Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Renesas Ethernet AVB device driver
0003  *
0004  * Copyright (C) 2014-2019 Renesas Electronics Corporation
0005  * Copyright (C) 2015 Renesas Solutions Corp.
0006  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
0007  *
0008  * Based on the SuperH Ethernet driver
0009  */
0010 
0011 #include <linux/cache.h>
0012 #include <linux/clk.h>
0013 #include <linux/delay.h>
0014 #include <linux/dma-mapping.h>
0015 #include <linux/err.h>
0016 #include <linux/etherdevice.h>
0017 #include <linux/ethtool.h>
0018 #include <linux/if_vlan.h>
0019 #include <linux/kernel.h>
0020 #include <linux/list.h>
0021 #include <linux/module.h>
0022 #include <linux/net_tstamp.h>
0023 #include <linux/of.h>
0024 #include <linux/of_device.h>
0025 #include <linux/of_irq.h>
0026 #include <linux/of_mdio.h>
0027 #include <linux/of_net.h>
0028 #include <linux/pm_runtime.h>
0029 #include <linux/slab.h>
0030 #include <linux/spinlock.h>
0031 #include <linux/sys_soc.h>
0032 #include <linux/reset.h>
0033 #include <linux/math64.h>
0034 
0035 #include "ravb.h"
0036 
0037 #define RAVB_DEF_MSG_ENABLE \
0038         (NETIF_MSG_LINK   | \
0039          NETIF_MSG_TIMER  | \
0040          NETIF_MSG_RX_ERR | \
0041          NETIF_MSG_TX_ERR)
0042 
0043 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
0044     "ch0", /* RAVB_BE */
0045     "ch1", /* RAVB_NC */
0046 };
0047 
0048 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
0049     "ch18", /* RAVB_BE */
0050     "ch19", /* RAVB_NC */
0051 };
0052 
0053 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
0054          u32 set)
0055 {
0056     ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
0057 }
0058 
0059 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
0060 {
0061     int i;
0062 
0063     for (i = 0; i < 10000; i++) {
0064         if ((ravb_read(ndev, reg) & mask) == value)
0065             return 0;
0066         udelay(10);
0067     }
0068     return -ETIMEDOUT;
0069 }
0070 
0071 static int ravb_config(struct net_device *ndev)
0072 {
0073     int error;
0074 
0075     /* Set config mode */
0076     ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
0077     /* Check if the operating mode is changed to the config mode */
0078     error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
0079     if (error)
0080         netdev_err(ndev, "failed to switch device to config mode\n");
0081 
0082     return error;
0083 }
0084 
0085 static void ravb_set_rate_gbeth(struct net_device *ndev)
0086 {
0087     struct ravb_private *priv = netdev_priv(ndev);
0088 
0089     switch (priv->speed) {
0090     case 10:                /* 10BASE */
0091         ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
0092         break;
0093     case 100:               /* 100BASE */
0094         ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
0095         break;
0096     case 1000:              /* 1000BASE */
0097         ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
0098         break;
0099     }
0100 }
0101 
0102 static void ravb_set_rate_rcar(struct net_device *ndev)
0103 {
0104     struct ravb_private *priv = netdev_priv(ndev);
0105 
0106     switch (priv->speed) {
0107     case 100:       /* 100BASE */
0108         ravb_write(ndev, GECMR_SPEED_100, GECMR);
0109         break;
0110     case 1000:      /* 1000BASE */
0111         ravb_write(ndev, GECMR_SPEED_1000, GECMR);
0112         break;
0113     }
0114 }
0115 
0116 static void ravb_set_buffer_align(struct sk_buff *skb)
0117 {
0118     u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
0119 
0120     if (reserve)
0121         skb_reserve(skb, RAVB_ALIGN - reserve);
0122 }
0123 
0124 /* Get MAC address from the MAC address registers
0125  *
0126  * Ethernet AVB device doesn't have ROM for MAC address.
0127  * This function gets the MAC address that was used by a bootloader.
0128  */
0129 static void ravb_read_mac_address(struct device_node *np,
0130                   struct net_device *ndev)
0131 {
0132     int ret;
0133 
0134     ret = of_get_ethdev_address(np, ndev);
0135     if (ret) {
0136         u32 mahr = ravb_read(ndev, MAHR);
0137         u32 malr = ravb_read(ndev, MALR);
0138         u8 addr[ETH_ALEN];
0139 
0140         addr[0] = (mahr >> 24) & 0xFF;
0141         addr[1] = (mahr >> 16) & 0xFF;
0142         addr[2] = (mahr >>  8) & 0xFF;
0143         addr[3] = (mahr >>  0) & 0xFF;
0144         addr[4] = (malr >>  8) & 0xFF;
0145         addr[5] = (malr >>  0) & 0xFF;
0146         eth_hw_addr_set(ndev, addr);
0147     }
0148 }
0149 
0150 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
0151 {
0152     struct ravb_private *priv = container_of(ctrl, struct ravb_private,
0153                          mdiobb);
0154 
0155     ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
0156 }
0157 
0158 /* MDC pin control */
0159 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
0160 {
0161     ravb_mdio_ctrl(ctrl, PIR_MDC, level);
0162 }
0163 
0164 /* Data I/O pin control */
0165 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
0166 {
0167     ravb_mdio_ctrl(ctrl, PIR_MMD, output);
0168 }
0169 
0170 /* Set data bit */
0171 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
0172 {
0173     ravb_mdio_ctrl(ctrl, PIR_MDO, value);
0174 }
0175 
0176 /* Get data bit */
0177 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
0178 {
0179     struct ravb_private *priv = container_of(ctrl, struct ravb_private,
0180                          mdiobb);
0181 
0182     return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
0183 }
0184 
0185 /* MDIO bus control struct */
0186 static const struct mdiobb_ops bb_ops = {
0187     .owner = THIS_MODULE,
0188     .set_mdc = ravb_set_mdc,
0189     .set_mdio_dir = ravb_set_mdio_dir,
0190     .set_mdio_data = ravb_set_mdio_data,
0191     .get_mdio_data = ravb_get_mdio_data,
0192 };
0193 
0194 /* Free TX skb function for AVB-IP */
0195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
0196 {
0197     struct ravb_private *priv = netdev_priv(ndev);
0198     struct net_device_stats *stats = &priv->stats[q];
0199     unsigned int num_tx_desc = priv->num_tx_desc;
0200     struct ravb_tx_desc *desc;
0201     unsigned int entry;
0202     int free_num = 0;
0203     u32 size;
0204 
0205     for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
0206         bool txed;
0207 
0208         entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
0209                          num_tx_desc);
0210         desc = &priv->tx_ring[q][entry];
0211         txed = desc->die_dt == DT_FEMPTY;
0212         if (free_txed_only && !txed)
0213             break;
0214         /* Descriptor type must be checked before all other reads */
0215         dma_rmb();
0216         size = le16_to_cpu(desc->ds_tagl) & TX_DS;
0217         /* Free the original skb. */
0218         if (priv->tx_skb[q][entry / num_tx_desc]) {
0219             dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
0220                      size, DMA_TO_DEVICE);
0221             /* Last packet descriptor? */
0222             if (entry % num_tx_desc == num_tx_desc - 1) {
0223                 entry /= num_tx_desc;
0224                 dev_kfree_skb_any(priv->tx_skb[q][entry]);
0225                 priv->tx_skb[q][entry] = NULL;
0226                 if (txed)
0227                     stats->tx_packets++;
0228             }
0229             free_num++;
0230         }
0231         if (txed)
0232             stats->tx_bytes += size;
0233         desc->die_dt = DT_EEMPTY;
0234     }
0235     return free_num;
0236 }
0237 
0238 static void ravb_rx_ring_free_gbeth(struct net_device *ndev, int q)
0239 {
0240     struct ravb_private *priv = netdev_priv(ndev);
0241     unsigned int ring_size;
0242     unsigned int i;
0243 
0244     if (!priv->gbeth_rx_ring)
0245         return;
0246 
0247     for (i = 0; i < priv->num_rx_ring[q]; i++) {
0248         struct ravb_rx_desc *desc = &priv->gbeth_rx_ring[i];
0249 
0250         if (!dma_mapping_error(ndev->dev.parent,
0251                        le32_to_cpu(desc->dptr)))
0252             dma_unmap_single(ndev->dev.parent,
0253                      le32_to_cpu(desc->dptr),
0254                      GBETH_RX_BUFF_MAX,
0255                      DMA_FROM_DEVICE);
0256     }
0257     ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
0258     dma_free_coherent(ndev->dev.parent, ring_size, priv->gbeth_rx_ring,
0259               priv->rx_desc_dma[q]);
0260     priv->gbeth_rx_ring = NULL;
0261 }
0262 
0263 static void ravb_rx_ring_free_rcar(struct net_device *ndev, int q)
0264 {
0265     struct ravb_private *priv = netdev_priv(ndev);
0266     unsigned int ring_size;
0267     unsigned int i;
0268 
0269     if (!priv->rx_ring[q])
0270         return;
0271 
0272     for (i = 0; i < priv->num_rx_ring[q]; i++) {
0273         struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
0274 
0275         if (!dma_mapping_error(ndev->dev.parent,
0276                        le32_to_cpu(desc->dptr)))
0277             dma_unmap_single(ndev->dev.parent,
0278                      le32_to_cpu(desc->dptr),
0279                      RX_BUF_SZ,
0280                      DMA_FROM_DEVICE);
0281     }
0282     ring_size = sizeof(struct ravb_ex_rx_desc) *
0283             (priv->num_rx_ring[q] + 1);
0284     dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
0285               priv->rx_desc_dma[q]);
0286     priv->rx_ring[q] = NULL;
0287 }
0288 
0289 /* Free skb's and DMA buffers for Ethernet AVB */
0290 static void ravb_ring_free(struct net_device *ndev, int q)
0291 {
0292     struct ravb_private *priv = netdev_priv(ndev);
0293     const struct ravb_hw_info *info = priv->info;
0294     unsigned int num_tx_desc = priv->num_tx_desc;
0295     unsigned int ring_size;
0296     unsigned int i;
0297 
0298     info->rx_ring_free(ndev, q);
0299 
0300     if (priv->tx_ring[q]) {
0301         ravb_tx_free(ndev, q, false);
0302 
0303         ring_size = sizeof(struct ravb_tx_desc) *
0304                 (priv->num_tx_ring[q] * num_tx_desc + 1);
0305         dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
0306                   priv->tx_desc_dma[q]);
0307         priv->tx_ring[q] = NULL;
0308     }
0309 
0310     /* Free RX skb ringbuffer */
0311     if (priv->rx_skb[q]) {
0312         for (i = 0; i < priv->num_rx_ring[q]; i++)
0313             dev_kfree_skb(priv->rx_skb[q][i]);
0314     }
0315     kfree(priv->rx_skb[q]);
0316     priv->rx_skb[q] = NULL;
0317 
0318     /* Free aligned TX buffers */
0319     kfree(priv->tx_align[q]);
0320     priv->tx_align[q] = NULL;
0321 
0322     /* Free TX skb ringbuffer.
0323      * SKBs are freed by ravb_tx_free() call above.
0324      */
0325     kfree(priv->tx_skb[q]);
0326     priv->tx_skb[q] = NULL;
0327 }
0328 
0329 static void ravb_rx_ring_format_gbeth(struct net_device *ndev, int q)
0330 {
0331     struct ravb_private *priv = netdev_priv(ndev);
0332     struct ravb_rx_desc *rx_desc;
0333     unsigned int rx_ring_size;
0334     dma_addr_t dma_addr;
0335     unsigned int i;
0336 
0337     rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
0338     memset(priv->gbeth_rx_ring, 0, rx_ring_size);
0339     /* Build RX ring buffer */
0340     for (i = 0; i < priv->num_rx_ring[q]; i++) {
0341         /* RX descriptor */
0342         rx_desc = &priv->gbeth_rx_ring[i];
0343         rx_desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
0344         dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
0345                       GBETH_RX_BUFF_MAX,
0346                       DMA_FROM_DEVICE);
0347         /* We just set the data size to 0 for a failed mapping which
0348          * should prevent DMA from happening...
0349          */
0350         if (dma_mapping_error(ndev->dev.parent, dma_addr))
0351             rx_desc->ds_cc = cpu_to_le16(0);
0352         rx_desc->dptr = cpu_to_le32(dma_addr);
0353         rx_desc->die_dt = DT_FEMPTY;
0354     }
0355     rx_desc = &priv->gbeth_rx_ring[i];
0356     rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
0357     rx_desc->die_dt = DT_LINKFIX; /* type */
0358 }
0359 
0360 static void ravb_rx_ring_format_rcar(struct net_device *ndev, int q)
0361 {
0362     struct ravb_private *priv = netdev_priv(ndev);
0363     struct ravb_ex_rx_desc *rx_desc;
0364     unsigned int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
0365     dma_addr_t dma_addr;
0366     unsigned int i;
0367 
0368     memset(priv->rx_ring[q], 0, rx_ring_size);
0369     /* Build RX ring buffer */
0370     for (i = 0; i < priv->num_rx_ring[q]; i++) {
0371         /* RX descriptor */
0372         rx_desc = &priv->rx_ring[q][i];
0373         rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
0374         dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
0375                       RX_BUF_SZ,
0376                       DMA_FROM_DEVICE);
0377         /* We just set the data size to 0 for a failed mapping which
0378          * should prevent DMA from happening...
