Back to home page

OSCL-LXR

 
 

    


0001 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
0002 /*
0003     Written/copyright 1999-2001 by Donald Becker.
0004     Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
0005     Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
0006     Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
0007 
0008     This software may be used and distributed according to the terms of
0009     the GNU General Public License (GPL), incorporated herein by reference.
0010     Drivers based on or derived from this code fall under the GPL and must
0011     retain the authorship, copyright and license notice.  This file is not
0012     a complete program and may only be used when the entire operating
0013     system is licensed under the GPL.  License for under other terms may be
0014     available.  Contact the original author for details.
0015 
0016     The original author may be reached as becker@scyld.com, or at
0017     Scyld Computing Corporation
0018     410 Severn Ave., Suite 210
0019     Annapolis MD 21403
0020 
0021     Support information and updates available at
0022     http://www.scyld.com/network/netsemi.html
0023     [link no longer provides useful info -jgarzik]
0024 
0025 
0026     TODO:
0027     * big endian support with CFG:BEM instead of cpu_to_le32
0028 */
0029 
0030 #include <linux/module.h>
0031 #include <linux/kernel.h>
0032 #include <linux/string.h>
0033 #include <linux/timer.h>
0034 #include <linux/errno.h>
0035 #include <linux/ioport.h>
0036 #include <linux/slab.h>
0037 #include <linux/interrupt.h>
0038 #include <linux/pci.h>
0039 #include <linux/netdevice.h>
0040 #include <linux/etherdevice.h>
0041 #include <linux/skbuff.h>
0042 #include <linux/init.h>
0043 #include <linux/spinlock.h>
0044 #include <linux/ethtool.h>
0045 #include <linux/delay.h>
0046 #include <linux/rtnetlink.h>
0047 #include <linux/mii.h>
0048 #include <linux/crc32.h>
0049 #include <linux/bitops.h>
0050 #include <linux/prefetch.h>
0051 #include <asm/processor.h>  /* Processor type for cache alignment. */
0052 #include <asm/io.h>
0053 #include <asm/irq.h>
0054 #include <linux/uaccess.h>
0055 
0056 #define DRV_NAME    "natsemi"
0057 #define DRV_VERSION "2.1"
0058 #define DRV_RELDATE "Sept 11, 2006"
0059 
0060 #define RX_OFFSET   2
0061 
0062 /* Updated to recommendations in pci-skeleton v2.03. */
0063 
0064 /* The user-configurable values.
0065    These may be modified when a driver module is loaded.*/
0066 
0067 #define NATSEMI_DEF_MSG     (NETIF_MSG_DRV      | \
0068                  NETIF_MSG_LINK     | \
0069                  NETIF_MSG_WOL      | \
0070                  NETIF_MSG_RX_ERR   | \
0071                  NETIF_MSG_TX_ERR)
0072 static int debug = -1;
0073 
0074 static int mtu;
0075 
0076 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
0077    This chip uses a 512 element hash table based on the Ethernet CRC.  */
0078 static const int multicast_filter_limit = 100;
0079 
0080 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
0081    Setting to > 1518 effectively disables this feature. */
0082 static int rx_copybreak;
0083 
0084 static int dspcfg_workaround = 1;
0085 
0086 /* Used to pass the media type, etc.
0087    Both 'options[]' and 'full_duplex[]' should exist for driver
0088    interoperability.
0089    The media type is usually passed in 'options[]'.
0090 */
0091 #define MAX_UNITS 8     /* More are supported, limit only on options */
0092 static int options[MAX_UNITS];
0093 static int full_duplex[MAX_UNITS];
0094 
0095 /* Operational parameters that are set at compile time. */
0096 
0097 /* Keep the ring sizes a power of two for compile efficiency.
0098    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
0099    Making the Tx ring too large decreases the effectiveness of channel
0100    bonding and packet priority.
0101    There are no ill effects from too-large receive rings. */
0102 #define TX_RING_SIZE    16
0103 #define TX_QUEUE_LEN    10 /* Limit ring entries actually used, min 4. */
0104 #define RX_RING_SIZE    32
0105 
0106 /* Operational parameters that usually are not changed. */
0107 /* Time in jiffies before concluding the transmitter is hung. */
0108 #define TX_TIMEOUT  (2*HZ)
0109 
0110 #define NATSEMI_HW_TIMEOUT  400
0111 #define NATSEMI_TIMER_FREQ  5*HZ
0112 #define NATSEMI_PG0_NREGS   64
0113 #define NATSEMI_RFDR_NREGS  8
0114 #define NATSEMI_PG1_NREGS   4
0115 #define NATSEMI_NREGS       (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
0116                  NATSEMI_PG1_NREGS)
0117 #define NATSEMI_REGS_VER    1 /* v1 added RFDR registers */
0118 #define NATSEMI_REGS_SIZE   (NATSEMI_NREGS * sizeof(u32))
0119 
0120 /* Buffer sizes:
0121  * The nic writes 32-bit values, even if the upper bytes of
0122  * a 32-bit value are beyond the end of the buffer.
0123  */
0124 #define NATSEMI_HEADERS     22  /* 2*mac,type,vlan,crc */
0125 #define NATSEMI_PADDING     16  /* 2 bytes should be sufficient */
0126 #define NATSEMI_LONGPKT     1518    /* limit for normal packets */
0127 #define NATSEMI_RX_LIMIT    2046    /* maximum supported by hardware */
0128 
0129 /* These identify the driver base version and may not be removed. */
0130 static const char version[] =
0131   KERN_INFO DRV_NAME " dp8381x driver, version "
0132       DRV_VERSION ", " DRV_RELDATE "\n"
0133   "  originally by Donald Becker <becker@scyld.com>\n"
0134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
0135 
0136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
0137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
0138 MODULE_LICENSE("GPL");
0139 
0140 module_param(mtu, int, 0);
0141 module_param(debug, int, 0);
0142 module_param(rx_copybreak, int, 0);
0143 module_param(dspcfg_workaround, int, 0);
0144 module_param_array(options, int, NULL, 0);
0145 module_param_array(full_duplex, int, NULL, 0);
0146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
0147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
0148 MODULE_PARM_DESC(rx_copybreak,
0149     "DP8381x copy breakpoint for copy-only-tiny-frames");
0150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
0151 MODULE_PARM_DESC(options,
0152     "DP8381x: Bits 0-3: media type, bit 17: full duplex");
0153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
0154 
0155 /*
0156                 Theory of Operation
0157 
0158 I. Board Compatibility
0159 
0160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
0161 It also works with other chips in the DP83810 series.
0162 
0163 II. Board-specific settings
0164 
0165 This driver requires the PCI interrupt line to be valid.
0166 It honors the EEPROM-set values.
0167 
0168 III. Driver operation
0169 
0170 IIIa. Ring buffers
0171 
0172 This driver uses two statically allocated fixed-size descriptor lists
0173 formed into rings by a branch from the final descriptor to the beginning of
0174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
0175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
0176 into a list.
0177 
0178 IIIb/c. Transmit/Receive Structure
0179 
0180 This driver uses a zero-copy receive and transmit scheme.
0181 The driver allocates full frame size skbuffs for the Rx ring buffers at
0182 open() time and passes the skb->data field to the chip as receive data
0183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
0184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
0185 When the incoming frame is larger, the skbuff is passed directly up the
0186 protocol stack.  Buffers consumed this way are replaced by newly allocated
0187 skbuffs in a later phase of receives.
0188 
0189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
0190 using a full-sized skbuff for small frames vs. the copying costs of larger
0191 frames.  New boards are typically used in generously configured machines
0192 and the underfilled buffers have negligible impact compared to the benefit of
0193 a single allocation size, so the default value of zero results in never
0194 copying packets.  When copying is done, the cost is usually mitigated by using
0195 a combined copy/checksum routine.  Copying also preloads the cache, which is
0196 most useful with small frames.
0197 
0198 A subtle aspect of the operation is that unaligned buffers are not permitted
0199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
0200 longword aligned for further processing.  On copies frames are put into the
0201 skbuff at an offset of "+2", 16-byte aligning the IP header.
0202 
0203 IIId. Synchronization
0204 
0205 Most operations are synchronized on the np->lock irq spinlock, except the
0206 receive and transmit paths which are synchronised using a combination of
0207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
0208 
0209 IVb. References
0210 
0211 http://www.scyld.com/expert/100mbps.html
0212 http://www.scyld.com/expert/NWay.html
0213 Datasheet is available from:
0214 http://www.national.com/pf/DP/DP83815.html
0215 
0216 IVc. Errata
0217 
0218 None characterised.
0219 */
0220 
0221 
0222 
0223 /*
0224  * Support for fibre connections on Am79C874:
0225  * This phy needs a special setup when connected to a fibre cable.
0226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
0227  */
0228 #define PHYID_AM79C874  0x0022561b
0229 
0230 enum {
0231     MII_MCTRL   = 0x15,     /* mode control register */
0232     MII_FX_SEL  = 0x0001,   /* 100BASE-FX (fiber) */
0233     MII_EN_SCRM = 0x0004,   /* enable scrambler (tp) */
0234 };
0235 
0236 enum {
0237     NATSEMI_FLAG_IGNORE_PHY     = 0x1,
0238 };
0239 
0240 /* array of board data directly indexed by pci_tbl[x].driver_data */
0241 static struct {
0242     const char *name;
0243     unsigned long flags;
0244     unsigned int eeprom_size;
0245 } natsemi_pci_info[] = {
0246     { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
0247     { "NatSemi DP8381[56]", 0, 24 },
0248 };
0249 
0250 static const struct pci_device_id natsemi_pci_tbl[] = {
0251     { PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
0252     { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
0253     { } /* terminate list */
0254 };
0255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
0256 
0257 /* Offsets to the device registers.
0258    Unlike software-only systems, device drivers interact with complex hardware.
0259    It's not useful to define symbolic names for every register bit in the
0260    device.
0261 */
0262 enum register_offsets {
0263     ChipCmd         = 0x00,
0264     ChipConfig      = 0x04,
0265     EECtrl          = 0x08,
0266     PCIBusCfg       = 0x0C,
0267     IntrStatus      = 0x10,
0268     IntrMask        = 0x14,
0269     IntrEnable      = 0x18,
0270     IntrHoldoff     = 0x1C, /* DP83816 only */
0271     TxRingPtr       = 0x20,
0272     TxConfig        = 0x24,
0273     RxRingPtr       = 0x30,
0274     RxConfig        = 0x34,
0275     ClkRun          = 0x3C,
0276     WOLCmd          = 0x40,
0277     PauseCmd        = 0x44,
0278     RxFilterAddr        = 0x48,
0279     RxFilterData        = 0x4C,
0280     BootRomAddr     = 0x50,
0281     BootRomData     = 0x54,
0282     SiliconRev      = 0x58,
0283     StatsCtrl       = 0x5C,
0284     StatsData       = 0x60,
0285     RxPktErrs       = 0x60,
0286     RxMissed        = 0x68,
0287     RxCRCErrs       = 0x64,
0288     BasicControl        = 0x80,
0289     BasicStatus     = 0x84,
0290     AnegAdv         = 0x90,
0291     AnegPeer        = 0x94,
0292     PhyStatus       = 0xC0,
0293     MIntrCtrl       = 0xC4,
0294     MIntrStatus     = 0xC8,
0295     PhyCtrl         = 0xE4,
0296 
0297     /* These are from the spec, around page 78... on a separate table.
0298      * The meaning of these registers depend on the value of PGSEL. */
0299     PGSEL           = 0xCC,
0300     PMDCSR          = 0xE4,
0301     TSTDAT          = 0xFC,
0302     DSPCFG          = 0xF4,
0303     SDCFG           = 0xF8
0304 };
0305 /* the values for the 'magic' registers above (PGSEL=1) */
0306 #define PMDCSR_VAL  0x189c  /* enable preferred adaptation circuitry */
0307 #define TSTDAT_VAL  0x0
0308 #define DSPCFG_VAL  0x5040
0309 #define SDCFG_VAL   0x008c  /* set voltage thresholds for Signal Detect */
0310 #define DSPCFG_LOCK 0x20    /* coefficient lock bit in DSPCFG */
0311 #define DSPCFG_COEF 0x1000  /* see coefficient (in TSTDAT) bit in DSPCFG */
0312 #define TSTDAT_FIXED    0xe8    /* magic number for bad coefficients */
0313 
0314 /* misc PCI space registers */
0315 enum pci_register_offsets {
0316     PCIPM           = 0x44,
0317 };
0318 
0319 enum ChipCmd_bits {
0320     ChipReset       = 0x100,
0321     RxReset         = 0x20,
0322     TxReset         = 0x10,
0323     RxOff           = 0x08,
0324     RxOn            = 0x04,
0325     TxOff           = 0x02,
0326     TxOn            = 0x01,
0327 };
0328 
0329 enum ChipConfig_bits {
0330     CfgPhyDis       = 0x200,
0331     CfgPhyRst       = 0x400,
0332     CfgExtPhy       = 0x1000,
0333     CfgAnegEnable       = 0x2000,
0334     CfgAneg100      = 0x4000,
0335     CfgAnegFull     = 0x8000,
0336     CfgAnegDone     = 0x8000000,
0337     CfgFullDuplex       = 0x20000000,
0338     CfgSpeed100     = 0x40000000,
0339     CfgLink         = 0x80000000,
0340 };
0341 
0342 enum EECtrl_bits {
0343     EE_ShiftClk     = 0x04,
0344     EE_DataIn       = 0x01,
0345     EE_ChipSelect       = 0x08,
0346     EE_DataOut      = 0x02,
0347     MII_Data        = 0x10,
0348     MII_Write       = 0x20,
0349     MII_ShiftClk        = 0x40,
0350 };
0351 
0352 enum PCIBusCfg_bits {
0353     EepromReload        = 0x4,
0354 };
0355 
0356 /* Bits in the interrupt status/mask registers. */
0357 enum IntrStatus_bits {
0358     IntrRxDone      = 0x0001,
0359     IntrRxIntr      = 0x0002,
0360     IntrRxErr       = 0x0004,
0361     IntrRxEarly     = 0x0008,
0362     IntrRxIdle      = 0x0010,
0363     IntrRxOverrun       = 0x0020,
0364     IntrTxDone      = 0x0040,
0365     IntrTxIntr      = 0x0080,
0366     IntrTxErr       = 0x0100,
0367     IntrTxIdle      = 0x0200,
0368     IntrTxUnderrun      = 0x0400,
0369     StatsMax        = 0x0800,
0370     SWInt           = 0x1000,
0371     WOLPkt          = 0x2000,
0372     LinkChange      = 0x4000,
0373     IntrHighBits        = 0x8000,
0374     RxStatusFIFOOver    = 0x10000,
0375     IntrPCIErr      = 0xf00000,
0376     RxResetDone     = 0x1000000,
0377     TxResetDone     = 0x2000000,
0378     IntrAbnormalSummary = 0xCD20,
0379 };
0380 
0381 /*
0382  * Default Interrupts:
0383  * Rx OK, Rx Packet Error, Rx Overrun,
0384  * Tx OK, Tx Packet Error, Tx Underrun,
0385  * MIB Service, Phy Interrupt, High Bits,
0386  * Rx Status FIFO overrun,
0387  * Received Target Abort, Received Master Abort,
0388  * Signalled System Error, Received Parity Error
0389  */
0390 #define DEFAULT_INTR 0x00f1cd65
0391 
0392 enum TxConfig_bits {
0393     TxDrthMask      = 0x3f,
0394     TxFlthMask      = 0x3f00,
0395     TxMxdmaMask     = 0x700000,
0396     TxMxdma_512     = 0x0,
0397     TxMxdma_4       = 0x100000,
0398     TxMxdma_8       = 0x200000,
0399     TxMxdma_16      = 0x300000,
0400     TxMxdma_32      = 0x400000,
0401     TxMxdma_64      = 0x500000,
0402     TxMxdma_128     = 0x600000,
0403     TxMxdma_256     = 0x700000,
0404     TxCollRetry     = 0x800000,
0405     TxAutoPad       = 0x10000000,
0406     TxMacLoop       = 0x20000000,
0407     TxHeartIgn      = 0x40000000,
0408     TxCarrierIgn        = 0x80000000
0409 };
0410 
0411 /*
0412  * Tx Configuration:
0413  * - 256 byte DMA burst length
0414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
0415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
0416  *   when 64 byte are in the fifo)
0417  * - on tx underruns, increase drain threshold by 64.
