0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0050
0051 #define DRV_NAME "8139cp"
0052 #define DRV_VERSION "1.3"
0053 #define DRV_RELDATE "Mar 22, 2004"
0054
0055
0056 #include <linux/module.h>
0057 #include <linux/moduleparam.h>
0058 #include <linux/kernel.h>
0059 #include <linux/compiler.h>
0060 #include <linux/netdevice.h>
0061 #include <linux/etherdevice.h>
0062 #include <linux/init.h>
0063 #include <linux/interrupt.h>
0064 #include <linux/pci.h>
0065 #include <linux/dma-mapping.h>
0066 #include <linux/delay.h>
0067 #include <linux/ethtool.h>
0068 #include <linux/gfp.h>
0069 #include <linux/mii.h>
0070 #include <linux/if_vlan.h>
0071 #include <linux/crc32.h>
0072 #include <linux/in.h>
0073 #include <linux/ip.h>
0074 #include <linux/tcp.h>
0075 #include <linux/udp.h>
0076 #include <linux/cache.h>
0077 #include <asm/io.h>
0078 #include <asm/irq.h>
0079 #include <linux/uaccess.h>
0080
0081
0082 static char version[] =
0083 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
0084
0085 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
0086 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
0087 MODULE_VERSION(DRV_VERSION);
0088 MODULE_LICENSE("GPL");
0089
0090 static int debug = -1;
0091 module_param(debug, int, 0);
0092 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
0093
0094
0095
0096 static int multicast_filter_limit = 32;
0097 module_param(multicast_filter_limit, int, 0);
0098 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
0099
0100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
0101 NETIF_MSG_PROBE | \
0102 NETIF_MSG_LINK)
0103 #define CP_NUM_STATS 14
0104 #define CP_STATS_SIZE 64
0105 #define CP_REGS_SIZE (0xff + 1)
0106 #define CP_REGS_VER 1
0107 #define CP_RX_RING_SIZE 64
0108 #define CP_TX_RING_SIZE 64
0109 #define CP_RING_BYTES \
0110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
0111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
0112 CP_STATS_SIZE)
0113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
0114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
0115 #define TX_BUFFS_AVAIL(CP) \
0116 (((CP)->tx_tail <= (CP)->tx_head) ? \
0117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
0118 (CP)->tx_tail - (CP)->tx_head - 1)
0119
0120 #define PKT_BUF_SZ 1536
0121 #define CP_INTERNAL_PHY 32
0122
0123
0124 #define RX_FIFO_THRESH 5
0125 #define RX_DMA_BURST 4
0126 #define TX_DMA_BURST 6
0127 #define TX_EARLY_THRESH 256
0128
0129
0130 #define TX_TIMEOUT (6*HZ)
0131
0132
0133 #define CP_MIN_MTU 60
0134 #define CP_MAX_MTU 4096
0135
0136 enum {
0137
0138 MAC0 = 0x00,
0139 MAR0 = 0x08,
0140 StatsAddr = 0x10,
0141 TxRingAddr = 0x20,
0142 HiTxRingAddr = 0x28,
0143 Cmd = 0x37,
0144 IntrMask = 0x3C,
0145 IntrStatus = 0x3E,
0146 TxConfig = 0x40,
0147 ChipVersion = 0x43,
0148 RxConfig = 0x44,
0149 RxMissed = 0x4C,
0150 Cfg9346 = 0x50,
0151 Config1 = 0x52,
0152 Config3 = 0x59,
0153 Config4 = 0x5A,
0154 MultiIntr = 0x5C,
0155 BasicModeCtrl = 0x62,
0156 BasicModeStatus = 0x64,
0157 NWayAdvert = 0x66,
0158 NWayLPAR = 0x68,
0159 NWayExpansion = 0x6A,
0160 TxDmaOkLowDesc = 0x82,
0161 Config5 = 0xD8,
0162 TxPoll = 0xD9,
0163 RxMaxSize = 0xDA,
0164 CpCmd = 0xE0,
0165 IntrMitigate = 0xE2,
0166 RxRingAddr = 0xE4,
0167 TxThresh = 0xEC,
0168 OldRxBufAddr = 0x30,
0169 OldTSD0 = 0x10,
0170
0171
0172 DescOwn = (1 << 31),
0173 RingEnd = (1 << 30),
0174 FirstFrag = (1 << 29),
0175 LastFrag = (1 << 28),
0176 LargeSend = (1 << 27),
0177 MSSShift = 16,
0178 MSSMask = 0x7ff,
0179 TxError = (1 << 23),
0180 RxError = (1 << 20),
0181 IPCS = (1 << 18),
0182 UDPCS = (1 << 17),
0183 TCPCS = (1 << 16),
0184 TxVlanTag = (1 << 17),
0185 RxVlanTagged = (1 << 16),
0186 IPFail = (1 << 15),
0187 UDPFail = (1 << 14),
0188 TCPFail = (1 << 13),
0189 NormalTxPoll = (1 << 6),
0190 PID1 = (1 << 17),
0191 PID0 = (1 << 16),
0192 RxProtoTCP = 1,
0193 RxProtoUDP = 2,
0194 RxProtoIP = 3,
0195 TxFIFOUnder = (1 << 25),
0196 TxOWC = (1 << 22),
0197 TxLinkFail = (1 << 21),
0198 TxMaxCol = (1 << 20),
0199 TxColCntShift = 16,
0200 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08,
0201 RxErrFrame = (1 << 27),
0202 RxMcast = (1 << 26),
0203 RxErrCRC = (1 << 18),
0204 RxErrRunt = (1 << 19),
0205 RxErrLong = (1 << 21),
0206 RxErrFIFO = (1 << 22),
0207
0208
0209 DumpStats = (1 << 3),
0210
0211
0212 RxCfgFIFOShift = 13,
0213 RxCfgDMAShift = 8,
0214 AcceptErr = 0x20,
0215 AcceptRunt = 0x10,
0216 AcceptBroadcast = 0x08,
0217 AcceptMulticast = 0x04,
0218 AcceptMyPhys = 0x02,
0219 AcceptAllPhys = 0x01,
0220
0221
0222 PciErr = (1 << 15),
0223 TimerIntr = (1 << 14),
0224 LenChg = (1 << 13),
0225 SWInt = (1 << 8),
0226 TxEmpty = (1 << 7),
0227 RxFIFOOvr = (1 << 6),
0228 LinkChg = (1 << 5),
0229 RxEmpty = (1 << 4),
0230 TxErr = (1 << 3),
0231 TxOK = (1 << 2),
0232 RxErr = (1 << 1),
0233 RxOK = (1 << 0),
0234 IntrResvd = (1 << 10),
0235
0236
0237 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
0238 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
0239 RxErr | RxOK | IntrResvd,
0240
0241
0242 CmdReset = (1 << 4),
0243 RxOn = (1 << 3),
0244 TxOn = (1 << 2),
0245
0246
0247 RxVlanOn = (1 << 6),
0248 RxChkSum = (1 << 5),
0249 PCIDAC = (1 << 4),
0250 PCIMulRW = (1 << 3),
0251 CpRxOn = (1 << 1),
0252 CpTxOn = (1 << 0),
0253
0254
0255 Cfg9346_Lock = 0x00,
0256 Cfg9346_Unlock = 0xC0,
0257
0258
0259 IFG = (1 << 25) | (1 << 24),
0260 TxDMAShift = 8,
0261
0262
0263 TxThreshMask = 0x3f,
0264 TxThreshMax = 2048,
0265
0266
0267 DriverLoaded = (1 << 5),
0268 LWACT = (1 << 4),
0269 PMEnable = (1 << 0),
0270
0271
0272 PARMEnable = (1 << 6),
0273 MagicPacket = (1 << 5),
0274 LinkUp = (1 << 4),