0379          */
0380         if (dma_mapping_error(ndev->dev.parent, dma_addr))
0381             rx_desc->ds_cc = cpu_to_le16(0);
0382         rx_desc->dptr = cpu_to_le32(dma_addr);
0383         rx_desc->die_dt = DT_FEMPTY;
0384     }
0385     rx_desc = &priv->rx_ring[q][i];
0386     rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
0387     rx_desc->die_dt = DT_LINKFIX; /* type */
0388 }
0389 
0390 /* Format skb and descriptor buffer for Ethernet AVB */
0391 static void ravb_ring_format(struct net_device *ndev, int q)
0392 {
0393     struct ravb_private *priv = netdev_priv(ndev);
0394     const struct ravb_hw_info *info = priv->info;
0395     unsigned int num_tx_desc = priv->num_tx_desc;
0396     struct ravb_tx_desc *tx_desc;
0397     struct ravb_desc *desc;
0398     unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
0399                     num_tx_desc;
0400     unsigned int i;
0401 
0402     priv->cur_rx[q] = 0;
0403     priv->cur_tx[q] = 0;
0404     priv->dirty_rx[q] = 0;
0405     priv->dirty_tx[q] = 0;
0406 
0407     info->rx_ring_format(ndev, q);
0408 
0409     memset(priv->tx_ring[q], 0, tx_ring_size);
0410     /* Build TX ring buffer */
0411     for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
0412          i++, tx_desc++) {
0413         tx_desc->die_dt = DT_EEMPTY;
0414         if (num_tx_desc > 1) {
0415             tx_desc++;
0416             tx_desc->die_dt = DT_EEMPTY;
0417         }
0418     }
0419     tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
0420     tx_desc->die_dt = DT_LINKFIX; /* type */
0421 
0422     /* RX descriptor base address for best effort */
0423     desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
0424     desc->die_dt = DT_LINKFIX; /* type */
0425     desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
0426 
0427     /* TX descriptor base address for best effort */
0428     desc = &priv->desc_bat[q];
0429     desc->die_dt = DT_LINKFIX; /* type */
0430     desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
0431 }
0432 
0433 static void *ravb_alloc_rx_desc_gbeth(struct net_device *ndev, int q)
0434 {
0435     struct ravb_private *priv = netdev_priv(ndev);
0436     unsigned int ring_size;
0437 
0438     ring_size = sizeof(struct ravb_rx_desc) * (priv->num_rx_ring[q] + 1);
0439 
0440     priv->gbeth_rx_ring = dma_alloc_coherent(ndev->dev.parent, ring_size,
0441                          &priv->rx_desc_dma[q],
0442                          GFP_KERNEL);
0443     return priv->gbeth_rx_ring;
0444 }
0445 
0446 static void *ravb_alloc_rx_desc_rcar(struct net_device *ndev, int q)
0447 {
0448     struct ravb_private *priv = netdev_priv(ndev);
0449     unsigned int ring_size;
0450 
0451     ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
0452 
0453     priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
0454                           &priv->rx_desc_dma[q],
0455                           GFP_KERNEL);
0456     return priv->rx_ring[q];
0457 }
0458 
0459 /* Init skb and descriptor buffer for Ethernet AVB */
0460 static int ravb_ring_init(struct net_device *ndev, int q)
0461 {
0462     struct ravb_private *priv = netdev_priv(ndev);
0463     const struct ravb_hw_info *info = priv->info;
0464     unsigned int num_tx_desc = priv->num_tx_desc;
0465     unsigned int ring_size;
0466     struct sk_buff *skb;
0467     unsigned int i;
0468 
0469     /* Allocate RX and TX skb rings */
0470     priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
0471                   sizeof(*priv->rx_skb[q]), GFP_KERNEL);
0472     priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
0473                   sizeof(*priv->tx_skb[q]), GFP_KERNEL);
0474     if (!priv->rx_skb[q] || !priv->tx_skb[q])
0475         goto error;
0476 
0477     for (i = 0; i < priv->num_rx_ring[q]; i++) {
0478         skb = __netdev_alloc_skb(ndev, info->max_rx_len, GFP_KERNEL);
0479         if (!skb)
0480             goto error;
0481         ravb_set_buffer_align(skb);
0482         priv->rx_skb[q][i] = skb;
0483     }
0484 
0485     if (num_tx_desc > 1) {
0486         /* Allocate rings for the aligned buffers */
0487         priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
0488                         DPTR_ALIGN - 1, GFP_KERNEL);
0489         if (!priv->tx_align[q])
0490             goto error;
0491     }
0492 
0493     /* Allocate all RX descriptors. */
0494     if (!info->alloc_rx_desc(ndev, q))
0495         goto error;
0496 
0497     priv->dirty_rx[q] = 0;
0498 
0499     /* Allocate all TX descriptors. */
0500     ring_size = sizeof(struct ravb_tx_desc) *
0501             (priv->num_tx_ring[q] * num_tx_desc + 1);
0502     priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
0503                           &priv->tx_desc_dma[q],
0504                           GFP_KERNEL);
0505     if (!priv->tx_ring[q])
0506         goto error;
0507 
0508     return 0;
0509 
0510 error:
0511     ravb_ring_free(ndev, q);
0512 
0513     return -ENOMEM;
0514 }
0515 
0516 static void ravb_emac_init_gbeth(struct net_device *ndev)
0517 {
0518     struct ravb_private *priv = netdev_priv(ndev);
0519 
0520     /* Receive frame limit set register */
0521     ravb_write(ndev, GBETH_RX_BUFF_MAX + ETH_FCS_LEN, RFLR);
0522 
0523     /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
0524     ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
0525              ECMR_TE | ECMR_RE | ECMR_RCPT |
0526              ECMR_TXF | ECMR_RXF, ECMR);
0527 
0528     ravb_set_rate_gbeth(ndev);
0529 
0530     /* Set MAC address */
0531     ravb_write(ndev,
0532            (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
0533            (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
0534     ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
0535 
0536     /* E-MAC status register clear */
0537     ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
0538     ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
0539 
0540     /* E-MAC interrupt enable register */
0541     ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
0542 
0543     ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, CXR31_SEL_LINK0);
0544 }
0545 
0546 static void ravb_emac_init_rcar(struct net_device *ndev)
0547 {
0548     /* Receive frame limit set register */
0549     ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
0550 
0551     /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
0552     ravb_write(ndev, ECMR_ZPF | ECMR_DM |
0553            (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
0554            ECMR_TE | ECMR_RE, ECMR);
0555 
0556     ravb_set_rate_rcar(ndev);
0557 
0558     /* Set MAC address */
0559     ravb_write(ndev,
0560            (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
0561            (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
0562     ravb_write(ndev,
0563            (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
0564 
0565     /* E-MAC status register clear */
0566     ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
0567 
0568     /* E-MAC interrupt enable register */
0569     ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
0570 }
0571 
0572 /* E-MAC init function */
0573 static void ravb_emac_init(struct net_device *ndev)
0574 {
0575     struct ravb_private *priv = netdev_priv(ndev);
0576     const struct ravb_hw_info *info = priv->info;
0577 
0578     info->emac_init(ndev);
0579 }
0580 
0581 static int ravb_dmac_init_gbeth(struct net_device *ndev)
0582 {
0583     int error;
0584 
0585     error = ravb_ring_init(ndev, RAVB_BE);
0586     if (error)
0587         return error;
0588 
0589     /* Descriptor format */
0590     ravb_ring_format(ndev, RAVB_BE);
0591 
0592     /* Set DMAC RX */
0593     ravb_write(ndev, 0x60000000, RCR);
0594 
0595     /* Set Max Frame Length (RTC) */
0596     ravb_write(ndev, 0x7ffc0000 | GBETH_RX_BUFF_MAX, RTC);
0597 
0598     /* Set FIFO size */
0599     ravb_write(ndev, 0x00222200, TGC);
0600 
0601     ravb_write(ndev, 0, TCCR);
0602 
0603     /* Frame receive */
0604     ravb_write(ndev, RIC0_FRE0, RIC0);
0605     /* Disable FIFO full warning */
0606     ravb_write(ndev, 0x0, RIC1);
0607     /* Receive FIFO full error, descriptor empty */
0608     ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
0609 
0610     ravb_write(ndev, TIC_FTE0, TIC);
0611 
0612     return 0;
0613 }
0614 
0615 static int ravb_dmac_init_rcar(struct net_device *ndev)
0616 {
0617     struct ravb_private *priv = netdev_priv(ndev);
0618     const struct ravb_hw_info *info = priv->info;
0619     int error;
0620 
0621     error = ravb_ring_init(ndev, RAVB_BE);
0622     if (error)
0623         return error;
0624     error = ravb_ring_init(ndev, RAVB_NC);
0625     if (error) {
0626         ravb_ring_free(ndev, RAVB_BE);
0627         return error;
0628     }
0629 
0630     /* Descriptor format */
0631     ravb_ring_format(ndev, RAVB_BE);
0632     ravb_ring_format(ndev, RAVB_NC);
0633 
0634     /* Set AVB RX */
0635     ravb_write(ndev,
0636            RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
0637 
0638     /* Set FIFO size */
0639     ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
0640 
0641     /* Timestamp enable */
0642     ravb_write(ndev, TCCR_TFEN, TCCR);
0643 
0644     /* Interrupt init: */
0645     if (info->multi_irqs) {
0646         /* Clear DIL.DPLx */
0647         ravb_write(ndev, 0, DIL);
0648         /* Set queue specific interrupt */
0649         ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
0650     }
0651     /* Frame receive */
0652     ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
0653     /* Disable FIFO full warning */
0654     ravb_write(ndev, 0, RIC1);
0655     /* Receive FIFO full error, descriptor empty */
0656     ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
0657     /* Frame transmitted, timestamp FIFO updated */
0658     ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
0659 
0660     return 0;
0661 }
0662 
0663 /* Device init function for Ethernet AVB */
0664 static int ravb_dmac_init(struct net_device *ndev)
0665 {
0666     struct ravb_private *priv = netdev_priv(ndev);
0667     const struct ravb_hw_info *info = priv->info;
0668     int error;
0669 
0670     /* Set CONFIG mode */
0671     error = ravb_config(ndev);
0672     if (error)
0673         return error;
0674 
0675     error = info->dmac_init(ndev);
0676     if (error)
0677         return error;
0678 
0679     /* Setting the control will start the AVB-DMAC process. */
0680     ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
0681 
0682     return 0;
0683 }
0684 
0685 static void ravb_get_tx_tstamp(struct net_device *ndev)
0686 {
0687     struct ravb_private *priv = netdev_priv(ndev);
0688     struct ravb_tstamp_skb *ts_skb, *ts_skb2;
0689     struct skb_shared_hwtstamps shhwtstamps;
0690     struct sk_buff *skb;
0691     struct timespec64 ts;
0692     u16 tag, tfa_tag;
0693     int count;
0694     u32 tfa2;
0695 
0696     count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
0697     while (count--) {
0698         tfa2 = ravb_read(ndev, TFA2);
0699         tfa_tag = (tfa2 & TFA2_TST) >> 16;
0700         ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
0701         ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
0702                 ravb_read(ndev, TFA1);
0703         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
0704         shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
0705         list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
0706                      list) {
0707             skb = ts_skb->skb;
0708             tag = ts_skb->tag;
0709             list_del(&ts_skb->list);
0710             kfree(ts_skb);
0711             if (tag == tfa_tag) {
0712                 skb_tstamp_tx(skb, &shhwtstamps);
0713                 dev_consume_skb_any(skb);
0714                 break;
0715             } else {
0716                 dev_kfree_skb_any(skb);
0717             }
0718         }
0719         ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
0720     }
0721 }
0722 
0723 static void ravb_rx_csum(struct sk_buff *skb)
0724 {
0725     u8 *hw_csum;
0726 
0727     /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
0728      * appended to packet data
0729      */
0730     if (unlikely(skb->len < sizeof(__sum16)))
0731         return;
0732     hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
0733     skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
0734     skb->ip_summed = CHECKSUM_COMPLETE;
