Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright(c) 2007 - 2018 Intel Corporation. */
0003 
0004 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0005 
0006 #include <linux/module.h>
0007 #include <linux/types.h>
0008 #include <linux/init.h>
0009 #include <linux/bitops.h>
0010 #include <linux/vmalloc.h>
0011 #include <linux/pagemap.h>
0012 #include <linux/netdevice.h>
0013 #include <linux/ipv6.h>
0014 #include <linux/slab.h>
0015 #include <net/checksum.h>
0016 #include <net/ip6_checksum.h>
0017 #include <net/pkt_sched.h>
0018 #include <net/pkt_cls.h>
0019 #include <linux/net_tstamp.h>
0020 #include <linux/mii.h>
0021 #include <linux/ethtool.h>
0022 #include <linux/if.h>
0023 #include <linux/if_vlan.h>
0024 #include <linux/pci.h>
0025 #include <linux/delay.h>
0026 #include <linux/interrupt.h>
0027 #include <linux/ip.h>
0028 #include <linux/tcp.h>
0029 #include <linux/sctp.h>
0030 #include <linux/if_ether.h>
0031 #include <linux/aer.h>
0032 #include <linux/prefetch.h>
0033 #include <linux/bpf.h>
0034 #include <linux/bpf_trace.h>
0035 #include <linux/pm_runtime.h>
0036 #include <linux/etherdevice.h>
0037 #ifdef CONFIG_IGB_DCA
0038 #include <linux/dca.h>
0039 #endif
0040 #include <linux/i2c.h>
0041 #include "igb.h"
0042 
0043 enum queue_mode {
0044     QUEUE_MODE_STRICT_PRIORITY,
0045     QUEUE_MODE_STREAM_RESERVATION,
0046 };
0047 
0048 enum tx_queue_prio {
0049     TX_QUEUE_PRIO_HIGH,
0050     TX_QUEUE_PRIO_LOW,
0051 };
0052 
0053 char igb_driver_name[] = "igb";
0054 static const char igb_driver_string[] =
0055                 "Intel(R) Gigabit Ethernet Network Driver";
0056 static const char igb_copyright[] =
0057                 "Copyright (c) 2007-2014 Intel Corporation.";
0058 
0059 static const struct e1000_info *igb_info_tbl[] = {
0060     [board_82575] = &e1000_82575_info,
0061 };
0062 
0063 static const struct pci_device_id igb_pci_tbl[] = {
0064     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
0065     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
0066     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
0067     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
0068     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
0069     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
0070     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
0071     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
0072     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
0073     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
0074     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
0075     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
0076     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
0077     { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
0078     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
0079     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
0080     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
0081     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
0082     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
0083     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
0084     { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
0085     { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
0086     { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
0087     { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
0088     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
0089     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
0090     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
0091     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
0092     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
0093     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
0094     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
0095     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
0096     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
0097     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
0098     { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
0099     /* required last entry */
0100     {0, }
0101 };
0102 
0103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
0104 
0105 static int igb_setup_all_tx_resources(struct igb_adapter *);
0106 static int igb_setup_all_rx_resources(struct igb_adapter *);
0107 static void igb_free_all_tx_resources(struct igb_adapter *);
0108 static void igb_free_all_rx_resources(struct igb_adapter *);
0109 static void igb_setup_mrqc(struct igb_adapter *);
0110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
0111 static void igb_remove(struct pci_dev *pdev);
0112 static int igb_sw_init(struct igb_adapter *);
0113 int igb_open(struct net_device *);
0114 int igb_close(struct net_device *);
0115 static void igb_configure(struct igb_adapter *);
0116 static void igb_configure_tx(struct igb_adapter *);
0117 static void igb_configure_rx(struct igb_adapter *);
0118 static void igb_clean_all_tx_rings(struct igb_adapter *);
0119 static void igb_clean_all_rx_rings(struct igb_adapter *);
0120 static void igb_clean_tx_ring(struct igb_ring *);
0121 static void igb_clean_rx_ring(struct igb_ring *);
0122 static void igb_set_rx_mode(struct net_device *);
0123 static void igb_update_phy_info(struct timer_list *);
0124 static void igb_watchdog(struct timer_list *);
0125 static void igb_watchdog_task(struct work_struct *);
0126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
0127 static void igb_get_stats64(struct net_device *dev,
0128                 struct rtnl_link_stats64 *stats);
0129 static int igb_change_mtu(struct net_device *, int);
0130 static int igb_set_mac(struct net_device *, void *);
0131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
0132 static irqreturn_t igb_intr(int irq, void *);
0133 static irqreturn_t igb_intr_msi(int irq, void *);
0134 static irqreturn_t igb_msix_other(int irq, void *);
0135 static irqreturn_t igb_msix_ring(int irq, void *);
0136 #ifdef CONFIG_IGB_DCA
0137 static void igb_update_dca(struct igb_q_vector *);
0138 static void igb_setup_dca(struct igb_adapter *);
0139 #endif /* CONFIG_IGB_DCA */
0140 static int igb_poll(struct napi_struct *, int);
0141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
0142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
0143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
0144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
0145 static void igb_reset_task(struct work_struct *);
0146 static void igb_vlan_mode(struct net_device *netdev,
0147               netdev_features_t features);
0148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
0149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
0150 static void igb_restore_vlan(struct igb_adapter *);
0151 static void igb_rar_set_index(struct igb_adapter *, u32);
0152 static void igb_ping_all_vfs(struct igb_adapter *);
0153 static void igb_msg_task(struct igb_adapter *);
0154 static void igb_vmm_control(struct igb_adapter *);
0155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
0156 static void igb_flush_mac_table(struct igb_adapter *);
0157 static int igb_available_rars(struct igb_adapter *, u8);
0158 static void igb_set_default_mac_filter(struct igb_adapter *);
0159 static int igb_uc_sync(struct net_device *, const unsigned char *);
0160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
0161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
0162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
0163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
0164                    int vf, u16 vlan, u8 qos, __be16 vlan_proto);
0165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
0166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
0167                    bool setting);
0168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
0169                 bool setting);
0170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
0171                  struct ifla_vf_info *ivi);
0172 static void igb_check_vf_rate_limit(struct igb_adapter *);
0173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
0174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
0175 
0176 #ifdef CONFIG_PCI_IOV
0177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
0178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
0179 static int igb_disable_sriov(struct pci_dev *dev);
0180 static int igb_pci_disable_sriov(struct pci_dev *dev);
0181 #endif
0182 
0183 static int igb_suspend(struct device *);
0184 static int igb_resume(struct device *);
0185 static int igb_runtime_suspend(struct device *dev);
0186 static int igb_runtime_resume(struct device *dev);
0187 static int igb_runtime_idle(struct device *dev);
0188 static const struct dev_pm_ops igb_pm_ops = {
0189     SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
0190     SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
0191             igb_runtime_idle)
0192 };
0193 static void igb_shutdown(struct pci_dev *);
0194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
0195 #ifdef CONFIG_IGB_DCA
0196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
0197 static struct notifier_block dca_notifier = {
0198     .notifier_call  = igb_notify_dca,
0199     .next       = NULL,
0200     .priority   = 0
0201 };
0202 #endif
0203 #ifdef CONFIG_PCI_IOV
0204 static unsigned int max_vfs;
0205 module_param(max_vfs, uint, 0);
0206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
0207 #endif /* CONFIG_PCI_IOV */
0208 
0209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
0210              pci_channel_state_t);
0211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
0212 static void igb_io_resume(struct pci_dev *);
0213 
0214 static const struct pci_error_handlers igb_err_handler = {
0215     .error_detected = igb_io_error_detected,
0216     .slot_reset = igb_io_slot_reset,
0217     .resume = igb_io_resume,
0218 };
0219 
0220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
0221 
0222 static struct pci_driver igb_driver = {
0223     .name     = igb_driver_name,
0224     .id_table = igb_pci_tbl,
0225     .probe    = igb_probe,
0226     .remove   = igb_remove,
0227 #ifdef CONFIG_PM
0228     .driver.pm = &igb_pm_ops,
0229 #endif
0230     .shutdown = igb_shutdown,
0231     .sriov_configure = igb_pci_sriov_configure,
0232     .err_handler = &igb_err_handler
0233 };
0234 
0235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
0236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
0237 MODULE_LICENSE("GPL v2");
0238 
0239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
0240 static int debug = -1;
0241 module_param(debug, int, 0);
0242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
0243 
0244 struct igb_reg_info {
0245     u32 ofs;
0246     char *name;
0247 };
0248 
0249 static const struct igb_reg_info igb_reg_info_tbl[] = {
0250 
0251     /* General Registers */
0252     {E1000_CTRL, "CTRL"},
0253     {E1000_STATUS, "STATUS"},
0254     {E1000_CTRL_EXT, "CTRL_EXT"},
0255 
0256     /* Interrupt Registers */
0257     {E1000_ICR, "ICR"},
0258 
0259     /* RX Registers */
0260     {E1000_RCTL, "RCTL"},
0261     {E1000_RDLEN(0), "RDLEN"},
0262     {E1000_RDH(0), "RDH"},
0263     {E1000_RDT(0), "RDT"},
0264     {E1000_RXDCTL(0), "RXDCTL"},
0265     {E1000_RDBAL(0), "RDBAL"},
0266     {E1000_RDBAH(0), "RDBAH"},
0267 
0268     /* TX Registers */
0269     {E1000_TCTL, "TCTL"},
0270     {E1000_TDBAL(0), "TDBAL"},
0271     {E1000_TDBAH(0), "TDBAH"},
0272     {E1000_TDLEN(0), "TDLEN"},
0273     {E1000_TDH(0), "TDH"},
0274     {E1000_TDT(0), "TDT"},
0275     {E1000_TXDCTL(0), "TXDCTL"},
0276     {E1000_TDFH, "TDFH"},
0277     {E1000_TDFT, "TDFT"},
0278     {E1000_TDFHS, "TDFHS"},
0279     {E1000_TDFPC, "TDFPC"},
0280 
0281     /* List Terminator */
0282     {}
0283 };
0284 
0285 /* igb_regdump - register printout routine */
0286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
0287 {
0288     int n = 0;
0289     char rname[16];
0290     u32 regs[8];
0291 
0292     switch (reginfo->ofs) {
0293     case E1000_RDLEN(0):
0294         for (n = 0; n < 4; n++)
0295             regs[n] = rd32(E1000_RDLEN(n));
0296         break;
0297     case E1000_RDH(0):
0298         for (n = 0; n < 4; n++)
0299             regs[n] = rd32(E1000_RDH(n));
0300         break;
0301     case E1000_RDT(0):
0302         for (n = 0; n < 4; n++)
0303             regs[n] = rd32(E1000_RDT(n));
0304         break;
0305     case E1000_RXDCTL(0):
0306         for (n = 0; n < 4; n++)
0307             regs[n] = rd32(E1000_RXDCTL(n));
0308         break;
0309     case E1000_RDBAL(0):
0310         for (n = 0; n < 4; n++)
0311             regs[n] = rd32(E1000_RDBAL(n));
0312         break;
0313     case E1000_RDBAH(0):
0314         for (n = 0; n < 4; n++)
0315             regs[n] = rd32(E1000_RDBAH(n));
0316         break;
0317     case E1000_TDBAL(0):
0318         for (n = 0; n < 4; n++)
0319             regs[n] = rd32(E1000_TDBAL(n));
0320         break;
0321     case E1000_TDBAH(0):
0322         for (n = 0; n < 4; n++)
0323             regs[n] = rd32(E1000_TDBAH(n));
0324         break;
0325     case E1000_TDLEN(0):
0326         for (n = 0; n < 4; n++)
0327             regs[n] = rd32(E1000_TDLEN(n));
0328         break;
0329     case E1000_TDH(0):
0330         for (n = 0; n < 4; n++)
0331             regs[n] = rd32(E1000_TDH(n));
0332         break;
0333     case E1000_TDT(0):
0334         for (n = 0; n < 4; n++)
0335             regs[n] = rd32(E1000_TDT(n));
0336         break;
0337     case E1000_TXDCTL(0):
0338         for (n = 0; n < 4; n++)
0339             regs[n] = rd32(E1000_TXDCTL(n));
0340         break;
0341     default:
0342         pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
0343         return;
0344     }
0345 
0346     snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
0347     pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
0348         regs[2], regs[3]);
0349 }
0350 
0351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
0352 static void igb_dump(struct igb_adapter *adapter)
0353 {
0354     struct net_device *netdev = adapter->netdev;
0355     struct e1000_hw *hw = &adapter->hw;
0356     struct igb_reg_info *reginfo;
0357     struct igb_ring *tx_ring;
0358     union e1000_adv_tx_desc *tx_desc;
0359     struct my_u0 { __le64 a; __le64 b; } *u0;
0360     struct igb_ring *rx_ring;
0361     union e1000_adv_rx_desc *rx_desc;
0362     u32 staterr;
0363     u16 i, n;
0364 
0365     if (!netif_msg_hw(adapter))
0366         return;
0367 
0368     /* Print netdevice Info */
0369     if (netdev) {
0370         dev_info(&adapter->pdev->dev, "Net device Info\n");
0371         pr_info("Device Name     state            trans_start\n");
0372         pr_info("%-15s %016lX %016lX\n", netdev->name,
0373             netdev->state, dev_trans_start(netdev));
0374     }
0375 
0376     /* Print Registers */
0377     dev_info(&adapter->pdev->dev, "Register Dump\n");
0378     pr_info(" Register Name   Value\n");
0379     for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
0380          reginfo->name; reginfo++) {
0381         igb_regdump(hw, reginfo);
0382     }
0383 
0384     /* Print TX Ring Summary */
0385     if (!netdev || !netif_running(netdev))
0386         goto exit;
0387 
0388     dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
0389     pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
0390     for (n = 0; n < adapter->num_tx_queues; n++) {
0391         struct igb_tx_buffer *buffer_info;
0392         tx_ring = adapter->tx_ring[n];
0393         buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
0394         pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
0395             n, tx_ring->next_to_use, tx_ring->next_to_clean,
0396             (u64)dma_unmap_addr(buffer_info, dma),
0397             dma_unmap_len(buffer_info, len),
0398             buffer_info->next_to_watch,
0399             (u64)buffer_info->time_stamp);
0400     }
0401 
0402     /* Print TX Rings */
0403     if (!netif_msg_tx_done(adapter))
0404         goto rx_ring_summary;
0405 
0406     dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
0407 
0408     /* Transmit Descriptor Formats
0409      *
0410      * Advanced Transmit Descriptor
0411      *   +--------------------------------------------------------------+
0412      * 0 |         Buffer Address [63:0]                                |
0413      *   +--------------------------------------------------------------+
0414      * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
0415      *   +--------------------------------------------------------------+
0416      *   63      46 45    40 39 38 36 35 32 31   24             15       0
0417      */
0418 
0419     for (n = 0; n < adapter->num_tx_queues; n++) {
0420         tx_ring = adapter->tx_ring[n];
0421         pr_info("------------------------------------\n");
0422         pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
0423         pr_info("------------------------------------\n");
0424         pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
0425 
0426         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
0427             const char *next_desc;
0428             struct igb_tx_buffer *buffer_info;
0429             tx_desc = IGB_TX_DESC(tx_ring, i);
0430             buffer_info = &tx_ring->tx_buffer_info[i];
0431             u0 = (struct my_u0 *)tx_desc;
0432             if (i == tx_ring->next_to_use &&
0433                 i == tx_ring->next_to_clean)
0434                 next_desc = " NTC/U";
0435             else if (i == tx_ring->next_to_use)
0436                 next_desc = " NTU";
0437             else if (i == tx_ring->next_to_clean)
0438                 next_desc = " NTC";
0439             else
0440                 next_desc = "";
0441 
0442             pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
0443                 i, le64_to_cpu(u0->a),
0444                 le64_to_cpu(u0->b),
0445                 (u64)dma_unmap_addr(buffer_info, dma),
0446                 dma_unmap_len(buffer_info, len),
0447                 buffer_info->next_to_watch,
0448                 (u64)buffer_info->time_stamp,
0449                 buffer_info->skb, next_desc);
0450 
0451             if (netif_msg_pktdata(adapter) && buffer_info->skb)
0452                 print_hex_dump(KERN_INFO, "",
0453                     DUMP_PREFIX_ADDRESS,
0454                     16, 1, buffer_info->skb->data,
0455                     dma_unmap_len(buffer_info, len),
0456                     true);
0457         }
0458     }
0459 
0460     /* Print RX Rings Summary */
0461 rx_ring_summary:
0462     dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
0463     pr_info("Queue [NTU] [NTC]\n");
0464     for (n = 0; n < adapter->num_rx_queues; n++) {
0465         rx_ring = adapter->rx_ring[n];
0466         pr_info(" %5d %5X %5X\n",
0467             n, rx_ring->next_to_use, rx_ring->next_to_clean);
0468     }
0469 
0470     /* Print RX Rings */
0471     if (!netif_msg_rx_status(adapter))
0472         goto exit;
0473 
0474     dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
0475 
0476     /* Advanced Receive Descriptor (Read) Format
0477      *    63                                           1        0
0478      *    +-----------------------------------------------------+
0479      *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
0480      *    +----------------------------------------------+------+
0481      *  8 |       Header Buffer Address [63:1]           |  DD  |
0482      *    +-----------------------------------------------------+
0483      *
0484      *
0485      * Advanced Receive Descriptor (Write-Back) Format
0486      *
0487      *   63       48 47    32 31  30      21 20 17 16   4 3     0
0488      *   +------------------------------------------------------+
0489      * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
0490      *   | Checksum   Ident  |   |           |    | Type | Type |
0491      *   +------------------------------------------------------+
0492      * 8 | VLAN Tag | Length | Extended Error | Extended Status |
0493      *   +------------------------------------------------------+
0494      *   63       48 47    32 31            20 19               0
0495      */
0496 
0497     for (n = 0; n < adapter->num_rx_queues; n++) {
0498         rx_ring = adapter->rx_ring[n];
0499         pr_info("------------------------------------\n");
0500         pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
0501         pr_info("------------------------------------\n");
0502         pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
0503         pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
0504 
0505         for (i = 0; i < rx_ring->count; i++) {
0506             const char *next_desc;
0507             struct igb_rx_buffer *buffer_info;
0508             buffer_info = &rx_ring->rx_buffer_info[i];
0509             rx_desc = IGB_RX_DESC(rx_ring, i);
0510             u0 = (struct my_u0 *)rx_desc;
0511             staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
0512 
0513             if (i == rx_ring->next_to_use)
0514                 next_desc = " NTU";
0515             else if (i == rx_ring->next_to_clean)
0516                 next_desc = " NTC";
0517             else
0518                 next_desc = "";
0519 
0520             if (staterr & E1000_RXD_STAT_DD) {
0521                 /* Descriptor Done */
0522                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
0523                     "RWB", i,
0524                     le64_to_cpu(u0->a),
0525                     le64_to_cpu(u0->b),
0526                     next_desc);
0527             } else {
0528                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
0529                     "R  ", i,
0530                     le64_to_cpu(u0->a),
0531                     le64_to_cpu(u0->b),
0532                     (u64)buffer_info->dma,
0533                     next_desc);
0534 
0535                 if (netif_msg_pktdata(adapter) &&
0536                     buffer_info->dma && buffer_info->page) {
0537                     print_hex_dump(KERN_INFO, "",
0538                       DUMP_PREFIX_ADDRESS,
0539                       16, 1,
0540                       page_address(buffer_info->page) +
0541                               buffer_info->page_offset,
0542                       igb_rx_bufsz(rx_ring), true);
0543                 }
0544             }
0545         }
0546     }
0547 
0548 exit:
0549     return;
0550 }
0551 
0552 /**
0553  *  igb_get_i2c_data - Reads the I2C SDA data bit
0554  *  @data: opaque pointer to adapter struct
0555  *
0556  *  Returns the I2C data bit value
0557  **/
0558 static int igb_get_i2c_data(void *data)
0559 {
0560     struct igb_adapter *adapter = (struct igb_adapter *)data;
0561     struct e1000_hw *hw = &adapter->hw;
0562     s32 i2cctl = rd32(E1000_I2CPARAMS);
0563 
0564     return !!(i2cctl & E1000_I2C_DATA_IN);
0565 }
0566 
0567 /**
0568  *  igb_set_i2c_data - Sets the I2C data bit
0569  *  @data: pointer to hardware structure
0570  *  @state: I2C data value (0 or 1) to set
0571  *
0572  *  Sets the I2C data bit
0573  **/
0574 static void igb_set_i2c_data(void *data, int state)
0575 {
0576     struct igb_adapter *adapter = (struct igb_adapter *)data;
0577     struct e1000_hw *hw = &adapter->hw;
0578     s32 i2cctl = rd32(E1000_I2CPARAMS);
0579 
0580     if (state) {
0581         i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
0582     } else {
0583         i2cctl &= ~E1000_I2C_DATA_OE_N;
0584         i2cctl &= ~E1000_I2C_DATA_OUT;
0585     }
0586 
0587     wr32(E1000_I2CPARAMS, i2cctl);
0588     wrfl();
0589 }
0590 
0591 /**
0592  *  igb_set_i2c_clk - Sets the I2C SCL clock
0593  *  @data: pointer to hardware structure
0594  *  @state: state to set clock
0595  *
0596  *  Sets the I2C clock line to state
0597  **/
0598 static void igb_set_i2c_clk(void *data, int state)
0599 {
0600     struct igb_adapter *adapter = (struct igb_adapter *)data;
0601     struct e1000_hw *hw = &adapter->hw;
0602     s32 i2cctl = rd32(E1000_I2CPARAMS);
0603 
0604     if (state) {
0605         i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
0606     } else {
0607         i2cctl &= ~E1000_I2C_CLK_OUT;
0608         i2cctl &= ~E1000_I2C_CLK_OE_N;
0609     }
0610     wr32(E1000_I2CPARAMS, i2cctl);
0611     wrfl();
0612 }
0613 
0614 /**
0615  *  igb_get_i2c_clk - Gets the I2C SCL clock state
0616  *  @data: pointer to hardware structure
0617  *
0618  *  Gets the I2C clock state
0619  **/
0620 static int igb_get_i2c_clk(void *data)
0621 {
0622     struct igb_adapter *adapter = (struct igb_adapter *)data;
0623     struct e1000_hw *hw = &adapter->hw;
0624     s32 i2cctl = rd32(E1000_I2CPARAMS);
0625 
0626     return !!(i2cctl & E1000_I2C_CLK_IN);
0627 }
0628 
0629 static const struct i2c_algo_bit_data igb_i2c_algo = {
0630     .setsda     = igb_set_i2c_data,
0631     .setscl     = igb_set_i2c_clk,
0632     .getsda     = igb_get_i2c_data,
0633     .getscl     = igb_get_i2c_clk,
0634     .udelay     = 5,
0635     .timeout    = 20,
0636 };
0637 
0638 /**
0639  *  igb_get_hw_dev - return device
0640  *  @hw: pointer to hardware structure
0641  *
0642  *  used by hardware layer to print debugging information
0643  **/
0644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
0645 {
0646     struct igb_adapter *adapter = hw->back;
0647     return adapter->netdev;
0648 }
0649 
0650 /**
0651  *  igb_init_module - Driver Registration Routine
0652  *
0653  *  igb_init_module is the first routine called when the driver is
0654  *  loaded. All it does is register with the PCI subsystem.
0655  **/
0656 static int __init igb_init_module(void)
0657 {
0658     int ret;
0659 
0660     pr_info("%s\n", igb_driver_string);
0661     pr_info("%s\n", igb_copyright);
0662 
0663 #ifdef CONFIG_IGB_DCA
0664     dca_register_notify(&dca_notifier);
0665 #endif
0666     ret = pci_register_driver(&igb_driver);
0667     return ret;
0668 }
0669 
0670 module_init(igb_init_module);
0671 
0672 /**
0673  *  igb_exit_module - Driver Exit Cleanup Routine
0674  *
0675  *  igb_exit_module is called just before the driver is removed
0676  *  from memory.
0677  **/
0678 static void __exit igb_exit_module(void)
0679 {
0680 #ifdef CONFIG_IGB_DCA
0681     dca_unregister_notify(&dca_notifier);
0682 #endif
0683     pci_unregister_driver(&igb_driver);
0684 }
0685 
0686 module_exit(igb_exit_module);
0687 
0688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
0689 /**
0690  *  igb_cache_ring_register - Descriptor ring to register mapping
0691  *  @adapter: board private structure to initialize
0692  *
0693  *  Once we know the feature-set enabled for the device, we'll cache
0694  *  the register offset the descriptor ring is assigned to.
