Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2005-2006 Fen Systems Ltd.
0005  * Copyright 2005-2013 Solarflare Communications Inc.
0006  */
0007 
0008 #include <linux/module.h>
0009 #include <linux/pci.h>
0010 #include <linux/netdevice.h>
0011 #include <linux/etherdevice.h>
0012 #include <linux/delay.h>
0013 #include <linux/notifier.h>
0014 #include <linux/ip.h>
0015 #include <linux/tcp.h>
0016 #include <linux/in.h>
0017 #include <linux/ethtool.h>
0018 #include <linux/topology.h>
0019 #include <linux/gfp.h>
0020 #include <linux/aer.h>
0021 #include <linux/interrupt.h>
0022 #include "net_driver.h"
0023 #include "efx.h"
0024 #include "nic.h"
0025 #include "selftest.h"
0026 
0027 #include "workarounds.h"
0028 
0029 /**************************************************************************
0030  *
0031  * Type name strings
0032  *
0033  **************************************************************************
0034  */
0035 
0036 /* Loopback mode names (see LOOPBACK_MODE()) */
0037 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
0038 const char *const ef4_loopback_mode_names[] = {
0039     [LOOPBACK_NONE]     = "NONE",
0040     [LOOPBACK_DATA]     = "DATAPATH",
0041     [LOOPBACK_GMAC]     = "GMAC",
0042     [LOOPBACK_XGMII]    = "XGMII",
0043     [LOOPBACK_XGXS]     = "XGXS",
0044     [LOOPBACK_XAUI]     = "XAUI",
0045     [LOOPBACK_GMII]     = "GMII",
0046     [LOOPBACK_SGMII]    = "SGMII",
0047     [LOOPBACK_XGBR]     = "XGBR",
0048     [LOOPBACK_XFI]      = "XFI",
0049     [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
0050     [LOOPBACK_GMII_FAR] = "GMII_FAR",
0051     [LOOPBACK_SGMII_FAR]    = "SGMII_FAR",
0052     [LOOPBACK_XFI_FAR]  = "XFI_FAR",
0053     [LOOPBACK_GPHY]     = "GPHY",
0054     [LOOPBACK_PHYXS]    = "PHYXS",
0055     [LOOPBACK_PCS]      = "PCS",
0056     [LOOPBACK_PMAPMD]   = "PMA/PMD",
0057     [LOOPBACK_XPORT]    = "XPORT",
0058     [LOOPBACK_XGMII_WS] = "XGMII_WS",
0059     [LOOPBACK_XAUI_WS]  = "XAUI_WS",
0060     [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
0061     [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
0062     [LOOPBACK_GMII_WS]  = "GMII_WS",
0063     [LOOPBACK_XFI_WS]   = "XFI_WS",
0064     [LOOPBACK_XFI_WS_FAR]   = "XFI_WS_FAR",
0065     [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
0066 };
0067 
0068 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
0069 const char *const ef4_reset_type_names[] = {
0070     [RESET_TYPE_INVISIBLE]          = "INVISIBLE",
0071     [RESET_TYPE_ALL]                = "ALL",
0072     [RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
0073     [RESET_TYPE_WORLD]              = "WORLD",
0074     [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
0075     [RESET_TYPE_DATAPATH]           = "DATAPATH",
0076     [RESET_TYPE_DISABLE]            = "DISABLE",
0077     [RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
0078     [RESET_TYPE_INT_ERROR]          = "INT_ERROR",
0079     [RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
0080     [RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
0081     [RESET_TYPE_TX_SKIP]            = "TX_SKIP",
0082 };
0083 
0084 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
0085  * queued onto this work queue. This is not a per-nic work queue, because
0086  * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
0087  */
0088 static struct workqueue_struct *reset_workqueue;
0089 
0090 /* How often and how many times to poll for a reset while waiting for a
0091  * BIST that another function started to complete.
0092  */
0093 #define BIST_WAIT_DELAY_MS  100
0094 #define BIST_WAIT_DELAY_COUNT   100
0095 
0096 /**************************************************************************
0097  *
0098  * Configurable values
0099  *
0100  *************************************************************************/
0101 
0102 /*
0103  * Use separate channels for TX and RX events
0104  *
0105  * Set this to 1 to use separate channels for TX and RX. It allows us
0106  * to control interrupt affinity separately for TX and RX.
0107  *
0108  * This is only used in MSI-X interrupt mode
0109  */
0110 bool ef4_separate_tx_channels;
0111 module_param(ef4_separate_tx_channels, bool, 0444);
0112 MODULE_PARM_DESC(ef4_separate_tx_channels,
0113          "Use separate channels for TX and RX");
0114 
0115 /* This is the time (in jiffies) between invocations of the hardware
0116  * monitor.
0117  * On Falcon-based NICs, this will:
0118  * - Check the on-board hardware monitor;
0119  * - Poll the link state and reconfigure the hardware as necessary.
0120  * On Siena-based NICs for power systems with EEH support, this will give EEH a
0121  * chance to start.
0122  */
0123 static unsigned int ef4_monitor_interval = 1 * HZ;
0124 
0125 /* Initial interrupt moderation settings.  They can be modified after
0126  * module load with ethtool.
0127  *
0128  * The default for RX should strike a balance between increasing the
0129  * round-trip latency and reducing overhead.
0130  */
0131 static unsigned int rx_irq_mod_usec = 60;
0132 
0133 /* Initial interrupt moderation settings.  They can be modified after
0134  * module load with ethtool.
0135  *
0136  * This default is chosen to ensure that a 10G link does not go idle
0137  * while a TX queue is stopped after it has become full.  A queue is
0138  * restarted when it drops below half full.  The time this takes (assuming
0139  * worst case 3 descriptors per packet and 1024 descriptors) is
0140  *   512 / 3 * 1.2 = 205 usec.
0141  */
0142 static unsigned int tx_irq_mod_usec = 150;
0143 
0144 /* This is the first interrupt mode to try out of:
0145  * 0 => MSI-X
0146  * 1 => MSI
0147  * 2 => legacy
0148  */
0149 static unsigned int interrupt_mode;
0150 
0151 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
0152  * i.e. the number of CPUs among which we may distribute simultaneous
0153  * interrupt handling.
0154  *
0155  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
0156  * The default (0) means to assign an interrupt to each core.
0157  */
0158 static unsigned int rss_cpus;
0159 module_param(rss_cpus, uint, 0444);
0160 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
0161 
0162 static bool phy_flash_cfg;
0163 module_param(phy_flash_cfg, bool, 0644);
0164 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
0165 
0166 static unsigned irq_adapt_low_thresh = 8000;
0167 module_param(irq_adapt_low_thresh, uint, 0644);
0168 MODULE_PARM_DESC(irq_adapt_low_thresh,
0169          "Threshold score for reducing IRQ moderation");
0170 
0171 static unsigned irq_adapt_high_thresh = 16000;
0172 module_param(irq_adapt_high_thresh, uint, 0644);
0173 MODULE_PARM_DESC(irq_adapt_high_thresh,
0174          "Threshold score for increasing IRQ moderation");
0175 
0176 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
0177              NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
0178              NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
0179              NETIF_MSG_TX_ERR | NETIF_MSG_HW);
0180 module_param(debug, uint, 0);
0181 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
0182 
0183 /**************************************************************************
0184  *
0185  * Utility functions and prototypes
0186  *
0187  *************************************************************************/
0188 
0189 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
0190 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
0191 static void ef4_remove_channel(struct ef4_channel *channel);
0192 static void ef4_remove_channels(struct ef4_nic *efx);
0193 static const struct ef4_channel_type ef4_default_channel_type;
0194 static void ef4_remove_port(struct ef4_nic *efx);
0195 static void ef4_init_napi_channel(struct ef4_channel *channel);
0196 static void ef4_fini_napi(struct ef4_nic *efx);
0197 static void ef4_fini_napi_channel(struct ef4_channel *channel);
0198 static void ef4_fini_struct(struct ef4_nic *efx);
0199 static void ef4_start_all(struct ef4_nic *efx);
0200 static void ef4_stop_all(struct ef4_nic *efx);
0201 
0202 #define EF4_ASSERT_RESET_SERIALISED(efx)        \
0203     do {                        \
0204         if ((efx->state == STATE_READY) ||  \
0205             (efx->state == STATE_RECOVERY) ||   \
0206             (efx->state == STATE_DISABLED)) \
0207             ASSERT_RTNL();          \
0208     } while (0)
0209 
0210 static int ef4_check_disabled(struct ef4_nic *efx)
0211 {
0212     if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
0213         netif_err(efx, drv, efx->net_dev,
0214               "device is disabled due to earlier errors\n");
0215         return -EIO;
0216     }
0217     return 0;
0218 }
0219 
0220 /**************************************************************************
0221  *
0222  * Event queue processing
0223  *
0224  *************************************************************************/
0225 
0226 /* Process channel's event queue
0227  *
0228  * This function is responsible for processing the event queue of a
0229  * single channel.  The caller must guarantee that this function will
0230  * never be concurrently called more than once on the same channel,
0231  * though different channels may be being processed concurrently.
0232  */
0233 static int ef4_process_channel(struct ef4_channel *channel, int budget)
0234 {
0235     struct ef4_tx_queue *tx_queue;
0236     int spent;
0237 
0238     if (unlikely(!channel->enabled))
0239         return 0;
0240 
0241     ef4_for_each_channel_tx_queue(tx_queue, channel) {
0242         tx_queue->pkts_compl = 0;
0243         tx_queue->bytes_compl = 0;
0244     }
0245 
0246     spent = ef4_nic_process_eventq(channel, budget);
0247     if (spent && ef4_channel_has_rx_queue(channel)) {
0248         struct ef4_rx_queue *rx_queue =
0249             ef4_channel_get_rx_queue(channel);
0250 
0251         ef4_rx_flush_packet(channel);
0252         ef4_fast_push_rx_descriptors(rx_queue, true);
0253     }
0254 
0255     /* Update BQL */
0256     ef4_for_each_channel_tx_queue(tx_queue, channel) {
0257         if (tx_queue->bytes_compl) {
0258             netdev_tx_completed_queue(tx_queue->core_txq,
0259                 tx_queue->pkts_compl, tx_queue->bytes_compl);
0260         }
0261     }
0262 
0263     return spent;
0264 }
0265 
0266 /* NAPI poll handler
0267  *
0268  * NAPI guarantees serialisation of polls of the same device, which
0269  * provides the guarantee required by ef4_process_channel().
0270  */
0271 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
0272 {
0273     int step = efx->irq_mod_step_us;
0274 
0275     if (channel->irq_mod_score < irq_adapt_low_thresh) {
0276         if (channel->irq_moderation_us > step) {
0277             channel->irq_moderation_us -= step;
0278             efx->type->push_irq_moderation(channel);
0279         }
0280     } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
0281         if (channel->irq_moderation_us <
0282             efx->irq_rx_moderation_us) {
0283             channel->irq_moderation_us += step;
0284             efx->type->push_irq_moderation(channel);
0285         }
0286     }
0287 
0288     channel->irq_count = 0;
0289     channel->irq_mod_score = 0;
0290 }
0291 
0292 static int ef4_poll(struct napi_struct *napi, int budget)
0293 {
0294     struct ef4_channel *channel =
0295         container_of(napi, struct ef4_channel, napi_str);
0296     struct ef4_nic *efx = channel->efx;
0297     int spent;
0298 
0299     netif_vdbg(efx, intr, efx->net_dev,
0300            "channel %d NAPI poll executing on CPU %d\n",
0301            channel->channel, raw_smp_processor_id());
0302 
0303     spent = ef4_process_channel(channel, budget);
0304 
0305     if (spent < budget) {
0306         if (ef4_channel_has_rx_queue(channel) &&
0307             efx->irq_rx_adaptive &&
0308             unlikely(++channel->irq_count == 1000)) {
0309             ef4_update_irq_mod(efx, channel);
0310         }
0311 
0312         ef4_filter_rfs_expire(channel);
0313 
0314         /* There is no race here; although napi_disable() will
0315          * only wait for napi_complete(), this isn't a problem
0316          * since ef4_nic_eventq_read_ack() will have no effect if
0317          * interrupts have already been disabled.
0318          */
0319         napi_complete_done(napi, spent);
0320         ef4_nic_eventq_read_ack(channel);
0321     }
0322 
0323     return spent;
0324 }
0325 
0326 /* Create event queue
0327  * Event queue memory allocations are done only once.  If the channel
0328  * is reset, the memory buffer will be reused; this guards against
0329  * errors during channel reset and also simplifies interrupt handling.