0418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
0419  *   threshold and the drain threshold must be less than 2016 bytes.
0420  *
0421  */
0422 #define TX_FLTH_VAL     ((512/32) << 8)
0423 #define TX_DRTH_VAL_START   (64/32)
0424 #define TX_DRTH_VAL_INC     2
0425 #define TX_DRTH_VAL_LIMIT   (1472/32)
0426 
0427 enum RxConfig_bits {
0428     RxDrthMask      = 0x3e,
0429     RxMxdmaMask     = 0x700000,
0430     RxMxdma_512     = 0x0,
0431     RxMxdma_4       = 0x100000,
0432     RxMxdma_8       = 0x200000,
0433     RxMxdma_16      = 0x300000,
0434     RxMxdma_32      = 0x400000,
0435     RxMxdma_64      = 0x500000,
0436     RxMxdma_128     = 0x600000,
0437     RxMxdma_256     = 0x700000,
0438     RxAcceptLong        = 0x8000000,
0439     RxAcceptTx      = 0x10000000,
0440     RxAcceptRunt        = 0x40000000,
0441     RxAcceptErr     = 0x80000000
0442 };
0443 #define RX_DRTH_VAL     (128/8)
0444 
0445 enum ClkRun_bits {
0446     PMEEnable       = 0x100,
0447     PMEStatus       = 0x8000,
0448 };
0449 
0450 enum WolCmd_bits {
0451     WakePhy         = 0x1,
0452     WakeUnicast     = 0x2,
0453     WakeMulticast       = 0x4,
0454     WakeBroadcast       = 0x8,
0455     WakeArp         = 0x10,
0456     WakePMatch0     = 0x20,
0457     WakePMatch1     = 0x40,
0458     WakePMatch2     = 0x80,
0459     WakePMatch3     = 0x100,
0460     WakeMagic       = 0x200,
0461     WakeMagicSecure     = 0x400,
0462     SecureHack      = 0x100000,
0463     WokePhy         = 0x400000,
0464     WokeUnicast     = 0x800000,
0465     WokeMulticast       = 0x1000000,
0466     WokeBroadcast       = 0x2000000,
0467     WokeArp         = 0x4000000,
0468     WokePMatch0     = 0x8000000,
0469     WokePMatch1     = 0x10000000,
0470     WokePMatch2     = 0x20000000,
0471     WokePMatch3     = 0x40000000,
0472     WokeMagic       = 0x80000000,
0473     WakeOptsSummary     = 0x7ff
0474 };
0475 
0476 enum RxFilterAddr_bits {
0477     RFCRAddressMask     = 0x3ff,
0478     AcceptMulticast     = 0x00200000,
0479     AcceptMyPhys        = 0x08000000,
0480     AcceptAllPhys       = 0x10000000,
0481     AcceptAllMulticast  = 0x20000000,
0482     AcceptBroadcast     = 0x40000000,
0483     RxFilterEnable      = 0x80000000
0484 };
0485 
0486 enum StatsCtrl_bits {
0487     StatsWarn       = 0x1,
0488     StatsFreeze     = 0x2,
0489     StatsClear      = 0x4,
0490     StatsStrobe     = 0x8,
0491 };
0492 
0493 enum MIntrCtrl_bits {
0494     MICRIntEn       = 0x2,
0495 };
0496 
0497 enum PhyCtrl_bits {
0498     PhyAddrMask     = 0x1f,
0499 };
0500 
0501 #define PHY_ADDR_NONE       32
0502 #define PHY_ADDR_INTERNAL   1
0503 
0504 /* values we might find in the silicon revision register */
0505 #define SRR_DP83815_C   0x0302
0506 #define SRR_DP83815_D   0x0403
0507 #define SRR_DP83816_A4  0x0504
0508 #define SRR_DP83816_A5  0x0505
0509 
0510 /* The Rx and Tx buffer descriptors. */
0511 /* Note that using only 32 bit fields simplifies conversion to big-endian
0512    architectures. */
0513 struct netdev_desc {
0514     __le32 next_desc;
0515     __le32 cmd_status;
0516     __le32 addr;
0517     __le32 software_use;
0518 };
0519 
0520 /* Bits in network_desc.status */
0521 enum desc_status_bits {
0522     DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
0523     DescNoCRC=0x10000000, DescPktOK=0x08000000,
0524     DescSizeMask=0xfff,
0525 
0526     DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
0527     DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
0528     DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
0529     DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
0530 
0531     DescRxAbort=0x04000000, DescRxOver=0x02000000,
0532     DescRxDest=0x01800000, DescRxLong=0x00400000,
0533     DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
0534     DescRxCRC=0x00080000, DescRxAlign=0x00040000,
0535     DescRxLoop=0x00020000, DesRxColl=0x00010000,
0536 };
0537 
0538 struct netdev_private {
0539     /* Descriptor rings first for alignment */
0540     dma_addr_t ring_dma;
0541     struct netdev_desc *rx_ring;
0542     struct netdev_desc *tx_ring;
0543     /* The addresses of receive-in-place skbuffs */
0544     struct sk_buff *rx_skbuff[RX_RING_SIZE];
0545     dma_addr_t rx_dma[RX_RING_SIZE];
0546     /* address of a sent-in-place packet/buffer, for later free() */
0547     struct sk_buff *tx_skbuff[TX_RING_SIZE];
0548     dma_addr_t tx_dma[TX_RING_SIZE];
0549     struct net_device *dev;
0550     void __iomem *ioaddr;
0551     struct napi_struct napi;
0552     /* Media monitoring timer */
0553     struct timer_list timer;
0554     /* Frequently used values: keep some adjacent for cache effect */
0555     struct pci_dev *pci_dev;
0556     struct netdev_desc *rx_head_desc;
0557     /* Producer/consumer ring indices */
0558     unsigned int cur_rx, dirty_rx;
0559     unsigned int cur_tx, dirty_tx;
0560     /* Based on MTU+slack. */
0561     unsigned int rx_buf_sz;
0562     int oom;
0563     /* Interrupt status */
0564     u32 intr_status;
0565     /* Do not touch the nic registers */
0566     int hands_off;
0567     /* Don't pay attention to the reported link state. */
0568     int ignore_phy;
0569     /* external phy that is used: only valid if dev->if_port != PORT_TP */
0570     int mii;
0571     int phy_addr_external;
0572     unsigned int full_duplex;
0573     /* Rx filter */
0574     u32 cur_rx_mode;
0575     u32 rx_filter[16];
0576     /* FIFO and PCI burst thresholds */
0577     u32 tx_config, rx_config;
0578     /* original contents of ClkRun register */
0579     u32 SavedClkRun;
0580     /* silicon revision */
0581     u32 srr;
0582     /* expected DSPCFG value */
0583     u16 dspcfg;
0584     int dspcfg_workaround;
0585     /* parms saved in ethtool format */
0586     u16 speed;      /* The forced speed, 10Mb, 100Mb, gigabit */
0587     u8  duplex;     /* Duplex, half or full */
0588     u8  autoneg;    /* Autonegotiation enabled */
0589     /* MII transceiver section */
0590     u16 advertising;
0591     unsigned int iosize;
0592     spinlock_t lock;
0593     u32 msg_enable;
0594     /* EEPROM data */
0595     int eeprom_size;
0596 };
0597 
0598 static void move_int_phy(struct net_device *dev, int addr);
0599 static int eeprom_read(void __iomem *ioaddr, int location);
0600 static int mdio_read(struct net_device *dev, int reg);
0601 static void mdio_write(struct net_device *dev, int reg, u16 data);
0602 static void init_phy_fixup(struct net_device *dev);
0603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
0604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
0605 static int find_mii(struct net_device *dev);
0606 static void natsemi_reset(struct net_device *dev);
0607 static void natsemi_reload_eeprom(struct net_device *dev);
0608 static void natsemi_stop_rxtx(struct net_device *dev);
0609 static int netdev_open(struct net_device *dev);
0610 static void do_cable_magic(struct net_device *dev);
0611 static void undo_cable_magic(struct net_device *dev);
0612 static void check_link(struct net_device *dev);
0613 static void netdev_timer(struct timer_list *t);
0614 static void dump_ring(struct net_device *dev);
0615 static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
0616 static int alloc_ring(struct net_device *dev);
0617 static void refill_rx(struct net_device *dev);
0618 static void init_ring(struct net_device *dev);
0619 static void drain_tx(struct net_device *dev);
0620 static void drain_ring(struct net_device *dev);
0621 static void free_ring(struct net_device *dev);
0622 static void reinit_ring(struct net_device *dev);
0623 static void init_registers(struct net_device *dev);
0624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
0625 static irqreturn_t intr_handler(int irq, void *dev_instance);
0626 static void netdev_error(struct net_device *dev, int intr_status);
0627 static int natsemi_poll(struct napi_struct *napi, int budget);
0628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
0629 static void netdev_tx_done(struct net_device *dev);
0630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
0631 #ifdef CONFIG_NET_POLL_CONTROLLER
0632 static void natsemi_poll_controller(struct net_device *dev);
0633 #endif
0634 static void __set_rx_mode(struct net_device *dev);
0635 static void set_rx_mode(struct net_device *dev);
0636 static void __get_stats(struct net_device *dev);
0637 static struct net_device_stats *get_stats(struct net_device *dev);
0638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
0639 static int netdev_set_wol(struct net_device *dev, u32 newval);
0640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
0641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
0642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
0643 static int netdev_get_ecmd(struct net_device *dev,
0644                struct ethtool_link_ksettings *ecmd);
0645 static int netdev_set_ecmd(struct net_device *dev,
0646                const struct ethtool_link_ksettings *ecmd);
0647 static void enable_wol_mode(struct net_device *dev, int enable_intr);
0648 static int netdev_close(struct net_device *dev);
0649 static int netdev_get_regs(struct net_device *dev, u8 *buf);
0650 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
0651 static const struct ethtool_ops ethtool_ops;
0652 
0653 #define NATSEMI_ATTR(_name) \
0654 static ssize_t natsemi_show_##_name(struct device *dev, \
0655          struct device_attribute *attr, char *buf); \
0656      static ssize_t natsemi_set_##_name(struct device *dev, \
0657         struct device_attribute *attr, \
0658             const char *buf, size_t count); \
0659      static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
0660 
0661 #define NATSEMI_CREATE_FILE(_dev, _name) \
0662          device_create_file(&_dev->dev, &dev_attr_##_name)
0663 #define NATSEMI_REMOVE_FILE(_dev, _name) \
0664          device_remove_file(&_dev->dev, &dev_attr_##_name)
0665 
0666 NATSEMI_ATTR(dspcfg_workaround);
0667 
0668 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
0669                           struct device_attribute *attr,
0670                           char *buf)
0671 {
0672     struct netdev_private *np = netdev_priv(to_net_dev(dev));
0673 
0674     return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
0675 }
0676 
0677 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
0678                          struct device_attribute *attr,
0679                          const char *buf, size_t count)
0680 {
0681     struct netdev_private *np = netdev_priv(to_net_dev(dev));
0682     int new_setting;
0683     unsigned long flags;
0684 
0685         /* Find out the new setting */
0686         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
0687                 new_setting = 1;
0688         else if (!strncmp("off", buf, count - 1) ||
0689                  !strncmp("0", buf, count - 1))
0690         new_setting = 0;
0691     else
0692                  return count;
0693 
0694     spin_lock_irqsave(&np->lock, flags);
0695 
0696     np->dspcfg_workaround = new_setting;
0697 
0698     spin_unlock_irqrestore(&np->lock, flags);
0699 
0700     return count;
0701 }
0702 
0703 static inline void __iomem *ns_ioaddr(struct net_device *dev)
0704 {
0705     struct netdev_private *np = netdev_priv(dev);
0706 
0707     return np->ioaddr;
0708 }
0709 
0710 static inline void natsemi_irq_enable(struct net_device *dev)
0711 {
0712     writel(1, ns_ioaddr(dev) + IntrEnable);
0713     readl(ns_ioaddr(dev) + IntrEnable);
0714 }
0715 
0716 static inline void natsemi_irq_disable(struct net_device *dev)
0717 {
0718     writel(0, ns_ioaddr(dev) + IntrEnable);
0719     readl(ns_ioaddr(dev) + IntrEnable);
0720 }
0721 
0722 static void move_int_phy(struct net_device *dev, int addr)
0723 {
0724     struct netdev_private *np = netdev_priv(dev);
0725     void __iomem *ioaddr = ns_ioaddr(dev);
0726     int target = 31;
0727 
0728     /*
0729      * The internal phy is visible on the external mii bus. Therefore we must
0730      * move it away before we can send commands to an external phy.
0731      * There are two addresses we must avoid:
0732      * - the address on the external phy that is used for transmission.
0733      * - the address that we want to access. User space can access phys
0734      *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
0735      *   phy that is used for transmission.
0736      */
0737 
0738     if (target == addr)
0739         target--;
0740     if (target == np->phy_addr_external)
0741         target--;
0742     writew(target, ioaddr + PhyCtrl);
0743     readw(ioaddr + PhyCtrl);
0744     udelay(1);
0745 }
0746 
0747 static void natsemi_init_media(struct net_device *dev)
0748 {
0749     struct netdev_private *np = netdev_priv(dev);
0750     u32 tmp;
0751 
0752     if (np->ignore_phy)
0753         netif_carrier_on(dev);
0754     else
0755         netif_carrier_off(dev);
0756 
0757     /* get the initial settings from hardware */
0758     tmp            = mdio_read(dev, MII_BMCR);
0759     np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
0760     np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
0761     np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
0762     np->advertising= mdio_read(dev, MII_ADVERTISE);
0763 
0764     if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
0765         netif_msg_probe(np)) {
0766         printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
0767             "10%s %s duplex.\n",
0768             pci_name(np->pci_dev),
0769             (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
0770               "enabled, advertise" : "disabled, force",
0771             (np->advertising &
0772               (ADVERTISE_100FULL|ADVERTISE_100HALF))?