0735     skb_trim(skb, skb->len - sizeof(__sum16));
0736 }
0737 
0738 static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
0739                       struct ravb_rx_desc *desc)
0740 {
0741     struct ravb_private *priv = netdev_priv(ndev);
0742     struct sk_buff *skb;
0743 
0744     skb = priv->rx_skb[RAVB_BE][entry];
0745     priv->rx_skb[RAVB_BE][entry] = NULL;
0746     dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
0747              ALIGN(GBETH_RX_BUFF_MAX, 16), DMA_FROM_DEVICE);
0748 
0749     return skb;
0750 }
0751 
0752 /* Packet receive function for Gigabit Ethernet */
0753 static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
0754 {
0755     struct ravb_private *priv = netdev_priv(ndev);
0756     const struct ravb_hw_info *info = priv->info;
0757     struct net_device_stats *stats;
0758     struct ravb_rx_desc *desc;
0759     struct sk_buff *skb;
0760     dma_addr_t dma_addr;
0761     u8  desc_status;
0762     int boguscnt;
0763     u16 pkt_len;
0764     u8  die_dt;
0765     int entry;
0766     int limit;
0767 
0768     entry = priv->cur_rx[q] % priv->num_rx_ring[q];
0769     boguscnt = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
0770     stats = &priv->stats[q];
0771 
0772     boguscnt = min(boguscnt, *quota);
0773     limit = boguscnt;
0774     desc = &priv->gbeth_rx_ring[entry];
0775     while (desc->die_dt != DT_FEMPTY) {
0776         /* Descriptor type must be checked before all other reads */
0777         dma_rmb();
0778         desc_status = desc->msc;
0779         pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
0780 
0781         if (--boguscnt < 0)
0782             break;
0783 
0784         /* We use 0-byte descriptors to mark the DMA mapping errors */
0785         if (!pkt_len)
0786             continue;
0787 
0788         if (desc_status & MSC_MC)
0789             stats->multicast++;
0790 
0791         if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
0792             stats->rx_errors++;
0793             if (desc_status & MSC_CRC)
0794                 stats->rx_crc_errors++;
0795             if (desc_status & MSC_RFE)
0796                 stats->rx_frame_errors++;
0797             if (desc_status & (MSC_RTLF | MSC_RTSF))
0798                 stats->rx_length_errors++;
0799             if (desc_status & MSC_CEEF)
0800                 stats->rx_missed_errors++;
0801         } else {
0802             die_dt = desc->die_dt & 0xF0;
0803             switch (die_dt) {
0804             case DT_FSINGLE:
0805                 skb = ravb_get_skb_gbeth(ndev, entry, desc);
0806                 skb_put(skb, pkt_len);
0807                 skb->protocol = eth_type_trans(skb, ndev);
0808                 napi_gro_receive(&priv->napi[q], skb);
0809                 stats->rx_packets++;
0810                 stats->rx_bytes += pkt_len;
0811                 break;
0812             case DT_FSTART:
0813                 priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
0814                 skb_put(priv->rx_1st_skb, pkt_len);
0815                 break;
0816             case DT_FMID:
0817                 skb = ravb_get_skb_gbeth(ndev, entry, desc);
0818                 skb_copy_to_linear_data_offset(priv->rx_1st_skb,
0819                                    priv->rx_1st_skb->len,
0820                                    skb->data,
0821                                    pkt_len);
0822                 skb_put(priv->rx_1st_skb, pkt_len);
0823                 dev_kfree_skb(skb);
0824                 break;
0825             case DT_FEND:
0826                 skb = ravb_get_skb_gbeth(ndev, entry, desc);
0827                 skb_copy_to_linear_data_offset(priv->rx_1st_skb,
0828                                    priv->rx_1st_skb->len,
0829                                    skb->data,
0830                                    pkt_len);
0831                 skb_put(priv->rx_1st_skb, pkt_len);
0832                 dev_kfree_skb(skb);
0833                 priv->rx_1st_skb->protocol =
0834                     eth_type_trans(priv->rx_1st_skb, ndev);
0835                 napi_gro_receive(&priv->napi[q],
0836                          priv->rx_1st_skb);
0837                 stats->rx_packets++;
0838                 stats->rx_bytes += priv->rx_1st_skb->len;
0839                 break;
0840             }
0841         }
0842 
0843         entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
0844         desc = &priv->gbeth_rx_ring[entry];
0845     }
0846 
0847     /* Refill the RX ring buffers. */
0848     for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
0849         entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
0850         desc = &priv->gbeth_rx_ring[entry];
0851         desc->ds_cc = cpu_to_le16(GBETH_RX_DESC_DATA_SIZE);
0852 
0853         if (!priv->rx_skb[q][entry]) {
0854             skb = netdev_alloc_skb(ndev, info->max_rx_len);
0855             if (!skb)
0856                 break;
0857             ravb_set_buffer_align(skb);
0858             dma_addr = dma_map_single(ndev->dev.parent,
0859                           skb->data,
0860                           GBETH_RX_BUFF_MAX,
0861                           DMA_FROM_DEVICE);
0862             skb_checksum_none_assert(skb);
0863             /* We just set the data size to 0 for a failed mapping
0864              * which should prevent DMA  from happening...
0865              */
0866             if (dma_mapping_error(ndev->dev.parent, dma_addr))
0867                 desc->ds_cc = cpu_to_le16(0);
0868             desc->dptr = cpu_to_le32(dma_addr);
0869             priv->rx_skb[q][entry] = skb;
0870         }
0871         /* Descriptor type must be set after all the above writes */
0872         dma_wmb();
0873         desc->die_dt = DT_FEMPTY;
0874     }
0875 
0876     *quota -= limit - (++boguscnt);
0877 
0878     return boguscnt <= 0;
0879 }
0880 
0881 /* Packet receive function for Ethernet AVB */
0882 static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
0883 {
0884     struct ravb_private *priv = netdev_priv(ndev);
0885     const struct ravb_hw_info *info = priv->info;
0886     int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
0887     int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
0888             priv->cur_rx[q];
0889     struct net_device_stats *stats = &priv->stats[q];
0890     struct ravb_ex_rx_desc *desc;
0891     struct sk_buff *skb;
0892     dma_addr_t dma_addr;
0893     struct timespec64 ts;
0894     u8  desc_status;
0895     u16 pkt_len;
0896     int limit;
0897 
0898     boguscnt = min(boguscnt, *quota);
0899     limit = boguscnt;
0900     desc = &priv->rx_ring[q][entry];
0901     while (desc->die_dt != DT_FEMPTY) {
0902         /* Descriptor type must be checked before all other reads */
0903         dma_rmb();
0904         desc_status = desc->msc;
0905         pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
0906 
0907         if (--boguscnt < 0)
0908             break;
0909 
0910         /* We use 0-byte descriptors to mark the DMA mapping errors */
0911         if (!pkt_len)
0912             continue;
0913 
0914         if (desc_status & MSC_MC)
0915             stats->multicast++;
0916 
0917         if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
0918                    MSC_CEEF)) {
0919             stats->rx_errors++;
0920             if (desc_status & MSC_CRC)
0921                 stats->rx_crc_errors++;
0922             if (desc_status & MSC_RFE)
0923                 stats->rx_frame_errors++;
0924             if (desc_status & (MSC_RTLF | MSC_RTSF))
0925                 stats->rx_length_errors++;
0926             if (desc_status & MSC_CEEF)
0927                 stats->rx_missed_errors++;
0928         } else {
0929             u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
0930 
0931             skb = priv->rx_skb[q][entry];
0932             priv->rx_skb[q][entry] = NULL;
0933             dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
0934                      RX_BUF_SZ,
0935                      DMA_FROM_DEVICE);
0936             get_ts &= (q == RAVB_NC) ?
0937                     RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
0938                     ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
0939             if (get_ts) {
0940                 struct skb_shared_hwtstamps *shhwtstamps;
0941 
0942                 shhwtstamps = skb_hwtstamps(skb);
0943                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
0944                 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
0945                          32) | le32_to_cpu(desc->ts_sl);
0946                 ts.tv_nsec = le32_to_cpu(desc->ts_n);
0947                 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
0948             }
0949 
0950             skb_put(skb, pkt_len);
0951             skb->protocol = eth_type_trans(skb, ndev);
0952             if (ndev->features & NETIF_F_RXCSUM)
0953                 ravb_rx_csum(skb);
0954             napi_gro_receive(&priv->napi[q], skb);
0955             stats->rx_packets++;
0956             stats->rx_bytes += pkt_len;
0957         }
0958 
0959         entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
0960         desc = &priv->rx_ring[q][entry];
0961     }
0962 
0963     /* Refill the RX ring buffers. */
0964     for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
0965         entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
0966         desc = &priv->rx_ring[q][entry];
0967         desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
0968 
0969         if (!priv->rx_skb[q][entry]) {
0970             skb = netdev_alloc_skb(ndev, info->max_rx_len);
0971             if (!skb)
0972                 break;  /* Better luck next round. */
0973             ravb_set_buffer_align(skb);
0974             dma_addr = dma_map_single(ndev->dev.parent, skb->data,
0975                           le16_to_cpu(desc->ds_cc),
0976                           DMA_FROM_DEVICE);
0977             skb_checksum_none_assert(skb);
0978             /* We just set the data size to 0 for a failed mapping
0979              * which should prevent DMA  from happening...
0980              */
0981             if (dma_mapping_error(ndev->dev.parent, dma_addr))
0982                 desc->ds_cc = cpu_to_le16(0);
0983             desc->dptr = cpu_to_le32(dma_addr);
0984             priv->rx_skb[q][entry] = skb;
0985         }
0986         /* Descriptor type must be set after all the above writes */
0987         dma_wmb();
0988         desc->die_dt = DT_FEMPTY;
0989     }
0990 
0991     *quota -= limit - (++boguscnt);
0992 
0993     return boguscnt <= 0;
0994 }
0995 
0996 /* Packet receive function for Ethernet AVB */
0997 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
0998 {
0999     struct ravb_private *priv = netdev_priv(ndev);
1000     const struct ravb_hw_info *info = priv->info;
1001 
1002     return info->receive(ndev, quota, q);
1003 }
1004 
1005 static void ravb_rcv_snd_disable(struct net_device *ndev)
1006 {
1007     /* Disable TX and RX */
1008     ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1009 }
1010 
1011 static void ravb_rcv_snd_enable(struct net_device *ndev)
1012 {
1013     /* Enable TX and RX */
1014     ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1015 }
1016 
1017 /* function for waiting dma process finished */
1018 static int ravb_stop_dma(struct net_device *ndev)
1019 {
1020     struct ravb_private *priv = netdev_priv(ndev);
1021     const struct ravb_hw_info *info = priv->info;
1022     int error;
1023 
1024     /* Wait for stopping the hardware TX process */
1025     error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1026 
1027     if (error)
1028         return error;
1029 
1030     error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1031               0);
1032     if (error)
1033         return error;
1034 
1035     /* Stop the E-MAC's RX/TX processes. */
1036     ravb_rcv_snd_disable(ndev);
1037 
1038     /* Wait for stopping the RX DMA process */
1039     error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1040     if (error)
1041         return error;
1042 
1043     /* Stop AVB-DMAC process */
1044     return ravb_config(ndev);
1045 }
1046 
1047 /* E-MAC interrupt handler */
1048 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1049 {
1050     struct ravb_private *priv = netdev_priv(ndev);
1051     u32 ecsr, psr;
1052 
1053     ecsr = ravb_read(ndev, ECSR);
1054     ravb_write(ndev, ecsr, ECSR);   /* clear interrupt */
1055 
1056     if (ecsr & ECSR_MPD)
