Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
0003  */
0004 
0005 /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
0006  */
0007 
0008 #include <linux/tcp.h>
0009 #include <linux/ip.h>
0010 #include <linux/ipv6.h>
0011 #include <linux/crc32.h>
0012 #include <linux/if_vlan.h>
0013 #include <linux/jiffies.h>
0014 #include <linux/phy.h>
0015 #include <linux/of.h>
0016 #include <net/ip6_checksum.h>
0017 #include "emac.h"
0018 #include "emac-sgmii.h"
0019 
0020 /* EMAC_MAC_CTRL */
0021 #define SINGLE_PAUSE_MODE           0x10000000
0022 #define DEBUG_MODE                      0x08000000
0023 #define BROAD_EN                        0x04000000
0024 #define MULTI_ALL                       0x02000000
0025 #define RX_CHKSUM_EN                    0x01000000
0026 #define HUGE                            0x00800000
0027 #define SPEED(x)            (((x) & 0x3) << 20)
0028 #define SPEED_MASK          SPEED(0x3)
0029 #define SIMR                            0x00080000
0030 #define TPAUSE                          0x00010000
0031 #define PROM_MODE                       0x00008000
0032 #define VLAN_STRIP                      0x00004000
0033 #define PRLEN_BMSK                      0x00003c00
0034 #define PRLEN_SHFT                      10
0035 #define HUGEN                           0x00000200
0036 #define FLCHK                           0x00000100
0037 #define PCRCE                           0x00000080
0038 #define CRCE                            0x00000040
0039 #define FULLD                           0x00000020
0040 #define MAC_LP_EN                       0x00000010
0041 #define RXFC                            0x00000008
0042 #define TXFC                            0x00000004
0043 #define RXEN                            0x00000002
0044 #define TXEN                            0x00000001
0045 
0046 /* EMAC_DESC_CTRL_3 */
0047 #define RFD_RING_SIZE_BMSK                                       0xfff
0048 
0049 /* EMAC_DESC_CTRL_4 */
0050 #define RX_BUFFER_SIZE_BMSK                                     0xffff
0051 
0052 /* EMAC_DESC_CTRL_6 */
0053 #define RRD_RING_SIZE_BMSK                                       0xfff
0054 
0055 /* EMAC_DESC_CTRL_9 */
0056 #define TPD_RING_SIZE_BMSK                                      0xffff
0057 
0058 /* EMAC_TXQ_CTRL_0 */
0059 #define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
0060 #define NUM_TXF_BURST_PREF_SHFT                                     16
0061 #define LS_8023_SP                                                0x80
0062 #define TXQ_MODE                                                  0x40
0063 #define TXQ_EN                                                    0x20
0064 #define IP_OP_SP                                                  0x10
0065 #define NUM_TPD_BURST_PREF_BMSK                                    0xf
0066 #define NUM_TPD_BURST_PREF_SHFT                                      0
0067 
0068 /* EMAC_TXQ_CTRL_1 */
0069 #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
0070 
0071 /* EMAC_TXQ_CTRL_2 */
0072 #define TXF_HWM_BMSK                                         0xfff0000
0073 #define TXF_LWM_BMSK                                             0xfff
0074 
0075 /* EMAC_RXQ_CTRL_0 */
0076 #define RXQ_EN                                                 BIT(31)
0077 #define CUT_THRU_EN                                            BIT(30)
0078 #define RSS_HASH_EN                                            BIT(29)
0079 #define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
0080 #define NUM_RFD_BURST_PREF_SHFT                                     20
0081 #define IDT_TABLE_SIZE_BMSK                                    0x1ff00
0082 #define IDT_TABLE_SIZE_SHFT                                          8
0083 #define SP_IPV6                                                   0x80
0084 
0085 /* EMAC_RXQ_CTRL_1 */
0086 #define JUMBO_1KAH_BMSK                                         0xf000
0087 #define JUMBO_1KAH_SHFT                                             12
0088 #define RFD_PREF_LOW_TH                                           0x10
0089 #define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
0090 #define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
0091 #define RFD_PREF_UP_TH                                            0x10
0092 #define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
0093 #define RFD_PREF_UP_THRESHOLD_SHFT                                   0
0094 
0095 /* EMAC_RXQ_CTRL_2 */
0096 #define RXF_DOF_THRESFHOLD                                       0x1a0
0097 #define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
0098 #define RXF_DOF_THRESHOLD_SHFT                                      16
0099 #define RXF_UOF_THRESFHOLD                                        0xbe
0100 #define RXF_UOF_THRESHOLD_BMSK                                   0xfff
0101 #define RXF_UOF_THRESHOLD_SHFT                                       0
0102 
0103 /* EMAC_RXQ_CTRL_3 */
0104 #define RXD_TIMER_BMSK                                      0xffff0000
0105 #define RXD_THRESHOLD_BMSK                                       0xfff
0106 #define RXD_THRESHOLD_SHFT                                           0
0107 
0108 /* EMAC_DMA_CTRL */
0109 #define DMAW_DLY_CNT_BMSK                                      0xf0000
0110 #define DMAW_DLY_CNT_SHFT                                           16
0111 #define DMAR_DLY_CNT_BMSK                                       0xf800
0112 #define DMAR_DLY_CNT_SHFT                                           11
0113 #define DMAR_REQ_PRI                                             0x400
0114 #define REGWRBLEN_BMSK                                           0x380
0115 #define REGWRBLEN_SHFT                                               7
0116 #define REGRDBLEN_BMSK                                            0x70
0117 #define REGRDBLEN_SHFT                                               4
0118 #define OUT_ORDER_MODE                                             0x4
0119 #define ENH_ORDER_MODE                                             0x2
0120 #define IN_ORDER_MODE                                              0x1
0121 
0122 /* EMAC_MAILBOX_13 */
0123 #define RFD3_PROC_IDX_BMSK                                   0xfff0000
