Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /****************************************************************************
0003  * Driver for Solarflare network controllers and boards
0004  * Copyright 2012-2013 Solarflare Communications Inc.
0005  */
0006 
0007 #include "net_driver.h"
0008 #include "rx_common.h"
0009 #include "tx_common.h"
0010 #include "ef10_regs.h"
0011 #include "io.h"
0012 #include "mcdi.h"
0013 #include "mcdi_pcol.h"
0014 #include "mcdi_port.h"
0015 #include "mcdi_port_common.h"
0016 #include "mcdi_functions.h"
0017 #include "nic.h"
0018 #include "mcdi_filters.h"
0019 #include "workarounds.h"
0020 #include "selftest.h"
0021 #include "ef10_sriov.h"
0022 #include <linux/in.h>
0023 #include <linux/jhash.h>
0024 #include <linux/wait.h>
0025 #include <linux/workqueue.h>
0026 #include <net/udp_tunnel.h>
0027 
0028 /* Hardware control for EF10 architecture including 'Huntington'. */
0029 
0030 #define EFX_EF10_DRVGEN_EV      7
0031 enum {
0032     EFX_EF10_TEST = 1,
0033     EFX_EF10_REFILL,
0034 };
0035 
0036 /* VLAN list entry */
0037 struct efx_ef10_vlan {
0038     struct list_head list;
0039     u16 vid;
0040 };
0041 
0042 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
0043 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
0044 
0045 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
0046 {
0047     efx_dword_t reg;
0048 
0049     efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
0050     return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
0051         EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
0052 }
0053 
0054 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
0055  * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
0056  * bar; PFs use BAR 0/1 for memory.
0057  */
0058 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
0059 {
0060     switch (efx->pci_dev->device) {
0061     case 0x0b03: /* SFC9250 PF */
0062         return 0;
0063     default:
0064         return 2;
0065     }
0066 }
0067 
0068 /* All VFs use BAR 0/1 for memory */
0069 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
0070 {
0071     return 0;
0072 }
0073 
0074 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
0075 {
0076     int bar;
0077 
0078     bar = efx->type->mem_bar(efx);
0079     return resource_size(&efx->pci_dev->resource[bar]);
0080 }
0081 
0082 static bool efx_ef10_is_vf(struct efx_nic *efx)
0083 {
0084     return efx->type->is_vf;
0085 }
0086 
0087 #ifdef CONFIG_SFC_SRIOV
0088 static int efx_ef10_get_vf_index(struct efx_nic *efx)
0089 {
0090     MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
0091     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0092     size_t outlen;
0093     int rc;
0094 
0095     rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
0096               sizeof(outbuf), &outlen);
0097     if (rc)
0098         return rc;
0099     if (outlen < sizeof(outbuf))
0100         return -EIO;
0101 
0102     nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
0103     return 0;
0104 }
0105 #endif
0106 
0107 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
0108 {
0109     MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
0110     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0111     size_t outlen;
0112     int rc;
0113 
0114     BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
0115 
0116     rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
0117               outbuf, sizeof(outbuf), &outlen);
0118     if (rc)
0119         return rc;
0120     if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
0121         netif_err(efx, drv, efx->net_dev,
0122               "unable to read datapath firmware capabilities\n");
0123         return -EIO;
0124     }
0125 
0126     nic_data->datapath_caps =
0127         MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
0128 
0129     if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
0130         nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
0131                 GET_CAPABILITIES_V2_OUT_FLAGS2);
0132         nic_data->piobuf_size = MCDI_WORD(outbuf,
0133                 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
0134     } else {
0135         nic_data->datapath_caps2 = 0;
0136         nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
0137     }
0138 
0139     /* record the DPCPU firmware IDs to determine VEB vswitching support.
0140      */
0141     nic_data->rx_dpcpu_fw_id =
0142         MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
0143     nic_data->tx_dpcpu_fw_id =
0144         MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
0145 
0146     if (!(nic_data->datapath_caps &
0147           (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
0148         netif_err(efx, probe, efx->net_dev,
0149               "current firmware does not support an RX prefix\n");
0150         return -ENODEV;
0151     }
0152 
0153     if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
0154         u8 vi_window_mode = MCDI_BYTE(outbuf,
0155                 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
0156 
0157         rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
0158         if (rc)
0159             return rc;
0160     } else {
0161         /* keep default VI stride */
0162         netif_dbg(efx, probe, efx->net_dev,
0163               "firmware did not report VI window mode, assuming vi_stride = %u\n",
0164               efx->vi_stride);
0165     }
0166 
0167     if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
0168         efx->num_mac_stats = MCDI_WORD(outbuf,
0169                 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
0170         netif_dbg(efx, probe, efx->net_dev,
0171               "firmware reports num_mac_stats = %u\n",
0172               efx->num_mac_stats);
0173     } else {
0174         /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
0175         netif_dbg(efx, probe, efx->net_dev,
0176               "firmware did not report num_mac_stats, assuming %u\n",
0177               efx->num_mac_stats);
0178     }
0179 
0180     return 0;
0181 }
0182 
0183 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
0184 {
0185     MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
0186     MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
0187     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0188     size_t outlen;
0189     int rc;
0190 
0191     MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
0192                MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
0193     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
0194                 outbuf, sizeof(outbuf), &outlen);
0195     if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
0196         return;
0197 
0198     nic_data->licensed_features = MCDI_QWORD(outbuf,
0199                      LICENSING_V3_OUT_LICENSED_FEATURES);
0200 }
0201 
0202 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
0203 {
0204     MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
0205     int rc;
0206 
0207     rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
0208               outbuf, sizeof(outbuf), NULL);
0209     if (rc)
0210         return rc;
0211     rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
0212     return rc > 0 ? rc : -ERANGE;
0213 }
0214 
0215 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
0216 {
0217     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0218     unsigned int implemented;
0219     unsigned int enabled;
0220     int rc;
0221 
0222     nic_data->workaround_35388 = false;
0223     nic_data->workaround_61265 = false;
0224 
0225     rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
0226 
0227     if (rc == -ENOSYS) {
0228         /* Firmware without GET_WORKAROUNDS - not a problem. */
0229         rc = 0;
0230     } else if (rc == 0) {
0231         /* Bug61265 workaround is always enabled if implemented. */
0232         if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
0233             nic_data->workaround_61265 = true;
0234 
0235         if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
0236             nic_data->workaround_35388 = true;
0237         } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
0238             /* Workaround is implemented but not enabled.
0239              * Try to enable it.
0240              */
0241             rc = efx_mcdi_set_workaround(efx,
0242                              MC_CMD_WORKAROUND_BUG35388,
0243                              true, NULL);
0244             if (rc == 0)
0245                 nic_data->workaround_35388 = true;
0246             /* If we failed to set the workaround just carry on. */
0247             rc = 0;
0248         }
0249     }
0250 
0251     netif_dbg(efx, probe, efx->net_dev,
0252           "workaround for bug 35388 is %sabled\n",
0253           nic_data->workaround_35388 ? "en" : "dis");
0254     netif_dbg(efx, probe, efx->net_dev,
0255           "workaround for bug 61265 is %sabled\n",
0256           nic_data->workaround_61265 ? "en" : "dis");
0257 
0258     return rc;
0259 }
0260 
0261 static void efx_ef10_process_timer_config(struct efx_nic *efx,
0262                       const efx_dword_t *data)
0263 {
0264     unsigned int max_count;
0265 
0266     if (EFX_EF10_WORKAROUND_61265(efx)) {
0267         efx->timer_quantum_ns = MCDI_DWORD(data,
0268             GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
0269         efx->timer_max_ns = MCDI_DWORD(data,
0270             GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
0271     } else if (EFX_EF10_WORKAROUND_35388(efx)) {
0272         efx->timer_quantum_ns = MCDI_DWORD(data,
0273             GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
0274         max_count = MCDI_DWORD(data,
0275             GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
0276         efx->timer_max_ns = max_count * efx->timer_quantum_ns;
0277     } else {
0278         efx->timer_quantum_ns = MCDI_DWORD(data,
0279             GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
0280         max_count = MCDI_DWORD(data,
0281             GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
0282         efx->timer_max_ns = max_count * efx->timer_quantum_ns;
0283     }
0284 
0285     netif_dbg(efx, probe, efx->net_dev,
0286           "got timer properties from MC: quantum %u ns; max %u ns\n",
0287           efx->timer_quantum_ns, efx->timer_max_ns);
0288 }
0289 
0290 static int efx_ef10_get_timer_config(struct efx_nic *efx)
0291 {
0292     MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
0293     int rc;
0294 
0295     rc = efx_ef10_get_timer_workarounds(efx);
0296     if (rc)
0297         return rc;
0298 
0299     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
0300                 outbuf, sizeof(outbuf), NULL);
0301 
0302     if (rc == 0) {
0303         efx_ef10_process_timer_config(efx, outbuf);
0304     } else if (rc == -ENOSYS || rc == -EPERM) {
0305         /* Not available - fall back to Huntington defaults. */
0306         unsigned int quantum;
0307 
0308         rc = efx_ef10_get_sysclk_freq(efx);
0309         if (rc < 0)
0310             return rc;
0311 
0312         quantum = 1536000 / rc; /* 1536 cycles */
0313         efx->timer_quantum_ns = quantum;
0314         efx->timer_max_ns = efx->type->timer_period_max * quantum;
0315         rc = 0;
0316     } else {
0317         efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
0318                        MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
0319                        NULL, 0, rc);
0320     }
0321 
0322     return rc;
0323 }
0324 
0325 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
0326 {
0327     MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
0328     size_t outlen;
0329     int rc;
0330 
0331     BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
0332 
0333     rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
0334               outbuf, sizeof(outbuf), &outlen);
0335     if (rc)
0336         return rc;
0337     if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
0338         return -EIO;
0339 
0340     ether_addr_copy(mac_address,
0341             MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
0342     return 0;
0343 }
0344 
0345 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
0346 {
0347     MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
0348     MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
0349     size_t outlen;
0350     int num_addrs, rc;
0351 
0352     MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
0353                EVB_PORT_ID_ASSIGNED);
0354     rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
0355               sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
0356 
0357     if (rc)
0358         return rc;
0359     if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
0360         return -EIO;
0361 
0362     num_addrs = MCDI_DWORD(outbuf,
0363                    VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
0364 
0365     WARN_ON(num_addrs != 1);
0366 
0367     ether_addr_copy(mac_address,
0368             MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
0369 
0370     return 0;
0371 }
0372 
0373 static ssize_t link_control_flag_show(struct device *dev,
0374                       struct device_attribute *attr,
0375                       char *buf)
0376 {
0377     struct efx_nic *efx = dev_get_drvdata(dev);
0378 
0379     return sprintf(buf, "%d\n",
0380                ((efx->mcdi->fn_flags) &
0381             (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
0382                ? 1 : 0);
0383 }
0384 
0385 static ssize_t primary_flag_show(struct device *dev,
0386                  struct device_attribute *attr,
0387                  char *buf)
0388 {
0389     struct efx_nic *efx = dev_get_drvdata(dev);
0390 
0391     return sprintf(buf, "%d\n",
0392                ((efx->mcdi->fn_flags) &
0393             (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
0394                ? 1 : 0);
0395 }
0396 
0397 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
0398 {
0399     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0400     struct efx_ef10_vlan *vlan;
0401 
0402     WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
0403 
0404     list_for_each_entry(vlan, &nic_data->vlan_list, list) {
0405         if (vlan->vid == vid)
0406             return vlan;
0407     }
0408 
0409     return NULL;
0410 }
0411 
0412 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
0413 {
0414     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0415     struct efx_ef10_vlan *vlan;
0416     int rc;
0417 
0418     mutex_lock(&nic_data->vlan_lock);
0419 
0420     vlan = efx_ef10_find_vlan(efx, vid);
0421     if (vlan) {
0422         /* We add VID 0 on init. 8021q adds it on module init
0423          * for all interfaces with VLAN filtring feature.
0424          */
0425         if (vid == 0)
0426             goto done_unlock;
0427         netif_warn(efx, drv, efx->net_dev,
0428                "VLAN %u already added\n", vid);
0429         rc = -EALREADY;
0430         goto fail_exist;
0431     }
0432 
0433     rc = -ENOMEM;
0434     vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
0435     if (!vlan)
0436         goto fail_alloc;
0437 
0438     vlan->vid = vid;
0439 
0440     list_add_tail(&vlan->list, &nic_data->vlan_list);
0441 
0442     if (efx->filter_state) {
0443         mutex_lock(&efx->mac_lock);
0444         down_write(&efx->filter_sem);
0445         rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
0446         up_write(&efx->filter_sem);
0447         mutex_unlock(&efx->mac_lock);
0448         if (rc)
0449             goto fail_filter_add_vlan;
0450     }
0451 
0452 done_unlock:
0453     mutex_unlock(&nic_data->vlan_lock);
0454     return 0;
0455 
0456 fail_filter_add_vlan:
0457     list_del(&vlan->list);
0458     kfree(vlan);
0459 fail_alloc:
0460 fail_exist:
0461     mutex_unlock(&nic_data->vlan_lock);
0462     return rc;
0463 }
0464 
0465 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
0466                        struct efx_ef10_vlan *vlan)
0467 {
0468     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0469 
0470     WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
0471 
0472     if (efx->filter_state) {
0473         down_write(&efx->filter_sem);
0474         efx_mcdi_filter_del_vlan(efx, vlan->vid);
0475         up_write(&efx->filter_sem);
0476     }
0477 
0478     list_del(&vlan->list);
0479     kfree(vlan);
0480 }
0481 
0482 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
0483 {
0484     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0485     struct efx_ef10_vlan *vlan;
0486     int rc = 0;
0487 
0488     /* 8021q removes VID 0 on module unload for all interfaces
0489      * with VLAN filtering feature. We need to keep it to receive
0490      * untagged traffic.
0491      */
0492     if (vid == 0)
0493         return 0;
0494 
0495     mutex_lock(&nic_data->vlan_lock);
0496 
0497     vlan = efx_ef10_find_vlan(efx, vid);
0498     if (!vlan) {
0499         netif_err(efx, drv, efx->net_dev,
0500               "VLAN %u to be deleted not found\n", vid);
0501         rc = -ENOENT;
0502     } else {
0503         efx_ef10_del_vlan_internal(efx, vlan);
0504     }
0505 
0506     mutex_unlock(&nic_data->vlan_lock);
0507 
0508     return rc;
0509 }
0510 
0511 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
0512 {
0513     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0514     struct efx_ef10_vlan *vlan, *next_vlan;
0515 
0516     mutex_lock(&nic_data->vlan_lock);
0517     list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
0518         efx_ef10_del_vlan_internal(efx, vlan);
0519     mutex_unlock(&nic_data->vlan_lock);
0520 }
0521 
0522 static DEVICE_ATTR_RO(link_control_flag);
0523 static DEVICE_ATTR_RO(primary_flag);
0524 
0525 static int efx_ef10_probe(struct efx_nic *efx)
0526 {
0527     struct efx_ef10_nic_data *nic_data;
0528     int i, rc;
0529 
0530     nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
0531     if (!nic_data)
0532         return -ENOMEM;
0533     efx->nic_data = nic_data;
0534 
0535     /* we assume later that we can copy from this buffer in dwords */
0536     BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
0537 
0538     rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
0539                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
0540     if (rc)
0541         goto fail1;
0542 
0543     /* Get the MC's warm boot count.  In case it's rebooting right
0544      * now, be prepared to retry.
0545      */
0546     i = 0;
0547     for (;;) {
0548         rc = efx_ef10_get_warm_boot_count(efx);
0549         if (rc >= 0)
0550             break;
0551         if (++i == 5)
0552             goto fail2;
0553         ssleep(1);
0554     }
0555     nic_data->warm_boot_count = rc;
0556 
0557     /* In case we're recovering from a crash (kexec), we want to
0558      * cancel any outstanding request by the previous user of this
0559      * function.  We send a special message using the least
0560      * significant bits of the 'high' (doorbell) register.