1057         pm_wakeup_event(&priv->pdev->dev, 0);
1058     if (ecsr & ECSR_ICD)
1059         ndev->stats.tx_carrier_errors++;
1060     if (ecsr & ECSR_LCHNG) {
1061         /* Link changed */
1062         if (priv->no_avb_link)
1063             return;
1064         psr = ravb_read(ndev, PSR);
1065         if (priv->avb_link_active_low)
1066             psr ^= PSR_LMON;
1067         if (!(psr & PSR_LMON)) {
1068             /* DIsable RX and TX */
1069             ravb_rcv_snd_disable(ndev);
1070         } else {
1071             /* Enable RX and TX */
1072             ravb_rcv_snd_enable(ndev);
1073         }
1074     }
1075 }
1076 
1077 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1078 {
1079     struct net_device *ndev = dev_id;
1080     struct ravb_private *priv = netdev_priv(ndev);
1081 
1082     spin_lock(&priv->lock);
1083     ravb_emac_interrupt_unlocked(ndev);
1084     spin_unlock(&priv->lock);
1085     return IRQ_HANDLED;
1086 }
1087 
1088 /* Error interrupt handler */
1089 static void ravb_error_interrupt(struct net_device *ndev)
1090 {
1091     struct ravb_private *priv = netdev_priv(ndev);
1092     u32 eis, ris2;
1093 
1094     eis = ravb_read(ndev, EIS);
1095     ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1096     if (eis & EIS_QFS) {
1097         ris2 = ravb_read(ndev, RIS2);
1098         ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
1099                RIS2);
1100 
1101         /* Receive Descriptor Empty int */
1102         if (ris2 & RIS2_QFF0)
1103             priv->stats[RAVB_BE].rx_over_errors++;
1104 
1105             /* Receive Descriptor Empty int */
1106         if (ris2 & RIS2_QFF1)
1107             priv->stats[RAVB_NC].rx_over_errors++;
1108 
1109         /* Receive FIFO Overflow int */
1110         if (ris2 & RIS2_RFFF)
1111             priv->rx_fifo_errors++;
1112     }
1113 }
1114 
1115 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1116 {
1117     struct ravb_private *priv = netdev_priv(ndev);
1118     const struct ravb_hw_info *info = priv->info;
1119     u32 ris0 = ravb_read(ndev, RIS0);
1120     u32 ric0 = ravb_read(ndev, RIC0);
1121     u32 tis  = ravb_read(ndev, TIS);
1122     u32 tic  = ravb_read(ndev, TIC);
1123 
1124     if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1125         if (napi_schedule_prep(&priv->napi[q])) {
1126             /* Mask RX and TX interrupts */
1127             if (!info->irq_en_dis) {
1128                 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1129                 ravb_write(ndev, tic & ~BIT(q), TIC);
1130             } else {
1131                 ravb_write(ndev, BIT(q), RID0);
1132                 ravb_write(ndev, BIT(q), TID);
1133             }
1134             __napi_schedule(&priv->napi[q]);
1135         } else {
1136             netdev_warn(ndev,
1137                     "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1138                     ris0, ric0);
1139             netdev_warn(ndev,
1140                     "                    tx status 0x%08x, tx mask 0x%08x.\n",
1141                     tis, tic);
1142         }
1143         return true;
1144     }
1145     return false;
1146 }
1147 
1148 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1149 {
1150     u32 tis = ravb_read(ndev, TIS);
1151 
1152     if (tis & TIS_TFUF) {
1153         ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1154         ravb_get_tx_tstamp(ndev);
1155         return true;
1156     }
1157     return false;
1158 }
1159 
1160 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1161 {
1162     struct net_device *ndev = dev_id;
1163     struct ravb_private *priv = netdev_priv(ndev);
1164     const struct ravb_hw_info *info = priv->info;
1165     irqreturn_t result = IRQ_NONE;
1166     u32 iss;
1167 
1168     spin_lock(&priv->lock);
1169     /* Get interrupt status */
1170     iss = ravb_read(ndev, ISS);
1171 
1172     /* Received and transmitted interrupts */
1173     if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1174         int q;
1175 
1176         /* Timestamp updated */
1177         if (ravb_timestamp_interrupt(ndev))
1178             result = IRQ_HANDLED;
1179 
1180         /* Network control and best effort queue RX/TX */
1181         if (info->nc_queues) {
1182             for (q = RAVB_NC; q >= RAVB_BE; q--) {
1183                 if (ravb_queue_interrupt(ndev, q))
1184                     result = IRQ_HANDLED;
1185             }
1186         } else {
1187             if (ravb_queue_interrupt(ndev, RAVB_BE))
1188                 result = IRQ_HANDLED;
1189         }
1190     }
1191 
1192     /* E-MAC status summary */
1193     if (iss & ISS_MS) {
1194         ravb_emac_interrupt_unlocked(ndev);
1195         result = IRQ_HANDLED;
1196     }
1197 
1198     /* Error status summary */
1199     if (iss & ISS_ES) {
1200         ravb_error_interrupt(ndev);
1201         result = IRQ_HANDLED;
1202     }
1203 
1204     /* gPTP interrupt status summary */
1205     if (iss & ISS_CGIS) {
1206         ravb_ptp_interrupt(ndev);
1207         result = IRQ_HANDLED;
1208     }
1209 
1210     spin_unlock(&priv->lock);
1211     return result;
1212 }
1213 
1214 /* Timestamp/Error/gPTP interrupt handler */
1215 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1216 {
1217     struct net_device *ndev = dev_id;
1218     struct ravb_private *priv = netdev_priv(ndev);
1219     irqreturn_t result = IRQ_NONE;
1220     u32 iss;
1221 
1222     spin_lock(&priv->lock);
1223     /* Get interrupt status */
1224     iss = ravb_read(ndev, ISS);
1225 
1226     /* Timestamp updated */
1227     if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1228         result = IRQ_HANDLED;
1229 
1230     /* Error status summary */
1231     if (iss & ISS_ES) {
1232         ravb_error_interrupt(ndev);
1233         result = IRQ_HANDLED;
1234     }
1235 
1236     /* gPTP interrupt status summary */
1237     if (iss & ISS_CGIS) {
1238         ravb_ptp_interrupt(ndev);
1239         result = IRQ_HANDLED;
1240     }
1241 
1242     spin_unlock(&priv->lock);
1243     return result;
1244 }
1245 
1246 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1247 {
1248     struct net_device *ndev = dev_id;
1249     struct ravb_private *priv = netdev_priv(ndev);
1250     irqreturn_t result = IRQ_NONE;
1251 
1252     spin_lock(&priv->lock);
1253 
1254     /* Network control/Best effort queue RX/TX */
1255     if (ravb_queue_interrupt(ndev, q))
1256         result = IRQ_HANDLED;
1257 
1258     spin_unlock(&priv->lock);
1259     return result;
1260 }
1261 
1262 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1263 {
1264     return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1265 }
1266 
1267 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1268 {
1269     return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1270 }
1271 
1272 static int ravb_poll(struct napi_struct *napi, int budget)
1273 {
1274     struct net_device *ndev = napi->dev;
1275     struct ravb_private *priv = netdev_priv(ndev);
1276     const struct ravb_hw_info *info = priv->info;
1277     bool gptp = info->gptp || info->ccc_gac;
1278     struct ravb_rx_desc *desc;
1279     unsigned long flags;
1280     int q = napi - priv->napi;
1281     int mask = BIT(q);
1282     int quota = budget;
1283     unsigned int entry;
1284 
1285     if (!gptp) {
1286         entry = priv->cur_rx[q] % priv->num_rx_ring[q];
1287         desc = &priv->gbeth_rx_ring[entry];
1288     }
1289     /* Processing RX Descriptor Ring */
1290     /* Clear RX interrupt */
1291     ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1292     if (gptp || desc->die_dt != DT_FEMPTY) {
1293         if (ravb_rx(ndev, &quota, q))
1294             goto out;
1295     }
1296 
1297     /* Processing TX Descriptor Ring */
1298     spin_lock_irqsave(&priv->lock, flags);
1299     /* Clear TX interrupt */
1300     ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1301     ravb_tx_free(ndev, q, true);
1302     netif_wake_subqueue(ndev, q);
1303     spin_unlock_irqrestore(&priv->lock, flags);
1304 
1305     napi_complete(napi);
1306 
1307     /* Re-enable RX/TX interrupts */
1308     spin_lock_irqsave(&priv->lock, flags);
1309     if (!info->irq_en_dis) {
1310         ravb_modify(ndev, RIC0, mask, mask);
1311         ravb_modify(ndev, TIC,  mask, mask);
1312     } else {
1313         ravb_write(ndev, mask, RIE0);
1314         ravb_write(ndev, mask, TIE);
1315     }
1316     spin_unlock_irqrestore(&priv->lock, flags);
1317 
1318     /* Receive error message handling */
1319     priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
1320     if (info->nc_queues)
1321         priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1322     if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1323         ndev->stats.rx_over_errors = priv->rx_over_errors;
1324     if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1325         ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1326 out:
1327     return budget - quota;
1328 }
1329 
1330 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1331 {
1332     struct ravb_private *priv = netdev_priv(ndev);
1333 
1334     ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1335 }
1336 
1337 /* PHY state control function */
1338 static void ravb_adjust_link(struct net_device *ndev)
1339 {
1340     struct ravb_private *priv = netdev_priv(ndev);
1341     const struct ravb_hw_info *info = priv->info;
1342     struct phy_device *phydev = ndev->phydev;
1343     bool new_state = false;
1344     unsigned long flags;
1345 
1346     spin_lock_irqsave(&priv->lock, flags);
1347 
1348     /* Disable TX and RX right over here, if E-MAC change is ignored */
1349     if (priv->no_avb_link)
1350         ravb_rcv_snd_disable(ndev);
1351 
1352     if (phydev->link) {
1353         if (info->half_duplex && phydev->duplex != priv->duplex) {
1354             new_state = true;
1355             priv->duplex = phydev->duplex;
1356             ravb_set_duplex_gbeth(ndev);
1357         }
1358 
1359         if (phydev->speed != priv->speed) {
1360             new_state = true;
1361             priv->speed = phydev->speed;
1362             info->set_rate(ndev);
1363         }
1364         if (!priv->link) {
1365             ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1366             new_state = true;
1367             priv->link = phydev->link;
1368         }
1369     } else if (priv->link) {
1370         new_state = true;
1371         priv->link = 0;
1372         priv->speed = 0;
1373         if (info->half_duplex)
1374             priv->duplex = -1;
1375     }
1376 
1377     /* Enable TX and RX right over here, if E-MAC change is ignored */
1378     if (priv->no_avb_link && phydev->link)
1379         ravb_rcv_snd_enable(ndev);
1380 
1381     spin_unlock_irqrestore(&priv->lock, flags);
1382 
1383     if (new_state && netif_msg_link(priv))
1384         phy_print_status(phydev);
1385 }
1386 
1387 static const struct soc_device_attribute r8a7795es10[] = {
1388     { .soc_id = "r8a7795", .revision = "ES1.0", },
1389     { /* sentinel */ }
1390 };
1391 
1392 /* PHY init function */
1393 static int ravb_phy_init(struct net_device *ndev)
1394 {
1395     struct device_node *np = ndev->dev.parent->of_node;
1396     struct ravb_private *priv = netdev_priv(ndev);
1397     const struct ravb_hw_info *info = priv->info;
1398     struct phy_device *phydev;
1399     struct device_node *pn;
1400     phy_interface_t iface;
1401     int err;
1402 
1403     priv->link = 0;
1404     priv->speed = 0;
1405     priv->duplex = -1;
1406 
1407     /* Try connecting to PHY */
1408     pn = of_parse_phandle(np, "phy-handle", 0);
1409     if (!pn) {
1410         /* In the case of a fixed PHY, the DT node associated
1411          * to the PHY is the Ethernet MAC DT node.
1412          */
1413         if (of_phy_is_fixed_link(np)) {
1414             err = of_phy_register_fixed_link(np);
1415             if (err)
1416                 return err;
1417         }
1418         pn = of_node_get(np);
1419     }
1420 
1421     iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1422                      : priv->phy_interface;
1423     phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1424     of_node_put(pn);
1425     if (!phydev) {
1426         netdev_err(ndev, "failed to connect PHY\n");
1427         err = -ENOENT;
1428         goto err_deregister_fixed_link;
1429     }
1430 
1431     /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1432      * at this time.