0275
0276
0277 LWPTN = (1 << 1),
0278 LWPME = (1 << 4),
0279
0280
0281 BWF = (1 << 6),
0282 MWF = (1 << 5),
0283 UWF = (1 << 4),
0284 LANWake = (1 << 1),
0285 PMEStatus = (1 << 0),
0286
0287 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
0288 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
0289 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
0290 };
0291
0292 static const unsigned int cp_rx_config =
0293 (RX_FIFO_THRESH << RxCfgFIFOShift) |
0294 (RX_DMA_BURST << RxCfgDMAShift);
0295
0296 struct cp_desc {
0297 __le32 opts1;
0298 __le32 opts2;
0299 __le64 addr;
0300 };
0301
0302 struct cp_dma_stats {
0303 __le64 tx_ok;
0304 __le64 rx_ok;
0305 __le64 tx_err;
0306 __le32 rx_err;
0307 __le16 rx_fifo;
0308 __le16 frame_align;
0309 __le32 tx_ok_1col;
0310 __le32 tx_ok_mcol;
0311 __le64 rx_ok_phys;
0312 __le64 rx_ok_bcast;
0313 __le32 rx_ok_mcast;
0314 __le16 tx_abort;
0315 __le16 tx_underrun;
0316 } __packed;
0317
0318 struct cp_extra_stats {
0319 unsigned long rx_frags;
0320 };
0321
0322 struct cp_private {
0323 void __iomem *regs;
0324 struct net_device *dev;
0325 spinlock_t lock;
0326 u32 msg_enable;
0327
0328 struct napi_struct napi;
0329
0330 struct pci_dev *pdev;
0331 u32 rx_config;
0332 u16 cpcmd;
0333
0334 struct cp_extra_stats cp_stats;
0335
0336 unsigned rx_head ____cacheline_aligned;
0337 unsigned rx_tail;
0338 struct cp_desc *rx_ring;
0339 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
0340
0341 unsigned tx_head ____cacheline_aligned;
0342 unsigned tx_tail;
0343 struct cp_desc *tx_ring;
0344 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
0345 u32 tx_opts[CP_TX_RING_SIZE];
0346
0347 unsigned rx_buf_sz;
0348 unsigned wol_enabled : 1;
0349
0350 dma_addr_t ring_dma;
0351
0352 struct mii_if_info mii_if;
0353 };
0354
0355 #define cpr8(reg) readb(cp->regs + (reg))
0356 #define cpr16(reg) readw(cp->regs + (reg))
0357 #define cpr32(reg) readl(cp->regs + (reg))
0358 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
0359 #define cpw16(reg,val) writew((val), cp->regs + (reg))
0360 #define cpw32(reg,val) writel((val), cp->regs + (reg))
0361 #define cpw8_f(reg,val) do { \
0362 writeb((val), cp->regs + (reg)); \
0363 readb(cp->regs + (reg)); \
0364 } while (0)
0365 #define cpw16_f(reg,val) do { \
0366 writew((val), cp->regs + (reg)); \
0367 readw(cp->regs + (reg)); \
0368 } while (0)
0369 #define cpw32_f(reg,val) do { \
0370 writel((val), cp->regs + (reg)); \
0371 readl(cp->regs + (reg)); \
0372 } while (0)
0373
0374
0375 static void __cp_set_rx_mode (struct net_device *dev);
0376 static void cp_tx (struct cp_private *cp);
0377 static void cp_clean_rings (struct cp_private *cp);
0378 #ifdef CONFIG_NET_POLL_CONTROLLER
0379 static void cp_poll_controller(struct net_device *dev);
0380 #endif
0381 static int cp_get_eeprom_len(struct net_device *dev);
0382 static int cp_get_eeprom(struct net_device *dev,
0383 struct ethtool_eeprom *eeprom, u8 *data);
0384 static int cp_set_eeprom(struct net_device *dev,
0385 struct ethtool_eeprom *eeprom, u8 *data);
0386
0387 static struct {
0388 const char str[ETH_GSTRING_LEN];
0389 } ethtool_stats_keys[] = {
0390 { "tx_ok" },
0391 { "rx_ok" },
0392 { "tx_err" },
0393 { "rx_err" },
0394 { "rx_fifo" },
0395 { "frame_align" },
0396 { "tx_ok_1col" },
0397 { "tx_ok_mcol" },
0398 { "rx_ok_phys" },
0399 { "rx_ok_bcast" },
0400 { "rx_ok_mcast" },
0401 { "tx_abort" },
0402 { "tx_underrun" },
0403 { "rx_frags" },
0404 };
0405
0406
0407 static inline void cp_set_rxbufsize (struct cp_private *cp)
0408 {
0409 unsigned int mtu = cp->dev->mtu;
0410
0411 if (mtu > ETH_DATA_LEN)
0412
0413 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
0414 else
0415 cp->rx_buf_sz = PKT_BUF_SZ;
0416 }
0417
0418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
0419 struct cp_desc *desc)
0420 {
0421 u32 opts2 = le32_to_cpu(desc->opts2);
0422
0423 skb->protocol = eth_type_trans (skb, cp->dev);
0424
0425 cp->dev->stats.rx_packets++;
0426 cp->dev->stats.rx_bytes += skb->len;
0427
0428 if (opts2 & RxVlanTagged)
0429 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
0430
0431 napi_gro_receive(&cp->napi, skb);
0432 }
0433
0434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
0435 u32 status, u32 len)
0436 {
0437 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
0438 rx_tail, status, len);
0439 cp->dev->stats.rx_errors++;
0440 if (status & RxErrFrame)
0441 cp->dev->stats.rx_frame_errors++;
0442 if (status & RxErrCRC)
0443 cp->dev->stats.rx_crc_errors++;
0444 if ((status & RxErrRunt) || (status & RxErrLong))
0445 cp->dev->stats.rx_length_errors++;
0446 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
0447 cp->dev->stats.rx_length_errors++;
0448 if (status & RxErrFIFO)
0449 cp->dev->stats.rx_fifo_errors++;
0450 }
0451
0452 static inline unsigned int cp_rx_csum_ok (u32 status)
0453 {
0454 unsigned int protocol = (status >> 16) & 0x3;
0455
0456 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
0457 ((protocol == RxProtoUDP) && !(status & UDPFail)))
0458 return 1;
0459 else
0460 return 0;
0461 }
0462
0463 static int cp_rx_poll(struct napi_struct *napi, int budget)
0464 {
0465 struct cp_private *cp = container_of(napi, struct cp_private, napi);
0466 struct net_device *dev = cp->dev;
0467 unsigned int rx_tail = cp->rx_tail;
0468 int rx = 0;
0469
0470 cpw16(IntrStatus, cp_rx_intr_mask);
0471
0472 while (rx < budget) {
0473 u32 status, len;
0474 dma_addr_t mapping, new_mapping;
0475 struct sk_buff *skb, *new_skb;
0476 struct cp_desc *desc;
0477 const unsigned buflen = cp->rx_buf_sz;
0478
0479 skb = cp->rx_skb[rx_tail];
0480 BUG_ON(!skb);
0481
