Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
0004  * Ethernet adapters. Based on earlier sk98lin, e100 and
0005  * FreeBSD if_sk drivers.
0006  *
0007  * This driver intentionally does not support all the features
0008  * of the original driver such as link fail-over and link management because
0009  * those should be done at higher levels.
0010  *
0011  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
0012  */
0013 
0014 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0015 
0016 #include <linux/in.h>
0017 #include <linux/kernel.h>
0018 #include <linux/module.h>
0019 #include <linux/moduleparam.h>
0020 #include <linux/netdevice.h>
0021 #include <linux/etherdevice.h>
0022 #include <linux/ethtool.h>
0023 #include <linux/pci.h>
0024 #include <linux/if_vlan.h>
0025 #include <linux/ip.h>
0026 #include <linux/delay.h>
0027 #include <linux/crc32.h>
0028 #include <linux/dma-mapping.h>
0029 #include <linux/debugfs.h>
0030 #include <linux/sched.h>
0031 #include <linux/seq_file.h>
0032 #include <linux/mii.h>
0033 #include <linux/slab.h>
0034 #include <linux/dmi.h>
0035 #include <linux/prefetch.h>
0036 #include <asm/irq.h>
0037 
0038 #include "skge.h"
0039 
0040 #define DRV_NAME        "skge"
0041 #define DRV_VERSION     "1.14"
0042 
0043 #define DEFAULT_TX_RING_SIZE    128
0044 #define DEFAULT_RX_RING_SIZE    512
0045 #define MAX_TX_RING_SIZE    1024
0046 #define TX_LOW_WATER        (MAX_SKB_FRAGS + 1)
0047 #define MAX_RX_RING_SIZE    4096
0048 #define RX_COPY_THRESHOLD   128
0049 #define RX_BUF_SIZE     1536
0050 #define PHY_RETRIES         1000
0051 #define ETH_JUMBO_MTU       9000
0052 #define TX_WATCHDOG     (5 * HZ)
0053 #define BLINK_MS        250
0054 #define LINK_HZ         HZ
0055 
0056 #define SKGE_EEPROM_MAGIC   0x9933aabb
0057 
0058 
0059 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
0060 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
0061 MODULE_LICENSE("GPL");
0062 MODULE_VERSION(DRV_VERSION);
0063 
0064 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
0065                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
0066                 NETIF_MSG_IFDOWN);
0067 
0068 static int debug = -1;  /* defaults above */
0069 module_param(debug, int, 0);
0070 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
0071 
0072 static const struct pci_device_id skge_id_table[] = {
0073     { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },   /* 3Com 3C940 */
0074     { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },   /* 3Com 3C940B */
0075 #ifdef CONFIG_SKGE_GENESIS
0076     { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
0077 #endif
0078     { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
0079     { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },      /* D-Link DGE-530T (rev.B) */
0080     { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },      /* D-Link DGE-530T */
0081     { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },      /* D-Link DGE-530T Rev C1 */
0082     { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },    /* Marvell Yukon 88E8001/8003/8010 */
0083     { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },    /* Belkin */
0084     { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) },       /* CNet PowerG-2000 */
0085     { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },    /* Linksys EG1064 v2 */
0086     { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
0087     { 0 }
0088 };
0089 MODULE_DEVICE_TABLE(pci, skge_id_table);
0090 
0091 static int skge_up(struct net_device *dev);
0092 static int skge_down(struct net_device *dev);
0093 static void skge_phy_reset(struct skge_port *skge);
0094 static void skge_tx_clean(struct net_device *dev);
0095 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
0096 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
0097 static void genesis_get_stats(struct skge_port *skge, u64 *data);
0098 static void yukon_get_stats(struct skge_port *skge, u64 *data);
0099 static void yukon_init(struct skge_hw *hw, int port);
0100 static void genesis_mac_init(struct skge_hw *hw, int port);
0101 static void genesis_link_up(struct skge_port *skge);
0102 static void skge_set_multicast(struct net_device *dev);
0103 static irqreturn_t skge_intr(int irq, void *dev_id);
0104 
0105 /* Avoid conditionals by using array */
0106 static const int txqaddr[] = { Q_XA1, Q_XA2 };
0107 static const int rxqaddr[] = { Q_R1, Q_R2 };
0108 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
0109 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
0110 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
0111 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
0112 
0113 static inline bool is_genesis(const struct skge_hw *hw)
0114 {
0115 #ifdef CONFIG_SKGE_GENESIS
0116     return hw->chip_id == CHIP_ID_GENESIS;
0117 #else
0118     return false;
0119 #endif
0120 }
0121 
0122 static int skge_get_regs_len(struct net_device *dev)
0123 {
0124     return 0x4000;
0125 }
0126 
0127 /*
0128  * Returns copy of whole control register region
0129  * Note: skip RAM address register because accessing it will
0130  *   cause bus hangs!
0131  */
0132 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
0133               void *p)
0134 {
0135     const struct skge_port *skge = netdev_priv(dev);
0136     const void __iomem *io = skge->hw->regs;
0137 
0138     regs->version = 1;
0139     memset(p, 0, regs->len);
0140     memcpy_fromio(p, io, B3_RAM_ADDR);
0141 
0142     if (regs->len > B3_RI_WTO_R1) {
0143         memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
0144                   regs->len - B3_RI_WTO_R1);
0145     }
0146 }
0147 
0148 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
0149 static u32 wol_supported(const struct skge_hw *hw)
0150 {
0151     if (is_genesis(hw))
0152         return 0;
0153 
0154     if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
0155         return 0;
0156 
0157     return WAKE_MAGIC | WAKE_PHY;
0158 }
0159 
0160 static void skge_wol_init(struct skge_port *skge)
0161 {
0162     struct skge_hw *hw = skge->hw;
0163     int port = skge->port;
0164     u16 ctrl;
0165 
0166     skge_write16(hw, B0_CTST, CS_RST_CLR);
0167     skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
0168 
0169     /* Turn on Vaux */
0170     skge_write8(hw, B0_POWER_CTRL,
0171             PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
0172 
0173     /* WA code for COMA mode -- clear PHY reset */
0174     if (hw->chip_id == CHIP_ID_YUKON_LITE &&
0175         hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
0176         u32 reg = skge_read32(hw, B2_GP_IO);
0177         reg |= GP_DIR_9;
0178         reg &= ~GP_IO_9;
0179         skge_write32(hw, B2_GP_IO, reg);
0180     }
0181 
0182     skge_write32(hw, SK_REG(port, GPHY_CTRL),
0183              GPC_DIS_SLEEP |
0184              GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
0185              GPC_ANEG_1 | GPC_RST_SET);
0186 
0187     skge_write32(hw, SK_REG(port, GPHY_CTRL),
0188              GPC_DIS_SLEEP |
0189              GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
0190              GPC_ANEG_1 | GPC_RST_CLR);
0191 
0192     skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
0193 
0194     /* Force to 10/100 skge_reset will re-enable on resume   */
0195     gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
0196              (PHY_AN_100FULL | PHY_AN_100HALF |
0197               PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
0198     /* no 1000 HD/FD */
0199     gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
0200     gm_phy_write(hw, port, PHY_MARV_CTRL,
0201              PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
0202              PHY_CT_RE_CFG | PHY_CT_DUP_MD);
0203 
0204 
0205     /* Set GMAC to no flow control and auto update for speed/duplex */
0206     gma_write16(hw, port, GM_GP_CTRL,
0207             GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
0208             GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
0209 
0210     /* Set WOL address */
0211     memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
0212             skge->netdev->dev_addr, ETH_ALEN);
0213 
0214     /* Turn on appropriate WOL control bits */
0215     skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
0216     ctrl = 0;
0217     if (skge->wol & WAKE_PHY)
0218         ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
0219     else
0220         ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
0221 
0222     if (skge->wol & WAKE_MAGIC)
0223         ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
0224     else
0225         ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
0226 
0227     ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
0228     skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
0229 
0230     /* block receiver */
0231     skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
0232 }
0233 
0234 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
0235 {
0236     struct skge_port *skge = netdev_priv(dev);
0237 
0238     wol->supported = wol_supported(skge->hw);
0239     wol->wolopts = skge->wol;
0240 }
0241 
0242 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
0243 {
0244     struct skge_port *skge = netdev_priv(dev);
0245     struct skge_hw *hw = skge->hw;
0246 
0247     if ((wol->wolopts & ~wol_supported(hw)) ||
0248         !device_can_wakeup(&hw->pdev->dev))
0249         return -EOPNOTSUPP;
0250 
0251     skge->wol = wol->wolopts;
0252 
0253     device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
0254 
0255     return 0;
0256 }
0257 
0258 /* Determine supported/advertised modes based on hardware.
0259  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
0260  */
0261 static u32 skge_supported_modes(const struct skge_hw *hw)
0262 {
0263     u32 supported;
0264 
0265     if (hw->copper) {
0266         supported = (SUPPORTED_10baseT_Half |
0267                  SUPPORTED_10baseT_Full |
0268                  SUPPORTED_100baseT_Half |
0269                  SUPPORTED_100baseT_Full |
0270                  SUPPORTED_1000baseT_Half |
0271                  SUPPORTED_1000baseT_Full |
0272                  SUPPORTED_Autoneg |
0273                  SUPPORTED_TP);
0274 
0275         if (is_genesis(hw))
0276             supported &= ~(SUPPORTED_10baseT_Half |
0277                        SUPPORTED_10baseT_Full |
0278                        SUPPORTED_100baseT_Half |
0279                        SUPPORTED_100baseT_Full);
0280 
0281         else if (hw->chip_id == CHIP_ID_YUKON)
0282             supported &= ~SUPPORTED_1000baseT_Half;
0283     } else
0284         supported = (SUPPORTED_1000baseT_Full |
0285                  SUPPORTED_1000baseT_Half |
0286                  SUPPORTED_FIBRE |
0287                  SUPPORTED_Autoneg);
0288 
0289     return supported;
0290 }
0291 
0292 static int skge_get_link_ksettings(struct net_device *dev,
0293                    struct ethtool_link_ksettings *cmd)
0294 {
0295     struct skge_port *skge = netdev_priv(dev);
0296     struct skge_hw *hw = skge->hw;
0297     u32 supported, advertising;
0298 
0299     supported = skge_supported_modes(hw);
0300 
0301     if (hw->copper) {
0302         cmd->base.port = PORT_TP;
0303         cmd->base.phy_address = hw->phy_addr;
0304     } else
0305         cmd->base.port = PORT_FIBRE;
0306 
0307     advertising = skge->advertising;
0308     cmd->base.autoneg = skge->autoneg;
0309     cmd->base.speed = skge->speed;
0310     cmd->base.duplex = skge->duplex;
0311 
0312     ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
0313                         supported);
0314     ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
0315                         advertising);
0316 
0317     return 0;
0318 }
0319 
0320 static int skge_set_link_ksettings(struct net_device *dev,
0321                    const struct ethtool_link_ksettings *cmd)
0322 {
0323     struct skge_port *skge = netdev_priv(dev);
0324     const struct skge_hw *hw = skge->hw;
0325     u32 supported = skge_supported_modes(hw);
0326     int err = 0;
0327     u32 advertising;
0328 
0329     ethtool_convert_link_mode_to_legacy_u32(&advertising,
0330                         cmd->link_modes.advertising);
0331 
0332     if (cmd->base.autoneg == AUTONEG_ENABLE) {
0333         advertising = supported;
0334         skge->duplex = -1;
0335         skge->speed = -1;
0336     } else {
0337         u32 setting;
0338         u32 speed = cmd->base.speed;
0339 
0340         switch (speed) {
0341         case SPEED_1000:
0342             if (cmd->base.duplex == DUPLEX_FULL)
0343                 setting = SUPPORTED_1000baseT_Full;
0344             else if (cmd->base.duplex == DUPLEX_HALF)
0345                 setting = SUPPORTED_1000baseT_Half;
0346             else
0347                 return -EINVAL;
0348             break;
0349         case SPEED_100:
0350             if (cmd->base.duplex == DUPLEX_FULL)
0351                 setting = SUPPORTED_100baseT_Full;
0352             else if (cmd->base.duplex == DUPLEX_HALF)
0353                 setting = SUPPORTED_100baseT_Half;
0354             else
0355                 return -EINVAL;
0356             break;
0357 
0358         case SPEED_10:
0359             if (cmd->base.duplex == DUPLEX_FULL)
0360                 setting = SUPPORTED_10baseT_Full;
0361             else if (cmd->base.duplex == DUPLEX_HALF)
0362                 setting = SUPPORTED_10baseT_Half;
0363             else
0364                 return -EINVAL;
0365             break;
0366         default:
0367             return -EINVAL;
0368         }
0369 
0370         if ((setting & supported) == 0)
0371             return -EINVAL;
0372 
0373         skge->speed = speed;
0374         skge->duplex = cmd->base.duplex;
0375     }
0376 
0377     skge->autoneg = cmd->base.autoneg;
0378     skge->advertising = advertising;
0379 
0380     if (netif_running(dev)) {
0381         skge_down(dev);
0382         err = skge_up(dev);
0383         if (err) {
0384             dev_close(dev);
0385             return err;
0386         }
0387     }
0388 
0389     return 0;
0390 }
0391 
0392 static void skge_get_drvinfo(struct net_device *dev,
0393                  struct ethtool_drvinfo *info)
0394 {
0395     struct skge_port *skge = netdev_priv(dev);
0396 
0397     strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
0398     strlcpy(info->version, DRV_VERSION, sizeof(info->version));
0399     strlcpy(info->bus_info, pci_name(skge->hw->pdev),
0400         sizeof(info->bus_info));
0401 }
0402 
0403 static const struct skge_stat {
0404     char       name[ETH_GSTRING_LEN];
0405     u16    xmac_offset;
0406     u16    gma_offset;
0407 } skge_stats[] = {
0408     { "tx_bytes",       XM_TXO_OK_HI,  GM_TXO_OK_HI },
0409     { "rx_bytes",       XM_RXO_OK_HI,  GM_RXO_OK_HI },
0410 
0411     { "tx_broadcast",   XM_TXF_BC_OK,  GM_TXF_BC_OK },
0412     { "rx_broadcast",   XM_RXF_BC_OK,  GM_RXF_BC_OK },
0413     { "tx_multicast",   XM_TXF_MC_OK,  GM_TXF_MC_OK },
0414     { "rx_multicast",   XM_RXF_MC_OK,  GM_RXF_MC_OK },
0415     { "tx_unicast",     XM_TXF_UC_OK,  GM_TXF_UC_OK },
0416     { "rx_unicast",     XM_RXF_UC_OK,  GM_RXF_UC_OK },
0417     { "tx_mac_pause",   XM_TXF_MPAUSE, GM_TXF_MPAUSE },
0418     { "rx_mac_pause",   XM_RXF_MPAUSE, GM_RXF_MPAUSE },
0419 
0420     { "collisions",     XM_TXF_SNG_COL, GM_TXF_SNG_COL },
0421     { "multi_collisions",   XM_TXF_MUL_COL, GM_TXF_MUL_COL },
0422     { "aborted",        XM_TXF_ABO_COL, GM_TXF_ABO_COL },
0423     { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
0424     { "fifo_underrun",  XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
0425     { "fifo_overflow",  XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
0426 
0427     { "rx_toolong",     XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
0428     { "rx_jabber",      XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
0429     { "rx_runt",        XM_RXE_RUNT,    GM_RXE_FRAG },
0430     { "rx_too_long",    XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
0431     { "rx_fcs_error",   XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
0432 };
0433 
0434 static int skge_get_sset_count(struct net_device *dev, int sset)
0435 {
0436     switch (sset) {
0437     case ETH_SS_STATS:
0438         return ARRAY_SIZE(skge_stats);
0439     default:
0440         return -EOPNOTSUPP;
0441     }
0442 }
0443 
0444 static void skge_get_ethtool_stats(struct net_device *dev,
0445                    struct ethtool_stats *stats, u64 *data)
0446 {
0447     struct skge_port *skge = netdev_priv(dev);
0448 
0449     if (is_genesis(skge->hw))
0450         genesis_get_stats(skge, data);
0451     else
0452         yukon_get_stats(skge, data);
0453 }
0454 
0455 /* Use hardware MIB variables for critical path statistics and
0456  * transmit feedback not reported at interrupt.
0457  * Other errors are accounted for in interrupt handler.