1433      */
1434     if (soc_device_match(r8a7795es10)) {
1435         phy_set_max_speed(phydev, SPEED_100);
1436 
1437         netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1438     }
1439 
1440     if (!info->half_duplex) {
1441         /* 10BASE, Pause and Asym Pause is not supported */
1442         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1443         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1444         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1445         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1446 
1447         /* Half Duplex is not supported */
1448         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1449         phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1450     }
1451 
1452     /* Indicate that the MAC is responsible for managing PHY PM */
1453     phydev->mac_managed_pm = true;
1454     phy_attached_info(phydev);
1455 
1456     return 0;
1457 
1458 err_deregister_fixed_link:
1459     if (of_phy_is_fixed_link(np))
1460         of_phy_deregister_fixed_link(np);
1461 
1462     return err;
1463 }
1464 
1465 /* PHY control start function */
1466 static int ravb_phy_start(struct net_device *ndev)
1467 {
1468     int error;
1469 
1470     error = ravb_phy_init(ndev);
1471     if (error)
1472         return error;
1473 
1474     phy_start(ndev->phydev);
1475 
1476     return 0;
1477 }
1478 
1479 static u32 ravb_get_msglevel(struct net_device *ndev)
1480 {
1481     struct ravb_private *priv = netdev_priv(ndev);
1482 
1483     return priv->msg_enable;
1484 }
1485 
1486 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1487 {
1488     struct ravb_private *priv = netdev_priv(ndev);
1489 
1490     priv->msg_enable = value;
1491 }
1492 
1493 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1494     "rx_queue_0_current",
1495     "tx_queue_0_current",
1496     "rx_queue_0_dirty",
1497     "tx_queue_0_dirty",
1498     "rx_queue_0_packets",
1499     "tx_queue_0_packets",
1500     "rx_queue_0_bytes",
1501     "tx_queue_0_bytes",
1502     "rx_queue_0_mcast_packets",
1503     "rx_queue_0_errors",
1504     "rx_queue_0_crc_errors",
1505     "rx_queue_0_frame_errors",
1506     "rx_queue_0_length_errors",
1507     "rx_queue_0_csum_offload_errors",
1508     "rx_queue_0_over_errors",
1509 };
1510 
1511 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1512     "rx_queue_0_current",
1513     "tx_queue_0_current",
1514     "rx_queue_0_dirty",
1515     "tx_queue_0_dirty",
1516     "rx_queue_0_packets",
1517     "tx_queue_0_packets",
1518     "rx_queue_0_bytes",
1519     "tx_queue_0_bytes",
1520     "rx_queue_0_mcast_packets",
1521     "rx_queue_0_errors",
1522     "rx_queue_0_crc_errors",
1523     "rx_queue_0_frame_errors",
1524     "rx_queue_0_length_errors",
1525     "rx_queue_0_missed_errors",
1526     "rx_queue_0_over_errors",
1527 
1528     "rx_queue_1_current",
1529     "tx_queue_1_current",
1530     "rx_queue_1_dirty",
1531     "tx_queue_1_dirty",
1532     "rx_queue_1_packets",
1533     "tx_queue_1_packets",
1534     "rx_queue_1_bytes",
1535     "tx_queue_1_bytes",
1536     "rx_queue_1_mcast_packets",
1537     "rx_queue_1_errors",
1538     "rx_queue_1_crc_errors",
1539     "rx_queue_1_frame_errors",
1540     "rx_queue_1_length_errors",
1541     "rx_queue_1_missed_errors",
1542     "rx_queue_1_over_errors",
1543 };
1544 
1545 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1546 {
1547     struct ravb_private *priv = netdev_priv(netdev);
1548     const struct ravb_hw_info *info = priv->info;
1549 
1550     switch (sset) {
1551     case ETH_SS_STATS:
1552         return info->stats_len;
1553     default:
1554         return -EOPNOTSUPP;
1555     }
1556 }
1557 
1558 static void ravb_get_ethtool_stats(struct net_device *ndev,
1559                    struct ethtool_stats *estats, u64 *data)
1560 {
1561     struct ravb_private *priv = netdev_priv(ndev);
1562     const struct ravb_hw_info *info = priv->info;
1563     int num_rx_q;
1564     int i = 0;
1565     int q;
1566 
1567     num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1568     /* Device-specific stats */
1569     for (q = RAVB_BE; q < num_rx_q; q++) {
1570         struct net_device_stats *stats = &priv->stats[q];
1571 
1572         data[i++] = priv->cur_rx[q];
1573         data[i++] = priv->cur_tx[q];
1574         data[i++] = priv->dirty_rx[q];
1575         data[i++] = priv->dirty_tx[q];
1576         data[i++] = stats->rx_packets;
1577         data[i++] = stats->tx_packets;
1578         data[i++] = stats->rx_bytes;
1579         data[i++] = stats->tx_bytes;
1580         data[i++] = stats->multicast;
1581         data[i++] = stats->rx_errors;
1582         data[i++] = stats->rx_crc_errors;
1583         data[i++] = stats->rx_frame_errors;
1584         data[i++] = stats->rx_length_errors;
1585         data[i++] = stats->rx_missed_errors;
1586         data[i++] = stats->rx_over_errors;
1587     }
1588 }
1589 
1590 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1591 {
1592     struct ravb_private *priv = netdev_priv(ndev);
1593     const struct ravb_hw_info *info = priv->info;
1594 
1595     switch (stringset) {
1596     case ETH_SS_STATS:
1597         memcpy(data, info->gstrings_stats, info->gstrings_size);
1598         break;
1599     }
1600 }
1601 
1602 static void ravb_get_ringparam(struct net_device *ndev,
1603                    struct ethtool_ringparam *ring,
1604                    struct kernel_ethtool_ringparam *kernel_ring,
1605                    struct netlink_ext_ack *extack)
1606 {
1607     struct ravb_private *priv = netdev_priv(ndev);
1608 
1609     ring->rx_max_pending = BE_RX_RING_MAX;
1610     ring->tx_max_pending = BE_TX_RING_MAX;
1611     ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1612     ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1613 }
1614 
1615 static int ravb_set_ringparam(struct net_device *ndev,
1616                   struct ethtool_ringparam *ring,
1617                   struct kernel_ethtool_ringparam *kernel_ring,
1618                   struct netlink_ext_ack *extack)
1619 {
1620     struct ravb_private *priv = netdev_priv(ndev);
1621     const struct ravb_hw_info *info = priv->info;
1622     int error;
1623 
1624     if (ring->tx_pending > BE_TX_RING_MAX ||
1625         ring->rx_pending > BE_RX_RING_MAX ||
1626         ring->tx_pending < BE_TX_RING_MIN ||
1627         ring->rx_pending < BE_RX_RING_MIN)
1628         return -EINVAL;
1629     if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1630         return -EINVAL;
1631 
1632     if (netif_running(ndev)) {
1633         netif_device_detach(ndev);
1634         /* Stop PTP Clock driver */
1635         if (info->gptp)
1636             ravb_ptp_stop(ndev);
1637         /* Wait for DMA stopping */
1638         error = ravb_stop_dma(ndev);
1639         if (error) {
1640             netdev_err(ndev,
1641                    "cannot set ringparam! Any AVB processes are still running?\n");
1642             return error;
1643         }
1644         synchronize_irq(ndev->irq);
1645 
1646         /* Free all the skb's in the RX queue and the DMA buffers. */
1647         ravb_ring_free(ndev, RAVB_BE);
1648         if (info->nc_queues)
1649             ravb_ring_free(ndev, RAVB_NC);
1650     }
1651 
1652     /* Set new parameters */
1653     priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1654     priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1655 
1656     if (netif_running(ndev)) {
1657         error = ravb_dmac_init(ndev);
1658         if (error) {
1659             netdev_err(ndev,
1660                    "%s: ravb_dmac_init() failed, error %d\n",
1661                    __func__, error);
1662             return error;
1663         }
1664 
1665         ravb_emac_init(ndev);
1666 
1667         /* Initialise PTP Clock driver */
1668         if (info->gptp)
1669             ravb_ptp_init(ndev, priv->pdev);
1670 
1671         netif_device_attach(ndev);
1672     }
1673 
1674     return 0;
1675 }
1676 
1677 static int ravb_get_ts_info(struct net_device *ndev,
1678                 struct ethtool_ts_info *info)
1679 {
1680     struct ravb_private *priv = netdev_priv(ndev);
1681     const struct ravb_hw_info *hw_info = priv->info;
1682 
1683     info->so_timestamping =
1684         SOF_TIMESTAMPING_TX_SOFTWARE |
1685         SOF_TIMESTAMPING_RX_SOFTWARE |
1686         SOF_TIMESTAMPING_SOFTWARE |
1687         SOF_TIMESTAMPING_TX_HARDWARE |
1688         SOF_TIMESTAMPING_RX_HARDWARE |
1689         SOF_TIMESTAMPING_RAW_HARDWARE;
1690     info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1691     info->rx_filters =
1692         (1 << HWTSTAMP_FILTER_NONE) |
1693         (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1694         (1 << HWTSTAMP_FILTER_ALL);
1695     if (hw_info->gptp || hw_info->ccc_gac)
1696         info->phc_index = ptp_clock_index(priv->ptp.clock);
1697 
1698     return 0;
1699 }
1700 
1701 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1702 {
1703     struct ravb_private *priv = netdev_priv(ndev);
1704 
1705     wol->supported = WAKE_MAGIC;
1706     wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1707 }
1708 
1709 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1710 {
1711     struct ravb_private *priv = netdev_priv(ndev);
1712     const struct ravb_hw_info *info = priv->info;
1713 
1714     if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1715         return -EOPNOTSUPP;
1716 
1717     priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1718 
1719     device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1720 
1721     return 0;
1722 }
1723 
1724 static const struct ethtool_ops ravb_ethtool_ops = {
1725     .nway_reset     = phy_ethtool_nway_reset,
1726     .get_msglevel       = ravb_get_msglevel,
1727     .set_msglevel       = ravb_set_msglevel,
1728     .get_link       = ethtool_op_get_link,
1729     .get_strings        = ravb_get_strings,
1730     .get_ethtool_stats  = ravb_get_ethtool_stats,
1731     .get_sset_count     = ravb_get_sset_count,
1732     .get_ringparam      = ravb_get_ringparam,
1733     .set_ringparam      = ravb_set_ringparam,
1734     .get_ts_info        = ravb_get_ts_info,
1735     .get_link_ksettings = phy_ethtool_get_link_ksettings,
1736     .set_link_ksettings = phy_ethtool_set_link_ksettings,
1737     .get_wol        = ravb_get_wol,
1738     .set_wol        = ravb_set_wol,
1739 };
1740 
1741 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1742                 struct net_device *ndev, struct device *dev,
1743                 const char *ch)
1744 {
1745     char *name;
1746     int error;
1747 
1748     name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1749     if (!name)
1750         return -ENOMEM;
1751     error = request_irq(irq, handler, 0, name, ndev);
1752     if (error)
1753         netdev_err(ndev, "cannot request IRQ %s\n", name);
1754 
1755     return error;
1756 }
1757 
1758 /* Network device open function for Ethernet AVB */
1759 static int ravb_open(struct net_device *ndev)
1760 {
1761     struct ravb_private *priv = netdev_priv(ndev);
1762     const struct ravb_hw_info *info = priv->info;
1763     struct platform_device *pdev = priv->pdev;
1764     struct device *dev = &pdev->dev;
1765     int error;
1766 
1767     napi_enable(&priv->napi[RAVB_BE]);
1768     if (info->nc_queues)
1769         napi_enable(&priv->napi[RAVB_NC]);
1770 
1771     if (!info->multi_irqs) {
1772         error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1773                     ndev->name, ndev);
1774         if (error) {
1775             netdev_err(ndev, "cannot request IRQ\n");
1776             goto out_napi_off;
1777         }
1778     } else {
1779         error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1780                       dev, "ch22:multi");
1781         if (error)
1782             goto out_napi_off;
1783         error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1784                       dev, "ch24:emac");
1785         if (error)
1786             goto out_free_irq;
1787         error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1788                       ndev, dev, "ch0:rx_be");
1789         if (error)
1790             goto out_free_irq_emac;
1791         error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1792                       ndev, dev, "ch18:tx_be");
1793         if (error)
1794             goto out_free_irq_be_rx;
1795         error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1796                       ndev, dev, "ch1:rx_nc");
1797         if (error)
1798             goto out_free_irq_be_tx;
1799         error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1800                       ndev, dev, "ch19:tx_nc");
1801         if (error)
1802             goto out_free_irq_nc_rx;
1803 
1804         if (info->err_mgmt_irqs) {
1805             error = ravb_hook_irq(priv->erra_irq, ravb_multi_interrupt,
1806                           ndev, dev, "err_a");
1807             if (error)
1808                 goto out_free_irq_nc_tx;
1809             error = ravb_hook_irq(priv->mgmta_irq, ravb_multi_interrupt,
1810                           ndev, dev, "mgmt_a");
1811             if (error)
1812                 goto out_free_irq_erra;
1813         }
1814     }
1815 
1816     /* Device init */
1817     error = ravb_dmac_init(ndev);
1818     if (error)
1819         goto out_free_irq_mgmta;
1820     ravb_emac_init(ndev);
1821 
1822     /* Initialise PTP Clock driver */
1823     if (info->gptp)
1824         ravb_ptp_init(ndev, priv->pdev);
1825 
1826     netif_tx_start_all_queues(ndev);
1827 
1828     /* PHY control start */
1829     error = ravb_phy_start(ndev);
1830     if (error)
1831         goto out_ptp_stop;
1832 
1833     return 0;
1834 
1835 out_ptp_stop:
1836     /* Stop PTP Clock driver */
1837     if (info->gptp)
1838         ravb_ptp_stop(ndev);
1839 out_free_irq_mgmta:
1840     if (!info->multi_irqs)
1841         goto out_free_irq;
1842     if (info->err_mgmt_irqs)
1843         free_irq(priv->mgmta_irq, ndev);
1844 out_free_irq_erra:
1845     if (info->err_mgmt_irqs)
1846         free_irq(priv->erra_irq, ndev);
1847 out_free_irq_nc_tx:
1848     free_irq(priv->tx_irqs[RAVB_NC], ndev);
1849 out_free_irq_nc_rx:
1850     free_irq(priv->rx_irqs[RAVB_NC], ndev);
1851 out_free_irq_be_tx:
1852     free_irq(priv->tx_irqs[RAVB_BE], ndev);
1853 out_free_irq_be_rx:
1854     free_irq(priv->rx_irqs[RAVB_BE], ndev);
1855 out_free_irq_emac:
1856     free_irq(priv->emac_irq, ndev);
1857 out_free_irq:
1858     free_irq(ndev->irq, ndev);
1859 out_napi_off:
1860     if (info->nc_queues)
1861         napi_disable(&priv->napi[RAVB_NC]);
1862     napi_disable(&priv->napi[RAVB_BE]);
1863     return error;
1864 }
1865 
1866 /* Timeout function for Ethernet AVB */
1867 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1868 {
1869     struct ravb_private *priv = netdev_priv(ndev);
1870 
1871     netif_err(priv, tx_err, ndev,
1872           "transmit timed out, status %08x, resetting...\n",
1873           ravb_read(ndev, ISS));
1874 
1875     /* tx_errors count up */
1876     ndev->stats.tx_errors++;
1877 
1878     schedule_work(&priv->work);
1879 }
1880 
1881 static void ravb_tx_timeout_work(struct work_struct *work)
1882 {
1883     struct ravb_private *priv = container_of(work, struct ravb_private,
1884                          work);
1885     const struct ravb_hw_info *info = priv->info;
1886     struct net_device *ndev = priv->ndev;
1887     int error;
1888 
1889     netif_tx_stop_all_queues(ndev);
1890 
1891     /* Stop PTP Clock driver */
1892     if (info->gptp)
1893         ravb_ptp_stop(ndev);
1894 
1895     /* Wait for DMA stopping */
1896     if (ravb_stop_dma(ndev)) {
1897         /* If ravb_stop_dma() fails, the hardware is still operating
1898          * for TX and/or RX. So, this should not call the following
1899          * functions because ravb_dmac_init() is possible to fail too.
1900          * Also, this should not retry ravb_stop_dma() again and again
1901          * here because it's possible to wait forever. So, this just
1902          * re-enables the TX and RX and skip the following
1903          * re-initialization procedure.