0695  **/
0696 static void igb_cache_ring_register(struct igb_adapter *adapter)
0697 {
0698     int i = 0, j = 0;
0699     u32 rbase_offset = adapter->vfs_allocated_count;
0700 
0701     switch (adapter->hw.mac.type) {
0702     case e1000_82576:
0703         /* The queues are allocated for virtualization such that VF 0
0704          * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
0705          * In order to avoid collision we start at the first free queue
0706          * and continue consuming queues in the same sequence
0707          */
0708         if (adapter->vfs_allocated_count) {
0709             for (; i < adapter->rss_queues; i++)
0710                 adapter->rx_ring[i]->reg_idx = rbase_offset +
0711                                    Q_IDX_82576(i);
0712         }
0713         fallthrough;
0714     case e1000_82575:
0715     case e1000_82580:
0716     case e1000_i350:
0717     case e1000_i354:
0718     case e1000_i210:
0719     case e1000_i211:
0720     default:
0721         for (; i < adapter->num_rx_queues; i++)
0722             adapter->rx_ring[i]->reg_idx = rbase_offset + i;
0723         for (; j < adapter->num_tx_queues; j++)
0724             adapter->tx_ring[j]->reg_idx = rbase_offset + j;
0725         break;
0726     }
0727 }
0728 
0729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
0730 {
0731     struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
0732     u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
0733     u32 value = 0;
0734 
0735     if (E1000_REMOVED(hw_addr))
0736         return ~value;
0737 
0738     value = readl(&hw_addr[reg]);
0739 
0740     /* reads should not return all F's */
0741     if (!(~value) && (!reg || !(~readl(hw_addr)))) {
0742         struct net_device *netdev = igb->netdev;
0743         hw->hw_addr = NULL;
0744         netdev_err(netdev, "PCIe link lost\n");
0745         WARN(pci_device_is_present(igb->pdev),
0746              "igb: Failed to read reg 0x%x!\n", reg);
0747     }
0748 
0749     return value;
0750 }
0751 
0752 /**
0753  *  igb_write_ivar - configure ivar for given MSI-X vector
0754  *  @hw: pointer to the HW structure
0755  *  @msix_vector: vector number we are allocating to a given ring
0756  *  @index: row index of IVAR register to write within IVAR table
0757  *  @offset: column offset of in IVAR, should be multiple of 8
0758  *
0759  *  This function is intended to handle the writing of the IVAR register
0760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
0761  *  each containing an cause allocation for an Rx and Tx ring, and a
0762  *  variable number of rows depending on the number of queues supported.
0763  **/
0764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
0765                int index, int offset)
0766 {
0767     u32 ivar = array_rd32(E1000_IVAR0, index);
0768 
0769     /* clear any bits that are currently set */
0770     ivar &= ~((u32)0xFF << offset);
0771 
0772     /* write vector and valid bit */
0773     ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
0774 
0775     array_wr32(E1000_IVAR0, index, ivar);
0776 }
0777 
0778 #define IGB_N0_QUEUE -1
0779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
0780 {
0781     struct igb_adapter *adapter = q_vector->adapter;
0782     struct e1000_hw *hw = &adapter->hw;
0783     int rx_queue = IGB_N0_QUEUE;
0784     int tx_queue = IGB_N0_QUEUE;
0785     u32 msixbm = 0;
0786 
0787     if (q_vector->rx.ring)
0788         rx_queue = q_vector->rx.ring->reg_idx;
0789     if (q_vector->tx.ring)
0790         tx_queue = q_vector->tx.ring->reg_idx;
0791 
0792     switch (hw->mac.type) {
0793     case e1000_82575:
0794         /* The 82575 assigns vectors using a bitmask, which matches the
0795          * bitmask for the EICR/EIMS/EIMC registers.  To assign one
0796          * or more queues to a vector, we write the appropriate bits
0797          * into the MSIXBM register for that vector.
0798          */
0799         if (rx_queue > IGB_N0_QUEUE)
0800             msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
0801         if (tx_queue > IGB_N0_QUEUE)
0802             msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
0803         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
0804             msixbm |= E1000_EIMS_OTHER;
0805         array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
0806         q_vector->eims_value = msixbm;
0807         break;
0808     case e1000_82576:
0809         /* 82576 uses a table that essentially consists of 2 columns
0810          * with 8 rows.  The ordering is column-major so we use the
0811          * lower 3 bits as the row index, and the 4th bit as the
0812          * column offset.
0813          */
0814         if (rx_queue > IGB_N0_QUEUE)
0815             igb_write_ivar(hw, msix_vector,
0816                        rx_queue & 0x7,
0817                        (rx_queue & 0x8) << 1);
0818         if (tx_queue > IGB_N0_QUEUE)
0819             igb_write_ivar(hw, msix_vector,
0820                        tx_queue & 0x7,
0821                        ((tx_queue & 0x8) << 1) + 8);
0822         q_vector->eims_value = BIT(msix_vector);
0823         break;
0824     case e1000_82580:
0825     case e1000_i350:
0826     case e1000_i354:
0827     case e1000_i210:
0828     case e1000_i211:
0829         /* On 82580 and newer adapters the scheme is similar to 82576
0830          * however instead of ordering column-major we have things
0831          * ordered row-major.  So we traverse the table by using
0832          * bit 0 as the column offset, and the remaining bits as the
0833          * row index.
0834          */
0835         if (rx_queue > IGB_N0_QUEUE)
0836             igb_write_ivar(hw, msix_vector,
0837                        rx_queue >> 1,
0838                        (rx_queue & 0x1) << 4);
0839         if (tx_queue > IGB_N0_QUEUE)
0840             igb_write_ivar(hw, msix_vector,
0841                        tx_queue >> 1,
0842                        ((tx_queue & 0x1) << 4) + 8);
0843         q_vector->eims_value = BIT(msix_vector);
0844         break;
0845     default:
0846         BUG();
0847         break;
0848     }
0849 
0850     /* add q_vector eims value to global eims_enable_mask */
0851     adapter->eims_enable_mask |= q_vector->eims_value;
0852 
0853     /* configure q_vector to set itr on first interrupt */
0854     q_vector->set_itr = 1;
0855 }
0856 
0857 /**
0858  *  igb_configure_msix - Configure MSI-X hardware
0859  *  @adapter: board private structure to initialize
0860  *
0861  *  igb_configure_msix sets up the hardware to properly
0862  *  generate MSI-X interrupts.
0863  **/
0864 static void igb_configure_msix(struct igb_adapter *adapter)
0865 {
0866     u32 tmp;
0867     int i, vector = 0;
0868     struct e1000_hw *hw = &adapter->hw;
0869 
0870     adapter->eims_enable_mask = 0;
0871 
0872     /* set vector for other causes, i.e. link changes */
0873     switch (hw->mac.type) {
0874     case e1000_82575:
0875         tmp = rd32(E1000_CTRL_EXT);
0876         /* enable MSI-X PBA support*/
0877         tmp |= E1000_CTRL_EXT_PBA_CLR;
0878 
0879         /* Auto-Mask interrupts upon ICR read. */
0880         tmp |= E1000_CTRL_EXT_EIAME;
0881         tmp |= E1000_CTRL_EXT_IRCA;
0882 
0883         wr32(E1000_CTRL_EXT, tmp);
0884 
0885         /* enable msix_other interrupt */
0886         array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
0887         adapter->eims_other = E1000_EIMS_OTHER;
0888 
0889         break;
0890 
0891     case e1000_82576:
0892     case e1000_82580:
0893     case e1000_i350:
0894     case e1000_i354:
0895     case e1000_i210:
0896     case e1000_i211:
0897         /* Turn on MSI-X capability first, or our settings
0898          * won't stick.  And it will take days to debug.
0899          */
0900         wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
0901              E1000_GPIE_PBA | E1000_GPIE_EIAME |
0902              E1000_GPIE_NSICR);
0903 
0904         /* enable msix_other interrupt */
0905         adapter->eims_other = BIT(vector);
0906         tmp = (vector++ | E1000_IVAR_VALID) << 8;
0907 
0908         wr32(E1000_IVAR_MISC, tmp);
0909         break;
0910     default:
0911         /* do nothing, since nothing else supports MSI-X */
0912         break;
0913     } /* switch (hw->mac.type) */
0914 
0915     adapter->eims_enable_mask |= adapter->eims_other;
0916 
0917     for (i = 0; i < adapter->num_q_vectors; i++)
0918         igb_assign_vector(adapter->q_vector[i], vector++);
0919 
0920     wrfl();
0921 }
0922 
0923 /**
0924  *  igb_request_msix - Initialize MSI-X interrupts
0925  *  @adapter: board private structure to initialize
0926  *
0927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
0928  *  kernel.
0929  **/
0930 static int igb_request_msix(struct igb_adapter *adapter)
0931 {
0932     unsigned int num_q_vectors = adapter->num_q_vectors;
0933     struct net_device *netdev = adapter->netdev;
0934     int i, err = 0, vector = 0, free_vector = 0;
0935 
0936     err = request_irq(adapter->msix_entries[vector].vector,
0937               igb_msix_other, 0, netdev->name, adapter);
0938     if (err)
0939         goto err_out;
0940 
0941     if (num_q_vectors > MAX_Q_VECTORS) {
0942         num_q_vectors = MAX_Q_VECTORS;
0943         dev_warn(&adapter->pdev->dev,
0944              "The number of queue vectors (%d) is higher than max allowed (%d)\n",
0945              adapter->num_q_vectors, MAX_Q_VECTORS);
0946     }
0947     for (i = 0; i < num_q_vectors; i++) {
0948         struct igb_q_vector *q_vector = adapter->q_vector[i];
0949 
0950         vector++;
0951 
0952         q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
0953 
0954         if (q_vector->rx.ring && q_vector->tx.ring)
0955             sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0956                 q_vector->rx.ring->queue_index);
0957         else if (q_vector->tx.ring)
0958             sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0959                 q_vector->tx.ring->queue_index);
0960         else if (q_vector->rx.ring)
0961             sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0962                 q_vector->rx.ring->queue_index);
0963         else
0964             sprintf(q_vector->name, "%s-unused", netdev->name);
0965 
0966         err = request_irq(adapter->msix_entries[vector].vector,
0967                   igb_msix_ring, 0, q_vector->name,
0968                   q_vector);
0969         if (err)
0970             goto err_free;
0971     }
0972 
0973     igb_configure_msix(adapter);
0974     return 0;
0975 
0976 err_free:
0977     /* free already assigned IRQs */
0978     free_irq(adapter->msix_entries[free_vector++].vector, adapter);
0979 
0980     vector--;
0981     for (i = 0; i < vector; i++) {
0982         free_irq(adapter->msix_entries[free_vector++].vector,
0983              adapter->q_vector[i]);
0984     }
0985 err_out:
0986     return err;
0987 }
0988 
0989 /**
0990  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
0991  *  @adapter: board private structure to initialize
0992  *  @v_idx: Index of vector to be freed
0993  *
0994  *  This function frees the memory allocated to the q_vector.
0995  **/
0996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
0997 {
0998     struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
0999 
1000     adapter->q_vector[v_idx] = NULL;
1001 
1002     /* igb_get_stats64() might access the rings on this vector,
1003      * we must wait a grace period before freeing it.
1004      */
1005     if (q_vector)
1006         kfree_rcu(q_vector, rcu);
1007 }
1008 
1009 /**
1010  *  igb_reset_q_vector - Reset config for interrupt vector
1011  *  @adapter: board private structure to initialize
1012  *  @v_idx: Index of vector to be reset
1013  *
1014  *  If NAPI is enabled it will delete any references to the
1015  *  NAPI struct. This is preparation for igb_free_q_vector.
1016  **/
1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019     struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020 
1021     /* Coming from igb_set_interrupt_capability, the vectors are not yet
1022      * allocated. So, q_vector is NULL so we should stop here.
1023      */
1024     if (!q_vector)
1025         return;
1026 
1027     if (q_vector->tx.ring)
1028         adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029 
1030     if (q_vector->rx.ring)
1031         adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032 
1033     netif_napi_del(&q_vector->napi);
1034 
1035 }
1036 
1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039     int v_idx = adapter->num_q_vectors;
1040 
1041     if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042         pci_disable_msix(adapter->pdev);
1043     else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044         pci_disable_msi(adapter->pdev);
1045 
1046     while (v_idx--)
1047         igb_reset_q_vector(adapter, v_idx);
1048 }
1049 
1050 /**
1051  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1052  *  @adapter: board private structure to initialize
1053  *
1054  *  This function frees the memory allocated to the q_vectors.  In addition if
1055  *  NAPI is enabled it will delete any references to the NAPI struct prior
1056  *  to freeing the q_vector.
1057  **/
1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060     int v_idx = adapter->num_q_vectors;
1061 
1062     adapter->num_tx_queues = 0;
1063     adapter->num_rx_queues = 0;
1064     adapter->num_q_vectors = 0;
1065 
1066     while (v_idx--) {
1067         igb_reset_q_vector(adapter, v_idx);
1068         igb_free_q_vector(adapter, v_idx);
1069     }
1070 }
1071 
1072 /**
1073  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074  *  @adapter: board private structure to initialize
1075  *
1076  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1077  *  MSI-X interrupts allocated.
1078  */
1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081     igb_free_q_vectors(adapter);
1082     igb_reset_interrupt_capability(adapter);
1083 }
1084 
1085 /**
1086  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1087  *  @adapter: board private structure to initialize
1088  *  @msix: boolean value of MSIX capability
1089  *
1090  *  Attempt to configure interrupts using the best available
1091  *  capabilities of the hardware and kernel.
1092  **/
1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095     int err;
1096     int numvecs, i;
1097 
1098     if (!msix)
1099         goto msi_only;
1100     adapter->flags |= IGB_FLAG_HAS_MSIX;
1101 
1102     /* Number of supported queues. */
1103     adapter->num_rx_queues = adapter->rss_queues;
1104     if (adapter->vfs_allocated_count)
1105         adapter->num_tx_queues = 1;
1106     else
1107         adapter->num_tx_queues = adapter->rss_queues;
1108 
1109     /* start with one vector for every Rx queue */
1110     numvecs = adapter->num_rx_queues;
1111 
1112     /* if Tx handler is separate add 1 for every Tx queue */
1113     if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114         numvecs += adapter->num_tx_queues;
1115 
1116     /* store the number of vectors reserved for queues */
1117     adapter->num_q_vectors = numvecs;
1118 
1119     /* add 1 vector for link status interrupts */
1120     numvecs++;
1121     for (i = 0; i < numvecs; i++)
1122         adapter->msix_entries[i].entry = i;
1123 
1124     err = pci_enable_msix_range(adapter->pdev,
1125                     adapter->msix_entries,
1126                     numvecs,
1127                     numvecs);
1128     if (err > 0)
1129         return;
1130 
1131     igb_reset_interrupt_capability(adapter);
1132 
1133     /* If we can't do MSI-X, try MSI */
1134 msi_only:
1135     adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137     /* disable SR-IOV for non MSI-X configurations */
1138     if (adapter->vf_data) {
1139         struct e1000_hw *hw = &adapter->hw;
1140         /* disable iov and allow time for transactions to clear */
1141         pci_disable_sriov(adapter->pdev);
1142         msleep(500);
1143 
1144         kfree(adapter->vf_mac_list);
1145         adapter->vf_mac_list = NULL;
1146         kfree(adapter->vf_data);
1147         adapter->vf_data = NULL;
1148         wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149         wrfl();
1150         msleep(100);
1151         dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152     }
1153 #endif
1154     adapter->vfs_allocated_count = 0;
1155     adapter->rss_queues = 1;
1156     adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157     adapter->num_rx_queues = 1;
1158     adapter->num_tx_queues = 1;
1159     adapter->num_q_vectors = 1;
1160     if (!pci_enable_msi(adapter->pdev))
1161         adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163 
1164 static void igb_add_ring(struct igb_ring *ring,
1165              struct igb_ring_container *head)
1166 {
1167     head->ring = ring;
1168     head->count++;
1169 }
1170 
1171 /**
1172  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173  *  @adapter: board private structure to initialize
1174  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1175  *  @v_idx: index of vector in adapter struct
1176  *  @txr_count: total number of Tx rings to allocate
1177  *  @txr_idx: index of first Tx ring to allocate
1178  *  @rxr_count: total number of Rx rings to allocate
1179  *  @rxr_idx: index of first Rx ring to allocate
1180  *
1181  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1182  **/
1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184                   int v_count, int v_idx,
1185                   int txr_count, int txr_idx,
1186                   int rxr_count, int rxr_idx)
1187 {
1188     struct igb_q_vector *q_vector;
1189     struct igb_ring *ring;
1190     int ring_count;
1191     size_t size;
1192 
1193     /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194     if (txr_count > 1 || rxr_count > 1)
1195         return -ENOMEM;
1196 
1197     ring_count = txr_count + rxr_count;
1198     size = struct_size(q_vector, ring, ring_count);
1199 
1200     /* allocate q_vector and rings */
1201     q_vector = adapter->q_vector[v_idx];
1202     if (!q_vector) {
1203         q_vector = kzalloc(size, GFP_KERNEL);
1204     } else if (size > ksize(q_vector)) {
1205         kfree_rcu(q_vector, rcu);
1206         q_vector = kzalloc(size, GFP_KERNEL);
1207     } else {
1208         memset(q_vector, 0, size);
1209     }
1210     if (!q_vector)
1211         return -ENOMEM;
1212 
1213     /* initialize NAPI */
1214     netif_napi_add(adapter->netdev, &q_vector->napi,
1215                igb_poll, 64);
1216 
1217     /* tie q_vector and adapter together */
1218     adapter->q_vector[v_idx] = q_vector;
1219     q_vector->adapter = adapter;
1220 
1221     /* initialize work limits */
1222     q_vector->tx.work_limit = adapter->tx_work_limit;
1223 
1224     /* initialize ITR configuration */
1225     q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1226     q_vector->itr_val = IGB_START_ITR;
1227 
1228     /* initialize pointer to rings */
1229     ring = q_vector->ring;
1230 
1231     /* intialize ITR */
1232     if (rxr_count) {
1233         /* rx or rx/tx vector */
1234         if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1235             q_vector->itr_val = adapter->rx_itr_setting;
1236     } else {
1237         /* tx only vector */
1238         if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1239             q_vector->itr_val = adapter->tx_itr_setting;
1240     }
1241 
1242     if (txr_count) {
1243         /* assign generic ring traits */
1244         ring->dev = &adapter->pdev->dev;
1245         ring->netdev = adapter->netdev;
1246 
1247         /* configure backlink on ring */
1248         ring->q_vector = q_vector;
1249 
1250         /* update q_vector Tx values */
1251         igb_add_ring(ring, &q_vector->tx);
1252 
1253         /* For 82575, context index must be unique per ring. */
1254         if (adapter->hw.mac.type == e1000_82575)
1255             set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1256 
1257         /* apply Tx specific ring traits */
1258         ring->count = adapter->tx_ring_count;
1259         ring->queue_index = txr_idx;
1260 
1261         ring->cbs_enable = false;
1262         ring->idleslope = 0;
1263         ring->sendslope = 0;
1264         ring->hicredit = 0;
1265         ring->locredit = 0;
1266 
1267         u64_stats_init(&ring->tx_syncp);
1268         u64_stats_init(&ring->tx_syncp2);
1269 
1270         /* assign ring to adapter */
1271         adapter->tx_ring[txr_idx] = ring;
1272 
1273         /* push pointer to next ring */
1274         ring++;
1275     }
1276 
1277     if (rxr_count) {
1278         /* assign generic ring traits */
1279         ring->dev = &adapter->pdev->dev;
1280         ring->netdev = adapter->netdev;
1281 
1282         /* configure backlink on ring */
1283         ring->q_vector = q_vector;
1284 
1285         /* update q_vector Rx values */
1286         igb_add_ring(ring, &q_vector->rx);
1287 
1288         /* set flag indicating ring supports SCTP checksum offload */
1289         if (adapter->hw.mac.type >= e1000_82576)
1290             set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1291 
1292         /* On i350, i354, i210, and i211, loopback VLAN packets
1293          * have the tag byte-swapped.
1294          */
1295         if (adapter->hw.mac.type >= e1000_i350)
1296             set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1297 
1298         /* apply Rx specific ring traits */
1299         ring->count = adapter->rx_ring_count;
1300         ring->queue_index = rxr_idx;
1301 
1302         u64_stats_init(&ring->rx_syncp);
1303 
1304         /* assign ring to adapter */
1305         adapter->rx_ring[rxr_idx] = ring;
1306     }
1307 
1308     return 0;
1309 }
1310 
1311 
1312 /**
1313  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1314  *  @adapter: board private structure to initialize
1315  *
1316  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1317  *  return -ENOMEM.
1318  **/
1319 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1320 {
1321     int q_vectors = adapter->num_q_vectors;
1322     int rxr_remaining = adapter->num_rx_queues;
1323     int txr_remaining = adapter->num_tx_queues;
1324     int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1325     int err;
1326 
1327     if (q_vectors >= (rxr_remaining + txr_remaining)) {
1328         for (; rxr_remaining; v_idx++) {
1329             err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1330                          0, 0, 1, rxr_idx);
1331 
1332             if (err)
1333                 goto err_out;
1334 
1335             /* update counts and index */
1336             rxr_remaining--;
1337             rxr_idx++;
1338         }
1339     }
1340 
1341     for (; v_idx < q_vectors; v_idx++) {
1342         int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1343         int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1344 
1345         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1346                      tqpv, txr_idx, rqpv, rxr_idx);
1347 
1348         if (err)
1349             goto err_out;
1350 
1351         /* update counts and index */
1352         rxr_remaining -= rqpv;
1353         txr_remaining -= tqpv;
1354         rxr_idx++;
1355         txr_idx++;
1356     }
1357 
1358     return 0;
1359 
1360 err_out:
1361     adapter->num_tx_queues = 0;
1362     adapter->num_rx_queues = 0;
1363     adapter->num_q_vectors = 0;
1364 
1365     while (v_idx--)
1366         igb_free_q_vector(adapter, v_idx);
1367 
1368     return -ENOMEM;
1369 }
1370 
1371 /**
1372  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1373  *  @adapter: board private structure to initialize
1374  *  @msix: boolean value of MSIX capability
1375  *
1376  *  This function initializes the interrupts and allocates all of the queues.
1377  **/
1378 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1379 {
1380     struct pci_dev *pdev = adapter->pdev;
1381     int err;
1382 
1383     igb_set_interrupt_capability(adapter, msix);
1384 
1385     err = igb_alloc_q_vectors(adapter);
1386     if (err) {
1387         dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1388         goto err_alloc_q_vectors;
1389     }
1390 
1391     igb_cache_ring_register(adapter);
1392 
1393     return 0;
1394 
1395 err_alloc_q_vectors:
1396     igb_reset_interrupt_capability(adapter);
1397     return err;
1398 }
1399 
1400 /**
1401  *  igb_request_irq - initialize interrupts
1402  *  @adapter: board private structure to initialize
1403  *
1404  *  Attempts to configure interrupts using the best available
1405  *  capabilities of the hardware and kernel.
1406  **/
1407 static int igb_request_irq(struct igb_adapter *adapter)
1408 {
1409     struct net_device *netdev = adapter->netdev;
1410     struct pci_dev *pdev = adapter->pdev;
1411     int err = 0;
1412 
1413     if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414         err = igb_request_msix(adapter);
1415         if (!err)
1416             goto request_done;
1417         /* fall back to MSI */
1418         igb_free_all_tx_resources(adapter);
1419         igb_free_all_rx_resources(adapter);
1420 
1421         igb_clear_interrupt_scheme(adapter);
1422         err = igb_init_interrupt_scheme(adapter, false);
1423         if (err)
1424             goto request_done;
1425 
1426         igb_setup_all_tx_resources(adapter);
1427         igb_setup_all_rx_resources(adapter);
1428         igb_configure(adapter);
1429     }
1430 
1431     igb_assign_vector(adapter->q_vector[0], 0);
1432 
1433     if (adapter->flags & IGB_FLAG_HAS_MSI) {
1434         err = request_irq(pdev->irq, igb_intr_msi, 0,
1435                   netdev->name, adapter);
1436         if (!err)
1437             goto request_done;
1438 
1439         /* fall back to legacy interrupts */
1440         igb_reset_interrupt_capability(adapter);
1441         adapter->flags &= ~IGB_FLAG_HAS_MSI;
1442     }
1443 
1444     err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1445               netdev->name, adapter);
1446 
1447     if (err)
1448         dev_err(&pdev->dev, "Error %d getting interrupt\n",
1449             err);
1450 
1451 request_done:
1452     return err;
1453 }
1454 
1455 static void igb_free_irq(struct igb_adapter *adapter)
1456 {
1457     if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1458         int vector = 0, i;
1459 
1460         free_irq(adapter->msix_entries[vector++].vector, adapter);
1461 
1462         for (i = 0; i < adapter->num_q_vectors; i++)
1463             free_irq(adapter->msix_entries[vector++].vector,
1464                  adapter->q_vector[i]);
1465     } else {
1466         free_irq(adapter->pdev->irq, adapter);
1467     }
1468 }
1469 
1470 /**
1471  *  igb_irq_disable - Mask off interrupt generation on the NIC
1472  *  @adapter: board private structure
1473  **/
1474 static void igb_irq_disable(struct igb_adapter *adapter)
1475 {
1476     struct e1000_hw *hw = &adapter->hw;
1477 
1478     /* we need to be careful when disabling interrupts.  The VFs are also
1479      * mapped into these registers and so clearing the bits can cause
1480      * issues on the VF drivers so we only need to clear what we set
1481      */
1482     if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1483         u32 regval = rd32(E1000_EIAM);
1484 
1485         wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1486         wr32(E1000_EIMC, adapter->eims_enable_mask);
1487         regval = rd32(E1000_EIAC);
1488         wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1489     }
1490 
1491     wr32(E1000_IAM, 0);
1492     wr32(E1000_IMC, ~0);
1493     wrfl();
1494     if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1495         int i;
1496 
1497         for (i = 0; i < adapter->num_q_vectors; i++)
1498             synchronize_irq(adapter->msix_entries[i].vector);
1499     } else {
1500         synchronize_irq(adapter->pdev->irq);
1501     }
1502 }
1503 
1504 /**
1505  *  igb_irq_enable - Enable default interrupt generation settings
1506  *  @adapter: board private structure
1507  **/
1508 static void igb_irq_enable(struct igb_adapter *adapter)
1509 {
1510     struct e1000_hw *hw = &adapter->hw;
1511 
1512     if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1513         u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1514         u32 regval = rd32(E1000_EIAC);
1515 
1516         wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517         regval = rd32(E1000_EIAM);
1518         wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519         wr32(E1000_EIMS, adapter->eims_enable_mask);
1520         if (adapter->vfs_allocated_count) {
1521             wr32(E1000_MBVFIMR, 0xFF);
1522             ims |= E1000_IMS_VMMB;
1523         }
1524         wr32(E1000_IMS, ims);
1525     } else {
1526         wr32(E1000_IMS, IMS_ENABLE_MASK |
1527                 E1000_IMS_DRSTA);
1528         wr32(E1000_IAM, IMS_ENABLE_MASK |
1529                 E1000_IMS_DRSTA);
1530     }
1531 }
1532 
1533 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534 {
1535     struct e1000_hw *hw = &adapter->hw;
1536     u16 pf_id = adapter->vfs_allocated_count;
1537     u16 vid = adapter->hw.mng_cookie.vlan_id;
1538     u16 old_vid = adapter->mng_vlan_id;
1539 
1540     if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1541         /* add VID to filter table */
1542         igb_vfta_set(hw, vid, pf_id, true, true);
1543         adapter->mng_vlan_id = vid;
1544     } else {
1545         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1546     }
1547 
1548     if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1549         (vid != old_vid) &&
1550         !test_bit(old_vid, adapter->active_vlans)) {
1551         /* remove VID from filter table */
1552         igb_vfta_set(hw, vid, pf_id, false, true);
1553     }
1554 }
1555 
1556 /**
1557  *  igb_release_hw_control - release control of the h/w to f/w
1558  *  @adapter: address of board private structure
1559  *
1560  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1561  *  For ASF and Pass Through versions of f/w this means that the
1562  *  driver is no longer loaded.