0482 desc = &cp->rx_ring[rx_tail];
0483 status = le32_to_cpu(desc->opts1);
0484 if (status & DescOwn)
0485 break;
0486
0487 len = (status & 0x1fff) - 4;
0488 mapping = le64_to_cpu(desc->addr);
0489
0490 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
0491
0492
0493
0494
0495
0496 cp_rx_err_acct(cp, rx_tail, status, len);
0497 dev->stats.rx_dropped++;
0498 cp->cp_stats.rx_frags++;
0499 goto rx_next;
0500 }
0501
0502 if (status & (RxError | RxErrFIFO)) {
0503 cp_rx_err_acct(cp, rx_tail, status, len);
0504 goto rx_next;
0505 }
0506
0507 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
0508 rx_tail, status, len);
0509
0510 new_skb = napi_alloc_skb(napi, buflen);
0511 if (!new_skb) {
0512 dev->stats.rx_dropped++;
0513 goto rx_next;
0514 }
0515
0516 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
0517 DMA_FROM_DEVICE);
0518 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
0519 dev->stats.rx_dropped++;
0520 kfree_skb(new_skb);
0521 goto rx_next;
0522 }
0523
0524 dma_unmap_single(&cp->pdev->dev, mapping,
0525 buflen, DMA_FROM_DEVICE);
0526
0527
0528 if (cp_rx_csum_ok(status))
0529 skb->ip_summed = CHECKSUM_UNNECESSARY;
0530 else
0531 skb_checksum_none_assert(skb);
0532
0533 skb_put(skb, len);
0534
0535 cp->rx_skb[rx_tail] = new_skb;
0536
0537 cp_rx_skb(cp, skb, desc);
0538 rx++;
0539 mapping = new_mapping;
0540
0541 rx_next:
0542 cp->rx_ring[rx_tail].opts2 = 0;
0543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
0544 if (rx_tail == (CP_RX_RING_SIZE - 1))
0545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
0546 cp->rx_buf_sz);
0547 else
0548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
0549 rx_tail = NEXT_RX(rx_tail);
0550 }
0551
0552 cp->rx_tail = rx_tail;
0553
0554
0555
0556
0557 if (rx < budget && napi_complete_done(napi, rx)) {
0558 unsigned long flags;
0559
0560 spin_lock_irqsave(&cp->lock, flags);
0561 cpw16_f(IntrMask, cp_intr_mask);
0562 spin_unlock_irqrestore(&cp->lock, flags);
0563 }
0564
0565 return rx;
0566 }
0567
0568 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
0569 {
0570 struct net_device *dev = dev_instance;
0571 struct cp_private *cp;
0572 int handled = 0;
0573 u16 status;
0574 u16 mask;
0575
0576 if (unlikely(dev == NULL))
0577 return IRQ_NONE;
0578 cp = netdev_priv(dev);
0579
0580 spin_lock(&cp->lock);
0581
0582 mask = cpr16(IntrMask);
0583 if (!mask)
0584 goto out_unlock;
0585
0586 status = cpr16(IntrStatus);
0587 if (!status || (status == 0xFFFF))
0588 goto out_unlock;
0589
0590 handled = 1;
0591
0592 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
0593 status, cpr8(Cmd), cpr16(CpCmd));
0594
0595 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
0596
0597
0598 if (unlikely(!netif_running(dev))) {
0599 cpw16(IntrMask, 0);
0600 goto out_unlock;
0601 }
0602
0603 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
0604 if (napi_schedule_prep(&cp->napi)) {
0605 cpw16_f(IntrMask, cp_norx_intr_mask);
0606 __napi_schedule(&cp->napi);
0607 }
0608
0609 if (status & (TxOK | TxErr | TxEmpty | SWInt))
0610 cp_tx(cp);
0611 if (status & LinkChg)
0612 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
0613
0614
0615 if (status & PciErr) {
0616 u16 pci_status;
0617
0618 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
0619 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
0620 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
0621 status, pci_status);
0622
0623
0624 }
0625
0626 out_unlock:
0627 spin_unlock(&cp->lock);
0628
0629 return IRQ_RETVAL(handled);
0630 }
0631
0632 #ifdef CONFIG_NET_POLL_CONTROLLER
0633
0634
0635
0636
0637 static void cp_poll_controller(struct net_device *dev)
0638 {
0639 struct cp_private *cp = netdev_priv(dev);
0640 const int irq = cp->pdev->irq;
0641
0642 disable_irq(irq);
0643 cp_interrupt(irq, dev);
0644 enable_irq(irq);
0645 }
0646 #endif
0647
0648 static void cp_tx (struct cp_private *cp)
0649 {
0650 unsigned tx_head = cp->tx_head;
0651 unsigned tx_tail = cp->tx_tail;
0652 unsigned bytes_compl = 0, pkts_compl = 0;
0653
0654 while (tx_tail != tx_head) {
0655 struct cp_desc *txd = cp->tx_ring + tx_tail;
0656 struct sk_buff *skb;
0657 u32 status;
0658
0659 rmb();
0660 status = le32_to_cpu(txd->opts1);
0661 if (status & DescOwn)
0662 break;
0663
0664 skb = cp->tx_skb[tx_tail];
0665 BUG_ON(!skb);
0666
0667 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
0668 cp->tx_opts[tx_tail] & 0xffff,
0669 DMA_TO_DEVICE);
0670
0671 if (status & LastFrag) {
0672 if (status & (TxError | TxFIFOUnder)) {
0673 netif_dbg(cp, tx_err, cp->dev,
0674 "tx err, status 0x%x\n", status);
0675 cp->dev->stats.tx_errors++;
0676 if (status & TxOWC)
0677 cp->dev->stats.tx_window_errors++;
0678 if (status & TxMaxCol)
0679 cp->dev->stats.tx_aborted_errors++;
0680 if (status & TxLinkFail)
0681 cp->dev->stats.tx_carrier_errors++;
0682 if (status & TxFIFOUnder)
0683 cp->dev->stats.tx_fifo_errors++;
0684 } else {
0685 cp->dev->stats.collisions +=
0686 ((status >> TxColCntShift) & TxColCntMask);
0687 cp->dev->stats.tx_packets++;
0688 cp->dev->stats.tx_bytes += skb->len;
0689 netif_dbg(cp, tx_done, cp->dev,
0690 "tx done, slot %d\n", tx_tail);
0691 }
0692 bytes_compl += skb->len;
0693 pkts_compl++;
0694 dev_consume_skb_irq(skb);
0695 }
0696
0697 cp->tx_skb[tx_tail] = NULL;
0698
0699 tx_tail = NEXT_TX(tx_tail);
0700 }
0701
0702 cp->tx_tail = tx_tail;
0703
0704 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
0705 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
0706 netif_wake_queue(cp->dev);
0707 }
0708
0709 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
0710 {
0711 return skb_vlan_tag_present(skb) ?
