Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2005-2006 Fen Systems Ltd.
0005  * Copyright 2006-2013 Solarflare Communications Inc.
0006  */
0007 
0008 #include <linux/bitops.h>
0009 #include <linux/delay.h>
0010 #include <linux/pci.h>
0011 #include <linux/module.h>
0012 #include <linux/seq_file.h>
0013 #include <linux/i2c.h>
0014 #include <linux/mii.h>
0015 #include <linux/slab.h>
0016 #include <linux/sched/signal.h>
0017 
0018 #include "net_driver.h"
0019 #include "bitfield.h"
0020 #include "efx.h"
0021 #include "nic.h"
0022 #include "farch_regs.h"
0023 #include "io.h"
0024 #include "phy.h"
0025 #include "workarounds.h"
0026 #include "selftest.h"
0027 #include "mdio_10g.h"
0028 
0029 /* Hardware control for SFC4000 (aka Falcon). */
0030 
0031 /**************************************************************************
0032  *
0033  * NIC stats
0034  *
0035  **************************************************************************
0036  */
0037 
0038 #define FALCON_MAC_STATS_SIZE 0x100
0039 
0040 #define XgRxOctets_offset 0x0
0041 #define XgRxOctets_WIDTH 48
0042 #define XgRxOctetsOK_offset 0x8
0043 #define XgRxOctetsOK_WIDTH 48
0044 #define XgRxPkts_offset 0x10
0045 #define XgRxPkts_WIDTH 32
0046 #define XgRxPktsOK_offset 0x14
0047 #define XgRxPktsOK_WIDTH 32
0048 #define XgRxBroadcastPkts_offset 0x18
0049 #define XgRxBroadcastPkts_WIDTH 32
0050 #define XgRxMulticastPkts_offset 0x1C
0051 #define XgRxMulticastPkts_WIDTH 32
0052 #define XgRxUnicastPkts_offset 0x20
0053 #define XgRxUnicastPkts_WIDTH 32
0054 #define XgRxUndersizePkts_offset 0x24
0055 #define XgRxUndersizePkts_WIDTH 32
0056 #define XgRxOversizePkts_offset 0x28
0057 #define XgRxOversizePkts_WIDTH 32
0058 #define XgRxJabberPkts_offset 0x2C
0059 #define XgRxJabberPkts_WIDTH 32
0060 #define XgRxUndersizeFCSerrorPkts_offset 0x30
0061 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
0062 #define XgRxDropEvents_offset 0x34
0063 #define XgRxDropEvents_WIDTH 32
0064 #define XgRxFCSerrorPkts_offset 0x38
0065 #define XgRxFCSerrorPkts_WIDTH 32
0066 #define XgRxAlignError_offset 0x3C
0067 #define XgRxAlignError_WIDTH 32
0068 #define XgRxSymbolError_offset 0x40
0069 #define XgRxSymbolError_WIDTH 32
0070 #define XgRxInternalMACError_offset 0x44
0071 #define XgRxInternalMACError_WIDTH 32
0072 #define XgRxControlPkts_offset 0x48
0073 #define XgRxControlPkts_WIDTH 32
0074 #define XgRxPausePkts_offset 0x4C
0075 #define XgRxPausePkts_WIDTH 32
0076 #define XgRxPkts64Octets_offset 0x50
0077 #define XgRxPkts64Octets_WIDTH 32
0078 #define XgRxPkts65to127Octets_offset 0x54
0079 #define XgRxPkts65to127Octets_WIDTH 32
0080 #define XgRxPkts128to255Octets_offset 0x58
0081 #define XgRxPkts128to255Octets_WIDTH 32
0082 #define XgRxPkts256to511Octets_offset 0x5C
0083 #define XgRxPkts256to511Octets_WIDTH 32
0084 #define XgRxPkts512to1023Octets_offset 0x60
0085 #define XgRxPkts512to1023Octets_WIDTH 32
0086 #define XgRxPkts1024to15xxOctets_offset 0x64
0087 #define XgRxPkts1024to15xxOctets_WIDTH 32
0088 #define XgRxPkts15xxtoMaxOctets_offset 0x68
0089 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
0090 #define XgRxLengthError_offset 0x6C
0091 #define XgRxLengthError_WIDTH 32
0092 #define XgTxPkts_offset 0x80
0093 #define XgTxPkts_WIDTH 32
0094 #define XgTxOctets_offset 0x88
0095 #define XgTxOctets_WIDTH 48
0096 #define XgTxMulticastPkts_offset 0x90
0097 #define XgTxMulticastPkts_WIDTH 32
0098 #define XgTxBroadcastPkts_offset 0x94
0099 #define XgTxBroadcastPkts_WIDTH 32
0100 #define XgTxUnicastPkts_offset 0x98
0101 #define XgTxUnicastPkts_WIDTH 32
0102 #define XgTxControlPkts_offset 0x9C
0103 #define XgTxControlPkts_WIDTH 32
0104 #define XgTxPausePkts_offset 0xA0
0105 #define XgTxPausePkts_WIDTH 32
0106 #define XgTxPkts64Octets_offset 0xA4
0107 #define XgTxPkts64Octets_WIDTH 32
0108 #define XgTxPkts65to127Octets_offset 0xA8
0109 #define XgTxPkts65to127Octets_WIDTH 32
0110 #define XgTxPkts128to255Octets_offset 0xAC
0111 #define XgTxPkts128to255Octets_WIDTH 32
0112 #define XgTxPkts256to511Octets_offset 0xB0
0113 #define XgTxPkts256to511Octets_WIDTH 32
0114 #define XgTxPkts512to1023Octets_offset 0xB4
0115 #define XgTxPkts512to1023Octets_WIDTH 32
0116 #define XgTxPkts1024to15xxOctets_offset 0xB8
0117 #define XgTxPkts1024to15xxOctets_WIDTH 32
0118 #define XgTxPkts1519toMaxOctets_offset 0xBC
0119 #define XgTxPkts1519toMaxOctets_WIDTH 32
0120 #define XgTxUndersizePkts_offset 0xC0
0121 #define XgTxUndersizePkts_WIDTH 32
0122 #define XgTxOversizePkts_offset 0xC4
0123 #define XgTxOversizePkts_WIDTH 32
0124 #define XgTxNonTcpUdpPkt_offset 0xC8
0125 #define XgTxNonTcpUdpPkt_WIDTH 16
0126 #define XgTxMacSrcErrPkt_offset 0xCC
0127 #define XgTxMacSrcErrPkt_WIDTH 16
0128 #define XgTxIpSrcErrPkt_offset 0xD0
0129 #define XgTxIpSrcErrPkt_WIDTH 16
0130 #define XgDmaDone_offset 0xD4
0131 #define XgDmaDone_WIDTH 32
0132 
0133 #define FALCON_XMAC_STATS_DMA_FLAG(efx)             \
0134     (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
0135 
0136 #define FALCON_DMA_STAT(ext_name, hw_name)              \
0137     [FALCON_STAT_ ## ext_name] =                    \
0138     { #ext_name,                            \
0139       /* 48-bit stats are zero-padded to 64 on DMA */       \
0140       hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
0141       hw_name ## _ ## offset }
0142 #define FALCON_OTHER_STAT(ext_name)                 \
0143     [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
0144 #define GENERIC_SW_STAT(ext_name)               \
0145     [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
0146 
0147 static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
0148     FALCON_DMA_STAT(tx_bytes, XgTxOctets),
0149     FALCON_DMA_STAT(tx_packets, XgTxPkts),
0150     FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
0151     FALCON_DMA_STAT(tx_control, XgTxControlPkts),
0152     FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
0153     FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
0154     FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
0155     FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
0156     FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
0157     FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
0158     FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
0159     FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
0160     FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
0161     FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
0162     FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
0163     FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
0164     FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
0165     FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
0166     FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
0167     FALCON_DMA_STAT(rx_bytes, XgRxOctets),
0168     FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
0169     FALCON_OTHER_STAT(rx_bad_bytes),
0170     FALCON_DMA_STAT(rx_packets, XgRxPkts),
0171     FALCON_DMA_STAT(rx_good, XgRxPktsOK),
0172     FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
0173     FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
0174     FALCON_DMA_STAT(rx_control, XgRxControlPkts),
0175     FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
0176     FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
0177     FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
0178     FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
0179     FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
0180     FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
0181     FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
0182     FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
0183     FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
0184     FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
0185     FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
0186     FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
0187     FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
0188     FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
0189     FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
0190     FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
0191     FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
0192     FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
0193     FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
0194     FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
0195     GENERIC_SW_STAT(rx_nodesc_trunc),
0196     GENERIC_SW_STAT(rx_noskb_drops),
0197 };
0198 static const unsigned long falcon_stat_mask[] = {
0199     [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
0200 };
0201 
0202 /**************************************************************************
0203  *
0204  * Basic SPI command set and bit definitions
0205  *
0206  *************************************************************************/
0207 
0208 #define SPI_WRSR 0x01       /* Write status register */
0209 #define SPI_WRITE 0x02      /* Write data to memory array */
0210 #define SPI_READ 0x03       /* Read data from memory array */
0211 #define SPI_WRDI 0x04       /* Reset write enable latch */
0212 #define SPI_RDSR 0x05       /* Read status register */
0213 #define SPI_WREN 0x06       /* Set write enable latch */
0214 #define SPI_SST_EWSR 0x50   /* SST: Enable write to status register */
0215 
0216 #define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
0217 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
0218 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
0219 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
0220 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
0221 #define SPI_STATUS_NRDY 0x01    /* Device busy flag */
0222 
0223 /**************************************************************************
0224  *
0225  * Non-volatile memory layout
0226  *
0227  **************************************************************************
0228  */
0229 
0230 /* SFC4000 flash is partitioned into:
0231  *     0-0x400       chip and board config (see struct falcon_nvconfig)
0232  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
0233  *     0x8000-end    boot code (mapped to PCI expansion ROM)
0234  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
0235  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
0236  *     0-0x400       chip and board config
0237  *     configurable  VPD
0238  *     0x800-0x1800  boot config
0239  * Aside from the chip and board config, all of these are optional and may
0240  * be absent or truncated depending on the devices used.