0330  */
0331 static int ef4_probe_eventq(struct ef4_channel *channel)
0332 {
0333     struct ef4_nic *efx = channel->efx;
0334     unsigned long entries;
0335 
0336     netif_dbg(efx, probe, efx->net_dev,
0337           "chan %d create event queue\n", channel->channel);
0338 
0339     /* Build an event queue with room for one event per tx and rx buffer,
0340      * plus some extra for link state events and MCDI completions. */
0341     entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
0342     EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
0343     channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
0344 
0345     return ef4_nic_probe_eventq(channel);
0346 }
0347 
0348 /* Prepare channel's event queue */
0349 static int ef4_init_eventq(struct ef4_channel *channel)
0350 {
0351     struct ef4_nic *efx = channel->efx;
0352     int rc;
0353 
0354     EF4_WARN_ON_PARANOID(channel->eventq_init);
0355 
0356     netif_dbg(efx, drv, efx->net_dev,
0357           "chan %d init event queue\n", channel->channel);
0358 
0359     rc = ef4_nic_init_eventq(channel);
0360     if (rc == 0) {
0361         efx->type->push_irq_moderation(channel);
0362         channel->eventq_read_ptr = 0;
0363         channel->eventq_init = true;
0364     }
0365     return rc;
0366 }
0367 
0368 /* Enable event queue processing and NAPI */
0369 void ef4_start_eventq(struct ef4_channel *channel)
0370 {
0371     netif_dbg(channel->efx, ifup, channel->efx->net_dev,
0372           "chan %d start event queue\n", channel->channel);
0373 
0374     /* Make sure the NAPI handler sees the enabled flag set */
0375     channel->enabled = true;
0376     smp_wmb();
0377 
0378     napi_enable(&channel->napi_str);
0379     ef4_nic_eventq_read_ack(channel);
0380 }
0381 
0382 /* Disable event queue processing and NAPI */
0383 void ef4_stop_eventq(struct ef4_channel *channel)
0384 {
0385     if (!channel->enabled)
0386         return;
0387 
0388     napi_disable(&channel->napi_str);
0389     channel->enabled = false;
0390 }
0391 
0392 static void ef4_fini_eventq(struct ef4_channel *channel)
0393 {
0394     if (!channel->eventq_init)
0395         return;
0396 
0397     netif_dbg(channel->efx, drv, channel->efx->net_dev,
0398           "chan %d fini event queue\n", channel->channel);
0399 
0400     ef4_nic_fini_eventq(channel);
0401     channel->eventq_init = false;
0402 }
0403 
0404 static void ef4_remove_eventq(struct ef4_channel *channel)
0405 {
0406     netif_dbg(channel->efx, drv, channel->efx->net_dev,
0407           "chan %d remove event queue\n", channel->channel);
0408 
0409     ef4_nic_remove_eventq(channel);
0410 }
0411 
0412 /**************************************************************************
0413  *
0414  * Channel handling
0415  *
0416  *************************************************************************/
0417 
0418 /* Allocate and initialise a channel structure. */
0419 static struct ef4_channel *
0420 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
0421 {
0422     struct ef4_channel *channel;
0423     struct ef4_rx_queue *rx_queue;
0424     struct ef4_tx_queue *tx_queue;
0425     int j;
0426 
0427     channel = kzalloc(sizeof(*channel), GFP_KERNEL);
0428     if (!channel)
0429         return NULL;
0430 
0431     channel->efx = efx;
0432     channel->channel = i;
0433     channel->type = &ef4_default_channel_type;
0434 
0435     for (j = 0; j < EF4_TXQ_TYPES; j++) {
0436         tx_queue = &channel->tx_queue[j];
0437         tx_queue->efx = efx;
0438         tx_queue->queue = i * EF4_TXQ_TYPES + j;
0439         tx_queue->channel = channel;
0440     }
0441 
0442     rx_queue = &channel->rx_queue;
0443     rx_queue->efx = efx;
0444     timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
0445 
0446     return channel;
0447 }
0448 
0449 /* Allocate and initialise a channel structure, copying parameters
0450  * (but not resources) from an old channel structure.
0451  */
0452 static struct ef4_channel *
0453 ef4_copy_channel(const struct ef4_channel *old_channel)
0454 {
0455     struct ef4_channel *channel;
0456     struct ef4_rx_queue *rx_queue;
0457     struct ef4_tx_queue *tx_queue;
0458     int j;
0459 
0460     channel = kmalloc(sizeof(*channel), GFP_KERNEL);
0461     if (!channel)
0462         return NULL;
0463 
0464     *channel = *old_channel;
0465 
0466     channel->napi_dev = NULL;
0467     INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
0468     channel->napi_str.napi_id = 0;
0469     channel->napi_str.state = 0;
0470     memset(&channel->eventq, 0, sizeof(channel->eventq));
0471 
0472     for (j = 0; j < EF4_TXQ_TYPES; j++) {
0473         tx_queue = &channel->tx_queue[j];
0474         if (tx_queue->channel)
0475             tx_queue->channel = channel;
0476         tx_queue->buffer = NULL;
0477         memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
0478     }
0479 
0480     rx_queue = &channel->rx_queue;
0481     rx_queue->buffer = NULL;
0482     memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
0483     timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
0484 
0485     return channel;
0486 }
0487 
0488 static int ef4_probe_channel(struct ef4_channel *channel)
0489 {
0490     struct ef4_tx_queue *tx_queue;
0491     struct ef4_rx_queue *rx_queue;
0492     int rc;
0493 
0494     netif_dbg(channel->efx, probe, channel->efx->net_dev,
0495           "creating channel %d\n", channel->channel);
0496 
0497     rc = channel->type->pre_probe(channel);
0498     if (rc)
0499         goto fail;
0500 
0501     rc = ef4_probe_eventq(channel);
0502     if (rc)
0503         goto fail;
0504 
0505     ef4_for_each_channel_tx_queue(tx_queue, channel) {
0506         rc = ef4_probe_tx_queue(tx_queue);
0507         if (rc)
0508             goto fail;
0509     }
0510 
0511     ef4_for_each_channel_rx_queue(rx_queue, channel) {
0512         rc = ef4_probe_rx_queue(rx_queue);
0513         if (rc)
0514             goto fail;
0515     }
0516 
0517     return 0;
0518 
0519 fail:
0520     ef4_remove_channel(channel);
0521     return rc;
0522 }
0523 
0524 static void
0525 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
0526 {
0527     struct ef4_nic *efx = channel->efx;
0528     const char *type;
0529     int number;
0530 
0531     number = channel->channel;
0532     if (efx->tx_channel_offset == 0) {
0533         type = "";
0534     } else if (channel->channel < efx->tx_channel_offset) {
0535         type = "-rx";
0536     } else {
0537         type = "-tx";
0538         number -= efx->tx_channel_offset;
0539     }
0540     snprintf(buf, len, "%s%s-%d", efx->name, type, number);
0541 }
0542 
0543 static void ef4_set_channel_names(struct ef4_nic *efx)
0544 {
0545     struct ef4_channel *channel;
0546 
0547     ef4_for_each_channel(channel, efx)
0548         channel->type->get_name(channel,
0549                     efx->msi_context[channel->channel].name,
0550                     sizeof(efx->msi_context[0].name));
0551 }
0552 
0553 static int ef4_probe_channels(struct ef4_nic *efx)
0554 {
0555     struct ef4_channel *channel;
0556     int rc;
0557 
0558     /* Restart special buffer allocation */
0559     efx->next_buffer_table = 0;
0560 
0561     /* Probe channels in reverse, so that any 'extra' channels
0562      * use the start of the buffer table. This allows the traffic
0563      * channels to be resized without moving them or wasting the
0564      * entries before them.
0565      */
0566     ef4_for_each_channel_rev(channel, efx) {
0567         rc = ef4_probe_channel(channel);
0568         if (rc) {
0569             netif_err(efx, probe, efx->net_dev,
0570                   "failed to create channel %d\n",
0571                   channel->channel);
0572             goto fail;
0573         }
0574     }
0575     ef4_set_channel_names(efx);
0576 
0577     return 0;
0578 
0579 fail:
0580     ef4_remove_channels(efx);
0581     return rc;
0582 }
0583 
0584 /* Channels are shutdown and reinitialised whilst the NIC is running
0585  * to propagate configuration changes (mtu, checksum offload), or
0586  * to clear hardware error conditions
0587  */
0588 static void ef4_start_datapath(struct ef4_nic *efx)
0589 {
0590     netdev_features_t old_features = efx->net_dev->features;
0591     bool old_rx_scatter = efx->rx_scatter;
0592     struct ef4_tx_queue *tx_queue;
0593     struct ef4_rx_queue *rx_queue;
0594     struct ef4_channel *channel;
0595     size_t rx_buf_len;
0596 
0597     /* Calculate the rx buffer allocation parameters required to
0598      * support the current MTU, including padding for header
0599      * alignment and overruns.
0600      */
0601     efx->rx_dma_len = (efx->rx_prefix_size +
0602                EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
0603                efx->type->rx_buffer_padding);
0604     rx_buf_len = (sizeof(struct ef4_rx_page_state) +
0605               efx->rx_ip_align + efx->rx_dma_len);
0606     if (rx_buf_len <= PAGE_SIZE) {
0607         efx->rx_scatter = efx->type->always_rx_scatter;
0608         efx->rx_buffer_order = 0;
0609     } else if (efx->type->can_rx_scatter) {
0610         BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
0611         BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
0612                  2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
0613                        EF4_RX_BUF_ALIGNMENT) >
0614                  PAGE_SIZE);
0615         efx->rx_scatter = true;
0616         efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
0617         efx->rx_buffer_order = 0;
0618     } else {
0619         efx->rx_scatter = false;
0620         efx->rx_buffer_order = get_order(rx_buf_len);
0621     }
0622 
0623     ef4_rx_config_page_split(efx);
0624     if (efx->rx_buffer_order)
0625         netif_dbg(efx, drv, efx->net_dev,
0626               "RX buf len=%u; page order=%u batch=%u\n",
0627               efx->rx_dma_len, efx->rx_buffer_order,
0628               efx->rx_pages_per_batch);
0629     else
0630         netif_dbg(efx, drv, efx->net_dev,
0631               "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
0632               efx->rx_dma_len, efx->rx_page_buf_step,
0633               efx->rx_bufs_per_page, efx->rx_pages_per_batch);
0634 
0635     /* Restore previously fixed features in hw_features and remove
0636      * features which are fixed now
0637      */
0638     efx->net_dev->hw_features |= efx->net_dev->features;
0639     efx->net_dev->hw_features &= ~efx->fixed_features;
0640     efx->net_dev->features |= efx->fixed_features;
0641     if (efx->net_dev->features != old_features)
0642         netdev_features_change(efx->net_dev);
0643 
0644     /* RX filters may also have scatter-enabled flags */
0645     if (efx->rx_scatter != old_rx_scatter)
0646         efx->type->filter_update_rx_scatter(efx);
0647 
0648     /* We must keep at least one descriptor in a TX ring empty.
0649      * We could avoid this when the queue size does not exactly
0650      * match the hardware ring size, but it's not that important.
0651      * Therefore we stop the queue when one more skb might fill
0652      * the ring completely.  We wake it when half way back to
0653      * empty.
0654      */
0655     efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
0656     efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
0657 
0658     /* Initialise the channels */
0659     ef4_for_each_channel(channel, efx) {
0660         ef4_for_each_channel_tx_queue(tx_queue, channel) {
0661             ef4_init_tx_queue(tx_queue);
0662             atomic_inc(&efx->active_queues);
0663         }
0664 
0665         ef4_for_each_channel_rx_queue(rx_queue, channel) {
0666             ef4_init_rx_queue(rx_queue);
0667             atomic_inc(&efx->active_queues);
0668             ef4_stop_eventq(channel);
0669             ef4_fast_push_rx_descriptors(rx_queue, false);
0670             ef4_start_eventq(channel);
0671         }
0672 
0673         WARN_ON(channel->rx_pkt_n_frags);
0674     }
0675 
0676     if (netif_device_present(efx->net_dev))
0677         netif_tx_wake_all_queues(efx->net_dev);
0678 }
0679 
0680 static void ef4_stop_datapath(struct ef4_nic *efx)
0681 {
0682     struct ef4_channel *channel;
0683     struct ef4_tx_queue *tx_queue;
0684     struct ef4_rx_queue *rx_queue;
0685     int rc;
0686 
0687     EF4_ASSERT_RESET_SERIALISED(efx);
0688     BUG_ON(efx->port_enabled);
0689 
0690     /* Stop RX refill */
0691     ef4_for_each_channel(channel, efx) {
0692         ef4_for_each_channel_rx_queue(rx_queue, channel)
0693             rx_queue->refill_enabled = false;
0694     }
0695 
0696     ef4_for_each_channel(channel, efx) {
0697         /* RX packet processing is pipelined, so wait for the
0698          * NAPI handler to complete.  At least event queue 0
0699          * might be kept active by non-data events, so don't
0700          * use napi_synchronize() but actually disable NAPI
0701          * temporarily.
0702          */
0703         if (ef4_channel_has_rx_queue(channel)) {
0704             ef4_stop_eventq(channel);
0705             ef4_start_eventq(channel);
0706         }
0707     }
0708 
0709     rc = efx->type->fini_dmaq(efx);
0710     if (rc && EF4_WORKAROUND_7803(efx)) {
0711         /* Schedule a reset to recover from the flush failure. The
0712          * descriptor caches reference memory we're about to free,
0713          * but falcon_reconfigure_mac_wrapper() won't reconnect
0714          * the MACs because of the pending reset.
