0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include <linux/delay.h>
0011 #include <linux/errno.h>
0012 #include <linux/init.h>
0013 #include <linux/module.h>
0014 #include <linux/netdevice.h>
0015 #include <linux/regmap.h>
0016 #include <linux/spi/spi.h>
0017
0018 #include "encx24j600_hw.h"
0019
0020 static int encx24j600_switch_bank(struct encx24j600_context *ctx,
0021 int bank)
0022 {
0023 int ret = 0;
0024 int bank_opcode = BANK_SELECT(bank);
0025
0026 ret = spi_write(ctx->spi, &bank_opcode, 1);
0027 if (ret == 0)
0028 ctx->bank = bank;
0029
0030 return ret;
0031 }
0032
0033 static int encx24j600_cmdn(struct encx24j600_context *ctx, u8 opcode,
0034 const void *buf, size_t len)
0035 {
0036 struct spi_message m;
0037 struct spi_transfer t[2] = { { .tx_buf = &opcode, .len = 1, },
0038 { .tx_buf = buf, .len = len }, };
0039 spi_message_init(&m);
0040 spi_message_add_tail(&t[0], &m);
0041 spi_message_add_tail(&t[1], &m);
0042
0043 return spi_sync(ctx->spi, &m);
0044 }
0045
0046 static void regmap_lock_mutex(void *context)
0047 {
0048 struct encx24j600_context *ctx = context;
0049
0050 mutex_lock(&ctx->mutex);
0051 }
0052
0053 static void regmap_unlock_mutex(void *context)
0054 {
0055 struct encx24j600_context *ctx = context;
0056
0057 mutex_unlock(&ctx->mutex);
0058 }
0059
0060 static int regmap_encx24j600_sfr_read(void *context, u8 reg, u8 *val,
0061 size_t len)
0062 {
0063 struct encx24j600_context *ctx = context;
0064 u8 banked_reg = reg & ADDR_MASK;
0065 u8 bank = ((reg & BANK_MASK) >> BANK_SHIFT);
0066 u8 cmd = RCRU;
0067 int ret = 0;
0068 int i = 0;
0069 u8 tx_buf[2];
0070
0071 if (reg < 0x80) {
0072 cmd = RCRCODE | banked_reg;
0073 if ((banked_reg < 0x16) && (ctx->bank != bank))
0074 ret = encx24j600_switch_bank(ctx, bank);
0075 if (unlikely(ret))
0076 return ret;
0077 } else {
0078
0079
0080
0081 switch (reg) {
0082 case EGPRDPT:
0083 cmd = RGPRDPT; break;
0084 case EGPWRPT:
0085 cmd = RGPWRPT; break;
0086 case ERXRDPT:
0087 cmd = RRXRDPT; break;
0088 case ERXWRPT:
0089 cmd = RRXWRPT; break;
0090 case EUDARDPT:
0091 cmd = RUDARDPT; break;
0092 case EUDAWRPT:
0093 cmd = RUDAWRPT; break;
0094 case EGPDATA:
0095 case ERXDATA:
0096 case EUDADATA:
0097 default:
0098 return -EINVAL;
0099 }
0100 }
0101
0102 tx_buf[i++] = cmd;
0103 if (cmd == RCRU)
0104 tx_buf[i++] = reg;
0105
0106 ret = spi_write_then_read(ctx->spi, tx_buf, i, val, len);
0107
0108 return ret;
0109 }
0110
0111 static int regmap_encx24j600_sfr_update(struct encx24j600_context *ctx,
0112 u8 reg, u8 *val, size_t len,
0113 u8 unbanked_cmd, u8 banked_code)
0114 {
0115 u8 banked_reg = reg & ADDR_MASK;
0116 u8 bank = ((reg & BANK_MASK) >> BANK_SHIFT);
0117 u8 cmd = unbanked_cmd;
0118 struct spi_message m;
0119 struct spi_transfer t[3] = { { .tx_buf = &cmd, .len = sizeof(cmd), },
0120 { .tx_buf = ®, .len = sizeof(reg), },
0121 { .tx_buf = val, .len = len }, };
0122
0123 if (reg < 0x80) {
0124 int ret = 0;
0125
0126 cmd = banked_code | banked_reg;
0127 if ((banked_reg < 0x16) && (ctx->bank != bank))
0128 ret = encx24j600_switch_bank(ctx, bank);
0129 if (unlikely(ret))
0130 return ret;
0131 } else {
0132
0133
0134
0135 switch (reg) {
0136 case EGPRDPT:
0137 cmd = WGPRDPT; break;
0138 case EGPWRPT:
0139 cmd = WGPWRPT; break;