0241  */
0242 #define FALCON_NVCONFIG_END 0x400U
0243 #define FALCON_FLASH_BOOTCODE_START 0x8000U
0244 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
0245 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
0246 
0247 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
0248 struct falcon_nvconfig_board_v2 {
0249     __le16 nports;
0250     u8 port0_phy_addr;
0251     u8 port0_phy_type;
0252     u8 port1_phy_addr;
0253     u8 port1_phy_type;
0254     __le16 asic_sub_revision;
0255     __le16 board_revision;
0256 } __packed;
0257 
0258 /* Board configuration v3 extra information */
0259 struct falcon_nvconfig_board_v3 {
0260     __le32 spi_device_type[2];
0261 } __packed;
0262 
0263 /* Bit numbers for spi_device_type */
0264 #define SPI_DEV_TYPE_SIZE_LBN 0
0265 #define SPI_DEV_TYPE_SIZE_WIDTH 5
0266 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
0267 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
0268 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
0269 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
0270 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
0271 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
0272 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
0273 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
0274 #define SPI_DEV_TYPE_FIELD(type, field)                 \
0275     (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
0276 
0277 #define FALCON_NVCONFIG_OFFSET 0x300
0278 
0279 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
0280 struct falcon_nvconfig {
0281     ef4_oword_t ee_vpd_cfg_reg;         /* 0x300 */
0282     u8 mac_address[2][8];           /* 0x310 */
0283     ef4_oword_t pcie_sd_ctl0123_reg;        /* 0x320 */
0284     ef4_oword_t pcie_sd_ctl45_reg;          /* 0x330 */
0285     ef4_oword_t pcie_pcs_ctl_stat_reg;      /* 0x340 */
0286     ef4_oword_t hw_init_reg;            /* 0x350 */
0287     ef4_oword_t nic_stat_reg;           /* 0x360 */
0288     ef4_oword_t glb_ctl_reg;            /* 0x370 */
0289     ef4_oword_t srm_cfg_reg;            /* 0x380 */
0290     ef4_oword_t spare_reg;              /* 0x390 */
0291     __le16 board_magic_num;         /* 0x3A0 */
0292     __le16 board_struct_ver;
0293     __le16 board_checksum;
0294     struct falcon_nvconfig_board_v2 board_v2;
0295     ef4_oword_t ee_base_page_reg;           /* 0x3B0 */
0296     struct falcon_nvconfig_board_v3 board_v3;   /* 0x3C0 */
0297 } __packed;
0298 
0299 /*************************************************************************/
0300 
0301 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
0302 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
0303 
0304 static const unsigned int
0305 /* "Large" EEPROM device: Atmel AT25640 or similar
0306  * 8 KB, 16-bit address, 32 B write block */
0307 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
0308              | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
0309              | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
0310 /* Default flash device: Atmel AT25F1024
0311  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
0312 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
0313               | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
0314               | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
0315               | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
0316               | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
0317 
0318 /**************************************************************************
0319  *
0320  * I2C bus - this is a bit-bashing interface using GPIO pins
0321  * Note that it uses the output enables to tristate the outputs
0322  * SDA is the data pin and SCL is the clock
0323  *
0324  **************************************************************************
0325  */
0326 static void falcon_setsda(void *data, int state)
0327 {
0328     struct ef4_nic *efx = (struct ef4_nic *)data;
0329     ef4_oword_t reg;
0330 
0331     ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
0332     EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
0333     ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
0334 }
0335 
0336 static void falcon_setscl(void *data, int state)
0337 {
0338     struct ef4_nic *efx = (struct ef4_nic *)data;
0339     ef4_oword_t reg;
0340 
0341     ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
0342     EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
0343     ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
0344 }
0345 
0346 static int falcon_getsda(void *data)
0347 {
0348     struct ef4_nic *efx = (struct ef4_nic *)data;
0349     ef4_oword_t reg;
0350 
0351     ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
0352     return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
0353 }
0354 
0355 static int falcon_getscl(void *data)
0356 {
0357     struct ef4_nic *efx = (struct ef4_nic *)data;
0358     ef4_oword_t reg;
0359 
0360     ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
0361     return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
0362 }
0363 
0364 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
0365     .setsda     = falcon_setsda,
0366     .setscl     = falcon_setscl,
0367     .getsda     = falcon_getsda,
0368     .getscl     = falcon_getscl,
0369     .udelay     = 5,
0370     /* Wait up to 50 ms for slave to let us pull SCL high */
0371     .timeout    = DIV_ROUND_UP(HZ, 20),
0372 };
0373 
0374 static void falcon_push_irq_moderation(struct ef4_channel *channel)
0375 {
0376     ef4_dword_t timer_cmd;
0377     struct ef4_nic *efx = channel->efx;
0378 
0379     /* Set timer register */
0380     if (channel->irq_moderation_us) {
0381         unsigned int ticks;
0382 
0383         ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
0384         EF4_POPULATE_DWORD_2(timer_cmd,
0385                      FRF_AB_TC_TIMER_MODE,
0386                      FFE_BB_TIMER_MODE_INT_HLDOFF,
0387                      FRF_AB_TC_TIMER_VAL,
0388                      ticks - 1);
0389     } else {
0390         EF4_POPULATE_DWORD_2(timer_cmd,
0391                      FRF_AB_TC_TIMER_MODE,
0392                      FFE_BB_TIMER_MODE_DIS,
0393                      FRF_AB_TC_TIMER_VAL, 0);
0394     }
0395     BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
0396     ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
0397                    channel->channel);
0398 }
0399 
0400 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
0401 
0402 static void falcon_prepare_flush(struct ef4_nic *efx)
0403 {
0404     falcon_deconfigure_mac_wrapper(efx);
0405 
0406     /* Wait for the tx and rx fifo's to get to the next packet boundary
0407      * (~1ms without back-pressure), then to drain the remainder of the
0408      * fifo's at data path speeds (negligible), with a healthy margin. */
0409     msleep(10);
0410 }
0411 
0412 /* Acknowledge a legacy interrupt from Falcon
0413  *
0414  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
0415  *
0416  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
0417  * BIU. Interrupt acknowledge is read sensitive so must write instead
0418  * (then read to ensure the BIU collector is flushed)
0419  *
0420  * NB most hardware supports MSI interrupts
0421  */
0422 static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
0423 {
0424     ef4_dword_t reg;
0425 
0426     EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
0427     ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
0428     ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
0429 }
0430 
0431 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
0432 {
0433     struct ef4_nic *efx = dev_id;
0434     ef4_oword_t *int_ker = efx->irq_status.addr;
0435     int syserr;
0436     int queues;
0437 
0438     /* Check to see if this is our interrupt.  If it isn't, we
0439      * exit without having touched the hardware.
0440      */
0441     if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
0442         netif_vdbg(efx, intr, efx->net_dev,
0443                "IRQ %d on CPU %d not for me\n", irq,
0444                raw_smp_processor_id());
0445         return IRQ_NONE;
0446     }
0447     efx->last_irq_cpu = raw_smp_processor_id();
0448     netif_vdbg(efx, intr, efx->net_dev,
0449            "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
0450            irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
0451 
0452     if (!likely(READ_ONCE(efx->irq_soft_enabled)))
0453         return IRQ_HANDLED;
0454 
0455     /* Check to see if we have a serious error condition */
0456     syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
0457     if (unlikely(syserr))
0458         return ef4_farch_fatal_interrupt(efx);
0459 
0460     /* Determine interrupting queues, clear interrupt status
0461      * register and acknowledge the device interrupt.
0462      */
0463     BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
0464     queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
0465     EF4_ZERO_OWORD(*int_ker);
0466     wmb(); /* Ensure the vector is cleared before interrupt ack */
0467     falcon_irq_ack_a1(efx);
0468 
0469     if (queues & 1)
0470         ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
0471     if (queues & 2)
0472         ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
0473     return IRQ_HANDLED;
0474 }
0475 
0476 /**************************************************************************
0477  *
0478  * RSS
0479  *
0480  **************************************************************************
0481  */
0482 static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
0483                     const u32 *rx_indir_table)
0484 {
0485     (void) efx;
0486     (void) user;
0487     (void) rx_indir_table;
0488     return -ENOSYS;
0489 }
0490 
0491 static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
0492                     const u32 *rx_indir_table)
0493 {
0494     ef4_oword_t temp;
0495 
0496     (void) user;
0497     /* Set hash key for IPv4 */
0498     memcpy(&temp, efx->rx_hash_key, sizeof(temp));
0499     ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
0500 
0501     memcpy(efx->rx_indir_table, rx_indir_table,
0502            sizeof(efx->rx_indir_table));
0503     ef4_farch_rx_push_indir_table(efx);
0504     return 0;
0505 }
0506 
0507 /**************************************************************************
0508  *
0509  * EEPROM/flash
0510  *
0511  **************************************************************************
0512  */
0513 
0514 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
0515 
0516 static int falcon_spi_poll(struct ef4_nic *efx)
0517 {
0518     ef4_oword_t reg;
0519     ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
0520     return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
0521 }
0522 
0523 /* Wait for SPI command completion */
0524 static int falcon_spi_wait(struct ef4_nic *efx)
0525 {
0526     /* Most commands will finish quickly, so we start polling at
0527      * very short intervals.  Sometimes the command may have to
0528      * wait for VPD or expansion ROM access outside of our
0529      * control, so we allow up to 100 ms. */
0530     unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
0531     int i;
0532 
0533     for (i = 0; i < 10; i++) {
0534         if (!falcon_spi_poll(efx))
0535             return 0;
0536         udelay(10);
0537     }
0538 
0539     for (;;) {
0540         if (!falcon_spi_poll(efx))
0541             return 0;
0542         if (time_after_eq(jiffies, timeout)) {
0543             netif_err(efx, hw, efx->net_dev,
0544                   "timed out waiting for SPI\n");
0545             return -ETIMEDOUT;
0546         }
0547         schedule_timeout_uninterruptible(1);
0548     }
0549 }
0550 
0551 static int
0552 falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
0553            unsigned int command, int address,
0554            const void *in, void *out, size_t len)
0555 {
0556     bool addressed = (address >= 0);
0557     bool reading = (out != NULL);
0558     ef4_oword_t reg;
0559     int rc;
0560 
0561     /* Input validation */
0562     if (len > FALCON_SPI_MAX_LEN)
0563         return -EINVAL;
0564 
0565     /* Check that previous command is not still running */
0566     rc = falcon_spi_poll(efx);
0567     if (rc)
0568         return rc;
0569 
0570     /* Program address register, if we have an address */
0571     if (addressed) {
0572         EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
0573         ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
0574     }
0575 
0576     /* Program data register, if we have data */
0577     if (in != NULL) {
0578         memcpy(&reg, in, len);
0579         ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
0580     }
0581 
0582     /* Issue read/write command */
0583     EF4_POPULATE_OWORD_7(reg,
0584                  FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
0585                  FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
0586                  FRF_AB_EE_SPI_HCMD_DABCNT, len,
0587                  FRF_AB_EE_SPI_HCMD_READ, reading,
0588                  FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
0589                  FRF_AB_EE_SPI_HCMD_ADBCNT,
0590                  (addressed ? spi->addr_len : 0),
0591                  FRF_AB_EE_SPI_HCMD_ENC, command);
0592     ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
0593 
0594     /* Wait for read/write to complete */
0595     rc = falcon_spi_wait(efx);
0596     if (rc)
0597         return rc;
0598 
0599     /* Read data */
0600     if (out != NULL) {
0601         ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
0602         memcpy(out, &reg, len);
0603     }
0604 
0605     return 0;
0606 }
0607 
0608 static inline u8
0609 falcon_spi_munge_command(const struct falcon_spi_device *spi,
0610              const u8 command, const unsigned int address)
0611 {
0612     return command | (((address >> 8) & spi->munge_address) << 3);
0613 }
0614 
0615 static int
0616 falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
0617         loff_t start, size_t len, size_t *retlen, u8 *buffer)
0618 {
0619     size_t block_len, pos = 0;
0620     unsigned int command;
0621     int rc = 0;
0622 
0623     while (pos < len) {
0624         block_len = min(len - pos, FALCON_SPI_MAX_LEN);
0625 
0626         command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
0627         rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
0628                     buffer + pos, block_len);
0629         if (rc)
0630             break;
0631         pos += block_len;
0632 
0633         /* Avoid locking up the system */
0634         cond_resched();
0635         if (signal_pending(current)) {
0636             rc = -EINTR;
0637             break;
0638         }
0639     }
0640 
0641     if (retlen)
0642         *retlen = pos;
0643     return rc;
0644 }
0645 
0646 #ifdef CONFIG_SFC_FALCON_MTD
0647 
0648 struct falcon_mtd_partition {
0649     struct ef4_mtd_partition common;
0650     const struct falcon_spi_device *spi;
0651     size_t offset;
0652 };
0653 
0654 #define to_falcon_mtd_partition(mtd)                \
0655     container_of(mtd, struct falcon_mtd_partition, common.mtd)
0656 
0657 static size_t
0658 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
0659 {
0660     return min(FALCON_SPI_MAX_LEN,
0661            (spi->block_size - (start & (spi->block_size - 1))));
0662 }
0663 
0664 /* Wait up to 10 ms for buffered write completion */
0665 static int
0666 falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
0667 {
0668     unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
0669     u8 status;
0670     int rc;
0671 
0672     for (;;) {
0673         rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
0674                     &status, sizeof(status));
0675         if (rc)
0676             return rc;
0677         if (!(status & SPI_STATUS_NRDY))
0678             return 0;
0679         if (time_after_eq(jiffies, timeout)) {
0680             netif_err(efx, hw, efx->net_dev,
0681                   "SPI write timeout on device %d"
0682                   " last status=0x%02x\n",
0683                   spi->device_id, status);
0684             return -ETIMEDOUT;
0685         }
0686         schedule_timeout_uninterruptible(1);
0687     }
0688 }
0689 
0690 static int
0691 falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
0692          loff_t start, size_t len, size_t *retlen, const u8 *buffer)
0693 {
0694     u8 verify_buffer[FALCON_SPI_MAX_LEN];
0695     size_t block_len, pos = 0;
0696     unsigned int command;
0697     int rc = 0;
0698 
0699     while (pos < len) {
0700         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
0701         if (rc)
0702             break;
0703 
0704         block_len = min(len - pos,
0705                 falcon_spi_write_limit(spi, start + pos));
0706         command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
0707         rc = falcon_spi_cmd(efx, spi, command, start + pos,
0708                     buffer + pos, NULL, block_len);
0709         if (rc)
0710             break;
0711 
0712         rc = falcon_spi_wait_write(efx, spi);
0713         if (rc)
0714             break;
0715 
0716         command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
0717         rc = falcon_spi_cmd(efx, spi, command, start + pos,
0718                     NULL, verify_buffer, block_len);
0719         if (memcmp(verify_buffer, buffer + pos, block_len)) {
0720             rc = -EIO;
0721             break;
0722         }
0723 
0724         pos += block_len;
0725 
0726         /* Avoid locking up the system */
0727         cond_resched();
0728         if (signal_pending(current)) {
0729             rc = -EINTR;
0730             break;
0731         }
0732     }
0733 
0734     if (retlen)
0735         *retlen = pos;
0736     return rc;
0737 }
0738 
0739 static int
0740 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
0741 {
0742     const struct falcon_spi_device *spi = part->spi;
0743     struct ef4_nic *efx = part->common.mtd.priv;
0744     u8 status;
0745     int rc, i;
0746 
0747     /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
0748     for (i = 0; i < 40; i++) {
0749         __set_current_state(uninterruptible ?