0715          */
0716         netif_err(efx, drv, efx->net_dev,
0717               "Resetting to recover from flush failure\n");
0718         ef4_schedule_reset(efx, RESET_TYPE_ALL);
0719     } else if (rc) {
0720         netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
0721     } else {
0722         netif_dbg(efx, drv, efx->net_dev,
0723               "successfully flushed all queues\n");
0724     }
0725 
0726     ef4_for_each_channel(channel, efx) {
0727         ef4_for_each_channel_rx_queue(rx_queue, channel)
0728             ef4_fini_rx_queue(rx_queue);
0729         ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
0730             ef4_fini_tx_queue(tx_queue);
0731     }
0732 }
0733 
0734 static void ef4_remove_channel(struct ef4_channel *channel)
0735 {
0736     struct ef4_tx_queue *tx_queue;
0737     struct ef4_rx_queue *rx_queue;
0738 
0739     netif_dbg(channel->efx, drv, channel->efx->net_dev,
0740           "destroy chan %d\n", channel->channel);
0741 
0742     ef4_for_each_channel_rx_queue(rx_queue, channel)
0743         ef4_remove_rx_queue(rx_queue);
0744     ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
0745         ef4_remove_tx_queue(tx_queue);
0746     ef4_remove_eventq(channel);
0747     channel->type->post_remove(channel);
0748 }
0749 
0750 static void ef4_remove_channels(struct ef4_nic *efx)
0751 {
0752     struct ef4_channel *channel;
0753 
0754     ef4_for_each_channel(channel, efx)
0755         ef4_remove_channel(channel);
0756 }
0757 
0758 int
0759 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
0760 {
0761     struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
0762     u32 old_rxq_entries, old_txq_entries;
0763     unsigned i, next_buffer_table = 0;
0764     int rc, rc2;
0765 
0766     rc = ef4_check_disabled(efx);
0767     if (rc)
0768         return rc;
0769 
0770     /* Not all channels should be reallocated. We must avoid
0771      * reallocating their buffer table entries.
0772      */
0773     ef4_for_each_channel(channel, efx) {
0774         struct ef4_rx_queue *rx_queue;
0775         struct ef4_tx_queue *tx_queue;
0776 
0777         if (channel->type->copy)
0778             continue;
0779         next_buffer_table = max(next_buffer_table,
0780                     channel->eventq.index +
0781                     channel->eventq.entries);
0782         ef4_for_each_channel_rx_queue(rx_queue, channel)
0783             next_buffer_table = max(next_buffer_table,
0784                         rx_queue->rxd.index +
0785                         rx_queue->rxd.entries);
0786         ef4_for_each_channel_tx_queue(tx_queue, channel)
0787             next_buffer_table = max(next_buffer_table,
0788                         tx_queue->txd.index +
0789                         tx_queue->txd.entries);
0790     }
0791 
0792     ef4_device_detach_sync(efx);
0793     ef4_stop_all(efx);
0794     ef4_soft_disable_interrupts(efx);
0795 
0796     /* Clone channels (where possible) */
0797     memset(other_channel, 0, sizeof(other_channel));
0798     for (i = 0; i < efx->n_channels; i++) {
0799         channel = efx->channel[i];
0800         if (channel->type->copy)
0801             channel = channel->type->copy(channel);
0802         if (!channel) {
0803             rc = -ENOMEM;
0804             goto out;
0805         }
0806         other_channel[i] = channel;
0807     }
0808 
0809     /* Swap entry counts and channel pointers */
0810     old_rxq_entries = efx->rxq_entries;
0811     old_txq_entries = efx->txq_entries;
0812     efx->rxq_entries = rxq_entries;
0813     efx->txq_entries = txq_entries;
0814     for (i = 0; i < efx->n_channels; i++) {
0815         swap(efx->channel[i], other_channel[i]);
0816     }
0817 
0818     /* Restart buffer table allocation */
0819     efx->next_buffer_table = next_buffer_table;
0820 
0821     for (i = 0; i < efx->n_channels; i++) {
0822         channel = efx->channel[i];
0823         if (!channel->type->copy)
0824             continue;
0825         rc = ef4_probe_channel(channel);
0826         if (rc)
0827             goto rollback;
0828         ef4_init_napi_channel(efx->channel[i]);
0829     }
0830 
0831 out:
0832     /* Destroy unused channel structures */
0833     for (i = 0; i < efx->n_channels; i++) {
0834         channel = other_channel[i];
0835         if (channel && channel->type->copy) {
0836             ef4_fini_napi_channel(channel);
0837             ef4_remove_channel(channel);
0838             kfree(channel);
0839         }
0840     }
0841 
0842     rc2 = ef4_soft_enable_interrupts(efx);
0843     if (rc2) {
0844         rc = rc ? rc : rc2;
0845         netif_err(efx, drv, efx->net_dev,
0846               "unable to restart interrupts on channel reallocation\n");
0847         ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
0848     } else {
0849         ef4_start_all(efx);
0850         netif_device_attach(efx->net_dev);
0851     }
0852     return rc;
0853 
0854 rollback:
0855     /* Swap back */
0856     efx->rxq_entries = old_rxq_entries;
0857     efx->txq_entries = old_txq_entries;
0858     for (i = 0; i < efx->n_channels; i++) {
0859         swap(efx->channel[i], other_channel[i]);
0860     }
0861     goto out;
0862 }
0863 
0864 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
0865 {
0866     mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
0867 }
0868 
0869 static const struct ef4_channel_type ef4_default_channel_type = {
0870     .pre_probe      = ef4_channel_dummy_op_int,
0871     .post_remove        = ef4_channel_dummy_op_void,
0872     .get_name       = ef4_get_channel_name,
0873     .copy           = ef4_copy_channel,
0874     .keep_eventq        = false,
0875 };
0876 
0877 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
0878 {
0879     return 0;
0880 }
0881 
0882 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
0883 {
0884 }
0885 
0886 /**************************************************************************
0887  *
0888  * Port handling
0889  *
0890  **************************************************************************/
0891 
0892 /* This ensures that the kernel is kept informed (via
0893  * netif_carrier_on/off) of the link status, and also maintains the
0894  * link status's stop on the port's TX queue.
0895  */
0896 void ef4_link_status_changed(struct ef4_nic *efx)
0897 {
0898     struct ef4_link_state *link_state = &efx->link_state;
0899 
0900     /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
0901      * that no events are triggered between unregister_netdev() and the
0902      * driver unloading. A more general condition is that NETDEV_CHANGE
0903      * can only be generated between NETDEV_UP and NETDEV_DOWN */
0904     if (!netif_running(efx->net_dev))
0905         return;
0906 
0907     if (link_state->up != netif_carrier_ok(efx->net_dev)) {
0908         efx->n_link_state_changes++;
0909 
0910         if (link_state->up)
0911             netif_carrier_on(efx->net_dev);
0912         else
0913             netif_carrier_off(efx->net_dev);
0914     }
0915 
0916     /* Status message for kernel log */
0917     if (link_state->up)
0918         netif_info(efx, link, efx->net_dev,
0919                "link up at %uMbps %s-duplex (MTU %d)\n",
0920                link_state->speed, link_state->fd ? "full" : "half",
0921                efx->net_dev->mtu);
0922     else
0923         netif_info(efx, link, efx->net_dev, "link down\n");
0924 }
0925 
0926 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
0927 {
0928     efx->link_advertising = advertising;
0929     if (advertising) {
0930         if (advertising & ADVERTISED_Pause)
0931             efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
0932         else
0933             efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
0934         if (advertising & ADVERTISED_Asym_Pause)
0935             efx->wanted_fc ^= EF4_FC_TX;
0936     }
0937 }
0938 
0939 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
0940 {
0941     efx->wanted_fc = wanted_fc;
0942     if (efx->link_advertising) {
0943         if (wanted_fc & EF4_FC_RX)
0944             efx->link_advertising |= (ADVERTISED_Pause |
0945                           ADVERTISED_Asym_Pause);
0946         else
0947             efx->link_advertising &= ~(ADVERTISED_Pause |
0948                            ADVERTISED_Asym_Pause);
0949         if (wanted_fc & EF4_FC_TX)
0950             efx->link_advertising ^= ADVERTISED_Asym_Pause;
0951     }
0952 }
0953 
0954 static void ef4_fini_port(struct ef4_nic *efx);
0955 
0956 /* We assume that efx->type->reconfigure_mac will always try to sync RX
0957  * filters and therefore needs to read-lock the filter table against freeing
0958  */
0959 void ef4_mac_reconfigure(struct ef4_nic *efx)
0960 {
0961     down_read(&efx->filter_sem);
0962     efx->type->reconfigure_mac(efx);
0963     up_read(&efx->filter_sem);
0964 }
0965 
0966 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
0967  * the MAC appropriately. All other PHY configuration changes are pushed
0968  * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
0969  * through ef4_monitor().
0970  *
0971  * Callers must hold the mac_lock
0972  */
0973 int __ef4_reconfigure_port(struct ef4_nic *efx)
0974 {
0975     enum ef4_phy_mode phy_mode;
0976     int rc;
0977 
0978     WARN_ON(!mutex_is_locked(&efx->mac_lock));
0979 
0980     /* Disable PHY transmit in mac level loopbacks */
0981     phy_mode = efx->phy_mode;
0982     if (LOOPBACK_INTERNAL(efx))
0983         efx->phy_mode |= PHY_MODE_TX_DISABLED;
0984     else
0985         efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
0986 
0987     rc = efx->type->reconfigure_port(efx);
0988 
0989     if (rc)
0990         efx->phy_mode = phy_mode;
0991 
0992     return rc;
0993 }
0994 
0995 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
0996  * disabled. */
0997 int ef4_reconfigure_port(struct ef4_nic *efx)
0998 {
0999     int rc;
1000 
1001     EF4_ASSERT_RESET_SERIALISED(efx);
1002 
1003     mutex_lock(&efx->mac_lock);
1004     rc = __ef4_reconfigure_port(efx);
1005     mutex_unlock(&efx->mac_lock);
1006 
1007     return rc;
1008 }
1009 
1010 /* Asynchronous work item for changing MAC promiscuity and multicast
1011  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1012  * MAC directly. */
1013 static void ef4_mac_work(struct work_struct *data)
1014 {
1015     struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1016 
1017     mutex_lock(&efx->mac_lock);
1018     if (efx->port_enabled)
1019         ef4_mac_reconfigure(efx);
1020     mutex_unlock(&efx->mac_lock);
1021 }
1022 
1023 static int ef4_probe_port(struct ef4_nic *efx)
1024 {
1025     int rc;
1026 
1027     netif_dbg(efx, probe, efx->net_dev, "create port\n");
1028 
1029     if (phy_flash_cfg)
1030         efx->phy_mode = PHY_MODE_SPECIAL;
1031 
1032     /* Connect up MAC/PHY operations table */
1033     rc = efx->type->probe_port(efx);
1034     if (rc)
1035         return rc;
1036 
1037     /* Initialise MAC address to permanent address */
1038     eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
1039 
1040     return 0;
1041 }
1042 
1043 static int ef4_init_port(struct ef4_nic *efx)
1044 {
1045     int rc;
1046 
1047     netif_dbg(efx, drv, efx->net_dev, "init port\n");
1048 
1049     mutex_lock(&efx->mac_lock);
1050 
1051     rc = efx->phy_op->init(efx);
1052     if (rc)
1053         goto fail1;
1054 
1055     efx->port_initialized = true;
1056 
1057     /* Reconfigure the MAC before creating dma queues (required for
1058      * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1059     ef4_mac_reconfigure(efx);
1060 
1061     /* Ensure the PHY advertises the correct flow control settings */
1062     rc = efx->phy_op->reconfigure(efx);
1063     if (rc && rc != -EPERM)
1064         goto fail2;
1065 
1066     mutex_unlock(&efx->mac_lock);
1067     return 0;
1068 
1069 fail2:
1070     efx->phy_op->fini(efx);
1071 fail1:
1072     mutex_unlock(&efx->mac_lock);
1073     return rc;
1074 }
1075 
1076 static void ef4_start_port(struct ef4_nic *efx)
1077 {
1078     netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1079     BUG_ON(efx->port_enabled);
1080 
1081     mutex_lock(&efx->mac_lock);
1082     efx->port_enabled = true;
1083 
1084     /* Ensure MAC ingress/egress is enabled */
1085     ef4_mac_reconfigure(efx);
1086 
1087     mutex_unlock(&efx->mac_lock);
1088 }
1089 
1090 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1091  * and the async self-test, wait for them to finish and prevent them
1092  * being scheduled again.  This doesn't cover online resets, which
1093  * should only be cancelled when removing the device.