0124 #define RFD3_PROC_IDX_SHFT                                          16
0125 #define RFD3_PROD_IDX_BMSK                                       0xfff
0126 #define RFD3_PROD_IDX_SHFT                                           0
0127 
0128 /* EMAC_MAILBOX_2 */
0129 #define NTPD_CONS_IDX_BMSK                                  0xffff0000
0130 #define NTPD_CONS_IDX_SHFT                                          16
0131 
0132 /* EMAC_MAILBOX_3 */
0133 #define RFD0_CONS_IDX_BMSK                                       0xfff
0134 #define RFD0_CONS_IDX_SHFT                                           0
0135 
0136 /* EMAC_MAILBOX_11 */
0137 #define H3TPD_PROD_IDX_BMSK                                 0xffff0000
0138 #define H3TPD_PROD_IDX_SHFT                                         16
0139 
0140 /* EMAC_AXI_MAST_CTRL */
0141 #define DATA_BYTE_SWAP                                             0x8
0142 #define MAX_BOUND                                                  0x2
0143 #define MAX_BTYPE                                                  0x1
0144 
0145 /* EMAC_MAILBOX_12 */
0146 #define H3TPD_CONS_IDX_BMSK                                 0xffff0000
0147 #define H3TPD_CONS_IDX_SHFT                                         16
0148 
0149 /* EMAC_MAILBOX_9 */
0150 #define H2TPD_PROD_IDX_BMSK                                     0xffff
0151 #define H2TPD_PROD_IDX_SHFT                                          0
0152 
0153 /* EMAC_MAILBOX_10 */
0154 #define H1TPD_CONS_IDX_BMSK                                 0xffff0000
0155 #define H1TPD_CONS_IDX_SHFT                                         16
0156 #define H2TPD_CONS_IDX_BMSK                                     0xffff
0157 #define H2TPD_CONS_IDX_SHFT                                          0
0158 
0159 /* EMAC_ATHR_HEADER_CTRL */
0160 #define HEADER_CNT_EN                                              0x2
0161 #define HEADER_ENABLE                                              0x1
0162 
0163 /* EMAC_MAILBOX_0 */
0164 #define RFD0_PROC_IDX_BMSK                                   0xfff0000
0165 #define RFD0_PROC_IDX_SHFT                                          16
0166 #define RFD0_PROD_IDX_BMSK                                       0xfff
0167 #define RFD0_PROD_IDX_SHFT                                           0
0168 
0169 /* EMAC_MAILBOX_5 */
0170 #define RFD1_PROC_IDX_BMSK                                   0xfff0000
0171 #define RFD1_PROC_IDX_SHFT                                          16
0172 #define RFD1_PROD_IDX_BMSK                                       0xfff
0173 #define RFD1_PROD_IDX_SHFT                                           0
0174 
0175 /* EMAC_MISC_CTRL */
0176 #define RX_UNCPL_INT_EN                                            0x1
0177 
0178 /* EMAC_MAILBOX_7 */
0179 #define RFD2_CONS_IDX_BMSK                                   0xfff0000
0180 #define RFD2_CONS_IDX_SHFT                                          16
0181 #define RFD1_CONS_IDX_BMSK                                       0xfff
0182 #define RFD1_CONS_IDX_SHFT                                           0
0183 
0184 /* EMAC_MAILBOX_8 */
0185 #define RFD3_CONS_IDX_BMSK                                       0xfff
0186 #define RFD3_CONS_IDX_SHFT                                           0
0187 
0188 /* EMAC_MAILBOX_15 */
0189 #define NTPD_PROD_IDX_BMSK                                      0xffff
0190 #define NTPD_PROD_IDX_SHFT                                           0
0191 
0192 /* EMAC_MAILBOX_16 */
0193 #define H1TPD_PROD_IDX_BMSK                                     0xffff
0194 #define H1TPD_PROD_IDX_SHFT                                          0
0195 
0196 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
0197 #define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
0198 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
0199 #define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
0200 
0201 /* EMAC_EMAC_WRAPPER_TX_TS_INX */
0202 #define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
0203 #define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
0204 
0205 struct emac_skb_cb {
0206     u32           tpd_idx;
0207     unsigned long jiffies;
0208 };
0209 
0210 #define EMAC_SKB_CB(skb)    ((struct emac_skb_cb *)(skb)->cb)
0211 #define EMAC_RSS_IDT_SIZE   256
0212 #define JUMBO_1KAH      0x4
0213 #define RXD_TH          0x100
0214 #define EMAC_TPD_LAST_FRAGMENT  0x80000000
0215 #define EMAC_TPD_TSTAMP_SAVE    0x80000000
0216 
0217 /* EMAC Errors in emac_rrd.word[3] */
0218 #define EMAC_RRD_L4F        BIT(14)
0219 #define EMAC_RRD_IPF        BIT(15)
0220 #define EMAC_RRD_CRC        BIT(21)
0221 #define EMAC_RRD_FAE        BIT(22)
0222 #define EMAC_RRD_TRN        BIT(23)
0223 #define EMAC_RRD_RNT        BIT(24)
0224 #define EMAC_RRD_INC        BIT(25)
0225 #define EMAC_RRD_FOV        BIT(29)
0226 #define EMAC_RRD_LEN        BIT(30)
0227 
0228 /* Error bits that will result in a received frame being discarded */
0229 #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
0230             EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
0231             EMAC_RRD_FOV | EMAC_RRD_LEN)
0232 #define EMAC_RRD_STATS_DW_IDX 3
0233 
0234 #define EMAC_RRD(RXQ, SIZE, IDX)    ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
0235 #define EMAC_RFD(RXQ, SIZE, IDX)    ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
0236 #define EMAC_TPD(TXQ, SIZE, IDX)    ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
0237 
0238 #define GET_RFD_BUFFER(RXQ, IDX)    (&((RXQ)->rfd.rfbuff[(IDX)]))
0239 #define GET_TPD_BUFFER(RTQ, IDX)    (&((RTQ)->tpd.tpbuff[(IDX)]))
0240 
0241 #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD   8
0242 
0243 #define ISR_RX_PKT      (\
0244     RX_PKT_INT0     |\
0245     RX_PKT_INT1     |\
0246     RX_PKT_INT2     |\
0247     RX_PKT_INT3)
0248 
0249 void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
0250 {
0251     u32 crc32, bit, reg, mta;
0252 
0253     /* Calculate the CRC of the MAC address */
0254     crc32 = ether_crc(ETH_ALEN, addr);
0255 
0256     /* The HASH Table is an array of 2 32-bit registers. It is
0257      * treated like an array of 64 bits (BitArray[hash_value]).
0258      * Use the upper 6 bits of the above CRC as the hash value.