0773                 "0" : "",
0774             (np->advertising &
0775               (ADVERTISE_100FULL|ADVERTISE_10FULL))?
0776                 "full" : "half");
0777     }
0778     if (netif_msg_probe(np))
0779         printk(KERN_INFO
0780             "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
0781             pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
0782             np->advertising);
0783 
0784 }
0785 
0786 static const struct net_device_ops natsemi_netdev_ops = {
0787     .ndo_open       = netdev_open,
0788     .ndo_stop       = netdev_close,
0789     .ndo_start_xmit     = start_tx,
0790     .ndo_get_stats      = get_stats,
0791     .ndo_set_rx_mode    = set_rx_mode,
0792     .ndo_change_mtu     = natsemi_change_mtu,
0793     .ndo_eth_ioctl      = netdev_ioctl,
0794     .ndo_tx_timeout     = ns_tx_timeout,
0795     .ndo_set_mac_address    = eth_mac_addr,
0796     .ndo_validate_addr  = eth_validate_addr,
0797 #ifdef CONFIG_NET_POLL_CONTROLLER
0798     .ndo_poll_controller    = natsemi_poll_controller,
0799 #endif
0800 };
0801 
0802 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
0803 {
0804     struct net_device *dev;
0805     struct netdev_private *np;
0806     int i, option, irq, chip_idx = ent->driver_data;
0807     static int find_cnt = -1;
0808     resource_size_t iostart;
0809     unsigned long iosize;
0810     void __iomem *ioaddr;
0811     const int pcibar = 1; /* PCI base address register */
0812     u8 addr[ETH_ALEN];
0813     int prev_eedata;
0814     u32 tmp;
0815 
0816 /* when built into the kernel, we only print version if device is found */
0817 #ifndef MODULE
0818     static int printed_version;
0819     if (!printed_version++)
0820         printk(version);
0821 #endif
0822 
0823     i = pcim_enable_device(pdev);
0824     if (i) return i;
0825 
0826     /* natsemi has a non-standard PM control register
0827      * in PCI config space.  Some boards apparently need
0828      * to be brought to D0 in this manner.
0829      */
0830     pci_read_config_dword(pdev, PCIPM, &tmp);
0831     if (tmp & PCI_PM_CTRL_STATE_MASK) {
0832         /* D0 state, disable PME assertion */
0833         u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
0834         pci_write_config_dword(pdev, PCIPM, newtmp);
0835     }
0836 
0837     find_cnt++;
0838     iostart = pci_resource_start(pdev, pcibar);
0839     iosize = pci_resource_len(pdev, pcibar);
0840     irq = pdev->irq;
0841 
0842     pci_set_master(pdev);
0843 
0844     dev = alloc_etherdev(sizeof (struct netdev_private));
0845     if (!dev)
0846         return -ENOMEM;
0847     SET_NETDEV_DEV(dev, &pdev->dev);
0848 
0849     i = pci_request_regions(pdev, DRV_NAME);
0850     if (i)
0851         goto err_pci_request_regions;
0852 
0853     ioaddr = ioremap(iostart, iosize);
0854     if (!ioaddr) {
0855         i = -ENOMEM;
0856         goto err_pci_request_regions;
0857     }
0858 
0859     /* Work around the dropped serial bit. */
0860     prev_eedata = eeprom_read(ioaddr, 6);
0861     for (i = 0; i < 3; i++) {
0862         int eedata = eeprom_read(ioaddr, i + 7);
0863         addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
0864         addr[i*2+1] = eedata >> 7;
0865         prev_eedata = eedata;
0866     }
0867     eth_hw_addr_set(dev, addr);
0868 
0869     np = netdev_priv(dev);
0870     np->ioaddr = ioaddr;
0871 
0872     netif_napi_add(dev, &np->napi, natsemi_poll, 64);
0873     np->dev = dev;
0874 
0875     np->pci_dev = pdev;
0876     pci_set_drvdata(pdev, dev);
0877     np->iosize = iosize;
0878     spin_lock_init(&np->lock);
0879     np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
0880     np->hands_off = 0;
0881     np->intr_status = 0;
0882     np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
0883     if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
0884         np->ignore_phy = 1;
0885     else
0886         np->ignore_phy = 0;
0887     np->dspcfg_workaround = dspcfg_workaround;
0888 
0889     /* Initial port:
0890      * - If configured to ignore the PHY set up for external.
0891      * - If the nic was configured to use an external phy and if find_mii
0892      *   finds a phy: use external port, first phy that replies.
0893      * - Otherwise: internal port.
0894      * Note that the phy address for the internal phy doesn't matter:
0895      * The address would be used to access a phy over the mii bus, but
0896      * the internal phy is accessed through mapped registers.
0897      */
0898     if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
0899         dev->if_port = PORT_MII;
0900     else
0901         dev->if_port = PORT_TP;
0902     /* Reset the chip to erase previous misconfiguration. */
0903     natsemi_reload_eeprom(dev);
0904     natsemi_reset(dev);
0905 
0906     if (dev->if_port != PORT_TP) {
0907         np->phy_addr_external = find_mii(dev);
0908         /* If we're ignoring the PHY it doesn't matter if we can't
0909          * find one. */
0910         if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
0911             dev->if_port = PORT_TP;
0912             np->phy_addr_external = PHY_ADDR_INTERNAL;
0913         }
0914     } else {
0915         np->phy_addr_external = PHY_ADDR_INTERNAL;
0916     }
0917 
0918     option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
0919     /* The lower four bits are the media type. */
0920     if (option) {
0921         if (option & 0x200)
0922             np->full_duplex = 1;
0923         if (option & 15)
0924             printk(KERN_INFO
0925                 "natsemi %s: ignoring user supplied media type %d",
0926                 pci_name(np->pci_dev), option & 15);
0927     }
0928     if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
0929         np->full_duplex = 1;
0930 
0931     dev->netdev_ops = &natsemi_netdev_ops;
0932     dev->watchdog_timeo = TX_TIMEOUT;
0933 
0934     dev->ethtool_ops = &ethtool_ops;
0935 
0936     /* MTU range: 64 - 2024 */
0937     dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
0938     dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
0939 
0940     if (mtu)
0941         dev->mtu = mtu;
0942 
0943     natsemi_init_media(dev);
0944 
0945     /* save the silicon revision for later querying */
0946     np->srr = readl(ioaddr + SiliconRev);
0947     if (netif_msg_hw(np))
0948         printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
0949                 pci_name(np->pci_dev), np->srr);
0950 
0951     i = register_netdev(dev);
0952     if (i)
0953         goto err_register_netdev;
0954     i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
0955     if (i)
0956         goto err_create_file;
0957 
0958     if (netif_msg_drv(np)) {
0959         printk(KERN_INFO "natsemi %s: %s at %#08llx "
0960                "(%s), %pM, IRQ %d",
0961                dev->name, natsemi_pci_info[chip_idx].name,
0962                (unsigned long long)iostart, pci_name(np->pci_dev),
0963                dev->dev_addr, irq);
0964         if (dev->if_port == PORT_TP)
0965             printk(", port TP.\n");
0966         else if (np->ignore_phy)
0967             printk(", port MII, ignoring PHY\n");
0968         else
0969             printk(", port MII, phy ad %d.\n", np->phy_addr_external);
0970     }
0971     return 0;
0972 
0973  err_create_file:
0974     unregister_netdev(dev);
0975 
0976  err_register_netdev:
0977     iounmap(ioaddr);
0978 
0979  err_pci_request_regions:
0980     free_netdev(dev);
0981     return i;
0982 }
0983 
0984 
0985 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
0986    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
0987 
0988 /* Delay between EEPROM clock transitions.
0989    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
0990    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
0991    made udelay() unreliable.
0992 */
0993 #define eeprom_delay(ee_addr)   readl(ee_addr)
0994 
0995 #define EE_Write0 (EE_ChipSelect)
0996 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
0997 
0998 /* The EEPROM commands include the alway-set leading bit. */
0999 enum EEPROM_Cmds {
1000     EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1001 };
1002 
1003 static int eeprom_read(void __iomem *addr, int location)
1004 {
1005     int i;
1006     int retval = 0;
1007     void __iomem *ee_addr = addr + EECtrl;
1008     int read_cmd = location | EE_ReadCmd;
1009 
1010     writel(EE_Write0, ee_addr);
1011 
1012     /* Shift the read command bits out. */
1013     for (i = 10; i >= 0; i--) {
1014         short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1015         writel(dataval, ee_addr);
1016         eeprom_delay(ee_addr);
1017         writel(dataval | EE_ShiftClk, ee_addr);
1018         eeprom_delay(ee_addr);
1019     }
1020     writel(EE_ChipSelect, ee_addr);
1021     eeprom_delay(ee_addr);
1022 
1023     for (i = 0; i < 16; i++) {
1024         writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1025         eeprom_delay(ee_addr);
1026         retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1027         writel(EE_ChipSelect, ee_addr);
1028         eeprom_delay(ee_addr);
1029     }
1030 
1031     /* Terminate the EEPROM access. */
1032     writel(EE_Write0, ee_addr);
1033     writel(0, ee_addr);
1034     return retval;
1035 }
1036 
1037 /* MII transceiver control section.
1038  * The 83815 series has an internal transceiver, and we present the
1039  * internal management registers as if they were MII connected.
1040  * External Phy registers are referenced through the MII interface.
1041  */
1042 
1043 /* clock transitions >= 20ns (25MHz)
1044  * One readl should be good to PCI @ 100MHz
1045  */
1046 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1047 
1048 static int mii_getbit (struct net_device *dev)
1049 {
1050     int data;
1051     void __iomem *ioaddr = ns_ioaddr(dev);
1052 
1053     writel(MII_ShiftClk, ioaddr + EECtrl);
1054     data = readl(ioaddr + EECtrl);
1055     writel(0, ioaddr + EECtrl);
1056     mii_delay(ioaddr);
1057     return (data & MII_Data)? 1 : 0;
1058 }
1059 
1060 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1061 {
1062     u32 i;
1063     void __iomem *ioaddr = ns_ioaddr(dev);
1064 
1065     for (i = (1 << (len-1)); i; i >>= 1)
1066     {
1067         u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1068         writel(mdio_val, ioaddr + EECtrl);
1069         mii_delay(ioaddr);
1070         writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1071         mii_delay(ioaddr);
1072     }
1073     writel(0, ioaddr + EECtrl);
1074     mii_delay(ioaddr);
1075 }
1076 
1077 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1078 {
1079     u32 cmd;
1080     int i;
1081     u32 retval = 0;
1082 
1083     /* Ensure sync */
1084     mii_send_bits (dev, 0xffffffff, 32);
1085     /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1086     /* ST,OP = 0110'b for read operation */
1087     cmd = (0x06 << 10) | (phy_id << 5) | reg;
1088     mii_send_bits (dev, cmd, 14);
1089     /* Turnaround */
1090     if (mii_getbit (dev))
1091         return 0;
1092     /* Read data */
1093     for (i = 0; i < 16; i++) {
1094         retval <<= 1;
1095         retval |= mii_getbit (dev);
1096     }
1097     /* End cycle */
1098     mii_getbit (dev);
1099     return retval;
1100 }
1101 
1102 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1103 {
1104     u32 cmd;
1105 
1106     /* Ensure sync */
1107     mii_send_bits (dev, 0xffffffff, 32);
1108     /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1109     /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1110     cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1111     mii_send_bits (dev, cmd, 32);
1112     /* End cycle */
1113     mii_getbit (dev);
1114 }
1115 
1116 static int mdio_read(struct net_device *dev, int reg)
1117 {
1118     struct netdev_private *np = netdev_priv(dev);
1119     void __iomem *ioaddr = ns_ioaddr(dev);
1120 
1121     /* The 83815 series has two ports:
1122      * - an internal transceiver
1123      * - an external mii bus
1124      */
1125     if (dev->if_port == PORT_TP)
1126         return readw(ioaddr+BasicControl+(reg<<2));
1127     else
1128         return miiport_read(dev, np->phy_addr_external, reg);
1129 }
1130 
1131 static void mdio_write(struct net_device *dev, int reg, u16 data)
1132 {
1133     struct netdev_private *np = netdev_priv(dev);
1134     void __iomem *ioaddr = ns_ioaddr(dev);
1135 
1136     /* The 83815 series has an internal transceiver; handle separately */
1137     if (dev->if_port == PORT_TP)
1138         writew(data, ioaddr+BasicControl+(reg<<2));
1139     else
1140         miiport_write(dev, np->phy_addr_external, reg, data);
1141 }
1142 
1143 static void init_phy_fixup(struct net_device *dev)
1144 {
1145     struct netdev_private *np = netdev_priv(dev);
1146     void __iomem *ioaddr = ns_ioaddr(dev);
1147     int i;
1148     u32 cfg;
1149     u16 tmp;
1150 
1151     /* restore stuff lost when power was out */
1152     tmp = mdio_read(dev, MII_BMCR);
1153     if (np->autoneg == AUTONEG_ENABLE) {
1154         /* renegotiate if something changed */
1155         if ((tmp & BMCR_ANENABLE) == 0 ||
1156             np->advertising != mdio_read(dev, MII_ADVERTISE))
1157         {
1158             /* turn on autonegotiation and force negotiation */
1159             tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1160             mdio_write(dev, MII_ADVERTISE, np->advertising);
1161         }
1162     } else {
1163         /* turn off auto negotiation, set speed and duplexity */
1164         tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1165         if (np->speed == SPEED_100)
1166             tmp |= BMCR_SPEED100;
1167         if (np->duplex == DUPLEX_FULL)
1168             tmp |= BMCR_FULLDPLX;
1169         /*
1170          * Note: there is no good way to inform the link partner
1171          * that our capabilities changed. The user has to unplug
1172          * and replug the network cable after some changes, e.g.
1173          * after switching from 10HD, autoneg off to 100 HD,
1174          * autoneg off.
1175          */
1176     }
1177     mdio_write(dev, MII_BMCR, tmp);
1178     readl(ioaddr + ChipConfig);
1179     udelay(1);
1180 
1181     /* find out what phy this is */
1182     np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1183                 + mdio_read(dev, MII_PHYSID2);
1184 
1185     /* handle external phys here */
1186     switch (np->mii) {
1187     case PHYID_AM79C874:
1188         /* phy specific configuration for fibre/tp operation */
1189         tmp = mdio_read(dev, MII_MCTRL);
1190         tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1191         if (dev->if_port == PORT_FIBRE)
1192             tmp |= MII_FX_SEL;
1193         else
1194             tmp |= MII_EN_SCRM;
1195         mdio_write(dev, MII_MCTRL, tmp);
1196         break;
1197     default:
1198         break;
1199     }
1200     cfg = readl(ioaddr + ChipConfig);
1201     if (cfg & CfgExtPhy)
1202         return;
1203 
1204     /* On page 78 of the spec, they recommend some settings for "optimum
1205        performance" to be done in sequence.  These settings optimize some
1206        of the 100Mbit autodetection circuitry.  They say we only want to
1207        do this for rev C of the chip, but engineers at NSC (Bradley
1208        Kennedy) recommends always setting them.  If you don't, you get
1209        errors on some autonegotiations that make the device unusable.