1094  */
1095 static void ef4_stop_port(struct ef4_nic *efx)
1096 {
1097     netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1098 
1099     EF4_ASSERT_RESET_SERIALISED(efx);
1100 
1101     mutex_lock(&efx->mac_lock);
1102     efx->port_enabled = false;
1103     mutex_unlock(&efx->mac_lock);
1104 
1105     /* Serialise against ef4_set_multicast_list() */
1106     netif_addr_lock_bh(efx->net_dev);
1107     netif_addr_unlock_bh(efx->net_dev);
1108 
1109     cancel_delayed_work_sync(&efx->monitor_work);
1110     ef4_selftest_async_cancel(efx);
1111     cancel_work_sync(&efx->mac_work);
1112 }
1113 
1114 static void ef4_fini_port(struct ef4_nic *efx)
1115 {
1116     netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1117 
1118     if (!efx->port_initialized)
1119         return;
1120 
1121     efx->phy_op->fini(efx);
1122     efx->port_initialized = false;
1123 
1124     efx->link_state.up = false;
1125     ef4_link_status_changed(efx);
1126 }
1127 
1128 static void ef4_remove_port(struct ef4_nic *efx)
1129 {
1130     netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1131 
1132     efx->type->remove_port(efx);
1133 }
1134 
1135 /**************************************************************************
1136  *
1137  * NIC handling
1138  *
1139  **************************************************************************/
1140 
1141 static LIST_HEAD(ef4_primary_list);
1142 static LIST_HEAD(ef4_unassociated_list);
1143 
1144 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1145 {
1146     return left->type == right->type &&
1147         left->vpd_sn && right->vpd_sn &&
1148         !strcmp(left->vpd_sn, right->vpd_sn);
1149 }
1150 
1151 static void ef4_associate(struct ef4_nic *efx)
1152 {
1153     struct ef4_nic *other, *next;
1154 
1155     if (efx->primary == efx) {
1156         /* Adding primary function; look for secondaries */
1157 
1158         netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1159         list_add_tail(&efx->node, &ef4_primary_list);
1160 
1161         list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1162                      node) {
1163             if (ef4_same_controller(efx, other)) {
1164                 list_del(&other->node);
1165                 netif_dbg(other, probe, other->net_dev,
1166                       "moving to secondary list of %s %s\n",
1167                       pci_name(efx->pci_dev),
1168                       efx->net_dev->name);
1169                 list_add_tail(&other->node,
1170                           &efx->secondary_list);
1171                 other->primary = efx;
1172             }
1173         }
1174     } else {
1175         /* Adding secondary function; look for primary */
1176 
1177         list_for_each_entry(other, &ef4_primary_list, node) {
1178             if (ef4_same_controller(efx, other)) {
1179                 netif_dbg(efx, probe, efx->net_dev,
1180                       "adding to secondary list of %s %s\n",
1181                       pci_name(other->pci_dev),
1182                       other->net_dev->name);
1183                 list_add_tail(&efx->node,
1184                           &other->secondary_list);
1185                 efx->primary = other;
1186                 return;
1187             }
1188         }
1189 
1190         netif_dbg(efx, probe, efx->net_dev,
1191               "adding to unassociated list\n");
1192         list_add_tail(&efx->node, &ef4_unassociated_list);
1193     }
1194 }
1195 
1196 static void ef4_dissociate(struct ef4_nic *efx)
1197 {
1198     struct ef4_nic *other, *next;
1199 
1200     list_del(&efx->node);
1201     efx->primary = NULL;
1202 
1203     list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1204         list_del(&other->node);
1205         netif_dbg(other, probe, other->net_dev,
1206               "moving to unassociated list\n");
1207         list_add_tail(&other->node, &ef4_unassociated_list);
1208         other->primary = NULL;
1209     }
1210 }
1211 
1212 /* This configures the PCI device to enable I/O and DMA. */
1213 static int ef4_init_io(struct ef4_nic *efx)
1214 {
1215     struct pci_dev *pci_dev = efx->pci_dev;
1216     dma_addr_t dma_mask = efx->type->max_dma_mask;
1217     unsigned int mem_map_size = efx->type->mem_map_size(efx);
1218     int rc, bar;
1219 
1220     netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1221 
1222     bar = efx->type->mem_bar;
1223 
1224     rc = pci_enable_device(pci_dev);
1225     if (rc) {
1226         netif_err(efx, probe, efx->net_dev,
1227               "failed to enable PCI device\n");
1228         goto fail1;
1229     }
1230 
1231     pci_set_master(pci_dev);
1232 
1233     /* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1234      * down to 32 bits, because some architectures will allow 40 bit
1235      * masks event though they reject 46 bit masks.
1236      */
1237     while (dma_mask > 0x7fffffffUL) {
1238         rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1239         if (rc == 0)
1240             break;
1241         dma_mask >>= 1;
1242     }
1243     if (rc) {
1244         netif_err(efx, probe, efx->net_dev,
1245               "could not find a suitable DMA mask\n");
1246         goto fail2;
1247     }
1248     netif_dbg(efx, probe, efx->net_dev,
1249           "using DMA mask %llx\n", (unsigned long long) dma_mask);
1250 
1251     efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1252     rc = pci_request_region(pci_dev, bar, "sfc");
1253     if (rc) {
1254         netif_err(efx, probe, efx->net_dev,
1255               "request for memory BAR failed\n");
1256         rc = -EIO;
1257         goto fail3;
1258     }
1259     efx->membase = ioremap(efx->membase_phys, mem_map_size);
1260     if (!efx->membase) {
1261         netif_err(efx, probe, efx->net_dev,
1262               "could not map memory BAR at %llx+%x\n",
1263               (unsigned long long)efx->membase_phys, mem_map_size);
1264         rc = -ENOMEM;
1265         goto fail4;
1266     }
1267     netif_dbg(efx, probe, efx->net_dev,
1268           "memory BAR at %llx+%x (virtual %p)\n",
1269           (unsigned long long)efx->membase_phys, mem_map_size,
1270           efx->membase);
1271 
1272     return 0;
1273 
1274  fail4:
1275     pci_release_region(efx->pci_dev, bar);
1276  fail3:
1277     efx->membase_phys = 0;
1278  fail2:
1279     pci_disable_device(efx->pci_dev);
1280  fail1:
1281     return rc;
1282 }
1283 
1284 static void ef4_fini_io(struct ef4_nic *efx)
1285 {
1286     int bar;
1287 
1288     netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1289 
1290     if (efx->membase) {
1291         iounmap(efx->membase);
1292         efx->membase = NULL;
1293     }
1294 
1295     if (efx->membase_phys) {
1296         bar = efx->type->mem_bar;
1297         pci_release_region(efx->pci_dev, bar);
1298         efx->membase_phys = 0;
1299     }
1300 
1301     /* Don't disable bus-mastering if VFs are assigned */
1302     if (!pci_vfs_assigned(efx->pci_dev))
1303         pci_disable_device(efx->pci_dev);
1304 }
1305 
1306 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1307 {
1308     size_t i;
1309 
1310     for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1311         efx->rx_indir_table[i] =
1312             ethtool_rxfh_indir_default(i, efx->rss_spread);
1313 }
1314 
1315 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1316 {
1317     cpumask_var_t thread_mask;
1318     unsigned int count;
1319     int cpu;
1320 
1321     if (rss_cpus) {
1322         count = rss_cpus;
1323     } else {
1324         if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1325             netif_warn(efx, probe, efx->net_dev,
1326                    "RSS disabled due to allocation failure\n");
1327             return 1;
1328         }
1329 
1330         count = 0;
1331         for_each_online_cpu(cpu) {
1332             if (!cpumask_test_cpu(cpu, thread_mask)) {
1333                 ++count;
1334                 cpumask_or(thread_mask, thread_mask,
1335                        topology_sibling_cpumask(cpu));
1336             }
1337         }
1338 
1339         free_cpumask_var(thread_mask);
1340     }
1341 
1342     if (count > EF4_MAX_RX_QUEUES) {
1343         netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1344                    "Reducing number of rx queues from %u to %u.\n",
1345                    count, EF4_MAX_RX_QUEUES);
1346         count = EF4_MAX_RX_QUEUES;
1347     }
1348 
1349     return count;
1350 }
1351 
1352 /* Probe the number and type of interrupts we are able to obtain, and
1353  * the resulting numbers of channels and RX queues.
1354  */
1355 static int ef4_probe_interrupts(struct ef4_nic *efx)
1356 {
1357     unsigned int extra_channels = 0;
1358     unsigned int i, j;
1359     int rc;
1360 
1361     for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1362         if (efx->extra_channel_type[i])
1363             ++extra_channels;
1364 
1365     if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1366         struct msix_entry xentries[EF4_MAX_CHANNELS];
1367         unsigned int n_channels;
1368 
1369         n_channels = ef4_wanted_parallelism(efx);
1370         if (ef4_separate_tx_channels)
1371             n_channels *= 2;
1372         n_channels += extra_channels;
1373         n_channels = min(n_channels, efx->max_channels);
1374 
1375         for (i = 0; i < n_channels; i++)
1376             xentries[i].entry = i;
1377         rc = pci_enable_msix_range(efx->pci_dev,
1378                        xentries, 1, n_channels);
1379         if (rc < 0) {
1380             /* Fall back to single channel MSI */
1381             efx->interrupt_mode = EF4_INT_MODE_MSI;
1382             netif_err(efx, drv, efx->net_dev,
1383                   "could not enable MSI-X\n");
1384         } else if (rc < n_channels) {
1385             netif_err(efx, drv, efx->net_dev,
1386                   "WARNING: Insufficient MSI-X vectors"
1387                   " available (%d < %u).\n", rc, n_channels);
1388             netif_err(efx, drv, efx->net_dev,
1389                   "WARNING: Performance may be reduced.\n");
1390             n_channels = rc;
1391         }
1392 
1393         if (rc > 0) {
1394             efx->n_channels = n_channels;
1395             if (n_channels > extra_channels)
1396                 n_channels -= extra_channels;
1397             if (ef4_separate_tx_channels) {
1398                 efx->n_tx_channels = min(max(n_channels / 2,
1399                                  1U),
1400                              efx->max_tx_channels);
1401                 efx->n_rx_channels = max(n_channels -
1402                              efx->n_tx_channels,
1403                              1U);
1404             } else {
1405                 efx->n_tx_channels = min(n_channels,
1406                              efx->max_tx_channels);
1407                 efx->n_rx_channels = n_channels;
1408             }
1409             for (i = 0; i < efx->n_channels; i++)
1410                 ef4_get_channel(efx, i)->irq =
1411                     xentries[i].vector;
1412         }
1413     }
1414 
1415     /* Try single interrupt MSI */
1416     if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1417         efx->n_channels = 1;
1418         efx->n_rx_channels = 1;
1419         efx->n_tx_channels = 1;
1420         rc = pci_enable_msi(efx->pci_dev);
1421         if (rc == 0) {
1422             ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1423         } else {
1424             netif_err(efx, drv, efx->net_dev,
1425                   "could not enable MSI\n");
1426             efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1427         }
1428     }
1429 
1430     /* Assume legacy interrupts */
1431     if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1432         efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1433         efx->n_rx_channels = 1;
1434         efx->n_tx_channels = 1;
1435         efx->legacy_irq = efx->pci_dev->irq;
1436     }
1437 
1438     /* Assign extra channels if possible */
1439     j = efx->n_channels;
1440     for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1441         if (!efx->extra_channel_type[i])
1442             continue;
1443         if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1444             efx->n_channels <= extra_channels) {
1445             efx->extra_channel_type[i]->handle_no_channel(efx);
1446         } else {
1447             --j;
1448             ef4_get_channel(efx, j)->type =
1449                 efx->extra_channel_type[i];
1450         }
1451     }
1452 
1453     efx->rss_spread = efx->n_rx_channels;
1454 
1455     return 0;
1456 }
1457 
1458 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1459 {
1460     struct ef4_channel *channel, *end_channel;
1461     int rc;
1462 
1463     BUG_ON(efx->state == STATE_DISABLED);
1464 
1465     efx->irq_soft_enabled = true;
1466     smp_wmb();
1467 
1468     ef4_for_each_channel(channel, efx) {
1469         if (!channel->type->keep_eventq) {
1470             rc = ef4_init_eventq(channel);
1471             if (rc)
1472                 goto fail;
1473         }
1474         ef4_start_eventq(channel);
1475     }
1476 
1477     return 0;
1478 fail:
1479     end_channel = channel;
1480     ef4_for_each_channel(channel, efx) {
1481         if (channel == end_channel)
1482             break;
1483         ef4_stop_eventq(channel);
1484         if (!channel->type->keep_eventq)
1485             ef4_fini_eventq(channel);
1486     }
1487 
1488     return rc;
1489 }
1490 
1491 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1492 {
1493     struct ef4_channel *channel;
1494 
1495     if (efx->state == STATE_DISABLED)
1496         return;
1497 
1498     efx->irq_soft_enabled = false;
1499     smp_wmb();
1500 
1501     if (efx->legacy_irq)
1502         synchronize_irq(efx->legacy_irq);
1503 
1504     ef4_for_each_channel(channel, efx) {
1505         if (channel->irq)
1506             synchronize_irq(channel->irq);
1507 
1508         ef4_stop_eventq(channel);
1509         if (!channel->type->keep_eventq)
1510             ef4_fini_eventq(channel);
1511     }
1512 }
1513 
1514 static int ef4_enable_interrupts(struct ef4_nic *efx)
1515 {
1516     struct ef4_channel *channel, *end_channel;
1517     int rc;
1518 
1519     BUG_ON(efx->state == STATE_DISABLED);
1520 
1521     if (efx->eeh_disabled_legacy_irq) {
1522         enable_irq(efx->legacy_irq);
1523         efx->eeh_disabled_legacy_irq = false;
1524     }
1525 
1526     efx->type->irq_enable_master(efx);
1527 
1528     ef4_for_each_channel(channel, efx) {
1529         if (channel->type->keep_eventq) {
1530             rc = ef4_init_eventq(channel);
1531             if (rc)
1532                 goto fail;
1533         }
1534     }
1535 
1536     rc = ef4_soft_enable_interrupts(efx);
1537     if (rc)
1538         goto fail;
1539 
1540     return 0;
1541 
1542 fail:
1543     end_channel = channel;
1544     ef4_for_each_channel(channel, efx) {
1545         if (channel == end_channel)
1546             break;
1547         if (channel->type->keep_eventq)
1548             ef4_fini_eventq(channel);
1549     }
1550 
1551     efx->type->irq_disable_non_ev(efx);
1552 
1553     return rc;
1554 }
1555 
1556 static void ef4_disable_interrupts(struct ef4_nic *efx)
1557 {
1558     struct ef4_channel *channel;
1559 
1560     ef4_soft_disable_interrupts(efx);
1561 
1562     ef4_for_each_channel(channel, efx) {
1563         if (channel->type->keep_eventq)
1564             ef4_fini_eventq(channel);
1565     }
1566 
1567     efx->type->irq_disable_non_ev(efx);
1568 }
1569 
1570 static void ef4_remove_interrupts(struct ef4_nic *efx)
1571 {
1572     struct ef4_channel *channel;
1573 
1574     /* Remove MSI/MSI-X interrupts */
1575     ef4_for_each_channel(channel, efx)
1576         channel->irq = 0;
1577     pci_disable_msi(efx->pci_dev);
1578     pci_disable_msix(efx->pci_dev);
1579 
1580     /* Remove legacy interrupt */
1581     efx->legacy_irq = 0;
1582 }
1583 
1584 static void ef4_set_channels(struct ef4_nic *efx)
1585 {
1586     struct ef4_channel *channel;
1587     struct ef4_tx_queue *tx_queue;
1588 
1589     efx->tx_channel_offset =
1590         ef4_separate_tx_channels ?