0259      */
0260     reg = (crc32 >> 31) & 0x1;
0261     bit = (crc32 >> 26) & 0x1F;
0262 
0263     mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
0264     mta |= BIT(bit);
0265     writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
0266 }
0267 
0268 void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
0269 {
0270     writel(0, adpt->base + EMAC_HASH_TAB_REG0);
0271     writel(0, adpt->base + EMAC_HASH_TAB_REG1);
0272 }
0273 
0274 /* definitions for RSS */
0275 #define EMAC_RSS_KEY(_i, _type) \
0276         (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
0277 #define EMAC_RSS_TBL(_i, _type) \
0278         (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
0279 
0280 /* Config MAC modes */
0281 void emac_mac_mode_config(struct emac_adapter *adpt)
0282 {
0283     struct net_device *netdev = adpt->netdev;
0284     u32 mac;
0285 
0286     mac = readl(adpt->base + EMAC_MAC_CTRL);
0287     mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
0288 
0289     if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
0290         mac |= VLAN_STRIP;
0291 
0292     if (netdev->flags & IFF_PROMISC)
0293         mac |= PROM_MODE;
0294 
0295     if (netdev->flags & IFF_ALLMULTI)
0296         mac |= MULTI_ALL;
0297 
0298     writel(mac, adpt->base + EMAC_MAC_CTRL);
0299 }
0300 
0301 /* Config descriptor rings */
0302 static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
0303 {
0304     /* TPD (Transmit Packet Descriptor) */
0305     writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
0306            adpt->base + EMAC_DESC_CTRL_1);
0307 
0308     writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
0309            adpt->base + EMAC_DESC_CTRL_8);
0310 
0311     writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
0312            adpt->base + EMAC_DESC_CTRL_9);
0313 
0314     /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
0315     writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
0316            adpt->base + EMAC_DESC_CTRL_0);
0317 
0318     writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
0319            adpt->base + EMAC_DESC_CTRL_2);
0320     writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
0321            adpt->base + EMAC_DESC_CTRL_5);
0322 
0323     writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
0324            adpt->base + EMAC_DESC_CTRL_3);
0325     writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
0326            adpt->base + EMAC_DESC_CTRL_6);
0327 
0328     writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
0329            adpt->base + EMAC_DESC_CTRL_4);
0330 
0331     writel(0, adpt->base + EMAC_DESC_CTRL_11);
0332 
0333     /* Load all of the base addresses above and ensure that triggering HW to
0334      * read ring pointers is flushed
0335      */
0336     writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
0337 }
0338 
0339 /* Config transmit parameters */
0340 static void emac_mac_tx_config(struct emac_adapter *adpt)
0341 {
0342     u32 val;
0343 
0344     writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
0345            JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
0346 
0347     val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
0348            NUM_TPD_BURST_PREF_BMSK;
0349 
0350     val |= TXQ_MODE | LS_8023_SP;
0351     val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
0352         NUM_TXF_BURST_PREF_BMSK;
0353 
0354     writel(val, adpt->base + EMAC_TXQ_CTRL_0);
0355     emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
0356               (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
0357 }
0358 
0359 /* Config receive parameters */
0360 static void emac_mac_rx_config(struct emac_adapter *adpt)
0361 {
0362     u32 val;
0363 
0364     val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
0365            NUM_RFD_BURST_PREF_BMSK;
0366     val |= (SP_IPV6 | CUT_THRU_EN);
0367 
0368     writel(val, adpt->base + EMAC_RXQ_CTRL_0);
0369 
0370     val = readl(adpt->base + EMAC_RXQ_CTRL_1);
0371     val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
0372          RFD_PREF_UP_THRESHOLD_BMSK);
0373     val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
0374         (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
0375         (RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
0376     writel(val, adpt->base + EMAC_RXQ_CTRL_1);
0377 
0378     val = readl(adpt->base + EMAC_RXQ_CTRL_2);
0379     val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
0380     val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
0381         (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
0382     writel(val, adpt->base + EMAC_RXQ_CTRL_2);
0383 
0384     val = readl(adpt->base + EMAC_RXQ_CTRL_3);
0385     val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
0386     val |= RXD_TH << RXD_THRESHOLD_SHFT;
0387     writel(val, adpt->base + EMAC_RXQ_CTRL_3);
0388 }
0389 
0390 /* Config dma */
0391 static void emac_mac_dma_config(struct emac_adapter *adpt)
0392 {
0393     u32 dma_ctrl = DMAR_REQ_PRI;
0394 
0395     switch (adpt->dma_order) {
0396     case emac_dma_ord_in:
0397         dma_ctrl |= IN_ORDER_MODE;
0398         break;
0399     case emac_dma_ord_enh:
0400         dma_ctrl |= ENH_ORDER_MODE;
0401         break;
0402     case emac_dma_ord_out:
0403         dma_ctrl |= OUT_ORDER_MODE;
0404         break;
0405     default:
0406         break;
0407     }
0408 
0409     dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
0410                         REGRDBLEN_BMSK;
0411     dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
0412                         REGWRBLEN_BMSK;
0413     dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
0414                         DMAR_DLY_CNT_BMSK;
0415     dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
0416                         DMAW_DLY_CNT_BMSK;
0417 
0418     /* config DMA and ensure that configuration is flushed to HW */
0419     writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
0420 }
0421 
0422 /* set MAC address */
0423 static void emac_set_mac_address(struct emac_adapter *adpt, const u8 *addr)
0424 {
0425     u32 sta;
0426 
0427     /* for example: 00-A0-C6-11-22-33
0428      * 0<-->C6112233, 1<-->00A0.
0429      */
0430 
0431     /* low 32bit word */
0432     sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
0433           (((u32)addr[4]) << 8)  | (((u32)addr[5]));
0434     writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
0435 
0436     /* hight 32bit word */
0437     sta = (((u32)addr[0]) << 8) | (u32)addr[1];
0438     writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
0439 }
0440 
0441 static void emac_mac_config(struct emac_adapter *adpt)
0442 {
0443     struct net_device *netdev = adpt->netdev;
0444     unsigned int max_frame;
0445     u32 val;
0446 
0447     emac_set_mac_address(adpt, netdev->dev_addr);
0448 
0449     max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
0450     adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
0451         ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
0452 
0453     emac_mac_dma_rings_config(adpt);
0454 
0455     writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
0456            adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
0457 
0458     emac_mac_tx_config(adpt);
0459     emac_mac_rx_config(adpt);
0460     emac_mac_dma_config(adpt);
0461 
0462     val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
0463     val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
0464     val |= MAX_BTYPE;
0465     writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
0466     writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
0467     writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
0468 }
0469 
0470 void emac_mac_reset(struct emac_adapter *adpt)
0471 {
0472     emac_mac_stop(adpt);
0473 
0474     emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
0475     usleep_range(100, 150); /* reset may take up to 100usec */
0476 
0477     /* interrupt clear-on-read */
0478     emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
0479 }
0480 
0481 static void emac_mac_start(struct emac_adapter *adpt)
0482 {
0483     struct phy_device *phydev = adpt->phydev;
0484     u32 mac, csr1;
0485 
0486     /* enable tx queue */
0487     emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
0488 
0489     /* enable rx queue */
0490     emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
0491 
0492     /* enable mac control */
0493     mac = readl(adpt->base + EMAC_MAC_CTRL);
0494     csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
0495 
0496     mac |= TXEN | RXEN;     /* enable RX/TX */
0497 
0498     /* Configure MAC flow control. If set to automatic, then match
0499      * whatever the PHY does. Otherwise, enable or disable it, depending
0500      * on what the user configured via ethtool.
