Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright(c) 1999 - 2018 Intel Corporation. */
0003 
0004 #include <linux/pci.h>
0005 #include <linux/delay.h>
0006 #include <linux/sched.h>
0007 #include <linux/netdevice.h>
0008 
0009 #include "ixgbe.h"
0010 #include "ixgbe_common.h"
0011 #include "ixgbe_phy.h"
0012 
0013 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
0014 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
0015 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
0016 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
0017 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
0018 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
0019                     u16 count);
0020 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
0021 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
0022 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
0023 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
0024 
0025 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
0026 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
0027 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
0028                          u16 words, u16 *data);
0029 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
0030                          u16 words, u16 *data);
0031 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
0032                          u16 offset);
0033 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
0034 
0035 /* Base table for registers values that change by MAC */
0036 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
0037     IXGBE_MVALS_INIT(8259X)
0038 };
0039 
0040 /**
0041  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
0042  *  control
0043  *  @hw: pointer to hardware structure
0044  *
0045  *  There are several phys that do not support autoneg flow control. This
0046  *  function check the device id to see if the associated phy supports
0047  *  autoneg flow control.
0048  **/
0049 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
0050 {
0051     bool supported = false;
0052     ixgbe_link_speed speed;
0053     bool link_up;
0054 
0055     switch (hw->phy.media_type) {
0056     case ixgbe_media_type_fiber:
0057         /* flow control autoneg black list */
0058         switch (hw->device_id) {
0059         case IXGBE_DEV_ID_X550EM_A_SFP:
0060         case IXGBE_DEV_ID_X550EM_A_SFP_N:
0061             supported = false;
0062             break;
0063         default:
0064             hw->mac.ops.check_link(hw, &speed, &link_up, false);
0065             /* if link is down, assume supported */
0066             if (link_up)
0067                 supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
0068             else
0069                 supported = true;
0070         }
0071 
0072         break;
0073     case ixgbe_media_type_backplane:
0074         if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
0075             supported = false;
0076         else
0077             supported = true;
0078         break;
0079     case ixgbe_media_type_copper:
0080         /* only some copper devices support flow control autoneg */
0081         switch (hw->device_id) {
0082         case IXGBE_DEV_ID_82599_T3_LOM:
0083         case IXGBE_DEV_ID_X540T:
0084         case IXGBE_DEV_ID_X540T1:
0085         case IXGBE_DEV_ID_X550T:
0086         case IXGBE_DEV_ID_X550T1:
0087         case IXGBE_DEV_ID_X550EM_X_10G_T:
0088         case IXGBE_DEV_ID_X550EM_A_10G_T:
0089         case IXGBE_DEV_ID_X550EM_A_1G_T:
0090         case IXGBE_DEV_ID_X550EM_A_1G_T_L:
0091             supported = true;
0092             break;
0093         default:
0094             break;
0095         }
0096         break;
0097     default:
0098         break;
0099     }
0100 
0101     if (!supported)
0102         hw_dbg(hw, "Device %x does not support flow control autoneg\n",
0103                hw->device_id);
0104 
0105     return supported;
0106 }
0107 
0108 /**
0109  *  ixgbe_setup_fc_generic - Set up flow control
0110  *  @hw: pointer to hardware structure
0111  *
0112  *  Called at init time to set up flow control.
0113  **/
0114 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
0115 {
0116     s32 ret_val = 0;
0117     u32 reg = 0, reg_bp = 0;
0118     u16 reg_cu = 0;
0119     bool locked = false;
0120 
0121     /*
0122      * Validate the requested mode.  Strict IEEE mode does not allow
0123      * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
0124      */
0125     if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
0126         hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
0127         return IXGBE_ERR_INVALID_LINK_SETTINGS;
0128     }
0129 
0130     /*
0131      * 10gig parts do not have a word in the EEPROM to determine the
0132      * default flow control setting, so we explicitly set it to full.
0133      */
0134     if (hw->fc.requested_mode == ixgbe_fc_default)
0135         hw->fc.requested_mode = ixgbe_fc_full;
0136 
0137     /*
0138      * Set up the 1G and 10G flow control advertisement registers so the
0139      * HW will be able to do fc autoneg once the cable is plugged in.  If
0140      * we link at 10G, the 1G advertisement is harmless and vice versa.
0141      */
0142     switch (hw->phy.media_type) {
0143     case ixgbe_media_type_backplane:
0144         /* some MAC's need RMW protection on AUTOC */
0145         ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
0146         if (ret_val)
0147             return ret_val;
0148 
0149         fallthrough; /* only backplane uses autoc */
0150     case ixgbe_media_type_fiber:
0151         reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
0152 
0153         break;
0154     case ixgbe_media_type_copper:
0155         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
0156                     MDIO_MMD_AN, &reg_cu);
0157         break;
0158     default:
0159         break;
0160     }
0161 
0162     /*
0163      * The possible values of fc.requested_mode are:
0164      * 0: Flow control is completely disabled
0165      * 1: Rx flow control is enabled (we can receive pause frames,
0166      *    but not send pause frames).
0167      * 2: Tx flow control is enabled (we can send pause frames but
0168      *    we do not support receiving pause frames).
0169      * 3: Both Rx and Tx flow control (symmetric) are enabled.
0170      * other: Invalid.
0171      */
0172     switch (hw->fc.requested_mode) {
0173     case ixgbe_fc_none:
0174         /* Flow control completely disabled by software override. */
0175         reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
0176         if (hw->phy.media_type == ixgbe_media_type_backplane)
0177             reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
0178                     IXGBE_AUTOC_ASM_PAUSE);
0179         else if (hw->phy.media_type == ixgbe_media_type_copper)
0180             reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
0181         break;
0182     case ixgbe_fc_tx_pause:
0183         /*
0184          * Tx Flow control is enabled, and Rx Flow control is
0185          * disabled by software override.
0186          */
0187         reg |= IXGBE_PCS1GANA_ASM_PAUSE;
0188         reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
0189         if (hw->phy.media_type == ixgbe_media_type_backplane) {
0190             reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
0191             reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
0192         } else if (hw->phy.media_type == ixgbe_media_type_copper) {
0193             reg_cu |= IXGBE_TAF_ASM_PAUSE;
0194             reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
0195         }
0196         break;
0197     case ixgbe_fc_rx_pause:
0198         /*
0199          * Rx Flow control is enabled and Tx Flow control is
0200          * disabled by software override. Since there really
0201          * isn't a way to advertise that we are capable of RX
0202          * Pause ONLY, we will advertise that we support both
0203          * symmetric and asymmetric Rx PAUSE, as such we fall
0204          * through to the fc_full statement.  Later, we will
0205          * disable the adapter's ability to send PAUSE frames.
0206          */
0207     case ixgbe_fc_full:
0208         /* Flow control (both Rx and Tx) is enabled by SW override. */
0209         reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
0210         if (hw->phy.media_type == ixgbe_media_type_backplane)
0211             reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
0212                   IXGBE_AUTOC_ASM_PAUSE;
0213         else if (hw->phy.media_type == ixgbe_media_type_copper)
0214             reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
0215         break;
0216     default:
0217         hw_dbg(hw, "Flow control param set incorrectly\n");
0218         return IXGBE_ERR_CONFIG;
0219     }
0220 
0221     if (hw->mac.type != ixgbe_mac_X540) {
0222         /*
0223          * Enable auto-negotiation between the MAC & PHY;
0224          * the MAC will advertise clause 37 flow control.
0225          */
0226         IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
0227         reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
0228 
0229         /* Disable AN timeout */
0230         if (hw->fc.strict_ieee)
0231             reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
0232 
0233         IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
0234         hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
0235     }
0236 
0237     /*
0238      * AUTOC restart handles negotiation of 1G and 10G on backplane
0239      * and copper. There is no need to set the PCS1GCTL register.
0240      *
0241      */
0242     if (hw->phy.media_type == ixgbe_media_type_backplane) {
0243         /* Need the SW/FW semaphore around AUTOC writes if 82599 and
0244          * LESM is on, likewise reset_pipeline requries the lock as
0245          * it also writes AUTOC.
0246          */
0247         ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
0248         if (ret_val)
0249             return ret_val;
0250 
0251     } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
0252            ixgbe_device_supports_autoneg_fc(hw)) {
0253         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
0254                       MDIO_MMD_AN, reg_cu);
0255     }
0256 
0257     hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
0258     return ret_val;
0259 }
0260 
0261 /**
0262  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
0263  *  @hw: pointer to hardware structure
0264  *
0265  *  Starts the hardware by filling the bus info structure and media type, clears
0266  *  all on chip counters, initializes receive address registers, multicast
0267  *  table, VLAN filter table, calls routine to set up link and flow control
0268  *  settings, and leaves transmit and receive units disabled and uninitialized
0269  **/
0270 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
0271 {
0272     s32 ret_val;
0273     u32 ctrl_ext;
0274     u16 device_caps;
0275 
0276     /* Set the media type */
0277     hw->phy.media_type = hw->mac.ops.get_media_type(hw);
0278 
0279     /* Identify the PHY */
0280     hw->phy.ops.identify(hw);
0281 
0282     /* Clear the VLAN filter table */
0283     hw->mac.ops.clear_vfta(hw);
0284 
0285     /* Clear statistics registers */
0286     hw->mac.ops.clear_hw_cntrs(hw);
0287 
0288     /* Set No Snoop Disable */
0289     ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
0290     ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
0291     IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
0292     IXGBE_WRITE_FLUSH(hw);
0293 
0294     /* Setup flow control if method for doing so */
0295     if (hw->mac.ops.setup_fc) {
0296         ret_val = hw->mac.ops.setup_fc(hw);
0297         if (ret_val)
0298             return ret_val;
0299     }
0300 
0301     /* Cashe bit indicating need for crosstalk fix */
0302     switch (hw->mac.type) {
0303     case ixgbe_mac_82599EB:
0304     case ixgbe_mac_X550EM_x:
0305     case ixgbe_mac_x550em_a:
0306         hw->mac.ops.get_device_caps(hw, &device_caps);
0307         if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
0308             hw->need_crosstalk_fix = false;
0309         else
0310             hw->need_crosstalk_fix = true;
0311         break;
0312     default:
0313         hw->need_crosstalk_fix = false;
0314         break;
0315     }
0316 
0317     /* Clear adapter stopped flag */
0318     hw->adapter_stopped = false;
0319 
0320     return 0;
0321 }
0322 
0323 /**
0324  *  ixgbe_start_hw_gen2 - Init sequence for common device family
0325  *  @hw: pointer to hw structure
0326  *
0327  * Performs the init sequence common to the second generation
0328  * of 10 GbE devices.
0329  * Devices in the second generation:
0330  *     82599
0331  *     X540
0332  **/
0333 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
0334 {
0335     u32 i;
0336 
0337     /* Clear the rate limiters */
0338     for (i = 0; i < hw->mac.max_tx_queues; i++) {
0339         IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
0340         IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
0341     }
0342     IXGBE_WRITE_FLUSH(hw);
0343 
0344     return 0;
0345 }
0346 
0347 /**
0348  *  ixgbe_init_hw_generic - Generic hardware initialization
0349  *  @hw: pointer to hardware structure
0350  *
0351  *  Initialize the hardware by resetting the hardware, filling the bus info
0352  *  structure and media type, clears all on chip counters, initializes receive
0353  *  address registers, multicast table, VLAN filter table, calls routine to set
0354  *  up link and flow control settings, and leaves transmit and receive units
0355  *  disabled and uninitialized
0356  **/
0357 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
0358 {
0359     s32 status;
0360 
0361     /* Reset the hardware */
0362     status = hw->mac.ops.reset_hw(hw);
0363 
0364     if (status == 0) {
0365         /* Start the HW */
0366         status = hw->mac.ops.start_hw(hw);
0367     }
0368 
0369     /* Initialize the LED link active for LED blink support */
0370     if (hw->mac.ops.init_led_link_act)
0371         hw->mac.ops.init_led_link_act(hw);
0372 
0373     return status;
0374 }
0375 
0376 /**
0377  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
0378  *  @hw: pointer to hardware structure
0379  *
0380  *  Clears all hardware statistics counters by reading them from the hardware
0381  *  Statistics counters are clear on read.
0382  **/
0383 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
0384 {
0385     u16 i = 0;
0386 
0387     IXGBE_READ_REG(hw, IXGBE_CRCERRS);
0388     IXGBE_READ_REG(hw, IXGBE_ILLERRC);
0389     IXGBE_READ_REG(hw, IXGBE_ERRBC);
0390     IXGBE_READ_REG(hw, IXGBE_MSPDC);
0391     for (i = 0; i < 8; i++)
0392         IXGBE_READ_REG(hw, IXGBE_MPC(i));
0393 
0394     IXGBE_READ_REG(hw, IXGBE_MLFC);
0395     IXGBE_READ_REG(hw, IXGBE_MRFC);
0396     IXGBE_READ_REG(hw, IXGBE_RLEC);
0397     IXGBE_READ_REG(hw, IXGBE_LXONTXC);
0398     IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
0399     if (hw->mac.type >= ixgbe_mac_82599EB) {
0400         IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
0401         IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
0402     } else {
0403         IXGBE_READ_REG(hw, IXGBE_LXONRXC);
0404         IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
0405     }
0406 
0407     for (i = 0; i < 8; i++) {
0408         IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
0409         IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
0410         if (hw->mac.type >= ixgbe_mac_82599EB) {
0411             IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
0412             IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
0413         } else {
0414             IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
0415             IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
0416         }
0417     }
0418     if (hw->mac.type >= ixgbe_mac_82599EB)
0419         for (i = 0; i < 8; i++)
0420             IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
0421     IXGBE_READ_REG(hw, IXGBE_PRC64);
0422     IXGBE_READ_REG(hw, IXGBE_PRC127);
0423     IXGBE_READ_REG(hw, IXGBE_PRC255);
0424     IXGBE_READ_REG(hw, IXGBE_PRC511);
0425     IXGBE_READ_REG(hw, IXGBE_PRC1023);
0426     IXGBE_READ_REG(hw, IXGBE_PRC1522);
0427     IXGBE_READ_REG(hw, IXGBE_GPRC);
0428     IXGBE_READ_REG(hw, IXGBE_BPRC);
0429     IXGBE_READ_REG(hw, IXGBE_MPRC);
0430     IXGBE_READ_REG(hw, IXGBE_GPTC);
0431     IXGBE_READ_REG(hw, IXGBE_GORCL);
0432     IXGBE_READ_REG(hw, IXGBE_GORCH);
0433     IXGBE_READ_REG(hw, IXGBE_GOTCL);
0434     IXGBE_READ_REG(hw, IXGBE_GOTCH);
0435     if (hw->mac.type == ixgbe_mac_82598EB)
0436         for (i = 0; i < 8; i++)
0437             IXGBE_READ_REG(hw, IXGBE_RNBC(i));
0438     IXGBE_READ_REG(hw, IXGBE_RUC);
0439     IXGBE_READ_REG(hw, IXGBE_RFC);
0440     IXGBE_READ_REG(hw, IXGBE_ROC);
0441     IXGBE_READ_REG(hw, IXGBE_RJC);
0442     IXGBE_READ_REG(hw, IXGBE_MNGPRC);
0443     IXGBE_READ_REG(hw, IXGBE_MNGPDC);
0444     IXGBE_READ_REG(hw, IXGBE_MNGPTC);
0445     IXGBE_READ_REG(hw, IXGBE_TORL);
0446     IXGBE_READ_REG(hw, IXGBE_TORH);
0447     IXGBE_READ_REG(hw, IXGBE_TPR);
0448     IXGBE_READ_REG(hw, IXGBE_TPT);
0449     IXGBE_READ_REG(hw, IXGBE_PTC64);
0450     IXGBE_READ_REG(hw, IXGBE_PTC127);
0451     IXGBE_READ_REG(hw, IXGBE_PTC255);
0452     IXGBE_READ_REG(hw, IXGBE_PTC511);
0453     IXGBE_READ_REG(hw, IXGBE_PTC1023);
0454     IXGBE_READ_REG(hw, IXGBE_PTC1522);
0455     IXGBE_READ_REG(hw, IXGBE_MPTC);
0456     IXGBE_READ_REG(hw, IXGBE_BPTC);
0457     for (i = 0; i < 16; i++) {
0458         IXGBE_READ_REG(hw, IXGBE_QPRC(i));
0459         IXGBE_READ_REG(hw, IXGBE_QPTC(i));
0460         if (hw->mac.type >= ixgbe_mac_82599EB) {
0461             IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
0462             IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
0463             IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
0464             IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
0465             IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
0466         } else {
0467             IXGBE_READ_REG(hw, IXGBE_QBRC(i));
0468             IXGBE_READ_REG(hw, IXGBE_QBTC(i));
0469         }
0470     }
0471 
0472     if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
0473         if (hw->phy.id == 0)
0474             hw->phy.ops.identify(hw);
0475         hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
0476         hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
0477         hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
0478         hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
0479     }
0480 
0481     return 0;
0482 }
0483 
0484 /**
0485  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
0486  *  @hw: pointer to hardware structure
0487  *  @pba_num: stores the part number string from the EEPROM
0488  *  @pba_num_size: part number string buffer length
0489  *
0490  *  Reads the part number string from the EEPROM.