1591         efx->n_channels - efx->n_tx_channels : 0;
1592 
1593     /* We need to mark which channels really have RX and TX
1594      * queues, and adjust the TX queue numbers if we have separate
1595      * RX-only and TX-only channels.
1596      */
1597     ef4_for_each_channel(channel, efx) {
1598         if (channel->channel < efx->n_rx_channels)
1599             channel->rx_queue.core_index = channel->channel;
1600         else
1601             channel->rx_queue.core_index = -1;
1602 
1603         ef4_for_each_channel_tx_queue(tx_queue, channel)
1604             tx_queue->queue -= (efx->tx_channel_offset *
1605                         EF4_TXQ_TYPES);
1606     }
1607 }
1608 
1609 static int ef4_probe_nic(struct ef4_nic *efx)
1610 {
1611     int rc;
1612 
1613     netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1614 
1615     /* Carry out hardware-type specific initialisation */
1616     rc = efx->type->probe(efx);
1617     if (rc)
1618         return rc;
1619 
1620     do {
1621         if (!efx->max_channels || !efx->max_tx_channels) {
1622             netif_err(efx, drv, efx->net_dev,
1623                   "Insufficient resources to allocate"
1624                   " any channels\n");
1625             rc = -ENOSPC;
1626             goto fail1;
1627         }
1628 
1629         /* Determine the number of channels and queues by trying
1630          * to hook in MSI-X interrupts.
1631          */
1632         rc = ef4_probe_interrupts(efx);
1633         if (rc)
1634             goto fail1;
1635 
1636         ef4_set_channels(efx);
1637 
1638         /* dimension_resources can fail with EAGAIN */
1639         rc = efx->type->dimension_resources(efx);
1640         if (rc != 0 && rc != -EAGAIN)
1641             goto fail2;
1642 
1643         if (rc == -EAGAIN)
1644             /* try again with new max_channels */
1645             ef4_remove_interrupts(efx);
1646 
1647     } while (rc == -EAGAIN);
1648 
1649     if (efx->n_channels > 1)
1650         netdev_rss_key_fill(&efx->rx_hash_key,
1651                     sizeof(efx->rx_hash_key));
1652     ef4_set_default_rx_indir_table(efx);
1653 
1654     netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1655     netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1656 
1657     /* Initialise the interrupt moderation settings */
1658     efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1659     ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1660                 true);
1661 
1662     return 0;
1663 
1664 fail2:
1665     ef4_remove_interrupts(efx);
1666 fail1:
1667     efx->type->remove(efx);
1668     return rc;
1669 }
1670 
1671 static void ef4_remove_nic(struct ef4_nic *efx)
1672 {
1673     netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1674 
1675     ef4_remove_interrupts(efx);
1676     efx->type->remove(efx);
1677 }
1678 
1679 static int ef4_probe_filters(struct ef4_nic *efx)
1680 {
1681     int rc;
1682 
1683     spin_lock_init(&efx->filter_lock);
1684     init_rwsem(&efx->filter_sem);
1685     mutex_lock(&efx->mac_lock);
1686     down_write(&efx->filter_sem);
1687     rc = efx->type->filter_table_probe(efx);
1688     if (rc)
1689         goto out_unlock;
1690 
1691 #ifdef CONFIG_RFS_ACCEL
1692     if (efx->type->offload_features & NETIF_F_NTUPLE) {
1693         struct ef4_channel *channel;
1694         int i, success = 1;
1695 
1696         ef4_for_each_channel(channel, efx) {
1697             channel->rps_flow_id =
1698                 kcalloc(efx->type->max_rx_ip_filters,
1699                     sizeof(*channel->rps_flow_id),
1700                     GFP_KERNEL);
1701             if (!channel->rps_flow_id)
1702                 success = 0;
1703             else
1704                 for (i = 0;
1705                      i < efx->type->max_rx_ip_filters;
1706                      ++i)
1707                     channel->rps_flow_id[i] =
1708                         RPS_FLOW_ID_INVALID;
1709         }
1710 
1711         if (!success) {
1712             ef4_for_each_channel(channel, efx)
1713                 kfree(channel->rps_flow_id);
1714             efx->type->filter_table_remove(efx);
1715             rc = -ENOMEM;
1716             goto out_unlock;
1717         }
1718 
1719         efx->rps_expire_index = efx->rps_expire_channel = 0;
1720     }
1721 #endif
1722 out_unlock:
1723     up_write(&efx->filter_sem);
1724     mutex_unlock(&efx->mac_lock);
1725     return rc;
1726 }
1727 
1728 static void ef4_remove_filters(struct ef4_nic *efx)
1729 {
1730 #ifdef CONFIG_RFS_ACCEL
1731     struct ef4_channel *channel;
1732 
1733     ef4_for_each_channel(channel, efx)
1734         kfree(channel->rps_flow_id);
1735 #endif
1736     down_write(&efx->filter_sem);
1737     efx->type->filter_table_remove(efx);
1738     up_write(&efx->filter_sem);
1739 }
1740 
1741 static void ef4_restore_filters(struct ef4_nic *efx)
1742 {
1743     down_read(&efx->filter_sem);
1744     efx->type->filter_table_restore(efx);
1745     up_read(&efx->filter_sem);
1746 }
1747 
1748 /**************************************************************************
1749  *
1750  * NIC startup/shutdown
1751  *
1752  *************************************************************************/
1753 
1754 static int ef4_probe_all(struct ef4_nic *efx)
1755 {
1756     int rc;
1757 
1758     rc = ef4_probe_nic(efx);
1759     if (rc) {
1760         netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1761         goto fail1;
1762     }
1763 
1764     rc = ef4_probe_port(efx);
1765     if (rc) {
1766         netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1767         goto fail2;
1768     }
1769 
1770     BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1771     if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1772         rc = -EINVAL;
1773         goto fail3;
1774     }
1775     efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1776 
1777     rc = ef4_probe_filters(efx);
1778     if (rc) {
1779         netif_err(efx, probe, efx->net_dev,
1780               "failed to create filter tables\n");
1781         goto fail4;
1782     }
1783 
1784     rc = ef4_probe_channels(efx);
1785     if (rc)
1786         goto fail5;
1787 
1788     return 0;
1789 
1790  fail5:
1791     ef4_remove_filters(efx);
1792  fail4:
1793  fail3:
1794     ef4_remove_port(efx);
1795  fail2:
1796     ef4_remove_nic(efx);
1797  fail1:
1798     return rc;
1799 }
1800 
1801 /* If the interface is supposed to be running but is not, start
1802  * the hardware and software data path, regular activity for the port
1803  * (MAC statistics, link polling, etc.) and schedule the port to be
1804  * reconfigured.  Interrupts must already be enabled.  This function
1805  * is safe to call multiple times, so long as the NIC is not disabled.
1806  * Requires the RTNL lock.
1807  */
1808 static void ef4_start_all(struct ef4_nic *efx)
1809 {
1810     EF4_ASSERT_RESET_SERIALISED(efx);
1811     BUG_ON(efx->state == STATE_DISABLED);
1812 
1813     /* Check that it is appropriate to restart the interface. All
1814      * of these flags are safe to read under just the rtnl lock */
1815     if (efx->port_enabled || !netif_running(efx->net_dev) ||
1816         efx->reset_pending)
1817         return;
1818 
1819     ef4_start_port(efx);
1820     ef4_start_datapath(efx);
1821 
1822     /* Start the hardware monitor if there is one */
1823     if (efx->type->monitor != NULL)
1824         queue_delayed_work(efx->workqueue, &efx->monitor_work,
1825                    ef4_monitor_interval);
1826 
1827     efx->type->start_stats(efx);
1828     efx->type->pull_stats(efx);
1829     spin_lock_bh(&efx->stats_lock);
1830     efx->type->update_stats(efx, NULL, NULL);
1831     spin_unlock_bh(&efx->stats_lock);
1832 }
1833 
1834 /* Quiesce the hardware and software data path, and regular activity
1835  * for the port without bringing the link down.  Safe to call multiple
1836  * times with the NIC in almost any state, but interrupts should be
1837  * enabled.  Requires the RTNL lock.
1838  */
1839 static void ef4_stop_all(struct ef4_nic *efx)
1840 {
1841     EF4_ASSERT_RESET_SERIALISED(efx);
1842 
1843     /* port_enabled can be read safely under the rtnl lock */
1844     if (!efx->port_enabled)
1845         return;
1846 
1847     /* update stats before we go down so we can accurately count
1848      * rx_nodesc_drops
1849      */
1850     efx->type->pull_stats(efx);
1851     spin_lock_bh(&efx->stats_lock);
1852     efx->type->update_stats(efx, NULL, NULL);
1853     spin_unlock_bh(&efx->stats_lock);
1854     efx->type->stop_stats(efx);
1855     ef4_stop_port(efx);
1856 
1857     /* Stop the kernel transmit interface.  This is only valid if
1858      * the device is stopped or detached; otherwise the watchdog
1859      * may fire immediately.
1860      */
1861     WARN_ON(netif_running(efx->net_dev) &&
1862         netif_device_present(efx->net_dev));
1863     netif_tx_disable(efx->net_dev);
1864 
1865     ef4_stop_datapath(efx);
1866 }
1867 
1868 static void ef4_remove_all(struct ef4_nic *efx)
1869 {
1870     ef4_remove_channels(efx);
1871     ef4_remove_filters(efx);
1872     ef4_remove_port(efx);
1873     ef4_remove_nic(efx);
1874 }
1875 
1876 /**************************************************************************
1877  *
1878  * Interrupt moderation
1879  *
1880  **************************************************************************/
1881 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1882 {
1883     if (usecs == 0)
1884         return 0;
1885     if (usecs * 1000 < efx->timer_quantum_ns)
1886         return 1; /* never round down to 0 */
1887     return usecs * 1000 / efx->timer_quantum_ns;
1888 }
1889 
1890 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1891 {
1892     /* We must round up when converting ticks to microseconds
1893      * because we round down when converting the other way.
1894      */
1895     return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1896 }
1897 
1898 /* Set interrupt moderation parameters */
1899 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1900                 unsigned int rx_usecs, bool rx_adaptive,
1901                 bool rx_may_override_tx)
1902 {
1903     struct ef4_channel *channel;
1904     unsigned int timer_max_us;
1905 
1906     EF4_ASSERT_RESET_SERIALISED(efx);
1907 
1908     timer_max_us = efx->timer_max_ns / 1000;
1909 
1910     if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1911         return -EINVAL;
1912 
1913     if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1914         !rx_may_override_tx) {
1915         netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1916               "RX and TX IRQ moderation must be equal\n");
1917         return -EINVAL;
1918     }
1919 
1920     efx->irq_rx_adaptive = rx_adaptive;
1921     efx->irq_rx_moderation_us = rx_usecs;
1922     ef4_for_each_channel(channel, efx) {
1923         if (ef4_channel_has_rx_queue(channel))
1924             channel->irq_moderation_us = rx_usecs;
1925         else if (ef4_channel_has_tx_queues(channel))
1926             channel->irq_moderation_us = tx_usecs;
1927     }
1928 
1929     return 0;
1930 }
1931 
1932 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1933                 unsigned int *rx_usecs, bool *rx_adaptive)
1934 {
1935     *rx_adaptive = efx->irq_rx_adaptive;
1936     *rx_usecs = efx->irq_rx_moderation_us;
1937 
1938     /* If channels are shared between RX and TX, so is IRQ
1939      * moderation.  Otherwise, IRQ moderation is the same for all
1940      * TX channels and is not adaptive.