0561      */
0562     _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
0563 
0564     rc = efx_mcdi_init(efx);
0565     if (rc)
0566         goto fail2;
0567 
0568     mutex_init(&nic_data->udp_tunnels_lock);
0569     for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
0570         nic_data->udp_tunnels[i].type =
0571             TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
0572 
0573     /* Reset (most) configuration for this function */
0574     rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
0575     if (rc)
0576         goto fail3;
0577 
0578     /* Enable event logging */
0579     rc = efx_mcdi_log_ctrl(efx, true, false, 0);
0580     if (rc)
0581         goto fail3;
0582 
0583     rc = device_create_file(&efx->pci_dev->dev,
0584                 &dev_attr_link_control_flag);
0585     if (rc)
0586         goto fail3;
0587 
0588     rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
0589     if (rc)
0590         goto fail4;
0591 
0592     rc = efx_get_pf_index(efx, &nic_data->pf_index);
0593     if (rc)
0594         goto fail5;
0595 
0596     rc = efx_ef10_init_datapath_caps(efx);
0597     if (rc < 0)
0598         goto fail5;
0599 
0600     efx_ef10_read_licensed_features(efx);
0601 
0602     /* We can have one VI for each vi_stride-byte region.
0603      * However, until we use TX option descriptors we need up to four
0604      * TX queues per channel for different checksumming combinations.
0605      */
0606     if (nic_data->datapath_caps &
0607         (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
0608         efx->tx_queues_per_channel = 4;
0609     else
0610         efx->tx_queues_per_channel = 2;
0611     efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
0612     if (!efx->max_vis) {
0613         netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
0614         rc = -EIO;
0615         goto fail5;
0616     }
0617     efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
0618                   efx->max_vis / efx->tx_queues_per_channel);
0619     efx->max_tx_channels = efx->max_channels;
0620     if (WARN_ON(efx->max_channels == 0)) {
0621         rc = -EIO;
0622         goto fail5;
0623     }
0624 
0625     efx->rx_packet_len_offset =
0626         ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
0627 
0628     if (nic_data->datapath_caps &
0629         (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
0630         efx->net_dev->hw_features |= NETIF_F_RXFCS;
0631 
0632     rc = efx_mcdi_port_get_number(efx);
0633     if (rc < 0)
0634         goto fail5;
0635     efx->port_num = rc;
0636 
0637     rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
0638     if (rc)
0639         goto fail5;
0640 
0641     rc = efx_ef10_get_timer_config(efx);
0642     if (rc < 0)
0643         goto fail5;
0644 
0645     rc = efx_mcdi_mon_probe(efx);
0646     if (rc && rc != -EPERM)
0647         goto fail5;
0648 
0649     efx_ptp_defer_probe_with_channel(efx);
0650 
0651 #ifdef CONFIG_SFC_SRIOV
0652     if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
0653         struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
0654         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
0655 
0656         efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
0657     } else
0658 #endif
0659         ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
0660 
0661     INIT_LIST_HEAD(&nic_data->vlan_list);
0662     mutex_init(&nic_data->vlan_lock);
0663 
0664     /* Add unspecified VID to support VLAN filtering being disabled */
0665     rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
0666     if (rc)
0667         goto fail_add_vid_unspec;
0668 
0669     /* If VLAN filtering is enabled, we need VID 0 to get untagged
0670      * traffic.  It is added automatically if 8021q module is loaded,
0671      * but we can't rely on it since module may be not loaded.
0672      */
0673     rc = efx_ef10_add_vlan(efx, 0);
0674     if (rc)
0675         goto fail_add_vid_0;
0676 
0677     if (nic_data->datapath_caps &
0678         (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
0679         efx->mcdi->fn_flags &
0680         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
0681         efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
0682 
0683     return 0;
0684 
0685 fail_add_vid_0:
0686     efx_ef10_cleanup_vlans(efx);
0687 fail_add_vid_unspec:
0688     mutex_destroy(&nic_data->vlan_lock);
0689     efx_ptp_remove(efx);
0690     efx_mcdi_mon_remove(efx);
0691 fail5:
0692     device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
0693 fail4:
0694     device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
0695 fail3:
0696     efx_mcdi_detach(efx);
0697 
0698     mutex_lock(&nic_data->udp_tunnels_lock);
0699     memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
0700     (void)efx_ef10_set_udp_tnl_ports(efx, true);
0701     mutex_unlock(&nic_data->udp_tunnels_lock);
0702     mutex_destroy(&nic_data->udp_tunnels_lock);
0703 
0704     efx_mcdi_fini(efx);
0705 fail2:
0706     efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
0707 fail1:
0708     kfree(nic_data);
0709     efx->nic_data = NULL;
0710     return rc;
0711 }
0712 
0713 #ifdef EFX_USE_PIO
0714 
0715 static void efx_ef10_free_piobufs(struct efx_nic *efx)
0716 {
0717     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0718     MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
0719     unsigned int i;
0720     int rc;
0721 
0722     BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
0723 
0724     for (i = 0; i < nic_data->n_piobufs; i++) {
0725         MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
0726                    nic_data->piobuf_handle[i]);
0727         rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
0728                   NULL, 0, NULL);
0729         WARN_ON(rc);
0730     }
0731 
0732     nic_data->n_piobufs = 0;
0733 }
0734 
0735 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
0736 {
0737     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0738     MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
0739     unsigned int i;
0740     size_t outlen;
0741     int rc = 0;
0742 
0743     BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
0744 
0745     for (i = 0; i < n; i++) {
0746         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
0747                     outbuf, sizeof(outbuf), &outlen);
0748         if (rc) {
0749             /* Don't display the MC error if we didn't have space
0750              * for a VF.
0751              */
0752             if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
0753                 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
0754                                0, outbuf, outlen, rc);
0755             break;
0756         }
0757         if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
0758             rc = -EIO;
0759             break;
0760         }
0761         nic_data->piobuf_handle[i] =
0762             MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
0763         netif_dbg(efx, probe, efx->net_dev,
0764               "allocated PIO buffer %u handle %x\n", i,
0765               nic_data->piobuf_handle[i]);
0766     }
0767 
0768     nic_data->n_piobufs = i;
0769     if (rc)
0770         efx_ef10_free_piobufs(efx);
0771     return rc;
0772 }
0773 
0774 static int efx_ef10_link_piobufs(struct efx_nic *efx)
0775 {
0776     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0777     MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
0778     struct efx_channel *channel;
0779     struct efx_tx_queue *tx_queue;
0780     unsigned int offset, index;
0781     int rc;
0782 
0783     BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
0784     BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
0785 
0786     /* Link a buffer to each VI in the write-combining mapping */
0787     for (index = 0; index < nic_data->n_piobufs; ++index) {
0788         MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
0789                    nic_data->piobuf_handle[index]);
0790         MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
0791                    nic_data->pio_write_vi_base + index);
0792         rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
0793                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
0794                   NULL, 0, NULL);
0795         if (rc) {
0796             netif_err(efx, drv, efx->net_dev,
0797                   "failed to link VI %u to PIO buffer %u (%d)\n",
0798                   nic_data->pio_write_vi_base + index, index,
0799                   rc);
0800             goto fail;
0801         }
0802         netif_dbg(efx, probe, efx->net_dev,
0803               "linked VI %u to PIO buffer %u\n",
0804               nic_data->pio_write_vi_base + index, index);
0805     }
0806 
0807     /* Link a buffer to each TX queue */
0808     efx_for_each_channel(channel, efx) {
0809         /* Extra channels, even those with TXQs (PTP), do not require
0810          * PIO resources.
0811          */
0812         if (!channel->type->want_pio ||
0813             channel->channel >= efx->xdp_channel_offset)
0814             continue;
0815 
0816         efx_for_each_channel_tx_queue(tx_queue, channel) {
0817             /* We assign the PIO buffers to queues in
0818              * reverse order to allow for the following
0819              * special case.
0820              */
0821             offset = ((efx->tx_channel_offset + efx->n_tx_channels -
0822                    tx_queue->channel->channel - 1) *
0823                   efx_piobuf_size);
0824             index = offset / nic_data->piobuf_size;
0825             offset = offset % nic_data->piobuf_size;
0826 
0827             /* When the host page size is 4K, the first
0828              * host page in the WC mapping may be within
0829              * the same VI page as the last TX queue.  We
0830              * can only link one buffer to each VI.
0831              */
0832             if (tx_queue->queue == nic_data->pio_write_vi_base) {
0833                 BUG_ON(index != 0);
0834                 rc = 0;
0835             } else {
0836                 MCDI_SET_DWORD(inbuf,
0837                            LINK_PIOBUF_IN_PIOBUF_HANDLE,
0838                            nic_data->piobuf_handle[index]);
0839                 MCDI_SET_DWORD(inbuf,
0840                            LINK_PIOBUF_IN_TXQ_INSTANCE,
0841                            tx_queue->queue);
0842                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
0843                           inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
0844                           NULL, 0, NULL);
0845             }
0846 
0847             if (rc) {
0848                 /* This is non-fatal; the TX path just
0849                  * won't use PIO for this queue
0850                  */
0851                 netif_err(efx, drv, efx->net_dev,
0852                       "failed to link VI %u to PIO buffer %u (%d)\n",
0853                       tx_queue->queue, index, rc);
0854                 tx_queue->piobuf = NULL;
0855             } else {
0856                 tx_queue->piobuf =
0857                     nic_data->pio_write_base +
0858                     index * efx->vi_stride + offset;
0859                 tx_queue->piobuf_offset = offset;
0860                 netif_dbg(efx, probe, efx->net_dev,
0861                       "linked VI %u to PIO buffer %u offset %x addr %p\n",
0862                       tx_queue->queue, index,
0863                       tx_queue->piobuf_offset,
0864                       tx_queue->piobuf);
0865             }
0866         }
0867     }
0868 
0869     return 0;
0870 
0871 fail:
0872     /* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
0873      * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
0874      */
0875     BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
0876     while (index--) {
0877         MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
0878                    nic_data->pio_write_vi_base + index);
0879         efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
0880                  inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
0881                  NULL, 0, NULL);
0882     }
0883     return rc;
0884 }
0885 
0886 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
0887 {
0888     struct efx_channel *channel;
0889     struct efx_tx_queue *tx_queue;
0890 
0891     /* All our existing PIO buffers went away */
0892     efx_for_each_channel(channel, efx)
0893         efx_for_each_channel_tx_queue(tx_queue, channel)
0894             tx_queue->piobuf = NULL;
0895 }
0896 
0897 #else /* !EFX_USE_PIO */
0898 
0899 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
0900 {
0901     return n == 0 ? 0 : -ENOBUFS;
0902 }
0903 
0904 static int efx_ef10_link_piobufs(struct efx_nic *efx)
0905 {
0906     return 0;
0907 }
0908 
0909 static void efx_ef10_free_piobufs(struct efx_nic *efx)
0910 {
0911 }
0912 
0913 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
0914 {
0915 }
0916 
0917 #endif /* EFX_USE_PIO */
0918 
0919 static void efx_ef10_remove(struct efx_nic *efx)
0920 {
0921     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0922     int rc;
0923 
0924 #ifdef CONFIG_SFC_SRIOV
0925     struct efx_ef10_nic_data *nic_data_pf;
0926     struct pci_dev *pci_dev_pf;
0927     struct efx_nic *efx_pf;
0928     struct ef10_vf *vf;
0929 
0930     if (efx->pci_dev->is_virtfn) {
0931         pci_dev_pf = efx->pci_dev->physfn;
0932         if (pci_dev_pf) {
0933             efx_pf = pci_get_drvdata(pci_dev_pf);
0934             nic_data_pf = efx_pf->nic_data;
0935             vf = nic_data_pf->vf + nic_data->vf_index;
0936             vf->efx = NULL;
0937         } else
0938             netif_info(efx, drv, efx->net_dev,
0939                    "Could not get the PF id from VF\n");
0940     }
0941 #endif
0942 
0943     efx_ef10_cleanup_vlans(efx);
0944     mutex_destroy(&nic_data->vlan_lock);
0945 
0946     efx_ptp_remove(efx);
0947 
0948     efx_mcdi_mon_remove(efx);
0949 
0950     efx_mcdi_rx_free_indir_table(efx);
0951 
0952     if (nic_data->wc_membase)
0953         iounmap(nic_data->wc_membase);
0954 
0955     rc = efx_mcdi_free_vis(efx);
0956     WARN_ON(rc != 0);
0957 
0958     if (!nic_data->must_restore_piobufs)
0959         efx_ef10_free_piobufs(efx);
0960 
0961     device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
0962     device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
0963 
0964     efx_mcdi_detach(efx);
0965 
0966     memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
0967     mutex_lock(&nic_data->udp_tunnels_lock);
0968     (void)efx_ef10_set_udp_tnl_ports(efx, true);
0969     mutex_unlock(&nic_data->udp_tunnels_lock);
0970 
0971     mutex_destroy(&nic_data->udp_tunnels_lock);
0972 
0973     efx_mcdi_fini(efx);
0974     efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
0975     kfree(nic_data);
0976 }
0977 
0978 static int efx_ef10_probe_pf(struct efx_nic *efx)
0979 {
0980     return efx_ef10_probe(efx);
0981 }
0982 
0983 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
0984                 u32 *port_flags, u32 *vadaptor_flags,
0985                 unsigned int *vlan_tags)
0986 {
0987     struct efx_ef10_nic_data *nic_data = efx->nic_data;
0988     MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
0989     MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
0990     size_t outlen;
0991     int rc;
0992 
0993     if (nic_data->datapath_caps &
0994         (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
0995         MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
0996                    port_id);
0997 
0998         rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
0999                   outbuf, sizeof(outbuf), &outlen);
1000         if (rc)
1001             return rc;
1002 
1003         if (outlen < sizeof(outbuf)) {
1004             rc = -EIO;
1005             return rc;
1006         }
1007     }
1008 
1009     if (port_flags)
1010         *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011     if (vadaptor_flags)
1012         *vadaptor_flags =
1013             MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014     if (vlan_tags)
1015         *vlan_tags =
1016             MCDI_DWORD(outbuf,
1017                    VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018 
1019     return 0;
1020 }
1021 
1022 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023 {
1024     MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025 
1026     MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027     return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028                 NULL, 0, NULL);
1029 }
1030 
1031 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032 {
1033     MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034 
1035     MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036     return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037                 NULL, 0, NULL);
1038 }
1039 
1040 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041                unsigned int port_id, const u8 *mac)
1042 {
1043     MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044 
1045     MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046     ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047 
1048     return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049                 sizeof(inbuf), NULL, 0, NULL);
1050 }
1051 
1052 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053                unsigned int port_id, const u8 *mac)
1054 {
1055     MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056 
1057     MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058     ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059 
1060     return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061                 sizeof(inbuf), NULL, 0, NULL);
1062 }
1063 
1064 #ifdef CONFIG_SFC_SRIOV
1065 static int efx_ef10_probe_vf(struct efx_nic *efx)
1066 {
1067     int rc;
1068     struct pci_dev *pci_dev_pf;
1069 
1070     /* If the parent PF has no VF data structure, it doesn't know about this
1071      * VF so fail probe.  The VF needs to be re-created.  This can happen
1072      * if the PF driver was unloaded while any VF was assigned to a guest
1073      * (using Xen, only).
1074      */
1075     pci_dev_pf = efx->pci_dev->physfn;
1076     if (pci_dev_pf) {
1077         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078         struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079 
1080         if (!nic_data_pf->vf) {
1081             netif_info(efx, drv, efx->net_dev,
1082                    "The VF cannot link to its parent PF; "
1083                    "please destroy and re-create the VF\n");
1084             return -EBUSY;
1085         }
1086     }
1087 
1088     rc = efx_ef10_probe(efx);
1089     if (rc)
1090         return rc;
1091 
1092     rc = efx_ef10_get_vf_index(efx);
1093     if (rc)
1094         goto fail;
1095 
1096     if (efx->pci_dev->is_virtfn) {
1097         if (efx->pci_dev->physfn) {
1098             struct efx_nic *efx_pf =
1099                 pci_get_drvdata(efx->pci_dev->physfn);
1100             struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101             struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102 
1103             nic_data_p->vf[nic_data->vf_index].efx = efx;
1104             nic_data_p->vf[nic_data->vf_index].pci_dev =
1105                 efx->pci_dev;
1106         } else
1107             netif_info(efx, drv, efx->net_dev,
1108                    "Could not get the PF id from VF\n");
1109     }
1110 
1111     return 0;
1112 
1113 fail:
1114     efx_ef10_remove(efx);
1115     return rc;
1116 }
1117 #else
1118 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119 {
1120     return 0;
1121 }
1122 #endif
1123 
1124 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125                   unsigned int min_vis, unsigned int max_vis)
1126 {
1127     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128 
1129     return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130                   &nic_data->n_allocated_vis);
1131 }
1132 
1133 /* Note that the failure path of this function does not free
1134  * resources, as this will be done by efx_ef10_remove().