0491  **/
0492 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
0493                   u32 pba_num_size)
0494 {
0495     s32 ret_val;
0496     u16 data;
0497     u16 pba_ptr;
0498     u16 offset;
0499     u16 length;
0500 
0501     if (pba_num == NULL) {
0502         hw_dbg(hw, "PBA string buffer was null\n");
0503         return IXGBE_ERR_INVALID_ARGUMENT;
0504     }
0505 
0506     ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
0507     if (ret_val) {
0508         hw_dbg(hw, "NVM Read Error\n");
0509         return ret_val;
0510     }
0511 
0512     ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
0513     if (ret_val) {
0514         hw_dbg(hw, "NVM Read Error\n");
0515         return ret_val;
0516     }
0517 
0518     /*
0519      * if data is not ptr guard the PBA must be in legacy format which
0520      * means pba_ptr is actually our second data word for the PBA number
0521      * and we can decode it into an ascii string
0522      */
0523     if (data != IXGBE_PBANUM_PTR_GUARD) {
0524         hw_dbg(hw, "NVM PBA number is not stored as string\n");
0525 
0526         /* we will need 11 characters to store the PBA */
0527         if (pba_num_size < 11) {
0528             hw_dbg(hw, "PBA string buffer too small\n");
0529             return IXGBE_ERR_NO_SPACE;
0530         }
0531 
0532         /* extract hex string from data and pba_ptr */
0533         pba_num[0] = (data >> 12) & 0xF;
0534         pba_num[1] = (data >> 8) & 0xF;
0535         pba_num[2] = (data >> 4) & 0xF;
0536         pba_num[3] = data & 0xF;
0537         pba_num[4] = (pba_ptr >> 12) & 0xF;
0538         pba_num[5] = (pba_ptr >> 8) & 0xF;
0539         pba_num[6] = '-';
0540         pba_num[7] = 0;
0541         pba_num[8] = (pba_ptr >> 4) & 0xF;
0542         pba_num[9] = pba_ptr & 0xF;
0543 
0544         /* put a null character on the end of our string */
0545         pba_num[10] = '\0';
0546 
0547         /* switch all the data but the '-' to hex char */
0548         for (offset = 0; offset < 10; offset++) {
0549             if (pba_num[offset] < 0xA)
0550                 pba_num[offset] += '0';
0551             else if (pba_num[offset] < 0x10)
0552                 pba_num[offset] += 'A' - 0xA;
0553         }
0554 
0555         return 0;
0556     }
0557 
0558     ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
0559     if (ret_val) {
0560         hw_dbg(hw, "NVM Read Error\n");
0561         return ret_val;
0562     }
0563 
0564     if (length == 0xFFFF || length == 0) {
0565         hw_dbg(hw, "NVM PBA number section invalid length\n");
0566         return IXGBE_ERR_PBA_SECTION;
0567     }
0568 
0569     /* check if pba_num buffer is big enough */
0570     if (pba_num_size  < (((u32)length * 2) - 1)) {
0571         hw_dbg(hw, "PBA string buffer too small\n");
0572         return IXGBE_ERR_NO_SPACE;
0573     }
0574 
0575     /* trim pba length from start of string */
0576     pba_ptr++;
0577     length--;
0578 
0579     for (offset = 0; offset < length; offset++) {
0580         ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
0581         if (ret_val) {
0582             hw_dbg(hw, "NVM Read Error\n");
0583             return ret_val;
0584         }
0585         pba_num[offset * 2] = (u8)(data >> 8);
0586         pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
0587     }
0588     pba_num[offset * 2] = '\0';
0589 
0590     return 0;
0591 }
0592 
0593 /**
0594  *  ixgbe_get_mac_addr_generic - Generic get MAC address
0595  *  @hw: pointer to hardware structure
0596  *  @mac_addr: Adapter MAC address
0597  *
0598  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
0599  *  A reset of the adapter must be performed prior to calling this function
0600  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
0601  **/
0602 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
0603 {
0604     u32 rar_high;
0605     u32 rar_low;
0606     u16 i;
0607 
0608     rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
0609     rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
0610 
0611     for (i = 0; i < 4; i++)
0612         mac_addr[i] = (u8)(rar_low >> (i*8));
0613 
0614     for (i = 0; i < 2; i++)
0615         mac_addr[i+4] = (u8)(rar_high >> (i*8));
0616 
0617     return 0;
0618 }
0619 
0620 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
0621 {
0622     switch (link_status & IXGBE_PCI_LINK_WIDTH) {
0623     case IXGBE_PCI_LINK_WIDTH_1:
0624         return ixgbe_bus_width_pcie_x1;
0625     case IXGBE_PCI_LINK_WIDTH_2:
0626         return ixgbe_bus_width_pcie_x2;
0627     case IXGBE_PCI_LINK_WIDTH_4:
0628         return ixgbe_bus_width_pcie_x4;
0629     case IXGBE_PCI_LINK_WIDTH_8:
0630         return ixgbe_bus_width_pcie_x8;
0631     default:
0632         return ixgbe_bus_width_unknown;
0633     }
0634 }
0635 
0636 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
0637 {
0638     switch (link_status & IXGBE_PCI_LINK_SPEED) {
0639     case IXGBE_PCI_LINK_SPEED_2500:
0640         return ixgbe_bus_speed_2500;
0641     case IXGBE_PCI_LINK_SPEED_5000:
0642         return ixgbe_bus_speed_5000;
0643     case IXGBE_PCI_LINK_SPEED_8000:
0644         return ixgbe_bus_speed_8000;
0645     default:
0646         return ixgbe_bus_speed_unknown;
0647     }
0648 }
0649 
0650 /**
0651  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
0652  *  @hw: pointer to hardware structure
0653  *
0654  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
0655  **/
0656 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
0657 {
0658     u16 link_status;
0659 
0660     hw->bus.type = ixgbe_bus_type_pci_express;
0661 
0662     /* Get the negotiated link width and speed from PCI config space */
0663     link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
0664 
0665     hw->bus.width = ixgbe_convert_bus_width(link_status);
0666     hw->bus.speed = ixgbe_convert_bus_speed(link_status);
0667 
0668     hw->mac.ops.set_lan_id(hw);
0669 
0670     return 0;
0671 }
0672 
0673 /**
0674  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
0675  *  @hw: pointer to the HW structure
0676  *
0677  *  Determines the LAN function id by reading memory-mapped registers
0678  *  and swaps the port value if requested.
0679  **/
0680 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
0681 {
0682     struct ixgbe_bus_info *bus = &hw->bus;
0683     u16 ee_ctrl_4;
0684     u32 reg;
0685 
0686     reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
0687     bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
0688     bus->lan_id = bus->func;
0689 
0690     /* check for a port swap */
0691     reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
0692     if (reg & IXGBE_FACTPS_LFS)
0693         bus->func ^= 0x1;
0694 
0695     /* Get MAC instance from EEPROM for configuring CS4227 */
0696     if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
0697         hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
0698         bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
0699                    IXGBE_EE_CTRL_4_INST_ID_SHIFT;
0700     }
0701 }
0702 
0703 /**
0704  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
0705  *  @hw: pointer to hardware structure
0706  *
0707  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
0708  *  disables transmit and receive units. The adapter_stopped flag is used by
0709  *  the shared code and drivers to determine if the adapter is in a stopped
0710  *  state and should not touch the hardware.
0711  **/
0712 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
0713 {
0714     u32 reg_val;
0715     u16 i;
0716 
0717     /*
0718      * Set the adapter_stopped flag so other driver functions stop touching
0719      * the hardware
0720      */
0721     hw->adapter_stopped = true;
0722 
0723     /* Disable the receive unit */
0724     hw->mac.ops.disable_rx(hw);
0725 
0726     /* Clear interrupt mask to stop interrupts from being generated */
0727     IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
0728 
0729     /* Clear any pending interrupts, flush previous writes */
0730     IXGBE_READ_REG(hw, IXGBE_EICR);
0731 
0732     /* Disable the transmit unit.  Each queue must be disabled. */
0733     for (i = 0; i < hw->mac.max_tx_queues; i++)
0734         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
0735 
0736     /* Disable the receive unit by stopping each queue */
0737     for (i = 0; i < hw->mac.max_rx_queues; i++) {
0738         reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
0739         reg_val &= ~IXGBE_RXDCTL_ENABLE;
0740         reg_val |= IXGBE_RXDCTL_SWFLSH;
0741         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
0742     }
0743 
0744     /* flush all queues disables */
0745     IXGBE_WRITE_FLUSH(hw);
0746     usleep_range(1000, 2000);
0747 
0748     /*
0749      * Prevent the PCI-E bus from hanging by disabling PCI-E primary
0750      * access and verify no pending requests
0751      */
0752     return ixgbe_disable_pcie_primary(hw);
0753 }
0754 
0755 /**
0756  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
0757  *  @hw: pointer to hardware structure
0758  *
0759  *  Store the index for the link active LED. This will be used to support
0760  *  blinking the LED.
0761  **/
0762 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
0763 {
0764     struct ixgbe_mac_info *mac = &hw->mac;
0765     u32 led_reg, led_mode;
0766     u16 i;
0767 
0768     led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
0769 
0770     /* Get LED link active from the LEDCTL register */
0771     for (i = 0; i < 4; i++) {
0772         led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
0773 
0774         if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
0775             IXGBE_LED_LINK_ACTIVE) {
0776             mac->led_link_act = i;
0777             return 0;
0778         }
0779     }
0780 
0781     /* If LEDCTL register does not have the LED link active set, then use
0782      * known MAC defaults.
0783      */
0784     switch (hw->mac.type) {
0785     case ixgbe_mac_x550em_a:
0786         mac->led_link_act = 0;
0787         break;
0788     case ixgbe_mac_X550EM_x:
0789         mac->led_link_act = 1;
0790         break;
0791     default:
0792         mac->led_link_act = 2;
0793     }
0794 
0795     return 0;
0796 }
0797 
0798 /**
0799  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
0800  *  @hw: pointer to hardware structure
0801  *  @index: led number to turn on
0802  **/
0803 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
0804 {
0805     u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
0806 
0807     if (index > 3)
0808         return IXGBE_ERR_PARAM;
0809 
0810     /* To turn on the LED, set mode to ON. */
0811     led_reg &= ~IXGBE_LED_MODE_MASK(index);
0812     led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
0813     IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
0814     IXGBE_WRITE_FLUSH(hw);
0815 
0816     return 0;
0817 }
0818 
0819 /**
0820  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
0821  *  @hw: pointer to hardware structure
0822  *  @index: led number to turn off
0823  **/
0824 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
0825 {
0826     u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
0827 
0828     if (index > 3)
0829         return IXGBE_ERR_PARAM;
0830 
0831     /* To turn off the LED, set mode to OFF. */
0832     led_reg &= ~IXGBE_LED_MODE_MASK(index);
0833     led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
0834     IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
0835     IXGBE_WRITE_FLUSH(hw);
0836 
0837     return 0;
0838 }
0839 
0840 /**
0841  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
0842  *  @hw: pointer to hardware structure
0843  *
0844  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
0845  *  ixgbe_hw struct in order to set up EEPROM access.
0846  **/
0847 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
0848 {
0849     struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
0850     u32 eec;
0851     u16 eeprom_size;
0852 
0853     if (eeprom->type == ixgbe_eeprom_uninitialized) {
0854         eeprom->type = ixgbe_eeprom_none;
0855         /* Set default semaphore delay to 10ms which is a well
0856          * tested value */
0857         eeprom->semaphore_delay = 10;
0858         /* Clear EEPROM page size, it will be initialized as needed */
0859         eeprom->word_page_size = 0;
0860 
0861         /*
0862          * Check for EEPROM present first.
0863          * If not present leave as none
0864          */
0865         eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
0866         if (eec & IXGBE_EEC_PRES) {
0867             eeprom->type = ixgbe_eeprom_spi;
0868 
0869             /*
0870              * SPI EEPROM is assumed here.  This code would need to
0871              * change if a future EEPROM is not SPI.
0872              */
0873             eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
0874                         IXGBE_EEC_SIZE_SHIFT);
0875             eeprom->word_size = BIT(eeprom_size +
0876                          IXGBE_EEPROM_WORD_SIZE_SHIFT);
0877         }
0878 
0879         if (eec & IXGBE_EEC_ADDR_SIZE)
0880             eeprom->address_bits = 16;
0881         else
0882             eeprom->address_bits = 8;
0883         hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
0884                eeprom->type, eeprom->word_size, eeprom->address_bits);
0885     }
0886 
0887     return 0;
0888 }
0889 
0890 /**
0891  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
0892  *  @hw: pointer to hardware structure
0893  *  @offset: offset within the EEPROM to write
0894  *  @words: number of words
0895  *  @data: 16 bit word(s) to write to EEPROM
0896  *
0897  *  Reads 16 bit word(s) from EEPROM through bit-bang method
0898  **/
0899 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
0900                            u16 words, u16 *data)
0901 {
0902     s32 status;
0903     u16 i, count;
0904 
0905     hw->eeprom.ops.init_params(hw);
0906 
0907     if (words == 0)
0908         return IXGBE_ERR_INVALID_ARGUMENT;
0909 
0910     if (offset + words > hw->eeprom.word_size)
0911         return IXGBE_ERR_EEPROM;
0912 
0913     /*
0914      * The EEPROM page size cannot be queried from the chip. We do lazy
0915      * initialization. It is worth to do that when we write large buffer.
0916      */
0917     if ((hw->eeprom.word_page_size == 0) &&
0918         (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
0919         ixgbe_detect_eeprom_page_size_generic(hw, offset);
0920 
0921     /*
0922      * We cannot hold synchronization semaphores for too long
0923      * to avoid other entity starvation. However it is more efficient
0924      * to read in bursts than synchronizing access for each word.
0925      */
0926     for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
0927         count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
0928              IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
0929         status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
0930                                 count, &data[i]);
0931 
0932         if (status != 0)
0933             break;
0934     }
0935 
0936     return status;
0937 }
0938 
0939 /**
0940  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
0941  *  @hw: pointer to hardware structure
0942  *  @offset: offset within the EEPROM to be written to
0943  *  @words: number of word(s)
0944  *  @data: 16 bit word(s) to be written to the EEPROM
0945  *
0946  *  If ixgbe_eeprom_update_checksum is not called after this function, the
0947  *  EEPROM will most likely contain an invalid checksum.