1210 
1211        It seems that the DSP needs a few usec to reinitialize after
1212        the start of the phy. Just retry writing these values until they
1213        stick.
1214     */
1215     for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1216 
1217         int dspcfg;
1218         writew(1, ioaddr + PGSEL);
1219         writew(PMDCSR_VAL, ioaddr + PMDCSR);
1220         writew(TSTDAT_VAL, ioaddr + TSTDAT);
1221         np->dspcfg = (np->srr <= SRR_DP83815_C)?
1222             DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1223         writew(np->dspcfg, ioaddr + DSPCFG);
1224         writew(SDCFG_VAL, ioaddr + SDCFG);
1225         writew(0, ioaddr + PGSEL);
1226         readl(ioaddr + ChipConfig);
1227         udelay(10);
1228 
1229         writew(1, ioaddr + PGSEL);
1230         dspcfg = readw(ioaddr + DSPCFG);
1231         writew(0, ioaddr + PGSEL);
1232         if (np->dspcfg == dspcfg)
1233             break;
1234     }
1235 
1236     if (netif_msg_link(np)) {
1237         if (i==NATSEMI_HW_TIMEOUT) {
1238             printk(KERN_INFO
1239                 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1240                 dev->name, i*10);
1241         } else {
1242             printk(KERN_INFO
1243                 "%s: DSPCFG accepted after %d usec.\n",
1244                 dev->name, i*10);
1245         }
1246     }
1247     /*
1248      * Enable PHY Specific event based interrupts.  Link state change
1249      * and Auto-Negotiation Completion are among the affected.
1250      * Read the intr status to clear it (needed for wake events).
1251      */
1252     readw(ioaddr + MIntrStatus);
1253     writew(MICRIntEn, ioaddr + MIntrCtrl);
1254 }
1255 
1256 static int switch_port_external(struct net_device *dev)
1257 {
1258     struct netdev_private *np = netdev_priv(dev);
1259     void __iomem *ioaddr = ns_ioaddr(dev);
1260     u32 cfg;
1261 
1262     cfg = readl(ioaddr + ChipConfig);
1263     if (cfg & CfgExtPhy)
1264         return 0;
1265 
1266     if (netif_msg_link(np)) {
1267         printk(KERN_INFO "%s: switching to external transceiver.\n",
1268                 dev->name);
1269     }
1270 
1271     /* 1) switch back to external phy */
1272     writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1273     readl(ioaddr + ChipConfig);
1274     udelay(1);
1275 
1276     /* 2) reset the external phy: */
1277     /* resetting the external PHY has been known to cause a hub supplying
1278      * power over Ethernet to kill the power.  We don't want to kill
1279      * power to this computer, so we avoid resetting the phy.
1280      */
1281 
1282     /* 3) reinit the phy fixup, it got lost during power down. */
1283     move_int_phy(dev, np->phy_addr_external);
1284     init_phy_fixup(dev);
1285 
1286     return 1;
1287 }
1288 
1289 static int switch_port_internal(struct net_device *dev)
1290 {
1291     struct netdev_private *np = netdev_priv(dev);
1292     void __iomem *ioaddr = ns_ioaddr(dev);
1293     int i;
1294     u32 cfg;
1295     u16 bmcr;
1296 
1297     cfg = readl(ioaddr + ChipConfig);
1298     if (!(cfg &CfgExtPhy))
1299         return 0;
1300 
1301     if (netif_msg_link(np)) {
1302         printk(KERN_INFO "%s: switching to internal transceiver.\n",
1303                 dev->name);
1304     }
1305     /* 1) switch back to internal phy: */
1306     cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1307     writel(cfg, ioaddr + ChipConfig);
1308     readl(ioaddr + ChipConfig);
1309     udelay(1);
1310 
1311     /* 2) reset the internal phy: */
1312     bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1313     writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1314     readl(ioaddr + ChipConfig);
1315     udelay(10);
1316     for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1317         bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1318         if (!(bmcr & BMCR_RESET))
1319             break;
1320         udelay(10);
1321     }
1322     if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1323         printk(KERN_INFO
1324             "%s: phy reset did not complete in %d usec.\n",
1325             dev->name, i*10);
1326     }
1327     /* 3) reinit the phy fixup, it got lost during power down. */
1328     init_phy_fixup(dev);
1329 
1330     return 1;
1331 }
1332 
1333 /* Scan for a PHY on the external mii bus.
1334  * There are two tricky points:
1335  * - Do not scan while the internal phy is enabled. The internal phy will
1336  *   crash: e.g. reads from the DSPCFG register will return odd values and
1337  *   the nasty random phy reset code will reset the nic every few seconds.
1338  * - The internal phy must be moved around, an external phy could
1339  *   have the same address as the internal phy.
1340  */
1341 static int find_mii(struct net_device *dev)
1342 {
1343     struct netdev_private *np = netdev_priv(dev);
1344     int tmp;
1345     int i;
1346     int did_switch;
1347 
1348     /* Switch to external phy */
1349     did_switch = switch_port_external(dev);
1350 
1351     /* Scan the possible phy addresses:
1352      *
1353      * PHY address 0 means that the phy is in isolate mode. Not yet
1354      * supported due to lack of test hardware. User space should
1355      * handle it through ethtool.
1356      */
1357     for (i = 1; i <= 31; i++) {
1358         move_int_phy(dev, i);
1359         tmp = miiport_read(dev, i, MII_BMSR);
1360         if (tmp != 0xffff && tmp != 0x0000) {
1361             /* found something! */
1362             np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1363                     + mdio_read(dev, MII_PHYSID2);
1364             if (netif_msg_probe(np)) {
1365                 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1366                         pci_name(np->pci_dev), np->mii, i);
1367             }
1368             break;
1369         }
1370     }
1371     /* And switch back to internal phy: */
1372     if (did_switch)
1373         switch_port_internal(dev);
1374     return i;
1375 }
1376 
1377 /* CFG bits [13:16] [18:23] */
1378 #define CFG_RESET_SAVE 0xfde000
1379 /* WCSR bits [0:4] [9:10] */
1380 #define WCSR_RESET_SAVE 0x61f
1381 /* RFCR bits [20] [22] [27:31] */
1382 #define RFCR_RESET_SAVE 0xf8500000
1383 
1384 static void natsemi_reset(struct net_device *dev)
1385 {
1386     int i;
1387     u32 cfg;
1388     u32 wcsr;
1389     u32 rfcr;
1390     u16 pmatch[3];
1391     u16 sopass[3];
1392     struct netdev_private *np = netdev_priv(dev);
1393     void __iomem *ioaddr = ns_ioaddr(dev);
1394 
1395     /*
1396      * Resetting the chip causes some registers to be lost.
1397      * Natsemi suggests NOT reloading the EEPROM while live, so instead
1398      * we save the state that would have been loaded from EEPROM
1399      * on a normal power-up (see the spec EEPROM map).  This assumes
1400      * whoever calls this will follow up with init_registers() eventually.
1401      */
1402 
1403     /* CFG */
1404     cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1405     /* WCSR */
1406     wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1407     /* RFCR */
1408     rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1409     /* PMATCH */
1410     for (i = 0; i < 3; i++) {
1411         writel(i*2, ioaddr + RxFilterAddr);
1412         pmatch[i] = readw(ioaddr + RxFilterData);
1413     }
1414     /* SOPAS */
1415     for (i = 0; i < 3; i++) {
1416         writel(0xa+(i*2), ioaddr + RxFilterAddr);
1417         sopass[i] = readw(ioaddr + RxFilterData);
1418     }
1419 
1420     /* now whack the chip */
1421     writel(ChipReset, ioaddr + ChipCmd);
1422     for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1423         if (!(readl(ioaddr + ChipCmd) & ChipReset))
1424             break;
1425         udelay(5);
1426     }
1427     if (i==NATSEMI_HW_TIMEOUT) {
1428         printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1429             dev->name, i*5);
1430     } else if (netif_msg_hw(np)) {
1431         printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1432             dev->name, i*5);
1433     }
1434 
1435     /* restore CFG */
1436     cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1437     /* turn on external phy if it was selected */
1438     if (dev->if_port == PORT_TP)
1439         cfg &= ~(CfgExtPhy | CfgPhyDis);
1440     else
1441         cfg |= (CfgExtPhy | CfgPhyDis);
1442     writel(cfg, ioaddr + ChipConfig);
1443     /* restore WCSR */
1444     wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1445     writel(wcsr, ioaddr + WOLCmd);
1446     /* read RFCR */
1447     rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1448     /* restore PMATCH */
1449     for (i = 0; i < 3; i++) {
1450         writel(i*2, ioaddr + RxFilterAddr);
1451         writew(pmatch[i], ioaddr + RxFilterData);
1452     }
1453     for (i = 0; i < 3; i++) {
1454         writel(0xa+(i*2), ioaddr + RxFilterAddr);
1455         writew(sopass[i], ioaddr + RxFilterData);
1456     }
1457     /* restore RFCR */
1458     writel(rfcr, ioaddr + RxFilterAddr);
1459 }
1460 
1461 static void reset_rx(struct net_device *dev)
1462 {
1463     int i;
1464     struct netdev_private *np = netdev_priv(dev);
1465     void __iomem *ioaddr = ns_ioaddr(dev);
1466 
1467     np->intr_status &= ~RxResetDone;
1468 
1469     writel(RxReset, ioaddr + ChipCmd);
1470 
1471     for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1472         np->intr_status |= readl(ioaddr + IntrStatus);
1473         if (np->intr_status & RxResetDone)
1474             break;
1475         udelay(15);
1476     }
1477     if (i==NATSEMI_HW_TIMEOUT) {
1478         printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1479                dev->name, i*15);
1480     } else if (netif_msg_hw(np)) {
1481         printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1482                dev->name, i*15);
1483     }
1484 }
1485 
1486 static void natsemi_reload_eeprom(struct net_device *dev)
1487 {
1488     struct netdev_private *np = netdev_priv(dev);
1489     void __iomem *ioaddr = ns_ioaddr(dev);
1490     int i;
1491 
1492     writel(EepromReload, ioaddr + PCIBusCfg);
1493     for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1494         udelay(50);
1495         if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1496             break;
1497     }
1498     if (i==NATSEMI_HW_TIMEOUT) {
1499         printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1500             pci_name(np->pci_dev), i*50);
1501     } else if (netif_msg_hw(np)) {
1502         printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1503             pci_name(np->pci_dev), i*50);
1504     }
1505 }
1506 
1507 static void natsemi_stop_rxtx(struct net_device *dev)
1508 {
1509     void __iomem * ioaddr = ns_ioaddr(dev);
1510     struct netdev_private *np = netdev_priv(dev);
1511     int i;
1512 
1513     writel(RxOff | TxOff, ioaddr + ChipCmd);
1514     for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1515         if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1516             break;
1517         udelay(5);
1518     }
1519     if (i==NATSEMI_HW_TIMEOUT) {
1520         printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1521             dev->name, i*5);
1522     } else if (netif_msg_hw(np)) {
1523         printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1524             dev->name, i*5);
1525     }
1526 }
1527 
1528 static int netdev_open(struct net_device *dev)
1529 {
1530     struct netdev_private *np = netdev_priv(dev);
1531     void __iomem * ioaddr = ns_ioaddr(dev);
1532     const int irq = np->pci_dev->irq;
1533     int i;
1534 
1535     /* Reset the chip, just in case. */
1536     natsemi_reset(dev);
1537 
1538     i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1539     if (i) return i;
1540 
1541     if (netif_msg_ifup(np))
1542         printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543             dev->name, irq);
1544     i = alloc_ring(dev);
1545     if (i < 0) {
1546         free_irq(irq, dev);
1547         return i;
1548     }
1549     napi_enable(&np->napi);
1550 
1551     init_ring(dev);
1552     spin_lock_irq(&np->lock);
1553     init_registers(dev);
1554     /* now set the MAC address according to dev->dev_addr */
1555     for (i = 0; i < 3; i++) {
1556         u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557 
1558         writel(i*2, ioaddr + RxFilterAddr);
1559         writew(mac, ioaddr + RxFilterData);
1560     }
1561     writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1562     spin_unlock_irq(&np->lock);
1563 
1564     netif_start_queue(dev);
1565 
1566     if (netif_msg_ifup(np))
1567         printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568             dev->name, (int)readl(ioaddr + ChipCmd));
1569 
1570     /* Set the timer to check for link beat. */
1571     timer_setup(&np->timer, netdev_timer, 0);
1572     np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1573     add_timer(&np->timer);
1574 
1575     return 0;
1576 }
1577 
1578 static void do_cable_magic(struct net_device *dev)
1579 {
1580     struct netdev_private *np = netdev_priv(dev);
1581     void __iomem *ioaddr = ns_ioaddr(dev);
1582 
1583     if (dev->if_port != PORT_TP)
1584         return;
1585 
1586     if (np->srr >= SRR_DP83816_A5)
1587         return;
1588 
1589     /*
1590      * 100 MBit links with short cables can trip an issue with the chip.
1591      * The problem manifests as lots of CRC errors and/or flickering
1592      * activity LED while idle.  This process is based on instructions
1593      * from engineers at National.
1594      */
1595     if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1596         u16 data;
1597 
1598         writew(1, ioaddr + PGSEL);
1599         /*
1600          * coefficient visibility should already be enabled via
1601          * DSPCFG | 0x1000
1602          */
1603         data = readw(ioaddr + TSTDAT) & 0xff;
1604         /*
1605          * the value must be negative, and within certain values
1606          * (these values all come from National)
1607          */
1608         if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609             np = netdev_priv(dev);
1610 
1611             /* the bug has been triggered - fix the coefficient */
1612             writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1613             /* lock the value */
1614             data = readw(ioaddr + DSPCFG);
1615             np->dspcfg = data | DSPCFG_LOCK;
1616             writew(np->dspcfg, ioaddr + DSPCFG);
1617         }
1618         writew(0, ioaddr + PGSEL);
1619     }
1620 }
1621 
1622 static void undo_cable_magic(struct net_device *dev)
1623 {
1624     u16 data;
1625     struct netdev_private *np = netdev_priv(dev);
1626     void __iomem * ioaddr = ns_ioaddr(dev);
1627 
1628     if (dev->if_port != PORT_TP)
1629         return;
1630 
1631     if (np->srr >= SRR_DP83816_A5)
1632         return;
1633 
1634     writew(1, ioaddr + PGSEL);
1635     /* make sure the lock bit is clear */
1636     data = readw(ioaddr + DSPCFG);
1637     np->dspcfg = data & ~DSPCFG_LOCK;
1638     writew(np->dspcfg, ioaddr + DSPCFG);
1639     writew(0, ioaddr + PGSEL);
1640 }
1641 
1642 static void check_link(struct net_device *dev)
1643 {
1644     struct netdev_private *np = netdev_priv(dev);
1645     void __iomem * ioaddr = ns_ioaddr(dev);
1646     int duplex = np->duplex;
1647     u16 bmsr;
1648 
1649     /* If we are ignoring the PHY then don't try reading it. */
1650     if (np->ignore_phy)
1651         goto propagate_state;
1652 
1653     /* The link status field is latched: it remains low after a temporary
1654      * link failure until it's read. We need the current link status,
1655      * thus read twice.