0501      */
0502     mac &= ~(RXFC | TXFC);
0503 
0504     if (adpt->automatic) {
0505         /* If it's set to automatic, then update our local values */
0506         adpt->rx_flow_control = phydev->pause;
0507         adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
0508     }
0509     mac |= adpt->rx_flow_control ? RXFC : 0;
0510     mac |= adpt->tx_flow_control ? TXFC : 0;
0511 
0512     /* setup link speed */
0513     mac &= ~SPEED_MASK;
0514     if (phydev->speed == SPEED_1000) {
0515         mac |= SPEED(2);
0516         csr1 |= FREQ_MODE;
0517     } else {
0518         mac |= SPEED(1);
0519         csr1 &= ~FREQ_MODE;
0520     }
0521 
0522     if (phydev->duplex == DUPLEX_FULL)
0523         mac |= FULLD;
0524     else
0525         mac &= ~FULLD;
0526 
0527     /* other parameters */
0528     mac |= (CRCE | PCRCE);
0529     mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
0530     mac |= BROAD_EN;
0531     mac |= FLCHK;
0532     mac &= ~RX_CHKSUM_EN;
0533     mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
0534          DEBUG_MODE | SINGLE_PAUSE_MODE);
0535 
0536     /* Enable single-pause-frame mode if requested.
0537      *
0538      * If enabled, the EMAC will send a single pause frame when the RX
0539      * queue is full.  This normally leads to packet loss because
0540      * the pause frame disables the remote MAC only for 33ms (the quanta),
0541      * and then the remote MAC continues sending packets even though
0542      * the RX queue is still full.
0543      *
0544      * If disabled, the EMAC sends a pause frame every 31ms until the RX
0545      * queue is no longer full.  Normally, this is the preferred
0546      * method of operation.  However, when the system is hung (e.g.
0547      * cores are halted), the EMAC interrupt handler is never called
0548      * and so the RX queue fills up quickly and stays full.  The resuling
0549      * non-stop "flood" of pause frames sometimes has the effect of
0550      * disabling nearby switches.  In some cases, other nearby switches
0551      * are also affected, shutting down the entire network.
0552      *
0553      * The user can enable or disable single-pause-frame mode
0554      * via ethtool.
0555      */
0556     mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
0557 
0558     writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
0559 
0560     writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
0561 
0562     /* enable interrupt read clear, low power sleep mode and
0563      * the irq moderators
0564      */
0565 
0566     writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
0567     writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
0568             IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
0569 
0570     emac_mac_mode_config(adpt);
0571 
0572     emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
0573               (HEADER_ENABLE | HEADER_CNT_EN), 0);
0574 }
0575 
0576 void emac_mac_stop(struct emac_adapter *adpt)
0577 {
0578     emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
0579     emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
0580     emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
0581     usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
0582 }
0583 
0584 /* Free all descriptors of given transmit queue */
0585 static void emac_tx_q_descs_free(struct emac_adapter *adpt)
0586 {
0587     struct emac_tx_queue *tx_q = &adpt->tx_q;
0588     unsigned int i;
0589     size_t size;
0590 
0591     /* ring already cleared, nothing to do */
0592     if (!tx_q->tpd.tpbuff)
0593         return;
0594 
0595     for (i = 0; i < tx_q->tpd.count; i++) {
0596         struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
0597 
0598         if (tpbuf->dma_addr) {
0599             dma_unmap_single(adpt->netdev->dev.parent,
0600                      tpbuf->dma_addr, tpbuf->length,
0601                      DMA_TO_DEVICE);
0602             tpbuf->dma_addr = 0;
0603         }
0604         if (tpbuf->skb) {
0605             dev_kfree_skb_any(tpbuf->skb);
0606             tpbuf->skb = NULL;
0607         }
0608     }
0609 
0610     size = sizeof(struct emac_buffer) * tx_q->tpd.count;
0611     memset(tx_q->tpd.tpbuff, 0, size);
0612 
0613     /* clear the descriptor ring */
0614     memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
0615 
0616     tx_q->tpd.consume_idx = 0;
0617     tx_q->tpd.produce_idx = 0;
0618 }
0619 
0620 /* Free all descriptors of given receive queue */
0621 static void emac_rx_q_free_descs(struct emac_adapter *adpt)
0622 {
0623     struct device *dev = adpt->netdev->dev.parent;
0624     struct emac_rx_queue *rx_q = &adpt->rx_q;
0625     unsigned int i;
0626     size_t size;
0627 
0628     /* ring already cleared, nothing to do */
0629     if (!rx_q->rfd.rfbuff)
0630         return;
0631 
0632     for (i = 0; i < rx_q->rfd.count; i++) {
0633         struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
0634 
0635         if (rfbuf->dma_addr) {
0636             dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
0637                      DMA_FROM_DEVICE);
0638             rfbuf->dma_addr = 0;
0639         }
0640         if (rfbuf->skb) {
0641             dev_kfree_skb(rfbuf->skb);
0642             rfbuf->skb = NULL;
0643         }
0644     }
0645 
0646     size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
0647     memset(rx_q->rfd.rfbuff, 0, size);
0648 
0649     /* clear the descriptor rings */
0650     memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
0651     rx_q->rrd.produce_idx = 0;
0652     rx_q->rrd.consume_idx = 0;
0653 
0654     memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
0655     rx_q->rfd.produce_idx = 0;
0656     rx_q->rfd.consume_idx = 0;
0657 }
0658 
0659 /* Free all buffers associated with given transmit queue */
0660 static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
0661 {
0662     struct emac_tx_queue *tx_q = &adpt->tx_q;
0663 
0664     emac_tx_q_descs_free(adpt);
0665 
0666     kfree(tx_q->tpd.tpbuff);
0667     tx_q->tpd.tpbuff = NULL;
0668     tx_q->tpd.v_addr = NULL;
0669     tx_q->tpd.dma_addr = 0;
0670     tx_q->tpd.size = 0;
0671 }
0672 
0673 /* Allocate TX descriptor ring for the given transmit queue */
0674 static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
0675                 struct emac_tx_queue *tx_q)
0676 {
0677     struct emac_ring_header *ring_header = &adpt->ring_header;
0678     int node = dev_to_node(adpt->netdev->dev.parent);
0679     size_t size;
0680 
0681     size = sizeof(struct emac_buffer) * tx_q->tpd.count;
0682     tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
0683     if (!tx_q->tpd.tpbuff)
0684         return -ENOMEM;
0685 
0686     tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
0687     tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
0688     tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
0689     ring_header->used += ALIGN(tx_q->tpd.size, 8);
0690     tx_q->tpd.produce_idx = 0;