0948  **/
0949 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
0950                           u16 words, u16 *data)
0951 {
0952     s32 status;
0953     u16 word;
0954     u16 page_size;
0955     u16 i;
0956     u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
0957 
0958     /* Prepare the EEPROM for writing  */
0959     status = ixgbe_acquire_eeprom(hw);
0960     if (status)
0961         return status;
0962 
0963     if (ixgbe_ready_eeprom(hw) != 0) {
0964         ixgbe_release_eeprom(hw);
0965         return IXGBE_ERR_EEPROM;
0966     }
0967 
0968     for (i = 0; i < words; i++) {
0969         ixgbe_standby_eeprom(hw);
0970 
0971         /* Send the WRITE ENABLE command (8 bit opcode) */
0972         ixgbe_shift_out_eeprom_bits(hw,
0973                         IXGBE_EEPROM_WREN_OPCODE_SPI,
0974                         IXGBE_EEPROM_OPCODE_BITS);
0975 
0976         ixgbe_standby_eeprom(hw);
0977 
0978         /* Some SPI eeproms use the 8th address bit embedded
0979          * in the opcode
0980          */
0981         if ((hw->eeprom.address_bits == 8) &&
0982             ((offset + i) >= 128))
0983             write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
0984 
0985         /* Send the Write command (8-bit opcode + addr) */
0986         ixgbe_shift_out_eeprom_bits(hw, write_opcode,
0987                         IXGBE_EEPROM_OPCODE_BITS);
0988         ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
0989                         hw->eeprom.address_bits);
0990 
0991         page_size = hw->eeprom.word_page_size;
0992 
0993         /* Send the data in burst via SPI */
0994         do {
0995             word = data[i];
0996             word = (word >> 8) | (word << 8);
0997             ixgbe_shift_out_eeprom_bits(hw, word, 16);
0998 
0999             if (page_size == 0)
1000                 break;
1001 
1002             /* do not wrap around page */
1003             if (((offset + i) & (page_size - 1)) ==
1004                 (page_size - 1))
1005                 break;
1006         } while (++i < words);
1007 
1008         ixgbe_standby_eeprom(hw);
1009         usleep_range(10000, 20000);
1010     }
1011     /* Done with writing - release the EEPROM */
1012     ixgbe_release_eeprom(hw);
1013 
1014     return 0;
1015 }
1016 
1017 /**
1018  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1019  *  @hw: pointer to hardware structure
1020  *  @offset: offset within the EEPROM to be written to
1021  *  @data: 16 bit word to be written to the EEPROM
1022  *
1023  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1024  *  EEPROM will most likely contain an invalid checksum.
1025  **/
1026 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1027 {
1028     hw->eeprom.ops.init_params(hw);
1029 
1030     if (offset >= hw->eeprom.word_size)
1031         return IXGBE_ERR_EEPROM;
1032 
1033     return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1034 }
1035 
1036 /**
1037  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1038  *  @hw: pointer to hardware structure
1039  *  @offset: offset within the EEPROM to be read
1040  *  @words: number of word(s)
1041  *  @data: read 16 bit words(s) from EEPROM
1042  *
1043  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1044  **/
1045 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1046                           u16 words, u16 *data)
1047 {
1048     s32 status;
1049     u16 i, count;
1050 
1051     hw->eeprom.ops.init_params(hw);
1052 
1053     if (words == 0)
1054         return IXGBE_ERR_INVALID_ARGUMENT;
1055 
1056     if (offset + words > hw->eeprom.word_size)
1057         return IXGBE_ERR_EEPROM;
1058 
1059     /*
1060      * We cannot hold synchronization semaphores for too long
1061      * to avoid other entity starvation. However it is more efficient
1062      * to read in bursts than synchronizing access for each word.
1063      */
1064     for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1065         count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1066              IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1067 
1068         status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1069                                count, &data[i]);
1070 
1071         if (status)
1072             return status;
1073     }
1074 
1075     return 0;
1076 }
1077 
1078 /**
1079  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1080  *  @hw: pointer to hardware structure
1081  *  @offset: offset within the EEPROM to be read
1082  *  @words: number of word(s)
1083  *  @data: read 16 bit word(s) from EEPROM
1084  *
1085  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1086  **/
1087 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1088                          u16 words, u16 *data)
1089 {
1090     s32 status;
1091     u16 word_in;
1092     u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1093     u16 i;
1094 
1095     /* Prepare the EEPROM for reading  */
1096     status = ixgbe_acquire_eeprom(hw);
1097     if (status)
1098         return status;
1099 
1100     if (ixgbe_ready_eeprom(hw) != 0) {
1101         ixgbe_release_eeprom(hw);
1102         return IXGBE_ERR_EEPROM;
1103     }
1104 
1105     for (i = 0; i < words; i++) {
1106         ixgbe_standby_eeprom(hw);
1107         /* Some SPI eeproms use the 8th address bit embedded
1108          * in the opcode
1109          */
1110         if ((hw->eeprom.address_bits == 8) &&
1111             ((offset + i) >= 128))
1112             read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1113 
1114         /* Send the READ command (opcode + addr) */
1115         ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1116                         IXGBE_EEPROM_OPCODE_BITS);
1117         ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1118                         hw->eeprom.address_bits);
1119 
1120         /* Read the data. */
1121         word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1122         data[i] = (word_in >> 8) | (word_in << 8);
1123     }
1124 
1125     /* End this read operation */
1126     ixgbe_release_eeprom(hw);
1127 
1128     return 0;
1129 }
1130 
1131 /**
1132  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1133  *  @hw: pointer to hardware structure
1134  *  @offset: offset within the EEPROM to be read
1135  *  @data: read 16 bit value from EEPROM
1136  *
1137  *  Reads 16 bit value from EEPROM through bit-bang method
1138  **/
1139 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1140                        u16 *data)
1141 {
1142     hw->eeprom.ops.init_params(hw);
1143 
1144     if (offset >= hw->eeprom.word_size)
1145         return IXGBE_ERR_EEPROM;
1146 
1147     return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1148 }
1149 
1150 /**
1151  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1152  *  @hw: pointer to hardware structure
1153  *  @offset: offset of word in the EEPROM to read
1154  *  @words: number of word(s)
1155  *  @data: 16 bit word(s) from the EEPROM
1156  *
1157  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1158  **/
1159 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1160                    u16 words, u16 *data)
1161 {
1162     u32 eerd;
1163     s32 status;
1164     u32 i;
1165 
1166     hw->eeprom.ops.init_params(hw);
1167 
1168     if (words == 0)
1169         return IXGBE_ERR_INVALID_ARGUMENT;
1170 
1171     if (offset >= hw->eeprom.word_size)
1172         return IXGBE_ERR_EEPROM;
1173 
1174     for (i = 0; i < words; i++) {
1175         eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1176                IXGBE_EEPROM_RW_REG_START;
1177 
1178         IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1179         status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1180 
1181         if (status == 0) {
1182             data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1183                    IXGBE_EEPROM_RW_REG_DATA);
1184         } else {
1185             hw_dbg(hw, "Eeprom read timed out\n");
1186             return status;
1187         }
1188     }
1189 
1190     return 0;
1191 }
1192 
1193 /**
1194  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1195  *  @hw: pointer to hardware structure
1196  *  @offset: offset within the EEPROM to be used as a scratch pad
1197  *
1198  *  Discover EEPROM page size by writing marching data at given offset.
1199  *  This function is called only when we are writing a new large buffer
1200  *  at given offset so the data would be overwritten anyway.
1201  **/
1202 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1203                          u16 offset)
1204 {
1205     u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1206     s32 status;
1207     u16 i;
1208 
1209     for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1210         data[i] = i;
1211 
1212     hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1213     status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1214                          IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1215     hw->eeprom.word_page_size = 0;
1216     if (status)
1217         return status;
1218 
1219     status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1220     if (status)
1221         return status;
1222 
1223     /*
1224      * When writing in burst more than the actual page size
1225      * EEPROM address wraps around current page.
1226      */
1227     hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1228 
1229     hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1230            hw->eeprom.word_page_size);
1231     return 0;
1232 }
1233 
1234 /**
1235  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1236  *  @hw: pointer to hardware structure
1237  *  @offset: offset of  word in the EEPROM to read
1238  *  @data: word read from the EEPROM
1239  *
1240  *  Reads a 16 bit word from the EEPROM using the EERD register.
1241  **/
1242 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1243 {
1244     return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1245 }
1246 
1247 /**
1248  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1249  *  @hw: pointer to hardware structure
1250  *  @offset: offset of  word in the EEPROM to write
1251  *  @words: number of words
1252  *  @data: word(s) write to the EEPROM
1253  *
1254  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1255  **/
1256 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1257                     u16 words, u16 *data)
1258 {
1259     u32 eewr;
1260     s32 status;
1261     u16 i;
1262 
1263     hw->eeprom.ops.init_params(hw);
1264 
1265     if (words == 0)
1266         return IXGBE_ERR_INVALID_ARGUMENT;
1267 
1268     if (offset >= hw->eeprom.word_size)
1269         return IXGBE_ERR_EEPROM;
1270 
1271     for (i = 0; i < words; i++) {
1272         eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1273                (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1274                IXGBE_EEPROM_RW_REG_START;
1275 
1276         status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1277         if (status) {
1278             hw_dbg(hw, "Eeprom write EEWR timed out\n");
1279             return status;
1280         }
1281 
1282         IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1283 
1284         status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1285         if (status) {
1286             hw_dbg(hw, "Eeprom write EEWR timed out\n");
1287             return status;
1288         }
1289     }
1290 
1291     return 0;
1292 }
1293 
1294 /**
1295  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1296  *  @hw: pointer to hardware structure
1297  *  @offset: offset of  word in the EEPROM to write
1298  *  @data: word write to the EEPROM
1299  *
1300  *  Write a 16 bit word to the EEPROM using the EEWR register.
1301  **/
1302 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1303 {
1304     return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1305 }
1306 
1307 /**
1308  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1309  *  @hw: pointer to hardware structure
1310  *  @ee_reg: EEPROM flag for polling
1311  *
1312  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1313  *  read or write is done respectively.
1314  **/
1315 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1316 {
1317     u32 i;
1318     u32 reg;
1319 
1320     for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1321         if (ee_reg == IXGBE_NVM_POLL_READ)
1322             reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1323         else
1324             reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1325 
1326         if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1327             return 0;
1328         }
1329         udelay(5);
1330     }
1331     return IXGBE_ERR_EEPROM;
1332 }
1333 
1334 /**
1335  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1336  *  @hw: pointer to hardware structure
1337  *
1338  *  Prepares EEPROM for access using bit-bang method. This function should
1339  *  be called before issuing a command to the EEPROM.
1340  **/
1341 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1342 {
1343     u32 eec;
1344     u32 i;
1345 
1346     if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1347         return IXGBE_ERR_SWFW_SYNC;
1348 
1349     eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1350 
1351     /* Request EEPROM Access */
1352     eec |= IXGBE_EEC_REQ;
1353     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354 
1355     for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1356         eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1357         if (eec & IXGBE_EEC_GNT)
1358             break;
1359         udelay(5);
1360     }
1361 
1362     /* Release if grant not acquired */
1363     if (!(eec & IXGBE_EEC_GNT)) {
1364         eec &= ~IXGBE_EEC_REQ;
1365         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1366         hw_dbg(hw, "Could not acquire EEPROM grant\n");
1367 
1368         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1369         return IXGBE_ERR_EEPROM;
1370     }
1371 
1372     /* Setup EEPROM for Read/Write */
1373     /* Clear CS and SK */
1374     eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1375     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1376     IXGBE_WRITE_FLUSH(hw);
1377     udelay(1);
1378     return 0;
1379 }
1380 
1381 /**
1382  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1383  *  @hw: pointer to hardware structure
1384  *
1385  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1386  **/
1387 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1388 {
1389     u32 timeout = 2000;
1390     u32 i;
1391     u32 swsm;
1392 
1393     /* Get SMBI software semaphore between device drivers first */
1394     for (i = 0; i < timeout; i++) {
1395         /*
1396          * If the SMBI bit is 0 when we read it, then the bit will be
1397          * set and we have the semaphore
1398          */
1399         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1400         if (!(swsm & IXGBE_SWSM_SMBI))
1401             break;
1402         usleep_range(50, 100);
1403     }
1404 
1405     if (i == timeout) {
1406         hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1407         /* this release is particularly important because our attempts
1408          * above to get the semaphore may have succeeded, and if there
1409          * was a timeout, we should unconditionally clear the semaphore
1410          * bits to free the driver to make progress
1411          */
1412         ixgbe_release_eeprom_semaphore(hw);
1413 
1414         usleep_range(50, 100);
1415         /* one last try
1416          * If the SMBI bit is 0 when we read it, then the bit will be
1417          * set and we have the semaphore
1418          */
1419         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420         if (swsm & IXGBE_SWSM_SMBI) {
1421             hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1422             return IXGBE_ERR_EEPROM;
1423         }
1424     }
1425 
1426     /* Now get the semaphore between SW/FW through the SWESMBI bit */
1427     for (i = 0; i < timeout; i++) {
1428         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1429 
1430         /* Set the SW EEPROM semaphore bit to request access */
1431         swsm |= IXGBE_SWSM_SWESMBI;
1432         IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1433 
1434         /* If we set the bit successfully then we got the
1435          * semaphore.
1436          */
1437         swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1438         if (swsm & IXGBE_SWSM_SWESMBI)
1439             break;
1440 
1441         usleep_range(50, 100);
1442     }
1443 
1444     /* Release semaphores and return error if SW EEPROM semaphore
1445      * was not granted because we don't have access to the EEPROM
1446      */
1447     if (i >= timeout) {
1448         hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1449         ixgbe_release_eeprom_semaphore(hw);
1450         return IXGBE_ERR_EEPROM;
1451     }
1452 
1453     return 0;
1454 }
1455 
1456 /**
1457  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1458  *  @hw: pointer to hardware structure
1459  *
1460  *  This function clears hardware semaphore bits.
1461  **/
1462 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1463 {
1464     u32 swsm;
1465 
1466     swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1467 
1468     /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1469     swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1470     IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1471     IXGBE_WRITE_FLUSH(hw);
1472 }
1473 
1474 /**
1475  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1476  *  @hw: pointer to hardware structure
1477  **/
1478 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1479 {
1480     u16 i;
1481     u8 spi_stat_reg;
1482 
1483     /*
1484      * Read "Status Register" repeatedly until the LSB is cleared.  The
1485      * EEPROM will signal that the command has been completed by clearing
1486      * bit 0 of the internal status register.  If it's not cleared within
1487      * 5 milliseconds, then error out.
1488      */
1489     for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1490         ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1491                         IXGBE_EEPROM_OPCODE_BITS);
1492         spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1493         if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1494             break;
1495 
1496         udelay(5);
1497         ixgbe_standby_eeprom(hw);
1498     }
1499 
1500     /*
1501      * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1502      * devices (and only 0-5mSec on 5V devices)
1503      */
1504     if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1505         hw_dbg(hw, "SPI EEPROM Status error\n");
1506         return IXGBE_ERR_EEPROM;
1507     }
1508 
1509     return 0;
1510 }
1511 
1512 /**
1513  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1514  *  @hw: pointer to hardware structure
1515  **/
1516 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1517 {
1518     u32 eec;
1519 
1520     eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1521 
1522     /* Toggle CS to flush commands */
1523     eec |= IXGBE_EEC_CS;
1524     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1525     IXGBE_WRITE_FLUSH(hw);
1526     udelay(1);
1527     eec &= ~IXGBE_EEC_CS;
1528     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529     IXGBE_WRITE_FLUSH(hw);
1530     udelay(1);
1531 }
1532 
1533 /**
1534  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1535  *  @hw: pointer to hardware structure
1536  *  @data: data to send to the EEPROM
1537  *  @count: number of bits to shift out
1538  **/
1539 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1540                     u16 count)
1541 {
1542     u32 eec;
1543     u32 mask;
1544     u32 i;
1545 
1546     eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547 
1548     /*
1549      * Mask is used to shift "count" bits of "data" out to the EEPROM
1550      * one bit at a time.  Determine the starting bit based on count
1551      */
1552     mask = BIT(count - 1);
1553 
1554     for (i = 0; i < count; i++) {
1555         /*
1556          * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1557          * "1", and then raising and then lowering the clock (the SK
1558          * bit controls the clock input to the EEPROM).  A "0" is
1559          * shifted out to the EEPROM by setting "DI" to "0" and then
1560          * raising and then lowering the clock.