0750                     TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
0751         schedule_timeout(HZ / 10);
0752         rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
0753                     &status, sizeof(status));
0754         if (rc)
0755             return rc;
0756         if (!(status & SPI_STATUS_NRDY))
0757             return 0;
0758         if (signal_pending(current))
0759             return -EINTR;
0760     }
0761     pr_err("%s: timed out waiting for %s\n",
0762            part->common.name, part->common.dev_type_name);
0763     return -ETIMEDOUT;
0764 }
0765 
0766 static int
0767 falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
0768 {
0769     const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
0770                 SPI_STATUS_BP0);
0771     u8 status;
0772     int rc;
0773 
0774     rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
0775                 &status, sizeof(status));
0776     if (rc)
0777         return rc;
0778 
0779     if (!(status & unlock_mask))
0780         return 0; /* already unlocked */
0781 
0782     rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
0783     if (rc)
0784         return rc;
0785     rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
0786     if (rc)
0787         return rc;
0788 
0789     status &= ~unlock_mask;
0790     rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
0791                 NULL, sizeof(status));
0792     if (rc)
0793         return rc;
0794     rc = falcon_spi_wait_write(efx, spi);
0795     if (rc)
0796         return rc;
0797 
0798     return 0;
0799 }
0800 
0801 #define FALCON_SPI_VERIFY_BUF_LEN 16
0802 
0803 static int
0804 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
0805 {
0806     const struct falcon_spi_device *spi = part->spi;
0807     struct ef4_nic *efx = part->common.mtd.priv;
0808     unsigned pos, block_len;
0809     u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
0810     u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
0811     int rc;
0812 
0813     if (len != spi->erase_size)
0814         return -EINVAL;
0815 
0816     if (spi->erase_command == 0)
0817         return -EOPNOTSUPP;
0818 
0819     rc = falcon_spi_unlock(efx, spi);
0820     if (rc)
0821         return rc;
0822     rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
0823     if (rc)
0824         return rc;
0825     rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
0826                 NULL, 0);
0827     if (rc)
0828         return rc;
0829     rc = falcon_spi_slow_wait(part, false);
0830 
0831     /* Verify the entire region has been wiped */
0832     memset(empty, 0xff, sizeof(empty));
0833     for (pos = 0; pos < len; pos += block_len) {
0834         block_len = min(len - pos, sizeof(buffer));
0835         rc = falcon_spi_read(efx, spi, start + pos, block_len,
0836                      NULL, buffer);
0837         if (rc)
0838             return rc;
0839         if (memcmp(empty, buffer, block_len))
0840             return -EIO;
0841 
0842         /* Avoid locking up the system */
0843         cond_resched();
0844         if (signal_pending(current))
0845             return -EINTR;
0846     }
0847 
0848     return rc;
0849 }
0850 
0851 static void falcon_mtd_rename(struct ef4_mtd_partition *part)
0852 {
0853     struct ef4_nic *efx = part->mtd.priv;
0854 
0855     snprintf(part->name, sizeof(part->name), "%s %s",
0856          efx->name, part->type_name);
0857 }
0858 
0859 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
0860                size_t len, size_t *retlen, u8 *buffer)
0861 {
0862     struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
0863     struct ef4_nic *efx = mtd->priv;
0864     struct falcon_nic_data *nic_data = efx->nic_data;
0865     int rc;
0866 
0867     rc = mutex_lock_interruptible(&nic_data->spi_lock);
0868     if (rc)
0869         return rc;
0870     rc = falcon_spi_read(efx, part->spi, part->offset + start,
0871                  len, retlen, buffer);
0872     mutex_unlock(&nic_data->spi_lock);
0873     return rc;
0874 }
0875 
0876 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
0877 {
0878     struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
0879     struct ef4_nic *efx = mtd->priv;
0880     struct falcon_nic_data *nic_data = efx->nic_data;
0881     int rc;
0882 
0883     rc = mutex_lock_interruptible(&nic_data->spi_lock);
0884     if (rc)
0885         return rc;
0886     rc = falcon_spi_erase(part, part->offset + start, len);
0887     mutex_unlock(&nic_data->spi_lock);
0888     return rc;
0889 }
0890 
0891 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
0892                 size_t len, size_t *retlen, const u8 *buffer)
0893 {
0894     struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
0895     struct ef4_nic *efx = mtd->priv;
0896     struct falcon_nic_data *nic_data = efx->nic_data;
0897     int rc;
0898 
0899     rc = mutex_lock_interruptible(&nic_data->spi_lock);
0900     if (rc)
0901         return rc;
0902     rc = falcon_spi_write(efx, part->spi, part->offset + start,
0903                   len, retlen, buffer);
0904     mutex_unlock(&nic_data->spi_lock);
0905     return rc;
0906 }
0907 
0908 static int falcon_mtd_sync(struct mtd_info *mtd)
0909 {
0910     struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
0911     struct ef4_nic *efx = mtd->priv;
0912     struct falcon_nic_data *nic_data = efx->nic_data;
0913     int rc;
0914 
0915     mutex_lock(&nic_data->spi_lock);
0916     rc = falcon_spi_slow_wait(part, true);
0917     mutex_unlock(&nic_data->spi_lock);
0918     return rc;
0919 }
0920 
0921 static int falcon_mtd_probe(struct ef4_nic *efx)
0922 {
0923     struct falcon_nic_data *nic_data = efx->nic_data;
0924     struct falcon_mtd_partition *parts;
0925     struct falcon_spi_device *spi;
0926     size_t n_parts;
0927     int rc = -ENODEV;
0928 
0929     ASSERT_RTNL();
0930 
0931     /* Allocate space for maximum number of partitions */
0932     parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
0933     if (!parts)
0934         return -ENOMEM;
0935     n_parts = 0;
0936 
0937     spi = &nic_data->spi_flash;
0938     if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
0939         parts[n_parts].spi = spi;
0940         parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
0941         parts[n_parts].common.dev_type_name = "flash";
0942         parts[n_parts].common.type_name = "sfc_flash_bootrom";
0943         parts[n_parts].common.mtd.type = MTD_NORFLASH;
0944         parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
0945         parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
0946         parts[n_parts].common.mtd.erasesize = spi->erase_size;
0947         n_parts++;
0948     }
0949 
0950     spi = &nic_data->spi_eeprom;
0951     if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
0952         parts[n_parts].spi = spi;
0953         parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
0954         parts[n_parts].common.dev_type_name = "EEPROM";
0955         parts[n_parts].common.type_name = "sfc_bootconfig";
0956         parts[n_parts].common.mtd.type = MTD_RAM;
0957         parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
0958         parts[n_parts].common.mtd.size =
0959             min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
0960             FALCON_EEPROM_BOOTCONFIG_START;
0961         parts[n_parts].common.mtd.erasesize = spi->erase_size;
0962         n_parts++;
0963     }
0964 
0965     rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
0966     if (rc)
0967         kfree(parts);
0968     return rc;
0969 }
0970 
0971 #endif /* CONFIG_SFC_FALCON_MTD */
0972 
0973 /**************************************************************************
0974  *
0975  * XMAC operations
0976  *
0977  **************************************************************************
0978  */
0979 
0980 /* Configure the XAUI driver that is an output from Falcon */
0981 static void falcon_setup_xaui(struct ef4_nic *efx)
0982 {
0983     ef4_oword_t sdctl, txdrv;
0984 
0985     /* Move the XAUI into low power, unless there is no PHY, in
0986      * which case the XAUI will have to drive a cable. */
0987     if (efx->phy_type == PHY_TYPE_NONE)
0988         return;
0989 
0990     ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
0991     EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
0992     EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
0993     EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
0994     EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
0995     EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
0996     EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
0997     EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
0998     EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
0999     ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1000 
1001     EF4_POPULATE_OWORD_8(txdrv,
1002                  FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1003                  FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1004                  FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1005                  FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1006                  FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1007                  FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1008                  FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1009                  FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1010     ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1011 }
1012 
1013 int falcon_reset_xaui(struct ef4_nic *efx)
1014 {
1015     struct falcon_nic_data *nic_data = efx->nic_data;
1016     ef4_oword_t reg;
1017     int count;
1018 
1019     /* Don't fetch MAC statistics over an XMAC reset */
1020     WARN_ON(nic_data->stats_disable_count == 0);
1021 
1022     /* Start reset sequence */
1023     EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1024     ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1025 
1026     /* Wait up to 10 ms for completion, then reinitialise */
1027     for (count = 0; count < 1000; count++) {
1028         ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1029         if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1030             EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1031             falcon_setup_xaui(efx);
1032             return 0;
1033         }
1034         udelay(10);
1035     }
1036     netif_err(efx, hw, efx->net_dev,
1037           "timed out waiting for XAUI/XGXS reset\n");
1038     return -ETIMEDOUT;
1039 }
1040 
1041 static void falcon_ack_status_intr(struct ef4_nic *efx)
1042 {
1043     struct falcon_nic_data *nic_data = efx->nic_data;
1044     ef4_oword_t reg;
1045 
1046     if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1047         return;
1048 
1049     /* We expect xgmii faults if the wireside link is down */
1050     if (!efx->link_state.up)
1051         return;
1052 
1053     /* We can only use this interrupt to signal the negative edge of
1054      * xaui_align [we have to poll the positive edge]. */
1055     if (nic_data->xmac_poll_required)
1056         return;
1057 
1058     ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1059 }
1060 
1061 static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1062 {
1063     ef4_oword_t reg;
1064     bool align_done, link_ok = false;
1065     int sync_status;
1066 
1067     /* Read link status */
1068     ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1069 
1070     align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1071     sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1072     if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1073         link_ok = true;
1074 
1075     /* Clear link status ready for next read */
1076     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1077     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1078     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1079     ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1080 
1081     return link_ok;
1082 }
1083 
1084 static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1085 {
1086     /*
1087      * Check MAC's XGXS link status except when using XGMII loopback
1088      * which bypasses the XGXS block.