0458  */
0459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
0460 {
0461     struct skge_port *skge = netdev_priv(dev);
0462     u64 data[ARRAY_SIZE(skge_stats)];
0463 
0464     if (is_genesis(skge->hw))
0465         genesis_get_stats(skge, data);
0466     else
0467         yukon_get_stats(skge, data);
0468 
0469     dev->stats.tx_bytes = data[0];
0470     dev->stats.rx_bytes = data[1];
0471     dev->stats.tx_packets = data[2] + data[4] + data[6];
0472     dev->stats.rx_packets = data[3] + data[5] + data[7];
0473     dev->stats.multicast = data[3] + data[5];
0474     dev->stats.collisions = data[10];
0475     dev->stats.tx_aborted_errors = data[12];
0476 
0477     return &dev->stats;
0478 }
0479 
0480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
0481 {
0482     int i;
0483 
0484     switch (stringset) {
0485     case ETH_SS_STATS:
0486         for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
0487             memcpy(data + i * ETH_GSTRING_LEN,
0488                    skge_stats[i].name, ETH_GSTRING_LEN);
0489         break;
0490     }
0491 }
0492 
0493 static void skge_get_ring_param(struct net_device *dev,
0494                 struct ethtool_ringparam *p,
0495                 struct kernel_ethtool_ringparam *kernel_p,
0496                 struct netlink_ext_ack *extack)
0497 {
0498     struct skge_port *skge = netdev_priv(dev);
0499 
0500     p->rx_max_pending = MAX_RX_RING_SIZE;
0501     p->tx_max_pending = MAX_TX_RING_SIZE;
0502 
0503     p->rx_pending = skge->rx_ring.count;
0504     p->tx_pending = skge->tx_ring.count;
0505 }
0506 
0507 static int skge_set_ring_param(struct net_device *dev,
0508                    struct ethtool_ringparam *p,
0509                    struct kernel_ethtool_ringparam *kernel_p,
0510                    struct netlink_ext_ack *extack)
0511 {
0512     struct skge_port *skge = netdev_priv(dev);
0513     int err = 0;
0514 
0515     if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
0516         p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
0517         return -EINVAL;
0518 
0519     skge->rx_ring.count = p->rx_pending;
0520     skge->tx_ring.count = p->tx_pending;
0521 
0522     if (netif_running(dev)) {
0523         skge_down(dev);
0524         err = skge_up(dev);
0525         if (err)
0526             dev_close(dev);
0527     }
0528 
0529     return err;
0530 }
0531 
0532 static u32 skge_get_msglevel(struct net_device *netdev)
0533 {
0534     struct skge_port *skge = netdev_priv(netdev);
0535     return skge->msg_enable;
0536 }
0537 
0538 static void skge_set_msglevel(struct net_device *netdev, u32 value)
0539 {
0540     struct skge_port *skge = netdev_priv(netdev);
0541     skge->msg_enable = value;
0542 }
0543 
0544 static int skge_nway_reset(struct net_device *dev)
0545 {
0546     struct skge_port *skge = netdev_priv(dev);
0547 
0548     if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
0549         return -EINVAL;
0550 
0551     skge_phy_reset(skge);
0552     return 0;
0553 }
0554 
0555 static void skge_get_pauseparam(struct net_device *dev,
0556                 struct ethtool_pauseparam *ecmd)
0557 {
0558     struct skge_port *skge = netdev_priv(dev);
0559 
0560     ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
0561               (skge->flow_control == FLOW_MODE_SYM_OR_REM));
0562     ecmd->tx_pause = (ecmd->rx_pause ||
0563               (skge->flow_control == FLOW_MODE_LOC_SEND));
0564 
0565     ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
0566 }
0567 
0568 static int skge_set_pauseparam(struct net_device *dev,
0569                    struct ethtool_pauseparam *ecmd)
0570 {
0571     struct skge_port *skge = netdev_priv(dev);
0572     struct ethtool_pauseparam old;
0573     int err = 0;
0574 
0575     skge_get_pauseparam(dev, &old);
0576 
0577     if (ecmd->autoneg != old.autoneg)
0578         skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
0579     else {
0580         if (ecmd->rx_pause && ecmd->tx_pause)
0581             skge->flow_control = FLOW_MODE_SYMMETRIC;
0582         else if (ecmd->rx_pause && !ecmd->tx_pause)
0583             skge->flow_control = FLOW_MODE_SYM_OR_REM;
0584         else if (!ecmd->rx_pause && ecmd->tx_pause)
0585             skge->flow_control = FLOW_MODE_LOC_SEND;
0586         else
0587             skge->flow_control = FLOW_MODE_NONE;
0588     }
0589 
0590     if (netif_running(dev)) {
0591         skge_down(dev);
0592         err = skge_up(dev);
0593         if (err) {
0594             dev_close(dev);
0595             return err;
0596         }
0597     }
0598 
0599     return 0;
0600 }
0601 
0602 /* Chip internal frequency for clock calculations */
0603 static inline u32 hwkhz(const struct skge_hw *hw)
0604 {
0605     return is_genesis(hw) ? 53125 : 78125;
0606 }
0607 
0608 /* Chip HZ to microseconds */
0609 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
0610 {
0611     return (ticks * 1000) / hwkhz(hw);
0612 }
0613 
0614 /* Microseconds to chip HZ */
0615 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
0616 {
0617     return hwkhz(hw) * usec / 1000;
0618 }
0619 
0620 static int skge_get_coalesce(struct net_device *dev,
0621                  struct ethtool_coalesce *ecmd,
0622                  struct kernel_ethtool_coalesce *kernel_coal,
0623                  struct netlink_ext_ack *extack)
0624 {
0625     struct skge_port *skge = netdev_priv(dev);
0626     struct skge_hw *hw = skge->hw;
0627     int port = skge->port;
0628 
0629     ecmd->rx_coalesce_usecs = 0;
0630     ecmd->tx_coalesce_usecs = 0;
0631 
0632     if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
0633         u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
0634         u32 msk = skge_read32(hw, B2_IRQM_MSK);
0635 
0636         if (msk & rxirqmask[port])
0637             ecmd->rx_coalesce_usecs = delay;
0638         if (msk & txirqmask[port])
0639             ecmd->tx_coalesce_usecs = delay;
0640     }
0641 
0642     return 0;
0643 }
0644 
0645 /* Note: interrupt timer is per board, but can turn on/off per port */
0646 static int skge_set_coalesce(struct net_device *dev,
0647                  struct ethtool_coalesce *ecmd,
0648                  struct kernel_ethtool_coalesce *kernel_coal,
0649                  struct netlink_ext_ack *extack)
0650 {
0651     struct skge_port *skge = netdev_priv(dev);
0652     struct skge_hw *hw = skge->hw;
0653     int port = skge->port;
0654     u32 msk = skge_read32(hw, B2_IRQM_MSK);
0655     u32 delay = 25;
0656 
0657     if (ecmd->rx_coalesce_usecs == 0)
0658         msk &= ~rxirqmask[port];
0659     else if (ecmd->rx_coalesce_usecs < 25 ||
0660          ecmd->rx_coalesce_usecs > 33333)
0661         return -EINVAL;
0662     else {
0663         msk |= rxirqmask[port];
0664         delay = ecmd->rx_coalesce_usecs;
0665     }
0666 
0667     if (ecmd->tx_coalesce_usecs == 0)
0668         msk &= ~txirqmask[port];
0669     else if (ecmd->tx_coalesce_usecs < 25 ||
0670          ecmd->tx_coalesce_usecs > 33333)
0671         return -EINVAL;
0672     else {
0673         msk |= txirqmask[port];
0674         delay = min(delay, ecmd->rx_coalesce_usecs);
0675     }
0676 
0677     skge_write32(hw, B2_IRQM_MSK, msk);
0678     if (msk == 0)
0679         skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
0680     else {
0681         skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
0682         skge_write32(hw, B2_IRQM_CTRL, TIM_START);
0683     }
0684     return 0;
0685 }
0686 
0687 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
0688 static void skge_led(struct skge_port *skge, enum led_mode mode)
0689 {
0690     struct skge_hw *hw = skge->hw;
0691     int port = skge->port;
0692 
0693     spin_lock_bh(&hw->phy_lock);
0694     if (is_genesis(hw)) {
0695         switch (mode) {
0696         case LED_MODE_OFF:
0697             if (hw->phy_type == SK_PHY_BCOM)
0698                 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
0699             else {
0700                 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
0701                 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
0702             }
0703             skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
0704             skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
0705             skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
0706             break;
0707 
0708         case LED_MODE_ON:
0709             skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
0710             skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
0711 
0712             skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
0713             skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
0714 
0715             break;
0716 
0717         case LED_MODE_TST:
0718             skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
0719             skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
0720             skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
0721 
0722             if (hw->phy_type == SK_PHY_BCOM)
0723                 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
0724             else {
0725                 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
0726                 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
0727                 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
0728             }
0729 
0730         }
0731     } else {
0732         switch (mode) {
0733         case LED_MODE_OFF:
0734             gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
0735             gm_phy_write(hw, port, PHY_MARV_LED_OVER,
0736                      PHY_M_LED_MO_DUP(MO_LED_OFF)  |
0737                      PHY_M_LED_MO_10(MO_LED_OFF)   |
0738                      PHY_M_LED_MO_100(MO_LED_OFF)  |
0739                      PHY_M_LED_MO_1000(MO_LED_OFF) |
0740                      PHY_M_LED_MO_RX(MO_LED_OFF));
0741             break;
0742         case LED_MODE_ON:
0743             gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
0744                      PHY_M_LED_PULS_DUR(PULS_170MS) |
0745                      PHY_M_LED_BLINK_RT(BLINK_84MS) |
0746                      PHY_M_LEDC_TX_CTRL |
0747                      PHY_M_LEDC_DP_CTRL);
0748 
0749             gm_phy_write(hw, port, PHY_MARV_LED_OVER,
0750                      PHY_M_LED_MO_RX(MO_LED_OFF) |
0751                      (skge->speed == SPEED_100 ?
0752                       PHY_M_LED_MO_100(MO_LED_ON) : 0));
0753             break;
0754         case LED_MODE_TST:
0755             gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
0756             gm_phy_write(hw, port, PHY_MARV_LED_OVER,
0757                      PHY_M_LED_MO_DUP(MO_LED_ON)  |
0758                      PHY_M_LED_MO_10(MO_LED_ON)   |
0759                      PHY_M_LED_MO_100(MO_LED_ON)  |
0760                      PHY_M_LED_MO_1000(MO_LED_ON) |
0761                      PHY_M_LED_MO_RX(MO_LED_ON));
0762         }
0763     }
0764     spin_unlock_bh(&hw->phy_lock);
0765 }
0766 
0767 /* blink LED's for finding board */
0768 static int skge_set_phys_id(struct net_device *dev,
0769                 enum ethtool_phys_id_state state)
0770 {
0771     struct skge_port *skge = netdev_priv(dev);
0772 
0773     switch (state) {
0774     case ETHTOOL_ID_ACTIVE:
0775         return 2;   /* cycle on/off twice per second */
0776 
0777     case ETHTOOL_ID_ON:
0778         skge_led(skge, LED_MODE_TST);
0779         break;
0780 
0781     case ETHTOOL_ID_OFF:
0782         skge_led(skge, LED_MODE_OFF);
0783         break;
0784 
0785     case ETHTOOL_ID_INACTIVE:
0786         /* back to regular LED state */
0787         skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
0788     }
0789 
0790     return 0;
0791 }
0792 
0793 static int skge_get_eeprom_len(struct net_device *dev)
0794 {
0795     struct skge_port *skge = netdev_priv(dev);
0796     u32 reg2;
0797 
0798     pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
0799     return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
0800 }
0801 
0802 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
0803 {
0804     u32 val;
0805 
0806     pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
0807 
0808     do {
0809         pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
0810     } while (!(offset & PCI_VPD_ADDR_F));
0811 
0812     pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
0813     return val;
0814 }
0815 
0816 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
0817 {
0818     pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
0819     pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
0820                   offset | PCI_VPD_ADDR_F);
0821 
0822     do {
0823         pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
0824     } while (offset & PCI_VPD_ADDR_F);
0825 }
0826 
0827 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
0828                u8 *data)
0829 {
0830     struct skge_port *skge = netdev_priv(dev);
0831     struct pci_dev *pdev = skge->hw->pdev;
0832     int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
0833     int length = eeprom->len;
0834     u16 offset = eeprom->offset;
0835 
0836     if (!cap)
0837         return -EINVAL;
0838 
0839     eeprom->magic = SKGE_EEPROM_MAGIC;
0840 
0841     while (length > 0) {
0842         u32 val = skge_vpd_read(pdev, cap, offset);
0843         int n = min_t(int, length, sizeof(val));
0844 
0845         memcpy(data, &val, n);
0846         length -= n;
0847         data += n;
0848         offset += n;
0849     }
0850     return 0;
0851 }
0852 
0853 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
0854                u8 *data)
0855 {
0856     struct skge_port *skge = netdev_priv(dev);
0857     struct pci_dev *pdev = skge->hw->pdev;
0858     int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
0859     int length = eeprom->len;
0860     u16 offset = eeprom->offset;
0861 
0862     if (!cap)
0863         return -EINVAL;
0864 
0865     if (eeprom->magic != SKGE_EEPROM_MAGIC)
0866         return -EINVAL;
0867 
0868     while (length > 0) {
0869         u32 val;
0870         int n = min_t(int, length, sizeof(val));
0871 
0872         if (n < sizeof(val))
0873             val = skge_vpd_read(pdev, cap, offset);
0874         memcpy(&val, data, n);
0875 
0876         skge_vpd_write(pdev, cap, offset, val);
0877 
0878         length -= n;
0879         data += n;
0880         offset += n;
0881     }
0882     return 0;
0883 }
0884 
0885 static const struct ethtool_ops skge_ethtool_ops = {
0886     .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
0887     .get_drvinfo    = skge_get_drvinfo,
0888     .get_regs_len   = skge_get_regs_len,
0889     .get_regs   = skge_get_regs,
0890     .get_wol    = skge_get_wol,
0891     .set_wol    = skge_set_wol,
0892     .get_msglevel   = skge_get_msglevel,
0893     .set_msglevel   = skge_set_msglevel,
0894     .nway_reset = skge_nway_reset,
0895     .get_link   = ethtool_op_get_link,
0896     .get_eeprom_len = skge_get_eeprom_len,
0897     .get_eeprom = skge_get_eeprom,
0898     .set_eeprom = skge_set_eeprom,
0899     .get_ringparam  = skge_get_ring_param,
0900     .set_ringparam  = skge_set_ring_param,
0901     .get_pauseparam = skge_get_pauseparam,
0902     .set_pauseparam = skge_set_pauseparam,
0903     .get_coalesce   = skge_get_coalesce,
0904     .set_coalesce   = skge_set_coalesce,
0905     .get_strings    = skge_get_strings,
0906     .set_phys_id    = skge_set_phys_id,
0907     .get_sset_count = skge_get_sset_count,
0908     .get_ethtool_stats = skge_get_ethtool_stats,
0909     .get_link_ksettings = skge_get_link_ksettings,
0910     .set_link_ksettings = skge_set_link_ksettings,
0911 };
0912 
0913 /*
0914  * Allocate ring elements and chain them together
0915  * One-to-one association of board descriptors with ring elements
0916  */
0917 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
0918 {
0919     struct skge_tx_desc *d;
0920     struct skge_element *e;
0921     int i;
0922 
0923     ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
0924     if (!ring->start)
0925         return -ENOMEM;
0926 
0927     for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
0928         e->desc = d;
0929         if (i == ring->count - 1) {
0930             e->next = ring->start;
0931             d->next_offset = base;
0932         } else {
0933             e->next = e + 1;
0934             d->next_offset = base + (i+1) * sizeof(*d);
0935         }
0936     }
0937     ring->to_use = ring->to_clean = ring->start;
0938 
0939     return 0;
0940 }
0941 
0942 /* Allocate and setup a new buffer for receiving */
0943 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
0944              struct sk_buff *skb, unsigned int bufsize)
0945 {
0946     struct skge_rx_desc *rd = e->desc;
0947     dma_addr_t map;
0948 
0949     map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
0950                  DMA_FROM_DEVICE);
0951 
0952     if (dma_mapping_error(&skge->hw->pdev->dev, map))
0953         return -1;
0954 
0955     rd->dma_lo = lower_32_bits(map);
0956     rd->dma_hi = upper_32_bits(map);
0957     e->skb = skb;
0958     rd->csum1_start = ETH_HLEN;
0959     rd->csum2_start = ETH_HLEN;
0960     rd->csum1 = 0;
0961     rd->csum2 = 0;
0962 
0963     wmb();
0964 
0965     rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
0966     dma_unmap_addr_set(e, mapaddr, map);
0967     dma_unmap_len_set(e, maplen, bufsize);
0968     return 0;
0969 }
0970 
0971 /* Resume receiving using existing skb,
0972  * Note: DMA address is not changed by chip.