1561          */
1562         if (data & mask)
1563             eec |= IXGBE_EEC_DI;
1564         else
1565             eec &= ~IXGBE_EEC_DI;
1566 
1567         IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1568         IXGBE_WRITE_FLUSH(hw);
1569 
1570         udelay(1);
1571 
1572         ixgbe_raise_eeprom_clk(hw, &eec);
1573         ixgbe_lower_eeprom_clk(hw, &eec);
1574 
1575         /*
1576          * Shift mask to signify next bit of data to shift in to the
1577          * EEPROM
1578          */
1579         mask = mask >> 1;
1580     }
1581 
1582     /* We leave the "DI" bit set to "0" when we leave this routine. */
1583     eec &= ~IXGBE_EEC_DI;
1584     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1585     IXGBE_WRITE_FLUSH(hw);
1586 }
1587 
1588 /**
1589  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1590  *  @hw: pointer to hardware structure
1591  *  @count: number of bits to shift
1592  **/
1593 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1594 {
1595     u32 eec;
1596     u32 i;
1597     u16 data = 0;
1598 
1599     /*
1600      * In order to read a register from the EEPROM, we need to shift
1601      * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1602      * the clock input to the EEPROM (setting the SK bit), and then reading
1603      * the value of the "DO" bit.  During this "shifting in" process the
1604      * "DI" bit should always be clear.
1605      */
1606     eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1607 
1608     eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1609 
1610     for (i = 0; i < count; i++) {
1611         data = data << 1;
1612         ixgbe_raise_eeprom_clk(hw, &eec);
1613 
1614         eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1615 
1616         eec &= ~(IXGBE_EEC_DI);
1617         if (eec & IXGBE_EEC_DO)
1618             data |= 1;
1619 
1620         ixgbe_lower_eeprom_clk(hw, &eec);
1621     }
1622 
1623     return data;
1624 }
1625 
1626 /**
1627  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1628  *  @hw: pointer to hardware structure
1629  *  @eec: EEC register's current value
1630  **/
1631 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1632 {
1633     /*
1634      * Raise the clock input to the EEPROM
1635      * (setting the SK bit), then delay
1636      */
1637     *eec = *eec | IXGBE_EEC_SK;
1638     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1639     IXGBE_WRITE_FLUSH(hw);
1640     udelay(1);
1641 }
1642 
1643 /**
1644  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1645  *  @hw: pointer to hardware structure
1646  *  @eec: EEC's current value
1647  **/
1648 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1649 {
1650     /*
1651      * Lower the clock input to the EEPROM (clearing the SK bit), then
1652      * delay
1653      */
1654     *eec = *eec & ~IXGBE_EEC_SK;
1655     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1656     IXGBE_WRITE_FLUSH(hw);
1657     udelay(1);
1658 }
1659 
1660 /**
1661  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1662  *  @hw: pointer to hardware structure
1663  **/
1664 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1665 {
1666     u32 eec;
1667 
1668     eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1669 
1670     eec |= IXGBE_EEC_CS;  /* Pull CS high */
1671     eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1672 
1673     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1674     IXGBE_WRITE_FLUSH(hw);
1675 
1676     udelay(1);
1677 
1678     /* Stop requesting EEPROM access */
1679     eec &= ~IXGBE_EEC_REQ;
1680     IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1681 
1682     hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1683 
1684     /*
1685      * Delay before attempt to obtain semaphore again to allow FW
1686      * access. semaphore_delay is in ms we need us for usleep_range
1687      */
1688     usleep_range(hw->eeprom.semaphore_delay * 1000,
1689              hw->eeprom.semaphore_delay * 2000);
1690 }
1691 
1692 /**
1693  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1694  *  @hw: pointer to hardware structure
1695  **/
1696 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1697 {
1698     u16 i;
1699     u16 j;
1700     u16 checksum = 0;
1701     u16 length = 0;
1702     u16 pointer = 0;
1703     u16 word = 0;
1704 
1705     /* Include 0x0-0x3F in the checksum */
1706     for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1707         if (hw->eeprom.ops.read(hw, i, &word)) {
1708             hw_dbg(hw, "EEPROM read failed\n");
1709             break;
1710         }
1711         checksum += word;
1712     }
1713 
1714     /* Include all data from pointers except for the fw pointer */
1715     for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1716         if (hw->eeprom.ops.read(hw, i, &pointer)) {
1717             hw_dbg(hw, "EEPROM read failed\n");
1718             return IXGBE_ERR_EEPROM;
1719         }
1720 
1721         /* If the pointer seems invalid */
1722         if (pointer == 0xFFFF || pointer == 0)
1723             continue;
1724 
1725         if (hw->eeprom.ops.read(hw, pointer, &length)) {
1726             hw_dbg(hw, "EEPROM read failed\n");
1727             return IXGBE_ERR_EEPROM;
1728         }
1729 
1730         if (length == 0xFFFF || length == 0)
1731             continue;
1732 
1733         for (j = pointer + 1; j <= pointer + length; j++) {
1734             if (hw->eeprom.ops.read(hw, j, &word)) {
1735                 hw_dbg(hw, "EEPROM read failed\n");
1736                 return IXGBE_ERR_EEPROM;
1737             }
1738             checksum += word;
1739         }
1740     }
1741 
1742     checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1743 
1744     return (s32)checksum;
1745 }
1746 
1747 /**
1748  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1749  *  @hw: pointer to hardware structure
1750  *  @checksum_val: calculated checksum
1751  *
1752  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1753  *  caller does not need checksum_val, the value can be NULL.
1754  **/
1755 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1756                        u16 *checksum_val)
1757 {
1758     s32 status;
1759     u16 checksum;
1760     u16 read_checksum = 0;
1761 
1762     /*
1763      * Read the first word from the EEPROM. If this times out or fails, do
1764      * not continue or we could be in for a very long wait while every
1765      * EEPROM read fails
1766      */
1767     status = hw->eeprom.ops.read(hw, 0, &checksum);
1768     if (status) {
1769         hw_dbg(hw, "EEPROM read failed\n");
1770         return status;
1771     }
1772 
1773     status = hw->eeprom.ops.calc_checksum(hw);
1774     if (status < 0)
1775         return status;
1776 
1777     checksum = (u16)(status & 0xffff);
1778 
1779     status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1780     if (status) {
1781         hw_dbg(hw, "EEPROM read failed\n");
1782         return status;
1783     }
1784 
1785     /* Verify read checksum from EEPROM is the same as
1786      * calculated checksum
1787      */
1788     if (read_checksum != checksum)
1789         status = IXGBE_ERR_EEPROM_CHECKSUM;
1790 
1791     /* If the user cares, return the calculated checksum */
1792     if (checksum_val)
1793         *checksum_val = checksum;
1794 
1795     return status;
1796 }
1797 
1798 /**
1799  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1800  *  @hw: pointer to hardware structure
1801  **/
1802 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1803 {
1804     s32 status;
1805     u16 checksum;
1806 
1807     /*
1808      * Read the first word from the EEPROM. If this times out or fails, do
1809      * not continue or we could be in for a very long wait while every
1810      * EEPROM read fails
1811      */
1812     status = hw->eeprom.ops.read(hw, 0, &checksum);
1813     if (status) {
1814         hw_dbg(hw, "EEPROM read failed\n");
1815         return status;
1816     }
1817 
1818     status = hw->eeprom.ops.calc_checksum(hw);
1819     if (status < 0)
1820         return status;
1821 
1822     checksum = (u16)(status & 0xffff);
1823 
1824     status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1825 
1826     return status;
1827 }
1828 
1829 /**
1830  *  ixgbe_set_rar_generic - Set Rx address register
1831  *  @hw: pointer to hardware structure
1832  *  @index: Receive address register to write
1833  *  @addr: Address to put into receive address register
1834  *  @vmdq: VMDq "set" or "pool" index
1835  *  @enable_addr: set flag that address is active
1836  *
1837  *  Puts an ethernet address into a receive address register.
1838  **/
1839 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1840               u32 enable_addr)
1841 {
1842     u32 rar_low, rar_high;
1843     u32 rar_entries = hw->mac.num_rar_entries;
1844 
1845     /* Make sure we are using a valid rar index range */
1846     if (index >= rar_entries) {
1847         hw_dbg(hw, "RAR index %d is out of range.\n", index);
1848         return IXGBE_ERR_INVALID_ARGUMENT;
1849     }
1850 
1851     /* setup VMDq pool selection before this RAR gets enabled */
1852     hw->mac.ops.set_vmdq(hw, index, vmdq);
1853 
1854     /*
1855      * HW expects these in little endian so we reverse the byte
1856      * order from network order (big endian) to little endian
1857      */
1858     rar_low = ((u32)addr[0] |
1859            ((u32)addr[1] << 8) |
1860            ((u32)addr[2] << 16) |
1861            ((u32)addr[3] << 24));
1862     /*
1863      * Some parts put the VMDq setting in the extra RAH bits,
1864      * so save everything except the lower 16 bits that hold part
1865      * of the address and the address valid bit.
1866      */
1867     rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1868     rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1869     rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1870 
1871     if (enable_addr != 0)
1872         rar_high |= IXGBE_RAH_AV;
1873 
1874     /* Record lower 32 bits of MAC address and then make
1875      * sure that write is flushed to hardware before writing
1876      * the upper 16 bits and setting the valid bit.
1877      */
1878     IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1879     IXGBE_WRITE_FLUSH(hw);
1880     IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1881 
1882     return 0;
1883 }
1884 
1885 /**
1886  *  ixgbe_clear_rar_generic - Remove Rx address register
1887  *  @hw: pointer to hardware structure
1888  *  @index: Receive address register to write
1889  *
1890  *  Clears an ethernet address from a receive address register.
1891  **/
1892 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1893 {
1894     u32 rar_high;
1895     u32 rar_entries = hw->mac.num_rar_entries;
1896 
1897     /* Make sure we are using a valid rar index range */
1898     if (index >= rar_entries) {
1899         hw_dbg(hw, "RAR index %d is out of range.\n", index);
1900         return IXGBE_ERR_INVALID_ARGUMENT;
1901     }
1902 
1903     /*
1904      * Some parts put the VMDq setting in the extra RAH bits,
1905      * so save everything except the lower 16 bits that hold part
1906      * of the address and the address valid bit.
1907      */
1908     rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1909     rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1910 
1911     /* Clear the address valid bit and upper 16 bits of the address
1912      * before clearing the lower bits. This way we aren't updating
1913      * a live filter.
1914      */
1915     IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1916     IXGBE_WRITE_FLUSH(hw);
1917     IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1918 
1919     /* clear VMDq pool/queue selection for this RAR */
1920     hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1921 
1922     return 0;
1923 }
1924 
1925 /**
1926  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1927  *  @hw: pointer to hardware structure
1928  *
1929  *  Places the MAC address in receive address register 0 and clears the rest
1930  *  of the receive address registers. Clears the multicast table. Assumes
1931  *  the receiver is in reset when the routine is called.
1932  **/
1933 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1934 {
1935     u32 i;
1936     u32 rar_entries = hw->mac.num_rar_entries;
1937 
1938     /*
1939      * If the current mac address is valid, assume it is a software override
1940      * to the permanent address.
1941      * Otherwise, use the permanent address from the eeprom.
1942      */
1943     if (!is_valid_ether_addr(hw->mac.addr)) {
1944         /* Get the MAC address from the RAR0 for later reference */
1945         hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1946 
1947         hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1948     } else {
1949         /* Setup the receive address. */
1950         hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1951         hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1952 
1953         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1954     }
1955 
1956     /*  clear VMDq pool/queue selection for RAR 0 */
1957     hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1958 
1959     hw->addr_ctrl.overflow_promisc = 0;
1960 
1961     hw->addr_ctrl.rar_used_count = 1;
1962 
1963     /* Zero out the other receive addresses. */
1964     hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1965     for (i = 1; i < rar_entries; i++) {
1966         IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1967         IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1968     }
1969 
1970     /* Clear the MTA */
1971     hw->addr_ctrl.mta_in_use = 0;
1972     IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1973 
1974     hw_dbg(hw, " Clearing MTA\n");
1975     for (i = 0; i < hw->mac.mcft_size; i++)
1976         IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1977 
1978     if (hw->mac.ops.init_uta_tables)
1979         hw->mac.ops.init_uta_tables(hw);
1980 
1981     return 0;
1982 }
1983 
1984 /**
1985  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1986  *  @hw: pointer to hardware structure
1987  *  @mc_addr: the multicast address
1988  *
1989  *  Extracts the 12 bits, from a multicast address, to determine which
1990  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1991  *  incoming rx multicast addresses, to determine the bit-vector to check in
1992  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1993  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1994  *  to mc_filter_type.
1995  **/
1996 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1997 {
1998     u32 vector = 0;
1999 
2000     switch (hw->mac.mc_filter_type) {
2001     case 0:   /* use bits [47:36] of the address */
2002         vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2003         break;
2004     case 1:   /* use bits [46:35] of the address */
2005         vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2006         break;
2007     case 2:   /* use bits [45:34] of the address */
2008         vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2009         break;
2010     case 3:   /* use bits [43:32] of the address */
2011         vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2012         break;
2013     default:  /* Invalid mc_filter_type */
2014         hw_dbg(hw, "MC filter type param set incorrectly\n");
2015         break;
2016     }
2017 
2018     /* vector can only be 12-bits or boundary will be exceeded */
2019     vector &= 0xFFF;
2020     return vector;
2021 }
2022 
2023 /**
2024  *  ixgbe_set_mta - Set bit-vector in multicast table
2025  *  @hw: pointer to hardware structure
2026  *  @mc_addr: Multicast address
2027  *
2028  *  Sets the bit-vector in the multicast table.
2029  **/
2030 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2031 {
2032     u32 vector;
2033     u32 vector_bit;
2034     u32 vector_reg;
2035 
2036     hw->addr_ctrl.mta_in_use++;
2037 
2038     vector = ixgbe_mta_vector(hw, mc_addr);
2039     hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2040 
2041     /*
2042      * The MTA is a register array of 128 32-bit registers. It is treated
2043      * like an array of 4096 bits.  We want to set bit
2044      * BitArray[vector_value]. So we figure out what register the bit is
2045      * in, read it, OR in the new bit, then write back the new value.  The
2046      * register is determined by the upper 7 bits of the vector value and
2047      * the bit within that register are determined by the lower 5 bits of
2048      * the value.
2049      */
2050     vector_reg = (vector >> 5) & 0x7F;
2051     vector_bit = vector & 0x1F;
2052     hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2053 }
2054 
2055 /**
2056  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2057  *  @hw: pointer to hardware structure
2058  *  @netdev: pointer to net device structure
2059  *
2060  *  The given list replaces any existing list. Clears the MC addrs from receive
2061  *  address registers and the multicast table. Uses unused receive address
2062  *  registers for the first multicast addresses, and hashes the rest into the
2063  *  multicast table.
2064  **/
2065 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2066                       struct net_device *netdev)
2067 {
2068     struct netdev_hw_addr *ha;
2069     u32 i;
2070 
2071     /*
2072      * Set the new number of MC addresses that we are being requested to
2073      * use.
2074      */
2075     hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2076     hw->addr_ctrl.mta_in_use = 0;
2077 
2078     /* Clear mta_shadow */
2079     hw_dbg(hw, " Clearing MTA\n");
2080     memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2081 
2082     /* Update mta shadow */
2083     netdev_for_each_mc_addr(ha, netdev) {
2084         hw_dbg(hw, " Adding the multicast addresses:\n");
2085         ixgbe_set_mta(hw, ha->addr);
2086     }
2087 
2088     /* Enable mta */
2089     for (i = 0; i < hw->mac.mcft_size; i++)
2090         IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2091                       hw->mac.mta_shadow[i]);
2092 
2093     if (hw->addr_ctrl.mta_in_use > 0)
2094         IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2095                 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2096 
2097     hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2098     return 0;
2099 }
2100 
2101 /**
2102  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2103  *  @hw: pointer to hardware structure
2104  *
2105  *  Enables multicast address in RAR and the use of the multicast hash table.
2106  **/
2107 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2108 {
2109     struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2110 
2111     if (a->mta_in_use > 0)
2112         IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2113                 hw->mac.mc_filter_type);
2114 
2115     return 0;
2116 }
2117 
2118 /**
2119  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2120  *  @hw: pointer to hardware structure
2121  *
2122  *  Disables multicast address in RAR and the use of the multicast hash table.