1089      * If possible, check PHY's XGXS link status except when using
1090      * MAC loopback.
1091      */
1092     return (efx->loopback_mode == LOOPBACK_XGMII ||
1093         falcon_xgxs_link_ok(efx)) &&
1094         (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1095          LOOPBACK_INTERNAL(efx) ||
1096          ef4_mdio_phyxgxs_lane_sync(efx));
1097 }
1098 
1099 static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1100 {
1101     unsigned int max_frame_len;
1102     ef4_oword_t reg;
1103     bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1104     bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1105 
1106     /* Configure MAC  - cut-thru mode is hard wired on */
1107     EF4_POPULATE_OWORD_3(reg,
1108                  FRF_AB_XM_RX_JUMBO_MODE, 1,
1109                  FRF_AB_XM_TX_STAT_EN, 1,
1110                  FRF_AB_XM_RX_STAT_EN, 1);
1111     ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1112 
1113     /* Configure TX */
1114     EF4_POPULATE_OWORD_6(reg,
1115                  FRF_AB_XM_TXEN, 1,
1116                  FRF_AB_XM_TX_PRMBL, 1,
1117                  FRF_AB_XM_AUTO_PAD, 1,
1118                  FRF_AB_XM_TXCRC, 1,
1119                  FRF_AB_XM_FCNTL, tx_fc,
1120                  FRF_AB_XM_IPG, 0x3);
1121     ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1122 
1123     /* Configure RX */
1124     EF4_POPULATE_OWORD_5(reg,
1125                  FRF_AB_XM_RXEN, 1,
1126                  FRF_AB_XM_AUTO_DEPAD, 0,
1127                  FRF_AB_XM_ACPT_ALL_MCAST, 1,
1128                  FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1129                  FRF_AB_XM_PASS_CRC_ERR, 1);
1130     ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1131 
1132     /* Set frame length */
1133     max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1134     EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1135     ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1136     EF4_POPULATE_OWORD_2(reg,
1137                  FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1138                  FRF_AB_XM_TX_JUMBO_MODE, 1);
1139     ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1140 
1141     EF4_POPULATE_OWORD_2(reg,
1142                  FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1143                  FRF_AB_XM_DIS_FCNTL, !rx_fc);
1144     ef4_writeo(efx, &reg, FR_AB_XM_FC);
1145 
1146     /* Set MAC address */
1147     memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1148     ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1149     memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1150     ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1151 }
1152 
1153 static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1154 {
1155     ef4_oword_t reg;
1156     bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1157     bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1158     bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1159     bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1160 
1161     /* XGXS block is flaky and will need to be reset if moving
1162      * into our out of XGMII, XGXS or XAUI loopbacks. */
1163     ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1164     old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1165     old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1166 
1167     ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1168     old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1169 
1170     /* The PHY driver may have turned XAUI off */
1171     if ((xgxs_loopback != old_xgxs_loopback) ||
1172         (xaui_loopback != old_xaui_loopback) ||
1173         (xgmii_loopback != old_xgmii_loopback))
1174         falcon_reset_xaui(efx);
1175 
1176     ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1177     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1178                 (xgxs_loopback || xaui_loopback) ?
1179                 FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1180     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1181     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1182     ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1183 
1184     ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1185     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1186     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1187     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1188     EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1189     ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1190 }
1191 
1192 
1193 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1194 static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1195 {
1196     bool mac_up = falcon_xmac_link_ok(efx);
1197 
1198     if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1199         ef4_phy_mode_disabled(efx->phy_mode))
1200         /* XAUI link is expected to be down */
1201         return mac_up;
1202 
1203     falcon_stop_nic_stats(efx);
1204 
1205     while (!mac_up && tries) {
1206         netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1207         falcon_reset_xaui(efx);
1208         udelay(200);
1209 
1210         mac_up = falcon_xmac_link_ok(efx);
1211         --tries;
1212     }
1213 
1214     falcon_start_nic_stats(efx);
1215 
1216     return mac_up;
1217 }
1218 
1219 static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1220 {
1221     return !falcon_xmac_link_ok_retry(efx, 5);
1222 }
1223 
1224 static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1225 {
1226     struct falcon_nic_data *nic_data = efx->nic_data;
1227 
1228     ef4_farch_filter_sync_rx_mode(efx);
1229 
1230     falcon_reconfigure_xgxs_core(efx);
1231     falcon_reconfigure_xmac_core(efx);
1232 
1233     falcon_reconfigure_mac_wrapper(efx);
1234 
1235     nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1236     falcon_ack_status_intr(efx);
1237 
1238     return 0;
1239 }
1240 
1241 static void falcon_poll_xmac(struct ef4_nic *efx)
1242 {
1243     struct falcon_nic_data *nic_data = efx->nic_data;
1244 
1245     /* We expect xgmii faults if the wireside link is down */
1246     if (!efx->link_state.up || !nic_data->xmac_poll_required)
1247         return;
1248 
1249     nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1250     falcon_ack_status_intr(efx);
1251 }
1252 
1253 /**************************************************************************
1254  *
1255  * MAC wrapper
1256  *
1257  **************************************************************************
1258  */
1259 
1260 static void falcon_push_multicast_hash(struct ef4_nic *efx)
1261 {
1262     union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1263 
1264     WARN_ON(!mutex_is_locked(&efx->mac_lock));
1265 
1266     ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1267     ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1268 }
1269 
1270 static void falcon_reset_macs(struct ef4_nic *efx)
1271 {
1272     struct falcon_nic_data *nic_data = efx->nic_data;
1273     ef4_oword_t reg, mac_ctrl;
1274     int count;
1275 
1276     if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1277         /* It's not safe to use GLB_CTL_REG to reset the
1278          * macs, so instead use the internal MAC resets
1279          */
1280         EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1281         ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1282 
1283         for (count = 0; count < 10000; count++) {
1284             ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1285             if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1286                 0)
1287                 return;
1288             udelay(10);
1289         }
1290 
1291         netif_err(efx, hw, efx->net_dev,
1292               "timed out waiting for XMAC core reset\n");
1293     }
1294 
1295     /* Mac stats will fail whist the TX fifo is draining */
1296     WARN_ON(nic_data->stats_disable_count == 0);
1297 
1298     ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299     EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1300     ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1301 
1302     ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1303     EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1304     EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1305     EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1306     ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1307 
1308     count = 0;
1309     while (1) {
1310         ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1311         if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1312             !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1313             !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1314             netif_dbg(efx, hw, efx->net_dev,
1315                   "Completed MAC reset after %d loops\n",
1316                   count);
1317             break;
1318         }
1319         if (count > 20) {
1320             netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1321             break;
1322         }
1323         count++;
1324         udelay(10);
1325     }
1326 
1327     /* Ensure the correct MAC is selected before statistics
1328      * are re-enabled by the caller */
1329     ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1330 
1331     falcon_setup_xaui(efx);
1332 }
1333 
1334 static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1335 {
1336     ef4_oword_t reg;
1337 
1338     if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1339         (efx->loopback_mode != LOOPBACK_NONE))
1340         return;
1341 
1342     ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1343     /* There is no point in draining more than once */
1344     if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1345         return;
1346 
1347     falcon_reset_macs(efx);
1348 }
1349 
1350 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1351 {
1352     ef4_oword_t reg;
1353 
1354     if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1355         return;
1356 
1357     /* Isolate the MAC -> RX */
1358     ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1359     EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1360     ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1361 
1362     /* Isolate TX -> MAC */
1363     falcon_drain_tx_fifo(efx);
1364 }
1365 
1366 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1367 {
1368     struct ef4_link_state *link_state = &efx->link_state;
1369     ef4_oword_t reg;
1370     int link_speed, isolate;
1371 
1372     isolate = !!READ_ONCE(efx->reset_pending);
1373 
1374     switch (link_state->speed) {
1375     case 10000: link_speed = 3; break;
1376     case 1000:  link_speed = 2; break;
1377     case 100:   link_speed = 1; break;
1378     default:    link_speed = 0; break;
1379     }
1380 
1381     /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1382      * as advertised.  Disable to ensure packets are not
1383      * indefinitely held and TX queue can be flushed at any point
1384      * while the link is down. */
1385     EF4_POPULATE_OWORD_5(reg,
1386                  FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1387                  FRF_AB_MAC_BCAD_ACPT, 1,
1388                  FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1389                  FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1390                  FRF_AB_MAC_SPEED, link_speed);
1391     /* On B0, MAC backpressure can be disabled and packets get
1392      * discarded. */
1393     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1394         EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1395                     !link_state->up || isolate);
1396     }
1397 
1398     ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1399 
1400     /* Restore the multicast hash registers. */
1401     falcon_push_multicast_hash(efx);
1402 
1403     ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1404     /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1405      * initialisation but it may read back as 0) */
1406     EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1407     /* Unisolate the MAC -> RX */
1408     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1409         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1410     ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1411 }
1412 
1413 static void falcon_stats_request(struct ef4_nic *efx)
1414 {
1415     struct falcon_nic_data *nic_data = efx->nic_data;
1416     ef4_oword_t reg;
1417 
1418     WARN_ON(nic_data->stats_pending);
1419     WARN_ON(nic_data->stats_disable_count);
1420 
1421     FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1422     nic_data->stats_pending = true;
1423     wmb(); /* ensure done flag is clear */
1424 
1425     /* Initiate DMA transfer of stats */
1426     EF4_POPULATE_OWORD_2(reg,
1427                  FRF_AB_MAC_STAT_DMA_CMD, 1,
1428                  FRF_AB_MAC_STAT_DMA_ADR,
1429                  efx->stats_buffer.dma_addr);
1430     ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1431 
1432     mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1433 }
1434 
1435 static void falcon_stats_complete(struct ef4_nic *efx)
1436 {
1437     struct falcon_nic_data *nic_data = efx->nic_data;
1438 
1439     if (!nic_data->stats_pending)
1440         return;
1441 
1442     nic_data->stats_pending = false;
1443     if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1444         rmb(); /* read the done flag before the stats */
1445         ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1446                      falcon_stat_mask, nic_data->stats,
1447                      efx->stats_buffer.addr, true);
1448     } else {
1449         netif_err(efx, hw, efx->net_dev,
1450               "timed out waiting for statistics\n");
1451     }
1452 }
1453 
1454 static void falcon_stats_timer_func(struct timer_list *t)
1455 {
1456     struct falcon_nic_data *nic_data = from_timer(nic_data, t,
1457                               stats_timer);
1458     struct ef4_nic *efx = nic_data->efx;
1459 
1460     spin_lock(&efx->stats_lock);
1461 
1462     falcon_stats_complete(efx);
1463     if (nic_data->stats_disable_count == 0)
1464         falcon_stats_request(efx);
1465 
1466     spin_unlock(&efx->stats_lock);
1467 }
1468 
1469 static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1470 {
1471     struct ef4_link_state old_state = efx->link_state;
1472 
1473     WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474     WARN_ON(!LOOPBACK_INTERNAL(efx));
1475 
1476     efx->link_state.fd = true;
1477     efx->link_state.fc = efx->wanted_fc;
1478     efx->link_state.up = true;
1479     efx->link_state.speed = 10000;
1480 
1481     return !ef4_link_state_equal(&efx->link_state, &old_state);
1482 }
1483 
1484 static int falcon_reconfigure_port(struct ef4_nic *efx)
1485 {
1486     int rc;
1487 
1488     WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1489 
1490     /* Poll the PHY link state *before* reconfiguring it. This means we
1491      * will pick up the correct speed (in loopback) to select the correct
1492      * MAC.