0973  *   MTU not changed while receiver active.
0974  */
0975 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
0976 {
0977     struct skge_rx_desc *rd = e->desc;
0978 
0979     rd->csum2 = 0;
0980     rd->csum2_start = ETH_HLEN;
0981 
0982     wmb();
0983 
0984     rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
0985 }
0986 
0987 
0988 /* Free all  buffers in receive ring, assumes receiver stopped */
0989 static void skge_rx_clean(struct skge_port *skge)
0990 {
0991     struct skge_hw *hw = skge->hw;
0992     struct skge_ring *ring = &skge->rx_ring;
0993     struct skge_element *e;
0994 
0995     e = ring->start;
0996     do {
0997         struct skge_rx_desc *rd = e->desc;
0998         rd->control = 0;
0999         if (e->skb) {
1000             dma_unmap_single(&hw->pdev->dev,
1001                      dma_unmap_addr(e, mapaddr),
1002                      dma_unmap_len(e, maplen),
1003                      DMA_FROM_DEVICE);
1004             dev_kfree_skb(e->skb);
1005             e->skb = NULL;
1006         }
1007     } while ((e = e->next) != ring->start);
1008 }
1009 
1010 
1011 /* Allocate buffers for receive ring
1012  * For receive:  to_clean is next received frame.
1013  */
1014 static int skge_rx_fill(struct net_device *dev)
1015 {
1016     struct skge_port *skge = netdev_priv(dev);
1017     struct skge_ring *ring = &skge->rx_ring;
1018     struct skge_element *e;
1019 
1020     e = ring->start;
1021     do {
1022         struct sk_buff *skb;
1023 
1024         skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1025                      GFP_KERNEL);
1026         if (!skb)
1027             return -ENOMEM;
1028 
1029         skb_reserve(skb, NET_IP_ALIGN);
1030         if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1031             dev_kfree_skb(skb);
1032             return -EIO;
1033         }
1034     } while ((e = e->next) != ring->start);
1035 
1036     ring->to_clean = ring->start;
1037     return 0;
1038 }
1039 
1040 static const char *skge_pause(enum pause_status status)
1041 {
1042     switch (status) {
1043     case FLOW_STAT_NONE:
1044         return "none";
1045     case FLOW_STAT_REM_SEND:
1046         return "rx only";
1047     case FLOW_STAT_LOC_SEND:
1048         return "tx_only";
1049     case FLOW_STAT_SYMMETRIC:       /* Both station may send PAUSE */
1050         return "both";
1051     default:
1052         return "indeterminated";
1053     }
1054 }
1055 
1056 
1057 static void skge_link_up(struct skge_port *skge)
1058 {
1059     skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1060             LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1061 
1062     netif_carrier_on(skge->netdev);
1063     netif_wake_queue(skge->netdev);
1064 
1065     netif_info(skge, link, skge->netdev,
1066            "Link is up at %d Mbps, %s duplex, flow control %s\n",
1067            skge->speed,
1068            skge->duplex == DUPLEX_FULL ? "full" : "half",
1069            skge_pause(skge->flow_status));
1070 }
1071 
1072 static void skge_link_down(struct skge_port *skge)
1073 {
1074     skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1075     netif_carrier_off(skge->netdev);
1076     netif_stop_queue(skge->netdev);
1077 
1078     netif_info(skge, link, skge->netdev, "Link is down\n");
1079 }
1080 
1081 static void xm_link_down(struct skge_hw *hw, int port)
1082 {
1083     struct net_device *dev = hw->dev[port];
1084     struct skge_port *skge = netdev_priv(dev);
1085 
1086     xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1087 
1088     if (netif_carrier_ok(dev))
1089         skge_link_down(skge);
1090 }
1091 
1092 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1093 {
1094     int i;
1095 
1096     xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1097     *val = xm_read16(hw, port, XM_PHY_DATA);
1098 
1099     if (hw->phy_type == SK_PHY_XMAC)
1100         goto ready;
1101 
1102     for (i = 0; i < PHY_RETRIES; i++) {
1103         if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1104             goto ready;
1105         udelay(1);
1106     }
1107 
1108     return -ETIMEDOUT;
1109  ready:
1110     *val = xm_read16(hw, port, XM_PHY_DATA);
1111 
1112     return 0;
1113 }
1114 
1115 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1116 {
1117     u16 v = 0;
1118     if (__xm_phy_read(hw, port, reg, &v))
1119         pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1120     return v;
1121 }
1122 
1123 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1124 {
1125     int i;
1126 
1127     xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1128     for (i = 0; i < PHY_RETRIES; i++) {
1129         if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1130             goto ready;
1131         udelay(1);
1132     }
1133     return -EIO;
1134 
1135  ready:
1136     xm_write16(hw, port, XM_PHY_DATA, val);
1137     for (i = 0; i < PHY_RETRIES; i++) {
1138         if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1139             return 0;
1140         udelay(1);
1141     }
1142     return -ETIMEDOUT;
1143 }
1144 
1145 static void genesis_init(struct skge_hw *hw)
1146 {
1147     /* set blink source counter */
1148     skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1149     skge_write8(hw, B2_BSC_CTRL, BSC_START);
1150 
1151     /* configure mac arbiter */
1152     skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1153 
1154     /* configure mac arbiter timeout values */
1155     skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1156     skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1157     skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1158     skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1159 
1160     skge_write8(hw, B3_MA_RCINI_RX1, 0);
1161     skge_write8(hw, B3_MA_RCINI_RX2, 0);
1162     skge_write8(hw, B3_MA_RCINI_TX1, 0);
1163     skge_write8(hw, B3_MA_RCINI_TX2, 0);
1164 
1165     /* configure packet arbiter timeout */
1166     skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1167     skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1168     skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1169     skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1170     skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1171 }
1172 
1173 static void genesis_reset(struct skge_hw *hw, int port)
1174 {
1175     static const u8 zero[8]  = { 0 };
1176     u32 reg;
1177 
1178     skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1179 
1180     /* reset the statistics module */
1181     xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1182     xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1183     xm_write32(hw, port, XM_MODE, 0);       /* clear Mode Reg */
1184     xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1185     xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1186 
1187     /* disable Broadcom PHY IRQ */
1188     if (hw->phy_type == SK_PHY_BCOM)
1189         xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1190 
1191     xm_outhash(hw, port, XM_HSM, zero);
1192 
1193     /* Flush TX and RX fifo */
1194     reg = xm_read32(hw, port, XM_MODE);
1195     xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1196     xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1197 }
1198 
1199 /* Convert mode to MII values  */
1200 static const u16 phy_pause_map[] = {
1201     [FLOW_MODE_NONE] =  0,
1202     [FLOW_MODE_LOC_SEND] =  PHY_AN_PAUSE_ASYM,
1203     [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1204     [FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1205 };
1206 
1207 /* special defines for FIBER (88E1011S only) */
1208 static const u16 fiber_pause_map[] = {
1209     [FLOW_MODE_NONE]    = PHY_X_P_NO_PAUSE,
1210     [FLOW_MODE_LOC_SEND]    = PHY_X_P_ASYM_MD,
1211     [FLOW_MODE_SYMMETRIC]   = PHY_X_P_SYM_MD,
1212     [FLOW_MODE_SYM_OR_REM]  = PHY_X_P_BOTH_MD,
1213 };
1214 
1215 
1216 /* Check status of Broadcom phy link */
1217 static void bcom_check_link(struct skge_hw *hw, int port)
1218 {
1219     struct net_device *dev = hw->dev[port];
1220     struct skge_port *skge = netdev_priv(dev);
1221     u16 status;
1222 
1223     /* read twice because of latch */
1224     xm_phy_read(hw, port, PHY_BCOM_STAT);
1225     status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1226 
1227     if ((status & PHY_ST_LSYNC) == 0) {
1228         xm_link_down(hw, port);
1229         return;
1230     }
1231 
1232     if (skge->autoneg == AUTONEG_ENABLE) {
1233         u16 lpa, aux;
1234 
1235         if (!(status & PHY_ST_AN_OVER))
1236             return;
1237 
1238         lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1239         if (lpa & PHY_B_AN_RF) {
1240             netdev_notice(dev, "remote fault\n");
1241             return;
1242         }
1243 
1244         aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1245 
1246         /* Check Duplex mismatch */
1247         switch (aux & PHY_B_AS_AN_RES_MSK) {
1248         case PHY_B_RES_1000FD:
1249             skge->duplex = DUPLEX_FULL;
1250             break;
1251         case PHY_B_RES_1000HD:
1252             skge->duplex = DUPLEX_HALF;
1253             break;
1254         default:
1255             netdev_notice(dev, "duplex mismatch\n");
1256             return;
1257         }
1258 
1259         /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1260         switch (aux & PHY_B_AS_PAUSE_MSK) {
1261         case PHY_B_AS_PAUSE_MSK:
1262             skge->flow_status = FLOW_STAT_SYMMETRIC;
1263             break;
1264         case PHY_B_AS_PRR:
1265             skge->flow_status = FLOW_STAT_REM_SEND;
1266             break;
1267         case PHY_B_AS_PRT:
1268             skge->flow_status = FLOW_STAT_LOC_SEND;
1269             break;
1270         default:
1271             skge->flow_status = FLOW_STAT_NONE;
1272         }
1273         skge->speed = SPEED_1000;
1274     }
1275 
1276     if (!netif_carrier_ok(dev))
1277         genesis_link_up(skge);
1278 }
1279 
1280 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1281  * Phy on for 100 or 10Mbit operation
1282  */
1283 static void bcom_phy_init(struct skge_port *skge)
1284 {
1285     struct skge_hw *hw = skge->hw;
1286     int port = skge->port;
1287     int i;
1288     u16 id1, r, ext, ctl;
1289 
1290     /* magic workaround patterns for Broadcom */
1291     static const struct {
1292         u16 reg;
1293         u16 val;
1294     } A1hack[] = {
1295         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1296         { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1297         { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1298         { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1299     }, C0hack[] = {
1300         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1301         { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1302     };
1303 
1304     /* read Id from external PHY (all have the same address) */
1305     id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1306 
1307     /* Optimize MDIO transfer by suppressing preamble. */
1308     r = xm_read16(hw, port, XM_MMU_CMD);
1309     r |=  XM_MMU_NO_PRE;
1310     xm_write16(hw, port, XM_MMU_CMD, r);
1311 
1312     switch (id1) {
1313     case PHY_BCOM_ID1_C0:
1314         /*
1315          * Workaround BCOM Errata for the C0 type.
1316          * Write magic patterns to reserved registers.
1317          */
1318         for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1319             xm_phy_write(hw, port,
1320                      C0hack[i].reg, C0hack[i].val);
1321 
1322         break;
1323     case PHY_BCOM_ID1_A1:
1324         /*
1325          * Workaround BCOM Errata for the A1 type.
1326          * Write magic patterns to reserved registers.
1327          */
1328         for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1329             xm_phy_write(hw, port,
1330                      A1hack[i].reg, A1hack[i].val);
1331         break;
1332     }
1333 
1334     /*
1335      * Workaround BCOM Errata (#10523) for all BCom PHYs.
1336      * Disable Power Management after reset.
1337      */
1338     r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1339     r |= PHY_B_AC_DIS_PM;
1340     xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1341 
1342     /* Dummy read */
1343     xm_read16(hw, port, XM_ISRC);
1344 
1345     ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1346     ctl = PHY_CT_SP1000;    /* always 1000mbit */
1347 
1348     if (skge->autoneg == AUTONEG_ENABLE) {
1349         /*
1350          * Workaround BCOM Errata #1 for the C5 type.
1351          * 1000Base-T Link Acquisition Failure in Slave Mode
1352          * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1353          */
1354         u16 adv = PHY_B_1000C_RD;
1355         if (skge->advertising & ADVERTISED_1000baseT_Half)
1356             adv |= PHY_B_1000C_AHD;
1357         if (skge->advertising & ADVERTISED_1000baseT_Full)
1358             adv |= PHY_B_1000C_AFD;
1359         xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1360 
1361         ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1362     } else {
1363         if (skge->duplex == DUPLEX_FULL)
1364             ctl |= PHY_CT_DUP_MD;
1365         /* Force to slave */
1366         xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1367     }
1368 
1369     /* Set autonegotiation pause parameters */
1370     xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1371              phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1372 
1373     /* Handle Jumbo frames */
1374     if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1375         xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1376                  PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1377 
1378         ext |= PHY_B_PEC_HIGH_LA;
1379 
1380     }
1381 
1382     xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1383     xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1384 
1385     /* Use link status change interrupt */
1386     xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1387 }
1388 
1389 static void xm_phy_init(struct skge_port *skge)
1390 {
1391     struct skge_hw *hw = skge->hw;
1392     int port = skge->port;
1393     u16 ctrl = 0;
1394 
1395     if (skge->autoneg == AUTONEG_ENABLE) {
1396         if (skge->advertising & ADVERTISED_1000baseT_Half)
1397             ctrl |= PHY_X_AN_HD;
1398         if (skge->advertising & ADVERTISED_1000baseT_Full)
1399             ctrl |= PHY_X_AN_FD;
1400 
1401         ctrl |= fiber_pause_map[skge->flow_control];
1402 
1403         xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1404 
1405         /* Restart Auto-negotiation */
1406         ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1407     } else {
1408         /* Set DuplexMode in Config register */
1409         if (skge->duplex == DUPLEX_FULL)
1410             ctrl |= PHY_CT_DUP_MD;
1411         /*
1412          * Do NOT enable Auto-negotiation here. This would hold
1413          * the link down because no IDLEs are transmitted
1414          */
1415     }
1416 
1417     xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1418 
1419     /* Poll PHY for status changes */
1420     mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1421 }
1422 
1423 static int xm_check_link(struct net_device *dev)
1424 {
1425     struct skge_port *skge = netdev_priv(dev);
1426     struct skge_hw *hw = skge->hw;
1427     int port = skge->port;
1428     u16 status;
1429 
1430     /* read twice because of latch */
1431     xm_phy_read(hw, port, PHY_XMAC_STAT);
1432     status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1433 
1434     if ((status & PHY_ST_LSYNC) == 0) {
1435         xm_link_down(hw, port);
1436         return 0;
1437     }
1438 
1439     if (skge->autoneg == AUTONEG_ENABLE) {
1440         u16 lpa, res;
1441 
1442         if (!(status & PHY_ST_AN_OVER))
1443             return 0;
1444 
1445         lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1446         if (lpa & PHY_B_AN_RF) {
1447             netdev_notice(dev, "remote fault\n");
1448             return 0;
1449         }
1450 
1451         res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1452 
1453         /* Check Duplex mismatch */
1454         switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1455         case PHY_X_RS_FD:
1456             skge->duplex = DUPLEX_FULL;
1457             break;
1458         case PHY_X_RS_HD:
1459             skge->duplex = DUPLEX_HALF;
1460             break;
1461         default:
1462             netdev_notice(dev, "duplex mismatch\n");
1463             return 0;
1464         }
1465 
1466         /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1467         if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1468              skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1469             (lpa & PHY_X_P_SYM_MD))
1470             skge->flow_status = FLOW_STAT_SYMMETRIC;
1471         else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1472              (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1473             /* Enable PAUSE receive, disable PAUSE transmit */
1474             skge->flow_status  = FLOW_STAT_REM_SEND;
1475         else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1476              (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1477             /* Disable PAUSE receive, enable PAUSE transmit */
1478             skge->flow_status = FLOW_STAT_LOC_SEND;
1479         else
1480             skge->flow_status = FLOW_STAT_NONE;
1481 
1482         skge->speed = SPEED_1000;
1483     }
1484 
1485     if (!netif_carrier_ok(dev))
1486         genesis_link_up(skge);
1487     return 1;
1488 }
1489 
1490 /* Poll to check for link coming up.
1491  *
1492  * Since internal PHY is wired to a level triggered pin, can't
1493  * get an interrupt when carrier is detected, need to poll for
1494  * link coming up.
1495  */
1496 static void xm_link_timer(struct timer_list *t)
1497 {
1498     struct skge_port *skge = from_timer(skge, t, link_timer);
1499     struct net_device *dev = skge->netdev;
1500     struct skge_hw *hw = skge->hw;
1501     int port = skge->port;
1502     int i;
1503     unsigned long flags;
1504 
1505     if (!netif_running(dev))
1506         return;
1507 
1508     spin_lock_irqsave(&hw->phy_lock, flags);
1509 
1510     /*
1511      * Verify that the link by checking GPIO register three times.