0712 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
0713 }
0714
0715 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
0716 int first, int entry_last)
0717 {
0718 int frag, index;
0719 struct cp_desc *txd;
0720 skb_frag_t *this_frag;
0721 for (frag = 0; frag+first < entry_last; frag++) {
0722 index = first+frag;
0723 cp->tx_skb[index] = NULL;
0724 txd = &cp->tx_ring[index];
0725 this_frag = &skb_shinfo(skb)->frags[frag];
0726 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
0727 skb_frag_size(this_frag), DMA_TO_DEVICE);
0728 }
0729 }
0730
0731 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
0732 struct net_device *dev)
0733 {
0734 struct cp_private *cp = netdev_priv(dev);
0735 unsigned entry;
0736 u32 eor, opts1;
0737 unsigned long intr_flags;
0738 __le32 opts2;
0739 int mss = 0;
0740
0741 spin_lock_irqsave(&cp->lock, intr_flags);
0742
0743
0744 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
0745 netif_stop_queue(dev);
0746 spin_unlock_irqrestore(&cp->lock, intr_flags);
0747 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
0748 return NETDEV_TX_BUSY;
0749 }
0750
0751 entry = cp->tx_head;
0752 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
0753 mss = skb_shinfo(skb)->gso_size;
0754
0755 if (mss > MSSMask) {
0756 netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n",
0757 mss);
0758 goto out_dma_error;
0759 }
0760
0761 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
0762 opts1 = DescOwn;
0763 if (mss)
0764 opts1 |= LargeSend | (mss << MSSShift);
0765 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
0766 const struct iphdr *ip = ip_hdr(skb);
0767 if (ip->protocol == IPPROTO_TCP)
0768 opts1 |= IPCS | TCPCS;
0769 else if (ip->protocol == IPPROTO_UDP)
0770 opts1 |= IPCS | UDPCS;
0771 else {
0772 WARN_ONCE(1,
0773 "Net bug: asked to checksum invalid Legacy IP packet\n");
0774 goto out_dma_error;
0775 }
0776 }
0777
0778 if (skb_shinfo(skb)->nr_frags == 0) {
0779 struct cp_desc *txd = &cp->tx_ring[entry];
0780 u32 len;
0781 dma_addr_t mapping;
0782
0783 len = skb->len;
0784 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, DMA_TO_DEVICE);
0785 if (dma_mapping_error(&cp->pdev->dev, mapping))
0786 goto out_dma_error;
0787
0788 txd->opts2 = opts2;
0789 txd->addr = cpu_to_le64(mapping);
0790 wmb();
0791
0792 opts1 |= eor | len | FirstFrag | LastFrag;
0793
0794 txd->opts1 = cpu_to_le32(opts1);
0795 wmb();
0796
0797 cp->tx_skb[entry] = skb;
0798 cp->tx_opts[entry] = opts1;
0799 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
0800 entry, skb->len);
0801 } else {
0802 struct cp_desc *txd;
0803 u32 first_len, first_eor, ctrl;
0804 dma_addr_t first_mapping;
0805 int frag, first_entry = entry;
0806
0807
0808
0809
0810 first_eor = eor;
0811 first_len = skb_headlen(skb);
0812 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
0813 first_len, DMA_TO_DEVICE);
0814 if (dma_mapping_error(&cp->pdev->dev, first_mapping))
0815 goto out_dma_error;
0816
0817 cp->tx_skb[entry] = skb;
0818
0819 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
0820 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
0821 u32 len;
0822 dma_addr_t mapping;
0823
0824 entry = NEXT_TX(entry);
0825
0826 len = skb_frag_size(this_frag);
0827 mapping = dma_map_single(&cp->pdev->dev,
0828 skb_frag_address(this_frag),
0829 len, DMA_TO_DEVICE);
0830 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
0831 unwind_tx_frag_mapping(cp, skb, first_entry, entry);
0832 goto out_dma_error;
0833 }
0834
0835 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
0836
0837 ctrl = opts1 | eor | len;
0838
0839 if (frag == skb_shinfo(skb)->nr_frags - 1)
0840 ctrl |= LastFrag;
0841
0842 txd = &cp->tx_ring[entry];
0843 txd->opts2 = opts2;
0844 txd->addr = cpu_to_le64(mapping);
0845 wmb();
0846
0847 txd->opts1 = cpu_to_le32(ctrl);
0848 wmb();
0849
0850 cp->tx_opts[entry] = ctrl;
0851 cp->tx_skb[entry] = skb;
0852 }
0853
0854 txd = &cp->tx_ring[first_entry];
0855 txd->opts2 = opts2;
0856 txd->addr = cpu_to_le64(first_mapping);
0857 wmb();
0858
0859 ctrl = opts1 | first_eor | first_len | FirstFrag;
0860 txd->opts1 = cpu_to_le32(ctrl);
0861 wmb();
0862
0863 cp->tx_opts[first_entry] = ctrl;
0864 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
0865 first_entry, entry, skb->len);
0866 }
0867 cp->tx_head = NEXT_TX(entry);
0868
0869 netdev_sent_queue(dev, skb->len);
0870 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
0871 netif_stop_queue(dev);
0872
0873 out_unlock:
0874 spin_unlock_irqrestore(&cp->lock, intr_flags);
0875
0876 cpw8(TxPoll, NormalTxPoll);
0877
0878 return NETDEV_TX_OK;
0879 out_dma_error:
0880 dev_kfree_skb_any(skb);
0881 cp->dev->stats.tx_dropped++;
0882 goto out_unlock;
0883 }
0884
0885
0886
0887
0888 static void __cp_set_rx_mode (struct net_device *dev)
0889 {
0890 struct cp_private *cp = netdev_priv(dev);
0891 u32 mc_filter[2];
0892 int rx_mode;
0893
0894
0895 if (dev->flags & IFF_PROMISC) {
0896
0897 rx_mode =
0898 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
0899 AcceptAllPhys;
0900 mc_filter[1] = mc_filter[0] = 0xffffffff;
0901 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
0902 (dev->flags & IFF_ALLMULTI)) {
0903
0904 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
0905 mc_filter[1] = mc_filter[0] = 0xffffffff;
0906 } else {
0907 struct netdev_hw_addr *ha;
0908 rx_mode = AcceptBroadcast | AcceptMyPhys;
0909 mc_filter[1] = mc_filter[0] = 0;
0910 netdev_for_each_mc_addr(ha, dev) {
0911 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
0912
0913 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
0914 rx_mode |= AcceptMulticast;
0915 }
0916 }
0917
0918
0919 cp->rx_config = cp_rx_config | rx_mode;
0920 cpw32_f(RxConfig, cp->rx_config);
0921
0922 cpw32_f (MAR0 + 0, mc_filter[0]);
0923 cpw32_f (MAR0 + 4, mc_filter[1]);
0924 }
0925
0926 static void cp_set_rx_mode (struct net_device *dev)
0927 {
0928 unsigned long flags;
0929 struct cp_private *cp = netdev_priv(dev);
0930
0931 spin_lock_irqsave (&cp->lock, flags);
0932 __cp_set_rx_mode(dev);
0933 spin_unlock_irqrestore (&cp->lock, flags);
0934 }
0935
0936 static void __cp_get_stats(struct cp_private *cp)
0937 {
0938
0939 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
0940 cpw32 (RxMissed, 0);
0941 }
0942
0943 static struct net_device_stats *cp_get_stats(struct net_device *dev)
0944 {
0945 struct cp_private *cp = netdev_priv(dev);
0946 unsigned long flags;
0947
0948
0949 spin_lock_irqsave(&cp->lock, flags);
0950 if (netif_running(dev) && netif_device_present(dev))
0951 __cp_get_stats(cp);
0952 spin_unlock_irqrestore(&cp->lock, flags);
0953
0954 return &dev->stats;
0955 }
0956
0957 static void cp_stop_hw (struct cp_private *cp)
0958 {
0959 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
0960 cpw16_f(IntrMask, 0);
0961 cpw8(Cmd, 0);
0962 cpw16_f(CpCmd, 0);
0963 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
0964
0965 cp->rx_tail = 0;
0966 cp->tx_head = cp->tx_tail = 0;
0967
0968 netdev_reset_queue(cp->dev);
0969 }
0970
0971 static void cp_reset_hw (struct cp_private *cp)
0972 {
0973 unsigned work = 1000;
0974
0975 cpw8(Cmd, CmdReset);
0976
0977 while (work--) {
0978 if (!(cpr8(Cmd) & CmdReset))
0979 return;
0980
0981 schedule_timeout_uninterruptible(10);
0982 }
0983
0984 netdev_err(cp->dev, "hardware reset timeout\n");
0985 }
0986
0987 static inline void cp_start_hw (struct cp_private *cp)
0988 {
0989 dma_addr_t ring_dma;
0990
0991 cpw16(CpCmd, cp->cpcmd);
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001 cpw32_f(HiTxRingAddr, 0);
1002 cpw32_f(HiTxRingAddr + 4, 0);
1003