1493      */
1494     if (LOOPBACK_INTERNAL(efx))
1495         falcon_loopback_link_poll(efx);
1496     else
1497         efx->phy_op->poll(efx);
1498 
1499     falcon_stop_nic_stats(efx);
1500     falcon_deconfigure_mac_wrapper(efx);
1501 
1502     falcon_reset_macs(efx);
1503 
1504     efx->phy_op->reconfigure(efx);
1505     rc = falcon_reconfigure_xmac(efx);
1506     BUG_ON(rc);
1507 
1508     falcon_start_nic_stats(efx);
1509 
1510     /* Synchronise efx->link_state with the kernel */
1511     ef4_link_status_changed(efx);
1512 
1513     return 0;
1514 }
1515 
1516 /* TX flow control may automatically turn itself off if the link
1517  * partner (intermittently) stops responding to pause frames. There
1518  * isn't any indication that this has happened, so the best we do is
1519  * leave it up to the user to spot this and fix it by cycling transmit
1520  * flow control on this end.
1521  */
1522 
1523 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1524 {
1525     /* Schedule a reset to recover */
1526     ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1527 }
1528 
1529 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1530 {
1531     /* Recover by resetting the EM block */
1532     falcon_stop_nic_stats(efx);
1533     falcon_drain_tx_fifo(efx);
1534     falcon_reconfigure_xmac(efx);
1535     falcon_start_nic_stats(efx);
1536 }
1537 
1538 /**************************************************************************
1539  *
1540  * PHY access via GMII
1541  *
1542  **************************************************************************
1543  */
1544 
1545 /* Wait for GMII access to complete */
1546 static int falcon_gmii_wait(struct ef4_nic *efx)
1547 {
1548     ef4_oword_t md_stat;
1549     int count;
1550 
1551     /* wait up to 50ms - taken max from datasheet */
1552     for (count = 0; count < 5000; count++) {
1553         ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1554         if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555             if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556                 EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557                 netif_err(efx, hw, efx->net_dev,
1558                       "error from GMII access "
1559                       EF4_OWORD_FMT"\n",
1560                       EF4_OWORD_VAL(md_stat));
1561                 return -EIO;
1562             }
1563             return 0;
1564         }
1565         udelay(10);
1566     }
1567     netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568     return -ETIMEDOUT;
1569 }
1570 
1571 /* Write an MDIO register of a PHY connected to Falcon. */
1572 static int falcon_mdio_write(struct net_device *net_dev,
1573                  int prtad, int devad, u16 addr, u16 value)
1574 {
1575     struct ef4_nic *efx = netdev_priv(net_dev);
1576     struct falcon_nic_data *nic_data = efx->nic_data;
1577     ef4_oword_t reg;
1578     int rc;
1579 
1580     netif_vdbg(efx, hw, efx->net_dev,
1581            "writing MDIO %d register %d.%d with 0x%04x\n",
1582             prtad, devad, addr, value);
1583 
1584     mutex_lock(&nic_data->mdio_lock);
1585 
1586     /* Check MDIO not currently being accessed */
1587     rc = falcon_gmii_wait(efx);
1588     if (rc)
1589         goto out;
1590 
1591     /* Write the address/ID register */
1592     EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593     ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1594 
1595     EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596                  FRF_AB_MD_DEV_ADR, devad);
1597     ef4_writeo(efx, &reg, FR_AB_MD_ID);
1598 
1599     /* Write data */
1600     EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601     ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1602 
1603     EF4_POPULATE_OWORD_2(reg,
1604                  FRF_AB_MD_WRC, 1,
1605                  FRF_AB_MD_GC, 0);
1606     ef4_writeo(efx, &reg, FR_AB_MD_CS);
1607 
1608     /* Wait for data to be written */
1609     rc = falcon_gmii_wait(efx);
1610     if (rc) {
1611         /* Abort the write operation */
1612         EF4_POPULATE_OWORD_2(reg,
1613                      FRF_AB_MD_WRC, 0,
1614                      FRF_AB_MD_GC, 1);
1615         ef4_writeo(efx, &reg, FR_AB_MD_CS);
1616         udelay(10);
1617     }
1618 
1619 out:
1620     mutex_unlock(&nic_data->mdio_lock);
1621     return rc;
1622 }
1623 
1624 /* Read an MDIO register of a PHY connected to Falcon. */
1625 static int falcon_mdio_read(struct net_device *net_dev,
1626                 int prtad, int devad, u16 addr)
1627 {
1628     struct ef4_nic *efx = netdev_priv(net_dev);
1629     struct falcon_nic_data *nic_data = efx->nic_data;
1630     ef4_oword_t reg;
1631     int rc;
1632 
1633     mutex_lock(&nic_data->mdio_lock);
1634 
1635     /* Check MDIO not currently being accessed */
1636     rc = falcon_gmii_wait(efx);
1637     if (rc)
1638         goto out;
1639 
1640     EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641     ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1642 
1643     EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644                  FRF_AB_MD_DEV_ADR, devad);
1645     ef4_writeo(efx, &reg, FR_AB_MD_ID);
1646 
1647     /* Request data to be read */
1648     EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649     ef4_writeo(efx, &reg, FR_AB_MD_CS);
1650 
1651     /* Wait for data to become available */
1652     rc = falcon_gmii_wait(efx);
1653     if (rc == 0) {
1654         ef4_reado(efx, &reg, FR_AB_MD_RXD);
1655         rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656         netif_vdbg(efx, hw, efx->net_dev,
1657                "read from MDIO %d register %d.%d, got %04x\n",
1658                prtad, devad, addr, rc);
1659     } else {
1660         /* Abort the read operation */
1661         EF4_POPULATE_OWORD_2(reg,
1662                      FRF_AB_MD_RIC, 0,
1663                      FRF_AB_MD_GC, 1);
1664         ef4_writeo(efx, &reg, FR_AB_MD_CS);
1665 
1666         netif_dbg(efx, hw, efx->net_dev,
1667               "read from MDIO %d register %d.%d, got error %d\n",
1668               prtad, devad, addr, rc);
1669     }
1670 
1671 out:
1672     mutex_unlock(&nic_data->mdio_lock);
1673     return rc;
1674 }
1675 
1676 /* This call is responsible for hooking in the MAC and PHY operations */
1677 static int falcon_probe_port(struct ef4_nic *efx)
1678 {
1679     struct falcon_nic_data *nic_data = efx->nic_data;
1680     int rc;
1681 
1682     switch (efx->phy_type) {
1683     case PHY_TYPE_SFX7101:
1684         efx->phy_op = &falcon_sfx7101_phy_ops;
1685         break;
1686     case PHY_TYPE_QT2022C2:
1687     case PHY_TYPE_QT2025C:
1688         efx->phy_op = &falcon_qt202x_phy_ops;
1689         break;
1690     case PHY_TYPE_TXC43128:
1691         efx->phy_op = &falcon_txc_phy_ops;
1692         break;
1693     default:
1694         netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695               efx->phy_type);
1696         return -ENODEV;
1697     }
1698 
1699     /* Fill out MDIO structure and loopback modes */
1700     mutex_init(&nic_data->mdio_lock);
1701     efx->mdio.mdio_read = falcon_mdio_read;
1702     efx->mdio.mdio_write = falcon_mdio_write;
1703     rc = efx->phy_op->probe(efx);
1704     if (rc != 0)
1705         return rc;
1706 
1707     /* Initial assumption */
1708     efx->link_state.speed = 10000;
1709     efx->link_state.fd = true;
1710 
1711     /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1713         efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1714     else
1715         efx->wanted_fc = EF4_FC_RX;
1716     if (efx->mdio.mmds & MDIO_DEVS_AN)
1717         efx->wanted_fc |= EF4_FC_AUTO;
1718 
1719     /* Allocate buffer for stats */
1720     rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1721                   FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722     if (rc)
1723         return rc;
1724     netif_dbg(efx, probe, efx->net_dev,
1725           "stats buffer at %llx (virt %p phys %llx)\n",
1726           (u64)efx->stats_buffer.dma_addr,
1727           efx->stats_buffer.addr,
1728           (u64)virt_to_phys(efx->stats_buffer.addr));
1729 
1730     return 0;
1731 }
1732 
1733 static void falcon_remove_port(struct ef4_nic *efx)
1734 {
1735     efx->phy_op->remove(efx);
1736     ef4_nic_free_buffer(efx, &efx->stats_buffer);
1737 }
1738 
1739 /* Global events are basically PHY events */
1740 static bool
1741 falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1742 {
1743     struct ef4_nic *efx = channel->efx;
1744     struct falcon_nic_data *nic_data = efx->nic_data;
1745 
1746     if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747         EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748         EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749         /* Ignored */
1750         return true;
1751 
1752     if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1753         EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754         nic_data->xmac_poll_required = true;
1755         return true;
1756     }
1757 
1758     if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1759         EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760         EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761         netif_err(efx, rx_err, efx->net_dev,
1762               "channel %d seen global RX_RESET event. Resetting.\n",
1763               channel->channel);
1764 
1765         atomic_inc(&efx->rx_reset);
1766         ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1767                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768         return true;
1769     }
1770 
1771     return false;
1772 }
1773 
1774 /**************************************************************************
1775  *
1776  * Falcon test code
1777  *
1778  **************************************************************************/
1779 
1780 static int
1781 falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1782 {
1783     struct falcon_nic_data *nic_data = efx->nic_data;
1784     struct falcon_nvconfig *nvconfig;
1785     struct falcon_spi_device *spi;
1786     void *region;
1787     int rc, magic_num, struct_ver;
1788     __le16 *word, *limit;
1789     u32 csum;
1790 
1791     if (falcon_spi_present(&nic_data->spi_flash))
1792         spi = &nic_data->spi_flash;
1793     else if (falcon_spi_present(&nic_data->spi_eeprom))
1794         spi = &nic_data->spi_eeprom;
1795     else
1796         return -EINVAL;
1797 
1798     region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799     if (!region)
1800         return -ENOMEM;
1801     nvconfig = region + FALCON_NVCONFIG_OFFSET;
1802 
1803     mutex_lock(&nic_data->spi_lock);
1804     rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805     mutex_unlock(&nic_data->spi_lock);
1806     if (rc) {
1807         netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808               falcon_spi_present(&nic_data->spi_flash) ?