1563  **/
1564 static void igb_release_hw_control(struct igb_adapter *adapter)
1565 {
1566     struct e1000_hw *hw = &adapter->hw;
1567     u32 ctrl_ext;
1568 
1569     /* Let firmware take over control of h/w */
1570     ctrl_ext = rd32(E1000_CTRL_EXT);
1571     wr32(E1000_CTRL_EXT,
1572             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1573 }
1574 
1575 /**
1576  *  igb_get_hw_control - get control of the h/w from f/w
1577  *  @adapter: address of board private structure
1578  *
1579  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1580  *  For ASF and Pass Through versions of f/w this means that
1581  *  the driver is loaded.
1582  **/
1583 static void igb_get_hw_control(struct igb_adapter *adapter)
1584 {
1585     struct e1000_hw *hw = &adapter->hw;
1586     u32 ctrl_ext;
1587 
1588     /* Let firmware know the driver has taken over */
1589     ctrl_ext = rd32(E1000_CTRL_EXT);
1590     wr32(E1000_CTRL_EXT,
1591             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1592 }
1593 
1594 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1595 {
1596     struct net_device *netdev = adapter->netdev;
1597     struct e1000_hw *hw = &adapter->hw;
1598 
1599     WARN_ON(hw->mac.type != e1000_i210);
1600 
1601     if (enable)
1602         adapter->flags |= IGB_FLAG_FQTSS;
1603     else
1604         adapter->flags &= ~IGB_FLAG_FQTSS;
1605 
1606     if (netif_running(netdev))
1607         schedule_work(&adapter->reset_task);
1608 }
1609 
1610 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1611 {
1612     return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1613 }
1614 
1615 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1616                    enum tx_queue_prio prio)
1617 {
1618     u32 val;
1619 
1620     WARN_ON(hw->mac.type != e1000_i210);
1621     WARN_ON(queue < 0 || queue > 4);
1622 
1623     val = rd32(E1000_I210_TXDCTL(queue));
1624 
1625     if (prio == TX_QUEUE_PRIO_HIGH)
1626         val |= E1000_TXDCTL_PRIORITY;
1627     else
1628         val &= ~E1000_TXDCTL_PRIORITY;
1629 
1630     wr32(E1000_I210_TXDCTL(queue), val);
1631 }
1632 
1633 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1634 {
1635     u32 val;
1636 
1637     WARN_ON(hw->mac.type != e1000_i210);
1638     WARN_ON(queue < 0 || queue > 1);
1639 
1640     val = rd32(E1000_I210_TQAVCC(queue));
1641 
1642     if (mode == QUEUE_MODE_STREAM_RESERVATION)
1643         val |= E1000_TQAVCC_QUEUEMODE;
1644     else
1645         val &= ~E1000_TQAVCC_QUEUEMODE;
1646 
1647     wr32(E1000_I210_TQAVCC(queue), val);
1648 }
1649 
1650 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1651 {
1652     int i;
1653 
1654     for (i = 0; i < adapter->num_tx_queues; i++) {
1655         if (adapter->tx_ring[i]->cbs_enable)
1656             return true;
1657     }
1658 
1659     return false;
1660 }
1661 
1662 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1663 {
1664     int i;
1665 
1666     for (i = 0; i < adapter->num_tx_queues; i++) {
1667         if (adapter->tx_ring[i]->launchtime_enable)
1668             return true;
1669     }
1670 
1671     return false;
1672 }
1673 
1674 /**
1675  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1676  *  @adapter: pointer to adapter struct
1677  *  @queue: queue number
1678  *
1679  *  Configure CBS and Launchtime for a given hardware queue.
1680  *  Parameters are retrieved from the correct Tx ring, so
1681  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1682  *  for setting those correctly prior to this function being called.
1683  **/
1684 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1685 {
1686     struct net_device *netdev = adapter->netdev;
1687     struct e1000_hw *hw = &adapter->hw;
1688     struct igb_ring *ring;
1689     u32 tqavcc, tqavctrl;
1690     u16 value;
1691 
1692     WARN_ON(hw->mac.type != e1000_i210);
1693     WARN_ON(queue < 0 || queue > 1);
1694     ring = adapter->tx_ring[queue];
1695 
1696     /* If any of the Qav features is enabled, configure queues as SR and
1697      * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1698      * as SP.
1699      */
1700     if (ring->cbs_enable || ring->launchtime_enable) {
1701         set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1702         set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1703     } else {
1704         set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1705         set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1706     }
1707 
1708     /* If CBS is enabled, set DataTranARB and config its parameters. */
1709     if (ring->cbs_enable || queue == 0) {
1710         /* i210 does not allow the queue 0 to be in the Strict
1711          * Priority mode while the Qav mode is enabled, so,
1712          * instead of disabling strict priority mode, we give
1713          * queue 0 the maximum of credits possible.
1714          *
1715          * See section 8.12.19 of the i210 datasheet, "Note:
1716          * Queue0 QueueMode must be set to 1b when
1717          * TransmitMode is set to Qav."
1718          */
1719         if (queue == 0 && !ring->cbs_enable) {
1720             /* max "linkspeed" idleslope in kbps */
1721             ring->idleslope = 1000000;
1722             ring->hicredit = ETH_FRAME_LEN;
1723         }
1724 
1725         /* Always set data transfer arbitration to credit-based
1726          * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1727          * the queues.
1728          */
1729         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1730         tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1731         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1732 
1733         /* According to i210 datasheet section 7.2.7.7, we should set
1734          * the 'idleSlope' field from TQAVCC register following the
1735          * equation:
1736          *
1737          * For 100 Mbps link speed:
1738          *
1739          *     value = BW * 0x7735 * 0.2                          (E1)
1740          *
1741          * For 1000Mbps link speed:
1742          *
1743          *     value = BW * 0x7735 * 2                            (E2)
1744          *
1745          * E1 and E2 can be merged into one equation as shown below.
1746          * Note that 'link-speed' is in Mbps.
1747          *
1748          *     value = BW * 0x7735 * 2 * link-speed
1749          *                           --------------               (E3)
1750          *                                1000
1751          *
1752          * 'BW' is the percentage bandwidth out of full link speed
1753          * which can be found with the following equation. Note that
1754          * idleSlope here is the parameter from this function which
1755          * is in kbps.
1756          *
1757          *     BW =     idleSlope
1758          *          -----------------                             (E4)
1759          *          link-speed * 1000
1760          *
1761          * That said, we can come up with a generic equation to
1762          * calculate the value we should set it TQAVCC register by
1763          * replacing 'BW' in E3 by E4. The resulting equation is:
1764          *
1765          * value =     idleSlope     * 0x7735 * 2 * link-speed
1766          *         -----------------            --------------    (E5)
1767          *         link-speed * 1000                 1000
1768          *
1769          * 'link-speed' is present in both sides of the fraction so
1770          * it is canceled out. The final equation is the following:
1771          *
1772          *     value = idleSlope * 61034
1773          *             -----------------                          (E6)
1774          *                  1000000
1775          *
1776          * NOTE: For i210, given the above, we can see that idleslope
1777          *       is represented in 16.38431 kbps units by the value at
1778          *       the TQAVCC register (1Gbps / 61034), which reduces
1779          *       the granularity for idleslope increments.
1780          *       For instance, if you want to configure a 2576kbps
1781          *       idleslope, the value to be written on the register
1782          *       would have to be 157.23. If rounded down, you end
1783          *       up with less bandwidth available than originally
1784          *       required (~2572 kbps). If rounded up, you end up
1785          *       with a higher bandwidth (~2589 kbps). Below the
1786          *       approach we take is to always round up the
1787          *       calculated value, so the resulting bandwidth might
1788          *       be slightly higher for some configurations.
1789          */
1790         value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1791 
1792         tqavcc = rd32(E1000_I210_TQAVCC(queue));
1793         tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1794         tqavcc |= value;
1795         wr32(E1000_I210_TQAVCC(queue), tqavcc);
1796 
1797         wr32(E1000_I210_TQAVHC(queue),
1798              0x80000000 + ring->hicredit * 0x7735);
1799     } else {
1800 
1801         /* Set idleSlope to zero. */
1802         tqavcc = rd32(E1000_I210_TQAVCC(queue));
1803         tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1804         wr32(E1000_I210_TQAVCC(queue), tqavcc);
1805 
1806         /* Set hiCredit to zero. */
1807         wr32(E1000_I210_TQAVHC(queue), 0);
1808 
1809         /* If CBS is not enabled for any queues anymore, then return to
1810          * the default state of Data Transmission Arbitration on
1811          * TQAVCTRL.
1812          */
1813         if (!is_any_cbs_enabled(adapter)) {
1814             tqavctrl = rd32(E1000_I210_TQAVCTRL);
1815             tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1816             wr32(E1000_I210_TQAVCTRL, tqavctrl);
1817         }
1818     }
1819 
1820     /* If LaunchTime is enabled, set DataTranTIM. */
1821     if (ring->launchtime_enable) {
1822         /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1823          * for any of the SR queues, and configure fetchtime delta.
1824          * XXX NOTE:
1825          *     - LaunchTime will be enabled for all SR queues.
1826          *     - A fixed offset can be added relative to the launch
1827          *       time of all packets if configured at reg LAUNCH_OS0.
1828          *       We are keeping it as 0 for now (default value).
1829          */
1830         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1831         tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1832                E1000_TQAVCTRL_FETCHTIME_DELTA;
1833         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1834     } else {
1835         /* If Launchtime is not enabled for any SR queues anymore,
1836          * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1837          * effectively disabling Launchtime.
1838          */
1839         if (!is_any_txtime_enabled(adapter)) {
1840             tqavctrl = rd32(E1000_I210_TQAVCTRL);
1841             tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1842             tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1843             wr32(E1000_I210_TQAVCTRL, tqavctrl);
1844         }
1845     }
1846 
1847     /* XXX: In i210 controller the sendSlope and loCredit parameters from
1848      * CBS are not configurable by software so we don't do any 'controller
1849      * configuration' in respect to these parameters.
1850      */
1851 
1852     netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1853            ring->cbs_enable ? "enabled" : "disabled",
1854            ring->launchtime_enable ? "enabled" : "disabled",
1855            queue,
1856            ring->idleslope, ring->sendslope,
1857            ring->hicredit, ring->locredit);
1858 }
1859 
1860 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1861                   bool enable)
1862 {
1863     struct igb_ring *ring;
1864 
1865     if (queue < 0 || queue > adapter->num_tx_queues)
1866         return -EINVAL;
1867 
1868     ring = adapter->tx_ring[queue];
1869     ring->launchtime_enable = enable;
1870 
1871     return 0;
1872 }
1873 
1874 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1875                    bool enable, int idleslope, int sendslope,
1876                    int hicredit, int locredit)
1877 {
1878     struct igb_ring *ring;
1879 
1880     if (queue < 0 || queue > adapter->num_tx_queues)
1881         return -EINVAL;
1882 
1883     ring = adapter->tx_ring[queue];
1884 
1885     ring->cbs_enable = enable;
1886     ring->idleslope = idleslope;
1887     ring->sendslope = sendslope;
1888     ring->hicredit = hicredit;
1889     ring->locredit = locredit;
1890 
1891     return 0;
1892 }
1893 
1894 /**
1895  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1896  *  @adapter: pointer to adapter struct
1897  *
1898  *  Configure TQAVCTRL register switching the controller's Tx mode
1899  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1900  *  a call to igb_config_tx_modes() per queue so any previously saved
1901  *  Tx parameters are applied.
1902  **/
1903 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1904 {
1905     struct net_device *netdev = adapter->netdev;
1906     struct e1000_hw *hw = &adapter->hw;
1907     u32 val;
1908 
1909     /* Only i210 controller supports changing the transmission mode. */
1910     if (hw->mac.type != e1000_i210)
1911         return;
1912 
1913     if (is_fqtss_enabled(adapter)) {
1914         int i, max_queue;
1915 
1916         /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1917          * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1918          * so SP queues wait for SR ones.
1919          */
1920         val = rd32(E1000_I210_TQAVCTRL);
1921         val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1922         val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1923         wr32(E1000_I210_TQAVCTRL, val);
1924 
1925         /* Configure Tx and Rx packet buffers sizes as described in
1926          * i210 datasheet section 7.2.7.7.
1927          */
1928         val = rd32(E1000_TXPBS);
1929         val &= ~I210_TXPBSIZE_MASK;
1930         val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1931             I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1932         wr32(E1000_TXPBS, val);
1933 
1934         val = rd32(E1000_RXPBS);
1935         val &= ~I210_RXPBSIZE_MASK;
1936         val |= I210_RXPBSIZE_PB_30KB;
1937         wr32(E1000_RXPBS, val);
1938 
1939         /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1940          * register should not exceed the buffer size programmed in
1941          * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1942          * so according to the datasheet we should set MAX_TPKT_SIZE to
1943          * 4kB / 64.
1944          *
1945          * However, when we do so, no frame from queue 2 and 3 are
1946          * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1947          * or _equal_ to the buffer size programmed in TXPBS. For this
1948          * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1949          */
1950         val = (4096 - 1) / 64;
1951         wr32(E1000_I210_DTXMXPKTSZ, val);
1952 
1953         /* Since FQTSS mode is enabled, apply any CBS configuration
1954          * previously set. If no previous CBS configuration has been
1955          * done, then the initial configuration is applied, which means
1956          * CBS is disabled.
1957          */
1958         max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1959                 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1960 
1961         for (i = 0; i < max_queue; i++) {
1962             igb_config_tx_modes(adapter, i);
1963         }
1964     } else {
1965         wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1966         wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1967         wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1968 
1969         val = rd32(E1000_I210_TQAVCTRL);
1970         /* According to Section 8.12.21, the other flags we've set when
1971          * enabling FQTSS are not relevant when disabling FQTSS so we
1972          * don't set they here.
1973          */
1974         val &= ~E1000_TQAVCTRL_XMIT_MODE;
1975         wr32(E1000_I210_TQAVCTRL, val);
1976     }
1977 
1978     netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1979            "enabled" : "disabled");
1980 }
1981 
1982 /**
1983  *  igb_configure - configure the hardware for RX and TX
1984  *  @adapter: private board structure
1985  **/
1986 static void igb_configure(struct igb_adapter *adapter)
1987 {
1988     struct net_device *netdev = adapter->netdev;
1989     int i;
1990 
1991     igb_get_hw_control(adapter);
1992     igb_set_rx_mode(netdev);
1993     igb_setup_tx_mode(adapter);
1994 
1995     igb_restore_vlan(adapter);
1996 
1997     igb_setup_tctl(adapter);
1998     igb_setup_mrqc(adapter);
1999     igb_setup_rctl(adapter);
2000 
2001     igb_nfc_filter_restore(adapter);
2002     igb_configure_tx(adapter);
2003     igb_configure_rx(adapter);
2004 
2005     igb_rx_fifo_flush_82575(&adapter->hw);
2006 
2007     /* call igb_desc_unused which always leaves
2008      * at least 1 descriptor unused to make sure
2009      * next_to_use != next_to_clean
2010      */
2011     for (i = 0; i < adapter->num_rx_queues; i++) {
2012         struct igb_ring *ring = adapter->rx_ring[i];
2013         igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2014     }
2015 }
2016 
2017 /**
2018  *  igb_power_up_link - Power up the phy/serdes link
2019  *  @adapter: address of board private structure
2020  **/
2021 void igb_power_up_link(struct igb_adapter *adapter)
2022 {
2023     igb_reset_phy(&adapter->hw);
2024 
2025     if (adapter->hw.phy.media_type == e1000_media_type_copper)
2026         igb_power_up_phy_copper(&adapter->hw);
2027     else
2028         igb_power_up_serdes_link_82575(&adapter->hw);
2029 
2030     igb_setup_link(&adapter->hw);
2031 }
2032 
2033 /**
2034  *  igb_power_down_link - Power down the phy/serdes link
2035  *  @adapter: address of board private structure
2036  */
2037 static void igb_power_down_link(struct igb_adapter *adapter)
2038 {
2039     if (adapter->hw.phy.media_type == e1000_media_type_copper)
2040         igb_power_down_phy_copper_82575(&adapter->hw);
2041     else
2042         igb_shutdown_serdes_link_82575(&adapter->hw);
2043 }
2044 
2045 /**
2046  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2047  * @adapter: address of the board private structure
2048  **/
2049 static void igb_check_swap_media(struct igb_adapter *adapter)
2050 {
2051     struct e1000_hw *hw = &adapter->hw;
2052     u32 ctrl_ext, connsw;
2053     bool swap_now = false;
2054 
2055     ctrl_ext = rd32(E1000_CTRL_EXT);
2056     connsw = rd32(E1000_CONNSW);
2057 
2058     /* need to live swap if current media is copper and we have fiber/serdes
2059      * to go to.
2060      */
2061 
2062     if ((hw->phy.media_type == e1000_media_type_copper) &&
2063         (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2064         swap_now = true;
2065     } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2066            !(connsw & E1000_CONNSW_SERDESD)) {
2067         /* copper signal takes time to appear */
2068         if (adapter->copper_tries < 4) {
2069             adapter->copper_tries++;
2070             connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071             wr32(E1000_CONNSW, connsw);
2072             return;
2073         } else {
2074             adapter->copper_tries = 0;
2075             if ((connsw & E1000_CONNSW_PHYSD) &&
2076                 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2077                 swap_now = true;
2078                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079                 wr32(E1000_CONNSW, connsw);
2080             }
2081         }
2082     }
2083 
2084     if (!swap_now)
2085         return;
2086 
2087     switch (hw->phy.media_type) {
2088     case e1000_media_type_copper:
2089         netdev_info(adapter->netdev,
2090             "MAS: changing media to fiber/serdes\n");
2091         ctrl_ext |=
2092             E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093         adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094         adapter->copper_tries = 0;
2095         break;
2096     case e1000_media_type_internal_serdes:
2097     case e1000_media_type_fiber:
2098         netdev_info(adapter->netdev,
2099             "MAS: changing media to copper\n");
2100         ctrl_ext &=
2101             ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102         adapter->flags |= IGB_FLAG_MEDIA_RESET;
2103         break;
2104     default:
2105         /* shouldn't get here during regular operation */
2106         netdev_err(adapter->netdev,
2107             "AMS: Invalid media type found, returning\n");
2108         break;
2109     }
2110     wr32(E1000_CTRL_EXT, ctrl_ext);
2111 }
2112 
2113 /**
2114  *  igb_up - Open the interface and prepare it to handle traffic
2115  *  @adapter: board private structure
2116  **/
2117 int igb_up(struct igb_adapter *adapter)
2118 {
2119     struct e1000_hw *hw = &adapter->hw;
2120     int i;
2121 
2122     /* hardware has been reset, we need to reload some things */
2123     igb_configure(adapter);
2124 
2125     clear_bit(__IGB_DOWN, &adapter->state);
2126 
2127     for (i = 0; i < adapter->num_q_vectors; i++)
2128         napi_enable(&(adapter->q_vector[i]->napi));
2129 
2130     if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131         igb_configure_msix(adapter);
2132     else
2133         igb_assign_vector(adapter->q_vector[0], 0);
2134 
2135     /* Clear any pending interrupts. */
2136     rd32(E1000_TSICR);
2137     rd32(E1000_ICR);
2138     igb_irq_enable(adapter);
2139 
2140     /* notify VFs that reset has been completed */
2141     if (adapter->vfs_allocated_count) {
2142         u32 reg_data = rd32(E1000_CTRL_EXT);
2143 
2144         reg_data |= E1000_CTRL_EXT_PFRSTD;
2145         wr32(E1000_CTRL_EXT, reg_data);
2146     }
2147 
2148     netif_tx_start_all_queues(adapter->netdev);
2149 
2150     /* start the watchdog. */
2151     hw->mac.get_link_status = 1;
2152     schedule_work(&adapter->watchdog_task);
2153 
2154     if ((adapter->flags & IGB_FLAG_EEE) &&
2155         (!hw->dev_spec._82575.eee_disable))
2156         adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2157 
2158     return 0;
2159 }
2160 
2161 void igb_down(struct igb_adapter *adapter)
2162 {
2163     struct net_device *netdev = adapter->netdev;
2164     struct e1000_hw *hw = &adapter->hw;
2165     u32 tctl, rctl;
2166     int i;
2167 
2168     /* signal that we're down so the interrupt handler does not
2169      * reschedule our watchdog timer
2170      */
2171     set_bit(__IGB_DOWN, &adapter->state);
2172 
2173     /* disable receives in the hardware */
2174     rctl = rd32(E1000_RCTL);
2175     wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176     /* flush and sleep below */
2177 
2178     igb_nfc_filter_exit(adapter);
2179 
2180     netif_carrier_off(netdev);
2181     netif_tx_stop_all_queues(netdev);
2182 
2183     /* disable transmits in the hardware */
2184     tctl = rd32(E1000_TCTL);
2185     tctl &= ~E1000_TCTL_EN;
2186     wr32(E1000_TCTL, tctl);
2187     /* flush both disables and wait for them to finish */
2188     wrfl();
2189     usleep_range(10000, 11000);
2190 
2191     igb_irq_disable(adapter);
2192 
2193     adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2194 
2195     for (i = 0; i < adapter->num_q_vectors; i++) {
2196         if (adapter->q_vector[i]) {
2197             napi_synchronize(&adapter->q_vector[i]->napi);
2198             napi_disable(&adapter->q_vector[i]->napi);
2199         }
2200     }
2201 
2202     del_timer_sync(&adapter->watchdog_timer);
2203     del_timer_sync(&adapter->phy_info_timer);
2204 
2205     /* record the stats before reset*/
2206     spin_lock(&adapter->stats64_lock);
2207     igb_update_stats(adapter);
2208     spin_unlock(&adapter->stats64_lock);
2209 
2210     adapter->link_speed = 0;
2211     adapter->link_duplex = 0;
2212 
2213     if (!pci_channel_offline(adapter->pdev))
2214         igb_reset(adapter);
2215 
2216     /* clear VLAN promisc flag so VFTA will be updated if necessary */
2217     adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2218 
2219     igb_clean_all_tx_rings(adapter);
2220     igb_clean_all_rx_rings(adapter);
2221 #ifdef CONFIG_IGB_DCA
2222 
2223     /* since we reset the hardware DCA settings were cleared */
2224     igb_setup_dca(adapter);
2225 #endif
2226 }
2227 
2228 void igb_reinit_locked(struct igb_adapter *adapter)
2229 {
2230     while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2231         usleep_range(1000, 2000);
2232     igb_down(adapter);
2233     igb_up(adapter);
2234     clear_bit(__IGB_RESETTING, &adapter->state);
2235 }
2236 
2237 /** igb_enable_mas - Media Autosense re-enable after swap
2238  *
2239  * @adapter: adapter struct
2240  **/
2241 static void igb_enable_mas(struct igb_adapter *adapter)
2242 {
2243     struct e1000_hw *hw = &adapter->hw;
2244     u32 connsw = rd32(E1000_CONNSW);
2245 
2246     /* configure for SerDes media detect */
2247     if ((hw->phy.media_type == e1000_media_type_copper) &&
2248         (!(connsw & E1000_CONNSW_SERDESD))) {
2249         connsw |= E1000_CONNSW_ENRGSRC;
2250         connsw |= E1000_CONNSW_AUTOSENSE_EN;
2251         wr32(E1000_CONNSW, connsw);
2252         wrfl();
2253     }
2254 }
2255 
2256 void igb_reset(struct igb_adapter *adapter)
2257 {
2258     struct pci_dev *pdev = adapter->pdev;
2259     struct e1000_hw *hw = &adapter->hw;
2260     struct e1000_mac_info *mac = &hw->mac;
2261     struct e1000_fc_info *fc = &hw->fc;
2262     u32 pba, hwm;
2263 
2264     /* Repartition Pba for greater than 9k mtu
2265      * To take effect CTRL.RST is required.
2266      */
2267     switch (mac->type) {
2268     case e1000_i350:
2269     case e1000_i354:
2270     case e1000_82580:
2271         pba = rd32(E1000_RXPBS);
2272         pba = igb_rxpbs_adjust_82580(pba);
2273         break;
2274     case e1000_82576:
2275         pba = rd32(E1000_RXPBS);
2276         pba &= E1000_RXPBS_SIZE_MASK_82576;
2277         break;
2278     case e1000_82575:
2279     case e1000_i210:
2280     case e1000_i211:
2281     default:
2282         pba = E1000_PBA_34K;
2283         break;
2284     }
2285 
2286     if (mac->type == e1000_82575) {
2287         u32 min_rx_space, min_tx_space, needed_tx_space;
2288 
2289         /* write Rx PBA so that hardware can report correct Tx PBA */
2290         wr32(E1000_PBA, pba);
2291 
2292         /* To maintain wire speed transmits, the Tx FIFO should be
2293          * large enough to accommodate two full transmit packets,
2294          * rounded up to the next 1KB and expressed in KB.  Likewise,
2295          * the Rx FIFO should be large enough to accommodate at least
2296          * one full receive packet and is similarly rounded up and
2297          * expressed in KB.