1004 ring_dma = cp->ring_dma;
1005 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1006 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1007
1008 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1009 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1010 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1011
1012
1013
1014
1015
1016
1017
1018 cpw8(Cmd, RxOn | TxOn);
1019
1020 netdev_reset_queue(cp->dev);
1021 }
1022
1023 static void cp_enable_irq(struct cp_private *cp)
1024 {
1025 cpw16_f(IntrMask, cp_intr_mask);
1026 }
1027
1028 static void cp_init_hw (struct cp_private *cp)
1029 {
1030 struct net_device *dev = cp->dev;
1031
1032 cp_reset_hw(cp);
1033
1034 cpw8_f (Cfg9346, Cfg9346_Unlock);
1035
1036
1037 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1038 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1039
1040 cp_start_hw(cp);
1041 cpw8(TxThresh, 0x06);
1042
1043 __cp_set_rx_mode(dev);
1044 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1045
1046 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1047
1048 cpw8(Config3, PARMEnable);
1049 cp->wol_enabled = 0;
1050
1051 cpw8(Config5, cpr8(Config5) & PMEStatus);
1052
1053 cpw16(MultiIntr, 0);
1054
1055 cpw8_f(Cfg9346, Cfg9346_Lock);
1056 }
1057
1058 static int cp_refill_rx(struct cp_private *cp)
1059 {
1060 struct net_device *dev = cp->dev;
1061 unsigned i;
1062
1063 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1064 struct sk_buff *skb;
1065 dma_addr_t mapping;
1066
1067 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1068 if (!skb)
1069 goto err_out;
1070
1071 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1072 cp->rx_buf_sz, DMA_FROM_DEVICE);
1073 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1074 kfree_skb(skb);
1075 goto err_out;
1076 }
1077 cp->rx_skb[i] = skb;
1078
1079 cp->rx_ring[i].opts2 = 0;
1080 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1081 if (i == (CP_RX_RING_SIZE - 1))
1082 cp->rx_ring[i].opts1 =
1083 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1084 else
1085 cp->rx_ring[i].opts1 =
1086 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1087 }
1088
1089 return 0;
1090
1091 err_out:
1092 cp_clean_rings(cp);
1093 return -ENOMEM;
1094 }
1095
1096 static void cp_init_rings_index (struct cp_private *cp)
1097 {
1098 cp->rx_tail = 0;
1099 cp->tx_head = cp->tx_tail = 0;
1100 }
1101
1102 static int cp_init_rings (struct cp_private *cp)
1103 {
1104 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1105 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1106 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1107
1108 cp_init_rings_index(cp);
1109
1110 return cp_refill_rx (cp);
1111 }
1112
1113 static int cp_alloc_rings (struct cp_private *cp)
1114 {
1115 struct device *d = &cp->pdev->dev;
1116 void *mem;
1117 int rc;
1118
1119 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1120 if (!mem)
1121 return -ENOMEM;
1122
1123 cp->rx_ring = mem;
1124 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1125
1126 rc = cp_init_rings(cp);
1127 if (rc < 0)
1128 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1129
1130 return rc;
1131 }
1132
1133 static void cp_clean_rings (struct cp_private *cp)
1134 {
1135 struct cp_desc *desc;
1136 unsigned i;
1137
1138 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1139 if (cp->rx_skb[i]) {
1140 desc = cp->rx_ring + i;
1141 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1142 cp->rx_buf_sz, DMA_FROM_DEVICE);
1143 dev_kfree_skb_any(cp->rx_skb[i]);
1144 }
1145 }
1146
1147 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1148 if (cp->tx_skb[i]) {
1149 struct sk_buff *skb = cp->tx_skb[i];
1150
1151 desc = cp->tx_ring + i;
1152 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153 le32_to_cpu(desc->opts1) & 0xffff,
1154 DMA_TO_DEVICE);
1155 if (le32_to_cpu(desc->opts1) & LastFrag)
1156 dev_kfree_skb_any(skb);
1157 cp->dev->stats.tx_dropped++;
1158 }
1159 }
1160 netdev_reset_queue(cp->dev);
1161
1162 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1163 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1164 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1165
1166 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1167 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1168 }
1169
1170 static void cp_free_rings (struct cp_private *cp)
1171 {
1172 cp_clean_rings(cp);
1173 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1174 cp->ring_dma);
1175 cp->rx_ring = NULL;
1176 cp->tx_ring = NULL;
1177 }
1178
1179 static int cp_open (struct net_device *dev)
1180 {
1181 struct cp_private *cp = netdev_priv(dev);
1182 const int irq = cp->pdev->irq;
1183 int rc;
1184
1185 netif_dbg(cp, ifup, dev, "enabling interface\n");
1186
1187 rc = cp_alloc_rings(cp);
1188 if (rc)
1189 return rc;
1190
1191 napi_enable(&cp->napi);
1192
1193 cp_init_hw(cp);
1194
1195 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1196 if (rc)
1197 goto err_out_hw;
1198
1199 cp_enable_irq(cp);
1200
1201 netif_carrier_off(dev);
1202 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1203 netif_start_queue(dev);
1204
1205 return 0;
1206
1207 err_out_hw:
1208 napi_disable(&cp->napi);
1209 cp_stop_hw(cp);
1210 cp_free_rings(cp);
1211 return rc;
1212 }
1213
1214 static int cp_close (struct net_device *dev)
1215 {
1216 struct cp_private *cp = netdev_priv(dev);
1217 unsigned long flags;
1218
1219 napi_disable(&cp->napi);
1220
1221 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1222
1223 spin_lock_irqsave(&cp->lock, flags);
1224
1225 netif_stop_queue(dev);
1226 netif_carrier_off(dev);
1227
1228 cp_stop_hw(cp);
1229
1230 spin_unlock_irqrestore(&cp->lock, flags);
1231
1232 free_irq(cp->pdev->irq, dev);
1233
1234 cp_free_rings(cp);
1235 return 0;
1236 }
1237
1238 static void cp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1239 {
1240 struct cp_private *cp = netdev_priv(dev);
1241 unsigned long flags;
1242 int i;
1243
1244 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1245 cpr8(Cmd), cpr16(CpCmd),
1246 cpr16(IntrStatus), cpr16(IntrMask));
1247
1248 spin_lock_irqsave(&cp->lock, flags);
1249
1250 netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1251 cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1252 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1253 netif_dbg(cp, tx_err, cp->dev,
1254 "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1255 i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1256 cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1257 le64_to_cpu(cp->tx_ring[i].addr),
1258 cp->tx_skb[i]);
1259 }
1260
1261 cp_stop_hw(cp);
1262 cp_clean_rings(cp);
1263 cp_init_rings(cp);
1264 cp_start_hw(cp);
1265 __cp_set_rx_mode(dev);
1266 cpw16_f(IntrMask, cp_norx_intr_mask);
1267
1268 netif_wake_queue(dev);
1269 napi_schedule_irqoff(&cp->napi);
1270
1271 spin_unlock_irqrestore(&cp->lock, flags);
1272 }
1273
1274 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1275 {
1276 struct cp_private *cp = netdev_priv(dev);
1277
1278
1279 if (!netif_running(dev)) {
1280 dev->mtu = new_mtu;
1281 cp_set_rxbufsize(cp);
1282 return 0;
1283 }
1284
1285
1286 cp_close(dev);
1287 dev->mtu = new_mtu;
1288 cp_set_rxbufsize(cp);
1289 return cp_open(dev);
1290 }
1291
1292 static const char mii_2_8139_map[8] = {
1293 BasicModeCtrl,
1294 BasicModeStatus,
1295 0,
1296 0,
1297 NWayAdvert,
1298 NWayLPAR,
1299 NWayExpansion,
1300 0
1301 };
1302
1303 static int mdio_read(struct net_device *dev, int phy_id, int location)
1304 {
1305 struct cp_private *cp = netdev_priv(dev);
1306
1307 return location < 8 && mii_2_8139_map[location] ?