1941      */
1942     if (efx->tx_channel_offset == 0) {
1943         *tx_usecs = *rx_usecs;
1944     } else {
1945         struct ef4_channel *tx_channel;
1946 
1947         tx_channel = efx->channel[efx->tx_channel_offset];
1948         *tx_usecs = tx_channel->irq_moderation_us;
1949     }
1950 }
1951 
1952 /**************************************************************************
1953  *
1954  * Hardware monitor
1955  *
1956  **************************************************************************/
1957 
1958 /* Run periodically off the general workqueue */
1959 static void ef4_monitor(struct work_struct *data)
1960 {
1961     struct ef4_nic *efx = container_of(data, struct ef4_nic,
1962                        monitor_work.work);
1963 
1964     netif_vdbg(efx, timer, efx->net_dev,
1965            "hardware monitor executing on CPU %d\n",
1966            raw_smp_processor_id());
1967     BUG_ON(efx->type->monitor == NULL);
1968 
1969     /* If the mac_lock is already held then it is likely a port
1970      * reconfiguration is already in place, which will likely do
1971      * most of the work of monitor() anyway. */
1972     if (mutex_trylock(&efx->mac_lock)) {
1973         if (efx->port_enabled)
1974             efx->type->monitor(efx);
1975         mutex_unlock(&efx->mac_lock);
1976     }
1977 
1978     queue_delayed_work(efx->workqueue, &efx->monitor_work,
1979                ef4_monitor_interval);
1980 }
1981 
1982 /**************************************************************************
1983  *
1984  * ioctls
1985  *
1986  *************************************************************************/
1987 
1988 /* Net device ioctl
1989  * Context: process, rtnl_lock() held.
1990  */
1991 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1992 {
1993     struct ef4_nic *efx = netdev_priv(net_dev);
1994     struct mii_ioctl_data *data = if_mii(ifr);
1995 
1996     /* Convert phy_id from older PRTAD/DEVAD format */
1997     if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1998         (data->phy_id & 0xfc00) == 0x0400)
1999         data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2000 
2001     return mdio_mii_ioctl(&efx->mdio, data, cmd);
2002 }
2003 
2004 /**************************************************************************
2005  *
2006  * NAPI interface
2007  *
2008  **************************************************************************/
2009 
2010 static void ef4_init_napi_channel(struct ef4_channel *channel)
2011 {
2012     struct ef4_nic *efx = channel->efx;
2013 
2014     channel->napi_dev = efx->net_dev;
2015     netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll, 64);
2016 }
2017 
2018 static void ef4_init_napi(struct ef4_nic *efx)
2019 {
2020     struct ef4_channel *channel;
2021 
2022     ef4_for_each_channel(channel, efx)
2023         ef4_init_napi_channel(channel);
2024 }
2025 
2026 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2027 {
2028     if (channel->napi_dev)
2029         netif_napi_del(&channel->napi_str);
2030 
2031     channel->napi_dev = NULL;
2032 }
2033 
2034 static void ef4_fini_napi(struct ef4_nic *efx)
2035 {
2036     struct ef4_channel *channel;
2037 
2038     ef4_for_each_channel(channel, efx)
2039         ef4_fini_napi_channel(channel);
2040 }
2041 
2042 /**************************************************************************
2043  *
2044  * Kernel net device interface
2045  *
2046  *************************************************************************/
2047 
2048 /* Context: process, rtnl_lock() held. */
2049 int ef4_net_open(struct net_device *net_dev)
2050 {
2051     struct ef4_nic *efx = netdev_priv(net_dev);
2052     int rc;
2053 
2054     netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2055           raw_smp_processor_id());
2056 
2057     rc = ef4_check_disabled(efx);
2058     if (rc)
2059         return rc;
2060     if (efx->phy_mode & PHY_MODE_SPECIAL)
2061         return -EBUSY;
2062 
2063     /* Notify the kernel of the link state polled during driver load,
2064      * before the monitor starts running */
2065     ef4_link_status_changed(efx);
2066 
2067     ef4_start_all(efx);
2068     ef4_selftest_async_start(efx);
2069     return 0;
2070 }
2071 
2072 /* Context: process, rtnl_lock() held.
2073  * Note that the kernel will ignore our return code; this method
2074  * should really be a void.
2075  */
2076 int ef4_net_stop(struct net_device *net_dev)
2077 {
2078     struct ef4_nic *efx = netdev_priv(net_dev);
2079 
2080     netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2081           raw_smp_processor_id());
2082 
2083     /* Stop the device and flush all the channels */
2084     ef4_stop_all(efx);
2085 
2086     return 0;
2087 }
2088 
2089 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2090 static void ef4_net_stats(struct net_device *net_dev,
2091               struct rtnl_link_stats64 *stats)
2092 {
2093     struct ef4_nic *efx = netdev_priv(net_dev);
2094 
2095     spin_lock_bh(&efx->stats_lock);
2096     efx->type->update_stats(efx, NULL, stats);
2097     spin_unlock_bh(&efx->stats_lock);
2098 }
2099 
2100 /* Context: netif_tx_lock held, BHs disabled. */
2101 static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2102 {
2103     struct ef4_nic *efx = netdev_priv(net_dev);
2104 
2105     netif_err(efx, tx_err, efx->net_dev,
2106           "TX stuck with port_enabled=%d: resetting channels\n",
2107           efx->port_enabled);
2108 
2109     ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2110 }
2111 
2112 
2113 /* Context: process, rtnl_lock() held. */
2114 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2115 {
2116     struct ef4_nic *efx = netdev_priv(net_dev);
2117     int rc;
2118 
2119     rc = ef4_check_disabled(efx);
2120     if (rc)
2121         return rc;
2122 
2123     netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2124 
2125     ef4_device_detach_sync(efx);
2126     ef4_stop_all(efx);
2127 
2128     mutex_lock(&efx->mac_lock);
2129     net_dev->mtu = new_mtu;
2130     ef4_mac_reconfigure(efx);
2131     mutex_unlock(&efx->mac_lock);
2132 
2133     ef4_start_all(efx);
2134     netif_device_attach(efx->net_dev);
2135     return 0;
2136 }
2137 
2138 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2139 {
2140     struct ef4_nic *efx = netdev_priv(net_dev);
2141     struct sockaddr *addr = data;
2142     u8 *new_addr = addr->sa_data;
2143     u8 old_addr[6];
2144     int rc;
2145 
2146     if (!is_valid_ether_addr(new_addr)) {
2147         netif_err(efx, drv, efx->net_dev,
2148               "invalid ethernet MAC address requested: %pM\n",
2149               new_addr);
2150         return -EADDRNOTAVAIL;
2151     }
2152 
2153     /* save old address */
2154     ether_addr_copy(old_addr, net_dev->dev_addr);
2155     eth_hw_addr_set(net_dev, new_addr);
2156     if (efx->type->set_mac_address) {
2157         rc = efx->type->set_mac_address(efx);
2158         if (rc) {
2159             eth_hw_addr_set(net_dev, old_addr);
2160             return rc;
2161         }
2162     }
2163 
2164     /* Reconfigure the MAC */
2165     mutex_lock(&efx->mac_lock);
2166     ef4_mac_reconfigure(efx);
2167     mutex_unlock(&efx->mac_lock);
2168 
2169     return 0;
2170 }
2171 
2172 /* Context: netif_addr_lock held, BHs disabled. */
2173 static void ef4_set_rx_mode(struct net_device *net_dev)
2174 {
2175     struct ef4_nic *efx = netdev_priv(net_dev);
2176 
2177     if (efx->port_enabled)
2178         queue_work(efx->workqueue, &efx->mac_work);
2179     /* Otherwise ef4_start_port() will do this */
2180 }
2181 
2182 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2183 {
2184     struct ef4_nic *efx = netdev_priv(net_dev);
2185     int rc;
2186 
2187     /* If disabling RX n-tuple filtering, clear existing filters */
2188     if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2189         rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2190         if (rc)
2191             return rc;
2192     }
2193 
2194     /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2195     if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2196         /* ef4_set_rx_mode() will schedule MAC work to update filters
2197          * when a new features are finally set in net_dev.
2198          */
2199         ef4_set_rx_mode(net_dev);
2200     }
2201 
2202     return 0;
2203 }
2204 
2205 static const struct net_device_ops ef4_netdev_ops = {
2206     .ndo_open       = ef4_net_open,
2207     .ndo_stop       = ef4_net_stop,
2208     .ndo_get_stats64    = ef4_net_stats,
2209     .ndo_tx_timeout     = ef4_watchdog,
2210     .ndo_start_xmit     = ef4_hard_start_xmit,
2211     .ndo_validate_addr  = eth_validate_addr,
2212     .ndo_eth_ioctl      = ef4_ioctl,
2213     .ndo_change_mtu     = ef4_change_mtu,
2214     .ndo_set_mac_address    = ef4_set_mac_address,
2215     .ndo_set_rx_mode    = ef4_set_rx_mode,
2216     .ndo_set_features   = ef4_set_features,
2217     .ndo_setup_tc       = ef4_setup_tc,
2218 #ifdef CONFIG_RFS_ACCEL
2219     .ndo_rx_flow_steer  = ef4_filter_rfs,
2220 #endif
2221 };
2222 
2223 static void ef4_update_name(struct ef4_nic *efx)
2224 {
2225     strcpy(efx->name, efx->net_dev->name);
2226     ef4_mtd_rename(efx);
2227     ef4_set_channel_names(efx);
2228 }
2229 
2230 static int ef4_netdev_event(struct notifier_block *this,
2231                 unsigned long event, void *ptr)
2232 {
2233     struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2234 
2235     if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2236         event == NETDEV_CHANGENAME)
2237         ef4_update_name(netdev_priv(net_dev));
2238 
2239     return NOTIFY_DONE;
2240 }
2241 
2242 static struct notifier_block ef4_netdev_notifier = {
2243     .notifier_call = ef4_netdev_event,
2244 };
2245 
2246 static ssize_t
2247 phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2248 {
2249     struct ef4_nic *efx = dev_get_drvdata(dev);
2250     return sprintf(buf, "%d\n", efx->phy_type);
2251 }
2252 static DEVICE_ATTR_RO(phy_type);
2253 
2254 static int ef4_register_netdev(struct ef4_nic *efx)
2255 {
2256     struct net_device *net_dev = efx->net_dev;
2257     struct ef4_channel *channel;
2258     int rc;
2259 
2260     net_dev->watchdog_timeo = 5 * HZ;
2261     net_dev->irq = efx->pci_dev->irq;
2262     net_dev->netdev_ops = &ef4_netdev_ops;
2263     net_dev->ethtool_ops = &ef4_ethtool_ops;
2264     netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS);
2265     net_dev->min_mtu = EF4_MIN_MTU;
2266     net_dev->max_mtu = EF4_MAX_MTU;
2267 
2268     rtnl_lock();
2269 
2270     /* Enable resets to be scheduled and check whether any were
2271      * already requested.  If so, the NIC is probably hosed so we
2272      * abort.
2273      */
2274     efx->state = STATE_READY;
2275     smp_mb(); /* ensure we change state before checking reset_pending */
2276     if (efx->reset_pending) {
2277         netif_err(efx, probe, efx->net_dev,
2278               "aborting probe due to scheduled reset\n");
2279         rc = -EIO;
2280         goto fail_locked;
2281     }
2282 
2283     rc = dev_alloc_name(net_dev, net_dev->name);
2284     if (rc < 0)
2285         goto fail_locked;
2286     ef4_update_name(efx);
2287 
2288     /* Always start with carrier off; PHY events will detect the link */
2289     netif_carrier_off(net_dev);
2290 
2291     rc = register_netdevice(net_dev);
2292     if (rc)
2293         goto fail_locked;
2294 
2295     ef4_for_each_channel(channel, efx) {
2296         struct ef4_tx_queue *tx_queue;
2297         ef4_for_each_channel_tx_queue(tx_queue, channel)
2298             ef4_init_tx_queue_core_txq(tx_queue);
2299     }
2300 
2301     ef4_associate(efx);
2302 
2303     rtnl_unlock();
2304 
2305     rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2306     if (rc) {
2307         netif_err(efx, drv, efx->net_dev,
2308               "failed to init net dev attributes\n");
2309         goto fail_registered;
2310     }
2311     return 0;
2312 
2313 fail_registered:
2314     rtnl_lock();
2315     ef4_dissociate(efx);
2316     unregister_netdevice(net_dev);
2317 fail_locked:
2318     efx->state = STATE_UNINIT;
2319     rtnl_unlock();
2320     netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2321     return rc;
2322 }
2323 
2324 static void ef4_unregister_netdev(struct ef4_nic *efx)
2325 {
2326     if (!efx->net_dev)
2327         return;
2328 
2329     BUG_ON(netdev_priv(efx->net_dev) != efx);
2330 
2331     if (ef4_dev_registered(efx)) {
2332         strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2333         device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2334         unregister_netdev(efx->net_dev);
2335     }
2336 }
2337 
2338 /**************************************************************************
2339  *
2340  * Device reset and suspend
2341  *
2342  **************************************************************************/
2343 
2344 /* Tears down the entire software state and most of the hardware state
2345  * before reset.  */
2346 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2347 {
2348     EF4_ASSERT_RESET_SERIALISED(efx);
2349 
2350     ef4_stop_all(efx);
2351     ef4_disable_interrupts(efx);
2352 
2353     mutex_lock(&efx->mac_lock);
2354     if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2355         method != RESET_TYPE_DATAPATH)
2356         efx->phy_op->fini(efx);
2357     efx->type->fini(efx);
2358 }
2359 
2360 /* This function will always ensure that the locks acquired in
2361  * ef4_reset_down() are released. A failure return code indicates
2362  * that we were unable to reinitialise the hardware, and the
2363  * driver should be disabled. If ok is false, then the rx and tx
2364  * engines are not restarted, pending a RESET_DISABLE. */
2365 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2366 {
2367     int rc;
2368 
2369     EF4_ASSERT_RESET_SERIALISED(efx);
2370 
2371     /* Ensure that SRAM is initialised even if we're disabling the device */
2372     rc = efx->type->init(efx);
2373     if (rc) {
2374         netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2375         goto fail;
2376     }
2377 
2378     if (!ok)
2379         goto fail;
2380 
2381     if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2382         method != RESET_TYPE_DATAPATH) {
2383         rc = efx->phy_op->init(efx);
2384         if (rc)
2385             goto fail;
2386         rc = efx->phy_op->reconfigure(efx);
2387         if (rc && rc != -EPERM)
2388             netif_err(efx, drv, efx->net_dev,
2389                   "could not restore PHY settings\n");
2390     }
2391 
2392     rc = ef4_enable_interrupts(efx);
2393     if (rc)
2394         goto fail;
2395 
2396     down_read(&efx->filter_sem);
2397     ef4_restore_filters(efx);
2398     up_read(&efx->filter_sem);
2399 
2400     mutex_unlock(&efx->mac_lock);
2401 
2402     ef4_start_all(efx);
2403 
2404     return 0;
2405 
2406 fail:
2407     efx->port_initialized = false;
2408 
2409     mutex_unlock(&efx->mac_lock);
2410 
2411     return rc;
2412 }
2413 
2414 /* Reset the NIC using the specified method.  Note that the reset may
2415  * fail, in which case the card will be left in an unusable state.