2298          */
2299         min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2300 
2301         /* The Tx FIFO also stores 16 bytes of information about the Tx
2302          * but don't include Ethernet FCS because hardware appends it.
2303          * We only need to round down to the nearest 512 byte block
2304          * count since the value we care about is 2 frames, not 1.
2305          */
2306         min_tx_space = adapter->max_frame_size;
2307         min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2308         min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2309 
2310         /* upper 16 bits has Tx packet buffer allocation size in KB */
2311         needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2312 
2313         /* If current Tx allocation is less than the min Tx FIFO size,
2314          * and the min Tx FIFO size is less than the current Rx FIFO
2315          * allocation, take space away from current Rx allocation.
2316          */
2317         if (needed_tx_space < pba) {
2318             pba -= needed_tx_space;
2319 
2320             /* if short on Rx space, Rx wins and must trump Tx
2321              * adjustment
2322              */
2323             if (pba < min_rx_space)
2324                 pba = min_rx_space;
2325         }
2326 
2327         /* adjust PBA for jumbo frames */
2328         wr32(E1000_PBA, pba);
2329     }
2330 
2331     /* flow control settings
2332      * The high water mark must be low enough to fit one full frame
2333      * after transmitting the pause frame.  As such we must have enough
2334      * space to allow for us to complete our current transmit and then
2335      * receive the frame that is in progress from the link partner.
2336      * Set it to:
2337      * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2338      */
2339     hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2340 
2341     fc->high_water = hwm & 0xFFFFFFF0;  /* 16-byte granularity */
2342     fc->low_water = fc->high_water - 16;
2343     fc->pause_time = 0xFFFF;
2344     fc->send_xon = 1;
2345     fc->current_mode = fc->requested_mode;
2346 
2347     /* disable receive for all VFs and wait one second */
2348     if (adapter->vfs_allocated_count) {
2349         int i;
2350 
2351         for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2352             adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2353 
2354         /* ping all the active vfs to let them know we are going down */
2355         igb_ping_all_vfs(adapter);
2356 
2357         /* disable transmits and receives */
2358         wr32(E1000_VFRE, 0);
2359         wr32(E1000_VFTE, 0);
2360     }
2361 
2362     /* Allow time for pending master requests to run */
2363     hw->mac.ops.reset_hw(hw);
2364     wr32(E1000_WUC, 0);
2365 
2366     if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2367         /* need to resetup here after media swap */
2368         adapter->ei.get_invariants(hw);
2369         adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2370     }
2371     if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2372         (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2373         igb_enable_mas(adapter);
2374     }
2375     if (hw->mac.ops.init_hw(hw))
2376         dev_err(&pdev->dev, "Hardware Error\n");
2377 
2378     /* RAR registers were cleared during init_hw, clear mac table */
2379     igb_flush_mac_table(adapter);
2380     __dev_uc_unsync(adapter->netdev, NULL);
2381 
2382     /* Recover default RAR entry */
2383     igb_set_default_mac_filter(adapter);
2384 
2385     /* Flow control settings reset on hardware reset, so guarantee flow
2386      * control is off when forcing speed.
2387      */
2388     if (!hw->mac.autoneg)
2389         igb_force_mac_fc(hw);
2390 
2391     igb_init_dmac(adapter, pba);
2392 #ifdef CONFIG_IGB_HWMON
2393     /* Re-initialize the thermal sensor on i350 devices. */
2394     if (!test_bit(__IGB_DOWN, &adapter->state)) {
2395         if (mac->type == e1000_i350 && hw->bus.func == 0) {
2396             /* If present, re-initialize the external thermal sensor
2397              * interface.
2398              */
2399             if (adapter->ets)
2400                 mac->ops.init_thermal_sensor_thresh(hw);
2401         }
2402     }
2403 #endif
2404     /* Re-establish EEE setting */
2405     if (hw->phy.media_type == e1000_media_type_copper) {
2406         switch (mac->type) {
2407         case e1000_i350:
2408         case e1000_i210:
2409         case e1000_i211:
2410             igb_set_eee_i350(hw, true, true);
2411             break;
2412         case e1000_i354:
2413             igb_set_eee_i354(hw, true, true);
2414             break;
2415         default:
2416             break;
2417         }
2418     }
2419     if (!netif_running(adapter->netdev))
2420         igb_power_down_link(adapter);
2421 
2422     igb_update_mng_vlan(adapter);
2423 
2424     /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2425     wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2426 
2427     /* Re-enable PTP, where applicable. */
2428     if (adapter->ptp_flags & IGB_PTP_ENABLED)
2429         igb_ptp_reset(adapter);
2430 
2431     igb_get_phy_info(hw);
2432 }
2433 
2434 static netdev_features_t igb_fix_features(struct net_device *netdev,
2435     netdev_features_t features)
2436 {
2437     /* Since there is no support for separate Rx/Tx vlan accel
2438      * enable/disable make sure Tx flag is always in same state as Rx.
2439      */
2440     if (features & NETIF_F_HW_VLAN_CTAG_RX)
2441         features |= NETIF_F_HW_VLAN_CTAG_TX;
2442     else
2443         features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2444 
2445     return features;
2446 }
2447 
2448 static int igb_set_features(struct net_device *netdev,
2449     netdev_features_t features)
2450 {
2451     netdev_features_t changed = netdev->features ^ features;
2452     struct igb_adapter *adapter = netdev_priv(netdev);
2453 
2454     if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2455         igb_vlan_mode(netdev, features);
2456 
2457     if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2458         return 0;
2459 
2460     if (!(features & NETIF_F_NTUPLE)) {
2461         struct hlist_node *node2;
2462         struct igb_nfc_filter *rule;
2463 
2464         spin_lock(&adapter->nfc_lock);
2465         hlist_for_each_entry_safe(rule, node2,
2466                       &adapter->nfc_filter_list, nfc_node) {
2467             igb_erase_filter(adapter, rule);
2468             hlist_del(&rule->nfc_node);
2469             kfree(rule);
2470         }
2471         spin_unlock(&adapter->nfc_lock);
2472         adapter->nfc_filter_count = 0;
2473     }
2474 
2475     netdev->features = features;
2476 
2477     if (netif_running(netdev))
2478         igb_reinit_locked(adapter);
2479     else
2480         igb_reset(adapter);
2481 
2482     return 1;
2483 }
2484 
2485 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2486                struct net_device *dev,
2487                const unsigned char *addr, u16 vid,
2488                u16 flags,
2489                struct netlink_ext_ack *extack)
2490 {
2491     /* guarantee we can provide a unique filter for the unicast address */
2492     if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2493         struct igb_adapter *adapter = netdev_priv(dev);
2494         int vfn = adapter->vfs_allocated_count;
2495 
2496         if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2497             return -ENOMEM;
2498     }
2499 
2500     return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2501 }
2502 
2503 #define IGB_MAX_MAC_HDR_LEN 127
2504 #define IGB_MAX_NETWORK_HDR_LEN 511
2505 
2506 static netdev_features_t
2507 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2508            netdev_features_t features)
2509 {
2510     unsigned int network_hdr_len, mac_hdr_len;
2511 
2512     /* Make certain the headers can be described by a context descriptor */
2513     mac_hdr_len = skb_network_header(skb) - skb->data;
2514     if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2515         return features & ~(NETIF_F_HW_CSUM |
2516                     NETIF_F_SCTP_CRC |
2517                     NETIF_F_GSO_UDP_L4 |
2518                     NETIF_F_HW_VLAN_CTAG_TX |
2519                     NETIF_F_TSO |
2520                     NETIF_F_TSO6);
2521 
2522     network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2523     if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2524         return features & ~(NETIF_F_HW_CSUM |
2525                     NETIF_F_SCTP_CRC |
2526                     NETIF_F_GSO_UDP_L4 |
2527                     NETIF_F_TSO |
2528                     NETIF_F_TSO6);
2529 
2530     /* We can only support IPV4 TSO in tunnels if we can mangle the
2531      * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532      */
2533     if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2534         features &= ~NETIF_F_TSO;
2535 
2536     return features;
2537 }
2538 
2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 {
2541     if (!is_fqtss_enabled(adapter)) {
2542         enable_fqtss(adapter, true);
2543         return;
2544     }
2545 
2546     igb_config_tx_modes(adapter, queue);
2547 
2548     if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2549         enable_fqtss(adapter, false);
2550 }
2551 
2552 static int igb_offload_cbs(struct igb_adapter *adapter,
2553                struct tc_cbs_qopt_offload *qopt)
2554 {
2555     struct e1000_hw *hw = &adapter->hw;
2556     int err;
2557 
2558     /* CBS offloading is only supported by i210 controller. */
2559     if (hw->mac.type != e1000_i210)
2560         return -EOPNOTSUPP;
2561 
2562     /* CBS offloading is only supported by queue 0 and queue 1. */
2563     if (qopt->queue < 0 || qopt->queue > 1)
2564         return -EINVAL;
2565 
2566     err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2567                   qopt->idleslope, qopt->sendslope,
2568                   qopt->hicredit, qopt->locredit);
2569     if (err)
2570         return err;
2571 
2572     igb_offload_apply(adapter, qopt->queue);
2573 
2574     return 0;
2575 }
2576 
2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2578 #define VLAN_PRIO_FULL_MASK (0x07)
2579 
2580 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2581                 struct flow_cls_offload *f,
2582                 int traffic_class,
2583                 struct igb_nfc_filter *input)
2584 {
2585     struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2586     struct flow_dissector *dissector = rule->match.dissector;
2587     struct netlink_ext_ack *extack = f->common.extack;
2588 
2589     if (dissector->used_keys &
2590         ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2591           BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2592           BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2593           BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2594         NL_SET_ERR_MSG_MOD(extack,
2595                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2596         return -EOPNOTSUPP;
2597     }
2598 
2599     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2600         struct flow_match_eth_addrs match;
2601 
2602         flow_rule_match_eth_addrs(rule, &match);
2603         if (!is_zero_ether_addr(match.mask->dst)) {
2604             if (!is_broadcast_ether_addr(match.mask->dst)) {
2605                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2606                 return -EINVAL;
2607             }
2608 
2609             input->filter.match_flags |=
2610                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2611             ether_addr_copy(input->filter.dst_addr, match.key->dst);
2612         }
2613 
2614         if (!is_zero_ether_addr(match.mask->src)) {
2615             if (!is_broadcast_ether_addr(match.mask->src)) {
2616                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2617                 return -EINVAL;
2618             }
2619 
2620             input->filter.match_flags |=
2621                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2622             ether_addr_copy(input->filter.src_addr, match.key->src);
2623         }
2624     }
2625 
2626     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2627         struct flow_match_basic match;
2628 
2629         flow_rule_match_basic(rule, &match);
2630         if (match.mask->n_proto) {
2631             if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2632                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2633                 return -EINVAL;
2634             }
2635 
2636             input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2637             input->filter.etype = match.key->n_proto;
2638         }
2639     }
2640 
2641     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2642         struct flow_match_vlan match;
2643 
2644         flow_rule_match_vlan(rule, &match);
2645         if (match.mask->vlan_priority) {
2646             if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2647                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2648                 return -EINVAL;
2649             }
2650 
2651             input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2652             input->filter.vlan_tci =
2653                 (__force __be16)match.key->vlan_priority;
2654         }
2655     }
2656 
2657     input->action = traffic_class;
2658     input->cookie = f->cookie;
2659 
2660     return 0;
2661 }
2662 
2663 static int igb_configure_clsflower(struct igb_adapter *adapter,
2664                    struct flow_cls_offload *cls_flower)
2665 {
2666     struct netlink_ext_ack *extack = cls_flower->common.extack;
2667     struct igb_nfc_filter *filter, *f;
2668     int err, tc;
2669 
2670     tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2671     if (tc < 0) {
2672         NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2673         return -EINVAL;
2674     }
2675 
2676     filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2677     if (!filter)
2678         return -ENOMEM;
2679 
2680     err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2681     if (err < 0)
2682         goto err_parse;
2683 
2684     spin_lock(&adapter->nfc_lock);
2685 
2686     hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2687         if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2688             err = -EEXIST;
2689             NL_SET_ERR_MSG_MOD(extack,
2690                        "This filter is already set in ethtool");
2691             goto err_locked;
2692         }
2693     }
2694 
2695     hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2696         if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2697             err = -EEXIST;
2698             NL_SET_ERR_MSG_MOD(extack,
2699                        "This filter is already set in cls_flower");
2700             goto err_locked;
2701         }
2702     }
2703 
2704     err = igb_add_filter(adapter, filter);
2705     if (err < 0) {
2706         NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2707         goto err_locked;
2708     }
2709 
2710     hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2711 
2712     spin_unlock(&adapter->nfc_lock);
2713 
2714     return 0;
2715 
2716 err_locked:
2717     spin_unlock(&adapter->nfc_lock);
2718 
2719 err_parse:
2720     kfree(filter);
2721 
2722     return err;
2723 }
2724 
2725 static int igb_delete_clsflower(struct igb_adapter *adapter,
2726                 struct flow_cls_offload *cls_flower)
2727 {
2728     struct igb_nfc_filter *filter;
2729     int err;
2730 
2731     spin_lock(&adapter->nfc_lock);
2732 
2733     hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2734         if (filter->cookie == cls_flower->cookie)
2735             break;
2736 
2737     if (!filter) {
2738         err = -ENOENT;
2739         goto out;
2740     }
2741 
2742     err = igb_erase_filter(adapter, filter);
2743     if (err < 0)
2744         goto out;
2745 
2746     hlist_del(&filter->nfc_node);
2747     kfree(filter);
2748 
2749 out:
2750     spin_unlock(&adapter->nfc_lock);
2751 
2752     return err;
2753 }
2754 
2755 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2756                    struct flow_cls_offload *cls_flower)
2757 {
2758     switch (cls_flower->command) {
2759     case FLOW_CLS_REPLACE:
2760         return igb_configure_clsflower(adapter, cls_flower);
2761     case FLOW_CLS_DESTROY:
2762         return igb_delete_clsflower(adapter, cls_flower);
2763     case FLOW_CLS_STATS:
2764         return -EOPNOTSUPP;
2765     default:
2766         return -EOPNOTSUPP;
2767     }
2768 }
2769 
2770 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2771                  void *cb_priv)
2772 {
2773     struct igb_adapter *adapter = cb_priv;
2774 
2775     if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2776         return -EOPNOTSUPP;
2777 
2778     switch (type) {
2779     case TC_SETUP_CLSFLOWER:
2780         return igb_setup_tc_cls_flower(adapter, type_data);
2781 
2782     default:
2783         return -EOPNOTSUPP;
2784     }
2785 }
2786 
2787 static int igb_offload_txtime(struct igb_adapter *adapter,
2788                   struct tc_etf_qopt_offload *qopt)
2789 {
2790     struct e1000_hw *hw = &adapter->hw;
2791     int err;
2792 
2793     /* Launchtime offloading is only supported by i210 controller. */
2794     if (hw->mac.type != e1000_i210)
2795         return -EOPNOTSUPP;
2796 
2797     /* Launchtime offloading is only supported by queues 0 and 1. */
2798     if (qopt->queue < 0 || qopt->queue > 1)
2799         return -EINVAL;
2800 
2801     err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2802     if (err)
2803         return err;
2804 
2805     igb_offload_apply(adapter, qopt->queue);
2806 
2807     return 0;
2808 }
2809 
2810 static LIST_HEAD(igb_block_cb_list);
2811 
2812 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2813             void *type_data)
2814 {
2815     struct igb_adapter *adapter = netdev_priv(dev);
2816 
2817     switch (type) {
2818     case TC_SETUP_QDISC_CBS:
2819         return igb_offload_cbs(adapter, type_data);
2820     case TC_SETUP_BLOCK:
2821         return flow_block_cb_setup_simple(type_data,
2822                           &igb_block_cb_list,
2823                           igb_setup_tc_block_cb,
2824                           adapter, adapter, true);
2825 
2826     case TC_SETUP_QDISC_ETF:
2827         return igb_offload_txtime(adapter, type_data);
2828 
2829     default:
2830         return -EOPNOTSUPP;
2831     }
2832 }
2833 
2834 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2835 {
2836     int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2837     struct igb_adapter *adapter = netdev_priv(dev);
2838     struct bpf_prog *prog = bpf->prog, *old_prog;
2839     bool running = netif_running(dev);
2840     bool need_reset;
2841 
2842     /* verify igb ring attributes are sufficient for XDP */
2843     for (i = 0; i < adapter->num_rx_queues; i++) {
2844         struct igb_ring *ring = adapter->rx_ring[i];
2845 
2846         if (frame_size > igb_rx_bufsz(ring)) {
2847             NL_SET_ERR_MSG_MOD(bpf->extack,
2848                        "The RX buffer size is too small for the frame size");
2849             netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2850                     igb_rx_bufsz(ring), frame_size);
2851             return -EINVAL;
2852         }
2853     }
2854 
2855     old_prog = xchg(&adapter->xdp_prog, prog);
2856     need_reset = (!!prog != !!old_prog);
2857 
2858     /* device is up and bpf is added/removed, must setup the RX queues */
2859     if (need_reset && running) {
2860         igb_close(dev);
2861     } else {
2862         for (i = 0; i < adapter->num_rx_queues; i++)
2863             (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2864                 adapter->xdp_prog);
2865     }
2866 
2867     if (old_prog)
2868         bpf_prog_put(old_prog);
2869 
2870     /* bpf is just replaced, RXQ and MTU are already setup */
2871     if (!need_reset)
2872         return 0;
2873 
2874     if (running)
2875         igb_open(dev);
2876 
2877     return 0;
2878 }
2879 
2880 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2881 {
2882     switch (xdp->command) {
2883     case XDP_SETUP_PROG:
2884         return igb_xdp_setup(dev, xdp);
2885     default:
2886         return -EINVAL;
2887     }
2888 }
2889 
2890 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2891 {
2892     /* Force memory writes to complete before letting h/w know there
2893      * are new descriptors to fetch.
2894      */
2895     wmb();
2896     writel(ring->next_to_use, ring->tail);
2897 }
2898 
2899 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2900 {
2901     unsigned int r_idx = smp_processor_id();
2902 
2903     if (r_idx >= adapter->num_tx_queues)
2904         r_idx = r_idx % adapter->num_tx_queues;
2905 
2906     return adapter->tx_ring[r_idx];
2907 }
2908 
2909 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2910 {
2911     struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2912     int cpu = smp_processor_id();
2913     struct igb_ring *tx_ring;
2914     struct netdev_queue *nq;
2915     u32 ret;
2916 
2917     if (unlikely(!xdpf))
2918         return IGB_XDP_CONSUMED;
2919 
2920     /* During program transitions its possible adapter->xdp_prog is assigned
2921      * but ring has not been configured yet. In this case simply abort xmit.
2922      */
2923     tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2924     if (unlikely(!tx_ring))
2925         return IGB_XDP_CONSUMED;
2926 
2927     nq = txring_txq(tx_ring);
2928     __netif_tx_lock(nq, cpu);
2929     /* Avoid transmit queue timeout since we share it with the slow path */
2930     txq_trans_cond_update(nq);
2931     ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2932     __netif_tx_unlock(nq);
2933 
2934     return ret;
2935 }
2936 
2937 static int igb_xdp_xmit(struct net_device *dev, int n,
2938             struct xdp_frame **frames, u32 flags)
2939 {
2940     struct igb_adapter *adapter = netdev_priv(dev);
2941     int cpu = smp_processor_id();
2942     struct igb_ring *tx_ring;
2943     struct netdev_queue *nq;
2944     int nxmit = 0;
2945     int i;
2946 
2947     if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2948         return -ENETDOWN;
2949 
2950     if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2951         return -EINVAL;
2952 
2953     /* During program transitions its possible adapter->xdp_prog is assigned
2954      * but ring has not been configured yet. In this case simply abort xmit.
2955      */
2956     tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2957     if (unlikely(!tx_ring))
2958         return -ENXIO;
2959 
2960     nq = txring_txq(tx_ring);
2961     __netif_tx_lock(nq, cpu);
2962 
2963     /* Avoid transmit queue timeout since we share it with the slow path */
2964     txq_trans_cond_update(nq);
2965 
2966     for (i = 0; i < n; i++) {
2967         struct xdp_frame *xdpf = frames[i];
2968         int err;
2969 
2970         err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2971         if (err != IGB_XDP_TX)
2972             break;
2973         nxmit++;
2974     }
2975 
2976     __netif_tx_unlock(nq);
2977 
2978     if (unlikely(flags & XDP_XMIT_FLUSH))
2979         igb_xdp_ring_update_tail(tx_ring);
2980 
2981     return nxmit;
2982 }
2983 
2984 static const struct net_device_ops igb_netdev_ops = {
2985     .ndo_open       = igb_open,
2986     .ndo_stop       = igb_close,
2987     .ndo_start_xmit     = igb_xmit_frame,
2988     .ndo_get_stats64    = igb_get_stats64,
2989     .ndo_set_rx_mode    = igb_set_rx_mode,
2990     .ndo_set_mac_address    = igb_set_mac,
2991     .ndo_change_mtu     = igb_change_mtu,
2992     .ndo_eth_ioctl      = igb_ioctl,
2993     .ndo_tx_timeout     = igb_tx_timeout,
2994     .ndo_validate_addr  = eth_validate_addr,
2995     .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2996     .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2997     .ndo_set_vf_mac     = igb_ndo_set_vf_mac,
2998     .ndo_set_vf_vlan    = igb_ndo_set_vf_vlan,
2999     .ndo_set_vf_rate    = igb_ndo_set_vf_bw,
3000     .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
3001     .ndo_set_vf_trust   = igb_ndo_set_vf_trust,
3002     .ndo_get_vf_config  = igb_ndo_get_vf_config,
3003     .ndo_fix_features   = igb_fix_features,
3004     .ndo_set_features   = igb_set_features,
3005     .ndo_fdb_add        = igb_ndo_fdb_add,
3006     .ndo_features_check = igb_features_check,
3007     .ndo_setup_tc       = igb_setup_tc,
3008     .ndo_bpf        = igb_xdp,
3009     .ndo_xdp_xmit       = igb_xdp_xmit,
3010 };
3011 
3012 /**
3013  * igb_set_fw_version - Configure version string for ethtool
3014  * @adapter: adapter struct
3015  **/
3016 void igb_set_fw_version(struct igb_adapter *adapter)
3017 {
3018     struct e1000_hw *hw = &adapter->hw;
3019     struct e1000_fw_version fw;
3020 
3021     igb_get_fw_version(hw, &fw);
3022 
3023     switch (hw->mac.type) {
3024     case e1000_i210:
3025     case e1000_i211:
3026         if (!(igb_get_flash_presence_i210(hw))) {
3027             snprintf(adapter->fw_version,
3028                  sizeof(adapter->fw_version),
3029                  "%2d.%2d-%d",
3030                  fw.invm_major, fw.invm_minor,
3031                  fw.invm_img_type);
3032             break;
3033         }
3034         fallthrough;
3035     default:
3036         /* if option is rom valid, display its version too */
3037         if (fw.or_valid) {
3038             snprintf(adapter->fw_version,
3039                  sizeof(adapter->fw_version),
3040                  "%d.%d, 0x%08x, %d.%d.%d",
3041                  fw.eep_major, fw.eep_minor, fw.etrack_id,
3042                  fw.or_major, fw.or_build, fw.or_patch);
3043         /* no option rom */
3044         } else if (fw.etrack_id != 0X0000) {
3045             snprintf(adapter->fw_version,
3046                 sizeof(adapter->fw_version),
3047                 "%d.%d, 0x%08x",
3048                 fw.eep_major, fw.eep_minor, fw.etrack_id);
3049         } else {
3050         snprintf(adapter->fw_version,
3051             sizeof(adapter->fw_version),
3052             "%d.%d.%d",
3053             fw.eep_major, fw.eep_minor, fw.eep_build);
3054         }
3055         break;
3056     }
3057 }
3058 
3059 /**
3060  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3061  *
3062  * @adapter: adapter struct
3063  **/
3064 static void igb_init_mas(struct igb_adapter *adapter)
3065 {
3066     struct e1000_hw *hw = &adapter->hw;
3067     u16 eeprom_data;
3068 
3069     hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3070     switch (hw->bus.func) {
3071     case E1000_FUNC_0:
3072         if (eeprom_data & IGB_MAS_ENABLE_0) {
3073             adapter->flags |= IGB_FLAG_MAS_ENABLE;
3074             netdev_info(adapter->netdev,
3075                 "MAS: Enabling Media Autosense for port %d\n",
3076                 hw->bus.func);
3077         }
3078         break;
3079     case E1000_FUNC_1:
3080         if (eeprom_data & IGB_MAS_ENABLE_1) {
3081             adapter->flags |= IGB_FLAG_MAS_ENABLE;
3082             netdev_info(adapter->netdev,
3083                 "MAS: Enabling Media Autosense for port %d\n",
3084                 hw->bus.func);
3085         }
3086         break;
3087     case E1000_FUNC_2:
3088         if (eeprom_data & IGB_MAS_ENABLE_2) {
3089             adapter->flags |= IGB_FLAG_MAS_ENABLE;
3090             netdev_info(adapter->netdev,
3091                 "MAS: Enabling Media Autosense for port %d\n",
3092                 hw->bus.func);
3093         }
3094         break;
3095     case E1000_FUNC_3:
3096         if (eeprom_data & IGB_MAS_ENABLE_3) {
3097             adapter->flags |= IGB_FLAG_MAS_ENABLE;
3098             netdev_info(adapter->netdev,
3099                 "MAS: Enabling Media Autosense for port %d\n",
3100                 hw->bus.func);
3101         }
3102         break;
3103     default:
3104         /* Shouldn't get here */
3105         netdev_err(adapter->netdev,
3106             "MAS: Invalid port configuration, returning\n");
3107         break;
3108     }
3109 }
3110 
3111 /**
3112  *  igb_init_i2c - Init I2C interface
3113  *  @adapter: pointer to adapter structure
3114  **/
3115 static s32 igb_init_i2c(struct igb_adapter *adapter)
3116 {
3117     struct e1000_hw *hw = &adapter->hw;
3118     s32 status = 0;
3119     s32 i2cctl;
3120 
3121     /* I2C interface supported on i350 devices */
3122     if (adapter->hw.mac.type != e1000_i350)
3123         return 0;
3124 
3125     i2cctl = rd32(E1000_I2CPARAMS);
3126     i2cctl |= E1000_I2CBB_EN
3127         | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N
3128         | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
3129     wr32(E1000_I2CPARAMS, i2cctl);
3130     wrfl();
3131 
3132     /* Initialize the i2c bus which is controlled by the registers.