1809               "flash" : "EEPROM");
1810         rc = -EIO;
1811         goto out;
1812     }
1813 
1814     magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815     struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1816 
1817     rc = -EINVAL;
1818     if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819         netif_err(efx, hw, efx->net_dev,
1820               "NVRAM bad magic 0x%x\n", magic_num);
1821         goto out;
1822     }
1823     if (struct_ver < 2) {
1824         netif_err(efx, hw, efx->net_dev,
1825               "NVRAM has ancient version 0x%x\n", struct_ver);
1826         goto out;
1827     } else if (struct_ver < 4) {
1828         word = &nvconfig->board_magic_num;
1829         limit = (__le16 *) (nvconfig + 1);
1830     } else {
1831         word = region;
1832         limit = region + FALCON_NVCONFIG_END;
1833     }
1834     for (csum = 0; word < limit; ++word)
1835         csum += le16_to_cpu(*word);
1836 
1837     if (~csum & 0xffff) {
1838         netif_err(efx, hw, efx->net_dev,
1839               "NVRAM has incorrect checksum\n");
1840         goto out;
1841     }
1842 
1843     rc = 0;
1844     if (nvconfig_out)
1845         memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1846 
1847  out:
1848     kfree(region);
1849     return rc;
1850 }
1851 
1852 static int falcon_test_nvram(struct ef4_nic *efx)
1853 {
1854     return falcon_read_nvram(efx, NULL);
1855 }
1856 
1857 static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1858     { FR_AZ_ADR_REGION,
1859       EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860     { FR_AZ_RX_CFG,
1861       EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862     { FR_AZ_TX_CFG,
1863       EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864     { FR_AZ_TX_RESERVED,
1865       EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866     { FR_AB_MAC_CTRL,
1867       EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868     { FR_AZ_SRM_TX_DC_CFG,
1869       EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870     { FR_AZ_RX_DC_CFG,
1871       EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872     { FR_AZ_RX_DC_PF_WM,
1873       EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874     { FR_BZ_DP_CTRL,
1875       EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876     { FR_AB_GM_CFG2,
1877       EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878     { FR_AB_GMF_CFG0,
1879       EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880     { FR_AB_XM_GLB_CFG,
1881       EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882     { FR_AB_XM_TX_CFG,
1883       EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884     { FR_AB_XM_RX_CFG,
1885       EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886     { FR_AB_XM_RX_PARAM,
1887       EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888     { FR_AB_XM_FC,
1889       EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890     { FR_AB_XM_ADR_LO,
1891       EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892     { FR_AB_XX_SD_CTL,
1893       EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894 };
1895 
1896 static int
1897 falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1898 {
1899     enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900     int rc, rc2;
1901 
1902     mutex_lock(&efx->mac_lock);
1903     if (efx->loopback_modes) {
1904         /* We need the 312 clock from the PHY to test the XMAC
1905          * registers, so move into XGMII loopback if available */
1906         if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907             efx->loopback_mode = LOOPBACK_XGMII;
1908         else
1909             efx->loopback_mode = __ffs(efx->loopback_modes);
1910     }
1911     __ef4_reconfigure_port(efx);
1912     mutex_unlock(&efx->mac_lock);
1913 
1914     ef4_reset_down(efx, reset_method);
1915 
1916     tests->registers =
1917         ef4_farch_test_registers(efx, falcon_b0_register_tests,
1918                      ARRAY_SIZE(falcon_b0_register_tests))
1919         ? -1 : 1;
1920 
1921     rc = falcon_reset_hw(efx, reset_method);
1922     rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1923     return rc ? rc : rc2;
1924 }
1925 
1926 /**************************************************************************
1927  *
1928  * Device reset
1929  *
1930  **************************************************************************
1931  */
1932 
1933 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1934 {
1935     switch (reason) {
1936     case RESET_TYPE_RX_RECOVERY:
1937     case RESET_TYPE_DMA_ERROR:
1938     case RESET_TYPE_TX_SKIP:
1939         /* These can occasionally occur due to hardware bugs.
1940          * We try to reset without disrupting the link.
1941          */
1942         return RESET_TYPE_INVISIBLE;
1943     default:
1944         return RESET_TYPE_ALL;
1945     }
1946 }
1947 
1948 static int falcon_map_reset_flags(u32 *flags)
1949 {
1950     enum {
1951         FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952                       ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953         FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954         FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1955     };
1956 
1957     if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958         *flags &= ~FALCON_RESET_WORLD;
1959         return RESET_TYPE_WORLD;
1960     }
1961 
1962     if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963         *flags &= ~FALCON_RESET_ALL;
1964         return RESET_TYPE_ALL;
1965     }
1966 
1967     if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968         *flags &= ~FALCON_RESET_INVISIBLE;
1969         return RESET_TYPE_INVISIBLE;
1970     }
1971 
1972     return -EINVAL;
1973 }
1974 
1975 /* Resets NIC to known state.  This routine must be called in process
1976  * context and is allowed to sleep. */
1977 static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1978 {
1979     struct falcon_nic_data *nic_data = efx->nic_data;
1980     ef4_oword_t glb_ctl_reg_ker;
1981     int rc;
1982 
1983     netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984           RESET_TYPE(method));
1985 
1986     /* Initiate device reset */
1987     if (method == RESET_TYPE_WORLD) {
1988         rc = pci_save_state(efx->pci_dev);
1989         if (rc) {
1990             netif_err(efx, drv, efx->net_dev,
1991                   "failed to backup PCI state of primary "
1992                   "function prior to hardware reset\n");
1993             goto fail1;
1994         }
1995         if (ef4_nic_is_dual_func(efx)) {
1996             rc = pci_save_state(nic_data->pci_dev2);
1997             if (rc) {
1998                 netif_err(efx, drv, efx->net_dev,
1999                       "failed to backup PCI state of "
2000                       "secondary function prior to "
2001                       "hardware reset\n");
2002                 goto fail2;
2003             }
2004         }
2005 
2006         EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007                      FRF_AB_EXT_PHY_RST_DUR,
2008                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2009                      FRF_AB_SWRST, 1);
2010     } else {
2011         EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012                      /* exclude PHY from "invisible" reset */
2013                      FRF_AB_EXT_PHY_RST_CTL,
2014                      method == RESET_TYPE_INVISIBLE,
2015                      /* exclude EEPROM/flash and PCIe */
2016                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2017                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018                      FRF_AB_PCIE_SD_RST_CTL, 1,
2019                      FRF_AB_EE_RST_CTL, 1,
2020                      FRF_AB_EXT_PHY_RST_DUR,
2021                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2022                      FRF_AB_SWRST, 1);
2023     }
2024     ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2025 
2026     netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027     schedule_timeout_uninterruptible(HZ / 20);
2028 
2029     /* Restore PCI configuration if needed */
2030     if (method == RESET_TYPE_WORLD) {
2031         if (ef4_nic_is_dual_func(efx))
2032             pci_restore_state(nic_data->pci_dev2);
2033         pci_restore_state(efx->pci_dev);
2034         netif_dbg(efx, drv, efx->net_dev,
2035               "successfully restored PCI config\n");
2036     }
2037 
2038     /* Assert that reset complete */
2039     ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040     if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041         rc = -ETIMEDOUT;
2042         netif_err(efx, hw, efx->net_dev,
2043               "timed out waiting for hardware reset\n");
2044         goto fail3;
2045     }
2046     netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2047 
2048     return 0;
2049 
2050     /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051 fail2:
2052     pci_restore_state(efx->pci_dev);
2053 fail1:
2054 fail3:
2055     return rc;
2056 }
2057 
2058 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2059 {
2060     struct falcon_nic_data *nic_data = efx->nic_data;
2061     int rc;
2062 
2063     mutex_lock(&nic_data->spi_lock);
2064     rc = __falcon_reset_hw(efx, method);
2065     mutex_unlock(&nic_data->spi_lock);
2066 
2067     return rc;
2068 }
2069 
2070 static void falcon_monitor(struct ef4_nic *efx)
2071 {
2072     bool link_changed;
2073     int rc;
2074 
2075     BUG_ON(!mutex_is_locked(&efx->mac_lock));
2076 
2077     rc = falcon_board(efx)->type->monitor(efx);
2078     if (rc) {
2079         netif_err(efx, hw, efx->net_dev,
2080               "Board sensor %s; shutting down PHY\n",
2081               (rc == -ERANGE) ? "reported fault" : "failed");
2082         efx->phy_mode |= PHY_MODE_LOW_POWER;
2083         rc = __ef4_reconfigure_port(efx);
2084         WARN_ON(rc);
2085     }
2086 
2087     if (LOOPBACK_INTERNAL(efx))
2088         link_changed = falcon_loopback_link_poll(efx);
2089     else
2090         link_changed = efx->phy_op->poll(efx);
2091 
2092     if (link_changed) {
2093         falcon_stop_nic_stats(efx);
2094         falcon_deconfigure_mac_wrapper(efx);
2095 
2096         falcon_reset_macs(efx);
2097         rc = falcon_reconfigure_xmac(efx);
2098         BUG_ON(rc);
2099 
2100         falcon_start_nic_stats(efx);
2101 
2102         ef4_link_status_changed(efx);
2103     }
2104 
2105     falcon_poll_xmac(efx);
2106 }
2107 
2108 /* Zeroes out the SRAM contents.  This routine must be called in
2109  * process context and is allowed to sleep.
2110  */
2111 static int falcon_reset_sram(struct ef4_nic *efx)
2112 {
2113     ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114     int count;
2115 
2116     /* Set the SRAM wake/sleep GPIO appropriately. */
2117     ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118     EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119     EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120     ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121 
2122     /* Initiate SRAM reset */
2123     EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124                  FRF_AZ_SRM_INIT_EN, 1,
2125                  FRF_AZ_SRM_NB_SZ, 0);
2126     ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2127 
2128     /* Wait for SRAM reset to complete */
2129     count = 0;
2130     do {
2131         netif_dbg(efx, hw, efx->net_dev,
2132               "waiting for SRAM reset (attempt %d)...\n", count);
2133 
2134         /* SRAM reset is slow; expect around 16ms */
2135         schedule_timeout_uninterruptible(HZ / 50);
2136 
2137         /* Check for reset complete */
2138         ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139         if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140             netif_dbg(efx, hw, efx->net_dev,
2141                   "SRAM reset complete\n");
2142 
2143             return 0;
2144         }
2145     } while (++count < 20); /* wait up to 0.4 sec */
2146 
2147     netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148     return -ETIMEDOUT;
2149 }
2150 
2151 static void falcon_spi_device_init(struct ef4_nic *efx,
2152                   struct falcon_spi_device *spi_device,
2153                   unsigned int device_id, u32 device_type)
2154 {
2155     if (device_type != 0) {
2156         spi_device->device_id = device_id;
2157         spi_device->size =
2158             1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159         spi_device->addr_len =
2160             SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161         spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162                          spi_device->addr_len == 1);
2163         spi_device->erase_command =
2164             SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165         spi_device->erase_size =
2166             1 << SPI_DEV_TYPE_FIELD(device_type,
2167                         SPI_DEV_TYPE_ERASE_SIZE);
2168         spi_device->block_size =
2169             1 << SPI_DEV_TYPE_FIELD(device_type,
2170                         SPI_DEV_TYPE_BLOCK_SIZE);
2171     } else {
2172         spi_device->size = 0;
2173     }
2174 }
2175 
2176 /* Extract non-volatile configuration */
2177 static int falcon_probe_nvconfig(struct ef4_nic *efx)
2178 {
2179     struct falcon_nic_data *nic_data = efx->nic_data;
2180     struct falcon_nvconfig *nvconfig;
2181     int rc;
2182 
2183     nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184     if (!nvconfig)
2185         return -ENOMEM;
2186 
2187     rc = falcon_read_nvram(efx, nvconfig);
2188     if (rc)
2189         goto out;
2190 
2191     efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192     efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2193 
2194     if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195         falcon_spi_device_init(
2196             efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197             le32_to_cpu(nvconfig->board_v3
2198                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199         falcon_spi_device_init(
2200             efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201             le32_to_cpu(nvconfig->board_v3
2202                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2203     }
2204 
2205     /* Read the MAC addresses */
2206     ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2207 
2208     netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209           efx->phy_type, efx->mdio.prtad);
2210 
2211     rc = falcon_probe_board(efx,
2212                 le16_to_cpu(nvconfig->board_v2.board_revision));
2213 out:
2214     kfree(nvconfig);
2215     return rc;
2216 }
2217 
2218 static int falcon_dimension_resources(struct ef4_nic *efx)
2219 {
2220     efx->rx_dc_base = 0x20000;
2221     efx->tx_dc_base = 0x26000;
2222     return 0;
2223 }
2224 
2225 /* Probe all SPI devices on the NIC */
2226 static void falcon_probe_spi_devices(struct ef4_nic *efx)
2227 {
2228     struct falcon_nic_data *nic_data = efx->nic_data;
2229     ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230     int boot_dev;
2231 
2232     ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233     ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234     ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235 
2236     if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237         boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238                 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239         netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240               boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241               "flash" : "EEPROM");
2242     } else {
2243         /* Disable VPD and set clock dividers to safe
2244          * values for initial programming. */
2245         boot_dev = -1;
2246         netif_dbg(efx, probe, efx->net_dev,
2247               "Booted from internal ASIC settings;"
2248               " setting SPI config\n");
2249         EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250                      /* 125 MHz / 7 ~= 20 MHz */
2251                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2252                      /* 125 MHz / 63 ~= 2 MHz */
2253                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2254         ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2255     }
2256 
2257     mutex_init(&nic_data->spi_lock);
2258 
2259     if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260         falcon_spi_device_init(efx, &nic_data->spi_flash,
2261                        FFE_AB_SPI_DEVICE_FLASH,
2262                        default_flash_type);
2263     if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264         falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265                        FFE_AB_SPI_DEVICE_EEPROM,
2266                        large_eeprom_type);
2267 }
2268 
2269 static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2270 {
2271     return 0x20000;
2272 }
2273 
2274 static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2275 {
2276     /* Map everything up to and including the RSS indirection table.