1308 readw(cp->regs + mii_2_8139_map[location]) : 0;
1309 }
1310
1311
1312 static void mdio_write(struct net_device *dev, int phy_id, int location,
1313 int value)
1314 {
1315 struct cp_private *cp = netdev_priv(dev);
1316
1317 if (location == 0) {
1318 cpw8(Cfg9346, Cfg9346_Unlock);
1319 cpw16(BasicModeCtrl, value);
1320 cpw8(Cfg9346, Cfg9346_Lock);
1321 } else if (location < 8 && mii_2_8139_map[location])
1322 cpw16(mii_2_8139_map[location], value);
1323 }
1324
1325
1326 static int netdev_set_wol (struct cp_private *cp,
1327 const struct ethtool_wolinfo *wol)
1328 {
1329 u8 options;
1330
1331 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1332
1333 if (wol->wolopts) {
1334 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1335 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1336 }
1337
1338 cpw8 (Cfg9346, Cfg9346_Unlock);
1339 cpw8 (Config3, options);
1340 cpw8 (Cfg9346, Cfg9346_Lock);
1341
1342 options = 0;
1343 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1344
1345 if (wol->wolopts) {
1346 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1347 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1348 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1349 }
1350
1351 cpw8 (Config5, options);
1352
1353 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1354
1355 return 0;
1356 }
1357
1358
1359 static void netdev_get_wol (struct cp_private *cp,
1360 struct ethtool_wolinfo *wol)
1361 {
1362 u8 options;
1363
1364 wol->wolopts = 0;
1365 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1366 WAKE_MCAST | WAKE_UCAST;
1367
1368 if (!cp->wol_enabled) return;
1369
1370 options = cpr8 (Config3);
1371 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1372 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1373
1374 options = 0;
1375 options = cpr8 (Config5);
1376 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1377 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1378 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1379 }
1380
1381 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1382 {
1383 struct cp_private *cp = netdev_priv(dev);
1384
1385 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1386 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1387 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1388 }
1389
1390 static void cp_get_ringparam(struct net_device *dev,
1391 struct ethtool_ringparam *ring,
1392 struct kernel_ethtool_ringparam *kernel_ring,
1393 struct netlink_ext_ack *extack)
1394 {
1395 ring->rx_max_pending = CP_RX_RING_SIZE;
1396 ring->tx_max_pending = CP_TX_RING_SIZE;
1397 ring->rx_pending = CP_RX_RING_SIZE;
1398 ring->tx_pending = CP_TX_RING_SIZE;
1399 }
1400
1401 static int cp_get_regs_len(struct net_device *dev)
1402 {
1403 return CP_REGS_SIZE;
1404 }
1405
1406 static int cp_get_sset_count (struct net_device *dev, int sset)
1407 {
1408 switch (sset) {
1409 case ETH_SS_STATS:
1410 return CP_NUM_STATS;
1411 default:
1412 return -EOPNOTSUPP;
1413 }
1414 }
1415
1416 static int cp_get_link_ksettings(struct net_device *dev,
1417 struct ethtool_link_ksettings *cmd)
1418 {
1419 struct cp_private *cp = netdev_priv(dev);
1420 unsigned long flags;
1421
1422 spin_lock_irqsave(&cp->lock, flags);
1423 mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1424 spin_unlock_irqrestore(&cp->lock, flags);
1425
1426 return 0;
1427 }
1428
1429 static int cp_set_link_ksettings(struct net_device *dev,
1430 const struct ethtool_link_ksettings *cmd)
1431 {
1432 struct cp_private *cp = netdev_priv(dev);
1433 int rc;
1434 unsigned long flags;
1435
1436 spin_lock_irqsave(&cp->lock, flags);
1437 rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1438 spin_unlock_irqrestore(&cp->lock, flags);
1439
1440 return rc;
1441 }
1442
1443 static int cp_nway_reset(struct net_device *dev)
1444 {
1445 struct cp_private *cp = netdev_priv(dev);
1446 return mii_nway_restart(&cp->mii_if);
1447 }
1448
1449 static u32 cp_get_msglevel(struct net_device *dev)
1450 {
1451 struct cp_private *cp = netdev_priv(dev);
1452 return cp->msg_enable;
1453 }
1454
1455 static void cp_set_msglevel(struct net_device *dev, u32 value)
1456 {
1457 struct cp_private *cp = netdev_priv(dev);
1458 cp->msg_enable = value;
1459 }
1460
1461 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1462 {
1463 struct cp_private *cp = netdev_priv(dev);
1464 unsigned long flags;
1465
1466 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1467 return 0;
1468
1469 spin_lock_irqsave(&cp->lock, flags);
1470
1471 if (features & NETIF_F_RXCSUM)
1472 cp->cpcmd |= RxChkSum;
1473 else
1474 cp->cpcmd &= ~RxChkSum;
1475
1476 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1477 cp->cpcmd |= RxVlanOn;
1478 else
1479 cp->cpcmd &= ~RxVlanOn;
1480
1481 cpw16_f(CpCmd, cp->cpcmd);
1482 spin_unlock_irqrestore(&cp->lock, flags);
1483
1484 return 0;
1485 }
1486
1487 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1488 void *p)
1489 {
1490 struct cp_private *cp = netdev_priv(dev);
1491 unsigned long flags;
1492
1493 if (regs->len < CP_REGS_SIZE)
1494 return ;
1495
1496 regs->version = CP_REGS_VER;
1497
1498 spin_lock_irqsave(&cp->lock, flags);
1499 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1500 spin_unlock_irqrestore(&cp->lock, flags);
1501 }
1502
1503 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1504 {
1505 struct cp_private *cp = netdev_priv(dev);
1506 unsigned long flags;
1507
1508 spin_lock_irqsave (&cp->lock, flags);
1509 netdev_get_wol (cp, wol);
1510 spin_unlock_irqrestore (&cp->lock, flags);
1511 }
1512
1513 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1514 {
1515 struct cp_private *cp = netdev_priv(dev);
1516 unsigned long flags;
1517 int rc;
1518
1519 spin_lock_irqsave (&cp->lock, flags);
1520 rc = netdev_set_wol (cp, wol);
1521 spin_unlock_irqrestore (&cp->lock, flags);
1522
1523 return rc;
1524 }
1525
1526 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1527 {
1528 switch (stringset) {
1529 case ETH_SS_STATS:
1530 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1531 break;
1532 default:
1533 BUG();
1534 break;
1535 }
1536 }
1537
1538 static void cp_get_ethtool_stats (struct net_device *dev,
1539 struct ethtool_stats *estats, u64 *tmp_stats)
1540 {
1541 struct cp_private *cp = netdev_priv(dev);
1542 struct cp_dma_stats *nic_stats;
1543 dma_addr_t dma;
1544 int i;
1545
1546 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1547 &dma, GFP_KERNEL);
1548 if (!nic_stats)
1549 return;
1550
1551
1552 cpw32(StatsAddr + 4, (u64)dma >> 32);
1553 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1554 cpr32(StatsAddr);
1555
1556 for (i = 0; i < 1000; i++) {
1557 if ((cpr32(StatsAddr) & DumpStats) == 0)
1558 break;
1559 udelay(10);
1560 }
1561 cpw32(StatsAddr, 0);
1562 cpw32(StatsAddr + 4, 0);
1563 cpr32(StatsAddr);
1564
1565 i = 0;
1566 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1567 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1568 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1569 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1570 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1571 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1572 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1573 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1574 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1575 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1576 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1577 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1578 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1579 tmp_stats[i++] = cp->cp_stats.rx_frags;