1512      * This pin has the signal from the link_sync pin connected to it.
1513      */
1514     for (i = 0; i < 3; i++) {
1515         if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1516             goto link_down;
1517     }
1518 
1519     /* Re-enable interrupt to detect link down */
1520     if (xm_check_link(dev)) {
1521         u16 msk = xm_read16(hw, port, XM_IMSK);
1522         msk &= ~XM_IS_INP_ASS;
1523         xm_write16(hw, port, XM_IMSK, msk);
1524         xm_read16(hw, port, XM_ISRC);
1525     } else {
1526 link_down:
1527         mod_timer(&skge->link_timer,
1528               round_jiffies(jiffies + LINK_HZ));
1529     }
1530     spin_unlock_irqrestore(&hw->phy_lock, flags);
1531 }
1532 
1533 static void genesis_mac_init(struct skge_hw *hw, int port)
1534 {
1535     struct net_device *dev = hw->dev[port];
1536     struct skge_port *skge = netdev_priv(dev);
1537     int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1538     int i;
1539     u32 r;
1540     static const u8 zero[6]  = { 0 };
1541 
1542     for (i = 0; i < 10; i++) {
1543         skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1544                  MFF_SET_MAC_RST);
1545         if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1546             goto reset_ok;
1547         udelay(1);
1548     }
1549 
1550     netdev_warn(dev, "genesis reset failed\n");
1551 
1552  reset_ok:
1553     /* Unreset the XMAC. */
1554     skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1555 
1556     /*
1557      * Perform additional initialization for external PHYs,
1558      * namely for the 1000baseTX cards that use the XMAC's
1559      * GMII mode.
1560      */
1561     if (hw->phy_type != SK_PHY_XMAC) {
1562         /* Take external Phy out of reset */
1563         r = skge_read32(hw, B2_GP_IO);
1564         if (port == 0)
1565             r |= GP_DIR_0|GP_IO_0;
1566         else
1567             r |= GP_DIR_2|GP_IO_2;
1568 
1569         skge_write32(hw, B2_GP_IO, r);
1570 
1571         /* Enable GMII interface */
1572         xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1573     }
1574 
1575 
1576     switch (hw->phy_type) {
1577     case SK_PHY_XMAC:
1578         xm_phy_init(skge);
1579         break;
1580     case SK_PHY_BCOM:
1581         bcom_phy_init(skge);
1582         bcom_check_link(hw, port);
1583     }
1584 
1585     /* Set Station Address */
1586     xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1587 
1588     /* We don't use match addresses so clear */
1589     for (i = 1; i < 16; i++)
1590         xm_outaddr(hw, port, XM_EXM(i), zero);
1591 
1592     /* Clear MIB counters */
1593     xm_write16(hw, port, XM_STAT_CMD,
1594             XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1595     /* Clear two times according to Errata #3 */
1596     xm_write16(hw, port, XM_STAT_CMD,
1597             XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1598 
1599     /* configure Rx High Water Mark (XM_RX_HI_WM) */
1600     xm_write16(hw, port, XM_RX_HI_WM, 1450);
1601 
1602     /* We don't need the FCS appended to the packet. */
1603     r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1604     if (jumbo)
1605         r |= XM_RX_BIG_PK_OK;
1606 
1607     if (skge->duplex == DUPLEX_HALF) {
1608         /*
1609          * If in manual half duplex mode the other side might be in
1610          * full duplex mode, so ignore if a carrier extension is not seen
1611          * on frames received
1612          */
1613         r |= XM_RX_DIS_CEXT;
1614     }
1615     xm_write16(hw, port, XM_RX_CMD, r);
1616 
1617     /* We want short frames padded to 60 bytes. */
1618     xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1619 
1620     /* Increase threshold for jumbo frames on dual port */
1621     if (hw->ports > 1 && jumbo)
1622         xm_write16(hw, port, XM_TX_THR, 1020);
1623     else
1624         xm_write16(hw, port, XM_TX_THR, 512);
1625 
1626     /*
1627      * Enable the reception of all error frames. This is
1628      * a necessary evil due to the design of the XMAC. The
1629      * XMAC's receive FIFO is only 8K in size, however jumbo
1630      * frames can be up to 9000 bytes in length. When bad
1631      * frame filtering is enabled, the XMAC's RX FIFO operates
1632      * in 'store and forward' mode. For this to work, the
1633      * entire frame has to fit into the FIFO, but that means
1634      * that jumbo frames larger than 8192 bytes will be
1635      * truncated. Disabling all bad frame filtering causes
1636      * the RX FIFO to operate in streaming mode, in which
1637      * case the XMAC will start transferring frames out of the
1638      * RX FIFO as soon as the FIFO threshold is reached.
1639      */
1640     xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1641 
1642 
1643     /*
1644      * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1645      *  - Enable all bits excepting 'Octets Rx OK Low CntOv'
1646      *    and 'Octets Rx OK Hi Cnt Ov'.
1647      */
1648     xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1649 
1650     /*
1651      * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1652      *  - Enable all bits excepting 'Octets Tx OK Low CntOv'
1653      *    and 'Octets Tx OK Hi Cnt Ov'.
1654      */
1655     xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1656 
1657     /* Configure MAC arbiter */
1658     skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1659 
1660     /* configure timeout values */
1661     skge_write8(hw, B3_MA_TOINI_RX1, 72);
1662     skge_write8(hw, B3_MA_TOINI_RX2, 72);
1663     skge_write8(hw, B3_MA_TOINI_TX1, 72);
1664     skge_write8(hw, B3_MA_TOINI_TX2, 72);
1665 
1666     skge_write8(hw, B3_MA_RCINI_RX1, 0);
1667     skge_write8(hw, B3_MA_RCINI_RX2, 0);
1668     skge_write8(hw, B3_MA_RCINI_TX1, 0);
1669     skge_write8(hw, B3_MA_RCINI_TX2, 0);
1670 
1671     /* Configure Rx MAC FIFO */
1672     skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1673     skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1674     skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1675 
1676     /* Configure Tx MAC FIFO */
1677     skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1678     skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1679     skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1680 
1681     if (jumbo) {
1682         /* Enable frame flushing if jumbo frames used */
1683         skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1684     } else {
1685         /* enable timeout timers if normal frames */
1686         skge_write16(hw, B3_PA_CTRL,
1687                  (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1688     }
1689 }
1690 
1691 static void genesis_stop(struct skge_port *skge)
1692 {
1693     struct skge_hw *hw = skge->hw;
1694     int port = skge->port;
1695     unsigned retries = 1000;
1696     u16 cmd;
1697 
1698     /* Disable Tx and Rx */
1699     cmd = xm_read16(hw, port, XM_MMU_CMD);
1700     cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1701     xm_write16(hw, port, XM_MMU_CMD, cmd);
1702 
1703     genesis_reset(hw, port);
1704 
1705     /* Clear Tx packet arbiter timeout IRQ */
1706     skge_write16(hw, B3_PA_CTRL,
1707              port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1708 
1709     /* Reset the MAC */
1710     skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1711     do {
1712         skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1713         if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1714             break;
1715     } while (--retries > 0);
1716 
1717     /* For external PHYs there must be special handling */
1718     if (hw->phy_type != SK_PHY_XMAC) {
1719         u32 reg = skge_read32(hw, B2_GP_IO);
1720         if (port == 0) {
1721             reg |= GP_DIR_0;
1722             reg &= ~GP_IO_0;
1723         } else {
1724             reg |= GP_DIR_2;
1725             reg &= ~GP_IO_2;
1726         }
1727         skge_write32(hw, B2_GP_IO, reg);
1728         skge_read32(hw, B2_GP_IO);
1729     }
1730 
1731     xm_write16(hw, port, XM_MMU_CMD,
1732             xm_read16(hw, port, XM_MMU_CMD)
1733             & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1734 
1735     xm_read16(hw, port, XM_MMU_CMD);
1736 }
1737 
1738 
1739 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1740 {
1741     struct skge_hw *hw = skge->hw;
1742     int port = skge->port;
1743     int i;
1744     unsigned long timeout = jiffies + HZ;
1745 
1746     xm_write16(hw, port,
1747             XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1748 
1749     /* wait for update to complete */
1750     while (xm_read16(hw, port, XM_STAT_CMD)
1751            & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1752         if (time_after(jiffies, timeout))
1753             break;
1754         udelay(10);
1755     }
1756 
1757     /* special case for 64 bit octet counter */
1758     data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1759         | xm_read32(hw, port, XM_TXO_OK_LO);
1760     data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1761         | xm_read32(hw, port, XM_RXO_OK_LO);
1762 
1763     for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1764         data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1765 }
1766 
1767 static void genesis_mac_intr(struct skge_hw *hw, int port)
1768 {
1769     struct net_device *dev = hw->dev[port];
1770     struct skge_port *skge = netdev_priv(dev);
1771     u16 status = xm_read16(hw, port, XM_ISRC);
1772 
1773     netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1774              "mac interrupt status 0x%x\n", status);
1775 
1776     if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1777         xm_link_down(hw, port);
1778         mod_timer(&skge->link_timer, jiffies + 1);
1779     }
1780 
1781     if (status & XM_IS_TXF_UR) {
1782         xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1783         ++dev->stats.tx_fifo_errors;
1784     }
1785 }
1786 
1787 static void genesis_link_up(struct skge_port *skge)
1788 {
1789     struct skge_hw *hw = skge->hw;
1790     int port = skge->port;
1791     u16 cmd, msk;
1792     u32 mode;
1793 
1794     cmd = xm_read16(hw, port, XM_MMU_CMD);
1795 
1796     /*
1797      * enabling pause frame reception is required for 1000BT
1798      * because the XMAC is not reset if the link is going down
1799      */
1800     if (skge->flow_status == FLOW_STAT_NONE ||
1801         skge->flow_status == FLOW_STAT_LOC_SEND)
1802         /* Disable Pause Frame Reception */
1803         cmd |= XM_MMU_IGN_PF;
1804     else
1805         /* Enable Pause Frame Reception */
1806         cmd &= ~XM_MMU_IGN_PF;
1807 
1808     xm_write16(hw, port, XM_MMU_CMD, cmd);
1809 
1810     mode = xm_read32(hw, port, XM_MODE);
1811     if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1812         skge->flow_status == FLOW_STAT_LOC_SEND) {
1813         /*
1814          * Configure Pause Frame Generation
1815          * Use internal and external Pause Frame Generation.
1816          * Sending pause frames is edge triggered.
1817          * Send a Pause frame with the maximum pause time if
1818          * internal oder external FIFO full condition occurs.
1819          * Send a zero pause time frame to re-start transmission.
1820          */
1821         /* XM_PAUSE_DA = '010000C28001' (default) */
1822         /* XM_MAC_PTIME = 0xffff (maximum) */
1823         /* remember this value is defined in big endian (!) */
1824         xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1825 
1826         mode |= XM_PAUSE_MODE;
1827         skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1828     } else {
1829         /*
1830          * disable pause frame generation is required for 1000BT
1831          * because the XMAC is not reset if the link is going down
1832          */
1833         /* Disable Pause Mode in Mode Register */
1834         mode &= ~XM_PAUSE_MODE;
1835 
1836         skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1837     }
1838 
1839     xm_write32(hw, port, XM_MODE, mode);
1840 
1841     /* Turn on detection of Tx underrun */
1842     msk = xm_read16(hw, port, XM_IMSK);
1843     msk &= ~XM_IS_TXF_UR;
1844     xm_write16(hw, port, XM_IMSK, msk);
1845 
1846     xm_read16(hw, port, XM_ISRC);
1847 
1848     /* get MMU Command Reg. */
1849     cmd = xm_read16(hw, port, XM_MMU_CMD);
1850     if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1851         cmd |= XM_MMU_GMII_FD;
1852 
1853     /*
1854      * Workaround BCOM Errata (#10523) for all BCom Phys
1855      * Enable Power Management after link up
1856      */
1857     if (hw->phy_type == SK_PHY_BCOM) {
1858         xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1859                  xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1860                  & ~PHY_B_AC_DIS_PM);
1861         xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1862     }
1863 
1864     /* enable Rx/Tx */
1865     xm_write16(hw, port, XM_MMU_CMD,
1866             cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1867     skge_link_up(skge);
1868 }
1869 
1870 
1871 static inline void bcom_phy_intr(struct skge_port *skge)
1872 {
1873     struct skge_hw *hw = skge->hw;
1874     int port = skge->port;
1875     u16 isrc;
1876 
1877     isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1878     netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1879              "phy interrupt status 0x%x\n", isrc);
1880 
1881     if (isrc & PHY_B_IS_PSE)
1882         pr_err("%s: uncorrectable pair swap error\n",
1883                hw->dev[port]->name);
1884 
1885     /* Workaround BCom Errata:
1886      *  enable and disable loopback mode if "NO HCD" occurs.