0691     tx_q->tpd.consume_idx = 0;
0692 
0693     return 0;
0694 }
0695 
0696 /* Free all buffers associated with given transmit queue */
0697 static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
0698 {
0699     struct emac_rx_queue *rx_q = &adpt->rx_q;
0700 
0701     emac_rx_q_free_descs(adpt);
0702 
0703     kfree(rx_q->rfd.rfbuff);
0704     rx_q->rfd.rfbuff   = NULL;
0705 
0706     rx_q->rfd.v_addr   = NULL;
0707     rx_q->rfd.dma_addr = 0;
0708     rx_q->rfd.size     = 0;
0709 
0710     rx_q->rrd.v_addr   = NULL;
0711     rx_q->rrd.dma_addr = 0;
0712     rx_q->rrd.size     = 0;
0713 }
0714 
0715 /* Allocate RX descriptor rings for the given receive queue */
0716 static int emac_rx_descs_alloc(struct emac_adapter *adpt)
0717 {
0718     struct emac_ring_header *ring_header = &adpt->ring_header;
0719     int node = dev_to_node(adpt->netdev->dev.parent);
0720     struct emac_rx_queue *rx_q = &adpt->rx_q;
0721     size_t size;
0722 
0723     size = sizeof(struct emac_buffer) * rx_q->rfd.count;
0724     rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
0725     if (!rx_q->rfd.rfbuff)
0726         return -ENOMEM;
0727 
0728     rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
0729     rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
0730 
0731     rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
0732     rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
0733     ring_header->used += ALIGN(rx_q->rrd.size, 8);
0734 
0735     rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
0736     rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
0737     ring_header->used += ALIGN(rx_q->rfd.size, 8);
0738 
0739     rx_q->rrd.produce_idx = 0;
0740     rx_q->rrd.consume_idx = 0;
0741 
0742     rx_q->rfd.produce_idx = 0;
0743     rx_q->rfd.consume_idx = 0;
0744 
0745     return 0;
0746 }
0747 
0748 /* Allocate all TX and RX descriptor rings */
0749 int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
0750 {
0751     struct emac_ring_header *ring_header = &adpt->ring_header;
0752     struct device *dev = adpt->netdev->dev.parent;
0753     unsigned int num_tx_descs = adpt->tx_desc_cnt;
0754     unsigned int num_rx_descs = adpt->rx_desc_cnt;
0755     int ret;
0756 
0757     adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
0758 
0759     adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
0760     adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
0761 
0762     /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
0763      * hence the additional padding bytes are allocated.
0764      */
0765     ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
0766                 num_rx_descs * (adpt->rfd_size * 4) +
0767                 num_rx_descs * (adpt->rrd_size * 4) +
0768                 8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
0769 
0770     ring_header->used = 0;
0771     ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
0772                          &ring_header->dma_addr,
0773                          GFP_KERNEL);
0774     if (!ring_header->v_addr)
0775         return -ENOMEM;
0776 
0777     ring_header->used = ALIGN(ring_header->dma_addr, 8) -
0778                             ring_header->dma_addr;
0779 
0780     ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
0781     if (ret) {
0782         netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
0783         goto err_alloc_tx;
0784     }
0785 
0786     ret = emac_rx_descs_alloc(adpt);
0787     if (ret) {
0788         netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
0789         goto err_alloc_rx;
0790     }
0791 
0792     return 0;
0793 
0794 err_alloc_rx:
0795     emac_tx_q_bufs_free(adpt);
0796 err_alloc_tx:
0797     dma_free_coherent(dev, ring_header->size,
0798               ring_header->v_addr, ring_header->dma_addr);
0799 
0800     ring_header->v_addr   = NULL;
0801     ring_header->dma_addr = 0;
0802     ring_header->size     = 0;
0803     ring_header->used     = 0;
0804 
0805     return ret;
0806 }
0807 
0808 /* Free all TX and RX descriptor rings */
0809 void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
0810 {
0811     struct emac_ring_header *ring_header = &adpt->ring_header;
0812     struct device *dev = adpt->netdev->dev.parent;
0813 
0814     emac_tx_q_bufs_free(adpt);
0815     emac_rx_q_bufs_free(adpt);
0816 
0817     dma_free_coherent(dev, ring_header->size,
0818               ring_header->v_addr, ring_header->dma_addr);
0819 
0820     ring_header->v_addr   = NULL;
0821     ring_header->dma_addr = 0;
0822     ring_header->size     = 0;
0823     ring_header->used     = 0;
0824 }
0825 
0826 /* Initialize descriptor rings */
0827 static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
0828 {
0829     unsigned int i;
0830 
0831     adpt->tx_q.tpd.produce_idx = 0;
0832     adpt->tx_q.tpd.consume_idx = 0;
0833     for (i = 0; i < adpt->tx_q.tpd.count; i++)
0834         adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
0835 
0836     adpt->rx_q.rrd.produce_idx = 0;
0837     adpt->rx_q.rrd.consume_idx = 0;
0838     adpt->rx_q.rfd.produce_idx = 0;
0839     adpt->rx_q.rfd.consume_idx = 0;
0840     for (i = 0; i < adpt->rx_q.rfd.count; i++)
0841         adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
0842 }
0843 
0844 /* Produce new receive free descriptor */
0845 static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
0846                    struct emac_rx_queue *rx_q,
0847                    dma_addr_t addr)
0848 {
0849     u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
0850 
0851     *(hw_rfd++) = lower_32_bits(addr);
0852     *hw_rfd = upper_32_bits(addr);
0853 
0854     if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
0855         rx_q->rfd.produce_idx = 0;
0856 }
0857 
0858 /* Fill up receive queue's RFD with preallocated receive buffers */
0859 static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
0860                     struct emac_rx_queue *rx_q)
0861 {
0862     struct emac_buffer *curr_rxbuf;
0863     struct emac_buffer *next_rxbuf;
0864     unsigned int count = 0;
0865     u32 next_produce_idx;
0866 
0867     next_produce_idx = rx_q->rfd.produce_idx + 1;
0868     if (next_produce_idx == rx_q->rfd.count)
0869         next_produce_idx = 0;
0870 
0871     curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
0872     next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
0873 
0874     /* this always has a blank rx_buffer*/
0875     while (!next_rxbuf->dma_addr) {
0876         struct sk_buff *skb;
0877         int ret;
0878 
0879         skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
0880         if (!skb)
0881             break;
0882 
0883         curr_rxbuf->dma_addr =
0884             dma_map_single(adpt->netdev->dev.parent, skb->data,
0885                        adpt->rxbuf_size, DMA_FROM_DEVICE);
0886 
0887         ret = dma_mapping_error(adpt->netdev->dev.parent,
0888                     curr_rxbuf->dma_addr);
0889         if (ret) {
0890             dev_kfree_skb(skb);
0891             break;