2123  **/
2124 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2125 {
2126     struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127 
2128     if (a->mta_in_use > 0)
2129         IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2130 
2131     return 0;
2132 }
2133 
2134 /**
2135  *  ixgbe_fc_enable_generic - Enable flow control
2136  *  @hw: pointer to hardware structure
2137  *
2138  *  Enable flow control according to the current settings.
2139  **/
2140 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2141 {
2142     u32 mflcn_reg, fccfg_reg;
2143     u32 reg;
2144     u32 fcrtl, fcrth;
2145     int i;
2146 
2147     /* Validate the water mark configuration. */
2148     if (!hw->fc.pause_time)
2149         return IXGBE_ERR_INVALID_LINK_SETTINGS;
2150 
2151     /* Low water mark of zero causes XOFF floods */
2152     for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2153         if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2154             hw->fc.high_water[i]) {
2155             if (!hw->fc.low_water[i] ||
2156                 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2157                 hw_dbg(hw, "Invalid water mark configuration\n");
2158                 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2159             }
2160         }
2161     }
2162 
2163     /* Negotiate the fc mode to use */
2164     hw->mac.ops.fc_autoneg(hw);
2165 
2166     /* Disable any previous flow control settings */
2167     mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2168     mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2169 
2170     fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2171     fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2172 
2173     /*
2174      * The possible values of fc.current_mode are:
2175      * 0: Flow control is completely disabled
2176      * 1: Rx flow control is enabled (we can receive pause frames,
2177      *    but not send pause frames).
2178      * 2: Tx flow control is enabled (we can send pause frames but
2179      *    we do not support receiving pause frames).
2180      * 3: Both Rx and Tx flow control (symmetric) are enabled.
2181      * other: Invalid.
2182      */
2183     switch (hw->fc.current_mode) {
2184     case ixgbe_fc_none:
2185         /*
2186          * Flow control is disabled by software override or autoneg.
2187          * The code below will actually disable it in the HW.
2188          */
2189         break;
2190     case ixgbe_fc_rx_pause:
2191         /*
2192          * Rx Flow control is enabled and Tx Flow control is
2193          * disabled by software override. Since there really
2194          * isn't a way to advertise that we are capable of RX
2195          * Pause ONLY, we will advertise that we support both
2196          * symmetric and asymmetric Rx PAUSE.  Later, we will
2197          * disable the adapter's ability to send PAUSE frames.
2198          */
2199         mflcn_reg |= IXGBE_MFLCN_RFCE;
2200         break;
2201     case ixgbe_fc_tx_pause:
2202         /*
2203          * Tx Flow control is enabled, and Rx Flow control is
2204          * disabled by software override.
2205          */
2206         fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2207         break;
2208     case ixgbe_fc_full:
2209         /* Flow control (both Rx and Tx) is enabled by SW override. */
2210         mflcn_reg |= IXGBE_MFLCN_RFCE;
2211         fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2212         break;
2213     default:
2214         hw_dbg(hw, "Flow control param set incorrectly\n");
2215         return IXGBE_ERR_CONFIG;
2216     }
2217 
2218     /* Set 802.3x based flow control settings. */
2219     mflcn_reg |= IXGBE_MFLCN_DPF;
2220     IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2221     IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2222 
2223     /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2224     for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2225         if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2226             hw->fc.high_water[i]) {
2227             fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2228             IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2229             fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2230         } else {
2231             IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2232             /*
2233              * In order to prevent Tx hangs when the internal Tx
2234              * switch is enabled we must set the high water mark
2235              * to the Rx packet buffer size - 24KB.  This allows
2236              * the Tx switch to function even under heavy Rx
2237              * workloads.
2238              */
2239             fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2240         }
2241 
2242         IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2243     }
2244 
2245     /* Configure pause time (2 TCs per register) */
2246     reg = hw->fc.pause_time * 0x00010001U;
2247     for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2248         IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2249 
2250     IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2251 
2252     return 0;
2253 }
2254 
2255 /**
2256  *  ixgbe_negotiate_fc - Negotiate flow control
2257  *  @hw: pointer to hardware structure
2258  *  @adv_reg: flow control advertised settings
2259  *  @lp_reg: link partner's flow control settings
2260  *  @adv_sym: symmetric pause bit in advertisement
2261  *  @adv_asm: asymmetric pause bit in advertisement
2262  *  @lp_sym: symmetric pause bit in link partner advertisement
2263  *  @lp_asm: asymmetric pause bit in link partner advertisement
2264  *
2265  *  Find the intersection between advertised settings and link partner's
2266  *  advertised settings
2267  **/
2268 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2269                u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2270 {
2271     if ((!(adv_reg)) ||  (!(lp_reg)))
2272         return IXGBE_ERR_FC_NOT_NEGOTIATED;
2273 
2274     if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2275         /*
2276          * Now we need to check if the user selected Rx ONLY
2277          * of pause frames.  In this case, we had to advertise
2278          * FULL flow control because we could not advertise RX
2279          * ONLY. Hence, we must now check to see if we need to
2280          * turn OFF the TRANSMISSION of PAUSE frames.
2281          */
2282         if (hw->fc.requested_mode == ixgbe_fc_full) {
2283             hw->fc.current_mode = ixgbe_fc_full;
2284             hw_dbg(hw, "Flow Control = FULL.\n");
2285         } else {
2286             hw->fc.current_mode = ixgbe_fc_rx_pause;
2287             hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2288         }
2289     } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2290            (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2291         hw->fc.current_mode = ixgbe_fc_tx_pause;
2292         hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2293     } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2294            !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2295         hw->fc.current_mode = ixgbe_fc_rx_pause;
2296         hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2297     } else {
2298         hw->fc.current_mode = ixgbe_fc_none;
2299         hw_dbg(hw, "Flow Control = NONE.\n");
2300     }
2301     return 0;
2302 }
2303 
2304 /**
2305  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2306  *  @hw: pointer to hardware structure
2307  *
2308  *  Enable flow control according on 1 gig fiber.
2309  **/
2310 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2311 {
2312     u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2313     s32 ret_val;
2314 
2315     /*
2316      * On multispeed fiber at 1g, bail out if
2317      * - link is up but AN did not complete, or if
2318      * - link is up and AN completed but timed out
2319      */
2320 
2321     linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2322     if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2323         (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2324         return IXGBE_ERR_FC_NOT_NEGOTIATED;
2325 
2326     pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2327     pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2328 
2329     ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2330                    pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2331                    IXGBE_PCS1GANA_ASM_PAUSE,
2332                    IXGBE_PCS1GANA_SYM_PAUSE,
2333                    IXGBE_PCS1GANA_ASM_PAUSE);
2334 
2335     return ret_val;
2336 }
2337 
2338 /**
2339  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2340  *  @hw: pointer to hardware structure
2341  *
2342  *  Enable flow control according to IEEE clause 37.
2343  **/
2344 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2345 {
2346     u32 links2, anlp1_reg, autoc_reg, links;
2347     s32 ret_val;
2348 
2349     /*
2350      * On backplane, bail out if
2351      * - backplane autoneg was not completed, or if
2352      * - we are 82599 and link partner is not AN enabled
2353      */
2354     links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2355     if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2356         return IXGBE_ERR_FC_NOT_NEGOTIATED;
2357 
2358     if (hw->mac.type == ixgbe_mac_82599EB) {
2359         links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2360         if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2361             return IXGBE_ERR_FC_NOT_NEGOTIATED;
2362     }
2363     /*
2364      * Read the 10g AN autoc and LP ability registers and resolve
2365      * local flow control settings accordingly
2366      */
2367     autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2368     anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2369 
2370     ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2371         anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2372         IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2373 
2374     return ret_val;
2375 }
2376 
2377 /**
2378  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2379  *  @hw: pointer to hardware structure
2380  *
2381  *  Enable flow control according to IEEE clause 37.
2382  **/
2383 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2384 {
2385     u16 technology_ability_reg = 0;
2386     u16 lp_technology_ability_reg = 0;
2387 
2388     hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2389                  MDIO_MMD_AN,
2390                  &technology_ability_reg);
2391     hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2392                  MDIO_MMD_AN,
2393                  &lp_technology_ability_reg);
2394 
2395     return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2396                   (u32)lp_technology_ability_reg,
2397                   IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2398                   IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2399 }
2400 
2401 /**
2402  *  ixgbe_fc_autoneg - Configure flow control
2403  *  @hw: pointer to hardware structure
2404  *
2405  *  Compares our advertised flow control capabilities to those advertised by
2406  *  our link partner, and determines the proper flow control mode to use.
2407  **/
2408 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2409 {
2410     s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2411     ixgbe_link_speed speed;
2412     bool link_up;
2413 
2414     /*
2415      * AN should have completed when the cable was plugged in.
2416      * Look for reasons to bail out.  Bail out if:
2417      * - FC autoneg is disabled, or if
2418      * - link is not up.
2419      *
2420      * Since we're being called from an LSC, link is already known to be up.
2421      * So use link_up_wait_to_complete=false.
2422      */
2423     if (hw->fc.disable_fc_autoneg)
2424         goto out;
2425 
2426     hw->mac.ops.check_link(hw, &speed, &link_up, false);
2427     if (!link_up)
2428         goto out;
2429 
2430     switch (hw->phy.media_type) {
2431     /* Autoneg flow control on fiber adapters */
2432     case ixgbe_media_type_fiber:
2433         if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2434             ret_val = ixgbe_fc_autoneg_fiber(hw);
2435         break;
2436 
2437     /* Autoneg flow control on backplane adapters */
2438     case ixgbe_media_type_backplane:
2439         ret_val = ixgbe_fc_autoneg_backplane(hw);
2440         break;
2441 
2442     /* Autoneg flow control on copper adapters */
2443     case ixgbe_media_type_copper:
2444         if (ixgbe_device_supports_autoneg_fc(hw))
2445             ret_val = ixgbe_fc_autoneg_copper(hw);
2446         break;
2447 
2448     default:
2449         break;
2450     }
2451 
2452 out:
2453     if (ret_val == 0) {
2454         hw->fc.fc_was_autonegged = true;
2455     } else {
2456         hw->fc.fc_was_autonegged = false;
2457         hw->fc.current_mode = hw->fc.requested_mode;
2458     }
2459 }
2460 
2461 /**
2462  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2463  * @hw: pointer to hardware structure
2464  *
2465  * System-wide timeout range is encoded in PCIe Device Control2 register.
2466  *
2467  *  Add 10% to specified maximum and return the number of times to poll for
2468  *  completion timeout, in units of 100 microsec.  Never return less than
2469  *  800 = 80 millisec.
2470  **/
2471 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2472 {
2473     s16 devctl2;
2474     u32 pollcnt;
2475 
2476     devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2477     devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2478 
2479     switch (devctl2) {
2480     case IXGBE_PCIDEVCTRL2_65_130ms:
2481          pollcnt = 1300;         /* 130 millisec */
2482         break;
2483     case IXGBE_PCIDEVCTRL2_260_520ms:
2484         pollcnt = 5200;         /* 520 millisec */
2485         break;
2486     case IXGBE_PCIDEVCTRL2_1_2s:
2487         pollcnt = 20000;        /* 2 sec */
2488         break;
2489     case IXGBE_PCIDEVCTRL2_4_8s:
2490         pollcnt = 80000;        /* 8 sec */
2491         break;
2492     case IXGBE_PCIDEVCTRL2_17_34s:
2493         pollcnt = 34000;        /* 34 sec */
2494         break;
2495     case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2496     case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2497     case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2498     case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2499     default:
2500         pollcnt = 800;          /* 80 millisec minimum */
2501         break;
2502     }
2503 
2504     /* add 10% to spec maximum */
2505     return (pollcnt * 11) / 10;
2506 }
2507 
2508 /**
2509  *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2510  *  @hw: pointer to hardware structure
2511  *
2512  *  Disables PCI-Express primary access and verifies there are no pending
2513  *  requests. IXGBE_ERR_PRIMARY_REQUESTS_PENDING is returned if primary disable
2514  *  bit hasn't caused the primary requests to be disabled, else 0
2515  *  is returned signifying primary requests disabled.
2516  **/
2517 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2518 {
2519     u32 i, poll;
2520     u16 value;
2521 
2522     /* Always set this bit to ensure any future transactions are blocked */
2523     IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2524 
2525     /* Poll for bit to read as set */
2526     for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2527         if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2528             break;
2529         usleep_range(100, 120);
2530     }
2531     if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2532         hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2533         goto gio_disable_fail;
2534     }
2535 
2536     /* Exit if primary requests are blocked */
2537     if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2538         ixgbe_removed(hw->hw_addr))
2539         return 0;
2540 
2541     /* Poll for primary request bit to clear */
2542     for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2543         udelay(100);
2544         if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2545             return 0;
2546     }
2547 
2548     /*
2549      * Two consecutive resets are required via CTRL.RST per datasheet
2550      * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2551      * of this need.  The first reset prevents new primary requests from
2552      * being issued by our device.  We then must wait 1usec or more for any
2553      * remaining completions from the PCIe bus to trickle in, and then reset
2554      * again to clear out any effects they may have had on our device.
2555      */
2556     hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2557 gio_disable_fail:
2558     hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2559 
2560     if (hw->mac.type >= ixgbe_mac_X550)
2561         return 0;
2562 
2563     /*
2564      * Before proceeding, make sure that the PCIe block does not have
2565      * transactions pending.
2566      */
2567     poll = ixgbe_pcie_timeout_poll(hw);
2568     for (i = 0; i < poll; i++) {
2569         udelay(100);
2570         value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2571         if (ixgbe_removed(hw->hw_addr))
2572             return 0;
2573         if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2574             return 0;
2575     }
2576 
2577     hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2578     return IXGBE_ERR_PRIMARY_REQUESTS_PENDING;
2579 }
2580 
2581 /**
2582  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2583  *  @hw: pointer to hardware structure
2584  *  @mask: Mask to specify which semaphore to acquire
2585  *
2586  *  Acquires the SWFW semaphore through the GSSR register for the specified
2587  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2588  **/
2589 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2590 {
2591     u32 gssr = 0;
2592     u32 swmask = mask;
2593     u32 fwmask = mask << 5;
2594     u32 timeout = 200;
2595     u32 i;
2596 
2597     for (i = 0; i < timeout; i++) {
2598         /*
2599          * SW NVM semaphore bit is used for access to all
2600          * SW_FW_SYNC bits (not just NVM)
2601          */
2602         if (ixgbe_get_eeprom_semaphore(hw))
2603             return IXGBE_ERR_SWFW_SYNC;
2604 
2605         gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2606         if (!(gssr & (fwmask | swmask))) {
2607             gssr |= swmask;
2608             IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2609             ixgbe_release_eeprom_semaphore(hw);
2610             return 0;
2611         } else {
2612             /* Resource is currently in use by FW or SW */
2613             ixgbe_release_eeprom_semaphore(hw);
2614             usleep_range(5000, 10000);
2615         }
2616     }
2617 
2618     /* If time expired clear the bits holding the lock and retry */
2619     if (gssr & (fwmask | swmask))
2620         ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2621 
2622     usleep_range(5000, 10000);
2623     return IXGBE_ERR_SWFW_SYNC;
2624 }
2625 
2626 /**
2627  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2628  *  @hw: pointer to hardware structure
2629  *  @mask: Mask to specify which semaphore to release
2630  *
2631  *  Releases the SWFW semaphore through the GSSR register for the specified
2632  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2633  **/
2634 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2635 {
2636     u32 gssr;
2637     u32 swmask = mask;
2638 
2639     ixgbe_get_eeprom_semaphore(hw);
2640 
2641     gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2642     gssr &= ~swmask;
2643     IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2644 
2645     ixgbe_release_eeprom_semaphore(hw);
2646 }
2647 
2648 /**
2649  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2650  * @hw: pointer to hardware structure
2651  * @reg_val: Value we read from AUTOC
2652  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2653  *      true in this the generic case.
2654  *
2655  * The default case requires no protection so just to the register read.
2656  **/
2657 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2658 {
2659     *locked = false;
2660     *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2661     return 0;
2662 }
2663 
2664 /**
2665  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2666  * @hw: pointer to hardware structure
2667  * @reg_val: value to write to AUTOC
2668  * @locked: bool to indicate whether the SW/FW lock was already taken by
2669  *      previous read.