1887      */
1888     if (isrc & PHY_B_IS_NO_HDCL) {
1889         u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1890         xm_phy_write(hw, port, PHY_BCOM_CTRL,
1891                   ctrl | PHY_CT_LOOP);
1892         xm_phy_write(hw, port, PHY_BCOM_CTRL,
1893                   ctrl & ~PHY_CT_LOOP);
1894     }
1895 
1896     if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1897         bcom_check_link(hw, port);
1898 
1899 }
1900 
1901 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1902 {
1903     int i;
1904 
1905     gma_write16(hw, port, GM_SMI_DATA, val);
1906     gma_write16(hw, port, GM_SMI_CTRL,
1907              GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1908     for (i = 0; i < PHY_RETRIES; i++) {
1909         udelay(1);
1910 
1911         if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1912             return 0;
1913     }
1914 
1915     pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1916     return -EIO;
1917 }
1918 
1919 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1920 {
1921     int i;
1922 
1923     gma_write16(hw, port, GM_SMI_CTRL,
1924              GM_SMI_CT_PHY_AD(hw->phy_addr)
1925              | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1926 
1927     for (i = 0; i < PHY_RETRIES; i++) {
1928         udelay(1);
1929         if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1930             goto ready;
1931     }
1932 
1933     return -ETIMEDOUT;
1934  ready:
1935     *val = gma_read16(hw, port, GM_SMI_DATA);
1936     return 0;
1937 }
1938 
1939 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1940 {
1941     u16 v = 0;
1942     if (__gm_phy_read(hw, port, reg, &v))
1943         pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1944     return v;
1945 }
1946 
1947 /* Marvell Phy Initialization */
1948 static void yukon_init(struct skge_hw *hw, int port)
1949 {
1950     struct skge_port *skge = netdev_priv(hw->dev[port]);
1951     u16 ctrl, ct1000, adv;
1952 
1953     if (skge->autoneg == AUTONEG_ENABLE) {
1954         u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1955 
1956         ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1957               PHY_M_EC_MAC_S_MSK);
1958         ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1959 
1960         ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1961 
1962         gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1963     }
1964 
1965     ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1966     if (skge->autoneg == AUTONEG_DISABLE)
1967         ctrl &= ~PHY_CT_ANE;
1968 
1969     ctrl |= PHY_CT_RESET;
1970     gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1971 
1972     ctrl = 0;
1973     ct1000 = 0;
1974     adv = PHY_AN_CSMA;
1975 
1976     if (skge->autoneg == AUTONEG_ENABLE) {
1977         if (hw->copper) {
1978             if (skge->advertising & ADVERTISED_1000baseT_Full)
1979                 ct1000 |= PHY_M_1000C_AFD;
1980             if (skge->advertising & ADVERTISED_1000baseT_Half)
1981                 ct1000 |= PHY_M_1000C_AHD;
1982             if (skge->advertising & ADVERTISED_100baseT_Full)
1983                 adv |= PHY_M_AN_100_FD;
1984             if (skge->advertising & ADVERTISED_100baseT_Half)
1985                 adv |= PHY_M_AN_100_HD;
1986             if (skge->advertising & ADVERTISED_10baseT_Full)
1987                 adv |= PHY_M_AN_10_FD;
1988             if (skge->advertising & ADVERTISED_10baseT_Half)
1989                 adv |= PHY_M_AN_10_HD;
1990 
1991             /* Set Flow-control capabilities */
1992             adv |= phy_pause_map[skge->flow_control];
1993         } else {
1994             if (skge->advertising & ADVERTISED_1000baseT_Full)
1995                 adv |= PHY_M_AN_1000X_AFD;
1996             if (skge->advertising & ADVERTISED_1000baseT_Half)
1997                 adv |= PHY_M_AN_1000X_AHD;
1998 
1999             adv |= fiber_pause_map[skge->flow_control];
2000         }
2001 
2002         /* Restart Auto-negotiation */
2003         ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2004     } else {
2005         /* forced speed/duplex settings */
2006         ct1000 = PHY_M_1000C_MSE;
2007 
2008         if (skge->duplex == DUPLEX_FULL)
2009             ctrl |= PHY_CT_DUP_MD;
2010 
2011         switch (skge->speed) {
2012         case SPEED_1000:
2013             ctrl |= PHY_CT_SP1000;
2014             break;
2015         case SPEED_100:
2016             ctrl |= PHY_CT_SP100;
2017             break;
2018         }
2019 
2020         ctrl |= PHY_CT_RESET;
2021     }
2022 
2023     gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2024 
2025     gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2026     gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2027 
2028     /* Enable phy interrupt on autonegotiation complete (or link up) */
2029     if (skge->autoneg == AUTONEG_ENABLE)
2030         gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2031     else
2032         gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2033 }
2034 
2035 static void yukon_reset(struct skge_hw *hw, int port)
2036 {
2037     gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2038     gma_write16(hw, port, GM_MC_ADDR_H1, 0);    /* clear MC hash */
2039     gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2040     gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2041     gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2042 
2043     gma_write16(hw, port, GM_RX_CTRL,
2044              gma_read16(hw, port, GM_RX_CTRL)
2045              | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2046 }
2047 
2048 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2049 static int is_yukon_lite_a0(struct skge_hw *hw)
2050 {
2051     u32 reg;
2052     int ret;
2053 
2054     if (hw->chip_id != CHIP_ID_YUKON)
2055         return 0;
2056 
2057     reg = skge_read32(hw, B2_FAR);
2058     skge_write8(hw, B2_FAR + 3, 0xff);
2059     ret = (skge_read8(hw, B2_FAR + 3) != 0);
2060     skge_write32(hw, B2_FAR, reg);
2061     return ret;
2062 }
2063 
2064 static void yukon_mac_init(struct skge_hw *hw, int port)
2065 {
2066     struct skge_port *skge = netdev_priv(hw->dev[port]);
2067     int i;
2068     u32 reg;
2069     const u8 *addr = hw->dev[port]->dev_addr;
2070 
2071     /* WA code for COMA mode -- set PHY reset */
2072     if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2073         hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2074         reg = skge_read32(hw, B2_GP_IO);
2075         reg |= GP_DIR_9 | GP_IO_9;
2076         skge_write32(hw, B2_GP_IO, reg);
2077     }
2078 
2079     /* hard reset */
2080     skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2081     skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2082 
2083     /* WA code for COMA mode -- clear PHY reset */
2084     if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2085         hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2086         reg = skge_read32(hw, B2_GP_IO);
2087         reg |= GP_DIR_9;
2088         reg &= ~GP_IO_9;
2089         skge_write32(hw, B2_GP_IO, reg);
2090     }
2091 
2092     /* Set hardware config mode */
2093     reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2094         GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2095     reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2096 
2097     /* Clear GMC reset */
2098     skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2099     skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2100     skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2101 
2102     if (skge->autoneg == AUTONEG_DISABLE) {
2103         reg = GM_GPCR_AU_ALL_DIS;
2104         gma_write16(hw, port, GM_GP_CTRL,
2105                  gma_read16(hw, port, GM_GP_CTRL) | reg);
2106 
2107         switch (skge->speed) {
2108         case SPEED_1000:
2109             reg &= ~GM_GPCR_SPEED_100;
2110             reg |= GM_GPCR_SPEED_1000;
2111             break;
2112         case SPEED_100:
2113             reg &= ~GM_GPCR_SPEED_1000;
2114             reg |= GM_GPCR_SPEED_100;
2115             break;
2116         case SPEED_10:
2117             reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2118             break;
2119         }
2120 
2121         if (skge->duplex == DUPLEX_FULL)
2122             reg |= GM_GPCR_DUP_FULL;
2123     } else
2124         reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2125 
2126     switch (skge->flow_control) {
2127     case FLOW_MODE_NONE:
2128         skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2129         reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2130         break;
2131     case FLOW_MODE_LOC_SEND:
2132         /* disable Rx flow-control */
2133         reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2134         break;
2135     case FLOW_MODE_SYMMETRIC:
2136     case FLOW_MODE_SYM_OR_REM:
2137         /* enable Tx & Rx flow-control */
2138         break;
2139     }
2140 
2141     gma_write16(hw, port, GM_GP_CTRL, reg);
2142     skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2143 
2144     yukon_init(hw, port);
2145 
2146     /* MIB clear */
2147     reg = gma_read16(hw, port, GM_PHY_ADDR);
2148     gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2149 
2150     for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2151         gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2152     gma_write16(hw, port, GM_PHY_ADDR, reg);
2153 
2154     /* transmit control */
2155     gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2156 
2157     /* receive control reg: unicast + multicast + no FCS  */
2158     gma_write16(hw, port, GM_RX_CTRL,
2159              GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2160 
2161     /* transmit flow control */
2162     gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2163 
2164     /* transmit parameter */
2165     gma_write16(hw, port, GM_TX_PARAM,
2166              TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2167              TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2168              TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2169 
2170     /* configure the Serial Mode Register */
2171     reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2172         | GM_SMOD_VLAN_ENA
2173         | IPG_DATA_VAL(IPG_DATA_DEF);
2174 
2175     if (hw->dev[port]->mtu > ETH_DATA_LEN)
2176         reg |= GM_SMOD_JUMBO_ENA;
2177 
2178     gma_write16(hw, port, GM_SERIAL_MODE, reg);
2179 
2180     /* physical address: used for pause frames */
2181     gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2182     /* virtual address for data */
2183     gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2184 
2185     /* enable interrupt mask for counter overflows */
2186     gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2187     gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2188     gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2189 
2190     /* Initialize Mac Fifo */
2191 
2192     /* Configure Rx MAC FIFO */
2193     skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2194     reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2195 
2196     /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2197     if (is_yukon_lite_a0(hw))
2198         reg &= ~GMF_RX_F_FL_ON;
2199 
2200     skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2201     skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2202     /*
2203      * because Pause Packet Truncation in GMAC is not working
2204      * we have to increase the Flush Threshold to 64 bytes
2205      * in order to flush pause packets in Rx FIFO on Yukon-1
2206      */
2207     skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2208 
2209     /* Configure Tx MAC FIFO */
2210     skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2211     skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2212 }
2213 
2214 /* Go into power down mode */
2215 static void yukon_suspend(struct skge_hw *hw, int port)
2216 {
2217     u16 ctrl;
2218 
2219     ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2220     ctrl |= PHY_M_PC_POL_R_DIS;
2221     gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2222 
2223     ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2224     ctrl |= PHY_CT_RESET;
2225     gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2226 
2227     /* switch IEEE compatible power down mode on */
2228     ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2229     ctrl |= PHY_CT_PDOWN;
2230     gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2231 }
2232 
2233 static void yukon_stop(struct skge_port *skge)
2234 {
2235     struct skge_hw *hw = skge->hw;
2236     int port = skge->port;
2237 
2238     skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2239     yukon_reset(hw, port);
2240 
2241     gma_write16(hw, port, GM_GP_CTRL,
2242              gma_read16(hw, port, GM_GP_CTRL)
2243              & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2244     gma_read16(hw, port, GM_GP_CTRL);
2245 
2246     yukon_suspend(hw, port);
2247 
2248     /* set GPHY Control reset */
2249     skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2250     skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2251 }
2252 
2253 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2254 {
2255     struct skge_hw *hw = skge->hw;
2256     int port = skge->port;
2257     int i;
2258 
2259     data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2260         | gma_read32(hw, port, GM_TXO_OK_LO);
2261     data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2262         | gma_read32(hw, port, GM_RXO_OK_LO);
2263 
2264     for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2265         data[i] = gma_read32(hw, port,
2266                       skge_stats[i].gma_offset);
2267 }
2268 
2269 static void yukon_mac_intr(struct skge_hw *hw, int port)
2270 {
2271     struct net_device *dev = hw->dev[port];
2272     struct skge_port *skge = netdev_priv(dev);
2273     u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2274 
2275     netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2276              "mac interrupt status 0x%x\n", status);
2277 
2278     if (status & GM_IS_RX_FF_OR) {
2279         ++dev->stats.rx_fifo_errors;
2280         skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2281     }
2282 
2283     if (status & GM_IS_TX_FF_UR) {
2284         ++dev->stats.tx_fifo_errors;
2285         skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2286     }
2287 
2288 }
2289 
2290 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2291 {
2292     switch (aux & PHY_M_PS_SPEED_MSK) {
2293     case PHY_M_PS_SPEED_1000:
2294         return SPEED_1000;
2295     case PHY_M_PS_SPEED_100:
2296         return SPEED_100;
2297     default:
2298         return SPEED_10;
2299     }
2300 }
2301 
2302 static void yukon_link_up(struct skge_port *skge)
2303 {
2304     struct skge_hw *hw = skge->hw;
2305     int port = skge->port;
2306     u16 reg;
2307 
2308     /* Enable Transmit FIFO Underrun */
2309     skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2310 
2311     reg = gma_read16(hw, port, GM_GP_CTRL);
2312     if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2313         reg |= GM_GPCR_DUP_FULL;
2314 
2315     /* enable Rx/Tx */
2316     reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2317     gma_write16(hw, port, GM_GP_CTRL, reg);
2318 
2319     gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2320     skge_link_up(skge);
2321 }
2322 
2323 static void yukon_link_down(struct skge_port *skge)
2324 {
2325     struct skge_hw *hw = skge->hw;
2326     int port = skge->port;
2327     u16 ctrl;
2328 
2329     ctrl = gma_read16(hw, port, GM_GP_CTRL);
2330     ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2331     gma_write16(hw, port, GM_GP_CTRL, ctrl);
2332 
2333     if (skge->flow_status == FLOW_STAT_REM_SEND) {
2334         ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2335         ctrl |= PHY_M_AN_ASP;
2336         /* restore Asymmetric Pause bit */
2337         gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2338     }
2339 
2340     skge_link_down(skge);
2341 
2342     yukon_init(hw, port);
2343 }
2344 
2345 static void yukon_phy_intr(struct skge_port *skge)
2346 {
2347     struct skge_hw *hw = skge->hw;
2348     int port = skge->port;
2349     const char *reason = NULL;
2350     u16 istatus, phystat;
2351 
2352     istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2353     phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2354 
2355     netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2356              "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2357 
2358     if (istatus & PHY_M_IS_AN_COMPL) {
2359         if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2360             & PHY_M_AN_RF) {
2361             reason = "remote fault";
2362             goto failed;
2363         }
2364 
2365         if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2366             reason = "master/slave fault";
2367             goto failed;
2368         }
2369 
2370         if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2371             reason = "speed/duplex";
2372             goto failed;
2373         }
2374 
2375         skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2376             ? DUPLEX_FULL : DUPLEX_HALF;
2377         skge->speed = yukon_speed(hw, phystat);
2378 
2379         /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2380         switch (phystat & PHY_M_PS_PAUSE_MSK) {
2381         case PHY_M_PS_PAUSE_MSK:
2382             skge->flow_status = FLOW_STAT_SYMMETRIC;
2383             break;
2384         case PHY_M_PS_RX_P_EN:
2385             skge->flow_status = FLOW_STAT_REM_SEND;
2386             break;
2387         case PHY_M_PS_TX_P_EN:
2388             skge->flow_status = FLOW_STAT_LOC_SEND;
2389             break;
2390         default:
2391             skge->flow_status = FLOW_STAT_NONE;
2392         }
2393 
2394         if (skge->flow_status == FLOW_STAT_NONE ||
2395             (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2396             skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2397         else
2398             skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2399         yukon_link_up(skge);
2400         return;
2401     }
2402 
2403     if (istatus & PHY_M_IS_LSP_CHANGE)
2404         skge->speed = yukon_speed(hw, phystat);
2405 
2406     if (istatus & PHY_M_IS_DUP_CHANGE)
2407         skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2408     if (istatus & PHY_M_IS_LST_CHANGE) {
2409         if (phystat & PHY_M_PS_LINK_UP)
2410             yukon_link_up(skge);
2411         else
2412             yukon_link_down(skge);
2413     }
2414     return;
2415  failed:
2416     pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2417 
2418     /* XXX restart autonegotiation? */
2419 }
2420 
2421 static void skge_phy_reset(struct skge_port *skge)
2422 {
2423     struct skge_hw *hw = skge->hw;
2424     int port = skge->port;
2425     struct net_device *dev = hw->dev[port];
2426 
2427     netif_stop_queue(skge->netdev);
2428     netif_carrier_off(skge->netdev);
2429 
2430     spin_lock_bh(&hw->phy_lock);
2431     if (is_genesis(hw)) {
2432         genesis_reset(hw, port);
2433         genesis_mac_init(hw, port);
2434     } else {
2435         yukon_reset(hw, port);
2436         yukon_init(hw, port);
2437     }
2438     spin_unlock_bh(&hw->phy_lock);
2439 
2440     skge_set_multicast(dev);
2441 }
2442 
2443 /* Basic MII support */
2444 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2445 {
2446     struct mii_ioctl_data *data = if_mii(ifr);