0892         }
0893         curr_rxbuf->skb = skb;
0894         curr_rxbuf->length = adpt->rxbuf_size;
0895 
0896         emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
0897         next_produce_idx = rx_q->rfd.produce_idx + 1;
0898         if (next_produce_idx == rx_q->rfd.count)
0899             next_produce_idx = 0;
0900 
0901         curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
0902         next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
0903         count++;
0904     }
0905 
0906     if (count) {
0907         u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
0908                 rx_q->produce_mask;
0909         emac_reg_update32(adpt->base + rx_q->produce_reg,
0910                   rx_q->produce_mask, prod_idx);
0911     }
0912 }
0913 
0914 static void emac_adjust_link(struct net_device *netdev)
0915 {
0916     struct emac_adapter *adpt = netdev_priv(netdev);
0917     struct phy_device *phydev = netdev->phydev;
0918 
0919     if (phydev->link) {
0920         emac_mac_start(adpt);
0921         emac_sgmii_link_change(adpt, true);
0922     } else {
0923         emac_sgmii_link_change(adpt, false);
0924         emac_mac_stop(adpt);
0925     }
0926 
0927     phy_print_status(phydev);
0928 }
0929 
0930 /* Bringup the interface/HW */
0931 int emac_mac_up(struct emac_adapter *adpt)
0932 {
0933     struct net_device *netdev = adpt->netdev;
0934     int ret;
0935 
0936     emac_mac_rx_tx_ring_reset_all(adpt);
0937     emac_mac_config(adpt);
0938     emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
0939 
0940     adpt->phydev->irq = PHY_POLL;
0941     ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
0942                  PHY_INTERFACE_MODE_SGMII);
0943     if (ret) {
0944         netdev_err(adpt->netdev, "could not connect phy\n");
0945         return ret;
0946     }
0947 
0948     phy_attached_print(adpt->phydev, NULL);
0949 
0950     /* enable mac irq */
0951     writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
0952     writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
0953 
0954     phy_start(adpt->phydev);
0955 
0956     napi_enable(&adpt->rx_q.napi);
0957     netif_start_queue(netdev);
0958 
0959     return 0;
0960 }
0961 
0962 /* Bring down the interface/HW */
0963 void emac_mac_down(struct emac_adapter *adpt)
0964 {
0965     struct net_device *netdev = adpt->netdev;
0966 
0967     netif_stop_queue(netdev);
0968     napi_disable(&adpt->rx_q.napi);
0969 
0970     phy_stop(adpt->phydev);
0971 
0972     /* Interrupts must be disabled before the PHY is disconnected, to
0973      * avoid a race condition where adjust_link is null when we get
0974      * an interrupt.
0975      */
0976     writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
0977     writel(0, adpt->base + EMAC_INT_MASK);
0978     synchronize_irq(adpt->irq.irq);
0979 
0980     phy_disconnect(adpt->phydev);
0981 
0982     emac_mac_reset(adpt);
0983 
0984     emac_tx_q_descs_free(adpt);
0985     netdev_reset_queue(adpt->netdev);
0986     emac_rx_q_free_descs(adpt);
0987 }
0988 
0989 /* Consume next received packet descriptor */
0990 static bool emac_rx_process_rrd(struct emac_adapter *adpt,
0991                 struct emac_rx_queue *rx_q,
0992                 struct emac_rrd *rrd)
0993 {
0994     u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
0995 
0996     rrd->word[3] = *(hw_rrd + 3);
0997 
0998     if (!RRD_UPDT(rrd))
0999         return false;
1000 
1001     rrd->word[4] = 0;
1002     rrd->word[5] = 0;
1003 
1004     rrd->word[0] = *(hw_rrd++);
1005     rrd->word[1] = *(hw_rrd++);
1006     rrd->word[2] = *(hw_rrd++);
1007 
1008     if (unlikely(RRD_NOR(rrd) != 1)) {
1009         netdev_err(adpt->netdev,
1010                "error: multi-RFD not support yet! nor:%lu\n",
1011                RRD_NOR(rrd));
1012     }
1013 
1014     /* mark rrd as processed */
1015     RRD_UPDT_SET(rrd, 0);
1016     *hw_rrd = rrd->word[3];
1017 
1018     if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1019         rx_q->rrd.consume_idx = 0;
1020 
1021     return true;
1022 }
1023 
1024 /* Produce new transmit descriptor */
1025 static void emac_tx_tpd_create(struct emac_adapter *adpt,
1026                    struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1027 {
1028     u32 *hw_tpd;
1029 
1030     tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1031     hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1032 
1033     if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1034         tx_q->tpd.produce_idx = 0;
1035 
1036     *(hw_tpd++) = tpd->word[0];
1037     *(hw_tpd++) = tpd->word[1];
1038     *(hw_tpd++) = tpd->word[2];
1039     *hw_tpd = tpd->word[3];
1040 }
1041 
1042 /* Mark the last transmit descriptor as such (for the transmit packet) */
1043 static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1044                   struct emac_tx_queue *tx_q)
1045 {
1046     u32 *hw_tpd =
1047         EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1048     u32 tmp_tpd;
1049 
1050     tmp_tpd = *(hw_tpd + 1);
1051     tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1052     *(hw_tpd + 1) = tmp_tpd;
1053 }
1054 
1055 static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1056 {
1057     struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1058     u32 consume_idx = RRD_SI(rrd);
1059     unsigned int i;
1060 
1061     for (i = 0; i < RRD_NOR(rrd); i++) {
1062         rfbuf[consume_idx].skb = NULL;
1063         if (++consume_idx == rx_q->rfd.count)
1064             consume_idx = 0;
1065     }
1066 
1067     rx_q->rfd.consume_idx = consume_idx;
1068     rx_q->rfd.process_idx = consume_idx;
1069 }
1070 
1071 /* Push the received skb to upper layers */
1072 static void emac_receive_skb(struct emac_rx_queue *rx_q,
1073                  struct sk_buff *skb,
1074                  u16 vlan_tag, bool vlan_flag)
1075 {
1076     if (vlan_flag) {
1077         u16 vlan;
1078 
1079         EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1080         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1081     }
1082 
1083     napi_gro_receive(&rx_q->napi, skb);
1084 }
1085 
1086 /* Process receive event */
1087 void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1088              int *num_pkts, int max_pkts)
1089 {
1090     u32 proc_idx, hw_consume_idx, num_consume_pkts;
1091     struct net_device *netdev  = adpt->netdev;
1092     struct emac_buffer *rfbuf;
1093     unsigned int count = 0;
1094     struct emac_rrd rrd;
1095     struct sk_buff *skb;
1096     u32 reg;
1097 
1098     reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1099 
1100     hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1101     num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1102         (hw_consume_idx -  rx_q->rrd.consume_idx) :
1103         (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1104 
1105     do {
1106         if (!num_consume_pkts)
1107             break;
1108 
1109         if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1110             break;