2670  **/
2671 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2672 {
2673     IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2674     return 0;
2675 }
2676 
2677 /**
2678  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2679  *  @hw: pointer to hardware structure
2680  *
2681  *  Stops the receive data path and waits for the HW to internally
2682  *  empty the Rx security block.
2683  **/
2684 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2685 {
2686 #define IXGBE_MAX_SECRX_POLL 40
2687     int i;
2688     int secrxreg;
2689 
2690     secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2691     secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2692     IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2693     for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2694         secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2695         if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2696             break;
2697         else
2698             /* Use interrupt-safe sleep just in case */
2699             udelay(1000);
2700     }
2701 
2702     /* For informational purposes only */
2703     if (i >= IXGBE_MAX_SECRX_POLL)
2704         hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2705 
2706     return 0;
2707 
2708 }
2709 
2710 /**
2711  *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2712  *  @hw: pointer to hardware structure
2713  *
2714  *  Enables the receive data path
2715  **/
2716 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2717 {
2718     u32 secrxreg;
2719 
2720     secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2721     secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2722     IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2723     IXGBE_WRITE_FLUSH(hw);
2724 
2725     return 0;
2726 }
2727 
2728 /**
2729  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2730  *  @hw: pointer to hardware structure
2731  *  @regval: register value to write to RXCTRL
2732  *
2733  *  Enables the Rx DMA unit
2734  **/
2735 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2736 {
2737     if (regval & IXGBE_RXCTRL_RXEN)
2738         hw->mac.ops.enable_rx(hw);
2739     else
2740         hw->mac.ops.disable_rx(hw);
2741 
2742     return 0;
2743 }
2744 
2745 /**
2746  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2747  *  @hw: pointer to hardware structure
2748  *  @index: led number to blink
2749  **/
2750 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2751 {
2752     ixgbe_link_speed speed = 0;
2753     bool link_up = false;
2754     u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2755     u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2756     bool locked = false;
2757     s32 ret_val;
2758 
2759     if (index > 3)
2760         return IXGBE_ERR_PARAM;
2761 
2762     /*
2763      * Link must be up to auto-blink the LEDs;
2764      * Force it if link is down.
2765      */
2766     hw->mac.ops.check_link(hw, &speed, &link_up, false);
2767 
2768     if (!link_up) {
2769         ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2770         if (ret_val)
2771             return ret_val;
2772 
2773         autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2774         autoc_reg |= IXGBE_AUTOC_FLU;
2775 
2776         ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2777         if (ret_val)
2778             return ret_val;
2779 
2780         IXGBE_WRITE_FLUSH(hw);
2781 
2782         usleep_range(10000, 20000);
2783     }
2784 
2785     led_reg &= ~IXGBE_LED_MODE_MASK(index);
2786     led_reg |= IXGBE_LED_BLINK(index);
2787     IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2788     IXGBE_WRITE_FLUSH(hw);
2789 
2790     return 0;
2791 }
2792 
2793 /**
2794  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2795  *  @hw: pointer to hardware structure
2796  *  @index: led number to stop blinking
2797  **/
2798 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2799 {
2800     u32 autoc_reg = 0;
2801     u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2802     bool locked = false;
2803     s32 ret_val;
2804 
2805     if (index > 3)
2806         return IXGBE_ERR_PARAM;
2807 
2808     ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2809     if (ret_val)
2810         return ret_val;
2811 
2812     autoc_reg &= ~IXGBE_AUTOC_FLU;
2813     autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2814 
2815     ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2816     if (ret_val)
2817         return ret_val;
2818 
2819     led_reg &= ~IXGBE_LED_MODE_MASK(index);
2820     led_reg &= ~IXGBE_LED_BLINK(index);
2821     led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2822     IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2823     IXGBE_WRITE_FLUSH(hw);
2824 
2825     return 0;
2826 }
2827 
2828 /**
2829  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2830  *  @hw: pointer to hardware structure
2831  *  @san_mac_offset: SAN MAC address offset
2832  *
2833  *  This function will read the EEPROM location for the SAN MAC address
2834  *  pointer, and returns the value at that location.  This is used in both
2835  *  get and set mac_addr routines.
2836  **/
2837 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2838                     u16 *san_mac_offset)
2839 {
2840     s32 ret_val;
2841 
2842     /*
2843      * First read the EEPROM pointer to see if the MAC addresses are
2844      * available.
2845      */
2846     ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2847                       san_mac_offset);
2848     if (ret_val)
2849         hw_err(hw, "eeprom read at offset %d failed\n",
2850                IXGBE_SAN_MAC_ADDR_PTR);
2851 
2852     return ret_val;
2853 }
2854 
2855 /**
2856  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2857  *  @hw: pointer to hardware structure
2858  *  @san_mac_addr: SAN MAC address
2859  *
2860  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2861  *  per-port, so set_lan_id() must be called before reading the addresses.
2862  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2863  *  upon for non-SFP connections, so we must call it here.
2864  **/
2865 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2866 {
2867     u16 san_mac_data, san_mac_offset;
2868     u8 i;
2869     s32 ret_val;
2870 
2871     /*
2872      * First read the EEPROM pointer to see if the MAC addresses are
2873      * available.  If they're not, no point in calling set_lan_id() here.
2874      */
2875     ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2876     if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2877 
2878         goto san_mac_addr_clr;
2879 
2880     /* make sure we know which port we need to program */
2881     hw->mac.ops.set_lan_id(hw);
2882     /* apply the port offset to the address offset */
2883     (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2884              (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2885     for (i = 0; i < 3; i++) {
2886         ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2887                           &san_mac_data);
2888         if (ret_val) {
2889             hw_err(hw, "eeprom read at offset %d failed\n",
2890                    san_mac_offset);
2891             goto san_mac_addr_clr;
2892         }
2893         san_mac_addr[i * 2] = (u8)(san_mac_data);
2894         san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2895         san_mac_offset++;
2896     }
2897     return 0;
2898 
2899 san_mac_addr_clr:
2900     /* No addresses available in this EEPROM.  It's not necessarily an
2901      * error though, so just wipe the local address and return.
2902      */
2903     for (i = 0; i < 6; i++)
2904         san_mac_addr[i] = 0xFF;
2905     return ret_val;
2906 }
2907 
2908 /**
2909  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2910  *  @hw: pointer to hardware structure
2911  *
2912  *  Read PCIe configuration space, and get the MSI-X vector count from
2913  *  the capabilities table.
2914  **/
2915 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2916 {
2917     u16 msix_count;
2918     u16 max_msix_count;
2919     u16 pcie_offset;
2920 
2921     switch (hw->mac.type) {
2922     case ixgbe_mac_82598EB:
2923         pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2924         max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2925         break;
2926     case ixgbe_mac_82599EB:
2927     case ixgbe_mac_X540:
2928     case ixgbe_mac_X550:
2929     case ixgbe_mac_X550EM_x:
2930     case ixgbe_mac_x550em_a:
2931         pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2932         max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2933         break;
2934     default:
2935         return 1;
2936     }
2937 
2938     msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2939     if (ixgbe_removed(hw->hw_addr))
2940         msix_count = 0;
2941     msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2942 
2943     /* MSI-X count is zero-based in HW */
2944     msix_count++;
2945 
2946     if (msix_count > max_msix_count)
2947         msix_count = max_msix_count;
2948 
2949     return msix_count;
2950 }
2951 
2952 /**
2953  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2954  *  @hw: pointer to hardware struct
2955  *  @rar: receive address register index to disassociate
2956  *  @vmdq: VMDq pool index to remove from the rar
2957  **/
2958 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2959 {
2960     u32 mpsar_lo, mpsar_hi;
2961     u32 rar_entries = hw->mac.num_rar_entries;
2962 
2963     /* Make sure we are using a valid rar index range */
2964     if (rar >= rar_entries) {
2965         hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2966         return IXGBE_ERR_INVALID_ARGUMENT;
2967     }
2968 
2969     mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2970     mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2971 
2972     if (ixgbe_removed(hw->hw_addr))
2973         return 0;
2974 
2975     if (!mpsar_lo && !mpsar_hi)
2976         return 0;
2977 
2978     if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2979         if (mpsar_lo) {
2980             IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2981             mpsar_lo = 0;
2982         }
2983         if (mpsar_hi) {
2984             IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2985             mpsar_hi = 0;
2986         }
2987     } else if (vmdq < 32) {
2988         mpsar_lo &= ~BIT(vmdq);
2989         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2990     } else {
2991         mpsar_hi &= ~BIT(vmdq - 32);
2992         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2993     }
2994 
2995     /* was that the last pool using this rar? */
2996     if (mpsar_lo == 0 && mpsar_hi == 0 &&
2997         rar != 0 && rar != hw->mac.san_mac_rar_index)
2998         hw->mac.ops.clear_rar(hw, rar);
2999 
3000     return 0;
3001 }
3002 
3003 /**
3004  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3005  *  @hw: pointer to hardware struct
3006  *  @rar: receive address register index to associate with a VMDq index
3007  *  @vmdq: VMDq pool index
3008  **/
3009 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3010 {
3011     u32 mpsar;
3012     u32 rar_entries = hw->mac.num_rar_entries;
3013 
3014     /* Make sure we are using a valid rar index range */
3015     if (rar >= rar_entries) {
3016         hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3017         return IXGBE_ERR_INVALID_ARGUMENT;
3018     }
3019 
3020     if (vmdq < 32) {
3021         mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3022         mpsar |= BIT(vmdq);
3023         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3024     } else {
3025         mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3026         mpsar |= BIT(vmdq - 32);
3027         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3028     }
3029     return 0;
3030 }
3031 
3032 /**
3033  *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3034  *  @hw: pointer to hardware struct
3035  *  @vmdq: VMDq pool index
3036  *
3037  *  This function should only be involved in the IOV mode.
3038  *  In IOV mode, Default pool is next pool after the number of
3039  *  VFs advertized and not 0.
3040  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3041  **/
3042 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3043 {
3044     u32 rar = hw->mac.san_mac_rar_index;
3045 
3046     if (vmdq < 32) {
3047         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3048         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3049     } else {
3050         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3051         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3052     }
3053 
3054     return 0;
3055 }
3056 
3057 /**
3058  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3059  *  @hw: pointer to hardware structure
3060  **/
3061 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3062 {
3063     int i;
3064 
3065     for (i = 0; i < 128; i++)
3066         IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3067 
3068     return 0;
3069 }
3070 
3071 /**
3072  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3073  *  @hw: pointer to hardware structure
3074  *  @vlan: VLAN id to write to VLAN filter
3075  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3076  *        vlanid not found
3077  *
3078  *  return the VLVF index where this VLAN id should be placed
3079  *
3080  **/
3081 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3082 {
3083     s32 regindex, first_empty_slot;
3084     u32 bits;
3085 
3086     /* short cut the special case */
3087     if (vlan == 0)
3088         return 0;
3089 
3090     /* if vlvf_bypass is set we don't want to use an empty slot, we
3091      * will simply bypass the VLVF if there are no entries present in the
3092      * VLVF that contain our VLAN
3093      */
3094     first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3095 
3096     /* add VLAN enable bit for comparison */
3097     vlan |= IXGBE_VLVF_VIEN;
3098 
3099     /* Search for the vlan id in the VLVF entries. Save off the first empty
3100      * slot found along the way.
3101      *
3102      * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3103      */
3104     for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3105         bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3106         if (bits == vlan)
3107             return regindex;
3108         if (!first_empty_slot && !bits)
3109             first_empty_slot = regindex;
3110     }
3111 
3112     /* If we are here then we didn't find the VLAN.  Return first empty
3113      * slot we found during our search, else error.
3114      */
3115     if (!first_empty_slot)
3116         hw_dbg(hw, "No space in VLVF.\n");
3117 
3118     return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3119 }
3120 
3121 /**
3122  *  ixgbe_set_vfta_generic - Set VLAN filter table
3123  *  @hw: pointer to hardware structure
3124  *  @vlan: VLAN id to write to VLAN filter
3125  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3126  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3127  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3128  *
3129  *  Turn on/off specified VLAN in the VLAN filter table.
3130  **/
3131 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3132                bool vlan_on, bool vlvf_bypass)
3133 {
3134     u32 regidx, vfta_delta, vfta, bits;
3135     s32 vlvf_index;
3136 
3137     if ((vlan > 4095) || (vind > 63))
3138         return IXGBE_ERR_PARAM;
3139 
3140     /*
3141      * this is a 2 part operation - first the VFTA, then the
3142      * VLVF and VLVFB if VT Mode is set
3143      * We don't write the VFTA until we know the VLVF part succeeded.
3144      */
3145 
3146     /* Part 1
3147      * The VFTA is a bitstring made up of 128 32-bit registers
3148      * that enable the particular VLAN id, much like the MTA:
3149      *    bits[11-5]: which register
3150      *    bits[4-0]:  which bit in the register
3151      */
3152     regidx = vlan / 32;
3153     vfta_delta = BIT(vlan % 32);
3154     vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3155 
3156     /* vfta_delta represents the difference between the current value
3157      * of vfta and the value we want in the register.  Since the diff
3158      * is an XOR mask we can just update vfta using an XOR.
3159      */
3160     vfta_delta &= vlan_on ? ~vfta : vfta;
3161     vfta ^= vfta_delta;
3162 
3163     /* Part 2
3164      * If VT Mode is set
3165      *   Either vlan_on
3166      *     make sure the vlan is in VLVF
3167      *     set the vind bit in the matching VLVFB
3168      *   Or !vlan_on
3169      *     clear the pool bit and possibly the vind
3170      */
3171     if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3172         goto vfta_update;
3173 
3174     vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3175     if (vlvf_index < 0) {
3176         if (vlvf_bypass)
3177             goto vfta_update;
3178         return vlvf_index;
3179     }
3180 
3181     bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3182 
3183     /* set the pool bit */
3184     bits |= BIT(vind % 32);
3185     if (vlan_on)
3186         goto vlvf_update;
3187 
3188     /* clear the pool bit */
3189     bits ^= BIT(vind % 32);
3190 
3191     if (!bits &&
3192         !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3193         /* Clear VFTA first, then disable VLVF.  Otherwise
3194          * we run the risk of stray packets leaking into
3195          * the PF via the default pool
3196          */
3197         if (vfta_delta)
3198             IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3199 
3200         /* disable VLVF and clear remaining bit from pool */
3201         IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3202         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3203 
3204         return 0;
3205     }
3206 
3207     /* If there are still bits set in the VLVFB registers
3208      * for the VLAN ID indicated we need to see if the
3209      * caller is requesting that we clear the VFTA entry bit.
3210      * If the caller has requested that we clear the VFTA
3211      * entry bit but there are still pools/VFs using this VLAN
3212      * ID entry then ignore the request.  We're not worried
3213      * about the case where we're turning the VFTA VLAN ID
3214      * entry bit on, only when requested to turn it off as
3215      * there may be multiple pools and/or VFs using the
3216      * VLAN ID entry.  In that case we cannot clear the
3217      * VFTA bit until all pools/VFs using that VLAN ID have also
3218      * been cleared.  This will be indicated by "bits" being
3219      * zero.