2447     struct skge_port *skge = netdev_priv(dev);
2448     struct skge_hw *hw = skge->hw;
2449     int err = -EOPNOTSUPP;
2450 
2451     if (!netif_running(dev))
2452         return -ENODEV; /* Phy still in reset */
2453 
2454     switch (cmd) {
2455     case SIOCGMIIPHY:
2456         data->phy_id = hw->phy_addr;
2457 
2458         fallthrough;
2459     case SIOCGMIIREG: {
2460         u16 val = 0;
2461         spin_lock_bh(&hw->phy_lock);
2462 
2463         if (is_genesis(hw))
2464             err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2465         else
2466             err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2467         spin_unlock_bh(&hw->phy_lock);
2468         data->val_out = val;
2469         break;
2470     }
2471 
2472     case SIOCSMIIREG:
2473         spin_lock_bh(&hw->phy_lock);
2474         if (is_genesis(hw))
2475             err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2476                    data->val_in);
2477         else
2478             err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2479                    data->val_in);
2480         spin_unlock_bh(&hw->phy_lock);
2481         break;
2482     }
2483     return err;
2484 }
2485 
2486 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2487 {
2488     u32 end;
2489 
2490     start /= 8;
2491     len /= 8;
2492     end = start + len - 1;
2493 
2494     skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2495     skge_write32(hw, RB_ADDR(q, RB_START), start);
2496     skge_write32(hw, RB_ADDR(q, RB_WP), start);
2497     skge_write32(hw, RB_ADDR(q, RB_RP), start);
2498     skge_write32(hw, RB_ADDR(q, RB_END), end);
2499 
2500     if (q == Q_R1 || q == Q_R2) {
2501         /* Set thresholds on receive queue's */
2502         skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2503                  start + (2*len)/3);
2504         skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2505                  start + (len/3));
2506     } else {
2507         /* Enable store & forward on Tx queue's because
2508          * Tx FIFO is only 4K on Genesis and 1K on Yukon
2509          */
2510         skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2511     }
2512 
2513     skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2514 }
2515 
2516 /* Setup Bus Memory Interface */
2517 static void skge_qset(struct skge_port *skge, u16 q,
2518               const struct skge_element *e)
2519 {
2520     struct skge_hw *hw = skge->hw;
2521     u32 watermark = 0x600;
2522     u64 base = skge->dma + (e->desc - skge->mem);
2523 
2524     /* optimization to reduce window on 32bit/33mhz */
2525     if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2526         watermark /= 2;
2527 
2528     skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2529     skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2530     skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2531     skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2532 }
2533 
2534 static int skge_up(struct net_device *dev)
2535 {
2536     struct skge_port *skge = netdev_priv(dev);
2537     struct skge_hw *hw = skge->hw;
2538     int port = skge->port;
2539     u32 chunk, ram_addr;
2540     size_t rx_size, tx_size;
2541     int err;
2542 
2543     if (!is_valid_ether_addr(dev->dev_addr))
2544         return -EINVAL;
2545 
2546     netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2547 
2548     if (dev->mtu > RX_BUF_SIZE)
2549         skge->rx_buf_size = dev->mtu + ETH_HLEN;
2550     else
2551         skge->rx_buf_size = RX_BUF_SIZE;
2552 
2553 
2554     rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2555     tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2556     skge->mem_size = tx_size + rx_size;
2557     skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2558                        &skge->dma, GFP_KERNEL);
2559     if (!skge->mem)
2560         return -ENOMEM;
2561 
2562     BUG_ON(skge->dma & 7);
2563 
2564     if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2565         dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2566         err = -EINVAL;
2567         goto free_pci_mem;
2568     }
2569 
2570     err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2571     if (err)
2572         goto free_pci_mem;
2573 
2574     err = skge_rx_fill(dev);
2575     if (err)
2576         goto free_rx_ring;
2577 
2578     err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2579                   skge->dma + rx_size);
2580     if (err)
2581         goto free_rx_ring;
2582 
2583     if (hw->ports == 1) {
2584         err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2585                   dev->name, hw);
2586         if (err) {
2587             netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2588                    hw->pdev->irq, err);
2589             goto free_tx_ring;
2590         }
2591     }
2592 
2593     /* Initialize MAC */
2594     netif_carrier_off(dev);
2595     spin_lock_bh(&hw->phy_lock);
2596     if (is_genesis(hw))
2597         genesis_mac_init(hw, port);
2598     else
2599         yukon_mac_init(hw, port);
2600     spin_unlock_bh(&hw->phy_lock);
2601 
2602     /* Configure RAMbuffers - equally between ports and tx/rx */
2603     chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2604     ram_addr = hw->ram_offset + 2 * chunk * port;
2605 
2606     skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2607     skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2608 
2609     BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2610     skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2611     skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2612 
2613     /* Start receiver BMU */
2614     wmb();
2615     skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2616     skge_led(skge, LED_MODE_ON);
2617 
2618     spin_lock_irq(&hw->hw_lock);
2619     hw->intr_mask |= portmask[port];
2620     skge_write32(hw, B0_IMSK, hw->intr_mask);
2621     skge_read32(hw, B0_IMSK);
2622     spin_unlock_irq(&hw->hw_lock);
2623 
2624     napi_enable(&skge->napi);
2625 
2626     skge_set_multicast(dev);
2627 
2628     return 0;
2629 
2630  free_tx_ring:
2631     kfree(skge->tx_ring.start);
2632  free_rx_ring:
2633     skge_rx_clean(skge);
2634     kfree(skge->rx_ring.start);
2635  free_pci_mem:
2636     dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2637               skge->dma);
2638     skge->mem = NULL;
2639 
2640     return err;
2641 }
2642 
2643 /* stop receiver */
2644 static void skge_rx_stop(struct skge_hw *hw, int port)
2645 {
2646     skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2647     skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2648              RB_RST_SET|RB_DIS_OP_MD);
2649     skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2650 }
2651 
2652 static int skge_down(struct net_device *dev)
2653 {
2654     struct skge_port *skge = netdev_priv(dev);
2655     struct skge_hw *hw = skge->hw;
2656     int port = skge->port;
2657 
2658     if (!skge->mem)
2659         return 0;
2660 
2661     netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2662 
2663     netif_tx_disable(dev);
2664 
2665     if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2666         del_timer_sync(&skge->link_timer);
2667 
2668     napi_disable(&skge->napi);
2669     netif_carrier_off(dev);
2670 
2671     spin_lock_irq(&hw->hw_lock);
2672     hw->intr_mask &= ~portmask[port];
2673     skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2674     skge_read32(hw, B0_IMSK);
2675     spin_unlock_irq(&hw->hw_lock);
2676 
2677     if (hw->ports == 1)
2678         free_irq(hw->pdev->irq, hw);
2679 
2680     skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2681     if (is_genesis(hw))
2682         genesis_stop(skge);
2683     else
2684         yukon_stop(skge);
2685 
2686     /* Stop transmitter */
2687     skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2688     skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2689              RB_RST_SET|RB_DIS_OP_MD);
2690 
2691 
2692     /* Disable Force Sync bit and Enable Alloc bit */
2693     skge_write8(hw, SK_REG(port, TXA_CTRL),
2694             TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2695 
2696     /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2697     skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2698     skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2699 
2700     /* Reset PCI FIFO */
2701     skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2702     skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2703 
2704     /* Reset the RAM Buffer async Tx queue */
2705     skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2706 
2707     skge_rx_stop(hw, port);
2708 
2709     if (is_genesis(hw)) {
2710         skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2711         skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2712     } else {
2713         skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2714         skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2715     }
2716 
2717     skge_led(skge, LED_MODE_OFF);
2718 
2719     netif_tx_lock_bh(dev);
2720     skge_tx_clean(dev);
2721     netif_tx_unlock_bh(dev);
2722 
2723     skge_rx_clean(skge);
2724 
2725     kfree(skge->rx_ring.start);
2726     kfree(skge->tx_ring.start);
2727     dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2728               skge->dma);
2729     skge->mem = NULL;
2730     return 0;
2731 }
2732 
2733 static inline int skge_avail(const struct skge_ring *ring)
2734 {
2735     smp_mb();
2736     return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2737         + (ring->to_clean - ring->to_use) - 1;
2738 }
2739 
2740 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2741                    struct net_device *dev)
2742 {
2743     struct skge_port *skge = netdev_priv(dev);
2744     struct skge_hw *hw = skge->hw;
2745     struct skge_element *e;
2746     struct skge_tx_desc *td;
2747     int i;
2748     u32 control, len;
2749     dma_addr_t map;
2750 
2751     if (skb_padto(skb, ETH_ZLEN))
2752         return NETDEV_TX_OK;
2753 
2754     if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2755         return NETDEV_TX_BUSY;
2756 
2757     e = skge->tx_ring.to_use;
2758     td = e->desc;
2759     BUG_ON(td->control & BMU_OWN);
2760     e->skb = skb;
2761     len = skb_headlen(skb);
2762     map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2763     if (dma_mapping_error(&hw->pdev->dev, map))
2764         goto mapping_error;
2765 
2766     dma_unmap_addr_set(e, mapaddr, map);
2767     dma_unmap_len_set(e, maplen, len);
2768 
2769     td->dma_lo = lower_32_bits(map);
2770     td->dma_hi = upper_32_bits(map);
2771 
2772     if (skb->ip_summed == CHECKSUM_PARTIAL) {
2773         const int offset = skb_checksum_start_offset(skb);
2774 
2775         /* This seems backwards, but it is what the sk98lin
2776          * does.  Looks like hardware is wrong?
2777          */
2778         if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2779             hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2780             control = BMU_TCP_CHECK;
2781         else
2782             control = BMU_UDP_CHECK;
2783 
2784         td->csum_offs = 0;
2785         td->csum_start = offset;
2786         td->csum_write = offset + skb->csum_offset;
2787     } else
2788         control = BMU_CHECK;
2789 
2790     if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2791         control |= BMU_EOF | BMU_IRQ_EOF;
2792     else {
2793         struct skge_tx_desc *tf = td;
2794 
2795         control |= BMU_STFWD;
2796         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2797             const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2798 
2799             map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2800                            skb_frag_size(frag), DMA_TO_DEVICE);
2801             if (dma_mapping_error(&hw->pdev->dev, map))
2802                 goto mapping_unwind;
2803 
2804             e = e->next;
2805             e->skb = skb;
2806             tf = e->desc;
2807             BUG_ON(tf->control & BMU_OWN);
2808 
2809             tf->dma_lo = lower_32_bits(map);
2810             tf->dma_hi = upper_32_bits(map);
2811             dma_unmap_addr_set(e, mapaddr, map);
2812             dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2813 
2814             tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2815         }
2816         tf->control |= BMU_EOF | BMU_IRQ_EOF;
2817     }
2818     /* Make sure all the descriptors written */
2819     wmb();
2820     td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2821     wmb();
2822 
2823     netdev_sent_queue(dev, skb->len);
2824 
2825     skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2826 
2827     netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2828              "tx queued, slot %td, len %d\n",
2829              e - skge->tx_ring.start, skb->len);
2830 
2831     skge->tx_ring.to_use = e->next;
2832     smp_wmb();
2833 
2834     if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2835         netdev_dbg(dev, "transmit queue full\n");
2836         netif_stop_queue(dev);
2837     }
2838 
2839     return NETDEV_TX_OK;
2840 
2841 mapping_unwind:
2842     e = skge->tx_ring.to_use;
2843     dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2844              dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2845     while (i-- > 0) {
2846         e = e->next;
2847         dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2848                    dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2849     }
2850 
2851 mapping_error:
2852     if (net_ratelimit())
2853         dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2854     dev_kfree_skb_any(skb);
2855     return NETDEV_TX_OK;
2856 }
2857 
2858 
2859 /* Free resources associated with this reing element */
2860 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2861                  u32 control)
2862 {
2863     /* skb header vs. fragment */
2864     if (control & BMU_STF)
2865         dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2866                  dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2867     else
2868         dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2869                    dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2870 }
2871 
2872 /* Free all buffers in transmit ring */
2873 static void skge_tx_clean(struct net_device *dev)
2874 {
2875     struct skge_port *skge = netdev_priv(dev);
2876     struct skge_element *e;
2877 
2878     for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2879         struct skge_tx_desc *td = e->desc;
2880 
2881         skge_tx_unmap(skge->hw->pdev, e, td->control);
2882 
2883         if (td->control & BMU_EOF)
2884             dev_kfree_skb(e->skb);
2885         td->control = 0;
2886     }
2887 
2888     netdev_reset_queue(dev);
2889     skge->tx_ring.to_clean = e;
2890 }
2891 
2892 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2893 {
2894     struct skge_port *skge = netdev_priv(dev);
2895 
2896     netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2897 
2898     skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2899     skge_tx_clean(dev);
2900     netif_wake_queue(dev);
2901 }
2902 
2903 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2904 {
2905     int err;
2906 
2907     if (!netif_running(dev)) {
2908         dev->mtu = new_mtu;
2909         return 0;
2910     }
2911 
2912     skge_down(dev);
2913 
2914     dev->mtu = new_mtu;
2915 
2916     err = skge_up(dev);
2917     if (err)
2918         dev_close(dev);
2919 
2920     return err;
2921 }
2922 
2923 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2924 
2925 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2926 {
2927     u32 crc, bit;
2928 
2929     crc = ether_crc_le(ETH_ALEN, addr);
2930     bit = ~crc & 0x3f;
2931     filter[bit/8] |= 1 << (bit%8);
2932 }
2933 
2934 static void genesis_set_multicast(struct net_device *dev)
2935 {
2936     struct skge_port *skge = netdev_priv(dev);
2937     struct skge_hw *hw = skge->hw;
2938     int port = skge->port;
2939     struct netdev_hw_addr *ha;
2940     u32 mode;
2941     u8 filter[8];
2942 
2943     mode = xm_read32(hw, port, XM_MODE);
2944     mode |= XM_MD_ENA_HASH;
2945     if (dev->flags & IFF_PROMISC)
2946         mode |= XM_MD_ENA_PROM;
2947     else
2948         mode &= ~XM_MD_ENA_PROM;
2949 
2950     if (dev->flags & IFF_ALLMULTI)
2951         memset(filter, 0xff, sizeof(filter));
2952     else {
2953         memset(filter, 0, sizeof(filter));
2954 
2955         if (skge->flow_status == FLOW_STAT_REM_SEND ||
2956             skge->flow_status == FLOW_STAT_SYMMETRIC)
2957             genesis_add_filter(filter, pause_mc_addr);
2958 
2959         netdev_for_each_mc_addr(ha, dev)
2960             genesis_add_filter(filter, ha->addr);
2961     }
2962 
2963     xm_write32(hw, port, XM_MODE, mode);
2964     xm_outhash(hw, port, XM_HSM, filter);
2965 }
2966 
2967 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2968 {
2969     u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2970 
2971     filter[bit / 8] |= 1 << (bit % 8);
2972 }
2973 
2974 static void yukon_set_multicast(struct net_device *dev)
2975 {
2976     struct skge_port *skge = netdev_priv(dev);
2977     struct skge_hw *hw = skge->hw;
2978     int port = skge->port;
2979     struct netdev_hw_addr *ha;
2980     int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2981             skge->flow_status == FLOW_STAT_SYMMETRIC);
2982     u16 reg;
2983     u8 filter[8];
2984 
2985     memset(filter, 0, sizeof(filter));
2986 
2987     reg = gma_read16(hw, port, GM_RX_CTRL);
2988     reg |= GM_RXCR_UCF_ENA;
2989 
2990     if (dev->flags & IFF_PROMISC)       /* promiscuous */
2991         reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2992     else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2993         memset(filter, 0xff, sizeof(filter));
2994     else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2995         reg &= ~GM_RXCR_MCF_ENA;
2996     else {
2997         reg |= GM_RXCR_MCF_ENA;
2998 
2999         if (rx_pause)
3000             yukon_add_filter(filter, pause_mc_addr);
3001 
3002         netdev_for_each_mc_addr(ha, dev)
3003             yukon_add_filter(filter, ha->addr);
3004     }
3005 
3006 
3007     gma_write16(hw, port, GM_MC_ADDR_H1,
3008              (u16)filter[0] | ((u16)filter[1] << 8));
3009     gma_write16(hw, port, GM_MC_ADDR_H2,
3010              (u16)filter[2] | ((u16)filter[3] << 8));
3011     gma_write16(hw, port, GM_MC_ADDR_H3,
3012              (u16)filter[4] | ((u16)filter[5] << 8));
3013     gma_write16(hw, port, GM_MC_ADDR_H4,
3014              (u16)filter[6] | ((u16)filter[7] << 8));
3015 
3016     gma_write16(hw, port, GM_RX_CTRL, reg);
3017 }
3018 
3019 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3020 {
3021     if (is_genesis(hw))
3022         return status >> XMR_FS_LEN_SHIFT;
3023     else
3024         return status >> GMR_FS_LEN_SHIFT;
3025 }
3026 
3027 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3028 {
3029     if (is_genesis(hw))
3030         return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3031     else
3032         return (status & GMR_FS_ANY_ERR) ||
3033             (status & GMR_FS_RX_OK) == 0;
3034 }
3035 
3036 static void skge_set_multicast(struct net_device *dev)
3037 {
3038     struct skge_port *skge = netdev_priv(dev);
3039 
3040     if (is_genesis(skge->hw))
3041         genesis_set_multicast(dev);
3042     else
3043         yukon_set_multicast(dev);
3044 
3045 }
3046 
3047 
3048 /* Get receive buffer from descriptor.