1580 BUG_ON(i != CP_NUM_STATS);
1581
1582 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1583 }
1584
1585 static const struct ethtool_ops cp_ethtool_ops = {
1586 .get_drvinfo = cp_get_drvinfo,
1587 .get_regs_len = cp_get_regs_len,
1588 .get_sset_count = cp_get_sset_count,
1589 .nway_reset = cp_nway_reset,
1590 .get_link = ethtool_op_get_link,
1591 .get_msglevel = cp_get_msglevel,
1592 .set_msglevel = cp_set_msglevel,
1593 .get_regs = cp_get_regs,
1594 .get_wol = cp_get_wol,
1595 .set_wol = cp_set_wol,
1596 .get_strings = cp_get_strings,
1597 .get_ethtool_stats = cp_get_ethtool_stats,
1598 .get_eeprom_len = cp_get_eeprom_len,
1599 .get_eeprom = cp_get_eeprom,
1600 .set_eeprom = cp_set_eeprom,
1601 .get_ringparam = cp_get_ringparam,
1602 .get_link_ksettings = cp_get_link_ksettings,
1603 .set_link_ksettings = cp_set_link_ksettings,
1604 };
1605
1606 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1607 {
1608 struct cp_private *cp = netdev_priv(dev);
1609 int rc;
1610 unsigned long flags;
1611
1612 if (!netif_running(dev))
1613 return -EINVAL;
1614
1615 spin_lock_irqsave(&cp->lock, flags);
1616 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1617 spin_unlock_irqrestore(&cp->lock, flags);
1618 return rc;
1619 }
1620
1621 static int cp_set_mac_address(struct net_device *dev, void *p)
1622 {
1623 struct cp_private *cp = netdev_priv(dev);
1624 struct sockaddr *addr = p;
1625
1626 if (!is_valid_ether_addr(addr->sa_data))
1627 return -EADDRNOTAVAIL;
1628
1629 eth_hw_addr_set(dev, addr->sa_data);
1630
1631 spin_lock_irq(&cp->lock);
1632
1633 cpw8_f(Cfg9346, Cfg9346_Unlock);
1634 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1635 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1636 cpw8_f(Cfg9346, Cfg9346_Lock);
1637
1638 spin_unlock_irq(&cp->lock);
1639
1640 return 0;
1641 }
1642
1643
1644
1645
1646 #define EE_SHIFT_CLK 0x04
1647 #define EE_CS 0x08
1648 #define EE_DATA_WRITE 0x02
1649 #define EE_WRITE_0 0x00
1650 #define EE_WRITE_1 0x02
1651 #define EE_DATA_READ 0x01
1652 #define EE_ENB (0x80 | EE_CS)
1653
1654
1655
1656
1657
1658 #define eeprom_delay() readb(ee_addr)
1659
1660
1661 #define EE_EXTEND_CMD (4)
1662 #define EE_WRITE_CMD (5)
1663 #define EE_READ_CMD (6)
1664 #define EE_ERASE_CMD (7)
1665
1666 #define EE_EWDS_ADDR (0)
1667 #define EE_WRAL_ADDR (1)
1668 #define EE_ERAL_ADDR (2)
1669 #define EE_EWEN_ADDR (3)
1670
1671 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1672
1673 static void eeprom_cmd_start(void __iomem *ee_addr)
1674 {
1675 writeb (EE_ENB & ~EE_CS, ee_addr);
1676 writeb (EE_ENB, ee_addr);
1677 eeprom_delay ();
1678 }
1679
1680 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1681 {
1682 int i;
1683
1684
1685 for (i = cmd_len - 1; i >= 0; i--) {
1686 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1687 writeb (EE_ENB | dataval, ee_addr);
1688 eeprom_delay ();
1689 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1690 eeprom_delay ();
1691 }
1692 writeb (EE_ENB, ee_addr);
1693 eeprom_delay ();
1694 }
1695
1696 static void eeprom_cmd_end(void __iomem *ee_addr)
1697 {
1698 writeb(0, ee_addr);
1699 eeprom_delay ();
1700 }
1701
1702 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1703 int addr_len)
1704 {
1705 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1706
1707 eeprom_cmd_start(ee_addr);
1708 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1709 eeprom_cmd_end(ee_addr);
1710 }
1711
1712 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1713 {
1714 int i;
1715 u16 retval = 0;
1716 void __iomem *ee_addr = ioaddr + Cfg9346;
1717 int read_cmd = location | (EE_READ_CMD << addr_len);
1718
1719 eeprom_cmd_start(ee_addr);
1720 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1721
1722 for (i = 16; i > 0; i--) {
1723 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1724 eeprom_delay ();
1725 retval =
1726 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1727 0);
1728 writeb (EE_ENB, ee_addr);
1729 eeprom_delay ();
1730 }
1731
1732 eeprom_cmd_end(ee_addr);
1733
1734 return retval;
1735 }
1736
1737 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1738 int addr_len)
1739 {
1740 int i;
1741 void __iomem *ee_addr = ioaddr + Cfg9346;
1742 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1743
1744 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1745
1746 eeprom_cmd_start(ee_addr);
1747 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1748 eeprom_cmd(ee_addr, val, 16);
1749 eeprom_cmd_end(ee_addr);
1750
1751 eeprom_cmd_start(ee_addr);
1752 for (i = 0; i < 20000; i++)
1753 if (readb(ee_addr) & EE_DATA_READ)
1754 break;
1755 eeprom_cmd_end(ee_addr);
1756
1757 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1758 }
1759
1760 static int cp_get_eeprom_len(struct net_device *dev)
1761 {
1762 struct cp_private *cp = netdev_priv(dev);
1763 int size;
1764
1765 spin_lock_irq(&cp->lock);
1766 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1767 spin_unlock_irq(&cp->lock);
1768
1769 return size;
1770 }
1771
1772 static int cp_get_eeprom(struct net_device *dev,
1773 struct ethtool_eeprom *eeprom, u8 *data)
1774 {
1775 struct cp_private *cp = netdev_priv(dev);
1776 unsigned int addr_len;
1777 u16 val;
1778 u32 offset = eeprom->offset >> 1;
1779 u32 len = eeprom->len;
1780 u32 i = 0;
1781
1782 eeprom->magic = CP_EEPROM_MAGIC;
1783
1784 spin_lock_irq(&cp->lock);
1785
1786 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1787
1788 if (eeprom->offset & 1) {
1789 val = read_eeprom(cp->regs, offset, addr_len);
1790 data[i++] = (u8)(val >> 8);
1791 offset++;
1792 }
1793
1794 while (i < len - 1) {
1795 val = read_eeprom(cp->regs, offset, addr_len);
1796 data[i++] = (u8)val;
1797 data[i++] = (u8)(val >> 8);
1798 offset++;
1799 }
1800
1801 if (i < len) {
1802 val = read_eeprom(cp->regs, offset, addr_len);
1803 data[i] = (u8)val;
1804 }
1805
1806 spin_unlock_irq(&cp->lock);
1807 return 0;
1808 }
1809
1810 static int cp_set_eeprom(struct net_device *dev,
1811 struct ethtool_eeprom *eeprom, u8 *data)
1812 {
1813 struct cp_private *cp = netdev_priv(dev);
1814 unsigned int addr_len;
1815 u16 val;
1816 u32 offset = eeprom->offset >> 1;
1817 u32 len = eeprom->len;
1818 u32 i = 0;
1819
1820 if (eeprom->magic != CP_EEPROM_MAGIC)
1821 return -EINVAL;
1822
1823 spin_lock_irq(&cp->lock);
1824
1825 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1826
1827 if (eeprom->offset & 1) {
1828 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1829 val |= (u16)data[i++] << 8;
1830 write_eeprom(cp->regs, offset, val, addr_len);
1831 offset++;
1832 }
1833
1834 while (i < len - 1) {
1835 val = (u16)data[i++];
1836 val |= (u16)data[i++] << 8;
1837 write_eeprom(cp->regs, offset, val, addr_len);
1838 offset++;
1839 }
1840
1841 if (i < len) {
1842 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1843 val |= (u16)data[i];
1844 write_eeprom(cp->regs, offset, val, addr_len);
1845 }
1846
1847 spin_unlock_irq(&cp->lock);
1848 return 0;
1849 }
1850
1851
1852 static void cp_set_d3_state (struct cp_private *cp)
