(array_size(sizeof(*table->spec),
2747                          table->size));
2748         if (!table->spec)
2749             goto fail;
2750     }
2751 
2752     table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2753     if (table->size) {
2754         /* RX default filters must always exist */
2755         struct ef4_farch_filter_spec *spec;
2756         unsigned i;
2757 
2758         for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2759             spec = &table->spec[i];
2760             spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2761             ef4_farch_filter_init_rx_auto(efx, spec);
2762             __set_bit(i, table->used_bitmap);
2763         }
2764     }
2765 
2766     ef4_farch_filter_push_rx_config(efx);
2767 
2768     return 0;
2769 
2770 fail:
2771     ef4_farch_filter_table_remove(efx);
2772     return -ENOMEM;
2773 }
2774 
2775 /* Update scatter enable flags for filters pointing to our own RX queues */
2776 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2777 {
2778     struct ef4_farch_filter_state *state = efx->filter_state;
2779     enum ef4_farch_filter_table_id table_id;
2780     struct ef4_farch_filter_table *table;
2781     ef4_oword_t filter;
2782     unsigned int filter_idx;
2783 
2784     spin_lock_bh(&efx->filter_lock);
2785 
2786     for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2787          table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2788          table_id++) {
2789         table = &state->table[table_id];
2790 
2791         for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2792             if (!test_bit(filter_idx, table->used_bitmap) ||
2793                 table->spec[filter_idx].dmaq_id >=
2794                 efx->n_rx_channels)
2795                 continue;
2796 
2797             if (efx->rx_scatter)
2798                 table->spec[filter_idx].flags |=
2799                     EF4_FILTER_FLAG_RX_SCATTER;
2800             else
2801                 table->spec[filter_idx].flags &=
2802                     ~EF4_FILTER_FLAG_RX_SCATTER;
2803 
2804             if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2805                 /* Pushed by ef4_farch_filter_push_rx_config() */
2806                 continue;
2807 
2808             ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2809             ef4_writeo(efx, &filter,
2810                    table->offset + table->step * filter_idx);
2811         }
2812     }
2813 
2814     ef4_farch_filter_push_rx_config(efx);
2815 
2816     spin_unlock_bh(&efx->filter_lock);
2817 }
2818 
2819 #ifdef CONFIG_RFS_ACCEL
2820 
2821 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2822                 struct ef4_filter_spec *gen_spec)
2823 {
2824     return ef4_farch_filter_insert(efx, gen_spec, true);
2825 }
2826 
2827 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2828                      unsigned int index)
2829 {
2830     struct ef4_farch_filter_state *state = efx->filter_state;
2831     struct ef4_farch_filter_table *table =
2832         &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2833 
2834     if (test_bit(index, table->used_bitmap) &&
2835         table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2836         rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2837                 flow_id, index)) {
2838         ef4_farch_filter_table_clear_entry(efx, table, index);
2839         return true;
2840     }
2841 
2842     return false;
2843 }
2844 
2845 #endif /* CONFIG_RFS_ACCEL */
2846 
2847 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2848 {
2849     struct net_device *net_dev = efx->net_dev;
2850     struct netdev_hw_addr *ha;
2851     union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2852     u32 crc;
2853     int bit;
2854 
2855     if (!ef4_dev_registered(efx))
2856         return;
2857 
2858     netif_addr_lock_bh(net_dev);
2859 
2860     efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2861 
2862     /* Build multicast hash table */
2863     if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2864         memset(mc_hash, 0xff, sizeof(*mc_hash));
2865     } else {
2866         memset(mc_hash, 0x00, sizeof(*mc_hash));
2867         netdev_for_each_mc_addr(ha, net_dev) {
2868             crc = ether_crc_le(ETH_ALEN, ha->addr);
2869             bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2870             __set_bit_le(bit, mc_hash);
2871         }
2872 
2873         /* Broadcast packets go through the multicast hash filter.
2874          * ether_crc_le() of the broadcast address is 0xbe2612ff
2875          * so we always add bit 0xff to the mask.
2876          */
2877         __set_bit_le(0xff, mc_hash);
2878     }
2879 
2880     netif_addr_unlock_bh(net_dev);
2881 }