1135  */
1136 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137 {
1138     unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139                      efx_separate_tx_channels ? 2 : 1);
1140     unsigned int channel_vis, pio_write_vi_base, max_vis;
1141     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142     unsigned int uc_mem_map_size, wc_mem_map_size;
1143     void __iomem *membase;
1144     int rc;
1145 
1146     channel_vis = max(efx->n_channels,
1147               ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148                efx->tx_queues_per_channel) +
1149                efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150     if (efx->max_vis && efx->max_vis < channel_vis) {
1151         netif_dbg(efx, drv, efx->net_dev,
1152               "Reducing channel VIs from %u to %u\n",
1153               channel_vis, efx->max_vis);
1154         channel_vis = efx->max_vis;
1155     }
1156 
1157 #ifdef EFX_USE_PIO
1158     /* Try to allocate PIO buffers if wanted and if the full
1159      * number of PIO buffers would be sufficient to allocate one
1160      * copy-buffer per TX channel.  Failure is non-fatal, as there
1161      * are only a small number of PIO buffers shared between all
1162      * functions of the controller.
1163      */
1164     if (efx_piobuf_size != 0 &&
1165         nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166         efx->n_tx_channels) {
1167         unsigned int n_piobufs =
1168             DIV_ROUND_UP(efx->n_tx_channels,
1169                      nic_data->piobuf_size / efx_piobuf_size);
1170 
1171         rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172         if (rc == -ENOSPC)
1173             netif_dbg(efx, probe, efx->net_dev,
1174                   "out of PIO buffers; cannot allocate more\n");
1175         else if (rc == -EPERM)
1176             netif_dbg(efx, probe, efx->net_dev,
1177                   "not permitted to allocate PIO buffers\n");
1178         else if (rc)
1179             netif_err(efx, probe, efx->net_dev,
1180                   "failed to allocate PIO buffers (%d)\n", rc);
1181         else
1182             netif_dbg(efx, probe, efx->net_dev,
1183                   "allocated %u PIO buffers\n", n_piobufs);
1184     }
1185 #else
1186     nic_data->n_piobufs = 0;
1187 #endif
1188 
1189     /* PIO buffers should be mapped with write-combining enabled,
1190      * and we want to make single UC and WC mappings rather than
1191      * several of each (in fact that's the only option if host
1192      * page size is >4K).  So we may allocate some extra VIs just
1193      * for writing PIO buffers through.
1194      *
1195      * The UC mapping contains (channel_vis - 1) complete VIs and the
1196      * first 4K of the next VI.  Then the WC mapping begins with
1197      * the remainder of this last VI.
1198      */
1199     uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200                      ER_DZ_TX_PIOBUF);
1201     if (nic_data->n_piobufs) {
1202         /* pio_write_vi_base rounds down to give the number of complete
1203          * VIs inside the UC mapping.
1204          */
1205         pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206         wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207                            nic_data->n_piobufs) *
1208                           efx->vi_stride) -
1209                    uc_mem_map_size);
1210         max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211     } else {
1212         pio_write_vi_base = 0;
1213         wc_mem_map_size = 0;
1214         max_vis = channel_vis;
1215     }
1216 
1217     /* In case the last attached driver failed to free VIs, do it now */
1218     rc = efx_mcdi_free_vis(efx);
1219     if (rc != 0)
1220         return rc;
1221 
1222     rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223     if (rc != 0)
1224         return rc;
1225 
1226     if (nic_data->n_allocated_vis < channel_vis) {
1227         netif_info(efx, drv, efx->net_dev,
1228                "Could not allocate enough VIs to satisfy RSS"
1229                " requirements. Performance may not be optimal.\n");
1230         /* We didn't get the VIs to populate our channels.
1231          * We could keep what we got but then we'd have more
1232          * interrupts than we need.
1233          * Instead calculate new max_channels and restart
1234          */
1235         efx->max_channels = nic_data->n_allocated_vis;
1236         efx->max_tx_channels =
1237             nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238 
1239         efx_mcdi_free_vis(efx);
1240         return -EAGAIN;
1241     }
1242 
1243     /* If we didn't get enough VIs to map all the PIO buffers, free the
1244      * PIO buffers
1245      */
1246     if (nic_data->n_piobufs &&
1247         nic_data->n_allocated_vis <
1248         pio_write_vi_base + nic_data->n_piobufs) {
1249         netif_dbg(efx, probe, efx->net_dev,
1250               "%u VIs are not sufficient to map %u PIO buffers\n",
1251               nic_data->n_allocated_vis, nic_data->n_piobufs);
1252         efx_ef10_free_piobufs(efx);
1253     }
1254 
1255     /* Shrink the original UC mapping of the memory BAR */
1256     membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257     if (!membase) {
1258         netif_err(efx, probe, efx->net_dev,
1259               "could not shrink memory BAR to %x\n",
1260               uc_mem_map_size);
1261         return -ENOMEM;
1262     }
1263     iounmap(efx->membase);
1264     efx->membase = membase;
1265 
1266     /* Set up the WC mapping if needed */
1267     if (wc_mem_map_size) {
1268         nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269                           uc_mem_map_size,
1270                           wc_mem_map_size);
1271         if (!nic_data->wc_membase) {
1272             netif_err(efx, probe, efx->net_dev,
1273                   "could not allocate WC mapping of size %x\n",
1274                   wc_mem_map_size);
1275             return -ENOMEM;
1276         }
1277         nic_data->pio_write_vi_base = pio_write_vi_base;
1278         nic_data->pio_write_base =
1279             nic_data->wc_membase +
1280             (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281              uc_mem_map_size);
1282 
1283         rc = efx_ef10_link_piobufs(efx);
1284         if (rc)
1285             efx_ef10_free_piobufs(efx);
1286     }
1287 
1288     netif_dbg(efx, probe, efx->net_dev,
1289           "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290           &efx->membase_phys, efx->membase, uc_mem_map_size,
1291           nic_data->wc_membase, wc_mem_map_size);
1292 
1293     return 0;
1294 }
1295 
1296 static void efx_ef10_fini_nic(struct efx_nic *efx)
1297 {
1298     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299 
1300     kfree(nic_data->mc_stats);
1301     nic_data->mc_stats = NULL;
1302 }
1303 
1304 static int efx_ef10_init_nic(struct efx_nic *efx)
1305 {
1306     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1307     netdev_features_t hw_enc_features = 0;
1308     int rc;
1309 
1310     if (nic_data->must_check_datapath_caps) {
1311         rc = efx_ef10_init_datapath_caps(efx);
1312         if (rc)
1313             return rc;
1314         nic_data->must_check_datapath_caps = false;
1315     }
1316 
1317     if (efx->must_realloc_vis) {
1318         /* We cannot let the number of VIs change now */
1319         rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1320                     nic_data->n_allocated_vis);
1321         if (rc)
1322             return rc;
1323         efx->must_realloc_vis = false;
1324     }
1325 
1326     nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1327                      GFP_KERNEL);
1328     if (!nic_data->mc_stats)
1329         return -ENOMEM;
1330 
1331     if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1332         rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1333         if (rc == 0) {
1334             rc = efx_ef10_link_piobufs(efx);
1335             if (rc)
1336                 efx_ef10_free_piobufs(efx);
1337         }
1338 
1339         /* Log an error on failure, but this is non-fatal.
1340          * Permission errors are less important - we've presumably
1341          * had the PIO buffer licence removed.
1342          */
1343         if (rc == -EPERM)
1344             netif_dbg(efx, drv, efx->net_dev,
1345                   "not permitted to restore PIO buffers\n");
1346         else if (rc)
1347             netif_err(efx, drv, efx->net_dev,
1348                   "failed to restore PIO buffers (%d)\n", rc);
1349         nic_data->must_restore_piobufs = false;
1350     }
1351 
1352     /* add encapsulated checksum offload features */
1353     if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1354         hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1355     /* add encapsulated TSO features */
1356     if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1357         netdev_features_t encap_tso_features;
1358 
1359         encap_tso_features = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1360             NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1361 
1362         hw_enc_features |= encap_tso_features | NETIF_F_TSO;
1363         efx->net_dev->features |= encap_tso_features;
1364     }
1365     efx->net_dev->hw_enc_features = hw_enc_features;
1366 
1367     /* don't fail init if RSS setup doesn't work */
1368     rc = efx->type->rx_push_rss_config(efx, false,
1369                        efx->rss_context.rx_indir_table, NULL);
1370 
1371     return 0;
1372 }
1373 
1374 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1375 {
1376     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1377 #ifdef CONFIG_SFC_SRIOV
1378     unsigned int i;
1379 #endif
1380 
1381     /* All our allocations have been reset */
1382     efx->must_realloc_vis = true;
1383     efx_mcdi_filter_table_reset_mc_allocations(efx);
1384     nic_data->must_restore_piobufs = true;
1385     efx_ef10_forget_old_piobufs(efx);
1386     efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1387 
1388     /* Driver-created vswitches and vports must be re-created */
1389     nic_data->must_probe_vswitching = true;
1390     efx->vport_id = EVB_PORT_ID_ASSIGNED;
1391 #ifdef CONFIG_SFC_SRIOV
1392     if (nic_data->vf)
1393         for (i = 0; i < efx->vf_count; i++)
1394             nic_data->vf[i].vport_id = 0;
1395 #endif
1396 }
1397 
1398 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1399 {
1400     if (reason == RESET_TYPE_MC_FAILURE)
1401         return RESET_TYPE_DATAPATH;
1402 
1403     return efx_mcdi_map_reset_reason(reason);
1404 }
1405 
1406 static int efx_ef10_map_reset_flags(u32 *flags)
1407 {
1408     enum {
1409         EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1410                    ETH_RESET_SHARED_SHIFT),
1411         EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1412                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1413                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
1414                  ETH_RESET_SHARED_SHIFT)
1415     };
1416 
1417     /* We assume for now that our PCI function is permitted to
1418      * reset everything.
1419      */
1420 
1421     if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1422         *flags &= ~EF10_RESET_MC;
1423         return RESET_TYPE_WORLD;
1424     }
1425 
1426     if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1427         *flags &= ~EF10_RESET_PORT;
1428         return RESET_TYPE_ALL;
1429     }
1430 
1431     /* no invisible reset implemented */
1432 
1433     return -EINVAL;
1434 }
1435 
1436 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1437 {
1438     int rc = efx_mcdi_reset(efx, reset_type);
1439 
1440     /* Unprivileged functions return -EPERM, but need to return success
1441      * here so that the datapath is brought back up.
1442      */
1443     if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1444         rc = 0;
1445 
1446     /* If it was a port reset, trigger reallocation of MC resources.
1447      * Note that on an MC reset nothing needs to be done now because we'll
1448      * detect the MC reset later and handle it then.
1449      * For an FLR, we never get an MC reset event, but the MC has reset all
1450      * resources assigned to us, so we have to trigger reallocation now.
1451      */
1452     if ((reset_type == RESET_TYPE_ALL ||
1453          reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1454         efx_ef10_table_reset_mc_allocations(efx);
1455     return rc;
1456 }
1457 
1458 #define EF10_DMA_STAT(ext_name, mcdi_name)          \
1459     [EF10_STAT_ ## ext_name] =              \
1460     { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1461 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)        \
1462     [EF10_STAT_ ## int_name] =              \
1463     { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1464 #define EF10_OTHER_STAT(ext_name)               \
1465     [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1466 
1467 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1468     EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1469     EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1470     EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1471     EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1472     EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1473     EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1474     EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1475     EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1476     EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1477     EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1478     EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1479     EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1480     EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1481     EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1482     EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1483     EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1484     EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1485     EF10_OTHER_STAT(port_rx_good_bytes),
1486     EF10_OTHER_STAT(port_rx_bad_bytes),
1487     EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1488     EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1489     EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1490     EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1491     EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1492     EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1493     EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1494     EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1495     EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1496     EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1497     EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1498     EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1499     EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1500     EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1501     EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1502     EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1503     EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1504     EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1505     EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1506     EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1507     EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1508     EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1509     EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1510     EFX_GENERIC_SW_STAT(rx_noskb_drops),
1511     EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1512     EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1513     EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1514     EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1515     EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1516     EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1517     EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1518     EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1519     EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1520     EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1521     EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1522     EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1523     EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1524     EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1525     EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1526     EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1527     EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1528     EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1529     EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1530     EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1531     EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1532     EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1533     EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1534     EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1535     EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1536     EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1537     EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1538     EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1539     EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1540     EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1541     EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1542     EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1543     EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1544     EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1545     EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1546     EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1547     EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1548     EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1549     EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1550     EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1551     EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1552     EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1553     EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1554     EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1555     EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1556     EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1557     EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1558     EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1559     EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1560     EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1561     EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1562     EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1563 };
1564 
1565 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |  \
1566                    (1ULL << EF10_STAT_port_tx_packets) |    \
1567                    (1ULL << EF10_STAT_port_tx_pause) |  \
1568                    (1ULL << EF10_STAT_port_tx_unicast) |    \
1569                    (1ULL << EF10_STAT_port_tx_multicast) |  \
1570                    (1ULL << EF10_STAT_port_tx_broadcast) |  \
1571                    (1ULL << EF10_STAT_port_rx_bytes) |  \
1572                    (1ULL <<                                 \
1573                 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1574                    (1ULL << EF10_STAT_port_rx_good_bytes) | \
1575                    (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1576                    (1ULL << EF10_STAT_port_rx_packets) |    \
1577                    (1ULL << EF10_STAT_port_rx_good) |   \
1578                    (1ULL << EF10_STAT_port_rx_bad) |    \
1579                    (1ULL << EF10_STAT_port_rx_pause) |  \
1580                    (1ULL << EF10_STAT_port_rx_control) |    \
1581                    (1ULL << EF10_STAT_port_rx_unicast) |    \
1582                    (1ULL << EF10_STAT_port_rx_multicast) |  \
1583                    (1ULL << EF10_STAT_port_rx_broadcast) |  \
1584                    (1ULL << EF10_STAT_port_rx_lt64) |   \
1585                    (1ULL << EF10_STAT_port_rx_64) |     \
1586                    (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1587                    (1ULL << EF10_STAT_port_rx_128_to_255) | \
1588                    (1ULL << EF10_STAT_port_rx_256_to_511) | \
1589                    (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1590                    (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1591                    (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1592                    (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1593                    (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1594                    (1ULL << EF10_STAT_port_rx_overflow) |   \
1595                    (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1596                    (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1597                    (1ULL << GENERIC_STAT_rx_noskb_drops))
1598 
1599 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1600  * For a 10G/40G switchable port we do not expose these because they might
1601  * not include all the packets they should.
1602  * On 8000 series NICs these statistics are always provided.
1603  */
1604 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1605                  (1ULL << EF10_STAT_port_tx_lt64) | \
1606                  (1ULL << EF10_STAT_port_tx_64) |   \
1607                  (1ULL << EF10_STAT_port_tx_65_to_127) |\
1608                  (1ULL << EF10_STAT_port_tx_128_to_255) |\
1609                  (1ULL << EF10_STAT_port_tx_256_to_511) |\
1610                  (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1611                  (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1612                  (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1613 
1614 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1615  * switchable port we do expose these because the errors will otherwise
1616  * be silent.
1617  */
1618 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1619                   (1ULL << EF10_STAT_port_rx_length_error))
1620 
1621 /* These statistics are only provided if the firmware supports the
1622  * capability PM_AND_RXDP_COUNTERS.
1623  */
1624 #define HUNT_PM_AND_RXDP_STAT_MASK (                    \
1625     (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |      \
1626     (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |        \
1627     (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |       \
1628     (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |     \
1629     (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |          \
1630     (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |            \
1631     (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |        \
1632     (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |     \
1633     (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |     \
1634     (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |      \
1635     (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |          \
1636     (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1637 
1638 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1639  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1640  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1641  * These bits are in the second u64 of the raw mask.