0140 case ERXRDPT:
0141 cmd = WRXRDPT; break;
0142 case ERXWRPT:
0143 cmd = WRXWRPT; break;
0144 case EUDARDPT:
0145 cmd = WUDARDPT; break;
0146 case EUDAWRPT:
0147 cmd = WUDAWRPT; break;
0148 case EGPDATA:
0149 case ERXDATA:
0150 case EUDADATA:
0151 default:
0152 return -EINVAL;
0153 }
0154 }
0155
0156 spi_message_init(&m);
0157 spi_message_add_tail(&t[0], &m);
0158
0159 if (cmd == unbanked_cmd) {
0160 t[1].tx_buf = ®
0161 spi_message_add_tail(&t[1], &m);
0162 }
0163
0164 spi_message_add_tail(&t[2], &m);
0165 return spi_sync(ctx->spi, &m);
0166 }
0167
0168 static int regmap_encx24j600_sfr_write(void *context, u8 reg, u8 *val,
0169 size_t len)
0170 {
0171 struct encx24j600_context *ctx = context;
0172
0173 return regmap_encx24j600_sfr_update(ctx, reg, val, len, WCRU, WCRCODE);
0174 }
0175
0176 static int regmap_encx24j600_sfr_set_bits(struct encx24j600_context *ctx,
0177 u8 reg, u8 val)
0178 {
0179 return regmap_encx24j600_sfr_update(ctx, reg, &val, 1, BFSU, BFSCODE);
0180 }
0181
0182 static int regmap_encx24j600_sfr_clr_bits(struct encx24j600_context *ctx,
0183 u8 reg, u8 val)
0184 {
0185 return regmap_encx24j600_sfr_update(ctx, reg, &val, 1, BFCU, BFCCODE);
0186 }
0187
0188 static int regmap_encx24j600_reg_update_bits(void *context, unsigned int reg,
0189 unsigned int mask,
0190 unsigned int val)
0191 {
0192 struct encx24j600_context *ctx = context;
0193
0194 int ret = 0;
0195 unsigned int set_mask = mask & val;
0196 unsigned int clr_mask = mask & ~val;
0197
0198 if ((reg >= 0x40 && reg < 0x6c) || reg >= 0x80)
0199 return -EINVAL;
0200
0201 if (set_mask & 0xff)
0202 ret = regmap_encx24j600_sfr_set_bits(ctx, reg, set_mask);
0203
0204 set_mask = (set_mask & 0xff00) >> 8;
0205
0206 if ((set_mask & 0xff) && (ret == 0))
0207 ret = regmap_encx24j600_sfr_set_bits(ctx, reg + 1, set_mask);
0208
0209 if ((clr_mask & 0xff) && (ret == 0))
0210 ret = regmap_encx24j600_sfr_clr_bits(ctx, reg, clr_mask);
0211
0212 clr_mask = (clr_mask & 0xff00) >> 8;
0213
0214 if ((clr_mask & 0xff) && (ret == 0))
0215 ret = regmap_encx24j600_sfr_clr_bits(ctx, reg + 1, clr_mask);
0216
0217 return ret;
0218 }
0219
0220 int regmap_encx24j600_spi_write(void *context, u8 reg, const u8 *data,
0221 size_t count)
0222 {
0223 struct encx24j600_context *ctx = context;
0224
0225 if (reg < 0xc0)
0226 return encx24j600_cmdn(ctx, reg, data, count);
0227
0228
0229 return spi_write(ctx->spi, ®, 1);
0230 }
0231 EXPORT_SYMBOL_GPL(regmap_encx24j600_spi_write);
0232
0233 int regmap_encx24j600_spi_read(void *context, u8 reg, u8 *data, size_t count)
0234 {
0235 struct encx24j600_context *ctx = context;
0236
0237 if (reg == RBSEL && count > 1)
0238 count = 1;
0239
0240 return spi_write_then_read(ctx->spi, ®, sizeof(reg), data, count);
0241 }
0242 EXPORT_SYMBOL_GPL(regmap_encx24j600_spi_read);
0243
0244 static int regmap_encx24j600_write(void *context, const void *data,
0245 size_t len)
0246 {
0247 u8 *dout = (u8 *)data;
0248 u8 reg = dout[0];
0249 ++dout;
0250 --len;
0251
0252 if (reg > 0xa0)
0253 return regmap_encx24j600_spi_write(context, reg, dout, len);
0254
0255 if (len > 2)
0256 return -EINVAL;
0257
0258 return regmap_encx24j600_sfr_write(context, reg, dout, len);
0259 }
0260
0261 static int regmap_encx24j600_read(void *context,