1656      */
1657     mdio_read(dev, MII_BMSR);
1658     bmsr = mdio_read(dev, MII_BMSR);
1659 
1660     if (!(bmsr & BMSR_LSTATUS)) {
1661         if (netif_carrier_ok(dev)) {
1662             if (netif_msg_link(np))
1663                 printk(KERN_NOTICE "%s: link down.\n",
1664                        dev->name);
1665             netif_carrier_off(dev);
1666             undo_cable_magic(dev);
1667         }
1668         return;
1669     }
1670     if (!netif_carrier_ok(dev)) {
1671         if (netif_msg_link(np))
1672             printk(KERN_NOTICE "%s: link up.\n", dev->name);
1673         netif_carrier_on(dev);
1674         do_cable_magic(dev);
1675     }
1676 
1677     duplex = np->full_duplex;
1678     if (!duplex) {
1679         if (bmsr & BMSR_ANEGCOMPLETE) {
1680             int tmp = mii_nway_result(
1681                 np->advertising & mdio_read(dev, MII_LPA));
1682             if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1683                 duplex = 1;
1684         } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1685             duplex = 1;
1686     }
1687 
1688 propagate_state:
1689     /* if duplex is set then bit 28 must be set, too */
1690     if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1691         if (netif_msg_link(np))
1692             printk(KERN_INFO
1693                 "%s: Setting %s-duplex based on negotiated "
1694                 "link capability.\n", dev->name,
1695                 duplex ? "full" : "half");
1696         if (duplex) {
1697             np->rx_config |= RxAcceptTx;
1698             np->tx_config |= TxCarrierIgn | TxHeartIgn;
1699         } else {
1700             np->rx_config &= ~RxAcceptTx;
1701             np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1702         }
1703         writel(np->tx_config, ioaddr + TxConfig);
1704         writel(np->rx_config, ioaddr + RxConfig);
1705     }
1706 }
1707 
1708 static void init_registers(struct net_device *dev)
1709 {
1710     struct netdev_private *np = netdev_priv(dev);
1711     void __iomem * ioaddr = ns_ioaddr(dev);
1712 
1713     init_phy_fixup(dev);
1714 
1715     /* clear any interrupts that are pending, such as wake events */
1716     readl(ioaddr + IntrStatus);
1717 
1718     writel(np->ring_dma, ioaddr + RxRingPtr);
1719     writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1720         ioaddr + TxRingPtr);
1721 
1722     /* Initialize other registers.
1723      * Configure the PCI bus bursts and FIFO thresholds.
1724      * Configure for standard, in-spec Ethernet.
1725      * Start with half-duplex. check_link will update
1726      * to the correct settings.
1727      */
1728 
1729     /* DRTH: 2: start tx if 64 bytes are in the fifo
1730      * FLTH: 0x10: refill with next packet if 512 bytes are free
1731      * MXDMA: 0: up to 256 byte bursts.
1732      *  MXDMA must be <= FLTH
1733      * ECRETRY=1
1734      * ATP=1
1735      */
1736     np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1737                 TX_FLTH_VAL | TX_DRTH_VAL_START;
1738     writel(np->tx_config, ioaddr + TxConfig);
1739 
1740     /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1741      * MXDMA 0: up to 256 byte bursts
1742      */
1743     np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1744     /* if receive ring now has bigger buffers than normal, enable jumbo */
1745     if (np->rx_buf_sz > NATSEMI_LONGPKT)
1746         np->rx_config |= RxAcceptLong;
1747 
1748     writel(np->rx_config, ioaddr + RxConfig);
1749 
1750     /* Disable PME:
1751      * The PME bit is initialized from the EEPROM contents.
1752      * PCI cards probably have PME disabled, but motherboard
1753      * implementations may have PME set to enable WakeOnLan.
1754      * With PME set the chip will scan incoming packets but
1755      * nothing will be written to memory. */
1756     np->SavedClkRun = readl(ioaddr + ClkRun);
1757     writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1758     if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1759         printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1760             dev->name, readl(ioaddr + WOLCmd));
1761     }
1762 
1763     check_link(dev);
1764     __set_rx_mode(dev);
1765 
1766     /* Enable interrupts by setting the interrupt mask. */
1767     writel(DEFAULT_INTR, ioaddr + IntrMask);
1768     natsemi_irq_enable(dev);
1769 
1770     writel(RxOn | TxOn, ioaddr + ChipCmd);
1771     writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772 }
1773 
1774 /*
1775  * netdev_timer:
1776  * Purpose:
1777  * 1) check for link changes. Usually they are handled by the MII interrupt
1778  *    but it doesn't hurt to check twice.
1779  * 2) check for sudden death of the NIC:
1780  *    It seems that a reference set for this chip went out with incorrect info,
1781  *    and there exist boards that aren't quite right.  An unexpected voltage
1782  *    drop can cause the PHY to get itself in a weird state (basically reset).
1783  *    NOTE: this only seems to affect revC chips.  The user can disable
1784  *    this check via dspcfg_workaround sysfs option.
1785  * 3) check of death of the RX path due to OOM
1786  */
1787 static void netdev_timer(struct timer_list *t)
1788 {
1789     struct netdev_private *np = from_timer(np, t, timer);
1790     struct net_device *dev = np->dev;
1791     void __iomem * ioaddr = ns_ioaddr(dev);
1792     int next_tick = NATSEMI_TIMER_FREQ;
1793     const int irq = np->pci_dev->irq;
1794 
1795     if (netif_msg_timer(np)) {
1796         /* DO NOT read the IntrStatus register,
1797          * a read clears any pending interrupts.
1798          */
1799         printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1800             dev->name);
1801     }
1802 
1803     if (dev->if_port == PORT_TP) {
1804         u16 dspcfg;
1805 
1806         spin_lock_irq(&np->lock);
1807         /* check for a nasty random phy-reset - use dspcfg as a flag */
1808         writew(1, ioaddr+PGSEL);
1809         dspcfg = readw(ioaddr+DSPCFG);
1810         writew(0, ioaddr+PGSEL);
1811         if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1812             if (!netif_queue_stopped(dev)) {
1813                 spin_unlock_irq(&np->lock);
1814                 if (netif_msg_drv(np))
1815                     printk(KERN_NOTICE "%s: possible phy reset: "
1816                         "re-initializing\n", dev->name);
1817                 disable_irq(irq);
1818                 spin_lock_irq(&np->lock);
1819                 natsemi_stop_rxtx(dev);
1820                 dump_ring(dev);
1821                 reinit_ring(dev);
1822                 init_registers(dev);
1823                 spin_unlock_irq(&np->lock);
1824                 enable_irq(irq);
1825             } else {
1826                 /* hurry back */
1827                 next_tick = HZ;
1828                 spin_unlock_irq(&np->lock);
1829             }
1830         } else {
1831             /* init_registers() calls check_link() for the above case */
1832             check_link(dev);
1833             spin_unlock_irq(&np->lock);
1834         }
1835     } else {
1836         spin_lock_irq(&np->lock);
1837         check_link(dev);
1838         spin_unlock_irq(&np->lock);
1839     }
1840     if (np->oom) {
1841         disable_irq(irq);
1842         np->oom = 0;
1843         refill_rx(dev);
1844         enable_irq(irq);
1845         if (!np->oom) {
1846             writel(RxOn, ioaddr + ChipCmd);
1847         } else {
1848             next_tick = 1;
1849         }
1850     }
1851 
1852     if (next_tick > 1)
1853         mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1854     else
1855         mod_timer(&np->timer, jiffies + next_tick);
1856 }
1857 
1858 static void dump_ring(struct net_device *dev)
1859 {
1860     struct netdev_private *np = netdev_priv(dev);
1861 
1862     if (netif_msg_pktdata(np)) {
1863         int i;
1864         printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1865         for (i = 0; i < TX_RING_SIZE; i++) {
1866             printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1867                 i, np->tx_ring[i].next_desc,
1868                 np->tx_ring[i].cmd_status,
1869                 np->tx_ring[i].addr);
1870         }
1871         printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1872         for (i = 0; i < RX_RING_SIZE; i++) {
1873             printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1874                 i, np->rx_ring[i].next_desc,
1875                 np->rx_ring[i].cmd_status,
1876                 np->rx_ring[i].addr);
1877         }
1878     }
1879 }
1880 
1881 static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1882 {
1883     struct netdev_private *np = netdev_priv(dev);
1884     void __iomem * ioaddr = ns_ioaddr(dev);
1885     const int irq = np->pci_dev->irq;
1886 
1887     disable_irq(irq);
1888     spin_lock_irq(&np->lock);
1889     if (!np->hands_off) {
1890         if (netif_msg_tx_err(np))
1891             printk(KERN_WARNING
1892                 "%s: Transmit timed out, status %#08x,"
1893                 " resetting...\n",
1894                 dev->name, readl(ioaddr + IntrStatus));
1895         dump_ring(dev);
1896 
1897         natsemi_reset(dev);
1898         reinit_ring(dev);
1899         init_registers(dev);
1900     } else {
1901         printk(KERN_WARNING
1902             "%s: tx_timeout while in hands_off state?\n",
1903             dev->name);
1904     }
1905     spin_unlock_irq(&np->lock);
1906     enable_irq(irq);
1907 
1908     netif_trans_update(dev); /* prevent tx timeout */
1909     dev->stats.tx_errors++;
1910     netif_wake_queue(dev);
1911 }
1912 
1913 static int alloc_ring(struct net_device *dev)
1914 {
1915     struct netdev_private *np = netdev_priv(dev);
1916     np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
1917                      sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1918                      &np->ring_dma, GFP_KERNEL);
1919     if (!np->rx_ring)
1920         return -ENOMEM;
1921     np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922     return 0;
1923 }
1924 
1925 static void refill_rx(struct net_device *dev)
1926 {
1927     struct netdev_private *np = netdev_priv(dev);
1928 
1929     /* Refill the Rx ring buffers. */
1930     for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931         struct sk_buff *skb;
1932         int entry = np->dirty_rx % RX_RING_SIZE;
1933         if (np->rx_skbuff[entry] == NULL) {
1934             unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935             skb = netdev_alloc_skb(dev, buflen);
1936             np->rx_skbuff[entry] = skb;
1937             if (skb == NULL)
1938                 break; /* Better luck next round. */
1939             np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1940                                skb->data, buflen,
1941                                DMA_FROM_DEVICE);
1942             if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) {
1943                 dev_kfree_skb_any(skb);
1944                 np->rx_skbuff[entry] = NULL;
1945                 break; /* Better luck next round. */
1946             }
1947             np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1948         }
1949         np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1950     }
1951     if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1952         if (netif_msg_rx_err(np))
1953             printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1954         np->oom = 1;
1955     }
1956 }
1957 
1958 static void set_bufsize(struct net_device *dev)
1959 {
1960     struct netdev_private *np = netdev_priv(dev);
1961     if (dev->mtu <= ETH_DATA_LEN)
1962         np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1963     else
1964         np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1965 }
1966 
1967 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1968 static void init_ring(struct net_device *dev)
1969 {
1970     struct netdev_private *np = netdev_priv(dev);
1971     int i;
1972 
1973     /* 1) TX ring */
1974     np->dirty_tx = np->cur_tx = 0;
1975     for (i = 0; i < TX_RING_SIZE; i++) {
1976         np->tx_skbuff[i] = NULL;
1977         np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1978             +sizeof(struct netdev_desc)
1979             *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1980         np->tx_ring[i].cmd_status = 0;
1981     }
1982 
1983     /* 2) RX ring */
1984     np->dirty_rx = 0;
1985     np->cur_rx = RX_RING_SIZE;
1986     np->oom = 0;
1987     set_bufsize(dev);
1988 
1989     np->rx_head_desc = &np->rx_ring[0];
1990 
1991     /* Please be careful before changing this loop - at least gcc-2.95.1
1992      * miscompiles it otherwise.