2277      * The PCI core takes care of mapping the MSI-X tables.
2278      */
2279     return FR_BZ_RX_INDIRECTION_TBL +
2280         FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2281 }
2282 
2283 static int falcon_probe_nic(struct ef4_nic *efx)
2284 {
2285     struct falcon_nic_data *nic_data;
2286     struct falcon_board *board;
2287     int rc;
2288 
2289     efx->primary = efx; /* only one usable function per controller */
2290 
2291     /* Allocate storage for hardware specific data */
2292     nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293     if (!nic_data)
2294         return -ENOMEM;
2295     efx->nic_data = nic_data;
2296     nic_data->efx = efx;
2297 
2298     rc = -ENODEV;
2299 
2300     if (ef4_farch_fpga_ver(efx) != 0) {
2301         netif_err(efx, probe, efx->net_dev,
2302               "Falcon FPGA not supported\n");
2303         goto fail1;
2304     }
2305 
2306     if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2307         ef4_oword_t nic_stat;
2308         struct pci_dev *dev;
2309         u8 pci_rev = efx->pci_dev->revision;
2310 
2311         if ((pci_rev == 0xff) || (pci_rev == 0)) {
2312             netif_err(efx, probe, efx->net_dev,
2313                   "Falcon rev A0 not supported\n");
2314             goto fail1;
2315         }
2316         ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2317         if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2318             netif_err(efx, probe, efx->net_dev,
2319                   "Falcon rev A1 1G not supported\n");
2320             goto fail1;
2321         }
2322         if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2323             netif_err(efx, probe, efx->net_dev,
2324                   "Falcon rev A1 PCI-X not supported\n");
2325             goto fail1;
2326         }
2327 
2328         dev = pci_dev_get(efx->pci_dev);
2329         while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2330                          PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2331                          dev))) {
2332             if (dev->bus == efx->pci_dev->bus &&
2333                 dev->devfn == efx->pci_dev->devfn + 1) {
2334                 nic_data->pci_dev2 = dev;
2335                 break;
2336             }
2337         }
2338         if (!nic_data->pci_dev2) {
2339             netif_err(efx, probe, efx->net_dev,
2340                   "failed to find secondary function\n");
2341             rc = -ENODEV;
2342             goto fail2;
2343         }
2344     }
2345 
2346     /* Now we can reset the NIC */
2347     rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2348     if (rc) {
2349         netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2350         goto fail3;
2351     }
2352 
2353     /* Allocate memory for INT_KER */
2354     rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2355                   GFP_KERNEL);
2356     if (rc)
2357         goto fail4;
2358     BUG_ON(efx->irq_status.dma_addr & 0x0f);
2359 
2360     netif_dbg(efx, probe, efx->net_dev,
2361           "INT_KER at %llx (virt %p phys %llx)\n",
2362           (u64)efx->irq_status.dma_addr,
2363           efx->irq_status.addr,
2364           (u64)virt_to_phys(efx->irq_status.addr));
2365 
2366     falcon_probe_spi_devices(efx);
2367 
2368     /* Read in the non-volatile configuration */
2369     rc = falcon_probe_nvconfig(efx);
2370     if (rc) {
2371         if (rc == -EINVAL)
2372             netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2373         goto fail5;
2374     }
2375 
2376     efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2377                  EF4_MAX_CHANNELS);
2378     efx->max_tx_channels = efx->max_channels;
2379     efx->timer_quantum_ns = 4968; /* 621 cycles */
2380     efx->timer_max_ns = efx->type->timer_period_max *
2381                 efx->timer_quantum_ns;
2382 
2383     /* Initialise I2C adapter */
2384     board = falcon_board(efx);
2385     board->i2c_adap.owner = THIS_MODULE;
2386     board->i2c_data = falcon_i2c_bit_operations;
2387     board->i2c_data.data = efx;
2388     board->i2c_adap.algo_data = &board->i2c_data;
2389     board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2390     strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2391         sizeof(board->i2c_adap.name));
2392     rc = i2c_bit_add_bus(&board->i2c_adap);
2393     if (rc)
2394         goto fail5;
2395 
2396     rc = falcon_board(efx)->type->init(efx);
2397     if (rc) {
2398         netif_err(efx, probe, efx->net_dev,
2399               "failed to initialise board\n");
2400         goto fail6;
2401     }
2402 
2403     nic_data->stats_disable_count = 1;
2404     timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
2405 
2406     return 0;
2407 
2408  fail6:
2409     i2c_del_adapter(&board->i2c_adap);
2410     memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411  fail5:
2412     ef4_nic_free_buffer(efx, &efx->irq_status);
2413  fail4:
2414  fail3:
2415     if (nic_data->pci_dev2) {
2416         pci_dev_put(nic_data->pci_dev2);
2417         nic_data->pci_dev2 = NULL;
2418     }
2419  fail2:
2420  fail1:
2421     kfree(efx->nic_data);
2422     return rc;
2423 }
2424 
2425 static void falcon_init_rx_cfg(struct ef4_nic *efx)
2426 {
2427     /* RX control FIFO thresholds (32 entries) */
2428     const unsigned ctrl_xon_thr = 20;
2429     const unsigned ctrl_xoff_thr = 25;
2430     ef4_oword_t reg;
2431 
2432     ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2433     if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2434         /* Data FIFO size is 5.5K.  The RX DMA engine only
2435          * supports scattering for user-mode queues, but will
2436          * split DMA writes at intervals of RX_USR_BUF_SIZE
2437          * (32-byte units) even for kernel-mode queues.  We
2438          * set it to be so large that that never happens.
2439          */
2440         EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441         EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442                     (3 * 4096) >> 5);
2443         EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444         EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445         EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446         EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447     } else {
2448         /* Data FIFO size is 80K; register fields moved */
2449         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451                     EF4_RX_USR_BUF_SIZE >> 5);
2452         /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2458 
2459         /* Enable hash insertion. This is broken for the
2460          * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461          * IPv4 hashes. */
2462         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464         EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2465     }
2466     /* Always enable XOFF signal from RX FIFO.  We enable
2467      * or disable transmission of pause frames at the MAC. */
2468     EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469     ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2470 }
2471 
2472 /* This call performs hardware-specific global initialisation, such as
2473  * defining the descriptor cache sizes and number of RSS channels.
2474  * It does not set up any buffers, descriptor rings or event queues.
2475  */
2476 static int falcon_init_nic(struct ef4_nic *efx)
2477 {
2478     ef4_oword_t temp;
2479     int rc;
2480 
2481     /* Use on-chip SRAM */
2482     ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2483     EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484     ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2485 
2486     rc = falcon_reset_sram(efx);
2487     if (rc)
2488         return rc;
2489 
2490     /* Clear the parity enables on the TX data fifos as
2491      * they produce false parity errors because of timing issues
2492      */
2493     if (EF4_WORKAROUND_5129(efx)) {
2494         ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495         EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496         ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2497     }
2498 
2499     if (EF4_WORKAROUND_7244(efx)) {
2500         ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501         EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502         EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503         EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504         EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505         ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2506     }
2507 
2508     /* XXX This is documented only for Falcon A0/A1 */
2509     /* Setup RX.  Wait for descriptor is broken and must
2510      * be disabled.  RXDP recovery shouldn't be needed, but is.
2511      */
2512     ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513     EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514     EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515     if (EF4_WORKAROUND_5583(efx))
2516         EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517     ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2518 
2519     /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520      * descriptors (which is bad).