0262 const void *reg_buf, size_t reg_size,
0263 void *val, size_t val_size)
0264 {
0265 u8 reg = *(const u8 *)reg_buf;
0266
0267 if (reg_size != 1) {
0268 pr_err("%s: reg=%02x reg_size=%zu\n", __func__, reg, reg_size);
0269 return -EINVAL;
0270 }
0271
0272 if (reg > 0xa0)
0273 return regmap_encx24j600_spi_read(context, reg, val, val_size);
0274
0275 if (val_size > 2) {
0276 pr_err("%s: reg=%02x val_size=%zu\n", __func__, reg, val_size);
0277 return -EINVAL;
0278 }
0279
0280 return regmap_encx24j600_sfr_read(context, reg, val, val_size);
0281 }
0282
0283 static bool encx24j600_regmap_readable(struct device *dev, unsigned int reg)
0284 {
0285 if ((reg < 0x36) ||
0286 ((reg >= 0x40) && (reg < 0x4c)) ||
0287 ((reg >= 0x52) && (reg < 0x56)) ||
0288 ((reg >= 0x60) && (reg < 0x66)) ||
0289 ((reg >= 0x68) && (reg < 0x80)) ||
0290 ((reg >= 0x86) && (reg < 0x92)) ||
0291 (reg == 0xc8))
0292 return true;
0293 else
0294 return false;
0295 }
0296
0297 static bool encx24j600_regmap_writeable(struct device *dev, unsigned int reg)
0298 {
0299 if ((reg < 0x12) ||
0300 ((reg >= 0x14) && (reg < 0x1a)) ||
0301 ((reg >= 0x1c) && (reg < 0x36)) ||
0302 ((reg >= 0x40) && (reg < 0x4c)) ||
0303 ((reg >= 0x52) && (reg < 0x56)) ||
0304 ((reg >= 0x60) && (reg < 0x68)) ||
0305 ((reg >= 0x6c) && (reg < 0x80)) ||
0306 ((reg >= 0x86) && (reg < 0x92)) ||
0307 ((reg >= 0xc0) && (reg < 0xc8)) ||
0308 ((reg >= 0xca) && (reg < 0xf0)))
0309 return true;
0310 else
0311 return false;
0312 }
0313
0314 static bool encx24j600_regmap_volatile(struct device *dev, unsigned int reg)
0315 {
0316 switch (reg) {
0317 case ERXHEAD:
0318 case EDMACS:
0319 case ETXSTAT:
0320 case ETXWIRE:
0321 case ECON1:
0322 case ECON2:
0323 case ESTAT:
0324 case EIR:
0325 case MIRD:
0326 case MISTAT:
0327 return true;
0328 default:
0329 break;
0330 }
0331
0332 return false;
0333 }
0334
0335 static bool encx24j600_regmap_precious(struct device *dev, unsigned int reg)
0336 {
0337
0338 if (((reg >= 0xc0) && (reg < 0xc8)) ||
0339 ((reg >= 0xca) && (reg < 0xf0)))
0340 return true;
0341 else
0342 return false;
0343 }
0344
0345 static int regmap_encx24j600_phy_reg_read(void *context, unsigned int reg,
0346 unsigned int *val)
0347 {
0348 struct encx24j600_context *ctx = context;
0349 int ret;
0350 unsigned int mistat;
0351
0352 reg = MIREGADR_VAL | (reg & PHREG_MASK);
0353 ret = regmap_write(ctx->regmap, MIREGADR, reg);
0354 if (unlikely(ret))
0355 goto err_out;
0356
0357 ret = regmap_write(ctx->regmap, MICMD, MIIRD);
0358 if (unlikely(ret))
0359 goto err_out;
0360
0361 usleep_range(26, 100);
0362 while ((ret = regmap_read(ctx->regmap, MISTAT, &mistat) != 0) &&
0363 (mistat & BUSY))
0364 cpu_relax();
0365
0366 if (unlikely(ret))
0367 goto err_out;
0368
0369 ret = regmap_write(ctx->regmap, MICMD, 0);
0370 if (unlikely(ret))
0371 goto err_out;
0372
0373 ret = regmap_read(ctx->regmap, MIRD, val);
0374
0375 err_out:
0376 if (ret)
0377 pr_err("%s: error %d reading reg %02x\n", __func__, ret,
0378 reg & PHREG_MASK);
0379
0380 return ret;
0381 }
0382
0383 static int regmap_encx24j600_phy_reg_write(void *context, unsigned int reg,
0384 unsigned int val)
0385 {
0386 struct encx24j600_context *ctx = context;
0387 int ret;
0388 unsigned int mistat;
0389
0390 reg = MIREGADR_VAL | (reg & PHREG_MASK);