1642  */
1643 #define EF10_FEC_STAT_MASK (                        \
1644     (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |     \
1645     (1ULL << (EF10_STAT_fec_corrected_errors - 64)) |       \
1646     (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |    \
1647     (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |    \
1648     (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |    \
1649     (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1650 
1651 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1652  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1653  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654  * These bits are in the second u64 of the raw mask.
1655  */
1656 #define EF10_CTPIO_STAT_MASK (                      \
1657     (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |     \
1658     (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |       \
1659     (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |       \
1660     (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |        \
1661     (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |       \
1662     (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |         \
1663     (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |        \
1664     (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |     \
1665     (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |      \
1666     (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |      \
1667     (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |     \
1668     (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |        \
1669     (1ULL << (EF10_STAT_ctpio_success - 64)) |          \
1670     (1ULL << (EF10_STAT_ctpio_fallback - 64)) |         \
1671     (1ULL << (EF10_STAT_ctpio_poison - 64)) |           \
1672     (1ULL << (EF10_STAT_ctpio_erase - 64)))
1673 
1674 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1675 {
1676     u64 raw_mask = HUNT_COMMON_STAT_MASK;
1677     u32 port_caps = efx_mcdi_phy_get_caps(efx);
1678     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1679 
1680     if (!(efx->mcdi->fn_flags &
1681           1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1682         return 0;
1683 
1684     if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1685         raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1686         /* 8000 series have everything even at 40G */
1687         if (nic_data->datapath_caps2 &
1688             (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1689             raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1690     } else {
1691         raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1692     }
1693 
1694     if (nic_data->datapath_caps &
1695         (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1696         raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1697 
1698     return raw_mask;
1699 }
1700 
1701 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1702 {
1703     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1704     u64 raw_mask[2];
1705 
1706     raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1707 
1708     /* Only show vadaptor stats when EVB capability is present */
1709     if (nic_data->datapath_caps &
1710         (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1711         raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1712         raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1713     } else {
1714         raw_mask[1] = 0;
1715     }
1716     /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1717     if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1718         raw_mask[1] |= EF10_FEC_STAT_MASK;
1719 
1720     /* CTPIO stats appear in V3. Only show them on devices that actually
1721      * support CTPIO. Although this driver doesn't use CTPIO others might,
1722      * and we may be reporting the stats for the underlying port.
1723      */
1724     if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1725         (nic_data->datapath_caps2 &
1726          (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1727         raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1728 
1729 #if BITS_PER_LONG == 64
1730     BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1731     mask[0] = raw_mask[0];
1732     mask[1] = raw_mask[1];
1733 #else
1734     BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1735     mask[0] = raw_mask[0] & 0xffffffff;
1736     mask[1] = raw_mask[0] >> 32;
1737     mask[2] = raw_mask[1] & 0xffffffff;
1738 #endif
1739 }
1740 
1741 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1742 {
1743     DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1744 
1745     efx_ef10_get_stat_mask(efx, mask);
1746     return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1747                       mask, names);
1748 }
1749 
1750 static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1751                    struct ethtool_fec_stats *fec_stats)
1752 {
1753     DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1754     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1755     u64 *stats = nic_data->stats;
1756 
1757     efx_ef10_get_stat_mask(efx, mask);
1758     if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1759         fec_stats->corrected_blocks.total =
1760             stats[EF10_STAT_fec_corrected_errors];
1761     if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1762         fec_stats->uncorrectable_blocks.total =
1763             stats[EF10_STAT_fec_uncorrected_errors];
1764 }
1765 
1766 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1767                        struct rtnl_link_stats64 *core_stats)
1768 {
1769     DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1770     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1771     u64 *stats = nic_data->stats;
1772     size_t stats_count = 0, index;
1773 
1774     efx_ef10_get_stat_mask(efx, mask);
1775 
1776     if (full_stats) {
1777         for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1778             if (efx_ef10_stat_desc[index].name) {
1779                 *full_stats++ = stats[index];
1780                 ++stats_count;
1781             }
1782         }
1783     }
1784 
1785     if (!core_stats)
1786         return stats_count;
1787 
1788     if (nic_data->datapath_caps &
1789             1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1790         /* Use vadaptor stats. */
1791         core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1792                      stats[EF10_STAT_rx_multicast] +
1793                      stats[EF10_STAT_rx_broadcast];
1794         core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1795                      stats[EF10_STAT_tx_multicast] +
1796                      stats[EF10_STAT_tx_broadcast];
1797         core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1798                        stats[EF10_STAT_rx_multicast_bytes] +
1799                        stats[EF10_STAT_rx_broadcast_bytes];
1800         core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1801                        stats[EF10_STAT_tx_multicast_bytes] +
1802                        stats[EF10_STAT_tx_broadcast_bytes];
1803         core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1804                      stats[GENERIC_STAT_rx_noskb_drops];
1805         core_stats->multicast = stats[EF10_STAT_rx_multicast];
1806         core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1807         core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1808         core_stats->rx_errors = core_stats->rx_crc_errors;
1809         core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1810     } else {
1811         /* Use port stats. */
1812         core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1813         core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1814         core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1815         core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1816         core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1817                      stats[GENERIC_STAT_rx_nodesc_trunc] +
1818                      stats[GENERIC_STAT_rx_noskb_drops];
1819         core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1820         core_stats->rx_length_errors =
1821                 stats[EF10_STAT_port_rx_gtjumbo] +
1822                 stats[EF10_STAT_port_rx_length_error];
1823         core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1824         core_stats->rx_frame_errors =
1825                 stats[EF10_STAT_port_rx_align_error];
1826         core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1827         core_stats->rx_errors = (core_stats->rx_length_errors +
1828                      core_stats->rx_crc_errors +
1829                      core_stats->rx_frame_errors);
1830     }
1831 
1832     return stats_count;
1833 }
1834 
1835 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1836                        struct rtnl_link_stats64 *core_stats)
1837 {
1838     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1839     DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1840     u64 *stats = nic_data->stats;
1841 
1842     efx_ef10_get_stat_mask(efx, mask);
1843 
1844     efx_nic_copy_stats(efx, nic_data->mc_stats);
1845     efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1846                  mask, stats, nic_data->mc_stats, false);
1847 
1848     /* Update derived statistics */
1849     efx_nic_fix_nodesc_drop_stat(efx,
1850                      &stats[EF10_STAT_port_rx_nodesc_drops]);
1851     /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1852      * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1853      * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1854      * Here we calculate port_rx_good_bytes.
1855      */
1856     stats[EF10_STAT_port_rx_good_bytes] =
1857         stats[EF10_STAT_port_rx_bytes] -
1858         stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1859 
1860     /* The asynchronous reads used to calculate RX_BAD_BYTES in
1861      * MC Firmware are done such that we should not see an increase in
1862      * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1863      * does mean that the stat can decrease at times. Here we do not
1864      * update the stat unless it has increased or has gone to zero
1865      * (In the case of the NIC rebooting).
1866      * Please see Bug 33781 for a discussion of why things work this way.
1867      */
1868     efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1869                  stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1870     efx_update_sw_stats(efx, stats);
1871 
1872     return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1873 }
1874 
1875 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1876     __must_hold(&efx->stats_lock)
1877 {
1878     MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1879     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1880     DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1881     __le64 generation_start, generation_end;
1882     u64 *stats = nic_data->stats;
1883     u32 dma_len = efx->num_mac_stats * sizeof(u64);
1884     struct efx_buffer stats_buf;
1885     __le64 *dma_stats;
1886     int rc;
1887 
1888     spin_unlock_bh(&efx->stats_lock);
1889 
1890     efx_ef10_get_stat_mask(efx, mask);
1891 
1892     rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1893     if (rc) {
1894         spin_lock_bh(&efx->stats_lock);
1895         return rc;
1896     }
1897 
1898     dma_stats = stats_buf.addr;
1899     dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1900 
1901     MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1902     MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1903                   MAC_STATS_IN_DMA, 1);
1904     MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1905     MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1906 
1907     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1908                 NULL, 0, NULL);
1909     spin_lock_bh(&efx->stats_lock);
1910     if (rc) {
1911         /* Expect ENOENT if DMA queues have not been set up */
1912         if (rc != -ENOENT || atomic_read(&efx->active_queues))
1913             efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1914                            sizeof(inbuf), NULL, 0, rc);
1915         goto out;
1916     }
1917 
1918     generation_end = dma_stats[efx->num_mac_stats - 1];
1919     if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1920         WARN_ON_ONCE(1);
1921         goto out;
1922     }
1923     rmb();
1924     efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1925                  stats, stats_buf.addr, false);
1926     rmb();
1927     generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1928     if (generation_end != generation_start) {
1929         rc = -EAGAIN;
1930         goto out;
1931     }
1932 
1933     efx_update_sw_stats(efx, stats);
1934 out:
1935     /* releasing a DMA coherent buffer with BH disabled can panic */
1936     spin_unlock_bh(&efx->stats_lock);
1937     efx_nic_free_buffer(efx, &stats_buf);
1938     spin_lock_bh(&efx->stats_lock);
1939     return rc;
1940 }
1941 
1942 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1943                        struct rtnl_link_stats64 *core_stats)
1944 {
1945     if (efx_ef10_try_update_nic_stats_vf(efx))
1946         return 0;
1947 
1948     return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1949 }
1950 
1951 static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1952                           struct rtnl_link_stats64 *core_stats)
1953 {
1954     struct efx_ef10_nic_data *nic_data = efx->nic_data;
1955 
1956     /* In atomic context, cannot update HW stats.  Just update the
1957      * software stats and return so the caller can continue.
1958      */
1959     efx_update_sw_stats(efx, nic_data->stats);
1960     return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1961 }
1962 
1963 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1964 {
1965     struct efx_nic *efx = channel->efx;
1966     unsigned int mode, usecs;
1967     efx_dword_t timer_cmd;
1968 
1969     if (channel->irq_moderation_us) {
1970         mode = 3;
1971         usecs = channel->irq_moderation_us;
1972     } else {
1973         mode = 0;
1974         usecs = 0;
1975     }
1976 
1977     if (EFX_EF10_WORKAROUND_61265(efx)) {
1978         MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1979         unsigned int ns = usecs * 1000;
1980 
1981         MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1982                    channel->channel);
1983         MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1984         MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1985         MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1986 
1987         efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1988                    inbuf, sizeof(inbuf), 0, NULL, 0);
1989     } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1990         unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1991 
1992         EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1993                      EFE_DD_EVQ_IND_TIMER_FLAGS,
1994                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
1995                      ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1996         efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1997                 channel->channel);
1998     } else {
1999         unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2000 
2001         EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2002                      ERF_DZ_TC_TIMER_VAL, ticks,
2003                      ERF_FZ_TC_TMR_REL_VAL, ticks);
2004         efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2005                 channel->channel);
2006     }
2007 }
2008 
2009 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2010                 struct ethtool_wolinfo *wol) {}
2011 
2012 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2013 {
2014     return -EOPNOTSUPP;
2015 }
2016 
2017 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2018 {
2019     wol->supported = 0;
2020     wol->wolopts = 0;
2021     memset(&wol->sopass, 0, sizeof(wol->sopass));
2022 }
2023 
2024 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2025 {
2026     if (type != 0)
2027         return -EINVAL;
2028     return 0;
2029 }
2030 
2031 static void efx_ef10_mcdi_request(struct efx_nic *efx,
2032                   const efx_dword_t *hdr, size_t hdr_len,
2033                   const efx_dword_t *sdu, size_t sdu_len)
2034 {
2035     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2036     u8 *pdu = nic_data->mcdi_buf.addr;
2037 
2038     memcpy(pdu, hdr, hdr_len);
2039     memcpy(pdu + hdr_len, sdu, sdu_len);
2040     wmb();
2041 
2042     /* The hardware provides 'low' and 'high' (doorbell) registers
2043      * for passing the 64-bit address of an MCDI request to
2044      * firmware.  However the dwords are swapped by firmware.  The
2045      * least significant bits of the doorbell are then 0 for all
2046      * MCDI requests due to alignment.
2047      */
2048     _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2049             ER_DZ_MC_DB_LWRD);
2050     _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2051             ER_DZ_MC_DB_HWRD);
2052 }
2053 
2054 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2055 {
2056     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2057     const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2058 
2059     rmb();
2060     return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2061 }
2062 
2063 static void
2064 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2065                 size_t offset, size_t outlen)
2066 {
2067     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2068     const u8 *pdu = nic_data->mcdi_buf.addr;
2069 
2070     memcpy(outbuf, pdu + offset, outlen);
2071 }
2072 
2073 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2074 {
2075     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2076 
2077     /* All our allocations have been reset */
2078     efx_ef10_table_reset_mc_allocations(efx);
2079 
2080     /* The datapath firmware might have been changed */
2081     nic_data->must_check_datapath_caps = true;
2082 
2083     /* MAC statistics have been cleared on the NIC; clear the local
2084      * statistic that we update with efx_update_diff_stat().
2085      */
2086     nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2087 }
2088 
2089 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2090 {
2091     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2092     int rc;
2093 
2094     rc = efx_ef10_get_warm_boot_count(efx);
2095     if (rc < 0) {
2096         /* The firmware is presumably in the process of
2097          * rebooting.  However, we are supposed to report each
2098          * reboot just once, so we must only do that once we
2099          * can read and store the updated warm boot count.
2100          */
2101         return 0;
2102     }
2103 
2104     if (rc == nic_data->warm_boot_count)
2105         return 0;
2106 
2107     nic_data->warm_boot_count = rc;
2108     efx_ef10_mcdi_reboot_detected(efx);
2109 
2110     return -EIO;
2111 }
2112 
2113 /* Handle an MSI interrupt
2114  *
2115  * Handle an MSI hardware interrupt.  This routine schedules event
2116  * queue processing.  No interrupt acknowledgement cycle is necessary.
2117  * Also, we never need to check that the interrupt is for us, since
2118  * MSI interrupts cannot be shared.
2119  */
2120 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2121 {
2122     struct efx_msi_context *context = dev_id;
2123     struct efx_nic *efx = context->efx;
2124 
2125     netif_vdbg(efx, intr, efx->net_dev,
2126            "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2127 
2128     if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2129         /* Note test interrupts */
2130         if (context->index == efx->irq_level)
2131             efx->last_irq_cpu = raw_smp_processor_id();
2132 
2133         /* Schedule processing of the channel */
2134         efx_schedule_channel_irq(efx->channel[context->index]);
2135     }
2136 
2137     return IRQ_HANDLED;
2138 }
2139 
2140 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2141 {
2142     struct efx_nic *efx = dev_id;
2143     bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2144     struct efx_channel *channel;
2145     efx_dword_t reg;
2146     u32 queues;
2147 
2148     /* Read the ISR which also ACKs the interrupts */
2149     efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2150     queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2151 
2152     if (queues == 0)
2153         return IRQ_NONE;
2154 
2155     if (likely(soft_enabled)) {
2156         /* Note test interrupts */
2157         if (queues & (1U << efx->irq_level))
2158             efx->last_irq_cpu = raw_smp_processor_id();
2159 
2160         efx_for_each_channel(channel, efx) {
2161             if (queues & 1)
2162                 efx_schedule_channel_irq(channel);
2163             queues >>= 1;
2164         }
2165     }
2166 
2167     netif_vdbg(efx, intr, efx->net_dev,
2168            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2169            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2170 
2171     return IRQ_HANDLED;
2172 }
2173 
2174 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2175 {
2176     MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2177 
2178     if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2179                     NULL) == 0)
2180         return -ENOTSUPP;
2181 
2182     BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2183 
2184     MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2185     return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2186                 inbuf, sizeof(inbuf), NULL, 0, NULL);
2187 }
2188 
2189 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2190 {
2191     /* low two bits of label are what we want for type */
2192     BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2193     tx_queue->type = tx_queue->label & 3;
2194     return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2195                     (tx_queue->ptr_mask + 1) *
2196                     sizeof(efx_qword_t),
2197                     GFP_KERNEL);
2198 }
2199 
2200 /* This writes to the TX_DESC_WPTR and also pushes data */
2201 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2202                      const efx_qword_t *txd)
2203 {
2204     unsigned int write_ptr;
2205     efx_oword_t reg;
2206 
2207     write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2208     EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2209     reg.qword[0] = *txd;
2210     efx_writeo_page(tx_queue->efx, &reg,
2211             ER_DZ_TX_DESC_UPD, tx_queue->queue);
2212 }
2213 
2214 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2215  */
2216 int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2217              bool *data_mapped)
2218 {
2219     struct efx_tx_buffer *buffer;
2220     u16 inner_ipv4_id = 0;
2221     u16 outer_ipv4_id = 0;
2222     struct tcphdr *tcp;
2223     struct iphdr *ip;
2224     u16 ip_tot_len;
2225     u32 seqnum;
2226     u32 mss;
2227 
2228     EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2229 
2230     mss = skb_shinfo(skb)->gso_size;
2231 
2232     if (unlikely(mss < 4)) {
2233         WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2234         return -EINVAL;
2235     }
2236 
2237     if (skb->encapsulation) {
2238         if (!tx_queue->tso_encap)
2239             return -EINVAL;
2240         ip = ip_hdr(skb);
2241         if (ip->version == 4)
2242             outer_ipv4_id = ntohs(ip->id);
2243 
2244         ip = inner_ip_hdr(skb);
2245         tcp = inner_tcp_hdr(skb);
2246     } else {
2247         ip = ip_hdr(skb);
2248         tcp = tcp_hdr(skb);
2249     }
2250 
2251     /* 8000-series EF10 hardware requires that IP Total Length be
2252      * greater than or equal to the value it will have in each segment
2253      * (which is at most mss + 208 + TCP header length), but also less
2254      * than (0x10000 - inner_network_header).  Otherwise the TCP
2255      * checksum calculation will be broken for encapsulated packets.