1111 
1112         if (likely(RRD_NOR(&rrd) == 1)) {
1113             /* good receive */
1114             rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1115             dma_unmap_single(adpt->netdev->dev.parent,
1116                      rfbuf->dma_addr, rfbuf->length,
1117                      DMA_FROM_DEVICE);
1118             rfbuf->dma_addr = 0;
1119             skb = rfbuf->skb;
1120         } else {
1121             netdev_err(adpt->netdev,
1122                    "error: multi-RFD not support yet!\n");
1123             break;
1124         }
1125         emac_rx_rfd_clean(rx_q, &rrd);
1126         num_consume_pkts--;
1127         count++;
1128 
1129         /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1130          * with DF set are marked as error), drop packets based on the
1131          * error mask rather than the summary bit (ignoring L4F errors)
1132          */
1133         if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1134             netif_dbg(adpt, rx_status, adpt->netdev,
1135                   "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1136                   rrd.word[0], rrd.word[1],
1137                   rrd.word[2], rrd.word[3]);
1138 
1139             dev_kfree_skb(skb);
1140             continue;
1141         }
1142 
1143         skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1144         skb->dev = netdev;
1145         skb->protocol = eth_type_trans(skb, skb->dev);
1146         if (netdev->features & NETIF_F_RXCSUM)
1147             skb->ip_summed = RRD_L4F(&rrd) ?
1148                       CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1149         else
1150             skb_checksum_none_assert(skb);
1151 
1152         emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1153                  (bool)RRD_CVTAG(&rrd));
1154 
1155         (*num_pkts)++;
1156     } while (*num_pkts < max_pkts);
1157 
1158     if (count) {
1159         proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1160                 rx_q->process_mask;
1161         emac_reg_update32(adpt->base + rx_q->process_reg,
1162                   rx_q->process_mask, proc_idx);
1163         emac_mac_rx_descs_refill(adpt, rx_q);
1164     }
1165 }
1166 
1167 /* get the number of free transmit descriptors */
1168 static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1169 {
1170     u32 produce_idx = tx_q->tpd.produce_idx;
1171     u32 consume_idx = tx_q->tpd.consume_idx;
1172 
1173     return (consume_idx > produce_idx) ?
1174         (consume_idx - produce_idx - 1) :
1175         (tx_q->tpd.count + consume_idx - produce_idx - 1);
1176 }
1177 
1178 /* Process transmit event */
1179 void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1180 {
1181     u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1182     u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1183     struct emac_buffer *tpbuf;
1184 
1185     hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1186 
1187     while (tx_q->tpd.consume_idx != hw_consume_idx) {
1188         tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1189         if (tpbuf->dma_addr) {
1190             dma_unmap_page(adpt->netdev->dev.parent,
1191                        tpbuf->dma_addr, tpbuf->length,
1192                        DMA_TO_DEVICE);
1193             tpbuf->dma_addr = 0;
1194         }
1195 
1196         if (tpbuf->skb) {
1197             pkts_compl++;
1198             bytes_compl += tpbuf->skb->len;
1199             dev_consume_skb_irq(tpbuf->skb);
1200             tpbuf->skb = NULL;
1201         }
1202 
1203         if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1204             tx_q->tpd.consume_idx = 0;
1205     }
1206 
1207     netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1208 
1209     if (netif_queue_stopped(adpt->netdev))
1210         if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1211             netif_wake_queue(adpt->netdev);
1212 }
1213 
1214 /* Initialize all queue data structures */
1215 void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1216                   struct emac_adapter *adpt)
1217 {
1218     adpt->rx_q.netdev = adpt->netdev;
1219 
1220     adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1221     adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1222     adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1223 
1224     adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1225     adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1226     adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1227 
1228     adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1229     adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1230     adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1231 
1232     adpt->rx_q.irq          = &adpt->irq;
1233     adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1234 
1235     adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1236     adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1237     adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1238 
1239     adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1240     adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1241     adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1242 }
1243 
1244 /* Fill up transmit descriptors with TSO and Checksum offload information */
1245 static int emac_tso_csum(struct emac_adapter *adpt,
1246              struct emac_tx_queue *tx_q,
1247              struct sk_buff *skb,
1248              struct emac_tpd *tpd)
1249 {
1250     unsigned int hdr_len;
1251     int ret;
1252 
1253     if (skb_is_gso(skb)) {
1254         if (skb_header_cloned(skb)) {
1255             ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1256             if (unlikely(ret))
1257                 return ret;
1258         }
1259 
1260         if (skb->protocol == htons(ETH_P_IP)) {
1261             u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1262                        + ntohs(ip_hdr(skb)->tot_len);
1263             if (skb->len > pkt_len)
1264                 pskb_trim(skb, pkt_len);
1265         }
1266 
1267         hdr_len = skb_tcp_all_headers(skb);
1268         if (unlikely(skb->len == hdr_len)) {
1269             /* we only need to do csum */
1270             netif_warn(adpt, tx_err, adpt->netdev,
1271                    "tso not needed for packet with 0 data\n");
1272             goto do_csum;
1273         }
1274 
1275         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1276             ip_hdr(skb)->check = 0;
1277             tcp_hdr(skb)->check =
1278                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1279                            ip_hdr(skb)->daddr,
1280                            0, IPPROTO_TCP, 0);
1281             TPD_IPV4_SET(tpd, 1);
1282         }
1283 
1284         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1285             /* ipv6 tso need an extra tpd */
1286             struct emac_tpd extra_tpd;