1904          */
1905         ravb_rcv_snd_enable(ndev);
1906         goto out;
1907     }
1908 
1909     ravb_ring_free(ndev, RAVB_BE);
1910     if (info->nc_queues)
1911         ravb_ring_free(ndev, RAVB_NC);
1912 
1913     /* Device init */
1914     error = ravb_dmac_init(ndev);
1915     if (error) {
1916         /* If ravb_dmac_init() fails, descriptors are freed. So, this
1917          * should return here to avoid re-enabling the TX and RX in
1918          * ravb_emac_init().
1919          */
1920         netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1921                __func__, error);
1922         return;
1923     }
1924     ravb_emac_init(ndev);
1925 
1926 out:
1927     /* Initialise PTP Clock driver */
1928     if (info->gptp)
1929         ravb_ptp_init(ndev, priv->pdev);
1930 
1931     netif_tx_start_all_queues(ndev);
1932 }
1933 
1934 /* Packet transmit function for Ethernet AVB */
1935 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1936 {
1937     struct ravb_private *priv = netdev_priv(ndev);
1938     const struct ravb_hw_info *info = priv->info;
1939     unsigned int num_tx_desc = priv->num_tx_desc;
1940     u16 q = skb_get_queue_mapping(skb);
1941     struct ravb_tstamp_skb *ts_skb;
1942     struct ravb_tx_desc *desc;
1943     unsigned long flags;
1944     u32 dma_addr;
1945     void *buffer;
1946     u32 entry;
1947     u32 len;
1948 
1949     spin_lock_irqsave(&priv->lock, flags);
1950     if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1951         num_tx_desc) {
1952         netif_err(priv, tx_queued, ndev,
1953               "still transmitting with the full ring!\n");
1954         netif_stop_subqueue(ndev, q);
1955         spin_unlock_irqrestore(&priv->lock, flags);
1956         return NETDEV_TX_BUSY;
1957     }
1958 
1959     if (skb_put_padto(skb, ETH_ZLEN))
1960         goto exit;
1961 
1962     entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1963     priv->tx_skb[q][entry / num_tx_desc] = skb;
1964 
1965     if (num_tx_desc > 1) {
1966         buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1967              entry / num_tx_desc * DPTR_ALIGN;
1968         len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1969 
1970         /* Zero length DMA descriptors are problematic as they seem
1971          * to terminate DMA transfers. Avoid them by simply using a
1972          * length of DPTR_ALIGN (4) when skb data is aligned to
1973          * DPTR_ALIGN.
1974          *
1975          * As skb is guaranteed to have at least ETH_ZLEN (60)
1976          * bytes of data by the call to skb_put_padto() above this
1977          * is safe with respect to both the length of the first DMA
1978          * descriptor (len) overflowing the available data and the
1979          * length of the second DMA descriptor (skb->len - len)
1980          * being negative.
1981          */
1982         if (len == 0)
1983             len = DPTR_ALIGN;
1984 
1985         memcpy(buffer, skb->data, len);
1986         dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1987                       DMA_TO_DEVICE);
1988         if (dma_mapping_error(ndev->dev.parent, dma_addr))
1989             goto drop;
1990 
1991         desc = &priv->tx_ring[q][entry];
1992         desc->ds_tagl = cpu_to_le16(len);
1993         desc->dptr = cpu_to_le32(dma_addr);
1994 
1995         buffer = skb->data + len;
1996         len = skb->len - len;
1997         dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1998                       DMA_TO_DEVICE);
1999         if (dma_mapping_error(ndev->dev.parent, dma_addr))
2000             goto unmap;
2001 
2002         desc++;
2003     } else {
2004         desc = &priv->tx_ring[q][entry];
2005         len = skb->len;
2006         dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2007                       DMA_TO_DEVICE);
2008         if (dma_mapping_error(ndev->dev.parent, dma_addr))
2009             goto drop;
2010     }
2011     desc->ds_tagl = cpu_to_le16(len);
2012     desc->dptr = cpu_to_le32(dma_addr);
2013 
2014     /* TX timestamp required */
2015     if (info->gptp || info->ccc_gac) {
2016         if (q == RAVB_NC) {
2017             ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2018             if (!ts_skb) {
2019                 if (num_tx_desc > 1) {
2020                     desc--;
2021                     dma_unmap_single(ndev->dev.parent, dma_addr,
2022                              len, DMA_TO_DEVICE);
2023                 }
2024                 goto unmap;
2025             }
2026             ts_skb->skb = skb_get(skb);
2027             ts_skb->tag = priv->ts_skb_tag++;
2028             priv->ts_skb_tag &= 0x3ff;
2029             list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2030 
2031             /* TAG and timestamp required flag */
2032             skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2033             desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2034             desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2035         }
2036 
2037         skb_tx_timestamp(skb);
2038     }
2039     /* Descriptor type must be set after all the above writes */
2040     dma_wmb();
2041     if (num_tx_desc > 1) {
2042         desc->die_dt = DT_FEND;
2043         desc--;
2044         desc->die_dt = DT_FSTART;
2045     } else {
2046         desc->die_dt = DT_FSINGLE;
2047     }
2048     ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2049 
2050     priv->cur_tx[q] += num_tx_desc;
2051     if (priv->cur_tx[q] - priv->dirty_tx[q] >
2052         (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2053         !ravb_tx_free(ndev, q, true))
2054         netif_stop_subqueue(ndev, q);
2055 
2056 exit:
2057     spin_unlock_irqrestore(&priv->lock, flags);
2058     return NETDEV_TX_OK;
2059 
2060 unmap:
2061     dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2062              le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2063 drop:
2064     dev_kfree_skb_any(skb);
2065     priv->tx_skb[q][entry / num_tx_desc] = NULL;
2066     goto exit;
2067 }
2068 
2069 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2070                  struct net_device *sb_dev)
2071 {
2072     /* If skb needs TX timestamp, it is handled in network control queue */
2073     return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2074                                    RAVB_BE;
2075 
2076 }
2077 
2078 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2079 {
2080     struct ravb_private *priv = netdev_priv(ndev);
2081     const struct ravb_hw_info *info = priv->info;
2082     struct net_device_stats *nstats, *stats0, *stats1;
2083 
2084     nstats = &ndev->stats;
2085     stats0 = &priv->stats[RAVB_BE];
2086 
2087     if (info->tx_counters) {
2088         nstats->tx_dropped += ravb_read(ndev, TROCR);
2089         ravb_write(ndev, 0, TROCR); /* (write clear) */
2090     }
2091 
2092     if (info->carrier_counters) {
2093         nstats->collisions += ravb_read(ndev, CXR41);
2094         ravb_write(ndev, 0, CXR41); /* (write clear) */
2095         nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2096         ravb_write(ndev, 0, CXR42); /* (write clear) */
2097     }
2098 
2099     nstats->rx_packets = stats0->rx_packets;
2100     nstats->tx_packets = stats0->tx_packets;
2101     nstats->rx_bytes = stats0->rx_bytes;
2102     nstats->tx_bytes = stats0->tx_bytes;
2103     nstats->multicast = stats0->multicast;
2104     nstats->rx_errors = stats0->rx_errors;
2105     nstats->rx_crc_errors = stats0->rx_crc_errors;
2106     nstats->rx_frame_errors = stats0->rx_frame_errors;
2107     nstats->rx_length_errors = stats0->rx_length_errors;
2108     nstats->rx_missed_errors = stats0->rx_missed_errors;
2109     nstats->rx_over_errors = stats0->rx_over_errors;
2110     if (info->nc_queues) {
2111         stats1 = &priv->stats[RAVB_NC];
2112 
2113         nstats->rx_packets += stats1->rx_packets;
2114         nstats->tx_packets += stats1->tx_packets;
2115         nstats->rx_bytes += stats1->rx_bytes;
2116         nstats->tx_bytes += stats1->tx_bytes;
2117         nstats->multicast += stats1->multicast;
2118         nstats->rx_errors += stats1->rx_errors;
2119         nstats->rx_crc_errors += stats1->rx_crc_errors;
2120         nstats->rx_frame_errors += stats1->rx_frame_errors;
2121         nstats->rx_length_errors += stats1->rx_length_errors;
2122         nstats->rx_missed_errors += stats1->rx_missed_errors;
2123         nstats->rx_over_errors += stats1->rx_over_errors;
2124     }
2125 
2126     return nstats;
2127 }
2128 
2129 /* Update promiscuous bit */
2130 static void ravb_set_rx_mode(struct net_device *ndev)
2131 {
2132     struct ravb_private *priv = netdev_priv(ndev);
2133     unsigned long flags;
2134 
2135     spin_lock_irqsave(&priv->lock, flags);
2136     ravb_modify(ndev, ECMR, ECMR_PRM,
2137             ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2138     spin_unlock_irqrestore(&priv->lock, flags);
2139 }
2140 
2141 /* Device close function for Ethernet AVB */
2142 static int ravb_close(struct net_device *ndev)
2143 {
2144     struct device_node *np = ndev->dev.parent->of_node;
2145     struct ravb_private *priv = netdev_priv(ndev);
2146     const struct ravb_hw_info *info = priv->info;
2147     struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2148 
2149     netif_tx_stop_all_queues(ndev);
2150 
2151     /* Disable interrupts by clearing the interrupt masks. */
2152     ravb_write(ndev, 0, RIC0);
2153     ravb_write(ndev, 0, RIC2);
2154     ravb_write(ndev, 0, TIC);
2155 
2156     /* Stop PTP Clock driver */
2157     if (info->gptp)
2158         ravb_ptp_stop(ndev);
2159 
2160     /* Set the config mode to stop the AVB-DMAC's processes */
2161     if (ravb_stop_dma(ndev) < 0)
2162         netdev_err(ndev,
2163                "device will be stopped after h/w processes are done.\n");
2164 
2165     /* Clear the timestamp list */
2166     if (info->gptp || info->ccc_gac) {
2167         list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2168             list_del(&ts_skb->list);
2169             kfree_skb(ts_skb->skb);
2170             kfree(ts_skb);
2171         }
2172     }
2173 
2174     /* PHY disconnect */
2175     if (ndev->phydev) {
2176         phy_stop(ndev->phydev);
2177         phy_disconnect(ndev->phydev);
2178         if (of_phy_is_fixed_link(np))
2179             of_phy_deregister_fixed_link(np);
2180     }
2181 
2182     if (info->multi_irqs) {
2183         free_irq(priv->tx_irqs[RAVB_NC], ndev);
2184         free_irq(priv->rx_irqs[RAVB_NC], ndev);
2185         free_irq(priv->tx_irqs[RAVB_BE], ndev);
2186         free_irq(priv->rx_irqs[RAVB_BE], ndev);
2187         free_irq(priv->emac_irq, ndev);
2188         if (info->err_mgmt_irqs) {
2189             free_irq(priv->erra_irq, ndev);
2190             free_irq(priv->mgmta_irq, ndev);
2191         }
2192     }
2193     free_irq(ndev->irq, ndev);
2194 
2195     if (info->nc_queues)
2196         napi_disable(&priv->napi[RAVB_NC]);
2197     napi_disable(&priv->napi[RAVB_BE]);
2198 
2199     /* Free all the skb's in the RX queue and the DMA buffers. */
2200     ravb_ring_free(ndev, RAVB_BE);
2201     if (info->nc_queues)
2202         ravb_ring_free(ndev, RAVB_NC);
2203 
2204     return 0;
2205 }
2206 
2207 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2208 {
2209     struct ravb_private *priv = netdev_priv(ndev);
2210     struct hwtstamp_config config;
2211 
2212     config.flags = 0;
2213     config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2214                         HWTSTAMP_TX_OFF;
2215     switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2216     case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2217         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2218         break;
2219     case RAVB_RXTSTAMP_TYPE_ALL:
2220         config.rx_filter = HWTSTAMP_FILTER_ALL;
2221         break;
2222     default:
2223         config.rx_filter = HWTSTAMP_FILTER_NONE;
2224     }
2225 
2226     return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2227         -EFAULT : 0;
2228 }
2229 
2230 /* Control hardware time stamping */
2231 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2232 {
2233     struct ravb_private *priv = netdev_priv(ndev);
2234     struct hwtstamp_config config;
2235     u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2236     u32 tstamp_tx_ctrl;
2237 
2238     if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2239         return -EFAULT;
2240 
2241     switch (config.tx_type) {
2242     case HWTSTAMP_TX_OFF:
2243         tstamp_tx_ctrl = 0;
2244         break;
2245     case HWTSTAMP_TX_ON:
2246         tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2247         break;
2248     default:
2249         return -ERANGE;
2250     }
2251 
2252     switch (config.rx_filter) {
2253     case HWTSTAMP_FILTER_NONE:
2254         tstamp_rx_ctrl = 0;
2255         break;
2256     case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2257         tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2258         break;
2259     default:
2260         config.rx_filter = HWTSTAMP_FILTER_ALL;
2261         tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2262     }
2263 
2264     priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2265     priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2266 
2267     return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2268         -EFAULT : 0;
2269 }
2270 
2271 /* ioctl to device function */
2272 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2273 {
2274     struct phy_device *phydev = ndev->phydev;
2275 
2276     if (!netif_running(ndev))
2277         return -EINVAL;
2278 
2279     if (!phydev)
2280         return -ENODEV;
2281 
2282     switch (cmd) {
2283     case SIOCGHWTSTAMP:
2284         return ravb_hwtstamp_get(ndev, req);
2285     case SIOCSHWTSTAMP:
2286         return ravb_hwtstamp_set(ndev, req);
2287     }
2288 
2289     return phy_mii_ioctl(phydev, req, cmd);
2290 }
2291 
2292 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2293 {
2294     struct ravb_private *priv = netdev_priv(ndev);
2295 
2296     ndev->mtu = new_mtu;
2297 
2298     if (netif_running(ndev)) {
2299         synchronize_irq(priv->emac_irq);
2300         ravb_emac_init(ndev);
2301     }
2302 
2303     netdev_update_features(ndev);
2304 
2305     return 0;
2306 }
2307 
2308 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2309 {
2310     struct ravb_private *priv = netdev_priv(ndev);
2311     unsigned long flags;
2312 
2313     spin_lock_irqsave(&priv->lock, flags);
2314 
2315     /* Disable TX and RX */
2316     ravb_rcv_snd_disable(ndev);
2317 
2318     /* Modify RX Checksum setting */
2319     ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2320 
2321     /* Enable TX and RX */
2322     ravb_rcv_snd_enable(ndev);
2323 
2324     spin_unlock_irqrestore(&priv->lock, flags);
2325 }
2326 
2327 static int ravb_set_features_gbeth(struct net_device *ndev,
2328                    netdev_features_t features)
2329 {
2330     /* Place holder */
2331     return 0;
2332 }
2333 
2334 static int ravb_set_features_rcar(struct net_device *ndev,
2335                   netdev_features_t features)
2336 {
2337     netdev_features_t changed = ndev->features ^ features;
2338 