3133      * This bus will use the i2c_algo_bit structure that implements
3134      * the protocol through toggling of the 4 bits in the register.
3135      */
3136     adapter->i2c_adap.owner = THIS_MODULE;
3137     adapter->i2c_algo = igb_i2c_algo;
3138     adapter->i2c_algo.data = adapter;
3139     adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3140     adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3141     strlcpy(adapter->i2c_adap.name, "igb BB",
3142         sizeof(adapter->i2c_adap.name));
3143     status = i2c_bit_add_bus(&adapter->i2c_adap);
3144     return status;
3145 }
3146 
3147 /**
3148  *  igb_probe - Device Initialization Routine
3149  *  @pdev: PCI device information struct
3150  *  @ent: entry in igb_pci_tbl
3151  *
3152  *  Returns 0 on success, negative on failure
3153  *
3154  *  igb_probe initializes an adapter identified by a pci_dev structure.
3155  *  The OS initialization, configuring of the adapter private structure,
3156  *  and a hardware reset occur.
3157  **/
3158 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3159 {
3160     struct net_device *netdev;
3161     struct igb_adapter *adapter;
3162     struct e1000_hw *hw;
3163     u16 eeprom_data = 0;
3164     s32 ret_val;
3165     static int global_quad_port_a; /* global quad port a indication */
3166     const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3167     u8 part_str[E1000_PBANUM_LENGTH];
3168     int err;
3169 
3170     /* Catch broken hardware that put the wrong VF device ID in
3171      * the PCIe SR-IOV capability.
3172      */
3173     if (pdev->is_virtfn) {
3174         WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3175             pci_name(pdev), pdev->vendor, pdev->device);
3176         return -EINVAL;
3177     }
3178 
3179     err = pci_enable_device_mem(pdev);
3180     if (err)
3181         return err;
3182 
3183     err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3184     if (err) {
3185         dev_err(&pdev->dev,
3186             "No usable DMA configuration, aborting\n");
3187         goto err_dma;
3188     }
3189 
3190     err = pci_request_mem_regions(pdev, igb_driver_name);
3191     if (err)
3192         goto err_pci_reg;
3193 
3194     pci_enable_pcie_error_reporting(pdev);
3195 
3196     pci_set_master(pdev);
3197     pci_save_state(pdev);
3198 
3199     err = -ENOMEM;
3200     netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3201                    IGB_MAX_TX_QUEUES);
3202     if (!netdev)
3203         goto err_alloc_etherdev;
3204 
3205     SET_NETDEV_DEV(netdev, &pdev->dev);
3206 
3207     pci_set_drvdata(pdev, netdev);
3208     adapter = netdev_priv(netdev);
3209     adapter->netdev = netdev;
3210     adapter->pdev = pdev;
3211     hw = &adapter->hw;
3212     hw->back = adapter;
3213     adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3214 
3215     err = -EIO;
3216     adapter->io_addr = pci_iomap(pdev, 0, 0);
3217     if (!adapter->io_addr)
3218         goto err_ioremap;
3219     /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3220     hw->hw_addr = adapter->io_addr;
3221 
3222     netdev->netdev_ops = &igb_netdev_ops;
3223     igb_set_ethtool_ops(netdev);
3224     netdev->watchdog_timeo = 5 * HZ;
3225 
3226     strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3227 
3228     netdev->mem_start = pci_resource_start(pdev, 0);
3229     netdev->mem_end = pci_resource_end(pdev, 0);
3230 
3231     /* PCI config space info */
3232     hw->vendor_id = pdev->vendor;
3233     hw->device_id = pdev->device;
3234     hw->revision_id = pdev->revision;
3235     hw->subsystem_vendor_id = pdev->subsystem_vendor;
3236     hw->subsystem_device_id = pdev->subsystem_device;
3237 
3238     /* Copy the default MAC, PHY and NVM function pointers */
3239     memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3240     memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3241     memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3242     /* Initialize skew-specific constants */
3243     err = ei->get_invariants(hw);
3244     if (err)
3245         goto err_sw_init;
3246 
3247     /* setup the private structure */
3248     err = igb_sw_init(adapter);
3249     if (err)
3250         goto err_sw_init;
3251 
3252     igb_get_bus_info_pcie(hw);
3253 
3254     hw->phy.autoneg_wait_to_complete = false;
3255 
3256     /* Copper options */
3257     if (hw->phy.media_type == e1000_media_type_copper) {
3258         hw->phy.mdix = AUTO_ALL_MODES;
3259         hw->phy.disable_polarity_correction = false;
3260         hw->phy.ms_type = e1000_ms_hw_default;
3261     }
3262 
3263     if (igb_check_reset_block(hw))
3264         dev_info(&pdev->dev,
3265             "PHY reset is blocked due to SOL/IDER session.\n");
3266 
3267     /* features is initialized to 0 in allocation, it might have bits
3268      * set by igb_sw_init so we should use an or instead of an
3269      * assignment.
3270      */
3271     netdev->features |= NETIF_F_SG |
3272                 NETIF_F_TSO |
3273                 NETIF_F_TSO6 |
3274                 NETIF_F_RXHASH |
3275                 NETIF_F_RXCSUM |
3276                 NETIF_F_HW_CSUM;
3277 
3278     if (hw->mac.type >= e1000_82576)
3279         netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3280 
3281     if (hw->mac.type >= e1000_i350)
3282         netdev->features |= NETIF_F_HW_TC;
3283 
3284 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3285                   NETIF_F_GSO_GRE_CSUM | \
3286                   NETIF_F_GSO_IPXIP4 | \
3287                   NETIF_F_GSO_IPXIP6 | \
3288                   NETIF_F_GSO_UDP_TUNNEL | \
3289                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3290 
3291     netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3292     netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3293 
3294     /* copy netdev features into list of user selectable features */
3295     netdev->hw_features |= netdev->features |
3296                    NETIF_F_HW_VLAN_CTAG_RX |
3297                    NETIF_F_HW_VLAN_CTAG_TX |
3298                    NETIF_F_RXALL;
3299 
3300     if (hw->mac.type >= e1000_i350)
3301         netdev->hw_features |= NETIF_F_NTUPLE;
3302 
3303     netdev->features |= NETIF_F_HIGHDMA;
3304 
3305     netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3306     netdev->mpls_features |= NETIF_F_HW_CSUM;
3307     netdev->hw_enc_features |= netdev->vlan_features;
3308 
3309     /* set this bit last since it cannot be part of vlan_features */
3310     netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3311                 NETIF_F_HW_VLAN_CTAG_RX |
3312                 NETIF_F_HW_VLAN_CTAG_TX;
3313 
3314     netdev->priv_flags |= IFF_SUPP_NOFCS;
3315 
3316     netdev->priv_flags |= IFF_UNICAST_FLT;
3317 
3318     /* MTU range: 68 - 9216 */
3319     netdev->min_mtu = ETH_MIN_MTU;
3320     netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3321 
3322     adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3323 
3324     /* before reading the NVM, reset the controller to put the device in a
3325      * known good starting state
3326      */
3327     hw->mac.ops.reset_hw(hw);
3328 
3329     /* make sure the NVM is good , i211/i210 parts can have special NVM
3330      * that doesn't contain a checksum
3331      */
3332     switch (hw->mac.type) {
3333     case e1000_i210:
3334     case e1000_i211:
3335         if (igb_get_flash_presence_i210(hw)) {
3336             if (hw->nvm.ops.validate(hw) < 0) {
3337                 dev_err(&pdev->dev,
3338                     "The NVM Checksum Is Not Valid\n");
3339                 err = -EIO;
3340                 goto err_eeprom;
3341             }
3342         }
3343         break;
3344     default:
3345         if (hw->nvm.ops.validate(hw) < 0) {
3346             dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3347             err = -EIO;
3348             goto err_eeprom;
3349         }
3350         break;
3351     }
3352 
3353     if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3354         /* copy the MAC address out of the NVM */
3355         if (hw->mac.ops.read_mac_addr(hw))
3356             dev_err(&pdev->dev, "NVM Read Error\n");
3357     }
3358 
3359     eth_hw_addr_set(netdev, hw->mac.addr);
3360 
3361     if (!is_valid_ether_addr(netdev->dev_addr)) {
3362         dev_err(&pdev->dev, "Invalid MAC Address\n");
3363         err = -EIO;
3364         goto err_eeprom;
3365     }
3366 
3367     igb_set_default_mac_filter(adapter);
3368 
3369     /* get firmware version for ethtool -i */
3370     igb_set_fw_version(adapter);
3371 
3372     /* configure RXPBSIZE and TXPBSIZE */
3373     if (hw->mac.type == e1000_i210) {
3374         wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3375         wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3376     }
3377 
3378     timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3379     timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3380 
3381     INIT_WORK(&adapter->reset_task, igb_reset_task);
3382     INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3383 
3384     /* Initialize link properties that are user-changeable */
3385     adapter->fc_autoneg = true;
3386     hw->mac.autoneg = true;
3387     hw->phy.autoneg_advertised = 0x2f;
3388 
3389     hw->fc.requested_mode = e1000_fc_default;
3390     hw->fc.current_mode = e1000_fc_default;
3391 
3392     igb_validate_mdi_setting(hw);
3393 
3394     /* By default, support wake on port A */
3395     if (hw->bus.func == 0)
3396         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3397 
3398     /* Check the NVM for wake support on non-port A ports */
3399     if (hw->mac.type >= e1000_82580)
3400         hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3401                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3402                  &eeprom_data);
3403     else if (hw->bus.func == 1)
3404         hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3405 
3406     if (eeprom_data & IGB_EEPROM_APME)
3407         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3408 
3409     /* now that we have the eeprom settings, apply the special cases where
3410      * the eeprom may be wrong or the board simply won't support wake on
3411      * lan on a particular port
3412      */
3413     switch (pdev->device) {
3414     case E1000_DEV_ID_82575GB_QUAD_COPPER:
3415         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3416         break;
3417     case E1000_DEV_ID_82575EB_FIBER_SERDES:
3418     case E1000_DEV_ID_82576_FIBER:
3419     case E1000_DEV_ID_82576_SERDES:
3420         /* Wake events only supported on port A for dual fiber
3421          * regardless of eeprom setting
3422          */
3423         if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3424             adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3425         break;
3426     case E1000_DEV_ID_82576_QUAD_COPPER:
3427     case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3428         /* if quad port adapter, disable WoL on all but port A */
3429         if (global_quad_port_a != 0)
3430             adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3431         else
3432             adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3433         /* Reset for multiple quad port adapters */
3434         if (++global_quad_port_a == 4)
3435             global_quad_port_a = 0;
3436         break;
3437     default:
3438         /* If the device can't wake, don't set software support */
3439         if (!device_can_wakeup(&adapter->pdev->dev))
3440             adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3441     }
3442 
3443     /* initialize the wol settings based on the eeprom settings */
3444     if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3445         adapter->wol |= E1000_WUFC_MAG;
3446 
3447     /* Some vendors want WoL disabled by default, but still supported */
3448     if ((hw->mac.type == e1000_i350) &&
3449         (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3450         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3451         adapter->wol = 0;
3452     }
3453 
3454     /* Some vendors want the ability to Use the EEPROM setting as
3455      * enable/disable only, and not for capability
3456      */
3457     if (((hw->mac.type == e1000_i350) ||
3458          (hw->mac.type == e1000_i354)) &&
3459         (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3460         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3461         adapter->wol = 0;
3462     }
3463     if (hw->mac.type == e1000_i350) {
3464         if (((pdev->subsystem_device == 0x5001) ||
3465              (pdev->subsystem_device == 0x5002)) &&
3466                 (hw->bus.func == 0)) {
3467             adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3468             adapter->wol = 0;
3469         }
3470         if (pdev->subsystem_device == 0x1F52)
3471             adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3472     }
3473 
3474     device_set_wakeup_enable(&adapter->pdev->dev,
3475                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3476 
3477     /* reset the hardware with the new settings */
3478     igb_reset(adapter);
3479 
3480     /* Init the I2C interface */
3481     err = igb_init_i2c(adapter);
3482     if (err) {
3483         dev_err(&pdev->dev, "failed to init i2c interface\n");
3484         goto err_eeprom;
3485     }
3486 
3487     /* let the f/w know that the h/w is now under the control of the
3488      * driver.
3489      */
3490     igb_get_hw_control(adapter);
3491 
3492     strcpy(netdev->name, "eth%d");
3493     err = register_netdev(netdev);
3494     if (err)
3495         goto err_register;
3496 
3497     /* carrier off reporting is important to ethtool even BEFORE open */
3498     netif_carrier_off(netdev);
3499 
3500 #ifdef CONFIG_IGB_DCA
3501     if (dca_add_requester(&pdev->dev) == 0) {
3502         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3503         dev_info(&pdev->dev, "DCA enabled\n");
3504         igb_setup_dca(adapter);
3505     }
3506 
3507 #endif
3508 #ifdef CONFIG_IGB_HWMON
3509     /* Initialize the thermal sensor on i350 devices. */
3510     if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3511         u16 ets_word;
3512 
3513         /* Read the NVM to determine if this i350 device supports an
3514          * external thermal sensor.
3515          */
3516         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3517         if (ets_word != 0x0000 && ets_word != 0xFFFF)
3518             adapter->ets = true;
3519         else
3520             adapter->ets = false;
3521         if (igb_sysfs_init(adapter))
3522             dev_err(&pdev->dev,
3523                 "failed to allocate sysfs resources\n");
3524     } else {
3525         adapter->ets = false;
3526     }
3527 #endif
3528     /* Check if Media Autosense is enabled */
3529     adapter->ei = *ei;
3530     if (hw->dev_spec._82575.mas_capable)
3531         igb_init_mas(adapter);
3532 
3533     /* do hw tstamp init after resetting */
3534     igb_ptp_init(adapter);
3535 
3536     dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3537     /* print bus type/speed/width info, not applicable to i354 */
3538     if (hw->mac.type != e1000_i354) {
3539         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3540              netdev->name,
3541              ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3542               (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3543                "unknown"),
3544              ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3545               "Width x4" :
3546               (hw->bus.width == e1000_bus_width_pcie_x2) ?
3547               "Width x2" :
3548               (hw->bus.width == e1000_bus_width_pcie_x1) ?
3549               "Width x1" : "unknown"), netdev->dev_addr);
3550     }
3551 
3552     if ((hw->mac.type == e1000_82576 &&
3553          rd32(E1000_EECD) & E1000_EECD_PRES) ||
3554         (hw->mac.type >= e1000_i210 ||
3555          igb_get_flash_presence_i210(hw))) {
3556         ret_val = igb_read_part_string(hw, part_str,
3557                            E1000_PBANUM_LENGTH);
3558     } else {
3559         ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3560     }
3561 
3562     if (ret_val)
3563         strcpy(part_str, "Unknown");
3564     dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3565     dev_info(&pdev->dev,
3566         "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3567         (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3568         (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3569         adapter->num_rx_queues, adapter->num_tx_queues);
3570     if (hw->phy.media_type == e1000_media_type_copper) {
3571         switch (hw->mac.type) {
3572         case e1000_i350:
3573         case e1000_i210:
3574         case e1000_i211:
3575             /* Enable EEE for internal copper PHY devices */
3576             err = igb_set_eee_i350(hw, true, true);
3577             if ((!err) &&
3578                 (!hw->dev_spec._82575.eee_disable)) {
3579                 adapter->eee_advert =
3580                     MDIO_EEE_100TX | MDIO_EEE_1000T;
3581                 adapter->flags |= IGB_FLAG_EEE;
3582             }
3583             break;
3584         case e1000_i354:
3585             if ((rd32(E1000_CTRL_EXT) &
3586                 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3587                 err = igb_set_eee_i354(hw, true, true);
3588                 if ((!err) &&
3589                     (!hw->dev_spec._82575.eee_disable)) {
3590                     adapter->eee_advert =
3591                        MDIO_EEE_100TX | MDIO_EEE_1000T;
3592                     adapter->flags |= IGB_FLAG_EEE;
3593                 }
3594             }
3595             break;
3596         default:
3597             break;
3598         }
3599     }
3600 
3601     dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3602 
3603     pm_runtime_put_noidle(&pdev->dev);
3604     return 0;
3605 
3606 err_register:
3607     igb_release_hw_control(adapter);
3608     memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3609 err_eeprom:
3610     if (!igb_check_reset_block(hw))
3611         igb_reset_phy(hw);
3612 
3613     if (hw->flash_address)
3614         iounmap(hw->flash_address);
3615 err_sw_init:
3616     kfree(adapter->mac_table);
3617     kfree(adapter->shadow_vfta);
3618     igb_clear_interrupt_scheme(adapter);
3619 #ifdef CONFIG_PCI_IOV
3620     igb_disable_sriov(pdev);
3621 #endif
3622     pci_iounmap(pdev, adapter->io_addr);
3623 err_ioremap:
3624     free_netdev(netdev);
3625 err_alloc_etherdev:
3626     pci_disable_pcie_error_reporting(pdev);
3627     pci_release_mem_regions(pdev);
3628 err_pci_reg:
3629 err_dma:
3630     pci_disable_device(pdev);
3631     return err;
3632 }
3633 
3634 #ifdef CONFIG_PCI_IOV
3635 static int igb_disable_sriov(struct pci_dev *pdev)
3636 {
3637     struct net_device *netdev = pci_get_drvdata(pdev);
3638     struct igb_adapter *adapter = netdev_priv(netdev);
3639     struct e1000_hw *hw = &adapter->hw;
3640     unsigned long flags;
3641 
3642     /* reclaim resources allocated to VFs */
3643     if (adapter->vf_data) {
3644         /* disable iov and allow time for transactions to clear */
3645         if (pci_vfs_assigned(pdev)) {
3646             dev_warn(&pdev->dev,
3647                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3648             return -EPERM;
3649         } else {
3650             pci_disable_sriov(pdev);
3651             msleep(500);
3652         }
3653         spin_lock_irqsave(&adapter->vfs_lock, flags);
3654         kfree(adapter->vf_mac_list);
3655         adapter->vf_mac_list = NULL;
3656         kfree(adapter->vf_data);
3657         adapter->vf_data = NULL;
3658         adapter->vfs_allocated_count = 0;
3659         spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3660         wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3661         wrfl();
3662         msleep(100);
3663         dev_info(&pdev->dev, "IOV Disabled\n");
3664 
3665         /* Re-enable DMA Coalescing flag since IOV is turned off */
3666         adapter->flags |= IGB_FLAG_DMAC;
3667     }
3668 
3669     return 0;
3670 }
3671 
3672 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3673 {
3674     struct net_device *netdev = pci_get_drvdata(pdev);
3675     struct igb_adapter *adapter = netdev_priv(netdev);
3676     int old_vfs = pci_num_vf(pdev);
3677     struct vf_mac_filter *mac_list;
3678     int err = 0;
3679     int num_vf_mac_filters, i;
3680 
3681     if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3682         err = -EPERM;
3683         goto out;
3684     }
3685     if (!num_vfs)
3686         goto out;
3687 
3688     if (old_vfs) {
3689         dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3690              old_vfs, max_vfs);
3691         adapter->vfs_allocated_count = old_vfs;
3692     } else
3693         adapter->vfs_allocated_count = num_vfs;
3694 
3695     adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3696                 sizeof(struct vf_data_storage), GFP_KERNEL);
3697 
3698     /* if allocation failed then we do not support SR-IOV */
3699     if (!adapter->vf_data) {
3700         adapter->vfs_allocated_count = 0;
3701         err = -ENOMEM;
3702         goto out;
3703     }
3704 
3705     /* Due to the limited number of RAR entries calculate potential
3706      * number of MAC filters available for the VFs. Reserve entries
3707      * for PF default MAC, PF MAC filters and at least one RAR entry
3708      * for each VF for VF MAC.
3709      */
3710     num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3711                  (1 + IGB_PF_MAC_FILTERS_RESERVED +
3712                   adapter->vfs_allocated_count);
3713 
3714     adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3715                        sizeof(struct vf_mac_filter),
3716                        GFP_KERNEL);
3717 
3718     mac_list = adapter->vf_mac_list;
3719     INIT_LIST_HEAD(&adapter->vf_macs.l);
3720 
3721     if (adapter->vf_mac_list) {
3722         /* Initialize list of VF MAC filters */
3723         for (i = 0; i < num_vf_mac_filters; i++) {
3724             mac_list->vf = -1;
3725             mac_list->free = true;
3726             list_add(&mac_list->l, &adapter->vf_macs.l);
3727             mac_list++;
3728         }
3729     } else {
3730         /* If we could not allocate memory for the VF MAC filters
3731          * we can continue without this feature but warn user.
3732          */
3733         dev_err(&pdev->dev,
3734             "Unable to allocate memory for VF MAC filter list\n");
3735     }
3736 
3737     /* only call pci_enable_sriov() if no VFs are allocated already */
3738     if (!old_vfs) {
3739         err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3740         if (err)
3741             goto err_out;
3742     }
3743     dev_info(&pdev->dev, "%d VFs allocated\n",
3744          adapter->vfs_allocated_count);
3745     for (i = 0; i < adapter->vfs_allocated_count; i++)
3746         igb_vf_configure(adapter, i);
3747 
3748     /* DMA Coalescing is not supported in IOV mode. */
3749     adapter->flags &= ~IGB_FLAG_DMAC;
3750     goto out;
3751 
3752 err_out:
3753     kfree(adapter->vf_mac_list);
3754     adapter->vf_mac_list = NULL;
3755     kfree(adapter->vf_data);
3756     adapter->vf_data = NULL;
3757     adapter->vfs_allocated_count = 0;
3758 out:
3759     return err;
3760 }
3761 
3762 #endif
3763 /**
3764  *  igb_remove_i2c - Cleanup  I2C interface
3765  *  @adapter: pointer to adapter structure
3766  **/
3767 static void igb_remove_i2c(struct igb_adapter *adapter)
3768 {
3769     /* free the adapter bus structure */
3770     i2c_del_adapter(&adapter->i2c_adap);
3771 }
3772 
3773 /**
3774  *  igb_remove - Device Removal Routine
3775  *  @pdev: PCI device information struct
3776  *
3777  *  igb_remove is called by the PCI subsystem to alert the driver
3778  *  that it should release a PCI device.  The could be caused by a
3779  *  Hot-Plug event, or because the driver is going to be removed from
3780  *  memory.
3781  **/
3782 static void igb_remove(struct pci_dev *pdev)
3783 {
3784     struct net_device *netdev = pci_get_drvdata(pdev);
3785     struct igb_adapter *adapter = netdev_priv(netdev);
3786     struct e1000_hw *hw = &adapter->hw;
3787 
3788     pm_runtime_get_noresume(&pdev->dev);
3789 #ifdef CONFIG_IGB_HWMON
3790     igb_sysfs_exit(adapter);
3791 #endif
3792     igb_remove_i2c(adapter);
3793     igb_ptp_stop(adapter);
3794     /* The watchdog timer may be rescheduled, so explicitly
3795      * disable watchdog from being rescheduled.
3796      */
3797     set_bit(__IGB_DOWN, &adapter->state);
3798     del_timer_sync(&adapter->watchdog_timer);
3799     del_timer_sync(&adapter->phy_info_timer);
3800 
3801     cancel_work_sync(&adapter->reset_task);
3802     cancel_work_sync(&adapter->watchdog_task);
3803 
3804 #ifdef CONFIG_IGB_DCA
3805     if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3806         dev_info(&pdev->dev, "DCA disabled\n");
3807         dca_remove_requester(&pdev->dev);
3808         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3809         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3810     }
3811 #endif
3812 
3813     /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3814      * would have already happened in close and is redundant.
3815      */
3816     igb_release_hw_control(adapter);
3817 
3818 #ifdef CONFIG_PCI_IOV
3819     rtnl_lock();
3820     igb_disable_sriov(pdev);
3821     rtnl_unlock();
3822 #endif
3823 
3824     unregister_netdev(netdev);
3825 
3826     igb_clear_interrupt_scheme(adapter);
3827 
3828     pci_iounmap(pdev, adapter->io_addr);
3829     if (hw->flash_address)
3830         iounmap(hw->flash_address);
3831     pci_release_mem_regions(pdev);
3832 
3833     kfree(adapter->mac_table);
3834     kfree(adapter->shadow_vfta);
3835     free_netdev(netdev);
3836 
3837     pci_disable_pcie_error_reporting(pdev);
3838 
3839     pci_disable_device(pdev);
3840 }
3841 
3842 /**
3843  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3844  *  @adapter: board private structure to initialize
3845  *
3846  *  This function initializes the vf specific data storage and then attempts to
3847  *  allocate the VFs.  The reason for ordering it this way is because it is much
3848  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3849  *  the memory for the VFs.