1993      */
1994     /* Initialize all Rx descriptors. */
1995     for (i = 0; i < RX_RING_SIZE; i++) {
1996         np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1997                 +sizeof(struct netdev_desc)
1998                 *((i+1)%RX_RING_SIZE));
1999         np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2000         np->rx_skbuff[i] = NULL;
2001     }
2002     refill_rx(dev);
2003     dump_ring(dev);
2004 }
2005 
2006 static void drain_tx(struct net_device *dev)
2007 {
2008     struct netdev_private *np = netdev_priv(dev);
2009     int i;
2010 
2011     for (i = 0; i < TX_RING_SIZE; i++) {
2012         if (np->tx_skbuff[i]) {
2013             dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2014                      np->tx_skbuff[i]->len, DMA_TO_DEVICE);
2015             dev_kfree_skb(np->tx_skbuff[i]);
2016             dev->stats.tx_dropped++;
2017         }
2018         np->tx_skbuff[i] = NULL;
2019     }
2020 }
2021 
2022 static void drain_rx(struct net_device *dev)
2023 {
2024     struct netdev_private *np = netdev_priv(dev);
2025     unsigned int buflen = np->rx_buf_sz;
2026     int i;
2027 
2028     /* Free all the skbuffs in the Rx queue. */
2029     for (i = 0; i < RX_RING_SIZE; i++) {
2030         np->rx_ring[i].cmd_status = 0;
2031         np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2032         if (np->rx_skbuff[i]) {
2033             dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2034                      buflen + NATSEMI_PADDING,
2035                      DMA_FROM_DEVICE);
2036             dev_kfree_skb(np->rx_skbuff[i]);
2037         }
2038         np->rx_skbuff[i] = NULL;
2039     }
2040 }
2041 
2042 static void drain_ring(struct net_device *dev)
2043 {
2044     drain_rx(dev);
2045     drain_tx(dev);
2046 }
2047 
2048 static void free_ring(struct net_device *dev)
2049 {
2050     struct netdev_private *np = netdev_priv(dev);
2051     dma_free_coherent(&np->pci_dev->dev,
2052               sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2053               np->rx_ring, np->ring_dma);
2054 }
2055 
2056 static void reinit_rx(struct net_device *dev)
2057 {
2058     struct netdev_private *np = netdev_priv(dev);
2059     int i;
2060 
2061     /* RX Ring */
2062     np->dirty_rx = 0;
2063     np->cur_rx = RX_RING_SIZE;
2064     np->rx_head_desc = &np->rx_ring[0];
2065     /* Initialize all Rx descriptors. */
2066     for (i = 0; i < RX_RING_SIZE; i++)
2067         np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2068 
2069     refill_rx(dev);
2070 }
2071 
2072 static void reinit_ring(struct net_device *dev)
2073 {
2074     struct netdev_private *np = netdev_priv(dev);
2075     int i;
2076 
2077     /* drain TX ring */
2078     drain_tx(dev);
2079     np->dirty_tx = np->cur_tx = 0;
2080     for (i=0;i<TX_RING_SIZE;i++)
2081         np->tx_ring[i].cmd_status = 0;
2082 
2083     reinit_rx(dev);
2084 }
2085 
2086 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2087 {
2088     struct netdev_private *np = netdev_priv(dev);
2089     void __iomem * ioaddr = ns_ioaddr(dev);
2090     unsigned entry;
2091     unsigned long flags;
2092 
2093     /* Note: Ordering is important here, set the field with the
2094        "ownership" bit last, and only then increment cur_tx. */
2095 
2096     /* Calculate the next Tx descriptor entry. */
2097     entry = np->cur_tx % TX_RING_SIZE;
2098 
2099     np->tx_skbuff[entry] = skb;
2100     np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2101                        skb->len, DMA_TO_DEVICE);
2102     if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) {
2103         np->tx_skbuff[entry] = NULL;
2104         dev_kfree_skb_irq(skb);
2105         dev->stats.tx_dropped++;
2106         return NETDEV_TX_OK;
2107     }
2108 
2109     np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2110 
2111     spin_lock_irqsave(&np->lock, flags);
2112 
2113     if (!np->hands_off) {
2114         np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2115         /* StrongARM: Explicitly cache flush np->tx_ring and
2116          * skb->data,skb->len. */
2117         wmb();
2118         np->cur_tx++;
2119         if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2120             netdev_tx_done(dev);
2121             if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2122                 netif_stop_queue(dev);
2123         }
2124         /* Wake the potentially-idle transmit channel. */
2125         writel(TxOn, ioaddr + ChipCmd);
2126     } else {
2127         dev_kfree_skb_irq(skb);
2128         dev->stats.tx_dropped++;
2129     }
2130     spin_unlock_irqrestore(&np->lock, flags);
2131 
2132     if (netif_msg_tx_queued(np)) {
2133         printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2134             dev->name, np->cur_tx, entry);
2135     }
2136     return NETDEV_TX_OK;
2137 }
2138 
2139 static void netdev_tx_done(struct net_device *dev)
2140 {
2141     struct netdev_private *np = netdev_priv(dev);
2142 
2143     for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2144         int entry = np->dirty_tx % TX_RING_SIZE;
2145         if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2146             break;
2147         if (netif_msg_tx_done(np))
2148             printk(KERN_DEBUG
2149                 "%s: tx frame #%d finished, status %#08x.\n",
2150                     dev->name, np->dirty_tx,
2151                     le32_to_cpu(np->tx_ring[entry].cmd_status));
2152         if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2153             dev->stats.tx_packets++;
2154             dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2155         } else { /* Various Tx errors */
2156             int tx_status =
2157                 le32_to_cpu(np->tx_ring[entry].cmd_status);
2158             if (tx_status & (DescTxAbort|DescTxExcColl))
2159                 dev->stats.tx_aborted_errors++;
2160             if (tx_status & DescTxFIFO)
2161                 dev->stats.tx_fifo_errors++;
2162             if (tx_status & DescTxCarrier)
2163                 dev->stats.tx_carrier_errors++;
2164             if (tx_status & DescTxOOWCol)
2165                 dev->stats.tx_window_errors++;
2166             dev->stats.tx_errors++;
2167         }
2168         dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2169                  np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
2170         /* Free the original skb. */
2171         dev_consume_skb_irq(np->tx_skbuff[entry]);
2172         np->tx_skbuff[entry] = NULL;
2173     }
2174     if (netif_queue_stopped(dev) &&
2175         np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2176         /* The ring is no longer full, wake queue. */
2177         netif_wake_queue(dev);
2178     }
2179 }
2180 
2181 /* The interrupt handler doesn't actually handle interrupts itself, it
2182  * schedules a NAPI poll if there is anything to do. */
2183 static irqreturn_t intr_handler(int irq, void *dev_instance)
2184 {
2185     struct net_device *dev = dev_instance;
2186     struct netdev_private *np = netdev_priv(dev);
2187     void __iomem * ioaddr = ns_ioaddr(dev);
2188 
2189     /* Reading IntrStatus automatically acknowledges so don't do
2190      * that while interrupts are disabled, (for example, while a
2191      * poll is scheduled).  */
2192     if (np->hands_off || !readl(ioaddr + IntrEnable))
2193         return IRQ_NONE;
2194 
2195     np->intr_status = readl(ioaddr + IntrStatus);
2196 
2197     if (!np->intr_status)
2198         return IRQ_NONE;
2199 
2200     if (netif_msg_intr(np))
2201         printk(KERN_DEBUG
2202                "%s: Interrupt, status %#08x, mask %#08x.\n",
2203                dev->name, np->intr_status,
2204                readl(ioaddr + IntrMask));
2205 
2206     prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2207 
2208     if (napi_schedule_prep(&np->napi)) {
2209         /* Disable interrupts and register for poll */
2210         natsemi_irq_disable(dev);
2211         __napi_schedule(&np->napi);
2212     } else
2213         printk(KERN_WARNING
2214                    "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2215                dev->name, np->intr_status,
2216                readl(ioaddr + IntrMask));
2217 
2218     return IRQ_HANDLED;
2219 }
2220 
2221 /* This is the NAPI poll routine.  As well as the standard RX handling
2222  * it also handles all other interrupts that the chip might raise.
2223  */
2224 static int natsemi_poll(struct napi_struct *napi, int budget)
2225 {
2226     struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2227     struct net_device *dev = np->dev;
2228     void __iomem * ioaddr = ns_ioaddr(dev);
2229     int work_done = 0;
2230 
2231     do {
2232         if (netif_msg_intr(np))
2233             printk(KERN_DEBUG
2234                    "%s: Poll, status %#08x, mask %#08x.\n",
2235                    dev->name, np->intr_status,
2236                    readl(ioaddr + IntrMask));
2237 
2238         /* netdev_rx() may read IntrStatus again if the RX state
2239          * machine falls over so do it first. */
2240         if (np->intr_status &
2241             (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2242              IntrRxErr | IntrRxOverrun)) {
2243             netdev_rx(dev, &work_done, budget);
2244         }
2245 
2246         if (np->intr_status &
2247             (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2248             spin_lock(&np->lock);
2249             netdev_tx_done(dev);
2250             spin_unlock(&np->lock);
2251         }
2252 
2253         /* Abnormal error summary/uncommon events handlers. */
2254         if (np->intr_status & IntrAbnormalSummary)
2255             netdev_error(dev, np->intr_status);
2256 
2257         if (work_done >= budget)
2258             return work_done;
2259 
2260         np->intr_status = readl(ioaddr + IntrStatus);
2261     } while (np->intr_status);
2262 
2263     napi_complete_done(napi, work_done);
2264 
2265     /* Reenable interrupts providing nothing is trying to shut
2266      * the chip down. */
2267     spin_lock(&np->lock);
2268     if (!np->hands_off)
2269         natsemi_irq_enable(dev);
2270     spin_unlock(&np->lock);
2271 
2272     return work_done;
2273 }
2274 
2275 /* This routine is logically part of the interrupt handler, but separated
2276    for clarity and better register allocation. */
2277 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2278 {
2279     struct netdev_private *np = netdev_priv(dev);
2280     int entry = np->cur_rx % RX_RING_SIZE;
2281     int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2282     s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2283     unsigned int buflen = np->rx_buf_sz;
2284     void __iomem * ioaddr = ns_ioaddr(dev);
2285 
2286     /* If the driver owns the next entry it's a new packet. Send it up. */
2287     while (desc_status < 0) { /* e.g. & DescOwn */
2288         int pkt_len;
2289         if (netif_msg_rx_status(np))
2290             printk(KERN_DEBUG
2291                 "  netdev_rx() entry %d status was %#08x.\n",
2292                 entry, desc_status);
2293         if (--boguscnt < 0)
2294             break;
2295 
2296         if (*work_done >= work_to_do)
2297             break;
2298 
2299         (*work_done)++;
2300 
2301         pkt_len = (desc_status & DescSizeMask) - 4;
2302         if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2303             if (desc_status & DescMore) {
2304                 unsigned long flags;
2305 
2306                 if (netif_msg_rx_err(np))
2307                     printk(KERN_WARNING
2308                         "%s: Oversized(?) Ethernet "
2309                         "frame spanned multiple "
2310                         "buffers, entry %#08x "
2311                         "status %#08x.\n", dev->name,
2312                         np->cur_rx, desc_status);
2313                 dev->stats.rx_length_errors++;
2314 
2315                 /* The RX state machine has probably
2316                  * locked up beneath us.  Follow the
2317                  * reset procedure documented in
2318                  * AN-1287. */
2319 
2320                 spin_lock_irqsave(&np->lock, flags);
2321                 reset_rx(dev);
2322                 reinit_rx(dev);
2323                 writel(np->ring_dma, ioaddr + RxRingPtr);
2324                 check_link(dev);
2325                 spin_unlock_irqrestore(&np->lock, flags);
2326 
2327                 /* We'll enable RX on exit from this
2328                  * function. */
2329                 break;
2330 
2331             } else {
2332                 /* There was an error. */
2333                 dev->stats.rx_errors++;
2334                 if (desc_status & (DescRxAbort|DescRxOver))
2335                     dev->stats.rx_over_errors++;
2336                 if (desc_status & (DescRxLong|DescRxRunt))
2337                     dev->stats.rx_length_errors++;
2338                 if (desc_status & (DescRxInvalid|DescRxAlign))
2339                     dev->stats.rx_frame_errors++;
2340                 if (desc_status & DescRxCRC)
2341                     dev->stats.rx_crc_errors++;
2342             }
2343         } else if (pkt_len > np->rx_buf_sz) {
2344             /* if this is the tail of a double buffer
2345              * packet, we've already counted the error
2346              * on the first part.  Ignore the second half.
2347              */
2348         } else {
2349             struct sk_buff *skb;
2350             /* Omit CRC size. */
2351             /* Check if the packet is long enough to accept
2352              * without copying to a minimally-sized skbuff. */
2353             if (pkt_len < rx_copybreak &&
2354                 (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2355                 /* 16 byte align the IP header */
2356                 skb_reserve(skb, RX_OFFSET);
2357                 dma_sync_single_for_cpu(&np->pci_dev->dev,
2358                             np->rx_dma[entry],
2359                             buflen,
2360                             DMA_FROM_DEVICE);
2361                 skb_copy_to_linear_data(skb,
2362                     np->rx_skbuff[entry]->data, pkt_len);
2363                 skb_put(skb, pkt_len);
2364                 dma_sync_single_for_device(&np->pci_dev->dev,
2365                                np->rx_dma[entry],
2366                                buflen,
2367                                DMA_FROM_DEVICE);
2368             } else {
2369                 dma_unmap_single(&np->pci_dev->dev,
2370                          np->rx_dma[entry],
2371                          buflen + NATSEMI_PADDING,
2372                          DMA_FROM_DEVICE);
2373                 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2374                 np->rx_skbuff[entry] = NULL;
2375             }
2376             skb->protocol = eth_type_trans(skb, dev);
2377             netif_receive_skb(skb);
2378             dev->stats.rx_packets++;
2379             dev->stats.rx_bytes += pkt_len;
2380         }
2381         entry = (++np->cur_rx) % RX_RING_SIZE;
2382         np->rx_head_desc = &np->rx_ring[entry];
2383         desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2384     }
2385     refill_rx(dev);
2386 
2387     /* Restart Rx engine if stopped. */
2388     if (np->oom)
2389         mod_timer(&np->timer, jiffies + 1);
2390     else
2391         writel(RxOn, ioaddr + ChipCmd);
2392 }
2393 
2394 static void netdev_error(struct net_device *dev, int intr_status)
2395 {
2396     struct netdev_private *np = netdev_priv(dev);
2397     void __iomem * ioaddr = ns_ioaddr(dev);
2398 
2399     spin_lock(&np->lock);
2400     if (intr_status & LinkChange) {
2401         u16 lpa = mdio_read(dev, MII_LPA);
2402         if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2403             netif_msg_link(np)) {
2404             printk(KERN_INFO
2405                 "%s: Autonegotiation advertising"
2406                 " %#04x  partner %#04x.\n", dev->name,
2407                 np->advertising, lpa);
2408         }
2409 
2410         /* read MII int status to clear the flag */
2411         readw(ioaddr + MIntrStatus);
2412         check_link(dev);
2413     }
2414     if (intr_status & StatsMax) {
2415         __get_stats(dev);
2416     }
2417     if (intr_status & IntrTxUnderrun) {
2418         if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2419             np->tx_config += TX_DRTH_VAL_INC;
2420             if (netif_msg_tx_err(np))
2421                 printk(KERN_NOTICE
2422                     "%s: increased tx threshold, txcfg %#08x.\n",
2423                     dev->name, np->tx_config);
2424         } else {
2425             if (netif_msg_tx_err(np))
2426                 printk(KERN_NOTICE
2427                     "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2428                     dev->name, np->tx_config);
2429         }
2430         writel(np->tx_config, ioaddr + TxConfig);
2431     }
2432     if (intr_status & WOLPkt && netif_msg_wol(np)) {
2433         int wol_status = readl(ioaddr + WOLCmd);
2434         printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2435             dev->name, wol_status);
2436     }
2437     if (intr_status & RxStatusFIFOOver) {
2438         if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2439             printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2440                 dev->name);