2416  *
2417  * Caller must hold the rtnl_lock.
2418  */
2419 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2420 {
2421     int rc, rc2;
2422     bool disabled;
2423 
2424     netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2425            RESET_TYPE(method));
2426 
2427     ef4_device_detach_sync(efx);
2428     ef4_reset_down(efx, method);
2429 
2430     rc = efx->type->reset(efx, method);
2431     if (rc) {
2432         netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2433         goto out;
2434     }
2435 
2436     /* Clear flags for the scopes we covered.  We assume the NIC and
2437      * driver are now quiescent so that there is no race here.
2438      */
2439     if (method < RESET_TYPE_MAX_METHOD)
2440         efx->reset_pending &= -(1 << (method + 1));
2441     else /* it doesn't fit into the well-ordered scope hierarchy */
2442         __clear_bit(method, &efx->reset_pending);
2443 
2444     /* Reinitialise bus-mastering, which may have been turned off before
2445      * the reset was scheduled. This is still appropriate, even in the
2446      * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2447      * can respond to requests. */
2448     pci_set_master(efx->pci_dev);
2449 
2450 out:
2451     /* Leave device stopped if necessary */
2452     disabled = rc ||
2453         method == RESET_TYPE_DISABLE ||
2454         method == RESET_TYPE_RECOVER_OR_DISABLE;
2455     rc2 = ef4_reset_up(efx, method, !disabled);
2456     if (rc2) {
2457         disabled = true;
2458         if (!rc)
2459             rc = rc2;
2460     }
2461 
2462     if (disabled) {
2463         dev_close(efx->net_dev);
2464         netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2465         efx->state = STATE_DISABLED;
2466     } else {
2467         netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2468         netif_device_attach(efx->net_dev);
2469     }
2470     return rc;
2471 }
2472 
2473 /* Try recovery mechanisms.
2474  * For now only EEH is supported.
2475  * Returns 0 if the recovery mechanisms are unsuccessful.
2476  * Returns a non-zero value otherwise.
2477  */
2478 int ef4_try_recovery(struct ef4_nic *efx)
2479 {
2480 #ifdef CONFIG_EEH
2481     /* A PCI error can occur and not be seen by EEH because nothing
2482      * happens on the PCI bus. In this case the driver may fail and
2483      * schedule a 'recover or reset', leading to this recovery handler.
2484      * Manually call the eeh failure check function.
2485      */
2486     struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2487     if (eeh_dev_check_failure(eehdev)) {
2488         /* The EEH mechanisms will handle the error and reset the
2489          * device if necessary.
2490          */
2491         return 1;
2492     }
2493 #endif
2494     return 0;
2495 }
2496 
2497 /* The worker thread exists so that code that cannot sleep can
2498  * schedule a reset for later.
2499  */
2500 static void ef4_reset_work(struct work_struct *data)
2501 {
2502     struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2503     unsigned long pending;
2504     enum reset_type method;
2505 
2506     pending = READ_ONCE(efx->reset_pending);
2507     method = fls(pending) - 1;
2508 
2509     if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2510          method == RESET_TYPE_RECOVER_OR_ALL) &&
2511         ef4_try_recovery(efx))
2512         return;
2513 
2514     if (!pending)
2515         return;
2516 
2517     rtnl_lock();
2518 
2519     /* We checked the state in ef4_schedule_reset() but it may
2520      * have changed by now.  Now that we have the RTNL lock,
2521      * it cannot change again.
2522      */
2523     if (efx->state == STATE_READY)
2524         (void)ef4_reset(efx, method);
2525 
2526     rtnl_unlock();
2527 }
2528 
2529 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2530 {
2531     enum reset_type method;
2532 
2533     if (efx->state == STATE_RECOVERY) {
2534         netif_dbg(efx, drv, efx->net_dev,
2535               "recovering: skip scheduling %s reset\n",
2536               RESET_TYPE(type));
2537         return;
2538     }
2539 
2540     switch (type) {
2541     case RESET_TYPE_INVISIBLE:
2542     case RESET_TYPE_ALL:
2543     case RESET_TYPE_RECOVER_OR_ALL:
2544     case RESET_TYPE_WORLD:
2545     case RESET_TYPE_DISABLE:
2546     case RESET_TYPE_RECOVER_OR_DISABLE:
2547     case RESET_TYPE_DATAPATH:
2548         method = type;
2549         netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2550               RESET_TYPE(method));
2551         break;
2552     default:
2553         method = efx->type->map_reset_reason(type);
2554         netif_dbg(efx, drv, efx->net_dev,
2555               "scheduling %s reset for %s\n",
2556               RESET_TYPE(method), RESET_TYPE(type));
2557         break;
2558     }
2559 
2560     set_bit(method, &efx->reset_pending);
2561     smp_mb(); /* ensure we change reset_pending before checking state */
2562 
2563     /* If we're not READY then just leave the flags set as the cue
2564      * to abort probing or reschedule the reset later.
2565      */
2566     if (READ_ONCE(efx->state) != STATE_READY)
2567         return;
2568 
2569     queue_work(reset_workqueue, &efx->reset_work);
2570 }
2571 
2572 /**************************************************************************
2573  *
2574  * List of NICs we support
2575  *
2576  **************************************************************************/
2577 
2578 /* PCI device ID table */
2579 static const struct pci_device_id ef4_pci_table[] = {
2580     {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2581             PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2582      .driver_data = (unsigned long) &falcon_a1_nic_type},
2583     {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2584             PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2585      .driver_data = (unsigned long) &falcon_b0_nic_type},
2586     {0}         /* end of list */
2587 };
2588 
2589 /**************************************************************************
2590  *
2591  * Dummy PHY/MAC operations
2592  *
2593  * Can be used for some unimplemented operations
2594  * Needed so all function pointers are valid and do not have to be tested
2595  * before use
2596  *
2597  **************************************************************************/
2598 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2599 {
2600     return 0;
2601 }
2602 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2603 
2604 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2605 {
2606     return false;
2607 }
2608 
2609 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2610     .init        = ef4_port_dummy_op_int,
2611     .reconfigure     = ef4_port_dummy_op_int,
2612     .poll        = ef4_port_dummy_op_poll,
2613     .fini        = ef4_port_dummy_op_void,
2614 };
2615 
2616 /**************************************************************************
2617  *
2618  * Data housekeeping
2619  *
2620  **************************************************************************/
2621 
2622 /* This zeroes out and then fills in the invariants in a struct
2623  * ef4_nic (including all sub-structures).
2624  */
2625 static int ef4_init_struct(struct ef4_nic *efx,
2626                struct pci_dev *pci_dev, struct net_device *net_dev)
2627 {
2628     int i;
2629 
2630     /* Initialise common structures */
2631     INIT_LIST_HEAD(&efx->node);
2632     INIT_LIST_HEAD(&efx->secondary_list);
2633     spin_lock_init(&efx->biu_lock);
2634 #ifdef CONFIG_SFC_FALCON_MTD
2635     INIT_LIST_HEAD(&efx->mtd_list);
2636 #endif
2637     INIT_WORK(&efx->reset_work, ef4_reset_work);
2638     INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2639     INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2640     efx->pci_dev = pci_dev;
2641     efx->msg_enable = debug;
2642     efx->state = STATE_UNINIT;
2643     strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2644 
2645     efx->net_dev = net_dev;
2646     efx->rx_prefix_size = efx->type->rx_prefix_size;
2647     efx->rx_ip_align =
2648         NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2649     efx->rx_packet_hash_offset =
2650         efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2651     efx->rx_packet_ts_offset =
2652         efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2653     spin_lock_init(&efx->stats_lock);
2654     mutex_init(&efx->mac_lock);
2655     efx->phy_op = &ef4_dummy_phy_operations;
2656     efx->mdio.dev = net_dev;
2657     INIT_WORK(&efx->mac_work, ef4_mac_work);
2658     init_waitqueue_head(&efx->flush_wq);
2659 
2660     for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2661         efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2662         if (!efx->channel[i])
2663             goto fail;
2664         efx->msi_context[i].efx = efx;
2665         efx->msi_context[i].index = i;
2666     }
2667 
2668     /* Higher numbered interrupt modes are less capable! */
2669     efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2670                   interrupt_mode);
2671 
2672     /* Would be good to use the net_dev name, but we're too early */
2673     snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2674          pci_name(pci_dev));
2675     efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2676     if (!efx->workqueue)
2677         goto fail;
2678 
2679     return 0;
2680 
2681 fail:
2682     ef4_fini_struct(efx);
2683     return -ENOMEM;
2684 }
2685 
2686 static void ef4_fini_struct(struct ef4_nic *efx)
2687 {
2688     int i;
2689 
2690     for (i = 0; i < EF4_MAX_CHANNELS; i++)
2691         kfree(efx->channel[i]);
2692 
2693     kfree(efx->vpd_sn);
2694 
2695     if (efx->workqueue) {
2696         destroy_workqueue(efx->workqueue);
2697         efx->workqueue = NULL;
2698     }
2699 }
2700 
2701 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2702 {
2703     u64 n_rx_nodesc_trunc = 0;
2704     struct ef4_channel *channel;
2705 
2706     ef4_for_each_channel(channel, efx)
2707         n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2708     stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2709     stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2710 }
2711 
2712 /**************************************************************************
2713  *
2714  * PCI interface
2715  *
2716  **************************************************************************/
2717 
2718 /* Main body of final NIC shutdown code
2719  * This is called only at module unload (or hotplug removal).
2720  */
2721 static void ef4_pci_remove_main(struct ef4_nic *efx)
2722 {
2723     /* Flush reset_work. It can no longer be scheduled since we
2724      * are not READY.
2725      */
2726     BUG_ON(efx->state == STATE_READY);
2727     cancel_work_sync(&efx->reset_work);
2728 
2729     ef4_disable_interrupts(efx);
2730     ef4_nic_fini_interrupt(efx);
2731     ef4_fini_port(efx);
2732     efx->type->fini(efx);
2733     ef4_fini_napi(efx);
2734     ef4_remove_all(efx);
2735 }
2736 
2737 /* Final NIC shutdown
2738  * This is called only at module unload (or hotplug removal).  A PF can call
2739  * this on its VFs to ensure they are unbound first.
2740  */
2741 static void ef4_pci_remove(struct pci_dev *pci_dev)
2742 {
2743     struct ef4_nic *efx;
2744 
2745     efx = pci_get_drvdata(pci_dev);
2746     if (!efx)
2747         return;
2748 
2749     /* Mark the NIC as fini, then stop the interface */
2750     rtnl_lock();
2751     ef4_dissociate(efx);
2752     dev_close(efx->net_dev);
2753     ef4_disable_interrupts(efx);
2754     efx->state = STATE_UNINIT;
2755     rtnl_unlock();
2756 
2757     ef4_unregister_netdev(efx);
2758 
2759     ef4_mtd_remove(efx);
2760 
2761     ef4_pci_remove_main(efx);
2762 
2763     ef4_fini_io(efx);
2764     netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2765 
2766     ef4_fini_struct(efx);
2767     free_netdev(efx->net_dev);
2768 
2769     pci_disable_pcie_error_reporting(pci_dev);
2770 };
2771 
2772 /* NIC VPD information
2773  * Called during probe to display the part number of the installed NIC.
2774  */
2775 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2776 {
2777     struct pci_dev *dev = efx->pci_dev;
2778     unsigned int vpd_size, kw_len;
2779     u8 *vpd_data;
2780     int start;
2781 
2782     vpd_data = pci_vpd_alloc(dev, &vpd_size);
2783     if (IS_ERR(vpd_data)) {
2784         pci_warn(dev, "Unable to read VPD\n");
2785         return;
2786     }
2787 
2788     start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2789                          PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2790     if (start < 0)
2791         pci_warn(dev, "Part number not found or incomplete\n");
2792     else
2793         pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2794 
2795     start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2796                          PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2797     if (start < 0)
2798         pci_warn(dev, "Serial number not found or incomplete\n");
2799     else
2800         efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2801 
2802     kfree(vpd_data);
2803 }
2804 
2805 
2806 /* Main body of NIC initialisation
2807  * This is called at module load (or hotplug insertion, theoretically).