3850  **/
3851 static void igb_probe_vfs(struct igb_adapter *adapter)
3852 {
3853 #ifdef CONFIG_PCI_IOV
3854     struct pci_dev *pdev = adapter->pdev;
3855     struct e1000_hw *hw = &adapter->hw;
3856 
3857     /* Virtualization features not supported on i210 family. */
3858     if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3859         return;
3860 
3861     /* Of the below we really only want the effect of getting
3862      * IGB_FLAG_HAS_MSIX set (if available), without which
3863      * igb_enable_sriov() has no effect.
3864      */
3865     igb_set_interrupt_capability(adapter, true);
3866     igb_reset_interrupt_capability(adapter);
3867 
3868     pci_sriov_set_totalvfs(pdev, 7);
3869     igb_enable_sriov(pdev, max_vfs);
3870 
3871 #endif /* CONFIG_PCI_IOV */
3872 }
3873 
3874 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3875 {
3876     struct e1000_hw *hw = &adapter->hw;
3877     unsigned int max_rss_queues;
3878 
3879     /* Determine the maximum number of RSS queues supported. */
3880     switch (hw->mac.type) {
3881     case e1000_i211:
3882         max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3883         break;
3884     case e1000_82575:
3885     case e1000_i210:
3886         max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3887         break;
3888     case e1000_i350:
3889         /* I350 cannot do RSS and SR-IOV at the same time */
3890         if (!!adapter->vfs_allocated_count) {
3891             max_rss_queues = 1;
3892             break;
3893         }
3894         fallthrough;
3895     case e1000_82576:
3896         if (!!adapter->vfs_allocated_count) {
3897             max_rss_queues = 2;
3898             break;
3899         }
3900         fallthrough;
3901     case e1000_82580:
3902     case e1000_i354:
3903     default:
3904         max_rss_queues = IGB_MAX_RX_QUEUES;
3905         break;
3906     }
3907 
3908     return max_rss_queues;
3909 }
3910 
3911 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3912 {
3913     u32 max_rss_queues;
3914 
3915     max_rss_queues = igb_get_max_rss_queues(adapter);
3916     adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3917 
3918     igb_set_flag_queue_pairs(adapter, max_rss_queues);
3919 }
3920 
3921 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3922                   const u32 max_rss_queues)
3923 {
3924     struct e1000_hw *hw = &adapter->hw;
3925 
3926     /* Determine if we need to pair queues. */
3927     switch (hw->mac.type) {
3928     case e1000_82575:
3929     case e1000_i211:
3930         /* Device supports enough interrupts without queue pairing. */
3931         break;
3932     case e1000_82576:
3933     case e1000_82580:
3934     case e1000_i350:
3935     case e1000_i354:
3936     case e1000_i210:
3937     default:
3938         /* If rss_queues > half of max_rss_queues, pair the queues in
3939          * order to conserve interrupts due to limited supply.
3940          */
3941         if (adapter->rss_queues > (max_rss_queues / 2))
3942             adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3943         else
3944             adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3945         break;
3946     }
3947 }
3948 
3949 /**
3950  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3951  *  @adapter: board private structure to initialize
3952  *
3953  *  igb_sw_init initializes the Adapter private data structure.
3954  *  Fields are initialized based on PCI device information and
3955  *  OS network device settings (MTU size).
3956  **/
3957 static int igb_sw_init(struct igb_adapter *adapter)
3958 {
3959     struct e1000_hw *hw = &adapter->hw;
3960     struct net_device *netdev = adapter->netdev;
3961     struct pci_dev *pdev = adapter->pdev;
3962 
3963     pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3964 
3965     /* set default ring sizes */
3966     adapter->tx_ring_count = IGB_DEFAULT_TXD;
3967     adapter->rx_ring_count = IGB_DEFAULT_RXD;
3968 
3969     /* set default ITR values */
3970     adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3971     adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3972 
3973     /* set default work limits */
3974     adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3975 
3976     adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3977     adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3978 
3979     spin_lock_init(&adapter->nfc_lock);
3980     spin_lock_init(&adapter->stats64_lock);
3981 
3982     /* init spinlock to avoid concurrency of VF resources */
3983     spin_lock_init(&adapter->vfs_lock);
3984 #ifdef CONFIG_PCI_IOV
3985     switch (hw->mac.type) {
3986     case e1000_82576:
3987     case e1000_i350:
3988         if (max_vfs > 7) {
3989             dev_warn(&pdev->dev,
3990                  "Maximum of 7 VFs per PF, using max\n");
3991             max_vfs = adapter->vfs_allocated_count = 7;
3992         } else
3993             adapter->vfs_allocated_count = max_vfs;
3994         if (adapter->vfs_allocated_count)
3995             dev_warn(&pdev->dev,
3996                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3997         break;
3998     default:
3999         break;
4000     }
4001 #endif /* CONFIG_PCI_IOV */
4002 
4003     /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4004     adapter->flags |= IGB_FLAG_HAS_MSIX;
4005 
4006     adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4007                      sizeof(struct igb_mac_addr),
4008                      GFP_KERNEL);
4009     if (!adapter->mac_table)
4010         return -ENOMEM;
4011 
4012     igb_probe_vfs(adapter);
4013 
4014     igb_init_queue_configuration(adapter);
4015 
4016     /* Setup and initialize a copy of the hw vlan table array */
4017     adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4018                        GFP_KERNEL);
4019     if (!adapter->shadow_vfta)
4020         return -ENOMEM;
4021 
4022     /* This call may decrease the number of queues */
4023     if (igb_init_interrupt_scheme(adapter, true)) {
4024         dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4025         return -ENOMEM;
4026     }
4027 
4028     /* Explicitly disable IRQ since the NIC can be in any state. */
4029     igb_irq_disable(adapter);
4030 
4031     if (hw->mac.type >= e1000_i350)
4032         adapter->flags &= ~IGB_FLAG_DMAC;
4033 
4034     set_bit(__IGB_DOWN, &adapter->state);
4035     return 0;
4036 }
4037 
4038 /**
4039  *  __igb_open - Called when a network interface is made active
4040  *  @netdev: network interface device structure
4041  *  @resuming: indicates whether we are in a resume call
4042  *
4043  *  Returns 0 on success, negative value on failure
4044  *
4045  *  The open entry point is called when a network interface is made
4046  *  active by the system (IFF_UP).  At this point all resources needed
4047  *  for transmit and receive operations are allocated, the interrupt
4048  *  handler is registered with the OS, the watchdog timer is started,
4049  *  and the stack is notified that the interface is ready.
4050  **/
4051 static int __igb_open(struct net_device *netdev, bool resuming)
4052 {
4053     struct igb_adapter *adapter = netdev_priv(netdev);
4054     struct e1000_hw *hw = &adapter->hw;
4055     struct pci_dev *pdev = adapter->pdev;
4056     int err;
4057     int i;
4058 
4059     /* disallow open during test */
4060     if (test_bit(__IGB_TESTING, &adapter->state)) {
4061         WARN_ON(resuming);
4062         return -EBUSY;
4063     }
4064 
4065     if (!resuming)
4066         pm_runtime_get_sync(&pdev->dev);
4067 
4068     netif_carrier_off(netdev);
4069 
4070     /* allocate transmit descriptors */
4071     err = igb_setup_all_tx_resources(adapter);
4072     if (err)
4073         goto err_setup_tx;
4074 
4075     /* allocate receive descriptors */
4076     err = igb_setup_all_rx_resources(adapter);
4077     if (err)
4078         goto err_setup_rx;
4079 
4080     igb_power_up_link(adapter);
4081 
4082     /* before we allocate an interrupt, we must be ready to handle it.
4083      * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4084      * as soon as we call pci_request_irq, so we have to setup our
4085      * clean_rx handler before we do so.
4086      */
4087     igb_configure(adapter);
4088 
4089     err = igb_request_irq(adapter);
4090     if (err)
4091         goto err_req_irq;
4092 
4093     /* Notify the stack of the actual queue counts. */
4094     err = netif_set_real_num_tx_queues(adapter->netdev,
4095                        adapter->num_tx_queues);
4096     if (err)
4097         goto err_set_queues;
4098 
4099     err = netif_set_real_num_rx_queues(adapter->netdev,
4100                        adapter->num_rx_queues);
4101     if (err)
4102         goto err_set_queues;
4103 
4104     /* From here on the code is the same as igb_up() */
4105     clear_bit(__IGB_DOWN, &adapter->state);
4106 
4107     for (i = 0; i < adapter->num_q_vectors; i++)
4108         napi_enable(&(adapter->q_vector[i]->napi));
4109 
4110     /* Clear any pending interrupts. */
4111     rd32(E1000_TSICR);
4112     rd32(E1000_ICR);
4113 
4114     igb_irq_enable(adapter);
4115 
4116     /* notify VFs that reset has been completed */
4117     if (adapter->vfs_allocated_count) {
4118         u32 reg_data = rd32(E1000_CTRL_EXT);
4119 
4120         reg_data |= E1000_CTRL_EXT_PFRSTD;
4121         wr32(E1000_CTRL_EXT, reg_data);
4122     }
4123 
4124     netif_tx_start_all_queues(netdev);
4125 
4126     if (!resuming)
4127         pm_runtime_put(&pdev->dev);
4128 
4129     /* start the watchdog. */
4130     hw->mac.get_link_status = 1;
4131     schedule_work(&adapter->watchdog_task);
4132 
4133     return 0;
4134 
4135 err_set_queues:
4136     igb_free_irq(adapter);
4137 err_req_irq:
4138     igb_release_hw_control(adapter);
4139     igb_power_down_link(adapter);
4140     igb_free_all_rx_resources(adapter);
4141 err_setup_rx:
4142     igb_free_all_tx_resources(adapter);
4143 err_setup_tx:
4144     igb_reset(adapter);
4145     if (!resuming)
4146         pm_runtime_put(&pdev->dev);
4147 
4148     return err;
4149 }
4150 
4151 int igb_open(struct net_device *netdev)
4152 {
4153     return __igb_open(netdev, false);
4154 }
4155 
4156 /**
4157  *  __igb_close - Disables a network interface
4158  *  @netdev: network interface device structure
4159  *  @suspending: indicates we are in a suspend call
4160  *
4161  *  Returns 0, this is not allowed to fail
4162  *
4163  *  The close entry point is called when an interface is de-activated
4164  *  by the OS.  The hardware is still under the driver's control, but
4165  *  needs to be disabled.  A global MAC reset is issued to stop the
4166  *  hardware, and all transmit and receive resources are freed.
4167  **/
4168 static int __igb_close(struct net_device *netdev, bool suspending)
4169 {
4170     struct igb_adapter *adapter = netdev_priv(netdev);
4171     struct pci_dev *pdev = adapter->pdev;
4172 
4173     WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4174 
4175     if (!suspending)
4176         pm_runtime_get_sync(&pdev->dev);
4177 
4178     igb_down(adapter);
4179     igb_free_irq(adapter);
4180 
4181     igb_free_all_tx_resources(adapter);
4182     igb_free_all_rx_resources(adapter);
4183 
4184     if (!suspending)
4185         pm_runtime_put_sync(&pdev->dev);
4186     return 0;
4187 }
4188 
4189 int igb_close(struct net_device *netdev)
4190 {
4191     if (netif_device_present(netdev) || netdev->dismantle)
4192         return __igb_close(netdev, false);
4193     return 0;
4194 }
4195 
4196 /**
4197  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4198  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4199  *
4200  *  Return 0 on success, negative on failure
4201  **/
4202 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4203 {
4204     struct device *dev = tx_ring->dev;
4205     int size;
4206 
4207     size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4208 
4209     tx_ring->tx_buffer_info = vmalloc(size);
4210     if (!tx_ring->tx_buffer_info)
4211         goto err;
4212 
4213     /* round up to nearest 4K */
4214     tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4215     tx_ring->size = ALIGN(tx_ring->size, 4096);
4216 
4217     tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4218                        &tx_ring->dma, GFP_KERNEL);
4219     if (!tx_ring->desc)
4220         goto err;
4221 
4222     tx_ring->next_to_use = 0;
4223     tx_ring->next_to_clean = 0;
4224 
4225     return 0;
4226 
4227 err:
4228     vfree(tx_ring->tx_buffer_info);
4229     tx_ring->tx_buffer_info = NULL;
4230     dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4231     return -ENOMEM;
4232 }
4233 
4234 /**
4235  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4236  *               (Descriptors) for all queues
4237  *  @adapter: board private structure
4238  *
4239  *  Return 0 on success, negative on failure
4240  **/
4241 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4242 {
4243     struct pci_dev *pdev = adapter->pdev;
4244     int i, err = 0;
4245 
4246     for (i = 0; i < adapter->num_tx_queues; i++) {
4247         err = igb_setup_tx_resources(adapter->tx_ring[i]);
4248         if (err) {
4249             dev_err(&pdev->dev,
4250                 "Allocation for Tx Queue %u failed\n", i);
4251             for (i--; i >= 0; i--)
4252                 igb_free_tx_resources(adapter->tx_ring[i]);
4253             break;
4254         }
4255     }
4256 
4257     return err;
4258 }
4259 
4260 /**
4261  *  igb_setup_tctl - configure the transmit control registers
4262  *  @adapter: Board private structure
4263  **/
4264 void igb_setup_tctl(struct igb_adapter *adapter)
4265 {
4266     struct e1000_hw *hw = &adapter->hw;
4267     u32 tctl;
4268 
4269     /* disable queue 0 which is enabled by default on 82575 and 82576 */
4270     wr32(E1000_TXDCTL(0), 0);
4271 
4272     /* Program the Transmit Control Register */
4273     tctl = rd32(E1000_TCTL);
4274     tctl &= ~E1000_TCTL_CT;
4275     tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4276         (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4277 
4278     igb_config_collision_dist(hw);
4279 
4280     /* Enable transmits */
4281     tctl |= E1000_TCTL_EN;
4282 
4283     wr32(E1000_TCTL, tctl);
4284 }
4285 
4286 /**
4287  *  igb_configure_tx_ring - Configure transmit ring after Reset
4288  *  @adapter: board private structure
4289  *  @ring: tx ring to configure
4290  *
4291  *  Configure a transmit ring after a reset.
4292  **/
4293 void igb_configure_tx_ring(struct igb_adapter *adapter,
4294                struct igb_ring *ring)
4295 {
4296     struct e1000_hw *hw = &adapter->hw;
4297     u32 txdctl = 0;
4298     u64 tdba = ring->dma;
4299     int reg_idx = ring->reg_idx;
4300 
4301     wr32(E1000_TDLEN(reg_idx),
4302          ring->count * sizeof(union e1000_adv_tx_desc));
4303     wr32(E1000_TDBAL(reg_idx),
4304          tdba & 0x00000000ffffffffULL);
4305     wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4306 
4307     ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4308     wr32(E1000_TDH(reg_idx), 0);
4309     writel(0, ring->tail);
4310 
4311     txdctl |= IGB_TX_PTHRESH;
4312     txdctl |= IGB_TX_HTHRESH << 8;
4313     txdctl |= IGB_TX_WTHRESH << 16;
4314 
4315     /* reinitialize tx_buffer_info */
4316     memset(ring->tx_buffer_info, 0,
4317            sizeof(struct igb_tx_buffer) * ring->count);
4318 
4319     txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4320     wr32(E1000_TXDCTL(reg_idx), txdctl);
4321 }
4322 
4323 /**
4324  *  igb_configure_tx - Configure transmit Unit after Reset
4325  *  @adapter: board private structure
4326  *
4327  *  Configure the Tx unit of the MAC after a reset.
4328  **/
4329 static void igb_configure_tx(struct igb_adapter *adapter)
4330 {
4331     struct e1000_hw *hw = &adapter->hw;
4332     int i;
4333 
4334     /* disable the queues */
4335     for (i = 0; i < adapter->num_tx_queues; i++)
4336         wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4337 
4338     wrfl();
4339     usleep_range(10000, 20000);
4340 
4341     for (i = 0; i < adapter->num_tx_queues; i++)
4342         igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4343 }
4344 
4345 /**
4346  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4347  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4348  *
4349  *  Returns 0 on success, negative on failure
4350  **/
4351 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4352 {
4353     struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4354     struct device *dev = rx_ring->dev;
4355     int size, res;
4356 
4357     /* XDP RX-queue info */
4358     if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4359         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4360     res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4361                    rx_ring->queue_index, 0);
4362     if (res < 0) {
4363         dev_err(dev, "Failed to register xdp_rxq index %u\n",
4364             rx_ring->queue_index);
4365         return res;
4366     }
4367 
4368     size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4369 
4370     rx_ring->rx_buffer_info = vmalloc(size);
4371     if (!rx_ring->rx_buffer_info)
4372         goto err;
4373 
4374     /* Round up to nearest 4K */
4375     rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4376     rx_ring->size = ALIGN(rx_ring->size, 4096);
4377 
4378     rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4379                        &rx_ring->dma, GFP_KERNEL);
4380     if (!rx_ring->desc)
4381         goto err;
4382 
4383     rx_ring->next_to_alloc = 0;
4384     rx_ring->next_to_clean = 0;
4385     rx_ring->next_to_use = 0;
4386 
4387     rx_ring->xdp_prog = adapter->xdp_prog;
4388 
4389     return 0;
4390 
4391 err:
4392     xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4393     vfree(rx_ring->rx_buffer_info);
4394     rx_ring->rx_buffer_info = NULL;
4395     dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4396     return -ENOMEM;
4397 }
4398 
4399 /**
4400  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4401  *               (Descriptors) for all queues
4402  *  @adapter: board private structure
4403  *
4404  *  Return 0 on success, negative on failure
4405  **/
4406 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4407 {
4408     struct pci_dev *pdev = adapter->pdev;
4409     int i, err = 0;
4410 
4411     for (i = 0; i < adapter->num_rx_queues; i++) {
4412         err = igb_setup_rx_resources(adapter->rx_ring[i]);
4413         if (err) {
4414             dev_err(&pdev->dev,
4415                 "Allocation for Rx Queue %u failed\n", i);
4416             for (i--; i >= 0; i--)
4417                 igb_free_rx_resources(adapter->rx_ring[i]);
4418             break;
4419         }
4420     }
4421 
4422     return err;
4423 }
4424 
4425 /**
4426  *  igb_setup_mrqc - configure the multiple receive queue control registers
4427  *  @adapter: Board private structure
4428  **/
4429 static void igb_setup_mrqc(struct igb_adapter *adapter)
4430 {
4431     struct e1000_hw *hw = &adapter->hw;
4432     u32 mrqc, rxcsum;
4433     u32 j, num_rx_queues;
4434     u32 rss_key[10];
4435 
4436     netdev_rss_key_fill(rss_key, sizeof(rss_key));
4437     for (j = 0; j < 10; j++)
4438         wr32(E1000_RSSRK(j), rss_key[j]);
4439 
4440     num_rx_queues = adapter->rss_queues;
4441 
4442     switch (hw->mac.type) {
4443     case e1000_82576:
4444         /* 82576 supports 2 RSS queues for SR-IOV */
4445         if (adapter->vfs_allocated_count)
4446             num_rx_queues = 2;
4447         break;
4448     default:
4449         break;
4450     }
4451 
4452     if (adapter->rss_indir_tbl_init != num_rx_queues) {
4453         for (j = 0; j < IGB_RETA_SIZE; j++)
4454             adapter->rss_indir_tbl[j] =
4455             (j * num_rx_queues) / IGB_RETA_SIZE;
4456         adapter->rss_indir_tbl_init = num_rx_queues;
4457     }
4458     igb_write_rss_indir_tbl(adapter);
4459 
4460     /* Disable raw packet checksumming so that RSS hash is placed in
4461      * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4462      * offloads as they are enabled by default
4463      */
4464     rxcsum = rd32(E1000_RXCSUM);
4465     rxcsum |= E1000_RXCSUM_PCSD;
4466 
4467     if (adapter->hw.mac.type >= e1000_82576)
4468         /* Enable Receive Checksum Offload for SCTP */
4469         rxcsum |= E1000_RXCSUM_CRCOFL;
4470 
4471     /* Don't need to set TUOFL or IPOFL, they default to 1 */
4472     wr32(E1000_RXCSUM, rxcsum);
4473 
4474     /* Generate RSS hash based on packet types, TCP/UDP
4475      * port numbers and/or IPv4/v6 src and dst addresses
4476      */
4477     mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4478            E1000_MRQC_RSS_FIELD_IPV4_TCP |
4479            E1000_MRQC_RSS_FIELD_IPV6 |
4480            E1000_MRQC_RSS_FIELD_IPV6_TCP |
4481            E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4482 
4483     if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4484         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4485     if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4486         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4487 
4488     /* If VMDq is enabled then we set the appropriate mode for that, else
4489      * we default to RSS so that an RSS hash is calculated per packet even
4490      * if we are only using one queue
4491      */
4492     if (adapter->vfs_allocated_count) {
4493         if (hw->mac.type > e1000_82575) {
4494             /* Set the default pool for the PF's first queue */
4495             u32 vtctl = rd32(E1000_VT_CTL);
4496 
4497             vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4498                    E1000_VT_CTL_DISABLE_DEF_POOL);
4499             vtctl |= adapter->vfs_allocated_count <<
4500                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4501             wr32(E1000_VT_CTL, vtctl);
4502         }
4503         if (adapter->rss_queues > 1)
4504             mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4505         else
4506             mrqc |= E1000_MRQC_ENABLE_VMDQ;
4507     } else {
4508         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4509     }
4510     igb_vmm_control(adapter);
4511 
4512     wr32(E1000_MRQC, mrqc);
4513 }
4514 
4515 /**
4516  *  igb_setup_rctl - configure the receive control registers
4517  *  @adapter: Board private structure
4518  **/
4519 void igb_setup_rctl(struct igb_adapter *adapter)
4520 {
4521     struct e1000_hw *hw = &adapter->hw;
4522     u32 rctl;
4523 
4524     rctl = rd32(E1000_RCTL);
4525 
4526     rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4527     rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4528 
4529     rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4530         (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4531 
4532     /* enable stripping of CRC. It's unlikely this will break BMC
4533      * redirection as it did with e1000. Newer features require
4534      * that the HW strips the CRC.
4535      */
4536     rctl |= E1000_RCTL_SECRC;
4537 
4538     /* disable store bad packets and clear size bits. */
4539     rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4540 
4541     /* enable LPE to allow for reception of jumbo frames */
4542     rctl |= E1000_RCTL_LPE;
4543 
4544     /* disable queue 0 to prevent tail write w/o re-config */
4545     wr32(E1000_RXDCTL(0), 0);
4546 
4547     /* Attention!!!  For SR-IOV PF driver operations you must enable
4548      * queue drop for all VF and PF queues to prevent head of line blocking
4549      * if an un-trusted VF does not provide descriptors to hardware.
4550      */
4551     if (adapter->vfs_allocated_count) {
4552         /* set all queue drop enable bits */
4553         wr32(E1000_QDE, ALL_QUEUES);
4554     }
4555 
4556     /* This is useful for sniffing bad packets. */
4557     if (adapter->netdev->features & NETIF_F_RXALL) {
4558         /* UPE and MPE will be handled by normal PROMISC logic
4559          * in e1000e_set_rx_mode
4560          */
4561         rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4562              E1000_RCTL_BAM | /* RX All Bcast Pkts */
4563              E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4564 
4565         rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4566               E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4567         /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4568          * and that breaks VLANs.
4569          */
4570     }
4571 
4572     wr32(E1000_RCTL, rctl);
4573 }
4574 
4575 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4576                    int vfn)
4577 {
4578     struct e1000_hw *hw = &adapter->hw;
4579     u32 vmolr;
4580 
4581     if (size > MAX_JUMBO_FRAME_SIZE)
4582         size = MAX_JUMBO_FRAME_SIZE;
4583 
4584     vmolr = rd32(E1000_VMOLR(vfn));
4585     vmolr &= ~E1000_VMOLR_RLPML_MASK;
4586     vmolr |= size | E1000_VMOLR_LPE;
4587     wr32(E1000_VMOLR(vfn), vmolr);
4588 
4589     return 0;
4590 }
4591 
4592 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4593                      int vfn, bool enable)
4594 {
4595     struct e1000_hw *hw = &adapter->hw;
4596     u32 val, reg;
4597 
4598     if (hw->mac.type < e1000_82576)
4599         return;
4600 
4601     if (hw->mac.type == e1000_i350)
4602         reg = E1000_DVMOLR(vfn);
4603     else
4604         reg = E1000_VMOLR(vfn);
4605 
4606     val = rd32(reg);
4607     if (enable)
4608         val |= E1000_VMOLR_STRVLAN;
4609     else
4610         val &= ~(E1000_VMOLR_STRVLAN);
4611     wr32(reg, val);
4612 }
4613 
4614 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4615                  int vfn, bool aupe)
4616 {
4617     struct e1000_hw *hw = &adapter->hw;
4618     u32 vmolr;
4619 
4620     /* This register exists only on 82576 and newer so if we are older then
4621      * we should exit and do nothing
4622      */
4623     if (hw->mac.type < e1000_82576)
4624         return;
4625 
4626     vmolr = rd32(E1000_VMOLR(vfn));
4627     if (aupe)
4628         vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4629     else
4630         vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4631 
4632     /* clear all bits that might not be set */
4633     vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4634 
4635     if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4636         vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4637     /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4638      * multicast packets
4639      */
4640     if (vfn <= adapter->vfs_allocated_count)
4641         vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4642 
4643     wr32(E1000_VMOLR(vfn), vmolr);
4644 }
4645 
4646 /**
4647  *  igb_setup_srrctl - configure the split and replication receive control
4648  *                     registers
4649  *  @adapter: Board private structure
4650  *  @ring: receive ring to be configured
4651  **/
4652 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4653 {
4654     struct e1000_hw *hw = &adapter->hw;
4655     int reg_idx = ring->reg_idx;
4656     u32 srrctl = 0;
4657 
4658     srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4659     if (ring_uses_large_buffer(ring))
4660         srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4661     else
4662         srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4663     srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4664     if (hw->mac.type >= e1000_82580)
4665         srrctl |= E1000_SRRCTL_TIMESTAMP;
4666     /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4667      * queues and rx flow control is disabled
4668      */
4669     if (adapter->vfs_allocated_count ||
4670         (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4671          adapter->num_rx_queues > 1))
4672         srrctl |= E1000_SRRCTL_DROP_EN;
4673 
4674     wr32(E1000_SRRCTL(reg_idx), srrctl);
4675 }
4676 
4677 /**
4678  *  igb_configure_rx_ring - Configure a receive ring after Reset
4679  *  @adapter: board private structure
4680  *  @ring: receive ring to be configured
4681  *
4682  *  Configure the Rx unit of the MAC after a reset.