1853 {
1854 pci_enable_wake(cp->pdev, PCI_D0, 1);
1855 pci_set_power_state (cp->pdev, PCI_D3hot);
1856 }
1857
1858 static netdev_features_t cp_features_check(struct sk_buff *skb,
1859 struct net_device *dev,
1860 netdev_features_t features)
1861 {
1862 if (skb_shinfo(skb)->gso_size > MSSMask)
1863 features &= ~NETIF_F_TSO;
1864
1865 return vlan_features_check(skb, features);
1866 }
1867 static const struct net_device_ops cp_netdev_ops = {
1868 .ndo_open = cp_open,
1869 .ndo_stop = cp_close,
1870 .ndo_validate_addr = eth_validate_addr,
1871 .ndo_set_mac_address = cp_set_mac_address,
1872 .ndo_set_rx_mode = cp_set_rx_mode,
1873 .ndo_get_stats = cp_get_stats,
1874 .ndo_eth_ioctl = cp_ioctl,
1875 .ndo_start_xmit = cp_start_xmit,
1876 .ndo_tx_timeout = cp_tx_timeout,
1877 .ndo_set_features = cp_set_features,
1878 .ndo_change_mtu = cp_change_mtu,
1879 .ndo_features_check = cp_features_check,
1880
1881 #ifdef CONFIG_NET_POLL_CONTROLLER
1882 .ndo_poll_controller = cp_poll_controller,
1883 #endif
1884 };
1885
1886 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1887 {
1888 struct net_device *dev;
1889 struct cp_private *cp;
1890 int rc;
1891 void __iomem *regs;
1892 resource_size_t pciaddr;
1893 unsigned int addr_len, i, pci_using_dac;
1894 __le16 addr[ETH_ALEN / 2];
1895
1896 pr_info_once("%s", version);
1897
1898 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1899 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1900 dev_info(&pdev->dev,
1901 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1902 pdev->vendor, pdev->device, pdev->revision);
1903 return -ENODEV;
1904 }
1905
1906 dev = alloc_etherdev(sizeof(struct cp_private));
1907 if (!dev)
1908 return -ENOMEM;
1909 SET_NETDEV_DEV(dev, &pdev->dev);
1910
1911 cp = netdev_priv(dev);
1912 cp->pdev = pdev;
1913 cp->dev = dev;
1914 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1915 spin_lock_init (&cp->lock);
1916 cp->mii_if.dev = dev;
1917 cp->mii_if.mdio_read = mdio_read;
1918 cp->mii_if.mdio_write = mdio_write;
1919 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1920 cp->mii_if.phy_id_mask = 0x1f;
1921 cp->mii_if.reg_num_mask = 0x1f;
1922 cp_set_rxbufsize(cp);
1923
1924 rc = pci_enable_device(pdev);
1925 if (rc)
1926 goto err_out_free;
1927
1928 rc = pci_set_mwi(pdev);
1929 if (rc)
1930 goto err_out_disable;
1931
1932 rc = pci_request_regions(pdev, DRV_NAME);
1933 if (rc)
1934 goto err_out_mwi;
1935
1936 pciaddr = pci_resource_start(pdev, 1);
1937 if (!pciaddr) {
1938 rc = -EIO;
1939 dev_err(&pdev->dev, "no MMIO resource\n");
1940 goto err_out_res;
1941 }
1942 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1943 rc = -EIO;
1944 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1945 (unsigned long long)pci_resource_len(pdev, 1));
1946 goto err_out_res;
1947 }
1948
1949
1950 if ((sizeof(dma_addr_t) > 4) &&
1951 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1952 pci_using_dac = 1;
1953 } else {
1954 pci_using_dac = 0;
1955
1956 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1957 if (rc) {
1958 dev_err(&pdev->dev,
1959 "No usable DMA configuration, aborting\n");
1960 goto err_out_res;
1961 }
1962 }
1963
1964 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1965 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1966
1967 dev->features |= NETIF_F_RXCSUM;
1968 dev->hw_features |= NETIF_F_RXCSUM;
1969
1970 regs = ioremap(pciaddr, CP_REGS_SIZE);
1971 if (!regs) {
1972 rc = -EIO;
1973 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1974 (unsigned long long)pci_resource_len(pdev, 1),
1975 (unsigned long long)pciaddr);
1976 goto err_out_res;
1977 }
1978 cp->regs = regs;
1979
1980 cp_stop_hw(cp);
1981
1982
1983 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1984 for (i = 0; i < 3; i++)
1985 addr[i] = cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1986 eth_hw_addr_set(dev, (u8 *)addr);
1987
1988 dev->netdev_ops = &cp_netdev_ops;
1989 netif_napi_add_weight(dev, &cp->napi, cp_rx_poll, 16);
1990 dev->ethtool_ops = &cp_ethtool_ops;
1991 dev->watchdog_timeo = TX_TIMEOUT;
1992
1993 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1994 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1995
1996 if (pci_using_dac)
1997 dev->features |= NETIF_F_HIGHDMA;
1998
1999 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2000 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2001 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2002 NETIF_F_HIGHDMA;
2003
2004
2005 dev->min_mtu = CP_MIN_MTU;
2006 dev->max_mtu = CP_MAX_MTU;
2007
2008 rc = register_netdev(dev);
2009 if (rc)
2010 goto err_out_iomap;
2011
2012 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2013 regs, dev->dev_addr, pdev->irq);
2014
2015 pci_set_drvdata(pdev, dev);
2016
2017
2018 pci_set_master(pdev);
2019
2020 if (cp->wol_enabled)
2021 cp_set_d3_state (cp);
2022
2023 return 0;
2024
2025 err_out_iomap:
2026 iounmap(regs);
2027 err_out_res:
2028 pci_release_regions(pdev);
2029 err_out_mwi:
2030 pci_clear_mwi(pdev);
2031 err_out_disable:
2032 pci_disable_device(pdev);
2033 err_out_free:
2034 free_netdev(dev);
2035 return rc;
2036 }
2037
2038 static void cp_remove_one (struct pci_dev *pdev)
2039 {
2040 struct net_device *dev = pci_get_drvdata(pdev);
2041 struct cp_private *cp = netdev_priv(dev);
2042
2043 unregister_netdev(dev);
2044 iounmap(cp->regs);
2045 if (cp->wol_enabled)
2046 pci_set_power_state (pdev, PCI_D0);
2047 pci_release_regions(pdev);
2048 pci_clear_mwi(pdev);
2049 pci_disable_device(pdev);
2050 free_netdev(dev);
2051 }
2052
2053 static int __maybe_unused cp_suspend(struct device *device)
2054 {
2055 struct net_device *dev = dev_get_drvdata(device);
2056 struct cp_private *cp = netdev_priv(dev);
2057 unsigned long flags;
2058
2059 if (!netif_running(dev))
2060 return 0;
2061
2062 netif_device_detach (dev);
2063 netif_stop_queue (dev);
2064
2065 spin_lock_irqsave (&cp->lock, flags);
2066
2067
2068 cpw16 (IntrMask, 0);
2069 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2070
2071 spin_unlock_irqrestore (&cp->lock, flags);
2072
2073 device_set_wakeup_enable(device, cp->wol_enabled);
2074
2075 return 0;
2076 }
2077
2078 static int __maybe_unused cp_resume(struct device *device)
2079 {
2080 struct net_device *dev = dev_get_drvdata(device);
2081 struct cp_private *cp = netdev_priv(dev);
2082 unsigned long flags;
2083
2084 if (!netif_running(dev))
2085 return 0;
2086
2087 netif_device_attach (dev);
2088
2089
2090 cp_init_rings_index (cp);
2091 cp_init_hw (cp);
2092 cp_enable_irq(cp);
2093 netif_start_queue (dev);
2094
2095 spin_lock_irqsave (&cp->lock, flags);
2096
2097 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2098
2099 spin_unlock_irqrestore (&cp->lock, flags);
2100
2101 return 0;
2102 }
2103
2104 static const struct pci_device_id cp_pci_tbl[] = {
2105 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
2106 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
2107 { },
2108 };
2109 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2110
2111 static SIMPLE_DEV_PM_OPS(cp_pm_ops, cp_suspend, cp_resume);
2112
2113 static struct pci_driver cp_driver = {
2114 .name = DRV_NAME,
2115 .id_table = cp_pci_tbl,
2116 .probe = cp_init_one,
2117 .remove = cp_remove_one,
2118 .driver.pm = &cp_pm_ops,
2119 };
2120
2121 module_pci_driver(cp_driver);