2521      */
2522     ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2523     EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524     ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2525 
2526     falcon_init_rx_cfg(efx);
2527 
2528     if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2529         falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2530 
2531         /* Set destination of both TX and RX Flush events */
2532         EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533         ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2534     }
2535 
2536     ef4_farch_init_common(efx);
2537 
2538     return 0;
2539 }
2540 
2541 static void falcon_remove_nic(struct ef4_nic *efx)
2542 {
2543     struct falcon_nic_data *nic_data = efx->nic_data;
2544     struct falcon_board *board = falcon_board(efx);
2545 
2546     board->type->fini(efx);
2547 
2548     /* Remove I2C adapter and clear it in preparation for a retry */
2549     i2c_del_adapter(&board->i2c_adap);
2550     memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2551 
2552     ef4_nic_free_buffer(efx, &efx->irq_status);
2553 
2554     __falcon_reset_hw(efx, RESET_TYPE_ALL);
2555 
2556     /* Release the second function after the reset */
2557     if (nic_data->pci_dev2) {
2558         pci_dev_put(nic_data->pci_dev2);
2559         nic_data->pci_dev2 = NULL;
2560     }
2561 
2562     /* Tear down the private nic state */
2563     kfree(efx->nic_data);
2564     efx->nic_data = NULL;
2565 }
2566 
2567 static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2568 {
2569     return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570                       falcon_stat_mask, names);
2571 }
2572 
2573 static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2574                       struct rtnl_link_stats64 *core_stats)
2575 {
2576     struct falcon_nic_data *nic_data = efx->nic_data;
2577     u64 *stats = nic_data->stats;
2578     ef4_oword_t cnt;
2579 
2580     if (!nic_data->stats_disable_count) {
2581         ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582         stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583             EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2584 
2585         if (nic_data->stats_pending &&
2586             FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587             nic_data->stats_pending = false;
2588             rmb(); /* read the done flag before the stats */
2589             ef4_nic_update_stats(
2590                 falcon_stat_desc, FALCON_STAT_COUNT,
2591                 falcon_stat_mask,
2592                 stats, efx->stats_buffer.addr, true);
2593         }
2594 
2595         /* Update derived statistic */
2596         ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597                      stats[FALCON_STAT_rx_bytes] -
2598                      stats[FALCON_STAT_rx_good_bytes] -
2599                      stats[FALCON_STAT_rx_control] * 64);
2600         ef4_update_sw_stats(efx, stats);
2601     }
2602 
2603     if (full_stats)
2604         memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2605 
2606     if (core_stats) {
2607         core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608         core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609         core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610         core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611         core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612                      stats[GENERIC_STAT_rx_nodesc_trunc] +
2613                      stats[GENERIC_STAT_rx_noskb_drops];
2614         core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615         core_stats->rx_length_errors =
2616             stats[FALCON_STAT_rx_gtjumbo] +
2617             stats[FALCON_STAT_rx_length_error];
2618         core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619         core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620         core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2621 
2622         core_stats->rx_errors = (core_stats->rx_length_errors +
2623                      core_stats->rx_crc_errors +
2624                      core_stats->rx_frame_errors +
2625                      stats[FALCON_STAT_rx_symbol_error]);
2626     }
2627 
2628     return FALCON_STAT_COUNT;
2629 }
2630 
2631 void falcon_start_nic_stats(struct ef4_nic *efx)
2632 {
2633     struct falcon_nic_data *nic_data = efx->nic_data;
2634 
2635     spin_lock_bh(&efx->stats_lock);
2636     if (--nic_data->stats_disable_count == 0)
2637         falcon_stats_request(efx);
2638     spin_unlock_bh(&efx->stats_lock);
2639 }
2640 
2641 /* We don't acutally pull stats on falcon. Wait 10ms so that
2642  * they arrive when we call this just after start_stats
2643  */
2644 static void falcon_pull_nic_stats(struct ef4_nic *efx)
2645 {
2646     msleep(10);
2647 }
2648 
2649 void falcon_stop_nic_stats(struct ef4_nic *efx)
2650 {
2651     struct falcon_nic_data *nic_data = efx->nic_data;
2652     int i;
2653 
2654     might_sleep();
2655 
2656     spin_lock_bh(&efx->stats_lock);
2657     ++nic_data->stats_disable_count;
2658     spin_unlock_bh(&efx->stats_lock);
2659 
2660     del_timer_sync(&nic_data->stats_timer);
2661 
2662     /* Wait enough time for the most recent transfer to
2663      * complete. */
2664     for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665         if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666             break;
2667         msleep(1);
2668     }
2669 
2670     spin_lock_bh(&efx->stats_lock);
2671     falcon_stats_complete(efx);
2672     spin_unlock_bh(&efx->stats_lock);
2673 }
2674 
2675 static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2676 {
2677     falcon_board(efx)->type->set_id_led(efx, mode);
2678 }
2679 
2680 /**************************************************************************
2681  *
2682  * Wake on LAN
2683  *
2684  **************************************************************************
2685  */
2686 
2687 static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2688 {
2689     wol->supported = 0;
2690     wol->wolopts = 0;
2691     memset(&wol->sopass, 0, sizeof(wol->sopass));
2692 }
2693 
2694 static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2695 {
2696     if (type != 0)
2697         return -EINVAL;
2698     return 0;
2699 }
2700 
2701 /**************************************************************************
2702  *
2703  * Revision-dependent attributes used by efx.c and nic.c
2704  *
2705  **************************************************************************
2706  */
2707 
2708 const struct ef4_nic_type falcon_a1_nic_type = {
2709     .mem_bar = EF4_MEM_BAR,
2710     .mem_map_size = falcon_a1_mem_map_size,
2711     .probe = falcon_probe_nic,
2712     .remove = falcon_remove_nic,
2713     .init = falcon_init_nic,
2714     .dimension_resources = falcon_dimension_resources,
2715     .fini = falcon_irq_ack_a1,
2716     .monitor = falcon_monitor,
2717     .map_reset_reason = falcon_map_reset_reason,
2718     .map_reset_flags = falcon_map_reset_flags,
2719     .reset = falcon_reset_hw,
2720     .probe_port = falcon_probe_port,
2721     .remove_port = falcon_remove_port,
2722     .handle_global_event = falcon_handle_global_event,
2723     .fini_dmaq = ef4_farch_fini_dmaq,
2724     .prepare_flush = falcon_prepare_flush,
2725     .finish_flush = ef4_port_dummy_op_void,
2726     .prepare_flr = ef4_port_dummy_op_void,
2727     .finish_flr = ef4_farch_finish_flr,
2728     .describe_stats = falcon_describe_nic_stats,
2729     .update_stats = falcon_update_nic_stats,
2730     .start_stats = falcon_start_nic_stats,
2731     .pull_stats = falcon_pull_nic_stats,
2732     .stop_stats = falcon_stop_nic_stats,
2733     .set_id_led = falcon_set_id_led,
2734     .push_irq_moderation = falcon_push_irq_moderation,
2735     .reconfigure_port = falcon_reconfigure_port,
2736     .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2737     .reconfigure_mac = falcon_reconfigure_xmac,
2738     .check_mac_fault = falcon_xmac_check_fault,
2739     .get_wol = falcon_get_wol,
2740     .set_wol = falcon_set_wol,
2741     .resume_wol = ef4_port_dummy_op_void,
2742     .test_nvram = falcon_test_nvram,
2743     .irq_enable_master = ef4_farch_irq_enable_master,
2744     .irq_test_generate = ef4_farch_irq_test_generate,
2745     .irq_disable_non_ev = ef4_farch_irq_disable_master,
2746     .irq_handle_msi = ef4_farch_msi_interrupt,
2747     .irq_handle_legacy = falcon_legacy_interrupt_a1,
2748     .tx_probe = ef4_farch_tx_probe,
2749     .tx_init = ef4_farch_tx_init,
2750     .tx_remove = ef4_farch_tx_remove,
2751     .tx_write = ef4_farch_tx_write,
2752     .tx_limit_len = ef4_farch_tx_limit_len,
2753     .rx_push_rss_config = dummy_rx_push_rss_config,
2754     .rx_probe = ef4_farch_rx_probe,
2755     .rx_init = ef4_farch_rx_init,
2756     .rx_remove = ef4_farch_rx_remove,
2757     .rx_write = ef4_farch_rx_write,
2758     .rx_defer_refill = ef4_farch_rx_defer_refill,
2759     .ev_probe = ef4_farch_ev_probe,
2760     .ev_init = ef4_farch_ev_init,
2761     .ev_fini = ef4_farch_ev_fini,
2762     .ev_remove = ef4_farch_ev_remove,
2763     .ev_process = ef4_farch_ev_process,
2764     .ev_read_ack = ef4_farch_ev_read_ack,
2765     .ev_test_generate = ef4_farch_ev_test_generate,
2766 
2767     /* We don't expose the filter table on Falcon A1 as it is not
2768      * mapped into function 0, but these implementations still
2769      * work with a degenerate case of all tables set to size 0.
2770      */
2771     .filter_table_probe = ef4_farch_filter_table_probe,
2772     .filter_table_restore = ef4_farch_filter_table_restore,
2773     .filter_table_remove = ef4_farch_filter_table_remove,
2774     .filter_insert = ef4_farch_filter_insert,
2775     .filter_remove_safe = ef4_farch_filter_remove_safe,
2776     .filter_get_safe = ef4_farch_filter_get_safe,
2777     .filter_clear_rx = ef4_farch_filter_clear_rx,
2778     .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2779     .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2780     .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2781 
2782 #ifdef CONFIG_SFC_FALCON_MTD
2783     .mtd_probe = falcon_mtd_probe,
2784     .mtd_rename = falcon_mtd_rename,
2785     .mtd_read = falcon_mtd_read,
2786     .mtd_erase = falcon_mtd_erase,
2787     .mtd_write = falcon_mtd_write,
2788     .mtd_sync = falcon_mtd_sync,
2789 #endif
2790 
2791     .revision = EF4_REV_FALCON_A1,
2792     .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793     .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794     .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795     .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796     .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797     .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798     .rx_buffer_padding = 0x24,
2799     .can_rx_scatter = false,
2800     .max_interrupt_mode = EF4_INT_MODE_MSI,
2801     .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802     .offload_features = NETIF_F_IP_CSUM,
2803 };
2804 
2805 const struct ef4_nic_type falcon_b0_nic_type = {
2806     .mem_bar = EF4_MEM_BAR,
2807     .mem_map_size = falcon_b0_mem_map_size,
2808     .probe = falcon_probe_nic,
2809     .remove = falcon_remove_nic,
2810     .init = falcon_init_nic,
2811     .dimension_resources = falcon_dimension_resources,
2812     .fini = ef4_port_dummy_op_void,
2813     .monitor = falcon_monitor,
2814     .map_reset_reason = falcon_map_reset_reason,
2815     .map_reset_flags = falcon_map_reset_flags,
2816     .reset = falcon_reset_hw,
2817     .probe_port = falcon_probe_port,
2818     .remove_port = falcon_remove_port,
2819     .handle_global_event = falcon_handle_global_event,
2820     .fini_dmaq = ef4_farch_fini_dmaq,
2821     .prepare_flush = falcon_prepare_flush,
2822     .finish_flush = ef4_port_dummy_op_void,
2823     .prepare_flr = ef4_port_dummy_op_void,
2824     .finish_flr = ef4_farch_finish_flr,
2825     .describe_stats = falcon_describe_nic_stats,
2826     .update_stats = falcon_update_nic_stats,
2827     .start_stats = falcon_start_nic_stats,
2828     .pull_stats = falcon_pull_nic_stats,
2829     .stop_stats = falcon_stop_nic_stats,
2830     .set_id_led = falcon_set_id_led,
2831     .push_irq_moderation = falcon_push_irq_moderation,
2832     .reconfigure_port = falcon_reconfigure_port,
2833     .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2834     .reconfigure_mac = falcon_reconfigure_xmac,
2835     .check_mac_fault = falcon_xmac_check_fault,
2836     .get_wol = falcon_get_wol,
2837     .set_wol = falcon_set_wol,
2838     .resume_wol = ef4_port_dummy_op_void,
2839     .test_chip = falcon_b0_test_chip,
2840     .test_nvram = falcon_test_nvram,
2841     .irq_enable_master = ef4_farch_irq_enable_master,
2842     .irq_test_generate = ef4_farch_irq_test_generate,
2843     .irq_disable_non_ev = ef4_farch_irq_disable_master,
2844     .irq_handle_msi = ef4_farch_msi_interrupt,
2845     .irq_handle_legacy = ef4_farch_legacy_interrupt,
2846     .tx_probe = ef4_farch_tx_probe,
2847     .tx_init = ef4_farch_tx_init,
2848     .tx_remove = ef4_farch_tx_remove,
2849     .tx_write = ef4_farch_tx_write,
2850     .tx_limit_len = ef4_farch_tx_limit_len,
2851     .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2852     .rx_probe = ef4_farch_rx_probe,
2853     .rx_init = ef4_farch_rx_init,
2854     .rx_remove = ef4_farch_rx_remove,
2855     .rx_write = ef4_farch_rx_write,
2856     .rx_defer_refill = ef4_farch_rx_defer_refill,
2857     .ev_probe = ef4_farch_ev_probe,
2858     .ev_init = ef4_farch_ev_init,
2859     .ev_fini = ef4_farch_ev_fini,
2860     .ev_remove = ef4_farch_ev_remove,
2861     .ev_process = ef4_farch_ev_process,
2862     .ev_read_ack = ef4_farch_ev_read_ack,
2863     .ev_test_generate = ef4_farch_ev_test_generate,
2864     .filter_table_probe = ef4_farch_filter_table_probe,
2865     .filter_table_restore = ef4_farch_filter_table_restore,
2866     .filter_table_remove = ef4_farch_filter_table_remove,
2867     .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2868     .filter_insert = ef4_farch_filter_insert,
2869     .filter_remove_safe = ef4_farch_filter_remove_safe,
2870     .filter_get_safe = ef4_farch_filter_get_safe,
2871     .filter_clear_rx = ef4_farch_filter_clear_rx,
2872     .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2873     .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2874     .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2875 #ifdef CONFIG_RFS_ACCEL
2876     .filter_rfs_insert = ef4_farch_filter_rfs_insert,
2877     .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2878 #endif
2879 #ifdef CONFIG_SFC_FALCON_MTD
2880     .mtd_probe = falcon_mtd_probe,
2881     .mtd_rename = falcon_mtd_rename,
2882     .mtd_read = falcon_mtd_read,
2883     .mtd_erase = falcon_mtd_erase,
2884     .mtd_write = falcon_mtd_write,
2885     .mtd_sync = falcon_mtd_sync,
2886 #endif
2887 
2888     .revision = EF4_REV_FALCON_B0,
2889     .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2890     .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2891     .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2892     .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2893     .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2894     .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2895     .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2896     .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2897     .rx_buffer_padding = 0,
2898     .can_rx_scatter = true,
2899     .max_interrupt_mode = EF4_INT_MODE_MSIX,
2900     .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2901     .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2902     .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2903 };