2256      * We fill in ip->tot_len with 0xff30, which should satisfy the
2257      * first requirement unless the MSS is ridiculously large (which
2258      * should be impossible as the driver max MTU is 9216); it is
2259      * guaranteed to satisfy the second as we only attempt TSO if
2260      * inner_network_header <= 208.
2261      */
2262     ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2263     EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2264                   (tcp->doff << 2u) > ip_tot_len);
2265 
2266     if (ip->version == 4) {
2267         ip->tot_len = htons(ip_tot_len);
2268         ip->check = 0;
2269         inner_ipv4_id = ntohs(ip->id);
2270     } else {
2271         ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2272     }
2273 
2274     seqnum = ntohl(tcp->seq);
2275 
2276     buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2277 
2278     buffer->flags = EFX_TX_BUF_OPTION;
2279     buffer->len = 0;
2280     buffer->unmap_len = 0;
2281     EFX_POPULATE_QWORD_5(buffer->option,
2282             ESF_DZ_TX_DESC_IS_OPT, 1,
2283             ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2284             ESF_DZ_TX_TSO_OPTION_TYPE,
2285             ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2286             ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2287             ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2288             );
2289     ++tx_queue->insert_count;
2290 
2291     buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2292 
2293     buffer->flags = EFX_TX_BUF_OPTION;
2294     buffer->len = 0;
2295     buffer->unmap_len = 0;
2296     EFX_POPULATE_QWORD_5(buffer->option,
2297             ESF_DZ_TX_DESC_IS_OPT, 1,
2298             ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2299             ESF_DZ_TX_TSO_OPTION_TYPE,
2300             ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2301             ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2302             ESF_DZ_TX_TSO_TCP_MSS, mss
2303             );
2304     ++tx_queue->insert_count;
2305 
2306     return 0;
2307 }
2308 
2309 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2310 {
2311     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2312     u32 tso_versions = 0;
2313 
2314     if (nic_data->datapath_caps &
2315         (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2316         tso_versions |= BIT(1);
2317     if (nic_data->datapath_caps2 &
2318         (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2319         tso_versions |= BIT(2);
2320     return tso_versions;
2321 }
2322 
2323 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2324 {
2325     bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2326     bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2327     struct efx_channel *channel = tx_queue->channel;
2328     struct efx_nic *efx = tx_queue->efx;
2329     struct efx_ef10_nic_data *nic_data;
2330     efx_qword_t *txd;
2331     int rc;
2332 
2333     nic_data = efx->nic_data;
2334 
2335     /* Only attempt to enable TX timestamping if we have the license for it,
2336      * otherwise TXQ init will fail
2337      */
2338     if (!(nic_data->licensed_features &
2339           (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2340         tx_queue->timestamping = false;
2341         /* Disable sync events on this channel. */
2342         if (efx->type->ptp_set_ts_sync_events)
2343             efx->type->ptp_set_ts_sync_events(efx, false, false);
2344     }
2345 
2346     /* TSOv2 is a limited resource that can only be configured on a limited
2347      * number of queues. TSO without checksum offload is not really a thing,
2348      * so we only enable it for those queues.
2349      * TSOv2 cannot be used with Hardware timestamping, and is never needed
2350      * for XDP tx.
2351      */
2352     if (efx_has_cap(efx, TX_TSO_V2)) {
2353         if ((csum_offload || inner_csum) &&
2354             !tx_queue->timestamping && !tx_queue->xdp_tx) {
2355             tx_queue->tso_version = 2;
2356             netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2357                   channel->channel);
2358         }
2359     } else if (efx_has_cap(efx, TX_TSO)) {
2360         tx_queue->tso_version = 1;
2361     }
2362 
2363     rc = efx_mcdi_tx_init(tx_queue);
2364     if (rc)
2365         goto fail;
2366 
2367     /* A previous user of this TX queue might have set us up the
2368      * bomb by writing a descriptor to the TX push collector but
2369      * not the doorbell.  (Each collector belongs to a port, not a
2370      * queue or function, so cannot easily be reset.)  We must
2371      * attempt to push a no-op descriptor in its place.
2372      */
2373     tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2374     tx_queue->insert_count = 1;
2375     txd = efx_tx_desc(tx_queue, 0);
2376     EFX_POPULATE_QWORD_7(*txd,
2377                  ESF_DZ_TX_DESC_IS_OPT, true,
2378                  ESF_DZ_TX_OPTION_TYPE,
2379                  ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2380                  ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2381                  ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2382                  ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2383                  ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2384                  ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2385     tx_queue->write_count = 1;
2386 
2387     if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2388         tx_queue->tso_encap = true;
2389 
2390     wmb();
2391     efx_ef10_push_tx_desc(tx_queue, txd);
2392 
2393     return;
2394 
2395 fail:
2396     netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2397             tx_queue->queue);
2398 }
2399 
2400 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2401 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2402 {
2403     unsigned int write_ptr;
2404     efx_dword_t reg;
2405 
2406     write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2407     EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2408     efx_writed_page(tx_queue->efx, &reg,
2409             ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2410 }
2411 
2412 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2413 
2414 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2415                       dma_addr_t dma_addr, unsigned int len)
2416 {
2417     if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2418         /* If we need to break across multiple descriptors we should
2419          * stop at a page boundary. This assumes the length limit is
2420          * greater than the page size.
2421          */
2422         dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2423 
2424         BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2425         len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2426     }
2427 
2428     return len;
2429 }
2430 
2431 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2432 {
2433     unsigned int old_write_count = tx_queue->write_count;
2434     struct efx_tx_buffer *buffer;
2435     unsigned int write_ptr;
2436     efx_qword_t *txd;
2437 
2438     tx_queue->xmit_pending = false;
2439     if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2440         return;
2441 
2442     do {
2443         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2444         buffer = &tx_queue->buffer[write_ptr];
2445         txd = efx_tx_desc(tx_queue, write_ptr);
2446         ++tx_queue->write_count;
2447 
2448         /* Create TX descriptor ring entry */
2449         if (buffer->flags & EFX_TX_BUF_OPTION) {
2450             *txd = buffer->option;
2451             if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2452                 /* PIO descriptor */
2453                 tx_queue->packet_write_count = tx_queue->write_count;
2454         } else {
2455             tx_queue->packet_write_count = tx_queue->write_count;
2456             BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2457             EFX_POPULATE_QWORD_3(
2458                 *txd,
2459                 ESF_DZ_TX_KER_CONT,
2460                 buffer->flags & EFX_TX_BUF_CONT,
2461                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2462                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2463         }
2464     } while (tx_queue->write_count != tx_queue->insert_count);
2465 
2466     wmb(); /* Ensure descriptors are written before they are fetched */
2467 
2468     if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2469         txd = efx_tx_desc(tx_queue,
2470                   old_write_count & tx_queue->ptr_mask);
2471         efx_ef10_push_tx_desc(tx_queue, txd);
2472         ++tx_queue->pushes;
2473     } else {
2474         efx_ef10_notify_tx_desc(tx_queue);
2475     }
2476 }
2477 
2478 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2479 {
2480     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2481     unsigned int enabled, implemented;
2482     bool want_workaround_26807;
2483     int rc;
2484 
2485     rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2486     if (rc == -ENOSYS) {
2487         /* GET_WORKAROUNDS was implemented before this workaround,
2488          * thus it must be unavailable in this firmware.
2489          */
2490         nic_data->workaround_26807 = false;
2491         return 0;
2492     }
2493     if (rc)
2494         return rc;
2495     want_workaround_26807 =
2496         implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2497     nic_data->workaround_26807 =
2498         !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2499 
2500     if (want_workaround_26807 && !nic_data->workaround_26807) {
2501         unsigned int flags;
2502 
2503         rc = efx_mcdi_set_workaround(efx,
2504                          MC_CMD_WORKAROUND_BUG26807,
2505                          true, &flags);
2506         if (!rc) {
2507             if (flags &
2508                 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2509                 netif_info(efx, drv, efx->net_dev,
2510                        "other functions on NIC have been reset\n");
2511 
2512                 /* With MCFW v4.6.x and earlier, the
2513                  * boot count will have incremented,
2514                  * so re-read the warm_boot_count
2515                  * value now to ensure this function
2516                  * doesn't think it has changed next
2517                  * time it checks.
2518                  */
2519                 rc = efx_ef10_get_warm_boot_count(efx);
2520                 if (rc >= 0) {
2521                     nic_data->warm_boot_count = rc;
2522                     rc = 0;
2523                 }
2524             }
2525             nic_data->workaround_26807 = true;
2526         } else if (rc == -EPERM) {
2527             rc = 0;
2528         }
2529     }
2530     return rc;
2531 }
2532 
2533 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2534 {
2535     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2536     int rc = efx_ef10_probe_multicast_chaining(efx);
2537     struct efx_mcdi_filter_vlan *vlan;
2538 
2539     if (rc)
2540         return rc;
2541     down_write(&efx->filter_sem);
2542     rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2543 
2544     if (rc)
2545         goto out_unlock;
2546 
2547     list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2548         rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2549         if (rc)
2550             goto fail_add_vlan;
2551     }
2552     goto out_unlock;
2553 
2554 fail_add_vlan:
2555     efx_mcdi_filter_table_remove(efx);
2556 out_unlock:
2557     up_write(&efx->filter_sem);
2558     return rc;
2559 }
2560 
2561 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2562 {
2563     down_write(&efx->filter_sem);
2564     efx_mcdi_filter_table_remove(efx);
2565     up_write(&efx->filter_sem);
2566 }
2567 
2568 /* This creates an entry in the RX descriptor queue */
2569 static inline void
2570 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2571 {
2572     struct efx_rx_buffer *rx_buf;
2573     efx_qword_t *rxd;
2574 
2575     rxd = efx_rx_desc(rx_queue, index);
2576     rx_buf = efx_rx_buffer(rx_queue, index);
2577     EFX_POPULATE_QWORD_2(*rxd,
2578                  ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2579                  ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2580 }
2581 
2582 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2583 {
2584     struct efx_nic *efx = rx_queue->efx;
2585     unsigned int write_count;
2586     efx_dword_t reg;
2587 
2588     /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2589     write_count = rx_queue->added_count & ~7;
2590     if (rx_queue->notified_count == write_count)
2591         return;
2592 
2593     do
2594         efx_ef10_build_rx_desc(
2595             rx_queue,
2596             rx_queue->notified_count & rx_queue->ptr_mask);
2597     while (++rx_queue->notified_count != write_count);
2598 
2599     wmb();
2600     EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2601                  write_count & rx_queue->ptr_mask);
2602     efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2603             efx_rx_queue_index(rx_queue));
2604 }
2605 
2606 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2607 
2608 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2609 {
2610     struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2611     MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2612     efx_qword_t event;
2613 
2614     EFX_POPULATE_QWORD_2(event,
2615                  ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2616                  ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2617 
2618     MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2619 
2620     /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2621      * already swapped the data to little-endian order.
2622      */
2623     memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2624            sizeof(efx_qword_t));
2625 
2626     efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2627                inbuf, sizeof(inbuf), 0,
2628                efx_ef10_rx_defer_refill_complete, 0);
2629 }
2630 
2631 static void
2632 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2633                   int rc, efx_dword_t *outbuf,
2634                   size_t outlen_actual)
2635 {
2636     /* nothing to do */
2637 }
2638 
2639 static int efx_ef10_ev_init(struct efx_channel *channel)
2640 {
2641     struct efx_nic *efx = channel->efx;
2642     struct efx_ef10_nic_data *nic_data;
2643     bool use_v2, cut_thru;
2644 
2645     nic_data = efx->nic_data;
2646     use_v2 = nic_data->datapath_caps2 &
2647                 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2648     cut_thru = !(nic_data->datapath_caps &
2649                   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2650     return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2651 }
2652 
2653 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2654                        unsigned int rx_queue_label)
2655 {
2656     struct efx_nic *efx = rx_queue->efx;
2657 
2658     netif_info(efx, hw, efx->net_dev,
2659            "rx event arrived on queue %d labeled as queue %u\n",
2660            efx_rx_queue_index(rx_queue), rx_queue_label);
2661 
2662     efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2663 }
2664 
2665 static void
2666 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2667                  unsigned int actual, unsigned int expected)
2668 {
2669     unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2670     struct efx_nic *efx = rx_queue->efx;
2671 
2672     netif_info(efx, hw, efx->net_dev,
2673            "dropped %d events (index=%d expected=%d)\n",
2674            dropped, actual, expected);
2675 
2676     efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2677 }
2678 
2679 /* partially received RX was aborted. clean up. */
2680 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2681 {
2682     unsigned int rx_desc_ptr;
2683 
2684     netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2685           "scattered RX aborted (dropping %u buffers)\n",
2686           rx_queue->scatter_n);
2687 
2688     rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2689 
2690     efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2691               0, EFX_RX_PKT_DISCARD);
2692 
2693     rx_queue->removed_count += rx_queue->scatter_n;
2694     rx_queue->scatter_n = 0;
2695     rx_queue->scatter_len = 0;
2696     ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2697 }
2698 
2699 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2700                        unsigned int n_packets,
2701                        unsigned int rx_encap_hdr,
2702                        unsigned int rx_l3_class,
2703                        unsigned int rx_l4_class,
2704                        const efx_qword_t *event)
2705 {
2706     struct efx_nic *efx = channel->efx;
2707     bool handled = false;
2708 
2709     if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2710         if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2711             if (!efx->loopback_selftest)
2712                 channel->n_rx_eth_crc_err += n_packets;
2713             return EFX_RX_PKT_DISCARD;
2714         }
2715         handled = true;
2716     }
2717     if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2718         if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2719                  rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2720                  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2721                  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2722                  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2723             netdev_WARN(efx->net_dev,
2724                     "invalid class for RX_IPCKSUM_ERR: event="
2725                     EFX_QWORD_FMT "\n",
2726                     EFX_QWORD_VAL(*event));
2727         if (!efx->loopback_selftest)
2728             *(rx_encap_hdr ?
2729               &channel->n_rx_outer_ip_hdr_chksum_err :
2730               &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2731         return 0;
2732     }
2733     if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2734         if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2735                  ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2736                    rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2737                   (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2738                    rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2739             netdev_WARN(efx->net_dev,
2740                     "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2741                     EFX_QWORD_FMT "\n",
2742                     EFX_QWORD_VAL(*event));
2743         if (!efx->loopback_selftest)
2744             *(rx_encap_hdr ?