4683  **/
4684 void igb_configure_rx_ring(struct igb_adapter *adapter,
4685                struct igb_ring *ring)
4686 {
4687     struct e1000_hw *hw = &adapter->hw;
4688     union e1000_adv_rx_desc *rx_desc;
4689     u64 rdba = ring->dma;
4690     int reg_idx = ring->reg_idx;
4691     u32 rxdctl = 0;
4692 
4693     xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4694     WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4695                        MEM_TYPE_PAGE_SHARED, NULL));
4696 
4697     /* disable the queue */
4698     wr32(E1000_RXDCTL(reg_idx), 0);
4699 
4700     /* Set DMA base address registers */
4701     wr32(E1000_RDBAL(reg_idx),
4702          rdba & 0x00000000ffffffffULL);
4703     wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4704     wr32(E1000_RDLEN(reg_idx),
4705          ring->count * sizeof(union e1000_adv_rx_desc));
4706 
4707     /* initialize head and tail */
4708     ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4709     wr32(E1000_RDH(reg_idx), 0);
4710     writel(0, ring->tail);
4711 
4712     /* set descriptor configuration */
4713     igb_setup_srrctl(adapter, ring);
4714 
4715     /* set filtering for VMDQ pools */
4716     igb_set_vmolr(adapter, reg_idx & 0x7, true);
4717 
4718     rxdctl |= IGB_RX_PTHRESH;
4719     rxdctl |= IGB_RX_HTHRESH << 8;
4720     rxdctl |= IGB_RX_WTHRESH << 16;
4721 
4722     /* initialize rx_buffer_info */
4723     memset(ring->rx_buffer_info, 0,
4724            sizeof(struct igb_rx_buffer) * ring->count);
4725 
4726     /* initialize Rx descriptor 0 */
4727     rx_desc = IGB_RX_DESC(ring, 0);
4728     rx_desc->wb.upper.length = 0;
4729 
4730     /* enable receive descriptor fetching */
4731     rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4732     wr32(E1000_RXDCTL(reg_idx), rxdctl);
4733 }
4734 
4735 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4736                   struct igb_ring *rx_ring)
4737 {
4738     /* set build_skb and buffer size flags */
4739     clear_ring_build_skb_enabled(rx_ring);
4740     clear_ring_uses_large_buffer(rx_ring);
4741 
4742     if (adapter->flags & IGB_FLAG_RX_LEGACY)
4743         return;
4744 
4745     set_ring_build_skb_enabled(rx_ring);
4746 
4747 #if (PAGE_SIZE < 8192)
4748     if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4749         return;
4750 
4751     set_ring_uses_large_buffer(rx_ring);
4752 #endif
4753 }
4754 
4755 /**
4756  *  igb_configure_rx - Configure receive Unit after Reset
4757  *  @adapter: board private structure
4758  *
4759  *  Configure the Rx unit of the MAC after a reset.
4760  **/
4761 static void igb_configure_rx(struct igb_adapter *adapter)
4762 {
4763     int i;
4764 
4765     /* set the correct pool for the PF default MAC address in entry 0 */
4766     igb_set_default_mac_filter(adapter);
4767 
4768     /* Setup the HW Rx Head and Tail Descriptor Pointers and
4769      * the Base and Length of the Rx Descriptor Ring
4770      */
4771     for (i = 0; i < adapter->num_rx_queues; i++) {
4772         struct igb_ring *rx_ring = adapter->rx_ring[i];
4773 
4774         igb_set_rx_buffer_len(adapter, rx_ring);
4775         igb_configure_rx_ring(adapter, rx_ring);
4776     }
4777 }
4778 
4779 /**
4780  *  igb_free_tx_resources - Free Tx Resources per Queue
4781  *  @tx_ring: Tx descriptor ring for a specific queue
4782  *
4783  *  Free all transmit software resources
4784  **/
4785 void igb_free_tx_resources(struct igb_ring *tx_ring)
4786 {
4787     igb_clean_tx_ring(tx_ring);
4788 
4789     vfree(tx_ring->tx_buffer_info);
4790     tx_ring->tx_buffer_info = NULL;
4791 
4792     /* if not set, then don't free */
4793     if (!tx_ring->desc)
4794         return;
4795 
4796     dma_free_coherent(tx_ring->dev, tx_ring->size,
4797               tx_ring->desc, tx_ring->dma);
4798 
4799     tx_ring->desc = NULL;
4800 }
4801 
4802 /**
4803  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4804  *  @adapter: board private structure
4805  *
4806  *  Free all transmit software resources
4807  **/
4808 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4809 {
4810     int i;
4811 
4812     for (i = 0; i < adapter->num_tx_queues; i++)
4813         if (adapter->tx_ring[i])
4814             igb_free_tx_resources(adapter->tx_ring[i]);
4815 }
4816 
4817 /**
4818  *  igb_clean_tx_ring - Free Tx Buffers
4819  *  @tx_ring: ring to be cleaned
4820  **/
4821 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4822 {
4823     u16 i = tx_ring->next_to_clean;
4824     struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4825 
4826     while (i != tx_ring->next_to_use) {
4827         union e1000_adv_tx_desc *eop_desc, *tx_desc;
4828 
4829         /* Free all the Tx ring sk_buffs or xdp frames */
4830         if (tx_buffer->type == IGB_TYPE_SKB)
4831             dev_kfree_skb_any(tx_buffer->skb);
4832         else
4833             xdp_return_frame(tx_buffer->xdpf);
4834 
4835         /* unmap skb header data */
4836         dma_unmap_single(tx_ring->dev,
4837                  dma_unmap_addr(tx_buffer, dma),
4838                  dma_unmap_len(tx_buffer, len),
4839                  DMA_TO_DEVICE);
4840 
4841         /* check for eop_desc to determine the end of the packet */
4842         eop_desc = tx_buffer->next_to_watch;
4843         tx_desc = IGB_TX_DESC(tx_ring, i);
4844 
4845         /* unmap remaining buffers */
4846         while (tx_desc != eop_desc) {
4847             tx_buffer++;
4848             tx_desc++;
4849             i++;
4850             if (unlikely(i == tx_ring->count)) {
4851                 i = 0;
4852                 tx_buffer = tx_ring->tx_buffer_info;
4853                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4854             }
4855 
4856             /* unmap any remaining paged data */
4857             if (dma_unmap_len(tx_buffer, len))
4858                 dma_unmap_page(tx_ring->dev,
4859                            dma_unmap_addr(tx_buffer, dma),
4860                            dma_unmap_len(tx_buffer, len),
4861                            DMA_TO_DEVICE);
4862         }
4863 
4864         tx_buffer->next_to_watch = NULL;
4865 
4866         /* move us one more past the eop_desc for start of next pkt */
4867         tx_buffer++;
4868         i++;
4869         if (unlikely(i == tx_ring->count)) {
4870             i = 0;
4871             tx_buffer = tx_ring->tx_buffer_info;
4872         }
4873     }
4874 
4875     /* reset BQL for queue */
4876     netdev_tx_reset_queue(txring_txq(tx_ring));
4877 
4878     /* reset next_to_use and next_to_clean */
4879     tx_ring->next_to_use = 0;
4880     tx_ring->next_to_clean = 0;
4881 }
4882 
4883 /**
4884  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4885  *  @adapter: board private structure
4886  **/
4887 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4888 {
4889     int i;
4890 
4891     for (i = 0; i < adapter->num_tx_queues; i++)
4892         if (adapter->tx_ring[i])
4893             igb_clean_tx_ring(adapter->tx_ring[i]);
4894 }
4895 
4896 /**
4897  *  igb_free_rx_resources - Free Rx Resources
4898  *  @rx_ring: ring to clean the resources from
4899  *
4900  *  Free all receive software resources
4901  **/
4902 void igb_free_rx_resources(struct igb_ring *rx_ring)
4903 {
4904     igb_clean_rx_ring(rx_ring);
4905 
4906     rx_ring->xdp_prog = NULL;
4907     xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4908     vfree(rx_ring->rx_buffer_info);
4909     rx_ring->rx_buffer_info = NULL;
4910 
4911     /* if not set, then don't free */
4912     if (!rx_ring->desc)
4913         return;
4914 
4915     dma_free_coherent(rx_ring->dev, rx_ring->size,
4916               rx_ring->desc, rx_ring->dma);
4917 
4918     rx_ring->desc = NULL;
4919 }
4920 
4921 /**
4922  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4923  *  @adapter: board private structure
4924  *
4925  *  Free all receive software resources
4926  **/
4927 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4928 {
4929     int i;
4930 
4931     for (i = 0; i < adapter->num_rx_queues; i++)
4932         if (adapter->rx_ring[i])
4933             igb_free_rx_resources(adapter->rx_ring[i]);
4934 }
4935 
4936 /**
4937  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4938  *  @rx_ring: ring to free buffers from
4939  **/
4940 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4941 {
4942     u16 i = rx_ring->next_to_clean;
4943 
4944     dev_kfree_skb(rx_ring->skb);
4945     rx_ring->skb = NULL;
4946 
4947     /* Free all the Rx ring sk_buffs */
4948     while (i != rx_ring->next_to_alloc) {
4949         struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4950 
4951         /* Invalidate cache lines that may have been written to by
4952          * device so that we avoid corrupting memory.
4953          */
4954         dma_sync_single_range_for_cpu(rx_ring->dev,
4955                           buffer_info->dma,
4956                           buffer_info->page_offset,
4957                           igb_rx_bufsz(rx_ring),
4958                           DMA_FROM_DEVICE);
4959 
4960         /* free resources associated with mapping */
4961         dma_unmap_page_attrs(rx_ring->dev,
4962                      buffer_info->dma,
4963                      igb_rx_pg_size(rx_ring),
4964                      DMA_FROM_DEVICE,
4965                      IGB_RX_DMA_ATTR);
4966         __page_frag_cache_drain(buffer_info->page,
4967                     buffer_info->pagecnt_bias);
4968 
4969         i++;
4970         if (i == rx_ring->count)
4971             i = 0;
4972     }
4973 
4974     rx_ring->next_to_alloc = 0;
4975     rx_ring->next_to_clean = 0;
4976     rx_ring->next_to_use = 0;
4977 }
4978 
4979 /**
4980  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4981  *  @adapter: board private structure
4982  **/
4983 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4984 {
4985     int i;
4986 
4987     for (i = 0; i < adapter->num_rx_queues; i++)
4988         if (adapter->rx_ring[i])
4989             igb_clean_rx_ring(adapter->rx_ring[i]);
4990 }
4991 
4992 /**
4993  *  igb_set_mac - Change the Ethernet Address of the NIC
4994  *  @netdev: network interface device structure
4995  *  @p: pointer to an address structure
4996  *
4997  *  Returns 0 on success, negative on failure
4998  **/
4999 static int igb_set_mac(struct net_device *netdev, void *p)
5000 {
5001     struct igb_adapter *adapter = netdev_priv(netdev);
5002     struct e1000_hw *hw = &adapter->hw;
5003     struct sockaddr *addr = p;
5004 
5005     if (!is_valid_ether_addr(addr->sa_data))
5006         return -EADDRNOTAVAIL;
5007 
5008     eth_hw_addr_set(netdev, addr->sa_data);
5009     memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5010 
5011     /* set the correct pool for the new PF MAC address in entry 0 */
5012     igb_set_default_mac_filter(adapter);
5013 
5014     return 0;
5015 }
5016 
5017 /**
5018  *  igb_write_mc_addr_list - write multicast addresses to MTA
5019  *  @netdev: network interface device structure
5020  *
5021  *  Writes multicast address list to the MTA hash table.
5022  *  Returns: -ENOMEM on failure
5023  *           0 on no addresses written
5024  *           X on writing X addresses to MTA
5025  **/
5026 static int igb_write_mc_addr_list(struct net_device *netdev)
5027 {
5028     struct igb_adapter *adapter = netdev_priv(netdev);
5029     struct e1000_hw *hw = &adapter->hw;
5030     struct netdev_hw_addr *ha;
5031     u8  *mta_list;
5032     int i;
5033 
5034     if (netdev_mc_empty(netdev)) {
5035         /* nothing to program, so clear mc list */
5036         igb_update_mc_addr_list(hw, NULL, 0);
5037         igb_restore_vf_multicasts(adapter);
5038         return 0;
5039     }
5040 
5041     mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5042     if (!mta_list)
5043         return -ENOMEM;
5044 
5045     /* The shared function expects a packed array of only addresses. */
5046     i = 0;
5047     netdev_for_each_mc_addr(ha, netdev)
5048         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5049 
5050     igb_update_mc_addr_list(hw, mta_list, i);
5051     kfree(mta_list);
5052 
5053     return netdev_mc_count(netdev);
5054 }
5055 
5056 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5057 {
5058     struct e1000_hw *hw = &adapter->hw;
5059     u32 i, pf_id;
5060 
5061     switch (hw->mac.type) {
5062     case e1000_i210:
5063     case e1000_i211:
5064     case e1000_i350:
5065         /* VLAN filtering needed for VLAN prio filter */
5066         if (adapter->netdev->features & NETIF_F_NTUPLE)
5067             break;
5068         fallthrough;
5069     case e1000_82576:
5070     case e1000_82580:
5071     case e1000_i354:
5072         /* VLAN filtering needed for pool filtering */
5073         if (adapter->vfs_allocated_count)
5074             break;
5075         fallthrough;
5076     default:
5077         return 1;
5078     }
5079 
5080     /* We are already in VLAN promisc, nothing to do */
5081     if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5082         return 0;
5083 
5084     if (!adapter->vfs_allocated_count)
5085         goto set_vfta;
5086 
5087     /* Add PF to all active pools */
5088     pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5089 
5090     for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5091         u32 vlvf = rd32(E1000_VLVF(i));
5092 
5093         vlvf |= BIT(pf_id);
5094         wr32(E1000_VLVF(i), vlvf);
5095     }
5096 
5097 set_vfta:
5098     /* Set all bits in the VLAN filter table array */
5099     for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5100         hw->mac.ops.write_vfta(hw, i, ~0U);
5101 
5102     /* Set flag so we don't redo unnecessary work */
5103     adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5104 
5105     return 0;
5106 }
5107 
5108 #define VFTA_BLOCK_SIZE 8
5109 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5110 {
5111     struct e1000_hw *hw = &adapter->hw;
5112     u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5113     u32 vid_start = vfta_offset * 32;
5114     u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5115     u32 i, vid, word, bits, pf_id;
5116 
5117     /* guarantee that we don't scrub out management VLAN */
5118     vid = adapter->mng_vlan_id;
5119     if (vid >= vid_start && vid < vid_end)
5120         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5121 
5122     if (!adapter->vfs_allocated_count)
5123         goto set_vfta;
5124 
5125     pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5126 
5127     for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5128         u32 vlvf = rd32(E1000_VLVF(i));
5129 
5130         /* pull VLAN ID from VLVF */
5131         vid = vlvf & VLAN_VID_MASK;
5132 
5133         /* only concern ourselves with a certain range */
5134         if (vid < vid_start || vid >= vid_end)
5135             continue;
5136 
5137         if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5138             /* record VLAN ID in VFTA */
5139             vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5140 
5141             /* if PF is part of this then continue */
5142             if (test_bit(vid, adapter->active_vlans))
5143                 continue;
5144         }
5145 
5146         /* remove PF from the pool */
5147         bits = ~BIT(pf_id);
5148         bits &= rd32(E1000_VLVF(i));
5149         wr32(E1000_VLVF(i), bits);
5150     }
5151 
5152 set_vfta:
5153     /* extract values from active_vlans and write back to VFTA */
5154     for (i = VFTA_BLOCK_SIZE; i--;) {
5155         vid = (vfta_offset + i) * 32;
5156         word = vid / BITS_PER_LONG;
5157         bits = vid % BITS_PER_LONG;
5158 
5159         vfta[i] |= adapter->active_vlans[word] >> bits;
5160 
5161         hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5162     }
5163 }
5164 
5165 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5166 {
5167     u32 i;
5168 
5169     /* We are not in VLAN promisc, nothing to do */
5170     if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5171         return;
5172 
5173     /* Set flag so we don't redo unnecessary work */
5174     adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5175 
5176     for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5177         igb_scrub_vfta(adapter, i);
5178 }
5179 
5180 /**
5181  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5182  *  @netdev: network interface device structure
5183  *
5184  *  The set_rx_mode entry point is called whenever the unicast or multicast
5185  *  address lists or the network interface flags are updated.  This routine is
5186  *  responsible for configuring the hardware for proper unicast, multicast,
5187  *  promiscuous mode, and all-multi behavior.
5188  **/
5189 static void igb_set_rx_mode(struct net_device *netdev)
5190 {
5191     struct igb_adapter *adapter = netdev_priv(netdev);
5192     struct e1000_hw *hw = &adapter->hw;
5193     unsigned int vfn = adapter->vfs_allocated_count;
5194     u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5195     int count;
5196 
5197     /* Check for Promiscuous and All Multicast modes */
5198     if (netdev->flags & IFF_PROMISC) {
5199         rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5200         vmolr |= E1000_VMOLR_MPME;
5201 
5202         /* enable use of UTA filter to force packets to default pool */
5203         if (hw->mac.type == e1000_82576)
5204             vmolr |= E1000_VMOLR_ROPE;
5205     } else {
5206         if (netdev->flags & IFF_ALLMULTI) {
5207             rctl |= E1000_RCTL_MPE;
5208             vmolr |= E1000_VMOLR_MPME;
5209         } else {
5210             /* Write addresses to the MTA, if the attempt fails
5211              * then we should just turn on promiscuous mode so
5212              * that we can at least receive multicast traffic
5213              */
5214             count = igb_write_mc_addr_list(netdev);
5215             if (count < 0) {
5216                 rctl |= E1000_RCTL_MPE;
5217                 vmolr |= E1000_VMOLR_MPME;
5218             } else if (count) {
5219                 vmolr |= E1000_VMOLR_ROMPE;
5220             }
5221         }
5222     }
5223 
5224     /* Write addresses to available RAR registers, if there is not
5225      * sufficient space to store all the addresses then enable
5226      * unicast promiscuous mode
5227      */
5228     if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5229         rctl |= E1000_RCTL_UPE;
5230         vmolr |= E1000_VMOLR_ROPE;
5231     }
5232 
5233     /* enable VLAN filtering by default */
5234     rctl |= E1000_RCTL_VFE;
5235 
5236     /* disable VLAN filtering for modes that require it */
5237     if ((netdev->flags & IFF_PROMISC) ||
5238         (netdev->features & NETIF_F_RXALL)) {
5239         /* if we fail to set all rules then just clear VFE */
5240         if (igb_vlan_promisc_enable(adapter))
5241             rctl &= ~E1000_RCTL_VFE;
5242     } else {
5243         igb_vlan_promisc_disable(adapter);
5244     }
5245 
5246     /* update state of unicast, multicast, and VLAN filtering modes */
5247     rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5248                      E1000_RCTL_VFE);
5249     wr32(E1000_RCTL, rctl);
5250 
5251 #if (PAGE_SIZE < 8192)
5252     if (!adapter->vfs_allocated_count) {
5253         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5254             rlpml = IGB_MAX_FRAME_BUILD_SKB;
5255     }
5256 #endif
5257     wr32(E1000_RLPML, rlpml);
5258 
5259     /* In order to support SR-IOV and eventually VMDq it is necessary to set
5260      * the VMOLR to enable the appropriate modes.  Without this workaround
5261      * we will have issues with VLAN tag stripping not being done for frames
5262      * that are only arriving because we are the default pool
5263      */
5264     if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5265         return;
5266 
5267     /* set UTA to appropriate mode */
5268     igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5269 
5270     vmolr |= rd32(E1000_VMOLR(vfn)) &
5271          ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5272 
5273     /* enable Rx jumbo frames, restrict as needed to support build_skb */
5274     vmolr &= ~E1000_VMOLR_RLPML_MASK;
5275 #if (PAGE_SIZE < 8192)
5276     if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5277         vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5278     else
5279 #endif
5280         vmolr |= MAX_JUMBO_FRAME_SIZE;
5281     vmolr |= E1000_VMOLR_LPE;
5282 
5283     wr32(E1000_VMOLR(vfn), vmolr);
5284 
5285     igb_restore_vf_multicasts(adapter);
5286 }
5287 
5288 static void igb_check_wvbr(struct igb_adapter *adapter)
5289 {
5290     struct e1000_hw *hw = &adapter->hw;
5291     u32 wvbr = 0;
5292 
5293     switch (hw->mac.type) {
5294     case e1000_82576:
5295     case e1000_i350:
5296         wvbr = rd32(E1000_WVBR);
5297         if (!wvbr)
5298             return;
5299         break;
5300     default:
5301         break;
5302     }
5303 
5304     adapter->wvbr |= wvbr;
5305 }
5306 
5307 #define IGB_STAGGERED_QUEUE_OFFSET 8
5308 
5309 static void igb_spoof_check(struct igb_adapter *adapter)
5310 {
5311     int j;
5312 
5313     if (!adapter->wvbr)
5314         return;
5315 
5316     for (j = 0; j < adapter->vfs_allocated_count; j++) {
5317         if (adapter->wvbr & BIT(j) ||
5318             adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5319             dev_warn(&adapter->pdev->dev,
5320                 "Spoof event(s) detected on VF %d\n", j);
5321             adapter->wvbr &=
5322                 ~(BIT(j) |
5323                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5324         }
5325     }
5326 }
5327 
5328 /* Need to wait a few seconds after link up to get diagnostic information from
5329  * the phy
5330  */
5331 static void igb_update_phy_info(struct timer_list *t)
5332 {
5333     struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5334     igb_get_phy_info(&adapter->hw);
5335 }
5336 
5337 /**
5338  *  igb_has_link - check shared code for link and determine up/down
5339  *  @adapter: pointer to driver private info
5340  **/
5341 bool igb_has_link(struct igb_adapter *adapter)
5342 {
5343     struct e1000_hw *hw = &adapter->hw;
5344     bool link_active = false;
5345 
5346     /* get_link_status is set on LSC (link status) interrupt or
5347      * rx sequence error interrupt.  get_link_status will stay
5348      * false until the e1000_check_for_link establishes link
5349      * for copper adapters ONLY
5350      */
5351     switch (hw->phy.media_type) {
5352     case e1000_media_type_copper:
5353         if (!hw->mac.get_link_status)
5354             return true;
5355         fallthrough;
5356     case e1000_media_type_internal_serdes:
5357         hw->mac.ops.check_for_link(hw);
5358         link_active = !hw->mac.get_link_status;
5359         break;
5360     default:
5361     case e1000_media_type_unknown:
5362         break;
5363     }
5364 
5365     if (((hw->mac.type == e1000_i210) ||
5366          (hw->mac.type == e1000_i211)) &&
5367          (hw->phy.id == I210_I_PHY_ID)) {
5368         if (!netif_carrier_ok(adapter->netdev)) {
5369             adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5370         } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5371             adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5372             adapter->link_check_timeout = jiffies;
5373         }
5374     }
5375 
5376     return link_active;
5377 }
5378 
5379 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5380 {
5381     bool ret = false;
5382     u32 ctrl_ext, thstat;
5383 
5384     /* check for thermal sensor event on i350 copper only */
5385     if (hw->mac.type == e1000_i350) {
5386         thstat = rd32(E1000_THSTAT);
5387         ctrl_ext = rd32(E1000_CTRL_EXT);
5388 
5389         if ((hw->phy.media_type == e1000_media_type_copper) &&
5390             !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5391             ret = !!(thstat & event);
5392     }
5393 
5394     return ret;
5395 }
5396 
5397 /**
5398  *  igb_check_lvmmc - check for malformed packets received
5399  *  and indicated in LVMMC register
5400  *  @adapter: pointer to adapter
5401  **/
5402 static void igb_check_lvmmc(struct igb_adapter *adapter)
5403 {
5404     struct e1000_hw *hw = &adapter->hw;
5405     u32 lvmmc;
5406 
5407     lvmmc = rd32(E1000_LVMMC);
5408     if (lvmmc) {
5409         if (unlikely(net_ratelimit())) {
5410             netdev_warn(adapter->netdev,
5411                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5412                     lvmmc);
5413         }
5414     }
5415 }
5416 
5417 /**
5418  *  igb_watchdog - Timer Call-back
5419  *  @t: pointer to timer_list containing our private info pointer
5420  **/
5421 static void igb_watchdog(struct timer_list *t)
5422 {
5423     struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5424     /* Do the rest outside of interrupt context */
5425     schedule_work(&adapter->watchdog_task);
5426 }
5427 
5428 static void igb_watchdog_task(struct work_struct *work)
5429 {
5430     struct igb_adapter *adapter = container_of(work,
5431                            struct igb_adapter,
5432                            watchdog_task);
5433     struct e1000_hw *hw = &adapter->hw;
5434     struct e1000_phy_info *phy = &hw->phy;
5435     struct net_device *netdev = adapter->netdev;
5436     u32 link;
5437     int i;
5438     u32 connsw;
5439     u16 phy_data, retry_count = 20;
5440 
5441     link = igb_has_link(adapter);
5442 
5443     if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5444         if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5445             adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5446         else
5447             link = false;
5448     }
5449 
5450     /* Force link down if we have fiber to swap to */
5451     if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5452         if (hw->phy.media_type == e1000_media_type_copper) {
5453             connsw = rd32(E1000_CONNSW);
5454             if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5455                 link = 0;
5456         }
5457     }
5458     if (link) {
5459         /* Perform a reset if the media type changed. */
5460         if (hw->dev_spec._82575.media_changed) {
5461             hw->dev_spec._82575.media_changed = false;
5462             adapter->flags |= IGB_FLAG_MEDIA_RESET;
5463             igb_reset(adapter);
5464         }
5465         /* Cancel scheduled suspend requests. */
5466         pm_runtime_resume(netdev->dev.parent);
5467 
5468         if (!netif_carrier_ok(netdev)) {
5469             u32 ctrl;
5470 
5471             hw->mac.ops.get_speed_and_duplex(hw,
5472                              &adapter->link_speed,
5473                              &adapter->link_duplex);
5474 
5475             ctrl = rd32(E1000_CTRL);
5476             /* Links status message must follow this format */
5477             netdev_info(netdev,
5478                    "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5479                    netdev->name,
5480                    adapter->link_speed,
5481                    adapter->link_duplex == FULL_DUPLEX ?