3220      */
3221     vfta_delta = 0;
3222 
3223 vlvf_update:
3224     /* record pool change and enable VLAN ID if not already enabled */
3225     IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3226     IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3227 
3228 vfta_update:
3229     /* Update VFTA now that we are ready for traffic */
3230     if (vfta_delta)
3231         IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3232 
3233     return 0;
3234 }
3235 
3236 /**
3237  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3238  *  @hw: pointer to hardware structure
3239  *
3240  *  Clears the VLAN filter table, and the VMDq index associated with the filter
3241  **/
3242 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3243 {
3244     u32 offset;
3245 
3246     for (offset = 0; offset < hw->mac.vft_size; offset++)
3247         IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3248 
3249     for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3250         IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3251         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3252         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3253     }
3254 
3255     return 0;
3256 }
3257 
3258 /**
3259  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3260  *  @hw: pointer to hardware structure
3261  *
3262  *  Contains the logic to identify if we need to verify link for the
3263  *  crosstalk fix
3264  **/
3265 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3266 {
3267     /* Does FW say we need the fix */
3268     if (!hw->need_crosstalk_fix)
3269         return false;
3270 
3271     /* Only consider SFP+ PHYs i.e. media type fiber */
3272     switch (hw->mac.ops.get_media_type(hw)) {
3273     case ixgbe_media_type_fiber:
3274     case ixgbe_media_type_fiber_qsfp:
3275         break;
3276     default:
3277         return false;
3278     }
3279 
3280     return true;
3281 }
3282 
3283 /**
3284  *  ixgbe_check_mac_link_generic - Determine link and speed status
3285  *  @hw: pointer to hardware structure
3286  *  @speed: pointer to link speed
3287  *  @link_up: true when link is up
3288  *  @link_up_wait_to_complete: bool used to wait for link up or not
3289  *
3290  *  Reads the links register to determine if link is up and the current speed
3291  **/
3292 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3293                  bool *link_up, bool link_up_wait_to_complete)
3294 {
3295     u32 links_reg, links_orig;
3296     u32 i;
3297 
3298     /* If Crosstalk fix enabled do the sanity check of making sure
3299      * the SFP+ cage is full.
3300      */
3301     if (ixgbe_need_crosstalk_fix(hw)) {
3302         u32 sfp_cage_full;
3303 
3304         switch (hw->mac.type) {
3305         case ixgbe_mac_82599EB:
3306             sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3307                     IXGBE_ESDP_SDP2;
3308             break;
3309         case ixgbe_mac_X550EM_x:
3310         case ixgbe_mac_x550em_a:
3311             sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3312                     IXGBE_ESDP_SDP0;
3313             break;
3314         default:
3315             /* sanity check - No SFP+ devices here */
3316             sfp_cage_full = false;
3317             break;
3318         }
3319 
3320         if (!sfp_cage_full) {
3321             *link_up = false;
3322             *speed = IXGBE_LINK_SPEED_UNKNOWN;
3323             return 0;
3324         }
3325     }
3326 
3327     /* clear the old state */
3328     links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3329 
3330     links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3331 
3332     if (links_orig != links_reg) {
3333         hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3334                links_orig, links_reg);
3335     }
3336 
3337     if (link_up_wait_to_complete) {
3338         for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3339             if (links_reg & IXGBE_LINKS_UP) {
3340                 *link_up = true;
3341                 break;
3342             } else {
3343                 *link_up = false;
3344             }
3345             msleep(100);
3346             links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347         }
3348     } else {
3349         if (links_reg & IXGBE_LINKS_UP)
3350             *link_up = true;
3351         else
3352             *link_up = false;
3353     }
3354 
3355     switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3356     case IXGBE_LINKS_SPEED_10G_82599:
3357         if ((hw->mac.type >= ixgbe_mac_X550) &&
3358             (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3359             *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3360         else
3361             *speed = IXGBE_LINK_SPEED_10GB_FULL;
3362         break;
3363     case IXGBE_LINKS_SPEED_1G_82599:
3364         *speed = IXGBE_LINK_SPEED_1GB_FULL;
3365         break;
3366     case IXGBE_LINKS_SPEED_100_82599:
3367         if ((hw->mac.type >= ixgbe_mac_X550) &&
3368             (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3369             *speed = IXGBE_LINK_SPEED_5GB_FULL;
3370         else
3371             *speed = IXGBE_LINK_SPEED_100_FULL;
3372         break;
3373     case IXGBE_LINKS_SPEED_10_X550EM_A:
3374         *speed = IXGBE_LINK_SPEED_UNKNOWN;
3375         if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3376             hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3377             *speed = IXGBE_LINK_SPEED_10_FULL;
3378         }
3379         break;
3380     default:
3381         *speed = IXGBE_LINK_SPEED_UNKNOWN;
3382     }
3383 
3384     return 0;
3385 }
3386 
3387 /**
3388  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3389  *  the EEPROM
3390  *  @hw: pointer to hardware structure
3391  *  @wwnn_prefix: the alternative WWNN prefix
3392  *  @wwpn_prefix: the alternative WWPN prefix
3393  *
3394  *  This function will read the EEPROM from the alternative SAN MAC address
3395  *  block to check the support for the alternative WWNN/WWPN prefix support.
3396  **/
3397 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3398                     u16 *wwpn_prefix)
3399 {
3400     u16 offset, caps;
3401     u16 alt_san_mac_blk_offset;
3402 
3403     /* clear output first */
3404     *wwnn_prefix = 0xFFFF;
3405     *wwpn_prefix = 0xFFFF;
3406 
3407     /* check if alternative SAN MAC is supported */
3408     offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3409     if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3410         goto wwn_prefix_err;
3411 
3412     if ((alt_san_mac_blk_offset == 0) ||
3413         (alt_san_mac_blk_offset == 0xFFFF))
3414         return 0;
3415 
3416     /* check capability in alternative san mac address block */
3417     offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3418     if (hw->eeprom.ops.read(hw, offset, &caps))
3419         goto wwn_prefix_err;
3420     if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3421         return 0;
3422 
3423     /* get the corresponding prefix for WWNN/WWPN */
3424     offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3425     if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3426         hw_err(hw, "eeprom read at offset %d failed\n", offset);
3427 
3428     offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3429     if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3430         goto wwn_prefix_err;
3431 
3432     return 0;
3433 
3434 wwn_prefix_err:
3435     hw_err(hw, "eeprom read at offset %d failed\n", offset);
3436     return 0;
3437 }
3438 
3439 /**
3440  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3441  *  @hw: pointer to hardware structure
3442  *  @enable: enable or disable switch for MAC anti-spoofing
3443  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3444  *
3445  **/
3446 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3447 {
3448     int vf_target_reg = vf >> 3;
3449     int vf_target_shift = vf % 8;
3450     u32 pfvfspoof;
3451 
3452     if (hw->mac.type == ixgbe_mac_82598EB)
3453         return;
3454 
3455     pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3456     if (enable)
3457         pfvfspoof |= BIT(vf_target_shift);
3458     else
3459         pfvfspoof &= ~BIT(vf_target_shift);
3460     IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3461 }
3462 
3463 /**
3464  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3465  *  @hw: pointer to hardware structure
3466  *  @enable: enable or disable switch for VLAN anti-spoofing
3467  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3468  *
3469  **/
3470 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3471 {
3472     int vf_target_reg = vf >> 3;
3473     int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3474     u32 pfvfspoof;
3475 
3476     if (hw->mac.type == ixgbe_mac_82598EB)
3477         return;
3478 
3479     pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3480     if (enable)
3481         pfvfspoof |= BIT(vf_target_shift);
3482     else
3483         pfvfspoof &= ~BIT(vf_target_shift);
3484     IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3485 }
3486 
3487 /**
3488  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3489  *  @hw: pointer to hardware structure
3490  *  @device_caps: the EEPROM word with the extra device capabilities
3491  *
3492  *  This function will read the EEPROM location for the device capabilities,
3493  *  and return the word through device_caps.
3494  **/
3495 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3496 {
3497     hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3498 
3499     return 0;
3500 }
3501 
3502 /**
3503  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3504  * @hw: pointer to hardware structure
3505  * @num_pb: number of packet buffers to allocate
3506  * @headroom: reserve n KB of headroom
3507  * @strategy: packet buffer allocation strategy
3508  **/
3509 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3510                  int num_pb,
3511                  u32 headroom,
3512                  int strategy)
3513 {
3514     u32 pbsize = hw->mac.rx_pb_size;
3515     int i = 0;
3516     u32 rxpktsize, txpktsize, txpbthresh;
3517 
3518     /* Reserve headroom */
3519     pbsize -= headroom;
3520 
3521     if (!num_pb)
3522         num_pb = 1;
3523 
3524     /* Divide remaining packet buffer space amongst the number
3525      * of packet buffers requested using supplied strategy.
3526      */
3527     switch (strategy) {
3528     case (PBA_STRATEGY_WEIGHTED):
3529         /* pba_80_48 strategy weight first half of packet buffer with
3530          * 5/8 of the packet buffer space.
3531          */
3532         rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3533         pbsize -= rxpktsize * (num_pb / 2);
3534         rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3535         for (; i < (num_pb / 2); i++)
3536             IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3537         fallthrough; /* configure remaining packet buffers */
3538     case (PBA_STRATEGY_EQUAL):
3539         /* Divide the remaining Rx packet buffer evenly among the TCs */
3540         rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3541         for (; i < num_pb; i++)
3542             IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3543         break;
3544     default:
3545         break;
3546     }
3547 
3548     /*
3549      * Setup Tx packet buffer and threshold equally for all TCs
3550      * TXPBTHRESH register is set in K so divide by 1024 and subtract
3551      * 10 since the largest packet we support is just over 9K.
3552      */
3553     txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3554     txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3555     for (i = 0; i < num_pb; i++) {
3556         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3557         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3558     }
3559 
3560     /* Clear unused TCs, if any, to zero buffer size*/
3561     for (; i < IXGBE_MAX_PB; i++) {
3562         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3563         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3564         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3565     }
3566 }
3567 
3568 /**
3569  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3570  *  @buffer: pointer to EEPROM
3571  *  @length: size of EEPROM to calculate a checksum for
3572  *
3573  *  Calculates the checksum for some buffer on a specified length.  The
3574  *  checksum calculated is returned.
3575  **/
3576 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3577 {
3578     u32 i;
3579     u8 sum = 0;
3580 
3581     if (!buffer)
3582         return 0;
3583 
3584     for (i = 0; i < length; i++)
3585         sum += buffer[i];
3586 
3587     return (u8) (0 - sum);
3588 }
3589 
3590 /**
3591  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3592  *  @hw: pointer to the HW structure
3593  *  @buffer: command to write and where the return status will be placed
3594  *  @length: length of buffer, must be multiple of 4 bytes
3595  *  @timeout: time in ms to wait for command completion
3596  *
3597  *  Communicates with the manageability block. On success return 0
3598  *  else returns semaphore error when encountering an error acquiring
3599  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3600  *
3601  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3602  *  by the caller.
3603  **/
3604 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3605                u32 timeout)
3606 {
3607     u32 hicr, i, fwsts;
3608     u16 dword_len;
3609 
3610     if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3611         hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3612         return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3613     }
3614 
3615     /* Set bit 9 of FWSTS clearing FW reset indication */
3616     fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3617     IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3618 
3619     /* Check that the host interface is enabled. */
3620     hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3621     if (!(hicr & IXGBE_HICR_EN)) {
3622         hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3623         return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3624     }
3625 
3626     /* Calculate length in DWORDs. We must be DWORD aligned */
3627     if (length % sizeof(u32)) {
3628         hw_dbg(hw, "Buffer length failure, not aligned to dword");
3629         return IXGBE_ERR_INVALID_ARGUMENT;
3630     }
3631 
3632     dword_len = length >> 2;
3633 
3634     /* The device driver writes the relevant command block
3635      * into the ram area.
3636      */
3637     for (i = 0; i < dword_len; i++)
3638         IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3639                       i, (__force u32)cpu_to_le32(buffer[i]));
3640 
3641     /* Setting this bit tells the ARC that a new command is pending. */
3642     IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3643 
3644     for (i = 0; i < timeout; i++) {
3645         hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3646         if (!(hicr & IXGBE_HICR_C))
3647             break;
3648         usleep_range(1000, 2000);
3649     }
3650 
3651     /* Check command successful completion. */
3652     if ((timeout && i == timeout) ||
3653         !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3654         return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3655 
3656     return 0;
3657 }
3658 
3659 /**
3660  *  ixgbe_host_interface_command - Issue command to manageability block
3661  *  @hw: pointer to the HW structure
3662  *  @buffer: contains the command to write and where the return status will
3663  *           be placed
3664  *  @length: length of buffer, must be multiple of 4 bytes
3665  *  @timeout: time in ms to wait for command completion
3666  *  @return_data: read and return data from the buffer (true) or not (false)
3667  *  Needed because FW structures are big endian and decoding of
3668  *  these fields can be 8 bit or 16 bit based on command. Decoding
3669  *  is not easily understood without making a table of commands.
3670  *  So we will leave this up to the caller to read back the data
3671  *  in these cases.
3672  *
3673  *  Communicates with the manageability block.  On success return 0
3674  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3675  **/
3676 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3677                  u32 length, u32 timeout,
3678                  bool return_data)
3679 {
3680     u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3681     struct ixgbe_hic_hdr *hdr = buffer;
3682     u32 *u32arr = buffer;
3683     u16 buf_len, dword_len;
3684     s32 status;
3685     u32 bi;
3686 
3687     if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3688         hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3689         return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3690     }
3691     /* Take management host interface semaphore */
3692     status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3693     if (status)
3694         return status;
3695 
3696     status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3697     if (status)
3698         goto rel_out;
3699 
3700     if (!return_data)
3701         goto rel_out;
3702 
3703     /* Calculate length in DWORDs */
3704     dword_len = hdr_size >> 2;
3705 
3706     /* first pull in the header so we know the buffer length */
3707     for (bi = 0; bi < dword_len; bi++) {
3708         u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3709         le32_to_cpus(&u32arr[bi]);
3710     }
3711 
3712     /* If there is any thing in data position pull it in */
3713     buf_len = hdr->buf_len;
3714     if (!buf_len)
3715         goto rel_out;
3716 
3717     if (length < round_up(buf_len, 4) + hdr_size) {
3718         hw_dbg(hw, "Buffer not large enough for reply message.\n");
3719         status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3720         goto rel_out;
3721     }
3722 
3723     /* Calculate length in DWORDs, add 3 for odd lengths */
3724     dword_len = (buf_len + 3) >> 2;
3725 
3726     /* Pull in the rest of the buffer (bi is where we left off) */
3727     for (; bi <= dword_len; bi++) {
3728         u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3729         le32_to_cpus(&u32arr[bi]);
3730     }
3731 
3732 rel_out:
3733     hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3734 
3735     return status;
3736 }
3737 
3738 /**
3739  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3740  *  @hw: pointer to the HW structure
3741  *  @maj: driver version major number
3742  *  @min: driver version minor number
3743  *  @build: driver version build number
3744  *  @sub: driver version sub build number
3745  *  @len: length of driver_ver string
3746  *  @driver_ver: driver string
3747  *
3748  *  Sends driver version number to firmware through the manageability
3749  *  block.  On success return 0
3750  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3751  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3752  **/
3753 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3754                  u8 build, u8 sub, __always_unused u16 len,
3755                  __always_unused const char *driver_ver)
3756 {
3757     struct ixgbe_hic_drv_info fw_cmd;
3758     int i;
3759     s32 ret_val;
3760 
3761     fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3762     fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3763     fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3764     fw_cmd.port_num = hw->bus.func;
3765     fw_cmd.ver_maj = maj;
3766     fw_cmd.ver_min = min;
3767     fw_cmd.ver_build = build;
3768     fw_cmd.ver_sub = sub;
3769     fw_cmd.hdr.checksum = 0;
3770     fw_cmd.pad = 0;
3771     fw_cmd.pad2 = 0;
3772     fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3773                 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3774 
3775     for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3776         ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3777                                sizeof(fw_cmd),
3778                                IXGBE_HI_COMMAND_TIMEOUT,
3779                                true);
3780         if (ret_val != 0)
3781             continue;
3782 
3783         if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3784             FW_CEM_RESP_STATUS_SUCCESS)
3785             ret_val = 0;
3786         else
3787             ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3788 
3789         break;
3790     }
3791 
3792     return ret_val;
3793 }
3794 
3795 /**
3796  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3797  * @hw: pointer to the hardware structure
3798  *
3799  * The 82599 and x540 MACs can experience issues if TX work is still pending
3800  * when a reset occurs.  This function prevents this by flushing the PCIe
3801  * buffers on the system.
3802  **/
3803 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3804 {
3805     u32 gcr_ext, hlreg0, i, poll;
3806     u16 value;
3807 
3808     /*
3809      * If double reset is not requested then all transactions should
3810      * already be clear and as such there is no work to do
3811      */
3812     if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3813         return;
3814 
3815     /*
3816      * Set loopback enable to prevent any transmits from being sent
3817      * should the link come up.  This assumes that the RXCTRL.RXEN bit
3818      * has already been cleared.