2745               &channel->n_rx_outer_tcp_udp_chksum_err :
2746               &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2747         return 0;
2748     }
2749     if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2750         if (unlikely(!rx_encap_hdr))
2751             netdev_WARN(efx->net_dev,
2752                     "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2753                     EFX_QWORD_FMT "\n",
2754                     EFX_QWORD_VAL(*event));
2755         else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2756                   rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2757                   rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2758                   rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2759             netdev_WARN(efx->net_dev,
2760                     "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2761                     EFX_QWORD_FMT "\n",
2762                     EFX_QWORD_VAL(*event));
2763         if (!efx->loopback_selftest)
2764             channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2765         return 0;
2766     }
2767     if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2768         if (unlikely(!rx_encap_hdr))
2769             netdev_WARN(efx->net_dev,
2770                     "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2771                     EFX_QWORD_FMT "\n",
2772                     EFX_QWORD_VAL(*event));
2773         else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774                    rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2775                   (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2776                    rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2777             netdev_WARN(efx->net_dev,
2778                     "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2779                     EFX_QWORD_FMT "\n",
2780                     EFX_QWORD_VAL(*event));
2781         if (!efx->loopback_selftest)
2782             channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2783         return 0;
2784     }
2785 
2786     WARN_ON(!handled); /* No error bits were recognised */
2787     return 0;
2788 }
2789 
2790 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2791                     const efx_qword_t *event)
2792 {
2793     unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2794     unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2795     unsigned int n_descs, n_packets, i;
2796     struct efx_nic *efx = channel->efx;
2797     struct efx_ef10_nic_data *nic_data = efx->nic_data;
2798     struct efx_rx_queue *rx_queue;
2799     efx_qword_t errors;
2800     bool rx_cont;
2801     u16 flags = 0;
2802 
2803     if (unlikely(READ_ONCE(efx->reset_pending)))
2804         return 0;
2805 
2806     /* Basic packet information */
2807     rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2808     next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2809     rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2810     rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2811     rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2812     rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2813     rx_encap_hdr =
2814         nic_data->datapath_caps &
2815             (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2816         EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2817         ESE_EZ_ENCAP_HDR_NONE;
2818 
2819     if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2820         netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2821                 EFX_QWORD_FMT "\n",
2822                 EFX_QWORD_VAL(*event));
2823 
2824     rx_queue = efx_channel_get_rx_queue(channel);
2825 
2826     if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2827         efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2828 
2829     n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2830            ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2831 
2832     if (n_descs != rx_queue->scatter_n + 1) {
2833         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2834 
2835         /* detect rx abort */
2836         if (unlikely(n_descs == rx_queue->scatter_n)) {
2837             if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2838                 netdev_WARN(efx->net_dev,
2839                         "invalid RX abort: scatter_n=%u event="
2840                         EFX_QWORD_FMT "\n",
2841                         rx_queue->scatter_n,
2842                         EFX_QWORD_VAL(*event));
2843             efx_ef10_handle_rx_abort(rx_queue);
2844             return 0;
2845         }
2846 
2847         /* Check that RX completion merging is valid, i.e.
2848          * the current firmware supports it and this is a
2849          * non-scattered packet.
2850          */
2851         if (!(nic_data->datapath_caps &
2852               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2853             rx_queue->scatter_n != 0 || rx_cont) {
2854             efx_ef10_handle_rx_bad_lbits(
2855                 rx_queue, next_ptr_lbits,
2856                 (rx_queue->removed_count +
2857                  rx_queue->scatter_n + 1) &
2858                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2859             return 0;
2860         }
2861 
2862         /* Merged completion for multiple non-scattered packets */
2863         rx_queue->scatter_n = 1;
2864         rx_queue->scatter_len = 0;
2865         n_packets = n_descs;
2866         ++channel->n_rx_merge_events;
2867         channel->n_rx_merge_packets += n_packets;
2868         flags |= EFX_RX_PKT_PREFIX_LEN;
2869     } else {
2870         ++rx_queue->scatter_n;
2871         rx_queue->scatter_len += rx_bytes;
2872         if (rx_cont)
2873             return 0;
2874         n_packets = 1;
2875     }
2876 
2877     EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2878                      ESF_DZ_RX_IPCKSUM_ERR, 1,
2879                      ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2880                      ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2881                      ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2882     EFX_AND_QWORD(errors, *event, errors);
2883     if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2884         flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2885                              rx_encap_hdr,
2886                              rx_l3_class, rx_l4_class,
2887                              event);
2888     } else {
2889         bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2890                   rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2891 
2892         switch (rx_encap_hdr) {
2893         case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2894             flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2895             if (tcpudp)
2896                 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2897             break;
2898         case ESE_EZ_ENCAP_HDR_GRE:
2899         case ESE_EZ_ENCAP_HDR_NONE:
2900             if (tcpudp)
2901                 flags |= EFX_RX_PKT_CSUMMED;
2902             break;
2903         default:
2904             netdev_WARN(efx->net_dev,
2905                     "unknown encapsulation type: event="
2906                     EFX_QWORD_FMT "\n",
2907                     EFX_QWORD_VAL(*event));
2908         }
2909     }
2910 
2911     if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2912         flags |= EFX_RX_PKT_TCP;
2913 
2914     channel->irq_mod_score += 2 * n_packets;
2915 
2916     /* Handle received packet(s) */
2917     for (i = 0; i < n_packets; i++) {
2918         efx_rx_packet(rx_queue,
2919                   rx_queue->removed_count & rx_queue->ptr_mask,
2920                   rx_queue->scatter_n, rx_queue->scatter_len,
2921                   flags);
2922         rx_queue->removed_count += rx_queue->scatter_n;
2923     }
2924 
2925     rx_queue->scatter_n = 0;
2926     rx_queue->scatter_len = 0;
2927 
2928     return n_packets;
2929 }
2930 
2931 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2932 {
2933     u32 tstamp;
2934 
2935     tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2936     tstamp <<= 16;
2937     tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2938 
2939     return tstamp;
2940 }
2941 
2942 static void
2943 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2944 {
2945     struct efx_nic *efx = channel->efx;
2946     struct efx_tx_queue *tx_queue;
2947     unsigned int tx_ev_desc_ptr;
2948     unsigned int tx_ev_q_label;
2949     unsigned int tx_ev_type;
2950     u64 ts_part;
2951 
2952     if (unlikely(READ_ONCE(efx->reset_pending)))
2953         return;
2954 
2955     if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2956         return;
2957 
2958     /* Get the transmit queue */
2959     tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2960     tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2961 
2962     if (!tx_queue->timestamping) {
2963         /* Transmit completion */
2964         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2965         efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2966         return;
2967     }
2968 
2969     /* Transmit timestamps are only available for 8XXX series. They result
2970      * in up to three events per packet. These occur in order, and are:
2971      *  - the normal completion event (may be omitted)
2972      *  - the low part of the timestamp
2973      *  - the high part of the timestamp
2974      *
2975      * It's possible for multiple completion events to appear before the
2976      * corresponding timestamps. So we can for example get:
2977      *  COMP N
2978      *  COMP N+1
2979      *  TS_LO N
2980      *  TS_HI N
2981      *  TS_LO N+1
2982      *  TS_HI N+1
2983      *
2984      * In addition it's also possible for the adjacent completions to be
2985      * merged, so we may not see COMP N above. As such, the completion
2986      * events are not very useful here.
2987      *
2988      * Each part of the timestamp is itself split across two 16 bit
2989      * fields in the event.
2990      */
2991     tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2992 
2993     switch (tx_ev_type) {
2994     case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2995         /* Ignore this event - see above. */
2996         break;
2997 
2998     case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2999         ts_part = efx_ef10_extract_event_ts(event);
3000         tx_queue->completed_timestamp_minor = ts_part;
3001         break;
3002 
3003     case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3004         ts_part = efx_ef10_extract_event_ts(event);
3005         tx_queue->completed_timestamp_major = ts_part;
3006 
3007         efx_xmit_done_single(tx_queue);
3008         break;
3009 
3010     default:
3011         netif_err(efx, hw, efx->net_dev,
3012               "channel %d unknown tx event type %d (data "
3013               EFX_QWORD_FMT ")\n",
3014               channel->channel, tx_ev_type,
3015               EFX_QWORD_VAL(*event));
3016         break;
3017     }
3018 }
3019 
3020 static void
3021 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3022 {
3023     struct efx_nic *efx = channel->efx;
3024     int subcode;
3025 
3026     subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3027 
3028     switch (subcode) {
3029     case ESE_DZ_DRV_TIMER_EV:
3030     case ESE_DZ_DRV_WAKE_UP_EV:
3031         break;
3032     case ESE_DZ_DRV_START_UP_EV:
3033         /* event queue init complete. ok. */
3034         break;
3035     default:
3036         netif_err(efx, hw, efx->net_dev,
3037               "channel %d unknown driver event type %d"
3038               " (data " EFX_QWORD_FMT ")\n",
3039               channel->channel, subcode,
3040               EFX_QWORD_VAL(*event));
3041 
3042     }
3043 }
3044 
3045 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3046                            efx_qword_t *event)
3047 {
3048     struct efx_nic *efx = channel->efx;
3049     u32 subcode;
3050 
3051     subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3052 
3053     switch (subcode) {
3054     case EFX_EF10_TEST:
3055         channel->event_test_cpu = raw_smp_processor_id();
3056         break;
3057     case EFX_EF10_REFILL:
3058         /* The queue must be empty, so we won't receive any rx
3059          * events, so efx_process_channel() won't refill the
3060          * queue. Refill it here
3061          */
3062         efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3063         break;
3064     default:
3065         netif_err(efx, hw, efx->net_dev,
3066               "channel %d unknown driver event type %u"
3067               " (data " EFX_QWORD_FMT ")\n",
3068               channel->channel, (unsigned) subcode,
3069               EFX_QWORD_VAL(*event));
3070     }
3071 }
3072 
3073 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3074 {
3075     struct efx_nic *efx = channel->efx;
3076     efx_qword_t event, *p_event;
3077     unsigned int read_ptr;
3078     int ev_code;
3079     int spent = 0;
3080 
3081     if (quota <= 0)
3082         return spent;
3083 
3084     read_ptr = channel->eventq_read_ptr;
3085 
3086     for (;;) {
3087         p_event = efx_event(channel, read_ptr);
3088         event = *p_event;
3089 
3090         if (!efx_event_present(&event))
3091             break;
3092 
3093         EFX_SET_QWORD(*p_event);
3094 
3095         ++read_ptr;
3096 
3097         ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3098 
3099         netif_vdbg(efx, drv, efx->net_dev,
3100                "processing event on %d " EFX_QWORD_FMT "\n",
3101                channel->channel, EFX_QWORD_VAL(event));
3102 
3103         switch (ev_code) {
3104         case ESE_DZ_EV_CODE_MCDI_EV:
3105             efx_mcdi_process_event(channel, &event);
3106             break;
3107         case ESE_DZ_EV_CODE_RX_EV:
3108             spent += efx_ef10_handle_rx_event(channel, &event);
3109             if (spent >= quota) {
3110                 /* XXX can we split a merged event to
3111                  * avoid going over-quota?
3112                  */
3113                 spent = quota;
3114                 goto out;
3115             }
3116             break;
3117         case ESE_DZ_EV_CODE_TX_EV:
3118             efx_ef10_handle_tx_event(channel, &event);
3119             break;
3120         case ESE_DZ_EV_CODE_DRIVER_EV:
3121             efx_ef10_handle_driver_event(channel, &event);
3122             if (++spent == quota)
3123                 goto out;
3124             break;
3125         case EFX_EF10_DRVGEN_EV:
3126             efx_ef10_handle_driver_generated_event(channel, &event);
3127             break;
3128         default:
3129             netif_err(efx, hw, efx->net_dev,
3130                   "channel %d unknown event type %d"
3131                   " (data " EFX_QWORD_FMT ")\n",
3132                   channel->channel, ev_code,
3133                   EFX_QWORD_VAL(event));
3134         }
3135     }
3136 
3137 out:
3138     channel->eventq_read_ptr = read_ptr;
3139     return spent;
3140 }
3141 
3142 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3143 {
3144     struct efx_nic *efx = channel->efx;
3145     efx_dword_t rptr;
3146 
3147     if (EFX_EF10_WORKAROUND_35388(efx)) {
3148         BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3149                  (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3150         BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3151                  (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3152 
3153         EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3154                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3155                      ERF_DD_EVQ_IND_RPTR,
3156                      (channel->eventq_read_ptr &
3157                       channel->eventq_mask) >>
3158                      ERF_DD_EVQ_IND_RPTR_WIDTH);
3159         efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3160                 channel->channel);
3161         EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3162                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3163                      ERF_DD_EVQ_IND_RPTR,
3164                      channel->eventq_read_ptr &
3165                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3166         efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3167                 channel->channel);
3168     } else {
3169         EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3170                      channel->eventq_read_ptr &
3171                      channel->eventq_mask);
3172         efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3173     }
3174 }
3175 
3176 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3177 {
3178     MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3179     struct efx_nic *efx = channel->efx;
3180     efx_qword_t event;
3181     int rc;
3182 
3183     EFX_POPULATE_QWORD_2(event,
3184                  ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3185                  ESF_DZ_EV_DATA, EFX_EF10_TEST);
3186 
3187     MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3188 
3189     /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3190      * already swapped the data to little-endian order.
3191      */
3192     memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3193            sizeof(efx_qword_t));
3194 
3195     rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3196               NULL, 0, NULL);
3197     if (rc != 0)
3198         goto fail;
3199 
3200     return;
3201 
3202 fail:
3203     WARN_ON(true);
3204     netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3205 }
3206 
3207 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3208 {
3209     atomic_set(&efx->active_queues, 0);
3210 }
3211 
3212 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3213 {
3214     struct efx_ef10_nic_data *nic_data = efx->nic_data;
3215     u8 mac_old[ETH_ALEN];
3216     int rc, rc2;
3217 
3218     /* Only reconfigure a PF-created vport */
3219     if (is_zero_ether_addr(nic_data->vport_mac))
3220         return 0;
3221 
3222     efx_device_detach_sync(efx);
3223     efx_net_stop(efx->net_dev);
3224     efx_ef10_filter_table_remove(efx);
3225 
3226     rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3227     if (rc)
3228         goto restore_filters;
3229 
3230     ether_addr_copy(mac_old, nic_data->vport_mac);
3231     rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3232                     nic_data->vport_mac);
3233     if (rc)
3234         goto restore_vadaptor;
3235 
3236     rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3237                     efx->net_dev->dev_addr);
3238     if (!rc) {
3239         ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3240     } else {
3241         rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3242         if (rc2) {
3243             /* Failed to add original MAC, so clear vport_mac */
3244             eth_zero_addr(nic_data->vport_mac);
3245             goto reset_nic;
3246         }
3247     }
3248 
3249 restore_vadaptor:
3250     rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3251     if (rc2)
3252         goto reset_nic;
3253 restore_filters:
3254     rc2 = efx_ef10_filter_table_probe(efx);
3255     if (rc2)
3256         goto reset_nic;
3257 
3258     rc2 = efx_net_open(efx->net_dev);
3259     if (rc2)
3260         goto reset_nic;
3261 
3262     efx_device_attach_if_not_resetting(efx);
3263 
3264     return rc;
3265 
3266 reset_nic:
3267     netif_err(efx, drv, efx->net_dev,
3268           "Failed to restore when changing MAC address - scheduling reset\n");
3269     efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3270 
3271     return rc ? rc : rc2;
3272 }
3273 
3274 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3275 {
3276     MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3277     bool was_enabled = efx->port_enabled;
3278     int rc;
3279 
3280     efx_device_detach_sync(efx);
3281     efx_net_stop(efx->net_dev);
3282 
3283     mutex_lock(&efx->mac_lock);
3284     efx_ef10_filter_table_remove(efx);
3285 
3286     ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3287             efx->net_dev->dev_addr);
3288     MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3289                efx->vport_id);
3290     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3291                 sizeof(inbuf), NULL, 0, NULL);
3292 
3293     efx_ef10_filter_table_probe(efx);
3294     mutex_unlock(&efx->mac_lock);
3295 
3296     if (was_enabled)
3297         efx_net_open(efx->net_dev);
3298     efx_device_attach_if_not_resetting(efx);
3299 
3300 #ifdef CONFIG_SFC_SRIOV
3301     if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3302         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3303         struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3304 
3305         if (rc == -EPERM) {
3306             struct efx_nic *efx_pf;
3307 
3308             /* Switch to PF and change MAC address on vport */
3309             efx_pf = pci_get_drvdata(pci_dev_pf);
3310 
3311             rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3312                                nic_data->vf_index,
3313                                efx->net_dev->dev_addr);
3314         } else if (!rc) {
3315             struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3316             struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3317             unsigned int i;
3318 
3319             /* MAC address successfully changed by VF (with MAC
3320              * spoofing) so update the parent PF if possible.