2441         }
2442         dev->stats.rx_fifo_errors++;
2443         dev->stats.rx_errors++;
2444     }
2445     /* Hmmmmm, it's not clear how to recover from PCI faults. */
2446     if (intr_status & IntrPCIErr) {
2447         printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2448             intr_status & IntrPCIErr);
2449         dev->stats.tx_fifo_errors++;
2450         dev->stats.tx_errors++;
2451         dev->stats.rx_fifo_errors++;
2452         dev->stats.rx_errors++;
2453     }
2454     spin_unlock(&np->lock);
2455 }
2456 
2457 static void __get_stats(struct net_device *dev)
2458 {
2459     void __iomem * ioaddr = ns_ioaddr(dev);
2460 
2461     /* The chip only need report frame silently dropped. */
2462     dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2463     dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2464 }
2465 
2466 static struct net_device_stats *get_stats(struct net_device *dev)
2467 {
2468     struct netdev_private *np = netdev_priv(dev);
2469 
2470     /* The chip only need report frame silently dropped. */
2471     spin_lock_irq(&np->lock);
2472     if (netif_running(dev) && !np->hands_off)
2473         __get_stats(dev);
2474     spin_unlock_irq(&np->lock);
2475 
2476     return &dev->stats;
2477 }
2478 
2479 #ifdef CONFIG_NET_POLL_CONTROLLER
2480 static void natsemi_poll_controller(struct net_device *dev)
2481 {
2482     struct netdev_private *np = netdev_priv(dev);
2483     const int irq = np->pci_dev->irq;
2484 
2485     disable_irq(irq);
2486     intr_handler(irq, dev);
2487     enable_irq(irq);
2488 }
2489 #endif
2490 
2491 #define HASH_TABLE  0x200
2492 static void __set_rx_mode(struct net_device *dev)
2493 {
2494     void __iomem * ioaddr = ns_ioaddr(dev);
2495     struct netdev_private *np = netdev_priv(dev);
2496     u8 mc_filter[64]; /* Multicast hash filter */
2497     u32 rx_mode;
2498 
2499     if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2500         rx_mode = RxFilterEnable | AcceptBroadcast
2501             | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2502     } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2503            (dev->flags & IFF_ALLMULTI)) {
2504         rx_mode = RxFilterEnable | AcceptBroadcast
2505             | AcceptAllMulticast | AcceptMyPhys;
2506     } else {
2507         struct netdev_hw_addr *ha;
2508         int i;
2509 
2510         memset(mc_filter, 0, sizeof(mc_filter));
2511         netdev_for_each_mc_addr(ha, dev) {
2512             int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2513             mc_filter[b/8] |= (1 << (b & 0x07));
2514         }
2515         rx_mode = RxFilterEnable | AcceptBroadcast
2516             | AcceptMulticast | AcceptMyPhys;
2517         for (i = 0; i < 64; i += 2) {
2518             writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2519             writel((mc_filter[i + 1] << 8) + mc_filter[i],
2520                    ioaddr + RxFilterData);
2521         }
2522     }
2523     writel(rx_mode, ioaddr + RxFilterAddr);
2524     np->cur_rx_mode = rx_mode;
2525 }
2526 
2527 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2528 {
2529     dev->mtu = new_mtu;
2530 
2531     /* synchronized against open : rtnl_lock() held by caller */
2532     if (netif_running(dev)) {
2533         struct netdev_private *np = netdev_priv(dev);
2534         void __iomem * ioaddr = ns_ioaddr(dev);
2535         const int irq = np->pci_dev->irq;
2536 
2537         disable_irq(irq);
2538         spin_lock(&np->lock);
2539         /* stop engines */
2540         natsemi_stop_rxtx(dev);
2541         /* drain rx queue */
2542         drain_rx(dev);
2543         /* change buffers */
2544         set_bufsize(dev);
2545         reinit_rx(dev);
2546         writel(np->ring_dma, ioaddr + RxRingPtr);
2547         /* restart engines */
2548         writel(RxOn | TxOn, ioaddr + ChipCmd);
2549         spin_unlock(&np->lock);
2550         enable_irq(irq);
2551     }
2552     return 0;
2553 }
2554 
2555 static void set_rx_mode(struct net_device *dev)
2556 {
2557     struct netdev_private *np = netdev_priv(dev);
2558     spin_lock_irq(&np->lock);
2559     if (!np->hands_off)
2560         __set_rx_mode(dev);
2561     spin_unlock_irq(&np->lock);
2562 }
2563 
2564 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2565 {
2566     struct netdev_private *np = netdev_priv(dev);
2567     strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2568     strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2569     strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2570 }
2571 
2572 static int get_regs_len(struct net_device *dev)
2573 {
2574     return NATSEMI_REGS_SIZE;
2575 }
2576 
2577 static int get_eeprom_len(struct net_device *dev)
2578 {
2579     struct netdev_private *np = netdev_priv(dev);
2580     return np->eeprom_size;
2581 }
2582 
2583 static int get_link_ksettings(struct net_device *dev,
2584                   struct ethtool_link_ksettings *ecmd)
2585 {
2586     struct netdev_private *np = netdev_priv(dev);
2587     spin_lock_irq(&np->lock);
2588     netdev_get_ecmd(dev, ecmd);
2589     spin_unlock_irq(&np->lock);
2590     return 0;
2591 }
2592 
2593 static int set_link_ksettings(struct net_device *dev,
2594                   const struct ethtool_link_ksettings *ecmd)
2595 {
2596     struct netdev_private *np = netdev_priv(dev);
2597     int res;
2598     spin_lock_irq(&np->lock);
2599     res = netdev_set_ecmd(dev, ecmd);
2600     spin_unlock_irq(&np->lock);
2601     return res;
2602 }
2603 
2604 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2605 {
2606     struct netdev_private *np = netdev_priv(dev);
2607     spin_lock_irq(&np->lock);
2608     netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2609     netdev_get_sopass(dev, wol->sopass);
2610     spin_unlock_irq(&np->lock);
2611 }
2612 
2613 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2614 {
2615     struct netdev_private *np = netdev_priv(dev);
2616     int res;
2617     spin_lock_irq(&np->lock);
2618     netdev_set_wol(dev, wol->wolopts);
2619     res = netdev_set_sopass(dev, wol->sopass);
2620     spin_unlock_irq(&np->lock);
2621     return res;
2622 }
2623 
2624 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2625 {
2626     struct netdev_private *np = netdev_priv(dev);
2627     regs->version = NATSEMI_REGS_VER;
2628     spin_lock_irq(&np->lock);
2629     netdev_get_regs(dev, buf);
2630     spin_unlock_irq(&np->lock);
2631 }
2632 
2633 static u32 get_msglevel(struct net_device *dev)
2634 {
2635     struct netdev_private *np = netdev_priv(dev);
2636     return np->msg_enable;
2637 }
2638 
2639 static void set_msglevel(struct net_device *dev, u32 val)
2640 {
2641     struct netdev_private *np = netdev_priv(dev);
2642     np->msg_enable = val;
2643 }
2644 
2645 static int nway_reset(struct net_device *dev)
2646 {
2647     int tmp;
2648     int r = -EINVAL;
2649     /* if autoneg is off, it's an error */
2650     tmp = mdio_read(dev, MII_BMCR);
2651     if (tmp & BMCR_ANENABLE) {
2652         tmp |= (BMCR_ANRESTART);
2653         mdio_write(dev, MII_BMCR, tmp);
2654         r = 0;
2655     }
2656     return r;
2657 }
2658 
2659 static u32 get_link(struct net_device *dev)
2660 {
2661     /* LSTATUS is latched low until a read - so read twice */
2662     mdio_read(dev, MII_BMSR);
2663     return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2664 }
2665 
2666 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2667 {
2668     struct netdev_private *np = netdev_priv(dev);
2669     u8 *eebuf;
2670     int res;
2671 
2672     eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2673     if (!eebuf)
2674         return -ENOMEM;
2675 
2676     eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2677     spin_lock_irq(&np->lock);
2678     res = netdev_get_eeprom(dev, eebuf);
2679     spin_unlock_irq(&np->lock);
2680     if (!res)
2681         memcpy(data, eebuf+eeprom->offset, eeprom->len);
2682     kfree(eebuf);
2683     return res;
2684 }
2685 
2686 static const struct ethtool_ops ethtool_ops = {
2687     .get_drvinfo = get_drvinfo,
2688     .get_regs_len = get_regs_len,
2689     .get_eeprom_len = get_eeprom_len,
2690     .get_wol = get_wol,
2691     .set_wol = set_wol,
2692     .get_regs = get_regs,
2693     .get_msglevel = get_msglevel,
2694     .set_msglevel = set_msglevel,
2695     .nway_reset = nway_reset,
2696     .get_link = get_link,
2697     .get_eeprom = get_eeprom,
2698     .get_link_ksettings = get_link_ksettings,
2699     .set_link_ksettings = set_link_ksettings,
2700 };
2701 
2702 static int netdev_set_wol(struct net_device *dev, u32 newval)
2703 {
2704     struct netdev_private *np = netdev_priv(dev);
2705     void __iomem * ioaddr = ns_ioaddr(dev);
2706     u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2707 
2708     /* translate to bitmasks this chip understands */
2709     if (newval & WAKE_PHY)
2710         data |= WakePhy;
2711     if (newval & WAKE_UCAST)
2712         data |= WakeUnicast;
2713     if (newval & WAKE_MCAST)
2714         data |= WakeMulticast;
2715     if (newval & WAKE_BCAST)
2716         data |= WakeBroadcast;
2717     if (newval & WAKE_ARP)
2718         data |= WakeArp;
2719     if (newval & WAKE_MAGIC)
2720         data |= WakeMagic;
2721     if (np->srr >= SRR_DP83815_D) {
2722         if (newval & WAKE_MAGICSECURE) {
2723             data |= WakeMagicSecure;
2724         }
2725     }
2726 
2727     writel(data, ioaddr + WOLCmd);
2728 
2729     return 0;
2730 }
2731 
2732 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2733 {
2734     struct netdev_private *np = netdev_priv(dev);
2735     void __iomem * ioaddr = ns_ioaddr(dev);
2736     u32 regval = readl(ioaddr + WOLCmd);
2737 
2738     *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2739             | WAKE_ARP | WAKE_MAGIC);
2740 
2741     if (np->srr >= SRR_DP83815_D) {
2742         /* SOPASS works on revD and higher */
2743         *supported |= WAKE_MAGICSECURE;
2744     }
2745     *cur = 0;
2746 
2747     /* translate from chip bitmasks */
2748     if (regval & WakePhy)
2749         *cur |= WAKE_PHY;
2750     if (regval & WakeUnicast)
2751         *cur |= WAKE_UCAST;
2752     if (regval & WakeMulticast)
2753         *cur |= WAKE_MCAST;
2754     if (regval & WakeBroadcast)
2755         *cur |= WAKE_BCAST;
2756     if (regval & WakeArp)
2757         *cur |= WAKE_ARP;
2758     if (regval & WakeMagic)
2759         *cur |= WAKE_MAGIC;
2760     if (regval & WakeMagicSecure) {
2761         /* this can be on in revC, but it's broken */
2762         *cur |= WAKE_MAGICSECURE;
2763     }
2764 
2765     return 0;
2766 }
2767 
2768 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2769 {
2770     struct netdev_private *np = netdev_priv(dev);
2771     void __iomem * ioaddr = ns_ioaddr(dev);
2772     u16 *sval = (u16 *)newval;
2773     u32 addr;
2774 
2775     if (np->srr < SRR_DP83815_D) {
2776         return 0;
2777     }
2778 
2779     /* enable writing to these registers by disabling the RX filter */
2780     addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2781     addr &= ~RxFilterEnable;
2782     writel(addr, ioaddr + RxFilterAddr);
2783 
2784     /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2785     writel(addr | 0xa, ioaddr + RxFilterAddr);
2786     writew(sval[0], ioaddr + RxFilterData);
2787 
2788     writel(addr | 0xc, ioaddr + RxFilterAddr);
2789     writew(sval[1], ioaddr + RxFilterData);
2790 
2791     writel(addr | 0xe, ioaddr + RxFilterAddr);
2792     writew(sval[2], ioaddr + RxFilterData);
2793 
2794     /* re-enable the RX filter */
2795     writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2796 
2797     return 0;
2798 }
2799 
2800 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2801 {
2802     struct netdev_private *np = netdev_priv(dev);
2803     void __iomem * ioaddr = ns_ioaddr(dev);
2804     u16 *sval = (u16 *)data;
2805     u32 addr;
2806 
2807     if (np->srr < SRR_DP83815_D) {
2808         sval[0] = sval[1] = sval[2] = 0;
2809         return 0;
2810     }
2811 
2812     /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2813     addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2814 
2815     writel(addr | 0xa, ioaddr + RxFilterAddr);
2816     sval[0] = readw(ioaddr + RxFilterData);
2817 
2818     writel(addr | 0xc, ioaddr + RxFilterAddr);
2819     sval[1] = readw(ioaddr + RxFilterData);
2820 
2821     writel(addr | 0xe, ioaddr + RxFilterAddr);
2822     sval[2] = readw(ioaddr + RxFilterData);
2823 
2824     writel(addr, ioaddr + RxFilterAddr);
2825 
2826     return 0;
2827 }
2828 
2829 static int netdev_get_ecmd(struct net_device *dev,
2830                struct ethtool_link_ksettings *ecmd)
2831 {
2832     struct netdev_private *np = netdev_priv(dev);
2833     u32 supported, advertising;
2834     u32 tmp;
2835 
2836     ecmd->base.port   = dev->if_port;
2837     ecmd->base.speed  = np->speed;
2838     ecmd->base.duplex = np->duplex;
2839     ecmd->base.autoneg = np->autoneg;
2840     advertising = 0;
2841 
2842     if (np->advertising & ADVERTISE_10HALF)
2843         advertising |= ADVERTISED_10baseT_Half;
2844     if (np->advertising & ADVERTISE_10FULL)
2845         advertising |= ADVERTISED_10baseT_Full;
2846     if (np->advertising & ADVERTISE_100HALF)
2847         advertising |= ADVERTISED_100baseT_Half;
2848     if (np->advertising & ADVERTISE_100FULL)
2849         advertising |= ADVERTISED_100baseT_Full;
2850     supported   = (SUPPORTED_Autoneg |
2851         SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2852         SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2853         SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2854     ecmd->base.phy_address = np->phy_addr_external;
2855     /*
2856      * We intentionally report the phy address of the external
2857      * phy, even if the internal phy is used. This is necessary
2858      * to work around a deficiency of the ethtool interface:
2859      * It's only possible to query the settings of the active
2860      * port. Therefore
2861      * # ethtool -s ethX port mii
2862      * actually sends an ioctl to switch to port mii with the
2863      * settings that are used for the current active port.
2864      * If we would report a different phy address in this
2865      * command, then
2866      * # ethtool -s ethX port tp;ethtool -s ethX port mii
2867      * would unintentionally change the phy address.
2868      *
2869      * Fortunately the phy address doesn't matter with the
2870      * internal phy...
2871      */
2872 
2873     /* set information based on active port type */
2874     switch (ecmd->base.port) {
2875     default:
2876     case PORT_TP:
2877         advertising |= ADVERTISED_TP;
2878         break;
2879     case PORT_MII:
2880         advertising |= ADVERTISED_MII;
2881         break;
2882     case PORT_FIBRE:
2883         advertising |= ADVERTISED_FIBRE;
2884         break;
2885     }
2886 
2887     /* if autonegotiation is on, try to return the active speed/duplex */
2888     if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2889         advertising |= ADVERTISED_Autoneg;
2890         tmp = mii_nway_result(
2891             np->advertising & mdio_read(dev, MII_LPA));
2892         if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2893             ecmd->base.speed = SPEED_100;
2894         else
2895             ecmd->base.speed = SPEED_10;
2896         if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2897             ecmd->base.duplex = DUPLEX_FULL;
2898         else
2899             ecmd->base.duplex = DUPLEX_HALF;
2900     }
2901 
2902     /* ignore maxtxpkt, maxrxpkt for now */
2903 
2904     ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2905                         supported);
2906     ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2907                         advertising);
2908 
2909     return 0;
2910 }
2911 
2912 static int netdev_set_ecmd(struct net_device *dev,
2913                const struct ethtool_link_ksettings *ecmd)
2914 {
2915     struct netdev_private *np = netdev_priv(dev);
2916     u32 advertising;
2917 
2918     ethtool_convert_link_mode_to_legacy_u32(&advertising,
2919                         ecmd->link_modes.advertising);
2920 
2921     if (ecmd->base.port != PORT_TP &&
2922         ecmd->base.port != PORT_MII &&
2923         ecmd->base.port != PORT_FIBRE)
2924         return -EINVAL;
2925     if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2926         if ((advertising & (ADVERTISED_10baseT_Half |
2927                       ADVERTISED_10baseT_Full |
2928                       ADVERTISED_100baseT_Half |
2929                       ADVERTISED_100baseT_Full)) == 0) {
2930             return -EINVAL;
2931         }
2932     } else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2933         u32 speed = ecmd->base.speed;
2934         if (speed != SPEED_10 && speed != SPEED_100)
2935             return -EINVAL;
2936         if (ecmd->base.duplex != DUPLEX_HALF &&
2937             ecmd->base.duplex != DUPLEX_FULL)
2938             return -EINVAL;
2939     } else {
2940         return -EINVAL;
2941     }
2942 
2943     /*
2944      * If we're ignoring the PHY then autoneg and the internal
2945      * transceiver are really not going to work so don't let the
2946      * user select them.