3819      */
3820     hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3821     IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3822 
3823     /* wait for a last completion before clearing buffers */
3824     IXGBE_WRITE_FLUSH(hw);
3825     usleep_range(3000, 6000);
3826 
3827     /* Before proceeding, make sure that the PCIe block does not have
3828      * transactions pending.
3829      */
3830     poll = ixgbe_pcie_timeout_poll(hw);
3831     for (i = 0; i < poll; i++) {
3832         usleep_range(100, 200);
3833         value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3834         if (ixgbe_removed(hw->hw_addr))
3835             break;
3836         if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3837             break;
3838     }
3839 
3840     /* initiate cleaning flow for buffers in the PCIe transaction layer */
3841     gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3842     IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3843             gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3844 
3845     /* Flush all writes and allow 20usec for all transactions to clear */
3846     IXGBE_WRITE_FLUSH(hw);
3847     udelay(20);
3848 
3849     /* restore previous register values */
3850     IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3851     IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3852 }
3853 
3854 static const u8 ixgbe_emc_temp_data[4] = {
3855     IXGBE_EMC_INTERNAL_DATA,
3856     IXGBE_EMC_DIODE1_DATA,
3857     IXGBE_EMC_DIODE2_DATA,
3858     IXGBE_EMC_DIODE3_DATA
3859 };
3860 static const u8 ixgbe_emc_therm_limit[4] = {
3861     IXGBE_EMC_INTERNAL_THERM_LIMIT,
3862     IXGBE_EMC_DIODE1_THERM_LIMIT,
3863     IXGBE_EMC_DIODE2_THERM_LIMIT,
3864     IXGBE_EMC_DIODE3_THERM_LIMIT
3865 };
3866 
3867 /**
3868  *  ixgbe_get_ets_data - Extracts the ETS bit data
3869  *  @hw: pointer to hardware structure
3870  *  @ets_cfg: extected ETS data
3871  *  @ets_offset: offset of ETS data
3872  *
3873  *  Returns error code.
3874  **/
3875 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3876                   u16 *ets_offset)
3877 {
3878     s32 status;
3879 
3880     status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3881     if (status)
3882         return status;
3883 
3884     if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3885         return IXGBE_NOT_IMPLEMENTED;
3886 
3887     status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3888     if (status)
3889         return status;
3890 
3891     if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3892         return IXGBE_NOT_IMPLEMENTED;
3893 
3894     return 0;
3895 }
3896 
3897 /**
3898  *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3899  *  @hw: pointer to hardware structure
3900  *
3901  *  Returns the thermal sensor data structure
3902  **/
3903 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3904 {
3905     s32 status;
3906     u16 ets_offset;
3907     u16 ets_cfg;
3908     u16 ets_sensor;
3909     u8  num_sensors;
3910     u8  i;
3911     struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3912 
3913     /* Only support thermal sensors attached to physical port 0 */
3914     if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3915         return IXGBE_NOT_IMPLEMENTED;
3916 
3917     status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3918     if (status)
3919         return status;
3920 
3921     num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3922     if (num_sensors > IXGBE_MAX_SENSORS)
3923         num_sensors = IXGBE_MAX_SENSORS;
3924 
3925     for (i = 0; i < num_sensors; i++) {
3926         u8  sensor_index;
3927         u8  sensor_location;
3928 
3929         status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3930                          &ets_sensor);
3931         if (status)
3932             return status;
3933 
3934         sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3935                 IXGBE_ETS_DATA_INDEX_SHIFT);
3936         sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3937                    IXGBE_ETS_DATA_LOC_SHIFT);
3938 
3939         if (sensor_location != 0) {
3940             status = hw->phy.ops.read_i2c_byte(hw,
3941                     ixgbe_emc_temp_data[sensor_index],
3942                     IXGBE_I2C_THERMAL_SENSOR_ADDR,
3943                     &data->sensor[i].temp);
3944             if (status)
3945                 return status;
3946         }
3947     }
3948 
3949     return 0;
3950 }
3951 
3952 /**
3953  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3954  * @hw: pointer to hardware structure
3955  *
3956  * Inits the thermal sensor thresholds according to the NVM map
3957  * and save off the threshold and location values into mac.thermal_sensor_data
3958  **/
3959 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3960 {
3961     s32 status;
3962     u16 ets_offset;
3963     u16 ets_cfg;
3964     u16 ets_sensor;
3965     u8  low_thresh_delta;
3966     u8  num_sensors;
3967     u8  therm_limit;
3968     u8  i;
3969     struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3970 
3971     memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3972 
3973     /* Only support thermal sensors attached to physical port 0 */
3974     if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3975         return IXGBE_NOT_IMPLEMENTED;
3976 
3977     status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3978     if (status)
3979         return status;
3980 
3981     low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3982                  IXGBE_ETS_LTHRES_DELTA_SHIFT);
3983     num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3984     if (num_sensors > IXGBE_MAX_SENSORS)
3985         num_sensors = IXGBE_MAX_SENSORS;
3986 
3987     for (i = 0; i < num_sensors; i++) {
3988         u8  sensor_index;
3989         u8  sensor_location;
3990 
3991         if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3992             hw_err(hw, "eeprom read at offset %d failed\n",
3993                    ets_offset + 1 + i);
3994             continue;
3995         }
3996         sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3997                 IXGBE_ETS_DATA_INDEX_SHIFT);
3998         sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3999                    IXGBE_ETS_DATA_LOC_SHIFT);
4000         therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4001 
4002         hw->phy.ops.write_i2c_byte(hw,
4003             ixgbe_emc_therm_limit[sensor_index],
4004             IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4005 
4006         if (sensor_location == 0)
4007             continue;
4008 
4009         data->sensor[i].location = sensor_location;
4010         data->sensor[i].caution_thresh = therm_limit;
4011         data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4012     }
4013 
4014     return 0;
4015 }
4016 
4017 /**
4018  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4019  *
4020  *  @hw: pointer to hardware structure
4021  *  @nvm_ver: pointer to output structure
4022  *
4023  *  if valid option ROM version, nvm_ver->or_valid set to true
4024  *  else nvm_ver->or_valid is false.
4025  **/
4026 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4027                 struct ixgbe_nvm_version *nvm_ver)
4028 {
4029     u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4030 
4031     nvm_ver->or_valid = false;
4032     /* Option Rom may or may not be present.  Start with pointer */
4033     hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4034 
4035     /* make sure offset is valid */
4036     if (offset == 0x0 || offset == NVM_INVALID_PTR)
4037         return;
4038 
4039     hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4040     hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4041 
4042     /* option rom exists and is valid */
4043     if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4044         eeprom_cfg_blkl == NVM_VER_INVALID ||
4045         eeprom_cfg_blkh == NVM_VER_INVALID)
4046         return;
4047 
4048     nvm_ver->or_valid = true;
4049     nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4050     nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4051                 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4052     nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4053 }
4054 
4055 /**
4056  *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4057  *  @hw: pointer to hardware structure
4058  *  @nvm_ver: pointer to output structure
4059  *
4060  *  if valid OEM product version, nvm_ver->oem_valid set to true
4061  *  else nvm_ver->oem_valid is false.
4062  **/
4063 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4064                 struct ixgbe_nvm_version *nvm_ver)
4065 {
4066     u16 rel_num, prod_ver, mod_len, cap, offset;
4067 
4068     nvm_ver->oem_valid = false;
4069     hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4070 
4071     /* Return is offset to OEM Product Version block is invalid */
4072     if (offset == 0x0 || offset == NVM_INVALID_PTR)
4073         return;
4074 
4075     /* Read product version block */
4076     hw->eeprom.ops.read(hw, offset, &mod_len);
4077     hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4078 
4079     /* Return if OEM product version block is invalid */
4080     if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4081         (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4082         return;
4083 
4084     hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4085     hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4086 
4087     /* Return if version is invalid */
4088     if ((rel_num | prod_ver) == 0x0 ||
4089         rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4090         return;
4091 
4092     nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4093     nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4094     nvm_ver->oem_release = rel_num;
4095     nvm_ver->oem_valid = true;
4096 }
4097 
4098 /**
4099  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4100  *
4101  *  @hw: pointer to hardware structure
4102  *  @nvm_ver: pointer to output structure
4103  *
4104  *  word read errors will return 0xFFFF
4105  **/
4106 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4107               struct ixgbe_nvm_version *nvm_ver)
4108 {
4109     u16 etk_id_l, etk_id_h;
4110 
4111     if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4112         etk_id_l = NVM_VER_INVALID;
4113     if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4114         etk_id_h = NVM_VER_INVALID;
4115 
4116     /* The word order for the version format is determined by high order
4117      * word bit 15.
4118      */
4119     if ((etk_id_h & NVM_ETK_VALID) == 0) {
4120         nvm_ver->etk_id = etk_id_h;
4121         nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4122     } else {
4123         nvm_ver->etk_id = etk_id_l;
4124         nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4125     }
4126 }
4127 
4128 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4129 {
4130     u32 rxctrl;
4131 
4132     rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4133     if (rxctrl & IXGBE_RXCTRL_RXEN) {
4134         if (hw->mac.type != ixgbe_mac_82598EB) {
4135             u32 pfdtxgswc;
4136 
4137             pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4138             if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4139                 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4140                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4141                 hw->mac.set_lben = true;
4142             } else {
4143                 hw->mac.set_lben = false;
4144             }
4145         }
4146         rxctrl &= ~IXGBE_RXCTRL_RXEN;
4147         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4148     }
4149 }
4150 
4151 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4152 {
4153     u32 rxctrl;
4154 
4155     rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4156     IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4157 
4158     if (hw->mac.type != ixgbe_mac_82598EB) {
4159         if (hw->mac.set_lben) {
4160             u32 pfdtxgswc;
4161 
4162             pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4163             pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4164             IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4165             hw->mac.set_lben = false;
4166         }
4167     }
4168 }
4169 
4170 /** ixgbe_mng_present - returns true when management capability is present
4171  * @hw: pointer to hardware structure
4172  **/
4173 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4174 {
4175     u32 fwsm;
4176 
4177     if (hw->mac.type < ixgbe_mac_82599EB)
4178         return false;
4179 
4180     fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4181 
4182     return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4183 }
4184 
4185 /**
4186  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4187  *  @hw: pointer to hardware structure
4188  *  @speed: new link speed
4189  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4190  *
4191  *  Set the link speed in the MAC and/or PHY register and restarts link.
4192  */
4193 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4194                       ixgbe_link_speed speed,
4195                       bool autoneg_wait_to_complete)
4196 {
4197     ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4198     ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4199     s32 status = 0;
4200     u32 speedcnt = 0;
4201     u32 i = 0;
4202     bool autoneg, link_up = false;
4203 
4204     /* Mask off requested but non-supported speeds */
4205     status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4206     if (status)
4207         return status;
4208 
4209     speed &= link_speed;
4210 
4211     /* Try each speed one by one, highest priority first.  We do this in
4212      * software because 10Gb fiber doesn't support speed autonegotiation.
4213      */
4214     if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4215         speedcnt++;
4216         highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4217 
4218         /* Set the module link speed */
4219         switch (hw->phy.media_type) {
4220         case ixgbe_media_type_fiber:
4221             hw->mac.ops.set_rate_select_speed(hw,
4222                             IXGBE_LINK_SPEED_10GB_FULL);
4223             break;
4224         case ixgbe_media_type_fiber_qsfp:
4225             /* QSFP module automatically detects MAC link speed */
4226             break;
4227         default:
4228             hw_dbg(hw, "Unexpected media type\n");
4229             break;
4230         }
4231 
4232         /* Allow module to change analog characteristics (1G->10G) */
4233         msleep(40);
4234 
4235         status = hw->mac.ops.setup_mac_link(hw,
4236                             IXGBE_LINK_SPEED_10GB_FULL,
4237                             autoneg_wait_to_complete);
4238         if (status)
4239             return status;
4240 
4241         /* Flap the Tx laser if it has not already been done */
4242         if (hw->mac.ops.flap_tx_laser)
4243             hw->mac.ops.flap_tx_laser(hw);
4244 
4245         /* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4246          * Section 73.10.2, we may have to wait up to 500ms if KR is
4247          * attempted.  82599 uses the same timing for 10g SFI.
4248          */
4249         for (i = 0; i < 5; i++) {
4250             /* Wait for the link partner to also set speed */
4251             msleep(100);
4252 
4253             /* If we have link, just jump out */
4254             status = hw->mac.ops.check_link(hw, &link_speed,
4255                             &link_up, false);
4256             if (status)
4257                 return status;
4258 
4259             if (link_up)
4260                 goto out;
4261         }
4262     }
4263 
4264     if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4265         speedcnt++;
4266         if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4267             highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4268 
4269         /* Set the module link speed */
4270         switch (hw->phy.media_type) {
4271         case ixgbe_media_type_fiber:
4272             hw->mac.ops.set_rate_select_speed(hw,
4273                              IXGBE_LINK_SPEED_1GB_FULL);
4274             break;
4275         case ixgbe_media_type_fiber_qsfp:
4276             /* QSFP module automatically detects link speed */
4277             break;
4278         default:
4279             hw_dbg(hw, "Unexpected media type\n");
4280             break;
4281         }
4282 
4283         /* Allow module to change analog characteristics (10G->1G) */
4284         msleep(40);
4285 
4286         status = hw->mac.ops.setup_mac_link(hw,
4287                             IXGBE_LINK_SPEED_1GB_FULL,
4288                             autoneg_wait_to_complete);
4289         if (status)
4290             return status;
4291 
4292         /* Flap the Tx laser if it has not already been done */
4293         if (hw->mac.ops.flap_tx_laser)
4294             hw->mac.ops.flap_tx_laser(hw);
4295 
4296         /* Wait for the link partner to also set speed */
4297         msleep(100);
4298 
4299         /* If we have link, just jump out */
4300         status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4301                         false);
4302         if (status)
4303             return status;
4304 
4305         if (link_up)
4306             goto out;
4307     }
4308 
4309     /* We didn't get link.  Configure back to the highest speed we tried,
4310      * (if there was more than one).  We call ourselves back with just the
4311      * single highest speed that the user requested.
4312      */
4313     if (speedcnt > 1)
4314         status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4315                               highest_link_speed,
4316                               autoneg_wait_to_complete);
4317 
4318 out:
4319     /* Set autoneg_advertised value based on input link speed */
4320     hw->phy.autoneg_advertised = 0;
4321 
4322     if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4323         hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4324 
4325     if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4326         hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4327 
4328     return status;
4329 }
4330 
4331 /**
4332  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4333  *  @hw: pointer to hardware structure
4334  *  @speed: link speed to set
4335  *
4336  *  Set module link speed via the soft rate select.
4337  */
4338 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4339                       ixgbe_link_speed speed)
4340 {
4341     s32 status;
4342     u8 rs, eeprom_data;
4343 
4344     switch (speed) {
4345     case IXGBE_LINK_SPEED_10GB_FULL:
4346         /* one bit mask same as setting on */
4347         rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4348         break;
4349     case IXGBE_LINK_SPEED_1GB_FULL:
4350         rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4351         break;
4352     default:
4353         hw_dbg(hw, "Invalid fixed module speed\n");
4354         return;
4355     }
4356 
4357     /* Set RS0 */
4358     status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4359                        IXGBE_I2C_EEPROM_DEV_ADDR2,
4360                        &eeprom_data);
4361     if (status) {
4362         hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4363         return;
4364     }
4365 
4366     eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4367 
4368     status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4369                         IXGBE_I2C_EEPROM_DEV_ADDR2,
4370                         eeprom_data);
4371     if (status) {
4372         hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4373         return;
4374     }
4375 
4376     /* Set RS1 */
4377     status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4378                        IXGBE_I2C_EEPROM_DEV_ADDR2,
4379                        &eeprom_data);
4380     if (status) {
4381         hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4382         return;
4383     }
4384 
4385     eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386 
4387     status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4388                         IXGBE_I2C_EEPROM_DEV_ADDR2,
4389                         eeprom_data);
4390     if (status) {
4391         hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4392         return;
4393     }
4394 }