3321              */
3322             for (i = 0; i < efx_pf->vf_count; ++i) {
3323                 struct ef10_vf *vf = nic_data->vf + i;
3324 
3325                 if (vf->efx == efx) {
3326                     ether_addr_copy(vf->mac,
3327                             efx->net_dev->dev_addr);
3328                     return 0;
3329                 }
3330             }
3331         }
3332     } else
3333 #endif
3334     if (rc == -EPERM) {
3335         netif_err(efx, drv, efx->net_dev,
3336               "Cannot change MAC address; use sfboot to enable"
3337               " mac-spoofing on this interface\n");
3338     } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3339         /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3340          * fall-back to the method of changing the MAC address on the
3341          * vport.  This only applies to PFs because such versions of
3342          * MCFW do not support VFs.
3343          */
3344         rc = efx_ef10_vport_set_mac_address(efx);
3345     } else if (rc) {
3346         efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3347                        sizeof(inbuf), NULL, 0, rc);
3348     }
3349 
3350     return rc;
3351 }
3352 
3353 static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3354 {
3355     WARN_ON(!mutex_is_locked(&efx->mac_lock));
3356 
3357     efx_mcdi_filter_sync_rx_mode(efx);
3358 
3359     if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3360         return efx_mcdi_set_mtu(efx);
3361     return efx_mcdi_set_mac(efx);
3362 }
3363 
3364 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3365 {
3366     MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3367 
3368     MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3369     return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3370                 NULL, 0, NULL);
3371 }
3372 
3373 /* MC BISTs follow a different poll mechanism to phy BISTs.
3374  * The BIST is done in the poll handler on the MC, and the MCDI command
3375  * will block until the BIST is done.
3376  */
3377 static int efx_ef10_poll_bist(struct efx_nic *efx)
3378 {
3379     int rc;
3380     MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3381     size_t outlen;
3382     u32 result;
3383 
3384     rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3385                outbuf, sizeof(outbuf), &outlen);
3386     if (rc != 0)
3387         return rc;
3388 
3389     if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3390         return -EIO;
3391 
3392     result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3393     switch (result) {
3394     case MC_CMD_POLL_BIST_PASSED:
3395         netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3396         return 0;
3397     case MC_CMD_POLL_BIST_TIMEOUT:
3398         netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3399         return -EIO;
3400     case MC_CMD_POLL_BIST_FAILED:
3401         netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3402         return -EIO;
3403     default:
3404         netif_err(efx, hw, efx->net_dev,
3405               "BIST returned unknown result %u", result);
3406         return -EIO;
3407     }
3408 }
3409 
3410 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3411 {
3412     int rc;
3413 
3414     netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3415 
3416     rc = efx_ef10_start_bist(efx, bist_type);
3417     if (rc != 0)
3418         return rc;
3419 
3420     return efx_ef10_poll_bist(efx);
3421 }
3422 
3423 static int
3424 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3425 {
3426     int rc, rc2;
3427 
3428     efx_reset_down(efx, RESET_TYPE_WORLD);
3429 
3430     rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3431               NULL, 0, NULL, 0, NULL);
3432     if (rc != 0)
3433         goto out;
3434 
3435     tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3436     tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3437 
3438     rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3439 
3440 out:
3441     if (rc == -EPERM)
3442         rc = 0;
3443     rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3444     return rc ? rc : rc2;
3445 }
3446 
3447 #ifdef CONFIG_SFC_MTD
3448 
3449 struct efx_ef10_nvram_type_info {
3450     u16 type, type_mask;
3451     u8 port;
3452     const char *name;
3453 };
3454 
3455 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3456     { NVRAM_PARTITION_TYPE_MC_FIRMWARE,    0,    0, "sfc_mcfw" },
3457     { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3458     { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
3459     { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
3460     { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
3461     { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3462     { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3463     { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3464     { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3465     { NVRAM_PARTITION_TYPE_LICENSE,        0,    0, "sfc_license" },
3466     { NVRAM_PARTITION_TYPE_PHY_MIN,        0xff, 0, "sfc_phy_fw" },
3467     { NVRAM_PARTITION_TYPE_MUM_FIRMWARE,       0,    0, "sfc_mumfw" },
3468     { NVRAM_PARTITION_TYPE_EXPANSION_UEFI,     0,    0, "sfc_uefi" },
3469     { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3470     { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3471     { NVRAM_PARTITION_TYPE_STATUS,         0,    0, "sfc_status" },
3472     { NVRAM_PARTITION_TYPE_BUNDLE,         0,    0, "sfc_bundle" },
3473     { NVRAM_PARTITION_TYPE_BUNDLE_METADATA,    0,    0, "sfc_bundle_metadata" },
3474 };
3475 #define EF10_NVRAM_PARTITION_COUNT  ARRAY_SIZE(efx_ef10_nvram_types)
3476 
3477 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3478                     struct efx_mcdi_mtd_partition *part,
3479                     unsigned int type,
3480                     unsigned long *found)
3481 {
3482     MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3483     MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3484     const struct efx_ef10_nvram_type_info *info;
3485     size_t size, erase_size, outlen;
3486     int type_idx = 0;
3487     bool protected;
3488     int rc;
3489 
3490     for (type_idx = 0; ; type_idx++) {
3491         if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3492             return -ENODEV;
3493         info = efx_ef10_nvram_types + type_idx;
3494         if ((type & ~info->type_mask) == info->type)
3495             break;
3496     }
3497     if (info->port != efx_port_num(efx))
3498         return -ENODEV;
3499 
3500     rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3501     if (rc)
3502         return rc;
3503     if (protected &&
3504         (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3505          type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3506         /* Hide protected partitions that don't provide defaults. */
3507         return -ENODEV;
3508 
3509     if (protected)
3510         /* Protected partitions are read only. */
3511         erase_size = 0;
3512 
3513     /* If we've already exposed a partition of this type, hide this
3514      * duplicate.  All operations on MTDs are keyed by the type anyway,
3515      * so we can't act on the duplicate.
3516      */
3517     if (__test_and_set_bit(type_idx, found))
3518         return -EEXIST;
3519 
3520     part->nvram_type = type;
3521 
3522     MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3523     rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3524               outbuf, sizeof(outbuf), &outlen);
3525     if (rc)
3526         return rc;
3527     if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3528         return -EIO;
3529     if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3530         (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3531         part->fw_subtype = MCDI_DWORD(outbuf,
3532                           NVRAM_METADATA_OUT_SUBTYPE);
3533 
3534     part->common.dev_type_name = "EF10 NVRAM manager";
3535     part->common.type_name = info->name;
3536 
3537     part->common.mtd.type = MTD_NORFLASH;
3538     part->common.mtd.flags = MTD_CAP_NORFLASH;
3539     part->common.mtd.size = size;
3540     part->common.mtd.erasesize = erase_size;
3541     /* sfc_status is read-only */
3542     if (!erase_size)
3543         part->common.mtd.flags |= MTD_NO_ERASE;
3544 
3545     return 0;
3546 }
3547 
3548 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3549 {
3550     MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3551     DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3552     struct efx_mcdi_mtd_partition *parts;
3553     size_t outlen, n_parts_total, i, n_parts;
3554     unsigned int type;
3555     int rc;
3556 
3557     ASSERT_RTNL();
3558 
3559     BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3560     rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3561               outbuf, sizeof(outbuf), &outlen);
3562     if (rc)
3563         return rc;
3564     if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3565         return -EIO;
3566 
3567     n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3568     if (n_parts_total >
3569         MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3570         return -EIO;
3571 
3572     parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3573     if (!parts)
3574         return -ENOMEM;
3575 
3576     n_parts = 0;
3577     for (i = 0; i < n_parts_total; i++) {
3578         type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3579                     i);
3580         rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3581                           found);
3582         if (rc == -EEXIST || rc == -ENODEV)
3583             continue;
3584         if (rc)
3585             goto fail;
3586         n_parts++;
3587     }
3588 
3589     if (!n_parts) {
3590         kfree(parts);
3591         return 0;
3592     }
3593 
3594     rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3595 fail:
3596     if (rc)
3597         kfree(parts);
3598     return rc;
3599 }
3600 
3601 #endif /* CONFIG_SFC_MTD */
3602 
3603 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3604 {
3605     _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3606 }
3607 
3608 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3609                         u32 host_time) {}
3610 
3611 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3612                        bool temp)
3613 {
3614     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3615     int rc;
3616 
3617     if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3618         channel->sync_events_state == SYNC_EVENTS_VALID ||
3619         (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3620         return 0;
3621     channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3622 
3623     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3624     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3625     MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3626                channel->channel);
3627 
3628     rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3629               inbuf, sizeof(inbuf), NULL, 0, NULL);
3630 
3631     if (rc != 0)
3632         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3633                             SYNC_EVENTS_DISABLED;
3634 
3635     return rc;
3636 }
3637 
3638 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3639                         bool temp)
3640 {
3641     MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3642     int rc;
3643 
3644     if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3645         (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3646         return 0;
3647     if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3648         channel->sync_events_state = SYNC_EVENTS_DISABLED;
3649         return 0;
3650     }
3651     channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652                         SYNC_EVENTS_DISABLED;
3653 
3654     MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3655     MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3656     MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3657                MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3658     MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3659                channel->channel);
3660 
3661     rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3662               inbuf, sizeof(inbuf), NULL, 0, NULL);
3663 
3664     return rc;
3665 }
3666 
3667 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3668                        bool temp)
3669 {
3670     int (*set)(struct efx_channel *channel, bool temp);
3671     struct efx_channel *channel;
3672 
3673     set = en ?
3674           efx_ef10_rx_enable_timestamping :
3675           efx_ef10_rx_disable_timestamping;
3676 
3677     channel = efx_ptp_channel(efx);
3678     if (channel) {
3679         int rc = set(channel, temp);
3680         if (en && rc != 0) {
3681             efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3682             return rc;
3683         }
3684     }
3685 
3686     return 0;
3687 }
3688 
3689 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3690                      struct hwtstamp_config *init)
3691 {
3692     return -EOPNOTSUPP;
3693 }
3694 
3695 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3696                       struct hwtstamp_config *init)
3697 {
3698     int rc;
3699 
3700     switch (init->rx_filter) {
3701     case HWTSTAMP_FILTER_NONE:
3702         efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3703         /* if TX timestamping is still requested then leave PTP on */
3704         return efx_ptp_change_mode(efx,
3705                        init->tx_type != HWTSTAMP_TX_OFF, 0);
3706     case HWTSTAMP_FILTER_ALL:
3707     case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3708     case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3709     case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3710     case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3711     case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3712     case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3713     case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3714     case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3715     case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3716     case HWTSTAMP_FILTER_PTP_V2_EVENT:
3717     case HWTSTAMP_FILTER_PTP_V2_SYNC:
3718     case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3719     case HWTSTAMP_FILTER_NTP_ALL:
3720         init->rx_filter = HWTSTAMP_FILTER_ALL;
3721         rc = efx_ptp_change_mode(efx, true, 0);
3722         if (!rc)
3723             rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3724         if (rc)
3725             efx_ptp_change_mode(efx, false, 0);
3726         return rc;
3727     default:
3728         return -ERANGE;
3729     }
3730 }
3731 
3732 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3733                      struct netdev_phys_item_id *ppid)
3734 {
3735     struct efx_ef10_nic_data *nic_data = efx->nic_data;
3736 
3737     if (!is_valid_ether_addr(nic_data->port_id))
3738         return -EOPNOTSUPP;
3739 
3740     ppid->id_len = ETH_ALEN;
3741     memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3742 
3743     return 0;
3744 }
3745 
3746 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3747 {
3748     if (proto != htons(ETH_P_8021Q))
3749         return -EINVAL;
3750 
3751     return efx_ef10_add_vlan(efx, vid);
3752 }
3753 
3754 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3755 {
3756     if (proto != htons(ETH_P_8021Q))
3757         return -EINVAL;
3758 
3759     return efx_ef10_del_vlan(efx, vid);
3760 }
3761 
3762 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3763  * ports table, ensuring that any TSO descriptors that were made on a now-
3764  * removed tunnel port will be blown away and won't break things when we try
3765  * to transmit them using the new ports table.
3766  */
3767 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3768 {
3769     struct efx_ef10_nic_data *nic_data = efx->nic_data;
3770     MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3771     MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3772     bool will_reset = false;
3773     size_t num_entries = 0;
3774     size_t inlen, outlen;
3775     size_t i;
3776     int rc;
3777     efx_dword_t flags_and_num_entries;
3778 
3779     WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3780 
3781     nic_data->udp_tunnels_dirty = false;
3782 
3783     if (!(nic_data->datapath_caps &
3784         (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3785         efx_device_attach_if_not_resetting(efx);
3786         return 0;
3787     }
3788 
3789     BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3790              MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3791 
3792     for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3793         if (nic_data->udp_tunnels[i].type !=
3794             TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3795             efx_dword_t entry;
3796 
3797             EFX_POPULATE_DWORD_2(entry,
3798                 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3799                     ntohs(nic_data->udp_tunnels[i].port),
3800                 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3801                     nic_data->udp_tunnels[i].type);
3802             *_MCDI_ARRAY_DWORD(inbuf,
3803                 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3804                 num_entries++) = entry;
3805         }
3806     }
3807 
3808     BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3809               MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3810              EFX_WORD_1_LBN);
3811     BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3812              EFX_WORD_1_WIDTH);
3813     EFX_POPULATE_DWORD_2(flags_and_num_entries,
3814                  MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3815                 !!unloading,
3816                  EFX_WORD_1, num_entries);
3817     *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3818         flags_and_num_entries;
3819 
3820     inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3821 
3822     rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3823                 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3824     if (rc == -EIO) {
3825         /* Most likely the MC rebooted due to another function also
3826          * setting its tunnel port list. Mark the tunnel port list as
3827          * dirty, so it will be pushed upon coming up from the reboot.
3828          */
3829         nic_data->udp_tunnels_dirty = true;
3830         return 0;
3831     }
3832 
3833     if (rc) {
3834         /* expected not available on unprivileged functions */
3835         if (rc != -EPERM)
3836             netif_warn(efx, drv, efx->net_dev,
3837                    "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3838     } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3839            (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3840         netif_info(efx, drv, efx->net_dev,
3841                "Rebooting MC due to UDP tunnel port list change\n");
3842         will_reset = true;
3843         if (unloading)
3844             /* Delay for the MC reset to complete. This will make
3845              * unloading other functions a bit smoother. This is a
3846              * race, but the other unload will work whichever way
3847              * it goes, this just avoids an unnecessary error
3848              * message.
3849              */
3850             msleep(100);
3851     }
3852     if (!will_reset && !unloading) {
3853         /* The caller will have detached, relying on the MC reset to
3854          * trigger a re-attach.  Since there won't be an MC reset, we
3855          * have to do the attach ourselves.
3856          */
3857         efx_device_attach_if_not_resetting(efx);
3858     }
3859 
3860     return rc;
3861 }
3862 
3863 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3864 {
3865     struct efx_ef10_nic_data *nic_data = efx->nic_data;
3866     int rc = 0;
3867 
3868     mutex_lock(&nic_data->udp_tunnels_lock);
3869     if (nic_data->udp_tunnels_dirty) {
3870         /* Make sure all TX are stopped while we modify the table, else
3871          * we might race against an efx_features_check().
3872          */
3873         efx_device_detach_sync(efx);
3874         rc = efx_ef10_set_udp_tnl_ports(efx, false);
3875     }
3876     mutex_unlock(&nic_data->udp_tunnels_lock);
3877     return rc;
3878 }
3879 
3880 static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3881                      unsigned int table, unsigned int entry,
3882                      struct udp_tunnel_info *ti)
3883 {
3884     struct efx_nic *efx = efx_netdev_priv(dev);
3885     struct efx_ef10_nic_data *nic_data;
3886     int efx_tunnel_type, rc;
3887 
3888     if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3889         efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3890     else
3891         efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3892 
3893     nic_data = efx->nic_data;
3894     if (!(nic_data->datapath_caps &
3895           (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3896         return -EOPNOTSUPP;
3897 
3898     mutex_lock(&nic_data->udp_tunnels_lock);
3899     /* Make sure all TX are stopped while we add to the table, else we
3900      * might race against an efx_features_check().