2947      */
2948     if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2949                    ecmd->base.port == PORT_TP))
2950         return -EINVAL;
2951 
2952     /*
2953      * maxtxpkt, maxrxpkt: ignored for now.
2954      *
2955      * transceiver:
2956      * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2957      * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2958      * selects based on ecmd->port.
2959      *
2960      * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2961      * phys that are connected to the mii bus. It's used to apply fibre
2962      * specific updates.
2963      */
2964 
2965     /* WHEW! now lets bang some bits */
2966 
2967     /* save the parms */
2968     dev->if_port          = ecmd->base.port;
2969     np->autoneg           = ecmd->base.autoneg;
2970     np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2971     if (np->autoneg == AUTONEG_ENABLE) {
2972         /* advertise only what has been requested */
2973         np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2974         if (advertising & ADVERTISED_10baseT_Half)
2975             np->advertising |= ADVERTISE_10HALF;
2976         if (advertising & ADVERTISED_10baseT_Full)
2977             np->advertising |= ADVERTISE_10FULL;
2978         if (advertising & ADVERTISED_100baseT_Half)
2979             np->advertising |= ADVERTISE_100HALF;
2980         if (advertising & ADVERTISED_100baseT_Full)
2981             np->advertising |= ADVERTISE_100FULL;
2982     } else {
2983         np->speed  = ecmd->base.speed;
2984         np->duplex = ecmd->base.duplex;
2985         /* user overriding the initial full duplex parm? */
2986         if (np->duplex == DUPLEX_HALF)
2987             np->full_duplex = 0;
2988     }
2989 
2990     /* get the right phy enabled */
2991     if (ecmd->base.port == PORT_TP)
2992         switch_port_internal(dev);
2993     else
2994         switch_port_external(dev);
2995 
2996     /* set parms and see how this affected our link status */
2997     init_phy_fixup(dev);
2998     check_link(dev);
2999     return 0;
3000 }
3001 
3002 static int netdev_get_regs(struct net_device *dev, u8 *buf)
3003 {
3004     int i;
3005     int j;
3006     u32 rfcr;
3007     u32 *rbuf = (u32 *)buf;
3008     void __iomem * ioaddr = ns_ioaddr(dev);
3009 
3010     /* read non-mii page 0 of registers */
3011     for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3012         rbuf[i] = readl(ioaddr + i*4);
3013     }
3014 
3015     /* read current mii registers */
3016     for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3017         rbuf[i] = mdio_read(dev, i & 0x1f);
3018 
3019     /* read only the 'magic' registers from page 1 */
3020     writew(1, ioaddr + PGSEL);
3021     rbuf[i++] = readw(ioaddr + PMDCSR);
3022     rbuf[i++] = readw(ioaddr + TSTDAT);
3023     rbuf[i++] = readw(ioaddr + DSPCFG);
3024     rbuf[i++] = readw(ioaddr + SDCFG);
3025     writew(0, ioaddr + PGSEL);
3026 
3027     /* read RFCR indexed registers */
3028     rfcr = readl(ioaddr + RxFilterAddr);
3029     for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3030         writel(j*2, ioaddr + RxFilterAddr);
3031         rbuf[i++] = readw(ioaddr + RxFilterData);
3032     }
3033     writel(rfcr, ioaddr + RxFilterAddr);
3034 
3035     /* the interrupt status is clear-on-read - see if we missed any */
3036     if (rbuf[4] & rbuf[5]) {
3037         printk(KERN_WARNING
3038             "%s: shoot, we dropped an interrupt (%#08x)\n",
3039             dev->name, rbuf[4] & rbuf[5]);
3040     }
3041 
3042     return 0;
3043 }
3044 
3045 #define SWAP_BITS(x)    ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3046             | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3047             | (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3048             | (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3049             | (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3050             | (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3051             | (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3052             | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3053 
3054 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3055 {
3056     int i;
3057     u16 *ebuf = (u16 *)buf;
3058     void __iomem * ioaddr = ns_ioaddr(dev);
3059     struct netdev_private *np = netdev_priv(dev);
3060 
3061     /* eeprom_read reads 16 bits, and indexes by 16 bits */
3062     for (i = 0; i < np->eeprom_size/2; i++) {
3063         ebuf[i] = eeprom_read(ioaddr, i);
3064         /* The EEPROM itself stores data bit-swapped, but eeprom_read
3065          * reads it back "sanely". So we swap it back here in order to
3066          * present it to userland as it is stored. */
3067         ebuf[i] = SWAP_BITS(ebuf[i]);
3068     }
3069     return 0;
3070 }
3071 
3072 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3073 {
3074     struct mii_ioctl_data *data = if_mii(rq);
3075     struct netdev_private *np = netdev_priv(dev);
3076 
3077     switch(cmd) {
3078     case SIOCGMIIPHY:       /* Get address of MII PHY in use. */
3079         data->phy_id = np->phy_addr_external;
3080         fallthrough;
3081 
3082     case SIOCGMIIREG:       /* Read MII PHY register. */
3083         /* The phy_id is not enough to uniquely identify
3084          * the intended target. Therefore the command is sent to
3085          * the given mii on the current port.
3086          */
3087         if (dev->if_port == PORT_TP) {
3088             if ((data->phy_id & 0x1f) == np->phy_addr_external)
3089                 data->val_out = mdio_read(dev,
3090                             data->reg_num & 0x1f);
3091             else
3092                 data->val_out = 0;
3093         } else {
3094             move_int_phy(dev, data->phy_id & 0x1f);
3095             data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3096                             data->reg_num & 0x1f);
3097         }
3098         return 0;
3099 
3100     case SIOCSMIIREG:       /* Write MII PHY register. */
3101         if (dev->if_port == PORT_TP) {
3102             if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3103                 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3104                     np->advertising = data->val_in;
3105                 mdio_write(dev, data->reg_num & 0x1f,
3106                             data->val_in);
3107             }
3108         } else {
3109             if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3110                 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3111                     np->advertising = data->val_in;
3112             }
3113             move_int_phy(dev, data->phy_id & 0x1f);
3114             miiport_write(dev, data->phy_id & 0x1f,
3115                         data->reg_num & 0x1f,
3116                         data->val_in);
3117         }
3118         return 0;
3119     default:
3120         return -EOPNOTSUPP;
3121     }
3122 }
3123 
3124 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3125 {
3126     void __iomem * ioaddr = ns_ioaddr(dev);
3127     struct netdev_private *np = netdev_priv(dev);
3128 
3129     if (netif_msg_wol(np))
3130         printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3131             dev->name);
3132 
3133     /* For WOL we must restart the rx process in silent mode.
3134      * Write NULL to the RxRingPtr. Only possible if
3135      * rx process is stopped
3136      */
3137     writel(0, ioaddr + RxRingPtr);
3138 
3139     /* read WoL status to clear */
3140     readl(ioaddr + WOLCmd);
3141 
3142     /* PME on, clear status */
3143     writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3144 
3145     /* and restart the rx process */
3146     writel(RxOn, ioaddr + ChipCmd);
3147 
3148     if (enable_intr) {
3149         /* enable the WOL interrupt.
3150          * Could be used to send a netlink message.
3151          */
3152         writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3153         natsemi_irq_enable(dev);
3154     }
3155 }
3156 
3157 static int netdev_close(struct net_device *dev)
3158 {
3159     void __iomem * ioaddr = ns_ioaddr(dev);
3160     struct netdev_private *np = netdev_priv(dev);
3161     const int irq = np->pci_dev->irq;
3162 
3163     if (netif_msg_ifdown(np))
3164         printk(KERN_DEBUG
3165             "%s: Shutting down ethercard, status was %#04x.\n",
3166             dev->name, (int)readl(ioaddr + ChipCmd));
3167     if (netif_msg_pktdata(np))
3168         printk(KERN_DEBUG
3169             "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3170             dev->name, np->cur_tx, np->dirty_tx,
3171             np->cur_rx, np->dirty_rx);
3172 
3173     napi_disable(&np->napi);
3174 
3175     /*
3176      * FIXME: what if someone tries to close a device
3177      * that is suspended?
3178      * Should we reenable the nic to switch to
3179      * the final WOL settings?
3180      */
3181 
3182     del_timer_sync(&np->timer);
3183     disable_irq(irq);
3184     spin_lock_irq(&np->lock);
3185     natsemi_irq_disable(dev);
3186     np->hands_off = 1;
3187     spin_unlock_irq(&np->lock);
3188     enable_irq(irq);
3189 
3190     free_irq(irq, dev);
3191 
3192     /* Interrupt disabled, interrupt handler released,
3193      * queue stopped, timer deleted, rtnl_lock held
3194      * All async codepaths that access the driver are disabled.
3195      */
3196     spin_lock_irq(&np->lock);
3197     np->hands_off = 0;
3198     readl(ioaddr + IntrMask);
3199     readw(ioaddr + MIntrStatus);
3200 
3201     /* Freeze Stats */
3202     writel(StatsFreeze, ioaddr + StatsCtrl);
3203 
3204     /* Stop the chip's Tx and Rx processes. */
3205     natsemi_stop_rxtx(dev);
3206 
3207     __get_stats(dev);
3208     spin_unlock_irq(&np->lock);
3209 
3210     /* clear the carrier last - an interrupt could reenable it otherwise */
3211     netif_carrier_off(dev);
3212     netif_stop_queue(dev);
3213 
3214     dump_ring(dev);
3215     drain_ring(dev);
3216     free_ring(dev);
3217 
3218     {
3219         u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3220         if (wol) {
3221             /* restart the NIC in WOL mode.
3222              * The nic must be stopped for this.
3223              */
3224             enable_wol_mode(dev, 0);
3225         } else {
3226             /* Restore PME enable bit unmolested */
3227             writel(np->SavedClkRun, ioaddr + ClkRun);
3228         }
3229     }
3230     return 0;
3231 }
3232 
3233 
3234 static void natsemi_remove1(struct pci_dev *pdev)
3235 {
3236     struct net_device *dev = pci_get_drvdata(pdev);
3237     void __iomem * ioaddr = ns_ioaddr(dev);
3238 
3239     NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3240     unregister_netdev (dev);
3241     iounmap(ioaddr);
3242     free_netdev (dev);
3243 }
3244 
3245 /*
3246  * The ns83815 chip doesn't have explicit RxStop bits.
3247  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3248  * of the nic, thus this function must be very careful:
3249  *
3250  * suspend/resume synchronization:
3251  * entry points:
3252  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3253  *   start_tx, ns_tx_timeout
3254  *
3255  * No function accesses the hardware without checking np->hands_off.
3256  *  the check occurs under spin_lock_irq(&np->lock);
3257  * exceptions:
3258  *  * netdev_ioctl: noncritical access.
3259  *  * netdev_open: cannot happen due to the device_detach
3260  *  * netdev_close: doesn't hurt.
3261  *  * netdev_timer: timer stopped by natsemi_suspend.
3262  *  * intr_handler: doesn't acquire the spinlock. suspend calls
3263  *      disable_irq() to enforce synchronization.
3264  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3265  *              sets hands_off, disables interrupts and then waits with
3266  *              napi_disable().
3267  *
3268  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3269  */
3270 
3271 static int __maybe_unused natsemi_suspend(struct device *dev_d)
3272 {
3273     struct net_device *dev = dev_get_drvdata(dev_d);
3274     struct netdev_private *np = netdev_priv(dev);
3275     void __iomem * ioaddr = ns_ioaddr(dev);
3276 
3277     rtnl_lock();
3278     if (netif_running (dev)) {
3279         const int irq = np->pci_dev->irq;
3280 
3281         del_timer_sync(&np->timer);
3282 
3283         disable_irq(irq);
3284         spin_lock_irq(&np->lock);
3285 
3286         natsemi_irq_disable(dev);
3287         np->hands_off = 1;
3288         natsemi_stop_rxtx(dev);
3289         netif_stop_queue(dev);
3290 
3291         spin_unlock_irq(&np->lock);
3292         enable_irq(irq);
3293 
3294         napi_disable(&np->napi);
3295 
3296         /* Update the error counts. */
3297         __get_stats(dev);
3298 
3299         /* pci_power_off(pdev, -1); */
3300         drain_ring(dev);
3301         {
3302             u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3303             /* Restore PME enable bit */
3304             if (wol) {
3305                 /* restart the NIC in WOL mode.
3306                  * The nic must be stopped for this.
3307                  * FIXME: use the WOL interrupt
3308                  */
3309                 enable_wol_mode(dev, 0);
3310             } else {
3311                 /* Restore PME enable bit unmolested */
3312                 writel(np->SavedClkRun, ioaddr + ClkRun);
3313             }
3314         }
3315     }
3316     netif_device_detach(dev);
3317     rtnl_unlock();
3318     return 0;
3319 }
3320 
3321 
3322 static int __maybe_unused natsemi_resume(struct device *dev_d)
3323 {
3324     struct net_device *dev = dev_get_drvdata(dev_d);
3325     struct netdev_private *np = netdev_priv(dev);
3326 
3327     rtnl_lock();
3328     if (netif_device_present(dev))
3329         goto out;
3330     if (netif_running(dev)) {
3331         const int irq = np->pci_dev->irq;
3332 
3333         BUG_ON(!np->hands_off);
3334     /*  pci_power_on(pdev); */
3335 
3336         napi_enable(&np->napi);
3337 
3338         natsemi_reset(dev);
3339         init_ring(dev);
3340         disable_irq(irq);
3341         spin_lock_irq(&np->lock);
3342         np->hands_off = 0;
3343         init_registers(dev);
3344         netif_device_attach(dev);
3345         spin_unlock_irq(&np->lock);
3346         enable_irq(irq);
3347 
3348         mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3349     }
3350     netif_device_attach(dev);
3351 out:
3352     rtnl_unlock();
3353     return 0;
3354 }
3355 
3356 static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3357 
3358 static struct pci_driver natsemi_driver = {
3359     .name       = DRV_NAME,
3360     .id_table   = natsemi_pci_tbl,
3361     .probe      = natsemi_probe1,
3362     .remove     = natsemi_remove1,
3363     .driver.pm  = &natsemi_pm_ops,
3364 };
3365 
3366 static int __init natsemi_init_mod (void)
3367 {
3368 /* when a module, this is printed whether or not devices are found in probe */
3369 #ifdef MODULE
3370     printk(version);
3371 #endif
3372 
3373     return pci_register_driver(&natsemi_driver);
3374 }
3375 
3376 static void __exit natsemi_exit_mod (void)
3377 {
3378     pci_unregister_driver (&natsemi_driver);
3379 }
3380 
3381 module_init(natsemi_init_mod);
3382 module_exit(natsemi_exit_mod);
3383