2339     if (changed & NETIF_F_RXCSUM)
2340         ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2341 
2342     ndev->features = features;
2343 
2344     return 0;
2345 }
2346 
2347 static int ravb_set_features(struct net_device *ndev,
2348                  netdev_features_t features)
2349 {
2350     struct ravb_private *priv = netdev_priv(ndev);
2351     const struct ravb_hw_info *info = priv->info;
2352 
2353     return info->set_feature(ndev, features);
2354 }
2355 
2356 static const struct net_device_ops ravb_netdev_ops = {
2357     .ndo_open       = ravb_open,
2358     .ndo_stop       = ravb_close,
2359     .ndo_start_xmit     = ravb_start_xmit,
2360     .ndo_select_queue   = ravb_select_queue,
2361     .ndo_get_stats      = ravb_get_stats,
2362     .ndo_set_rx_mode    = ravb_set_rx_mode,
2363     .ndo_tx_timeout     = ravb_tx_timeout,
2364     .ndo_eth_ioctl      = ravb_do_ioctl,
2365     .ndo_change_mtu     = ravb_change_mtu,
2366     .ndo_validate_addr  = eth_validate_addr,
2367     .ndo_set_mac_address    = eth_mac_addr,
2368     .ndo_set_features   = ravb_set_features,
2369 };
2370 
2371 /* MDIO bus init function */
2372 static int ravb_mdio_init(struct ravb_private *priv)
2373 {
2374     struct platform_device *pdev = priv->pdev;
2375     struct device *dev = &pdev->dev;
2376     int error;
2377 
2378     /* Bitbang init */
2379     priv->mdiobb.ops = &bb_ops;
2380 
2381     /* MII controller setting */
2382     priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2383     if (!priv->mii_bus)
2384         return -ENOMEM;
2385 
2386     /* Hook up MII support for ethtool */
2387     priv->mii_bus->name = "ravb_mii";
2388     priv->mii_bus->parent = dev;
2389     snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2390          pdev->name, pdev->id);
2391 
2392     /* Register MDIO bus */
2393     error = of_mdiobus_register(priv->mii_bus, dev->of_node);
2394     if (error)
2395         goto out_free_bus;
2396 
2397     return 0;
2398 
2399 out_free_bus:
2400     free_mdio_bitbang(priv->mii_bus);
2401     return error;
2402 }
2403 
2404 /* MDIO bus release function */
2405 static int ravb_mdio_release(struct ravb_private *priv)
2406 {
2407     /* Unregister mdio bus */
2408     mdiobus_unregister(priv->mii_bus);
2409 
2410     /* Free bitbang info */
2411     free_mdio_bitbang(priv->mii_bus);
2412 
2413     return 0;
2414 }
2415 
2416 static const struct ravb_hw_info ravb_gen3_hw_info = {
2417     .rx_ring_free = ravb_rx_ring_free_rcar,
2418     .rx_ring_format = ravb_rx_ring_format_rcar,
2419     .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2420     .receive = ravb_rx_rcar,
2421     .set_rate = ravb_set_rate_rcar,
2422     .set_feature = ravb_set_features_rcar,
2423     .dmac_init = ravb_dmac_init_rcar,
2424     .emac_init = ravb_emac_init_rcar,
2425     .gstrings_stats = ravb_gstrings_stats,
2426     .gstrings_size = sizeof(ravb_gstrings_stats),
2427     .net_hw_features = NETIF_F_RXCSUM,
2428     .net_features = NETIF_F_RXCSUM,
2429     .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2430     .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2431     .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2432     .rx_max_buf_size = SZ_2K,
2433     .internal_delay = 1,
2434     .tx_counters = 1,
2435     .multi_irqs = 1,
2436     .irq_en_dis = 1,
2437     .ccc_gac = 1,
2438     .nc_queues = 1,
2439     .magic_pkt = 1,
2440 };
2441 
2442 static const struct ravb_hw_info ravb_gen2_hw_info = {
2443     .rx_ring_free = ravb_rx_ring_free_rcar,
2444     .rx_ring_format = ravb_rx_ring_format_rcar,
2445     .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2446     .receive = ravb_rx_rcar,
2447     .set_rate = ravb_set_rate_rcar,
2448     .set_feature = ravb_set_features_rcar,
2449     .dmac_init = ravb_dmac_init_rcar,
2450     .emac_init = ravb_emac_init_rcar,
2451     .gstrings_stats = ravb_gstrings_stats,
2452     .gstrings_size = sizeof(ravb_gstrings_stats),
2453     .net_hw_features = NETIF_F_RXCSUM,
2454     .net_features = NETIF_F_RXCSUM,
2455     .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2456     .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2457     .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2458     .rx_max_buf_size = SZ_2K,
2459     .aligned_tx = 1,
2460     .gptp = 1,
2461     .nc_queues = 1,
2462     .magic_pkt = 1,
2463 };
2464 
2465 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2466     .rx_ring_free = ravb_rx_ring_free_rcar,
2467     .rx_ring_format = ravb_rx_ring_format_rcar,
2468     .alloc_rx_desc = ravb_alloc_rx_desc_rcar,
2469     .receive = ravb_rx_rcar,
2470     .set_rate = ravb_set_rate_rcar,
2471     .set_feature = ravb_set_features_rcar,
2472     .dmac_init = ravb_dmac_init_rcar,
2473     .emac_init = ravb_emac_init_rcar,
2474     .gstrings_stats = ravb_gstrings_stats,
2475     .gstrings_size = sizeof(ravb_gstrings_stats),
2476     .net_hw_features = NETIF_F_RXCSUM,
2477     .net_features = NETIF_F_RXCSUM,
2478     .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2479     .max_rx_len = RX_BUF_SZ + RAVB_ALIGN - 1,
2480     .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2481     .rx_max_buf_size = SZ_2K,
2482     .multi_irqs = 1,
2483     .err_mgmt_irqs = 1,
2484     .gptp = 1,
2485     .gptp_ref_clk = 1,
2486     .nc_queues = 1,
2487     .magic_pkt = 1,
2488 };
2489 
2490 static const struct ravb_hw_info gbeth_hw_info = {
2491     .rx_ring_free = ravb_rx_ring_free_gbeth,
2492     .rx_ring_format = ravb_rx_ring_format_gbeth,
2493     .alloc_rx_desc = ravb_alloc_rx_desc_gbeth,
2494     .receive = ravb_rx_gbeth,
2495     .set_rate = ravb_set_rate_gbeth,
2496     .set_feature = ravb_set_features_gbeth,
2497     .dmac_init = ravb_dmac_init_gbeth,
2498     .emac_init = ravb_emac_init_gbeth,
2499     .gstrings_stats = ravb_gstrings_stats_gbeth,
2500     .gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2501     .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2502     .max_rx_len = ALIGN(GBETH_RX_BUFF_MAX, RAVB_ALIGN),
2503     .tccr_mask = TCCR_TSRQ0,
2504     .rx_max_buf_size = SZ_8K,
2505     .aligned_tx = 1,
2506     .tx_counters = 1,
2507     .carrier_counters = 1,
2508     .half_duplex = 1,
2509 };
2510 
2511 static const struct of_device_id ravb_match_table[] = {
2512     { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2513     { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2514     { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2515     { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2516     { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2517     { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2518     { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2519     { }
2520 };
2521 MODULE_DEVICE_TABLE(of, ravb_match_table);
2522 
2523 static int ravb_set_gti(struct net_device *ndev)
2524 {
2525     struct ravb_private *priv = netdev_priv(ndev);
2526     const struct ravb_hw_info *info = priv->info;
2527     struct device *dev = ndev->dev.parent;
2528     unsigned long rate;
2529     uint64_t inc;
2530 
2531     if (info->gptp_ref_clk)
2532         rate = clk_get_rate(priv->gptp_clk);
2533     else
2534         rate = clk_get_rate(priv->clk);
2535     if (!rate)
2536         return -EINVAL;
2537 
2538     inc = div64_ul(1000000000ULL << 20, rate);
2539 
2540     if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
2541         dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
2542             inc, GTI_TIV_MIN, GTI_TIV_MAX);
2543         return -EINVAL;
2544     }
2545 
2546     ravb_write(ndev, inc, GTI);
2547 
2548     return 0;
2549 }
2550 
2551 static void ravb_set_config_mode(struct net_device *ndev)
2552 {
2553     struct ravb_private *priv = netdev_priv(ndev);
2554     const struct ravb_hw_info *info = priv->info;
2555 
2556     if (info->gptp) {
2557         ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2558         /* Set CSEL value */
2559         ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
2560     } else if (info->ccc_gac) {
2561         ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
2562                 CCC_GAC | CCC_CSEL_HPB);
2563     } else {
2564         ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
2565     }
2566 }
2567 
2568 /* Set tx and rx clock internal delay modes */
2569 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
2570 {
2571     struct ravb_private *priv = netdev_priv(ndev);
2572     bool explicit_delay = false;
2573     u32 delay;
2574 
2575     if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
2576         /* Valid values are 0 and 1800, according to DT bindings */
2577         priv->rxcidm = !!delay;
2578         explicit_delay = true;
2579     }
2580     if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
2581         /* Valid values are 0 and 2000, according to DT bindings */
2582         priv->txcidm = !!delay;
2583         explicit_delay = true;
2584     }
2585 
2586     if (explicit_delay)
2587         return;
2588 
2589     /* Fall back to legacy rgmii-*id behavior */
2590     if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2591         priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
2592         priv->rxcidm = 1;
2593         priv->rgmii_override = 1;
2594     }
2595 
2596     if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2597         priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2598         priv->txcidm = 1;
2599         priv->rgmii_override = 1;
2600     }
2601 }
2602 
2603 static void ravb_set_delay_mode(struct net_device *ndev)
2604 {
2605     struct ravb_private *priv = netdev_priv(ndev);
2606     u32 set = 0;
2607 
2608     if (priv->rxcidm)
2609         set |= APSR_RDM;
2610     if (priv->txcidm)
2611         set |= APSR_TDM;
2612     ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
2613 }
2614 
2615 static int ravb_probe(struct platform_device *pdev)
2616 {
2617     struct device_node *np = pdev->dev.of_node;
2618     const struct ravb_hw_info *info;
2619     struct reset_control *rstc;
2620     struct ravb_private *priv;
2621     struct net_device *ndev;
2622     int error, irq, q;
2623     struct resource *res;
2624     int i;
2625 
2626     if (!np) {
2627         dev_err(&pdev->dev,
2628             "this driver is required to be instantiated from device tree\n");
2629         return -EINVAL;
2630     }
2631 
2632     rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2633     if (IS_ERR(rstc))
2634         return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2635                      "failed to get cpg reset\n");
2636 
2637     ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2638                   NUM_TX_QUEUE, NUM_RX_QUEUE);
2639     if (!ndev)
2640         return -ENOMEM;
2641 
2642     info = of_device_get_match_data(&pdev->dev);
2643 
2644     ndev->features = info->net_features;
2645     ndev->hw_features = info->net_hw_features;
2646 
2647     reset_control_deassert(rstc);
2648     pm_runtime_enable(&pdev->dev);
2649     pm_runtime_get_sync(&pdev->dev);
2650 
2651     if (info->multi_irqs) {
2652         if (info->err_mgmt_irqs)
2653             irq = platform_get_irq_byname(pdev, "dia");
2654         else
2655             irq = platform_get_irq_byname(pdev, "ch22");
2656     } else {
2657         irq = platform_get_irq(pdev, 0);
2658     }
2659     if (irq < 0) {
2660         error = irq;
2661         goto out_release;
2662     }
2663     ndev->irq = irq;
2664 
2665     SET_NETDEV_DEV(ndev, &pdev->dev);
2666 
2667     priv = netdev_priv(ndev);
2668     priv->info = info;
2669     priv->rstc = rstc;
2670     priv->ndev = ndev;
2671     priv->pdev = pdev;
2672     priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2673     priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2674     if (info->nc_queues) {
2675         priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2676         priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2677     }
2678 
2679     priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2680     if (IS_ERR(priv->addr)) {
2681         error = PTR_ERR(priv->addr);
2682         goto out_release;
2683     }
2684 
2685     /* The Ether-specific entries in the device structure. */
2686     ndev->base_addr = res->start;
2687 
2688     spin_lock_init(&priv->lock);
2689     INIT_WORK(&priv->work, ravb_tx_timeout_work);
2690 
2691     error = of_get_phy_mode(np, &priv->phy_interface);
2692     if (error && error != -ENODEV)
2693         goto out_release;
2694 
2695     priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2696     priv->avb_link_active_low =
2697         of_property_read_bool(np, "renesas,ether-link-active-low");
2698 
2699     if (info->multi_irqs) {
2700         if (info->err_mgmt_irqs)
2701             irq = platform_get_irq_byname(pdev, "line3");
2702         else
2703             irq = platform_get_irq_byname(pdev, "ch24");
2704         if (irq < 0) {
2705             error = irq;
2706             goto out_release;
2707         }
2708         priv->emac_irq = irq;
2709         for (i = 0; i < NUM_RX_QUEUE; i++) {
2710             irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2711             if (irq < 0) {
2712                 error = irq;
2713                 goto out_release;
2714             }
2715             priv->rx_irqs[i] = irq;
2716         }
2717         for (i = 0; i < NUM_TX_QUEUE; i++) {
2718             irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2719             if (irq < 0) {
2720                 error = irq;
2721                 goto out_release;
2722             }
2723             priv->tx_irqs[i] = irq;
2724         }
2725 
2726         if (info->err_mgmt_irqs) {
2727             irq = platform_get_irq_byname(pdev, "err_a");
2728             if (irq < 0) {
2729                 error = irq;
2730                 goto out_release;
2731             }
2732             priv->erra_irq = irq;
2733 
2734             irq = platform_get_irq_byname(pdev, "mgmt_a");
2735             if (irq < 0) {
2736                 error = irq;
2737                 goto out_release;
2738             }
2739             priv->mgmta_irq = irq;
2740         }
2741     }
2742 
2743     priv->clk = devm_clk_get(&pdev->dev, NULL);
2744     if (IS_ERR(priv->clk)) {
2745         error = PTR_ERR(priv->clk);
2746         goto out_release;
2747     }
2748 
2749     priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2750     if (IS_ERR(priv->refclk)) {
2751         error = PTR_ERR(priv->refclk);
2752         goto out_release;
2753     }
2754     clk_prepare_enable(priv->refclk);
2755 
2756     if (info->gptp_ref_clk) {
2757         priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2758         if (IS_ERR(priv->gptp_clk)) {
2759             error = PTR_ERR(priv->gptp_clk);
2760             goto out_disable_refclk;
2761         }
2762         clk_prepare_enable(priv->gptp_clk);
2763     }
2764 
2765     ndev->max_mtu = info->rx_max_buf_size - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2766     ndev->min_mtu = ETH_MIN_MTU;
2767 
2768     /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2769      * Use two descriptor to handle such situation. First descriptor to
2770      * handle aligned data buffer and second descriptor to handle the
2771      * overflow data because of alignment.