3901      */
3902     efx_device_detach_sync(efx);
3903     nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3904     nic_data->udp_tunnels[entry].port = ti->port;
3905     rc = efx_ef10_set_udp_tnl_ports(efx, false);
3906     mutex_unlock(&nic_data->udp_tunnels_lock);
3907 
3908     return rc;
3909 }
3910 
3911 /* Called under the TX lock with the TX queue running, hence no-one can be
3912  * in the middle of updating the UDP tunnels table.  However, they could
3913  * have tried and failed the MCDI, in which case they'll have set the dirty
3914  * flag before dropping their locks.
3915  */
3916 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3917 {
3918     struct efx_ef10_nic_data *nic_data = efx->nic_data;
3919     size_t i;
3920 
3921     if (!(nic_data->datapath_caps &
3922           (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3923         return false;
3924 
3925     if (nic_data->udp_tunnels_dirty)
3926         /* SW table may not match HW state, so just assume we can't
3927          * use any UDP tunnel offloads.
3928          */
3929         return false;
3930 
3931     for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3932         if (nic_data->udp_tunnels[i].type !=
3933             TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3934             nic_data->udp_tunnels[i].port == port)
3935             return true;
3936 
3937     return false;
3938 }
3939 
3940 static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3941                        unsigned int table, unsigned int entry,
3942                        struct udp_tunnel_info *ti)
3943 {
3944     struct efx_nic *efx = efx_netdev_priv(dev);
3945     struct efx_ef10_nic_data *nic_data;
3946     int rc;
3947 
3948     nic_data = efx->nic_data;
3949 
3950     mutex_lock(&nic_data->udp_tunnels_lock);
3951     /* Make sure all TX are stopped while we remove from the table, else we
3952      * might race against an efx_features_check().
3953      */
3954     efx_device_detach_sync(efx);
3955     nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3956     nic_data->udp_tunnels[entry].port = 0;
3957     rc = efx_ef10_set_udp_tnl_ports(efx, false);
3958     mutex_unlock(&nic_data->udp_tunnels_lock);
3959 
3960     return rc;
3961 }
3962 
3963 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3964     .set_port   = efx_ef10_udp_tnl_set_port,
3965     .unset_port = efx_ef10_udp_tnl_unset_port,
3966     .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3967     .tables         = {
3968         {
3969             .n_entries = 16,
3970             .tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3971                     UDP_TUNNEL_TYPE_GENEVE,
3972         },
3973     },
3974 };
3975 
3976 /* EF10 may have multiple datapath firmware variants within a
3977  * single version.  Report which variants are running.
3978  */
3979 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3980                           size_t len)
3981 {
3982     struct efx_ef10_nic_data *nic_data = efx->nic_data;
3983 
3984     return scnprintf(buf, len, " rx%x tx%x",
3985              nic_data->rx_dpcpu_fw_id,
3986              nic_data->tx_dpcpu_fw_id);
3987 }
3988 
3989 static unsigned int ef10_check_caps(const struct efx_nic *efx,
3990                     u8 flag,
3991                     u32 offset)
3992 {
3993     const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3994 
3995     switch (offset) {
3996     case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
3997         return nic_data->datapath_caps & BIT_ULL(flag);
3998     case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
3999         return nic_data->datapath_caps2 & BIT_ULL(flag);
4000     default:
4001         return 0;
4002     }
4003 }
4004 
4005 static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4006 {
4007     unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4008 
4009     /* There is no difference between PFs and VFs. The side is based on
4010      * the maximum link speed of a given NIC.
4011      */
4012     switch (efx->pci_dev->device & 0xfff) {
4013     case 0x0903:    /* Farmingdale can do up to 10G */
4014         break;
4015     case 0x0923:    /* Greenport can do up to 40G */
4016     case 0x0a03:    /* Medford can do up to 40G */
4017         ret *= 4;
4018         break;
4019     default:    /* Medford2 can do up to 100G */
4020         ret *= 10;
4021     }
4022 
4023     if (IS_ENABLED(CONFIG_PPC64))
4024         ret *= 4;
4025 
4026     return ret;
4027 }
4028 
4029 #define EF10_OFFLOAD_FEATURES       \
4030     (NETIF_F_IP_CSUM |      \
4031      NETIF_F_HW_VLAN_CTAG_FILTER |  \
4032      NETIF_F_IPV6_CSUM |        \
4033      NETIF_F_RXHASH |       \
4034      NETIF_F_NTUPLE)
4035 
4036 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4037     .is_vf = true,
4038     .mem_bar = efx_ef10_vf_mem_bar,
4039     .mem_map_size = efx_ef10_mem_map_size,
4040     .probe = efx_ef10_probe_vf,
4041     .remove = efx_ef10_remove,
4042     .dimension_resources = efx_ef10_dimension_resources,
4043     .init = efx_ef10_init_nic,
4044     .fini = efx_ef10_fini_nic,
4045     .map_reset_reason = efx_ef10_map_reset_reason,
4046     .map_reset_flags = efx_ef10_map_reset_flags,
4047     .reset = efx_ef10_reset,
4048     .probe_port = efx_mcdi_port_probe,
4049     .remove_port = efx_mcdi_port_remove,
4050     .fini_dmaq = efx_fini_dmaq,
4051     .prepare_flr = efx_ef10_prepare_flr,
4052     .finish_flr = efx_port_dummy_op_void,
4053     .describe_stats = efx_ef10_describe_stats,
4054     .update_stats = efx_ef10_update_stats_vf,
4055     .update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4056     .start_stats = efx_port_dummy_op_void,
4057     .pull_stats = efx_port_dummy_op_void,
4058     .stop_stats = efx_port_dummy_op_void,
4059     .push_irq_moderation = efx_ef10_push_irq_moderation,
4060     .reconfigure_mac = efx_ef10_mac_reconfigure,
4061     .check_mac_fault = efx_mcdi_mac_check_fault,
4062     .reconfigure_port = efx_mcdi_port_reconfigure,
4063     .get_wol = efx_ef10_get_wol_vf,
4064     .set_wol = efx_ef10_set_wol_vf,
4065     .resume_wol = efx_port_dummy_op_void,
4066     .mcdi_request = efx_ef10_mcdi_request,
4067     .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4068     .mcdi_read_response = efx_ef10_mcdi_read_response,
4069     .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4070     .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4071     .irq_enable_master = efx_port_dummy_op_void,
4072     .irq_test_generate = efx_ef10_irq_test_generate,
4073     .irq_disable_non_ev = efx_port_dummy_op_void,
4074     .irq_handle_msi = efx_ef10_msi_interrupt,
4075     .irq_handle_legacy = efx_ef10_legacy_interrupt,
4076     .tx_probe = efx_ef10_tx_probe,
4077     .tx_init = efx_ef10_tx_init,
4078     .tx_remove = efx_mcdi_tx_remove,
4079     .tx_write = efx_ef10_tx_write,
4080     .tx_limit_len = efx_ef10_tx_limit_len,
4081     .tx_enqueue = __efx_enqueue_skb,
4082     .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4083     .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4084     .rx_probe = efx_mcdi_rx_probe,
4085     .rx_init = efx_mcdi_rx_init,
4086     .rx_remove = efx_mcdi_rx_remove,
4087     .rx_write = efx_ef10_rx_write,
4088     .rx_defer_refill = efx_ef10_rx_defer_refill,
4089     .rx_packet = __efx_rx_packet,
4090     .ev_probe = efx_mcdi_ev_probe,
4091     .ev_init = efx_ef10_ev_init,
4092     .ev_fini = efx_mcdi_ev_fini,
4093     .ev_remove = efx_mcdi_ev_remove,
4094     .ev_process = efx_ef10_ev_process,
4095     .ev_read_ack = efx_ef10_ev_read_ack,
4096     .ev_test_generate = efx_ef10_ev_test_generate,
4097     .filter_table_probe = efx_ef10_filter_table_probe,
4098     .filter_table_restore = efx_mcdi_filter_table_restore,
4099     .filter_table_remove = efx_ef10_filter_table_remove,
4100     .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4101     .filter_insert = efx_mcdi_filter_insert,
4102     .filter_remove_safe = efx_mcdi_filter_remove_safe,
4103     .filter_get_safe = efx_mcdi_filter_get_safe,
4104     .filter_clear_rx = efx_mcdi_filter_clear_rx,
4105     .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4106     .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4107     .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4108 #ifdef CONFIG_RFS_ACCEL
4109     .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4110 #endif
4111 #ifdef CONFIG_SFC_MTD
4112     .mtd_probe = efx_port_dummy_op_int,
4113 #endif
4114     .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4115     .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4116     .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4117     .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4118 #ifdef CONFIG_SFC_SRIOV
4119     .vswitching_probe = efx_ef10_vswitching_probe_vf,
4120     .vswitching_restore = efx_ef10_vswitching_restore_vf,
4121     .vswitching_remove = efx_ef10_vswitching_remove_vf,
4122 #endif
4123     .get_mac_address = efx_ef10_get_mac_address_vf,
4124     .set_mac_address = efx_ef10_set_mac_address,
4125 
4126     .get_phys_port_id = efx_ef10_get_phys_port_id,
4127     .revision = EFX_REV_HUNT_A0,
4128     .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4129     .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4130     .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4131     .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4132     .can_rx_scatter = true,
4133     .always_rx_scatter = true,
4134     .min_interrupt_mode = EFX_INT_MODE_MSIX,
4135     .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4136     .offload_features = EF10_OFFLOAD_FEATURES,
4137     .mcdi_max_ver = 2,
4138     .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4139     .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4140                 1 << HWTSTAMP_FILTER_ALL,
4141     .rx_hash_key_size = 40,
4142     .check_caps = ef10_check_caps,
4143     .print_additional_fwver = efx_ef10_print_additional_fwver,
4144     .sensor_event = efx_mcdi_sensor_event,
4145     .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4146 };
4147 
4148 const struct efx_nic_type efx_hunt_a0_nic_type = {
4149     .is_vf = false,
4150     .mem_bar = efx_ef10_pf_mem_bar,
4151     .mem_map_size = efx_ef10_mem_map_size,
4152     .probe = efx_ef10_probe_pf,
4153     .remove = efx_ef10_remove,
4154     .dimension_resources = efx_ef10_dimension_resources,
4155     .init = efx_ef10_init_nic,
4156     .fini = efx_ef10_fini_nic,
4157     .map_reset_reason = efx_ef10_map_reset_reason,
4158     .map_reset_flags = efx_ef10_map_reset_flags,
4159     .reset = efx_ef10_reset,
4160     .probe_port = efx_mcdi_port_probe,
4161     .remove_port = efx_mcdi_port_remove,
4162     .fini_dmaq = efx_fini_dmaq,
4163     .prepare_flr = efx_ef10_prepare_flr,
4164     .finish_flr = efx_port_dummy_op_void,
4165     .describe_stats = efx_ef10_describe_stats,
4166     .update_stats = efx_ef10_update_stats_pf,
4167     .start_stats = efx_mcdi_mac_start_stats,
4168     .pull_stats = efx_mcdi_mac_pull_stats,
4169     .stop_stats = efx_mcdi_mac_stop_stats,
4170     .push_irq_moderation = efx_ef10_push_irq_moderation,
4171     .reconfigure_mac = efx_ef10_mac_reconfigure,
4172     .check_mac_fault = efx_mcdi_mac_check_fault,
4173     .reconfigure_port = efx_mcdi_port_reconfigure,
4174     .get_wol = efx_ef10_get_wol,
4175     .set_wol = efx_ef10_set_wol,
4176     .resume_wol = efx_port_dummy_op_void,
4177     .get_fec_stats = efx_ef10_get_fec_stats,
4178     .test_chip = efx_ef10_test_chip,
4179     .test_nvram = efx_mcdi_nvram_test_all,
4180     .mcdi_request = efx_ef10_mcdi_request,
4181     .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4182     .mcdi_read_response = efx_ef10_mcdi_read_response,
4183     .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4184     .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4185     .irq_enable_master = efx_port_dummy_op_void,
4186     .irq_test_generate = efx_ef10_irq_test_generate,
4187     .irq_disable_non_ev = efx_port_dummy_op_void,
4188     .irq_handle_msi = efx_ef10_msi_interrupt,
4189     .irq_handle_legacy = efx_ef10_legacy_interrupt,
4190     .tx_probe = efx_ef10_tx_probe,
4191     .tx_init = efx_ef10_tx_init,
4192     .tx_remove = efx_mcdi_tx_remove,
4193     .tx_write = efx_ef10_tx_write,
4194     .tx_limit_len = efx_ef10_tx_limit_len,
4195     .tx_enqueue = __efx_enqueue_skb,
4196     .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4197     .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4198     .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4199     .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4200     .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4201     .rx_probe = efx_mcdi_rx_probe,
4202     .rx_init = efx_mcdi_rx_init,
4203     .rx_remove = efx_mcdi_rx_remove,
4204     .rx_write = efx_ef10_rx_write,
4205     .rx_defer_refill = efx_ef10_rx_defer_refill,
4206     .rx_packet = __efx_rx_packet,
4207     .ev_probe = efx_mcdi_ev_probe,
4208     .ev_init = efx_ef10_ev_init,
4209     .ev_fini = efx_mcdi_ev_fini,
4210     .ev_remove = efx_mcdi_ev_remove,
4211     .ev_process = efx_ef10_ev_process,
4212     .ev_read_ack = efx_ef10_ev_read_ack,
4213     .ev_test_generate = efx_ef10_ev_test_generate,
4214     .filter_table_probe = efx_ef10_filter_table_probe,
4215     .filter_table_restore = efx_mcdi_filter_table_restore,
4216     .filter_table_remove = efx_ef10_filter_table_remove,
4217     .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4218     .filter_insert = efx_mcdi_filter_insert,
4219     .filter_remove_safe = efx_mcdi_filter_remove_safe,
4220     .filter_get_safe = efx_mcdi_filter_get_safe,
4221     .filter_clear_rx = efx_mcdi_filter_clear_rx,
4222     .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4223     .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4224     .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4225 #ifdef CONFIG_RFS_ACCEL
4226     .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4227 #endif
4228 #ifdef CONFIG_SFC_MTD
4229     .mtd_probe = efx_ef10_mtd_probe,
4230     .mtd_rename = efx_mcdi_mtd_rename,
4231     .mtd_read = efx_mcdi_mtd_read,
4232     .mtd_erase = efx_mcdi_mtd_erase,
4233     .mtd_write = efx_mcdi_mtd_write,
4234     .mtd_sync = efx_mcdi_mtd_sync,
4235 #endif
4236     .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4237     .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4238     .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4239     .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4240     .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4241     .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4242     .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4243 #ifdef CONFIG_SFC_SRIOV
4244     .sriov_configure = efx_ef10_sriov_configure,
4245     .sriov_init = efx_ef10_sriov_init,
4246     .sriov_fini = efx_ef10_sriov_fini,
4247     .sriov_wanted = efx_ef10_sriov_wanted,
4248     .sriov_reset = efx_ef10_sriov_reset,
4249     .sriov_flr = efx_ef10_sriov_flr,
4250     .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4251     .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4252     .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4253     .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4254     .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4255     .vswitching_probe = efx_ef10_vswitching_probe_pf,
4256     .vswitching_restore = efx_ef10_vswitching_restore_pf,
4257     .vswitching_remove = efx_ef10_vswitching_remove_pf,
4258 #endif
4259     .get_mac_address = efx_ef10_get_mac_address_pf,
4260     .set_mac_address = efx_ef10_set_mac_address,
4261     .tso_versions = efx_ef10_tso_versions,
4262 
4263     .get_phys_port_id = efx_ef10_get_phys_port_id,
4264     .revision = EFX_REV_HUNT_A0,
4265     .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4266     .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4267     .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4268     .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4269     .can_rx_scatter = true,
4270     .always_rx_scatter = true,
4271     .option_descriptors = true,
4272     .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4273     .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4274     .offload_features = EF10_OFFLOAD_FEATURES,
4275     .mcdi_max_ver = 2,
4276     .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4277     .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4278                 1 << HWTSTAMP_FILTER_ALL,
4279     .rx_hash_key_size = 40,
4280     .check_caps = ef10_check_caps,
4281     .print_additional_fwver = efx_ef10_print_additional_fwver,
4282     .sensor_event = efx_mcdi_sensor_event,
4283     .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4284 };