3049  * Handles copy of small buffers and reallocation failures
3050  */
3051 static struct sk_buff *skge_rx_get(struct net_device *dev,
3052                    struct skge_element *e,
3053                    u32 control, u32 status, u16 csum)
3054 {
3055     struct skge_port *skge = netdev_priv(dev);
3056     struct sk_buff *skb;
3057     u16 len = control & BMU_BBC;
3058 
3059     netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3060              "rx slot %td status 0x%x len %d\n",
3061              e - skge->rx_ring.start, status, len);
3062 
3063     if (len > skge->rx_buf_size)
3064         goto error;
3065 
3066     if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3067         goto error;
3068 
3069     if (bad_phy_status(skge->hw, status))
3070         goto error;
3071 
3072     if (phy_length(skge->hw, status) != len)
3073         goto error;
3074 
3075     if (len < RX_COPY_THRESHOLD) {
3076         skb = netdev_alloc_skb_ip_align(dev, len);
3077         if (!skb)
3078             goto resubmit;
3079 
3080         dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3081                     dma_unmap_addr(e, mapaddr),
3082                     dma_unmap_len(e, maplen),
3083                     DMA_FROM_DEVICE);
3084         skb_copy_from_linear_data(e->skb, skb->data, len);
3085         dma_sync_single_for_device(&skge->hw->pdev->dev,
3086                        dma_unmap_addr(e, mapaddr),
3087                        dma_unmap_len(e, maplen),
3088                        DMA_FROM_DEVICE);
3089         skge_rx_reuse(e, skge->rx_buf_size);
3090     } else {
3091         struct skge_element ee;
3092         struct sk_buff *nskb;
3093 
3094         nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3095         if (!nskb)
3096             goto resubmit;
3097 
3098         ee = *e;
3099 
3100         skb = ee.skb;
3101         prefetch(skb->data);
3102 
3103         if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3104             dev_kfree_skb(nskb);
3105             goto resubmit;
3106         }
3107 
3108         dma_unmap_single(&skge->hw->pdev->dev,
3109                  dma_unmap_addr(&ee, mapaddr),
3110                  dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3111     }
3112 
3113     skb_put(skb, len);
3114 
3115     if (dev->features & NETIF_F_RXCSUM) {
3116         skb->csum = le16_to_cpu(csum);
3117         skb->ip_summed = CHECKSUM_COMPLETE;
3118     }
3119 
3120     skb->protocol = eth_type_trans(skb, dev);
3121 
3122     return skb;
3123 error:
3124 
3125     netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3126              "rx err, slot %td control 0x%x status 0x%x\n",
3127              e - skge->rx_ring.start, control, status);
3128 
3129     if (is_genesis(skge->hw)) {
3130         if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3131             dev->stats.rx_length_errors++;
3132         if (status & XMR_FS_FRA_ERR)
3133             dev->stats.rx_frame_errors++;
3134         if (status & XMR_FS_FCS_ERR)
3135             dev->stats.rx_crc_errors++;
3136     } else {
3137         if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3138             dev->stats.rx_length_errors++;
3139         if (status & GMR_FS_FRAGMENT)
3140             dev->stats.rx_frame_errors++;
3141         if (status & GMR_FS_CRC_ERR)
3142             dev->stats.rx_crc_errors++;
3143     }
3144 
3145 resubmit:
3146     skge_rx_reuse(e, skge->rx_buf_size);
3147     return NULL;
3148 }
3149 
3150 /* Free all buffers in Tx ring which are no longer owned by device */
3151 static void skge_tx_done(struct net_device *dev)
3152 {
3153     struct skge_port *skge = netdev_priv(dev);
3154     struct skge_ring *ring = &skge->tx_ring;
3155     struct skge_element *e;
3156     unsigned int bytes_compl = 0, pkts_compl = 0;
3157 
3158     skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3159 
3160     for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3161         u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3162 
3163         if (control & BMU_OWN)
3164             break;
3165 
3166         skge_tx_unmap(skge->hw->pdev, e, control);
3167 
3168         if (control & BMU_EOF) {
3169             netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3170                      "tx done slot %td\n",
3171                      e - skge->tx_ring.start);
3172 
3173             pkts_compl++;
3174             bytes_compl += e->skb->len;
3175 
3176             dev_consume_skb_any(e->skb);
3177         }
3178     }
3179     netdev_completed_queue(dev, pkts_compl, bytes_compl);
3180     skge->tx_ring.to_clean = e;
3181 
3182     /* Can run lockless until we need to synchronize to restart queue. */
3183     smp_mb();
3184 
3185     if (unlikely(netif_queue_stopped(dev) &&
3186              skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3187         netif_tx_lock(dev);
3188         if (unlikely(netif_queue_stopped(dev) &&
3189                  skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3190             netif_wake_queue(dev);
3191 
3192         }
3193         netif_tx_unlock(dev);
3194     }
3195 }
3196 
3197 static int skge_poll(struct napi_struct *napi, int budget)
3198 {
3199     struct skge_port *skge = container_of(napi, struct skge_port, napi);
3200     struct net_device *dev = skge->netdev;
3201     struct skge_hw *hw = skge->hw;
3202     struct skge_ring *ring = &skge->rx_ring;
3203     struct skge_element *e;
3204     int work_done = 0;
3205 
3206     skge_tx_done(dev);
3207 
3208     skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3209 
3210     for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3211         struct skge_rx_desc *rd = e->desc;
3212         struct sk_buff *skb;
3213         u32 control;
3214 
3215         rmb();
3216         control = rd->control;
3217         if (control & BMU_OWN)
3218             break;
3219 
3220         skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3221         if (likely(skb)) {
3222             napi_gro_receive(napi, skb);
3223             ++work_done;
3224         }
3225     }
3226     ring->to_clean = e;
3227 
3228     /* restart receiver */
3229     wmb();
3230     skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3231 
3232     if (work_done < budget && napi_complete_done(napi, work_done)) {
3233         unsigned long flags;
3234 
3235         spin_lock_irqsave(&hw->hw_lock, flags);
3236         hw->intr_mask |= napimask[skge->port];
3237         skge_write32(hw, B0_IMSK, hw->intr_mask);
3238         skge_read32(hw, B0_IMSK);
3239         spin_unlock_irqrestore(&hw->hw_lock, flags);
3240     }
3241 
3242     return work_done;
3243 }
3244 
3245 /* Parity errors seem to happen when Genesis is connected to a switch
3246  * with no other ports present. Heartbeat error??
3247  */
3248 static void skge_mac_parity(struct skge_hw *hw, int port)
3249 {
3250     struct net_device *dev = hw->dev[port];
3251 
3252     ++dev->stats.tx_heartbeat_errors;
3253 
3254     if (is_genesis(hw))
3255         skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3256                  MFF_CLR_PERR);
3257     else
3258         /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3259         skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3260                 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3261                 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3262 }
3263 
3264 static void skge_mac_intr(struct skge_hw *hw, int port)
3265 {
3266     if (is_genesis(hw))
3267         genesis_mac_intr(hw, port);
3268     else
3269         yukon_mac_intr(hw, port);
3270 }
3271 
3272 /* Handle device specific framing and timeout interrupts */
3273 static void skge_error_irq(struct skge_hw *hw)
3274 {
3275     struct pci_dev *pdev = hw->pdev;
3276     u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3277 
3278     if (is_genesis(hw)) {
3279         /* clear xmac errors */
3280         if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3281             skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3282         if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3283             skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3284     } else {
3285         /* Timestamp (unused) overflow */
3286         if (hwstatus & IS_IRQ_TIST_OV)
3287             skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3288     }
3289 
3290     if (hwstatus & IS_RAM_RD_PAR) {
3291         dev_err(&pdev->dev, "Ram read data parity error\n");
3292         skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3293     }
3294 
3295     if (hwstatus & IS_RAM_WR_PAR) {
3296         dev_err(&pdev->dev, "Ram write data parity error\n");
3297         skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3298     }
3299 
3300     if (hwstatus & IS_M1_PAR_ERR)
3301         skge_mac_parity(hw, 0);
3302 
3303     if (hwstatus & IS_M2_PAR_ERR)
3304         skge_mac_parity(hw, 1);
3305 
3306     if (hwstatus & IS_R1_PAR_ERR) {
3307         dev_err(&pdev->dev, "%s: receive queue parity error\n",
3308             hw->dev[0]->name);
3309         skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3310     }
3311 
3312     if (hwstatus & IS_R2_PAR_ERR) {
3313         dev_err(&pdev->dev, "%s: receive queue parity error\n",
3314             hw->dev[1]->name);
3315         skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3316     }
3317 
3318     if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3319         u16 pci_status, pci_cmd;
3320 
3321         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3322         pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3323 
3324         dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3325             pci_cmd, pci_status);
3326 
3327         /* Write the error bits back to clear them. */
3328         pci_status &= PCI_STATUS_ERROR_BITS;
3329         skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3330         pci_write_config_word(pdev, PCI_COMMAND,
3331                       pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3332         pci_write_config_word(pdev, PCI_STATUS, pci_status);
3333         skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3334 
3335         /* if error still set then just ignore it */
3336         hwstatus = skge_read32(hw, B0_HWE_ISRC);
3337         if (hwstatus & IS_IRQ_STAT) {
3338             dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3339             hw->intr_mask &= ~IS_HW_ERR;
3340         }
3341     }
3342 }
3343 
3344 /*
3345  * Interrupt from PHY are handled in tasklet (softirq)
3346  * because accessing phy registers requires spin wait which might
3347  * cause excess interrupt latency.
3348  */
3349 static void skge_extirq(struct tasklet_struct *t)
3350 {
3351     struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3352     int port;
3353 
3354     for (port = 0; port < hw->ports; port++) {
3355         struct net_device *dev = hw->dev[port];
3356 
3357         if (netif_running(dev)) {
3358             struct skge_port *skge = netdev_priv(dev);
3359 
3360             spin_lock(&hw->phy_lock);
3361             if (!is_genesis(hw))
3362                 yukon_phy_intr(skge);
3363             else if (hw->phy_type == SK_PHY_BCOM)
3364                 bcom_phy_intr(skge);
3365             spin_unlock(&hw->phy_lock);
3366         }
3367     }
3368 
3369     spin_lock_irq(&hw->hw_lock);
3370     hw->intr_mask |= IS_EXT_REG;
3371     skge_write32(hw, B0_IMSK, hw->intr_mask);
3372     skge_read32(hw, B0_IMSK);
3373     spin_unlock_irq(&hw->hw_lock);
3374 }
3375 
3376 static irqreturn_t skge_intr(int irq, void *dev_id)
3377 {
3378     struct skge_hw *hw = dev_id;
3379     u32 status;
3380     int handled = 0;
3381 
3382     spin_lock(&hw->hw_lock);
3383     /* Reading this register masks IRQ */
3384     status = skge_read32(hw, B0_SP_ISRC);
3385     if (status == 0 || status == ~0)
3386         goto out;
3387 
3388     handled = 1;
3389     status &= hw->intr_mask;
3390     if (status & IS_EXT_REG) {
3391         hw->intr_mask &= ~IS_EXT_REG;
3392         tasklet_schedule(&hw->phy_task);
3393     }
3394 
3395     if (status & (IS_XA1_F|IS_R1_F)) {
3396         struct skge_port *skge = netdev_priv(hw->dev[0]);
3397         hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3398         napi_schedule(&skge->napi);
3399     }
3400 
3401     if (status & IS_PA_TO_TX1)
3402         skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3403 
3404     if (status & IS_PA_TO_RX1) {
3405         ++hw->dev[0]->stats.rx_over_errors;
3406         skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3407     }
3408 
3409 
3410     if (status & IS_MAC1)
3411         skge_mac_intr(hw, 0);
3412 
3413     if (hw->dev[1]) {
3414         struct skge_port *skge = netdev_priv(hw->dev[1]);
3415 
3416         if (status & (IS_XA2_F|IS_R2_F)) {
3417             hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3418             napi_schedule(&skge->napi);
3419         }
3420 
3421         if (status & IS_PA_TO_RX2) {
3422             ++hw->dev[1]->stats.rx_over_errors;
3423             skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3424         }
3425 
3426         if (status & IS_PA_TO_TX2)
3427             skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3428 
3429         if (status & IS_MAC2)
3430             skge_mac_intr(hw, 1);
3431     }
3432 
3433     if (status & IS_HW_ERR)
3434         skge_error_irq(hw);
3435 out:
3436     skge_write32(hw, B0_IMSK, hw->intr_mask);
3437     skge_read32(hw, B0_IMSK);
3438     spin_unlock(&hw->hw_lock);
3439 
3440     return IRQ_RETVAL(handled);
3441 }
3442 
3443 #ifdef CONFIG_NET_POLL_CONTROLLER
3444 static void skge_netpoll(struct net_device *dev)
3445 {
3446     struct skge_port *skge = netdev_priv(dev);
3447 
3448     disable_irq(dev->irq);
3449     skge_intr(dev->irq, skge->hw);
3450     enable_irq(dev->irq);
3451 }
3452 #endif
3453 
3454 static int skge_set_mac_address(struct net_device *dev, void *p)
3455 {
3456     struct skge_port *skge = netdev_priv(dev);
3457     struct skge_hw *hw = skge->hw;
3458     unsigned port = skge->port;
3459     const struct sockaddr *addr = p;
3460     u16 ctrl;
3461 
3462     if (!is_valid_ether_addr(addr->sa_data))
3463         return -EADDRNOTAVAIL;
3464 
3465     eth_hw_addr_set(dev, addr->sa_data);
3466 
3467     if (!netif_running(dev)) {
3468         memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3469         memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3470     } else {
3471         /* disable Rx */
3472         spin_lock_bh(&hw->phy_lock);
3473         ctrl = gma_read16(hw, port, GM_GP_CTRL);
3474         gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3475 
3476         memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3477         memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3478 
3479         if (is_genesis(hw))
3480             xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3481         else {
3482             gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3483             gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3484         }
3485 
3486         gma_write16(hw, port, GM_GP_CTRL, ctrl);
3487         spin_unlock_bh(&hw->phy_lock);
3488     }
3489 
3490     return 0;
3491 }
3492 
3493 static const struct {
3494     u8 id;
3495     const char *name;
3496 } skge_chips[] = {
3497     { CHIP_ID_GENESIS,  "Genesis" },
3498     { CHIP_ID_YUKON,     "Yukon" },
3499     { CHIP_ID_YUKON_LITE,    "Yukon-Lite"},
3500     { CHIP_ID_YUKON_LP,  "Yukon-LP"},
3501 };
3502 
3503 static const char *skge_board_name(const struct skge_hw *hw)
3504 {
3505     int i;
3506     static char buf[16];
3507 
3508     for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3509         if (skge_chips[i].id == hw->chip_id)
3510             return skge_chips[i].name;
3511 
3512     snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3513     return buf;
3514 }
3515 
3516 
3517 /*
3518  * Setup the board data structure, but don't bring up
3519  * the port(s)
3520  */
3521 static int skge_reset(struct skge_hw *hw)
3522 {
3523     u32 reg;
3524     u16 ctst, pci_status;
3525     u8 t8, mac_cfg, pmd_type;
3526     int i;
3527 
3528     ctst = skge_read16(hw, B0_CTST);
3529 
3530     /* do a SW reset */
3531     skge_write8(hw, B0_CTST, CS_RST_SET);
3532     skge_write8(hw, B0_CTST, CS_RST_CLR);
3533 
3534     /* clear PCI errors, if any */
3535     skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3536     skge_write8(hw, B2_TST_CTRL2, 0);
3537 
3538     pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3539     pci_write_config_word(hw->pdev, PCI_STATUS,
3540                   pci_status | PCI_STATUS_ERROR_BITS);
3541     skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3542     skge_write8(hw, B0_CTST, CS_MRST_CLR);
3543 
3544     /* restore CLK_RUN bits (for Yukon-Lite) */
3545     skge_write16(hw, B0_CTST,
3546              ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3547 
3548     hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3549     hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3550     pmd_type = skge_read8(hw, B2_PMD_TYP);
3551     hw->copper = (pmd_type == 'T' || pmd_type == '1');
3552 
3553     switch (hw->chip_id) {
3554     case CHIP_ID_GENESIS:
3555 #ifdef CONFIG_SKGE_GENESIS
3556         switch (hw->phy_type) {
3557         case SK_PHY_XMAC:
3558             hw->phy_addr = PHY_ADDR_XMAC;
3559             break;
3560         case SK_PHY_BCOM:
3561             hw->phy_addr = PHY_ADDR_BCOM;
3562             break;
3563         default:
3564             dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3565                    hw->phy_type);
3566             return -EOPNOTSUPP;
3567         }
3568         break;
3569 #else
3570         dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3571         return -EOPNOTSUPP;
3572 #endif
3573 
3574     case CHIP_ID_YUKON:
3575     case CHIP_ID_YUKON_LITE:
3576     case CHIP_ID_YUKON_LP:
3577         if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3578             hw->copper = 1;
3579 
3580         hw->phy_addr = PHY_ADDR_MARV;
3581         break;
3582 
3583     default:
3584         dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3585                hw->chip_id);
3586         return -EOPNOTSUPP;
3587     }
3588 
3589     mac_cfg = skge_read8(hw, B2_MAC_CFG);
3590     hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3591     hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3592 
3593     /* read the adapters RAM size */
3594     t8 = skge_read8(hw, B2_E_0);
3595     if (is_genesis(hw)) {
3596         if (t8 == 3) {
3597             /* special case: 4 x 64k x 36, offset = 0x80000 */