2772      */
2773     priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2774 
2775     /* Set function */
2776     ndev->netdev_ops = &ravb_netdev_ops;
2777     ndev->ethtool_ops = &ravb_ethtool_ops;
2778 
2779     /* Set AVB config mode */
2780     ravb_set_config_mode(ndev);
2781 
2782     if (info->gptp || info->ccc_gac) {
2783         /* Set GTI value */
2784         error = ravb_set_gti(ndev);
2785         if (error)
2786             goto out_disable_gptp_clk;
2787 
2788         /* Request GTI loading */
2789         ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2790     }
2791 
2792     if (info->internal_delay) {
2793         ravb_parse_delay_mode(np, ndev);
2794         ravb_set_delay_mode(ndev);
2795     }
2796 
2797     /* Allocate descriptor base address table */
2798     priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2799     priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2800                         &priv->desc_bat_dma, GFP_KERNEL);
2801     if (!priv->desc_bat) {
2802         dev_err(&pdev->dev,
2803             "Cannot allocate desc base address table (size %d bytes)\n",
2804             priv->desc_bat_size);
2805         error = -ENOMEM;
2806         goto out_disable_gptp_clk;
2807     }
2808     for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2809         priv->desc_bat[q].die_dt = DT_EOS;
2810     ravb_write(ndev, priv->desc_bat_dma, DBAT);
2811 
2812     /* Initialise HW timestamp list */
2813     INIT_LIST_HEAD(&priv->ts_skb_list);
2814 
2815     /* Initialise PTP Clock driver */
2816     if (info->ccc_gac)
2817         ravb_ptp_init(ndev, pdev);
2818 
2819     /* Debug message level */
2820     priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2821 
2822     /* Read and set MAC address */
2823     ravb_read_mac_address(np, ndev);
2824     if (!is_valid_ether_addr(ndev->dev_addr)) {
2825         dev_warn(&pdev->dev,
2826              "no valid MAC address supplied, using a random one\n");
2827         eth_hw_addr_random(ndev);
2828     }
2829 
2830     /* MDIO bus init */
2831     error = ravb_mdio_init(priv);
2832     if (error) {
2833         dev_err(&pdev->dev, "failed to initialize MDIO\n");
2834         goto out_dma_free;
2835     }
2836 
2837     netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2838     if (info->nc_queues)
2839         netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2840 
2841     /* Network device register */
2842     error = register_netdev(ndev);
2843     if (error)
2844         goto out_napi_del;
2845 
2846     device_set_wakeup_capable(&pdev->dev, 1);
2847 
2848     /* Print device information */
2849     netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2850             (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2851 
2852     platform_set_drvdata(pdev, ndev);
2853 
2854     return 0;
2855 
2856 out_napi_del:
2857     if (info->nc_queues)
2858         netif_napi_del(&priv->napi[RAVB_NC]);
2859 
2860     netif_napi_del(&priv->napi[RAVB_BE]);
2861     ravb_mdio_release(priv);
2862 out_dma_free:
2863     dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2864               priv->desc_bat_dma);
2865 
2866     /* Stop PTP Clock driver */
2867     if (info->ccc_gac)
2868         ravb_ptp_stop(ndev);
2869 out_disable_gptp_clk:
2870     clk_disable_unprepare(priv->gptp_clk);
2871 out_disable_refclk:
2872     clk_disable_unprepare(priv->refclk);
2873 out_release:
2874     free_netdev(ndev);
2875 
2876     pm_runtime_put(&pdev->dev);
2877     pm_runtime_disable(&pdev->dev);
2878     reset_control_assert(rstc);
2879     return error;
2880 }
2881 
2882 static int ravb_remove(struct platform_device *pdev)
2883 {
2884     struct net_device *ndev = platform_get_drvdata(pdev);
2885     struct ravb_private *priv = netdev_priv(ndev);
2886     const struct ravb_hw_info *info = priv->info;
2887 
2888     /* Stop PTP Clock driver */
2889     if (info->ccc_gac)
2890         ravb_ptp_stop(ndev);
2891 
2892     clk_disable_unprepare(priv->gptp_clk);
2893     clk_disable_unprepare(priv->refclk);
2894 
2895     dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2896               priv->desc_bat_dma);
2897     /* Set reset mode */
2898     ravb_write(ndev, CCC_OPC_RESET, CCC);
2899     pm_runtime_put_sync(&pdev->dev);
2900     unregister_netdev(ndev);
2901     if (info->nc_queues)
2902         netif_napi_del(&priv->napi[RAVB_NC]);
2903     netif_napi_del(&priv->napi[RAVB_BE]);
2904     ravb_mdio_release(priv);
2905     pm_runtime_disable(&pdev->dev);
2906     reset_control_assert(priv->rstc);
2907     free_netdev(ndev);
2908     platform_set_drvdata(pdev, NULL);
2909 
2910     return 0;
2911 }
2912 
2913 static int ravb_wol_setup(struct net_device *ndev)
2914 {
2915     struct ravb_private *priv = netdev_priv(ndev);
2916     const struct ravb_hw_info *info = priv->info;
2917 
2918     /* Disable interrupts by clearing the interrupt masks. */
2919     ravb_write(ndev, 0, RIC0);
2920     ravb_write(ndev, 0, RIC2);
2921     ravb_write(ndev, 0, TIC);
2922 
2923     /* Only allow ECI interrupts */
2924     synchronize_irq(priv->emac_irq);
2925     if (info->nc_queues)
2926         napi_disable(&priv->napi[RAVB_NC]);
2927     napi_disable(&priv->napi[RAVB_BE]);
2928     ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2929 
2930     /* Enable MagicPacket */
2931     ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2932 
2933     return enable_irq_wake(priv->emac_irq);
2934 }
2935 
2936 static int ravb_wol_restore(struct net_device *ndev)
2937 {
2938     struct ravb_private *priv = netdev_priv(ndev);
2939     const struct ravb_hw_info *info = priv->info;
2940 
2941     if (info->nc_queues)
2942         napi_enable(&priv->napi[RAVB_NC]);
2943     napi_enable(&priv->napi[RAVB_BE]);
2944 
2945     /* Disable MagicPacket */
2946     ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2947 
2948     ravb_close(ndev);
2949 
2950     return disable_irq_wake(priv->emac_irq);
2951 }
2952 
2953 static int __maybe_unused ravb_suspend(struct device *dev)
2954 {
2955     struct net_device *ndev = dev_get_drvdata(dev);
2956     struct ravb_private *priv = netdev_priv(ndev);
2957     int ret;
2958 
2959     if (!netif_running(ndev))
2960         return 0;
2961 
2962     netif_device_detach(ndev);
2963 
2964     if (priv->wol_enabled)
2965         ret = ravb_wol_setup(ndev);
2966     else
2967         ret = ravb_close(ndev);
2968 
2969     return ret;
2970 }
2971 
2972 static int __maybe_unused ravb_resume(struct device *dev)
2973 {
2974     struct net_device *ndev = dev_get_drvdata(dev);
2975     struct ravb_private *priv = netdev_priv(ndev);
2976     const struct ravb_hw_info *info = priv->info;
2977     int ret = 0;
2978 
2979     /* If WoL is enabled set reset mode to rearm the WoL logic */
2980     if (priv->wol_enabled)
2981         ravb_write(ndev, CCC_OPC_RESET, CCC);
2982 
2983     /* All register have been reset to default values.
2984      * Restore all registers which where setup at probe time and
2985      * reopen device if it was running before system suspended.
2986      */
2987 
2988     /* Set AVB config mode */
2989     ravb_set_config_mode(ndev);
2990 
2991     if (info->gptp || info->ccc_gac) {
2992         /* Set GTI value */
2993         ret = ravb_set_gti(ndev);
2994         if (ret)
2995             return ret;
2996 
2997         /* Request GTI loading */
2998         ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2999     }
3000 
3001     if (info->internal_delay)
3002         ravb_set_delay_mode(ndev);
3003 
3004     /* Restore descriptor base address table */
3005     ravb_write(ndev, priv->desc_bat_dma, DBAT);
3006 
3007     if (netif_running(ndev)) {
3008         if (priv->wol_enabled) {
3009             ret = ravb_wol_restore(ndev);
3010             if (ret)
3011                 return ret;
3012         }
3013         ret = ravb_open(ndev);
3014         if (ret < 0)
3015             return ret;
3016         netif_device_attach(ndev);
3017     }
3018 
3019     return ret;
3020 }
3021 
3022 static int __maybe_unused ravb_runtime_nop(struct device *dev)
3023 {
3024     /* Runtime PM callback shared between ->runtime_suspend()
3025      * and ->runtime_resume(). Simply returns success.
3026      *
3027      * This driver re-initializes all registers after
3028      * pm_runtime_get_sync() anyway so there is no need
3029      * to save and restore registers here.
3030      */
3031     return 0;
3032 }
3033 
3034 static const struct dev_pm_ops ravb_dev_pm_ops = {
3035     SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3036     SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
3037 };
3038 
3039 static struct platform_driver ravb_driver = {
3040     .probe      = ravb_probe,
3041     .remove     = ravb_remove,
3042     .driver = {
3043         .name   = "ravb",
3044         .pm = &ravb_dev_pm_ops,
3045         .of_match_table = ravb_match_table,
3046     },
3047 };
3048 
3049 module_platform_driver(ravb_driver);
3050 
3051 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3052 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3053 MODULE_LICENSE("GPL v2");