0391 ret = regmap_write(ctx->regmap, MIREGADR, reg);
0392 if (unlikely(ret))
0393 goto err_out;
0394
0395 ret = regmap_write(ctx->regmap, MIWR, val);
0396 if (unlikely(ret))
0397 goto err_out;
0398
0399 usleep_range(26, 100);
0400 while ((ret = regmap_read(ctx->regmap, MISTAT, &mistat) != 0) &&
0401 (mistat & BUSY))
0402 cpu_relax();
0403
0404 err_out:
0405 if (ret)
0406 pr_err("%s: error %d writing reg %02x=%04x\n", __func__, ret,
0407 reg & PHREG_MASK, val);
0408
0409 return ret;
0410 }
0411
0412 static bool encx24j600_phymap_readable(struct device *dev, unsigned int reg)
0413 {
0414 switch (reg) {
0415 case PHCON1:
0416 case PHSTAT1:
0417 case PHANA:
0418 case PHANLPA:
0419 case PHANE:
0420 case PHCON2:
0421 case PHSTAT2:
0422 case PHSTAT3:
0423 return true;
0424 default:
0425 return false;
0426 }
0427 }
0428
0429 static bool encx24j600_phymap_writeable(struct device *dev, unsigned int reg)
0430 {
0431 switch (reg) {
0432 case PHCON1:
0433 case PHCON2:
0434 case PHANA:
0435 return true;
0436 case PHSTAT1:
0437 case PHSTAT2:
0438 case PHSTAT3:
0439 case PHANLPA:
0440 case PHANE:
0441 default:
0442 return false;
0443 }
0444 }
0445
0446 static bool encx24j600_phymap_volatile(struct device *dev, unsigned int reg)
0447 {
0448 switch (reg) {
0449 case PHSTAT1:
0450 case PHSTAT2:
0451 case PHSTAT3:
0452 case PHANLPA:
0453 case PHANE:
0454 case PHCON2:
0455 return true;
0456 default:
0457 return false;
0458 }
0459 }
0460
0461 static struct regmap_config regcfg = {
0462 .name = "reg",
0463 .reg_bits = 8,
0464 .val_bits = 16,
0465 .max_register = 0xee,
0466 .reg_stride = 2,
0467 .cache_type = REGCACHE_RBTREE,
0468 .val_format_endian = REGMAP_ENDIAN_LITTLE,
0469 .readable_reg = encx24j600_regmap_readable,
0470 .writeable_reg = encx24j600_regmap_writeable,
0471 .volatile_reg = encx24j600_regmap_volatile,
0472 .precious_reg = encx24j600_regmap_precious,
0473 .lock = regmap_lock_mutex,
0474 .unlock = regmap_unlock_mutex,
0475 };
0476
0477 static struct regmap_bus regmap_encx24j600 = {
0478 .write = regmap_encx24j600_write,
0479 .read = regmap_encx24j600_read,
0480 .reg_update_bits = regmap_encx24j600_reg_update_bits,
0481 };
0482
0483 static struct regmap_config phycfg = {
0484 .name = "phy",
0485 .reg_bits = 8,
0486 .val_bits = 16,
0487 .max_register = 0x1f,
0488 .cache_type = REGCACHE_RBTREE,
0489 .val_format_endian = REGMAP_ENDIAN_LITTLE,
0490 .readable_reg = encx24j600_phymap_readable,
0491 .writeable_reg = encx24j600_phymap_writeable,
0492 .volatile_reg = encx24j600_phymap_volatile,
0493 };
0494
0495 static struct regmap_bus phymap_encx24j600 = {
0496 .reg_write = regmap_encx24j600_phy_reg_write,
0497 .reg_read = regmap_encx24j600_phy_reg_read,
0498 };
0499
0500 int devm_regmap_init_encx24j600(struct device *dev,
0501 struct encx24j600_context *ctx)
0502 {
0503 mutex_init(&ctx->mutex);
0504 regcfg.lock_arg = ctx;
0505 ctx->regmap = devm_regmap_init(dev, ®map_encx24j600, ctx, ®cfg);
0506 if (IS_ERR(ctx->regmap))
0507 return PTR_ERR(ctx->regmap);
0508 ctx->phymap = devm_regmap_init(dev, &phymap_encx24j600, ctx, &phycfg);
0509 if (IS_ERR(ctx->phymap))
0510 return PTR_ERR(ctx->phymap);
0511
0512 return 0;
0513 }
0514 EXPORT_SYMBOL_GPL(devm_regmap_init_encx24j600);
0515
0516 MODULE_LICENSE("GPL");