3598             hw->ram_size = 0x100000;
3599             hw->ram_offset = 0x80000;
3600         } else
3601             hw->ram_size = t8 * 512;
3602     } else if (t8 == 0)
3603         hw->ram_size = 0x20000;
3604     else
3605         hw->ram_size = t8 * 4096;
3606 
3607     hw->intr_mask = IS_HW_ERR;
3608 
3609     /* Use PHY IRQ for all but fiber based Genesis board */
3610     if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3611         hw->intr_mask |= IS_EXT_REG;
3612 
3613     if (is_genesis(hw))
3614         genesis_init(hw);
3615     else {
3616         /* switch power to VCC (WA for VAUX problem) */
3617         skge_write8(hw, B0_POWER_CTRL,
3618                 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3619 
3620         /* avoid boards with stuck Hardware error bits */
3621         if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3622             (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3623             dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3624             hw->intr_mask &= ~IS_HW_ERR;
3625         }
3626 
3627         /* Clear PHY COMA */
3628         skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3629         pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3630         reg &= ~PCI_PHY_COMA;
3631         pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3632         skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3633 
3634 
3635         for (i = 0; i < hw->ports; i++) {
3636             skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3637             skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3638         }
3639     }
3640 
3641     /* turn off hardware timer (unused) */
3642     skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3643     skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3644     skge_write8(hw, B0_LED, LED_STAT_ON);
3645 
3646     /* enable the Tx Arbiters */
3647     for (i = 0; i < hw->ports; i++)
3648         skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3649 
3650     /* Initialize ram interface */
3651     skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3652 
3653     skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3654     skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3655     skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3656     skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3657     skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3658     skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3659     skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3660     skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3661     skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3662     skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3663     skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3664     skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3665 
3666     skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3667 
3668     /* Set interrupt moderation for Transmit only
3669      * Receive interrupts avoided by NAPI
3670      */
3671     skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3672     skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3673     skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3674 
3675     /* Leave irq disabled until first port is brought up. */
3676     skge_write32(hw, B0_IMSK, 0);
3677 
3678     for (i = 0; i < hw->ports; i++) {
3679         if (is_genesis(hw))
3680             genesis_reset(hw, i);
3681         else
3682             yukon_reset(hw, i);
3683     }
3684 
3685     return 0;
3686 }
3687 
3688 
3689 #ifdef CONFIG_SKGE_DEBUG
3690 
3691 static struct dentry *skge_debug;
3692 
3693 static int skge_debug_show(struct seq_file *seq, void *v)
3694 {
3695     struct net_device *dev = seq->private;
3696     const struct skge_port *skge = netdev_priv(dev);
3697     const struct skge_hw *hw = skge->hw;
3698     const struct skge_element *e;
3699 
3700     if (!netif_running(dev))
3701         return -ENETDOWN;
3702 
3703     seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3704            skge_read32(hw, B0_IMSK));
3705 
3706     seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3707     for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3708         const struct skge_tx_desc *t = e->desc;
3709         seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3710                t->control, t->dma_hi, t->dma_lo, t->status,
3711                t->csum_offs, t->csum_write, t->csum_start);
3712     }
3713 
3714     seq_puts(seq, "\nRx Ring:\n");
3715     for (e = skge->rx_ring.to_clean; ; e = e->next) {
3716         const struct skge_rx_desc *r = e->desc;
3717 
3718         if (r->control & BMU_OWN)
3719             break;
3720 
3721         seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3722                r->control, r->dma_hi, r->dma_lo, r->status,
3723                r->timestamp, r->csum1, r->csum1_start);
3724     }
3725 
3726     return 0;
3727 }
3728 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3729 
3730 /*
3731  * Use network device events to create/remove/rename
3732  * debugfs file entries
3733  */
3734 static int skge_device_event(struct notifier_block *unused,
3735                  unsigned long event, void *ptr)
3736 {
3737     struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3738     struct skge_port *skge;
3739 
3740     if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3741         goto done;
3742 
3743     skge = netdev_priv(dev);
3744     switch (event) {
3745     case NETDEV_CHANGENAME:
3746         if (skge->debugfs)
3747             skge->debugfs = debugfs_rename(skge_debug,
3748                                skge->debugfs,
3749                                skge_debug, dev->name);
3750         break;
3751 
3752     case NETDEV_GOING_DOWN:
3753         debugfs_remove(skge->debugfs);
3754         skge->debugfs = NULL;
3755         break;
3756 
3757     case NETDEV_UP:
3758         skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3759                             dev, &skge_debug_fops);
3760         break;
3761     }
3762 
3763 done:
3764     return NOTIFY_DONE;
3765 }
3766 
3767 static struct notifier_block skge_notifier = {
3768     .notifier_call = skge_device_event,
3769 };
3770 
3771 
3772 static __init void skge_debug_init(void)
3773 {
3774     skge_debug = debugfs_create_dir("skge", NULL);
3775 
3776     register_netdevice_notifier(&skge_notifier);
3777 }
3778 
3779 static __exit void skge_debug_cleanup(void)
3780 {
3781     if (skge_debug) {
3782         unregister_netdevice_notifier(&skge_notifier);
3783         debugfs_remove(skge_debug);
3784         skge_debug = NULL;
3785     }
3786 }
3787 
3788 #else
3789 #define skge_debug_init()
3790 #define skge_debug_cleanup()
3791 #endif
3792 
3793 static const struct net_device_ops skge_netdev_ops = {
3794     .ndo_open       = skge_up,
3795     .ndo_stop       = skge_down,
3796     .ndo_start_xmit     = skge_xmit_frame,
3797     .ndo_eth_ioctl      = skge_ioctl,
3798     .ndo_get_stats      = skge_get_stats,
3799     .ndo_tx_timeout     = skge_tx_timeout,
3800     .ndo_change_mtu     = skge_change_mtu,
3801     .ndo_validate_addr  = eth_validate_addr,
3802     .ndo_set_rx_mode    = skge_set_multicast,
3803     .ndo_set_mac_address    = skge_set_mac_address,
3804 #ifdef CONFIG_NET_POLL_CONTROLLER
3805     .ndo_poll_controller    = skge_netpoll,
3806 #endif
3807 };
3808 
3809 
3810 /* Initialize network device */
3811 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3812                        int highmem)
3813 {
3814     struct skge_port *skge;
3815     struct net_device *dev = alloc_etherdev(sizeof(*skge));
3816     u8 addr[ETH_ALEN];
3817 
3818     if (!dev)
3819         return NULL;
3820 
3821     SET_NETDEV_DEV(dev, &hw->pdev->dev);
3822     dev->netdev_ops = &skge_netdev_ops;
3823     dev->ethtool_ops = &skge_ethtool_ops;
3824     dev->watchdog_timeo = TX_WATCHDOG;
3825     dev->irq = hw->pdev->irq;
3826 
3827     /* MTU range: 60 - 9000 */
3828     dev->min_mtu = ETH_ZLEN;
3829     dev->max_mtu = ETH_JUMBO_MTU;
3830 
3831     if (highmem)
3832         dev->features |= NETIF_F_HIGHDMA;
3833 
3834     skge = netdev_priv(dev);
3835     netif_napi_add(dev, &skge->napi, skge_poll, NAPI_POLL_WEIGHT);
3836     skge->netdev = dev;
3837     skge->hw = hw;
3838     skge->msg_enable = netif_msg_init(debug, default_msg);
3839 
3840     skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3841     skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3842 
3843     /* Auto speed and flow control */
3844     skge->autoneg = AUTONEG_ENABLE;
3845     skge->flow_control = FLOW_MODE_SYM_OR_REM;
3846     skge->duplex = -1;
3847     skge->speed = -1;
3848     skge->advertising = skge_supported_modes(hw);
3849 
3850     if (device_can_wakeup(&hw->pdev->dev)) {
3851         skge->wol = wol_supported(hw) & WAKE_MAGIC;
3852         device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3853     }
3854 
3855     hw->dev[port] = dev;
3856 
3857     skge->port = port;
3858 
3859     /* Only used for Genesis XMAC */
3860     if (is_genesis(hw))
3861         timer_setup(&skge->link_timer, xm_link_timer, 0);
3862     else {
3863         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3864                            NETIF_F_RXCSUM;
3865         dev->features |= dev->hw_features;
3866     }
3867 
3868     /* read the mac address */
3869     memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3870     eth_hw_addr_set(dev, addr);
3871 
3872     return dev;
3873 }
3874 
3875 static void skge_show_addr(struct net_device *dev)
3876 {
3877     const struct skge_port *skge = netdev_priv(dev);
3878 
3879     netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3880 }
3881 
3882 static int only_32bit_dma;
3883 
3884 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3885 {
3886     struct net_device *dev, *dev1;
3887     struct skge_hw *hw;
3888     int err, using_dac = 0;
3889 
3890     err = pci_enable_device(pdev);
3891     if (err) {
3892         dev_err(&pdev->dev, "cannot enable PCI device\n");
3893         goto err_out;
3894     }
3895 
3896     err = pci_request_regions(pdev, DRV_NAME);
3897     if (err) {
3898         dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3899         goto err_out_disable_pdev;
3900     }
3901 
3902     pci_set_master(pdev);
3903 
3904     if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3905         using_dac = 1;
3906         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3907     } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3908         using_dac = 0;
3909         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3910     }
3911 
3912     if (err) {
3913         dev_err(&pdev->dev, "no usable DMA configuration\n");
3914         goto err_out_free_regions;
3915     }
3916 
3917 #ifdef __BIG_ENDIAN
3918     /* byte swap descriptors in hardware */
3919     {
3920         u32 reg;
3921 
3922         pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3923         reg |= PCI_REV_DESC;
3924         pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3925     }
3926 #endif
3927 
3928     err = -ENOMEM;
3929     /* space for skge@pci:0000:04:00.0 */
3930     hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3931              + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3932     if (!hw)
3933         goto err_out_free_regions;
3934 
3935     sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3936 
3937     hw->pdev = pdev;
3938     spin_lock_init(&hw->hw_lock);
3939     spin_lock_init(&hw->phy_lock);
3940     tasklet_setup(&hw->phy_task, skge_extirq);
3941 
3942     hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3943     if (!hw->regs) {
3944         dev_err(&pdev->dev, "cannot map device registers\n");
3945         goto err_out_free_hw;
3946     }
3947 
3948     err = skge_reset(hw);
3949     if (err)
3950         goto err_out_iounmap;
3951 
3952     pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3953         DRV_VERSION,
3954         (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3955         skge_board_name(hw), hw->chip_rev);
3956 
3957     dev = skge_devinit(hw, 0, using_dac);
3958     if (!dev) {
3959         err = -ENOMEM;
3960         goto err_out_led_off;
3961     }
3962 
3963     /* Some motherboards are broken and has zero in ROM. */
3964     if (!is_valid_ether_addr(dev->dev_addr))
3965         dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3966 
3967     err = register_netdev(dev);
3968     if (err) {
3969         dev_err(&pdev->dev, "cannot register net device\n");
3970         goto err_out_free_netdev;
3971     }
3972 
3973     skge_show_addr(dev);
3974 
3975     if (hw->ports > 1) {
3976         dev1 = skge_devinit(hw, 1, using_dac);
3977         if (!dev1) {
3978             err = -ENOMEM;
3979             goto err_out_unregister;
3980         }
3981 
3982         err = register_netdev(dev1);
3983         if (err) {
3984             dev_err(&pdev->dev, "cannot register second net device\n");
3985             goto err_out_free_dev1;
3986         }
3987 
3988         err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3989                   hw->irq_name, hw);
3990         if (err) {
3991             dev_err(&pdev->dev, "cannot assign irq %d\n",
3992                 pdev->irq);
3993             goto err_out_unregister_dev1;
3994         }
3995 
3996         skge_show_addr(dev1);
3997     }
3998     pci_set_drvdata(pdev, hw);
3999 
4000     return 0;
4001 
4002 err_out_unregister_dev1:
4003     unregister_netdev(dev1);
4004 err_out_free_dev1:
4005     free_netdev(dev1);
4006 err_out_unregister:
4007     unregister_netdev(dev);
4008 err_out_free_netdev:
4009     free_netdev(dev);
4010 err_out_led_off:
4011     skge_write16(hw, B0_LED, LED_STAT_OFF);
4012 err_out_iounmap:
4013     iounmap(hw->regs);
4014 err_out_free_hw:
4015     kfree(hw);
4016 err_out_free_regions:
4017     pci_release_regions(pdev);
4018 err_out_disable_pdev:
4019     pci_disable_device(pdev);
4020 err_out:
4021     return err;
4022 }
4023 
4024 static void skge_remove(struct pci_dev *pdev)
4025 {
4026     struct skge_hw *hw  = pci_get_drvdata(pdev);
4027     struct net_device *dev0, *dev1;
4028 
4029     if (!hw)
4030         return;
4031 
4032     dev1 = hw->dev[1];
4033     if (dev1)
4034         unregister_netdev(dev1);
4035     dev0 = hw->dev[0];
4036     unregister_netdev(dev0);
4037 
4038     tasklet_kill(&hw->phy_task);
4039 
4040     spin_lock_irq(&hw->hw_lock);
4041     hw->intr_mask = 0;
4042 
4043     if (hw->ports > 1) {
4044         skge_write32(hw, B0_IMSK, 0);
4045         skge_read32(hw, B0_IMSK);
4046     }
4047     spin_unlock_irq(&hw->hw_lock);
4048 
4049     skge_write16(hw, B0_LED, LED_STAT_OFF);
4050     skge_write8(hw, B0_CTST, CS_RST_SET);
4051 
4052     if (hw->ports > 1)
4053         free_irq(pdev->irq, hw);
4054     pci_release_regions(pdev);
4055     pci_disable_device(pdev);
4056     if (dev1)
4057         free_netdev(dev1);
4058     free_netdev(dev0);
4059 
4060     iounmap(hw->regs);
4061     kfree(hw);
4062 }
4063 
4064 #ifdef CONFIG_PM_SLEEP
4065 static int skge_suspend(struct device *dev)
4066 {
4067     struct skge_hw *hw  = dev_get_drvdata(dev);
4068     int i;
4069 
4070     if (!hw)
4071         return 0;
4072 
4073     for (i = 0; i < hw->ports; i++) {
4074         struct net_device *dev = hw->dev[i];
4075         struct skge_port *skge = netdev_priv(dev);
4076 
4077         if (netif_running(dev))
4078             skge_down(dev);
4079 
4080         if (skge->wol)
4081             skge_wol_init(skge);
4082     }
4083 
4084     skge_write32(hw, B0_IMSK, 0);
4085 
4086     return 0;
4087 }
4088 
4089 static int skge_resume(struct device *dev)
4090 {
4091     struct skge_hw *hw  = dev_get_drvdata(dev);
4092     int i, err;
4093 
4094     if (!hw)
4095         return 0;
4096 
4097     err = skge_reset(hw);
4098     if (err)
4099         goto out;
4100 
4101     for (i = 0; i < hw->ports; i++) {
4102         struct net_device *dev = hw->dev[i];
4103 
4104         if (netif_running(dev)) {
4105             err = skge_up(dev);
4106 
4107             if (err) {
4108                 netdev_err(dev, "could not up: %d\n", err);
4109                 dev_close(dev);
4110                 goto out;
4111             }
4112         }
4113     }
4114 out:
4115     return err;
4116 }
4117 
4118 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4119 #define SKGE_PM_OPS (&skge_pm_ops)
4120 
4121 #else
4122 
4123 #define SKGE_PM_OPS NULL
4124 #endif /* CONFIG_PM_SLEEP */
4125 
4126 static void skge_shutdown(struct pci_dev *pdev)
4127 {
4128     struct skge_hw *hw  = pci_get_drvdata(pdev);
4129     int i;
4130 
4131     if (!hw)
4132         return;
4133 
4134     for (i = 0; i < hw->ports; i++) {
4135         struct net_device *dev = hw->dev[i];
4136         struct skge_port *skge = netdev_priv(dev);
4137 
4138         if (skge->wol)
4139             skge_wol_init(skge);
4140     }
4141 
4142     pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4143     pci_set_power_state(pdev, PCI_D3hot);
4144 }
4145 
4146 static struct pci_driver skge_driver = {
4147     .name =         DRV_NAME,
4148     .id_table =     skge_id_table,
4149     .probe =        skge_probe,
4150     .remove =       skge_remove,
4151     .shutdown = skge_shutdown,
4152     .driver.pm =    SKGE_PM_OPS,
4153 };
4154 
4155 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4156     {
4157         .ident = "Gigabyte nForce boards",
4158         .matches = {
4159             DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4160             DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4161         },
4162     },
4163     {
4164         .ident = "ASUS P5NSLI",
4165         .matches = {
4166             DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4167             DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4168         },
4169     },
4170     {
4171         .ident = "FUJITSU SIEMENS A8NE-FM",
4172         .matches = {
4173             DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4174             DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4175         },
4176     },
4177     {}
4178 };
4179 
4180 static int __init skge_init_module(void)
4181 {
4182     if (dmi_check_system(skge_32bit_dma_boards))
4183         only_32bit_dma = 1;
4184     skge_debug_init();
4185     return pci_register_driver(&skge_driver);
4186 }
4187 
4188 static void __exit skge_cleanup_module(void)
4189 {
4190     pci_unregister_driver(&skge_driver);
4191     skge_debug_cleanup();
4192 }
4193 
4194 module_init(skge_init_module);
4195 module_exit(skge_cleanup_module);