1287 
1288             memset(tpd, 0, sizeof(*tpd));
1289             memset(&extra_tpd, 0, sizeof(extra_tpd));
1290 
1291             tcp_v6_gso_csum_prep(skb);
1292 
1293             TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1294             TPD_LSO_SET(&extra_tpd, 1);
1295             TPD_LSOV_SET(&extra_tpd, 1);
1296             emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1297             TPD_LSOV_SET(tpd, 1);
1298         }
1299 
1300         TPD_LSO_SET(tpd, 1);
1301         TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1302         TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1303         return 0;
1304     }
1305 
1306 do_csum:
1307     if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1308         unsigned int css, cso;
1309 
1310         cso = skb_transport_offset(skb);
1311         if (unlikely(cso & 0x1)) {
1312             netdev_err(adpt->netdev,
1313                    "error: payload offset should be even\n");
1314             return -EINVAL;
1315         }
1316         css = cso + skb->csum_offset;
1317 
1318         TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1319         TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1320         TPD_CSX_SET(tpd, 1);
1321     }
1322 
1323     return 0;
1324 }
1325 
1326 /* Fill up transmit descriptors */
1327 static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1328                  struct emac_tx_queue *tx_q, struct sk_buff *skb,
1329                  struct emac_tpd *tpd)
1330 {
1331     unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1332     unsigned int first = tx_q->tpd.produce_idx;
1333     unsigned int len = skb_headlen(skb);
1334     struct emac_buffer *tpbuf = NULL;
1335     unsigned int mapped_len = 0;
1336     unsigned int i;
1337     int count = 0;
1338     int ret;
1339 
1340     /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1341     if (TPD_LSO(tpd)) {
1342         mapped_len = skb_tcp_all_headers(skb);
1343 
1344         tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1345         tpbuf->length = mapped_len;
1346         tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1347                            virt_to_page(skb->data),
1348                            offset_in_page(skb->data),
1349                            tpbuf->length,
1350                            DMA_TO_DEVICE);
1351         ret = dma_mapping_error(adpt->netdev->dev.parent,
1352                     tpbuf->dma_addr);
1353         if (ret)
1354             goto error;
1355 
1356         TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1357         TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1358         TPD_BUF_LEN_SET(tpd, tpbuf->length);
1359         emac_tx_tpd_create(adpt, tx_q, tpd);
1360         count++;
1361     }
1362 
1363     if (mapped_len < len) {
1364         tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1365         tpbuf->length = len - mapped_len;
1366         tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1367                            virt_to_page(skb->data +
1368                                 mapped_len),
1369                            offset_in_page(skb->data +
1370                                   mapped_len),
1371                            tpbuf->length, DMA_TO_DEVICE);
1372         ret = dma_mapping_error(adpt->netdev->dev.parent,
1373                     tpbuf->dma_addr);
1374         if (ret)
1375             goto error;
1376 
1377         TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1378         TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1379         TPD_BUF_LEN_SET(tpd, tpbuf->length);
1380         emac_tx_tpd_create(adpt, tx_q, tpd);
1381         count++;
1382     }
1383 
1384     for (i = 0; i < nr_frags; i++) {
1385         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1386 
1387         tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1388         tpbuf->length = skb_frag_size(frag);
1389         tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
1390                            frag, 0, tpbuf->length,
1391                            DMA_TO_DEVICE);
1392         ret = dma_mapping_error(adpt->netdev->dev.parent,
1393                     tpbuf->dma_addr);
1394         if (ret)
1395             goto error;
1396 
1397         TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1398         TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1399         TPD_BUF_LEN_SET(tpd, tpbuf->length);
1400         emac_tx_tpd_create(adpt, tx_q, tpd);
1401         count++;
1402     }
1403 
1404     /* The last tpd */
1405     wmb();
1406     emac_tx_tpd_mark_last(adpt, tx_q);
1407 
1408     /* The last buffer info contain the skb address,
1409      * so it will be freed after unmap
1410      */
1411     tpbuf->skb = skb;
1412 
1413     return;
1414 
1415 error:
1416     /* One of the memory mappings failed, so undo everything */
1417     tx_q->tpd.produce_idx = first;
1418 
1419     while (count--) {
1420         tpbuf = GET_TPD_BUFFER(tx_q, first);
1421         dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1422                    tpbuf->length, DMA_TO_DEVICE);
1423         tpbuf->dma_addr = 0;
1424         tpbuf->length = 0;
1425 
1426         if (++first == tx_q->tpd.count)
1427             first = 0;
1428     }
1429 
1430     dev_kfree_skb(skb);
1431 }
1432 
1433 /* Transmit the packet using specified transmit queue */
1434 netdev_tx_t emac_mac_tx_buf_send(struct emac_adapter *adpt,
1435                  struct emac_tx_queue *tx_q,
1436                  struct sk_buff *skb)
1437 {
1438     struct emac_tpd tpd;
1439     u32 prod_idx;
1440     int len;
1441 
1442     memset(&tpd, 0, sizeof(tpd));
1443 
1444     if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1445         dev_kfree_skb_any(skb);
1446         return NETDEV_TX_OK;
1447     }
1448 
1449     if (skb_vlan_tag_present(skb)) {
1450         u16 tag;
1451 
1452         EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1453         TPD_CVLAN_TAG_SET(&tpd, tag);
1454         TPD_INSTC_SET(&tpd, 1);
1455     }
1456 
1457     if (skb_network_offset(skb) != ETH_HLEN)
1458         TPD_TYP_SET(&tpd, 1);
1459 
1460     len = skb->len;
1461     emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1462 
1463     netdev_sent_queue(adpt->netdev, len);
1464 
1465     /* Make sure the are enough free descriptors to hold one
1466      * maximum-sized SKB.  We need one desc for each fragment,
1467      * one for the checksum (emac_tso_csum), one for TSO, and
1468      * one for the SKB header.
1469      */
1470     if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1471         netif_stop_queue(adpt->netdev);
1472 
1473     /* update produce idx */
1474     prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1475             tx_q->produce_mask;
1476     emac_reg_update32(adpt->base + tx_q->produce_reg,
1477               tx_q->produce_mask, prod_idx);
1478 
1479     return NETDEV_TX_OK;
1480 }