2808  */
2809 static int ef4_pci_probe_main(struct ef4_nic *efx)
2810 {
2811     int rc;
2812 
2813     /* Do start-of-day initialisation */
2814     rc = ef4_probe_all(efx);
2815     if (rc)
2816         goto fail1;
2817 
2818     ef4_init_napi(efx);
2819 
2820     rc = efx->type->init(efx);
2821     if (rc) {
2822         netif_err(efx, probe, efx->net_dev,
2823               "failed to initialise NIC\n");
2824         goto fail3;
2825     }
2826 
2827     rc = ef4_init_port(efx);
2828     if (rc) {
2829         netif_err(efx, probe, efx->net_dev,
2830               "failed to initialise port\n");
2831         goto fail4;
2832     }
2833 
2834     rc = ef4_nic_init_interrupt(efx);
2835     if (rc)
2836         goto fail5;
2837     rc = ef4_enable_interrupts(efx);
2838     if (rc)
2839         goto fail6;
2840 
2841     return 0;
2842 
2843  fail6:
2844     ef4_nic_fini_interrupt(efx);
2845  fail5:
2846     ef4_fini_port(efx);
2847  fail4:
2848     efx->type->fini(efx);
2849  fail3:
2850     ef4_fini_napi(efx);
2851     ef4_remove_all(efx);
2852  fail1:
2853     return rc;
2854 }
2855 
2856 /* NIC initialisation
2857  *
2858  * This is called at module load (or hotplug insertion,
2859  * theoretically).  It sets up PCI mappings, resets the NIC,
2860  * sets up and registers the network devices with the kernel and hooks
2861  * the interrupt service routine.  It does not prepare the device for
2862  * transmission; this is left to the first time one of the network
2863  * interfaces is brought up (i.e. ef4_net_open).
2864  */
2865 static int ef4_pci_probe(struct pci_dev *pci_dev,
2866              const struct pci_device_id *entry)
2867 {
2868     struct net_device *net_dev;
2869     struct ef4_nic *efx;
2870     int rc;
2871 
2872     /* Allocate and initialise a struct net_device and struct ef4_nic */
2873     net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2874                      EF4_MAX_RX_QUEUES);
2875     if (!net_dev)
2876         return -ENOMEM;
2877     efx = netdev_priv(net_dev);
2878     efx->type = (const struct ef4_nic_type *) entry->driver_data;
2879     efx->fixed_features |= NETIF_F_HIGHDMA;
2880 
2881     pci_set_drvdata(pci_dev, efx);
2882     SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2883     rc = ef4_init_struct(efx, pci_dev, net_dev);
2884     if (rc)
2885         goto fail1;
2886 
2887     netif_info(efx, probe, efx->net_dev,
2888            "Solarflare NIC detected\n");
2889 
2890     ef4_probe_vpd_strings(efx);
2891 
2892     /* Set up basic I/O (BAR mappings etc) */
2893     rc = ef4_init_io(efx);
2894     if (rc)
2895         goto fail2;
2896 
2897     rc = ef4_pci_probe_main(efx);
2898     if (rc)
2899         goto fail3;
2900 
2901     net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2902                   NETIF_F_RXCSUM);
2903     /* Mask for features that also apply to VLAN devices */
2904     net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2905                    NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2906 
2907     net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2908 
2909     /* Disable VLAN filtering by default.  It may be enforced if
2910      * the feature is fixed (i.e. VLAN filters are required to
2911      * receive VLAN tagged packets due to vPort restrictions).
2912      */
2913     net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2914     net_dev->features |= efx->fixed_features;
2915 
2916     rc = ef4_register_netdev(efx);
2917     if (rc)
2918         goto fail4;
2919 
2920     netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2921 
2922     /* Try to create MTDs, but allow this to fail */
2923     rtnl_lock();
2924     rc = ef4_mtd_probe(efx);
2925     rtnl_unlock();
2926     if (rc && rc != -EPERM)
2927         netif_warn(efx, probe, efx->net_dev,
2928                "failed to create MTDs (%d)\n", rc);
2929 
2930     rc = pci_enable_pcie_error_reporting(pci_dev);
2931     if (rc && rc != -EINVAL)
2932         netif_notice(efx, probe, efx->net_dev,
2933                  "PCIE error reporting unavailable (%d).\n",
2934                  rc);
2935 
2936     return 0;
2937 
2938  fail4:
2939     ef4_pci_remove_main(efx);
2940  fail3:
2941     ef4_fini_io(efx);
2942  fail2:
2943     ef4_fini_struct(efx);
2944  fail1:
2945     WARN_ON(rc > 0);
2946     netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2947     free_netdev(net_dev);
2948     return rc;
2949 }
2950 
2951 static int ef4_pm_freeze(struct device *dev)
2952 {
2953     struct ef4_nic *efx = dev_get_drvdata(dev);
2954 
2955     rtnl_lock();
2956 
2957     if (efx->state != STATE_DISABLED) {
2958         efx->state = STATE_UNINIT;
2959 
2960         ef4_device_detach_sync(efx);
2961 
2962         ef4_stop_all(efx);
2963         ef4_disable_interrupts(efx);
2964     }
2965 
2966     rtnl_unlock();
2967 
2968     return 0;
2969 }
2970 
2971 static int ef4_pm_thaw(struct device *dev)
2972 {
2973     int rc;
2974     struct ef4_nic *efx = dev_get_drvdata(dev);
2975 
2976     rtnl_lock();
2977 
2978     if (efx->state != STATE_DISABLED) {
2979         rc = ef4_enable_interrupts(efx);
2980         if (rc)
2981             goto fail;
2982 
2983         mutex_lock(&efx->mac_lock);
2984         efx->phy_op->reconfigure(efx);
2985         mutex_unlock(&efx->mac_lock);
2986 
2987         ef4_start_all(efx);
2988 
2989         netif_device_attach(efx->net_dev);
2990 
2991         efx->state = STATE_READY;
2992 
2993         efx->type->resume_wol(efx);
2994     }
2995 
2996     rtnl_unlock();
2997 
2998     /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
2999     queue_work(reset_workqueue, &efx->reset_work);
3000 
3001     return 0;
3002 
3003 fail:
3004     rtnl_unlock();
3005 
3006     return rc;
3007 }
3008 
3009 static int ef4_pm_poweroff(struct device *dev)
3010 {
3011     struct pci_dev *pci_dev = to_pci_dev(dev);
3012     struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3013 
3014     efx->type->fini(efx);
3015 
3016     efx->reset_pending = 0;
3017 
3018     pci_save_state(pci_dev);
3019     return pci_set_power_state(pci_dev, PCI_D3hot);
3020 }
3021 
3022 /* Used for both resume and restore */
3023 static int ef4_pm_resume(struct device *dev)
3024 {
3025     struct pci_dev *pci_dev = to_pci_dev(dev);
3026     struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3027     int rc;
3028 
3029     rc = pci_set_power_state(pci_dev, PCI_D0);
3030     if (rc)
3031         return rc;
3032     pci_restore_state(pci_dev);
3033     rc = pci_enable_device(pci_dev);
3034     if (rc)
3035         return rc;
3036     pci_set_master(efx->pci_dev);
3037     rc = efx->type->reset(efx, RESET_TYPE_ALL);
3038     if (rc)
3039         return rc;
3040     rc = efx->type->init(efx);
3041     if (rc)
3042         return rc;
3043     rc = ef4_pm_thaw(dev);
3044     return rc;
3045 }
3046 
3047 static int ef4_pm_suspend(struct device *dev)
3048 {
3049     int rc;
3050 
3051     ef4_pm_freeze(dev);
3052     rc = ef4_pm_poweroff(dev);
3053     if (rc)
3054         ef4_pm_resume(dev);
3055     return rc;
3056 }
3057 
3058 static const struct dev_pm_ops ef4_pm_ops = {
3059     .suspend    = ef4_pm_suspend,
3060     .resume     = ef4_pm_resume,
3061     .freeze     = ef4_pm_freeze,
3062     .thaw       = ef4_pm_thaw,
3063     .poweroff   = ef4_pm_poweroff,
3064     .restore    = ef4_pm_resume,
3065 };
3066 
3067 /* A PCI error affecting this device was detected.
3068  * At this point MMIO and DMA may be disabled.
3069  * Stop the software path and request a slot reset.
3070  */
3071 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3072                           pci_channel_state_t state)
3073 {
3074     pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3075     struct ef4_nic *efx = pci_get_drvdata(pdev);
3076 
3077     if (state == pci_channel_io_perm_failure)
3078         return PCI_ERS_RESULT_DISCONNECT;
3079 
3080     rtnl_lock();
3081 
3082     if (efx->state != STATE_DISABLED) {
3083         efx->state = STATE_RECOVERY;
3084         efx->reset_pending = 0;
3085 
3086         ef4_device_detach_sync(efx);
3087 
3088         ef4_stop_all(efx);
3089         ef4_disable_interrupts(efx);
3090 
3091         status = PCI_ERS_RESULT_NEED_RESET;
3092     } else {
3093         /* If the interface is disabled we don't want to do anything
3094          * with it.
3095          */
3096         status = PCI_ERS_RESULT_RECOVERED;
3097     }
3098 
3099     rtnl_unlock();
3100 
3101     pci_disable_device(pdev);
3102 
3103     return status;
3104 }
3105 
3106 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3107 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3108 {
3109     struct ef4_nic *efx = pci_get_drvdata(pdev);
3110     pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3111 
3112     if (pci_enable_device(pdev)) {
3113         netif_err(efx, hw, efx->net_dev,
3114               "Cannot re-enable PCI device after reset.\n");
3115         status =  PCI_ERS_RESULT_DISCONNECT;
3116     }
3117 
3118     return status;
3119 }
3120 
3121 /* Perform the actual reset and resume I/O operations. */
3122 static void ef4_io_resume(struct pci_dev *pdev)
3123 {
3124     struct ef4_nic *efx = pci_get_drvdata(pdev);
3125     int rc;
3126 
3127     rtnl_lock();
3128 
3129     if (efx->state == STATE_DISABLED)
3130         goto out;
3131 
3132     rc = ef4_reset(efx, RESET_TYPE_ALL);
3133     if (rc) {
3134         netif_err(efx, hw, efx->net_dev,
3135               "ef4_reset failed after PCI error (%d)\n", rc);
3136     } else {
3137         efx->state = STATE_READY;
3138         netif_dbg(efx, hw, efx->net_dev,
3139               "Done resetting and resuming IO after PCI error.\n");
3140     }
3141 
3142 out:
3143     rtnl_unlock();
3144 }
3145 
3146 /* For simplicity and reliability, we always require a slot reset and try to
3147  * reset the hardware when a pci error affecting the device is detected.
3148  * We leave both the link_reset and mmio_enabled callback unimplemented:
3149  * with our request for slot reset the mmio_enabled callback will never be
3150  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3151  */
3152 static const struct pci_error_handlers ef4_err_handlers = {
3153     .error_detected = ef4_io_error_detected,
3154     .slot_reset = ef4_io_slot_reset,
3155     .resume     = ef4_io_resume,
3156 };
3157 
3158 static struct pci_driver ef4_pci_driver = {
3159     .name       = KBUILD_MODNAME,
3160     .id_table   = ef4_pci_table,
3161     .probe      = ef4_pci_probe,
3162     .remove     = ef4_pci_remove,
3163     .driver.pm  = &ef4_pm_ops,
3164     .err_handler    = &ef4_err_handlers,
3165 };
3166 
3167 /**************************************************************************
3168  *
3169  * Kernel module interface
3170  *
3171  *************************************************************************/
3172 
3173 module_param(interrupt_mode, uint, 0444);
3174 MODULE_PARM_DESC(interrupt_mode,
3175          "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3176 
3177 static int __init ef4_init_module(void)
3178 {
3179     int rc;
3180 
3181     printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3182 
3183     rc = register_netdevice_notifier(&ef4_netdev_notifier);
3184     if (rc)
3185         goto err_notifier;
3186 
3187     reset_workqueue = create_singlethread_workqueue("sfc_reset");
3188     if (!reset_workqueue) {
3189         rc = -ENOMEM;
3190         goto err_reset;
3191     }
3192 
3193     rc = pci_register_driver(&ef4_pci_driver);
3194     if (rc < 0)
3195         goto err_pci;
3196 
3197     return 0;
3198 
3199  err_pci:
3200     destroy_workqueue(reset_workqueue);
3201  err_reset:
3202     unregister_netdevice_notifier(&ef4_netdev_notifier);
3203  err_notifier:
3204     return rc;
3205 }
3206 
3207 static void __exit ef4_exit_module(void)
3208 {
3209     printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3210 
3211     pci_unregister_driver(&ef4_pci_driver);
3212     destroy_workqueue(reset_workqueue);
3213     unregister_netdevice_notifier(&ef4_netdev_notifier);
3214 
3215 }
3216 
3217 module_init(ef4_init_module);
3218 module_exit(ef4_exit_module);
3219 
3220 MODULE_AUTHOR("Solarflare Communications and "
3221           "Michael Brown <mbrown@fensystems.co.uk>");
3222 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3223 MODULE_LICENSE("GPL");
3224 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3225 MODULE_VERSION(EF4_DRIVER_VERSION);