5482                    "Full" : "Half",
5483                    (ctrl & E1000_CTRL_TFCE) &&
5484                    (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5485                    (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5486                    (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5487 
5488             /* disable EEE if enabled */
5489             if ((adapter->flags & IGB_FLAG_EEE) &&
5490                 (adapter->link_duplex == HALF_DUPLEX)) {
5491                 dev_info(&adapter->pdev->dev,
5492                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5493                 adapter->hw.dev_spec._82575.eee_disable = true;
5494                 adapter->flags &= ~IGB_FLAG_EEE;
5495             }
5496 
5497             /* check if SmartSpeed worked */
5498             igb_check_downshift(hw);
5499             if (phy->speed_downgraded)
5500                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5501 
5502             /* check for thermal sensor event */
5503             if (igb_thermal_sensor_event(hw,
5504                 E1000_THSTAT_LINK_THROTTLE))
5505                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5506 
5507             /* adjust timeout factor according to speed/duplex */
5508             adapter->tx_timeout_factor = 1;
5509             switch (adapter->link_speed) {
5510             case SPEED_10:
5511                 adapter->tx_timeout_factor = 14;
5512                 break;
5513             case SPEED_100:
5514                 /* maybe add some timeout factor ? */
5515                 break;
5516             }
5517 
5518             if (adapter->link_speed != SPEED_1000 ||
5519                 !hw->phy.ops.read_reg)
5520                 goto no_wait;
5521 
5522             /* wait for Remote receiver status OK */
5523 retry_read_status:
5524             if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5525                           &phy_data)) {
5526                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5527                     retry_count) {
5528                     msleep(100);
5529                     retry_count--;
5530                     goto retry_read_status;
5531                 } else if (!retry_count) {
5532                     dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5533                 }
5534             } else {
5535                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5536             }
5537 no_wait:
5538             netif_carrier_on(netdev);
5539 
5540             igb_ping_all_vfs(adapter);
5541             igb_check_vf_rate_limit(adapter);
5542 
5543             /* link state has changed, schedule phy info update */
5544             if (!test_bit(__IGB_DOWN, &adapter->state))
5545                 mod_timer(&adapter->phy_info_timer,
5546                       round_jiffies(jiffies + 2 * HZ));
5547         }
5548     } else {
5549         if (netif_carrier_ok(netdev)) {
5550             adapter->link_speed = 0;
5551             adapter->link_duplex = 0;
5552 
5553             /* check for thermal sensor event */
5554             if (igb_thermal_sensor_event(hw,
5555                 E1000_THSTAT_PWR_DOWN)) {
5556                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5557             }
5558 
5559             /* Links status message must follow this format */
5560             netdev_info(netdev, "igb: %s NIC Link is Down\n",
5561                    netdev->name);
5562             netif_carrier_off(netdev);
5563 
5564             igb_ping_all_vfs(adapter);
5565 
5566             /* link state has changed, schedule phy info update */
5567             if (!test_bit(__IGB_DOWN, &adapter->state))
5568                 mod_timer(&adapter->phy_info_timer,
5569                       round_jiffies(jiffies + 2 * HZ));
5570 
5571             /* link is down, time to check for alternate media */
5572             if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5573                 igb_check_swap_media(adapter);
5574                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5575                     schedule_work(&adapter->reset_task);
5576                     /* return immediately */
5577                     return;
5578                 }
5579             }
5580             pm_schedule_suspend(netdev->dev.parent,
5581                         MSEC_PER_SEC * 5);
5582 
5583         /* also check for alternate media here */
5584         } else if (!netif_carrier_ok(netdev) &&
5585                (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5586             igb_check_swap_media(adapter);
5587             if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5588                 schedule_work(&adapter->reset_task);
5589                 /* return immediately */
5590                 return;
5591             }
5592         }
5593     }
5594 
5595     spin_lock(&adapter->stats64_lock);
5596     igb_update_stats(adapter);
5597     spin_unlock(&adapter->stats64_lock);
5598 
5599     for (i = 0; i < adapter->num_tx_queues; i++) {
5600         struct igb_ring *tx_ring = adapter->tx_ring[i];
5601         if (!netif_carrier_ok(netdev)) {
5602             /* We've lost link, so the controller stops DMA,
5603              * but we've got queued Tx work that's never going
5604              * to get done, so reset controller to flush Tx.
5605              * (Do the reset outside of interrupt context).
5606              */
5607             if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5608                 adapter->tx_timeout_count++;
5609                 schedule_work(&adapter->reset_task);
5610                 /* return immediately since reset is imminent */
5611                 return;
5612             }
5613         }
5614 
5615         /* Force detection of hung controller every watchdog period */
5616         set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5617     }
5618 
5619     /* Cause software interrupt to ensure Rx ring is cleaned */
5620     if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5621         u32 eics = 0;
5622 
5623         for (i = 0; i < adapter->num_q_vectors; i++)
5624             eics |= adapter->q_vector[i]->eims_value;
5625         wr32(E1000_EICS, eics);
5626     } else {
5627         wr32(E1000_ICS, E1000_ICS_RXDMT0);
5628     }
5629 
5630     igb_spoof_check(adapter);
5631     igb_ptp_rx_hang(adapter);
5632     igb_ptp_tx_hang(adapter);
5633 
5634     /* Check LVMMC register on i350/i354 only */
5635     if ((adapter->hw.mac.type == e1000_i350) ||
5636         (adapter->hw.mac.type == e1000_i354))
5637         igb_check_lvmmc(adapter);
5638 
5639     /* Reset the timer */
5640     if (!test_bit(__IGB_DOWN, &adapter->state)) {
5641         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5642             mod_timer(&adapter->watchdog_timer,
5643                   round_jiffies(jiffies +  HZ));
5644         else
5645             mod_timer(&adapter->watchdog_timer,
5646                   round_jiffies(jiffies + 2 * HZ));
5647     }
5648 }
5649 
5650 enum latency_range {
5651     lowest_latency = 0,
5652     low_latency = 1,
5653     bulk_latency = 2,
5654     latency_invalid = 255
5655 };
5656 
5657 /**
5658  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5659  *  @q_vector: pointer to q_vector
5660  *
5661  *  Stores a new ITR value based on strictly on packet size.  This
5662  *  algorithm is less sophisticated than that used in igb_update_itr,
5663  *  due to the difficulty of synchronizing statistics across multiple
5664  *  receive rings.  The divisors and thresholds used by this function
5665  *  were determined based on theoretical maximum wire speed and testing
5666  *  data, in order to minimize response time while increasing bulk
5667  *  throughput.
5668  *  This functionality is controlled by ethtool's coalescing settings.
5669  *  NOTE:  This function is called only when operating in a multiqueue
5670  *         receive environment.
5671  **/
5672 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5673 {
5674     int new_val = q_vector->itr_val;
5675     int avg_wire_size = 0;
5676     struct igb_adapter *adapter = q_vector->adapter;
5677     unsigned int packets;
5678 
5679     /* For non-gigabit speeds, just fix the interrupt rate at 4000
5680      * ints/sec - ITR timer value of 120 ticks.
5681      */
5682     if (adapter->link_speed != SPEED_1000) {
5683         new_val = IGB_4K_ITR;
5684         goto set_itr_val;
5685     }
5686 
5687     packets = q_vector->rx.total_packets;
5688     if (packets)
5689         avg_wire_size = q_vector->rx.total_bytes / packets;
5690 
5691     packets = q_vector->tx.total_packets;
5692     if (packets)
5693         avg_wire_size = max_t(u32, avg_wire_size,
5694                       q_vector->tx.total_bytes / packets);
5695 
5696     /* if avg_wire_size isn't set no work was done */
5697     if (!avg_wire_size)
5698         goto clear_counts;
5699 
5700     /* Add 24 bytes to size to account for CRC, preamble, and gap */
5701     avg_wire_size += 24;
5702 
5703     /* Don't starve jumbo frames */
5704     avg_wire_size = min(avg_wire_size, 3000);
5705 
5706     /* Give a little boost to mid-size frames */
5707     if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5708         new_val = avg_wire_size / 3;
5709     else
5710         new_val = avg_wire_size / 2;
5711 
5712     /* conservative mode (itr 3) eliminates the lowest_latency setting */
5713     if (new_val < IGB_20K_ITR &&
5714         ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5715          (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5716         new_val = IGB_20K_ITR;
5717 
5718 set_itr_val:
5719     if (new_val != q_vector->itr_val) {
5720         q_vector->itr_val = new_val;
5721         q_vector->set_itr = 1;
5722     }
5723 clear_counts:
5724     q_vector->rx.total_bytes = 0;
5725     q_vector->rx.total_packets = 0;
5726     q_vector->tx.total_bytes = 0;
5727     q_vector->tx.total_packets = 0;
5728 }
5729 
5730 /**
5731  *  igb_update_itr - update the dynamic ITR value based on statistics
5732  *  @q_vector: pointer to q_vector
5733  *  @ring_container: ring info to update the itr for
5734  *
5735  *  Stores a new ITR value based on packets and byte
5736  *  counts during the last interrupt.  The advantage of per interrupt
5737  *  computation is faster updates and more accurate ITR for the current
5738  *  traffic pattern.  Constants in this function were computed
5739  *  based on theoretical maximum wire speed and thresholds were set based
5740  *  on testing data as well as attempting to minimize response time
5741  *  while increasing bulk throughput.
5742  *  This functionality is controlled by ethtool's coalescing settings.
5743  *  NOTE:  These calculations are only valid when operating in a single-
5744  *         queue environment.
5745  **/
5746 static void igb_update_itr(struct igb_q_vector *q_vector,
5747                struct igb_ring_container *ring_container)
5748 {
5749     unsigned int packets = ring_container->total_packets;
5750     unsigned int bytes = ring_container->total_bytes;
5751     u8 itrval = ring_container->itr;
5752 
5753     /* no packets, exit with status unchanged */
5754     if (packets == 0)
5755         return;
5756 
5757     switch (itrval) {
5758     case lowest_latency:
5759         /* handle TSO and jumbo frames */
5760         if (bytes/packets > 8000)
5761             itrval = bulk_latency;
5762         else if ((packets < 5) && (bytes > 512))
5763             itrval = low_latency;
5764         break;
5765     case low_latency:  /* 50 usec aka 20000 ints/s */
5766         if (bytes > 10000) {
5767             /* this if handles the TSO accounting */
5768             if (bytes/packets > 8000)
5769                 itrval = bulk_latency;
5770             else if ((packets < 10) || ((bytes/packets) > 1200))
5771                 itrval = bulk_latency;
5772             else if ((packets > 35))
5773                 itrval = lowest_latency;
5774         } else if (bytes/packets > 2000) {
5775             itrval = bulk_latency;
5776         } else if (packets <= 2 && bytes < 512) {
5777             itrval = lowest_latency;
5778         }
5779         break;
5780     case bulk_latency: /* 250 usec aka 4000 ints/s */
5781         if (bytes > 25000) {
5782             if (packets > 35)
5783                 itrval = low_latency;
5784         } else if (bytes < 1500) {
5785             itrval = low_latency;
5786         }
5787         break;
5788     }
5789 
5790     /* clear work counters since we have the values we need */
5791     ring_container->total_bytes = 0;
5792     ring_container->total_packets = 0;
5793 
5794     /* write updated itr to ring container */
5795     ring_container->itr = itrval;
5796 }
5797 
5798 static void igb_set_itr(struct igb_q_vector *q_vector)
5799 {
5800     struct igb_adapter *adapter = q_vector->adapter;
5801     u32 new_itr = q_vector->itr_val;
5802     u8 current_itr = 0;
5803 
5804     /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5805     if (adapter->link_speed != SPEED_1000) {
5806         current_itr = 0;
5807         new_itr = IGB_4K_ITR;
5808         goto set_itr_now;
5809     }
5810 
5811     igb_update_itr(q_vector, &q_vector->tx);
5812     igb_update_itr(q_vector, &q_vector->rx);
5813 
5814     current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5815 
5816     /* conservative mode (itr 3) eliminates the lowest_latency setting */
5817     if (current_itr == lowest_latency &&
5818         ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5819          (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5820         current_itr = low_latency;
5821 
5822     switch (current_itr) {
5823     /* counts and packets in update_itr are dependent on these numbers */
5824     case lowest_latency:
5825         new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5826         break;
5827     case low_latency:
5828         new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5829         break;
5830     case bulk_latency:
5831         new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5832         break;
5833     default:
5834         break;
5835     }
5836 
5837 set_itr_now:
5838     if (new_itr != q_vector->itr_val) {
5839         /* this attempts to bias the interrupt rate towards Bulk
5840          * by adding intermediate steps when interrupt rate is
5841          * increasing
5842          */
5843         new_itr = new_itr > q_vector->itr_val ?
5844               max((new_itr * q_vector->itr_val) /
5845               (new_itr + (q_vector->itr_val >> 2)),
5846               new_itr) : new_itr;
5847         /* Don't write the value here; it resets the adapter's
5848          * internal timer, and causes us to delay far longer than
5849          * we should between interrupts.  Instead, we write the ITR
5850          * value at the beginning of the next interrupt so the timing
5851          * ends up being correct.
5852          */
5853         q_vector->itr_val = new_itr;
5854         q_vector->set_itr = 1;
5855     }
5856 }
5857 
5858 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5859                 struct igb_tx_buffer *first,
5860                 u32 vlan_macip_lens, u32 type_tucmd,
5861                 u32 mss_l4len_idx)
5862 {
5863     struct e1000_adv_tx_context_desc *context_desc;
5864     u16 i = tx_ring->next_to_use;
5865     struct timespec64 ts;
5866 
5867     context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5868 
5869     i++;
5870     tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5871 
5872     /* set bits to identify this as an advanced context descriptor */
5873     type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5874 
5875     /* For 82575, context index must be unique per ring. */
5876     if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5877         mss_l4len_idx |= tx_ring->reg_idx << 4;
5878 
5879     context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5880     context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5881     context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5882 
5883     /* We assume there is always a valid tx time available. Invalid times
5884      * should have been handled by the upper layers.
5885      */
5886     if (tx_ring->launchtime_enable) {
5887         ts = ktime_to_timespec64(first->skb->tstamp);
5888         skb_txtime_consumed(first->skb);
5889         context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5890     } else {
5891         context_desc->seqnum_seed = 0;
5892     }
5893 }
5894 
5895 static int igb_tso(struct igb_ring *tx_ring,
5896            struct igb_tx_buffer *first,
5897            u8 *hdr_len)
5898 {
5899     u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5900     struct sk_buff *skb = first->skb;
5901     union {
5902         struct iphdr *v4;
5903         struct ipv6hdr *v6;
5904         unsigned char *hdr;
5905     } ip;
5906     union {
5907         struct tcphdr *tcp;
5908         struct udphdr *udp;
5909         unsigned char *hdr;
5910     } l4;
5911     u32 paylen, l4_offset;
5912     int err;
5913 
5914     if (skb->ip_summed != CHECKSUM_PARTIAL)
5915         return 0;
5916 
5917     if (!skb_is_gso(skb))
5918         return 0;
5919 
5920     err = skb_cow_head(skb, 0);
5921     if (err < 0)
5922         return err;
5923 
5924     ip.hdr = skb_network_header(skb);
5925     l4.hdr = skb_checksum_start(skb);
5926 
5927     /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5928     type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5929               E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5930 
5931     /* initialize outer IP header fields */
5932     if (ip.v4->version == 4) {
5933         unsigned char *csum_start = skb_checksum_start(skb);
5934         unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5935 
5936         /* IP header will have to cancel out any data that
5937          * is not a part of the outer IP header
5938          */
5939         ip.v4->check = csum_fold(csum_partial(trans_start,
5940                               csum_start - trans_start,
5941                               0));
5942         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5943 
5944         ip.v4->tot_len = 0;
5945         first->tx_flags |= IGB_TX_FLAGS_TSO |
5946                    IGB_TX_FLAGS_CSUM |
5947                    IGB_TX_FLAGS_IPV4;
5948     } else {
5949         ip.v6->payload_len = 0;
5950         first->tx_flags |= IGB_TX_FLAGS_TSO |
5951                    IGB_TX_FLAGS_CSUM;
5952     }
5953 
5954     /* determine offset of inner transport header */
5955     l4_offset = l4.hdr - skb->data;
5956 
5957     /* remove payload length from inner checksum */
5958     paylen = skb->len - l4_offset;
5959     if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5960         /* compute length of segmentation header */
5961         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5962         csum_replace_by_diff(&l4.tcp->check,
5963             (__force __wsum)htonl(paylen));
5964     } else {
5965         /* compute length of segmentation header */
5966         *hdr_len = sizeof(*l4.udp) + l4_offset;
5967         csum_replace_by_diff(&l4.udp->check,
5968                      (__force __wsum)htonl(paylen));
5969     }
5970 
5971     /* update gso size and bytecount with header size */
5972     first->gso_segs = skb_shinfo(skb)->gso_segs;
5973     first->bytecount += (first->gso_segs - 1) * *hdr_len;
5974 
5975     /* MSS L4LEN IDX */
5976     mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5977     mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5978 
5979     /* VLAN MACLEN IPLEN */
5980     vlan_macip_lens = l4.hdr - ip.hdr;
5981     vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5982     vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5983 
5984     igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5985             type_tucmd, mss_l4len_idx);
5986 
5987     return 1;
5988 }
5989 
5990 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5991 {
5992     struct sk_buff *skb = first->skb;
5993     u32 vlan_macip_lens = 0;
5994     u32 type_tucmd = 0;
5995 
5996     if (skb->ip_summed != CHECKSUM_PARTIAL) {
5997 csum_failed:
5998         if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5999             !tx_ring->launchtime_enable)
6000             return;
6001         goto no_csum;
6002     }
6003 
6004     switch (skb->csum_offset) {
6005     case offsetof(struct tcphdr, check):
6006         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6007         fallthrough;
6008     case offsetof(struct udphdr, check):
6009         break;
6010     case offsetof(struct sctphdr, checksum):
6011         /* validate that this is actually an SCTP request */
6012         if (skb_csum_is_sctp(skb)) {
6013             type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6014             break;
6015         }
6016         fallthrough;
6017     default:
6018         skb_checksum_help(skb);
6019         goto csum_failed;
6020     }
6021 
6022     /* update TX checksum flag */
6023     first->tx_flags |= IGB_TX_FLAGS_CSUM;
6024     vlan_macip_lens = skb_checksum_start_offset(skb) -
6025               skb_network_offset(skb);
6026 no_csum:
6027     vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6028     vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6029 
6030     igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6031 }
6032 
6033 #define IGB_SET_FLAG(_input, _flag, _result) \
6034     ((_flag <= _result) ? \
6035      ((u32)(_input & _flag) * (_result / _flag)) : \
6036      ((u32)(_input & _flag) / (_flag / _result)))
6037 
6038 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6039 {
6040     /* set type for advanced descriptor with frame checksum insertion */
6041     u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6042                E1000_ADVTXD_DCMD_DEXT |
6043                E1000_ADVTXD_DCMD_IFCS;
6044 
6045     /* set HW vlan bit if vlan is present */
6046     cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6047                  (E1000_ADVTXD_DCMD_VLE));
6048 
6049     /* set segmentation bits for TSO */
6050     cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6051                  (E1000_ADVTXD_DCMD_TSE));
6052 
6053     /* set timestamp bit if present */
6054     cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6055                  (E1000_ADVTXD_MAC_TSTAMP));
6056 
6057     /* insert frame checksum */
6058     cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6059 
6060     return cmd_type;
6061 }
6062 
6063 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6064                  union e1000_adv_tx_desc *tx_desc,
6065                  u32 tx_flags, unsigned int paylen)
6066 {
6067     u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6068 
6069     /* 82575 requires a unique index per ring */
6070     if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6071         olinfo_status |= tx_ring->reg_idx << 4;
6072 
6073     /* insert L4 checksum */
6074     olinfo_status |= IGB_SET_FLAG(tx_flags,
6075                       IGB_TX_FLAGS_CSUM,
6076                       (E1000_TXD_POPTS_TXSM << 8));
6077 
6078     /* insert IPv4 checksum */
6079     olinfo_status |= IGB_SET_FLAG(tx_flags,
6080                       IGB_TX_FLAGS_IPV4,
6081                       (E1000_TXD_POPTS_IXSM << 8));
6082 
6083     tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6084 }
6085 
6086 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6087 {
6088     struct net_device *netdev = tx_ring->netdev;
6089 
6090     netif_stop_subqueue(netdev, tx_ring->queue_index);
6091 
6092     /* Herbert's original patch had:
6093      *  smp_mb__after_netif_stop_queue();
6094      * but since that doesn't exist yet, just open code it.
6095      */
6096     smp_mb();
6097 
6098     /* We need to check again in a case another CPU has just
6099      * made room available.
6100      */
6101     if (igb_desc_unused(tx_ring) < size)
6102         return -EBUSY;
6103 
6104     /* A reprieve! */
6105     netif_wake_subqueue(netdev, tx_ring->queue_index);
6106 
6107     u64_stats_update_begin(&tx_ring->tx_syncp2);
6108     tx_ring->tx_stats.restart_queue2++;
6109     u64_stats_update_end(&tx_ring->tx_syncp2);
6110 
6111     return 0;
6112 }
6113 
6114 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6115 {
6116     if (igb_desc_unused(tx_ring) >= size)
6117         return 0;
6118     return __igb_maybe_stop_tx(tx_ring, size);
6119 }
6120 
6121 static int igb_tx_map(struct igb_ring *tx_ring,
6122               struct igb_tx_buffer *first,
6123               const u8 hdr_len)
6124 {
6125     struct sk_buff *skb = first->skb;
6126     struct igb_tx_buffer *tx_buffer;
6127     union e1000_adv_tx_desc *tx_desc;
6128     skb_frag_t *frag;
6129     dma_addr_t dma;
6130     unsigned int data_len, size;
6131     u32 tx_flags = first->tx_flags;
6132     u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6133     u16 i = tx_ring->next_to_use;
6134 
6135     tx_desc = IGB_TX_DESC(tx_ring, i);
6136 
6137     igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6138 
6139     size = skb_headlen(skb);
6140     data_len = skb->data_len;
6141 
6142     dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6143 
6144     tx_buffer = first;
6145 
6146     for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6147         if (dma_mapping_error(tx_ring->dev, dma))
6148             goto dma_error;
6149 
6150         /* record length, and DMA address */
6151         dma_unmap_len_set(tx_buffer, len, size);
6152         dma_unmap_addr_set(tx_buffer, dma, dma);
6153 
6154         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6155 
6156         while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6157             tx_desc->read.cmd_type_len =
6158                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6159 
6160             i++;
6161             tx_desc++;
6162             if (i == tx_ring->count) {
6163                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6164                 i = 0;
6165             }
6166             tx_desc->read.olinfo_status = 0;
6167 
6168             dma += IGB_MAX_DATA_PER_TXD;
6169             size -= IGB_MAX_DATA_PER_TXD;
6170 
6171             tx_desc->read.buffer_addr = cpu_to_le64(dma);
6172         }
6173 
6174         if (likely(!data_len))
6175             break;
6176 
6177         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6178 
6179         i++;
6180         tx_desc++;
6181         if (i == tx_ring->count) {
6182             tx_desc = IGB_TX_DESC(tx_ring, 0);
6183             i = 0;
6184         }
6185         tx_desc->read.olinfo_status = 0;
6186 
6187         size = skb_frag_size(frag);
6188         data_len -= size;
6189 
6190         dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6191                        size, DMA_TO_DEVICE);
6192 
6193         tx_buffer = &tx_ring->tx_buffer_info[i];
6194     }
6195 
6196     /* write last descriptor with RS and EOP bits */
6197     cmd_type |= size | IGB_TXD_DCMD;
6198     tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6199 
6200     netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6201 
6202     /* set the timestamp */
6203     first->time_stamp = jiffies;
6204 
6205     skb_tx_timestamp(skb);
6206 
6207     /* Force memory writes to complete before letting h/w know there
6208      * are new descriptors to fetch.  (Only applicable for weak-ordered
6209      * memory model archs, such as IA-64).
6210      *
6211      * We also need this memory barrier to make certain all of the
6212      * status bits have been updated before next_to_watch is written.
6213      */
6214     dma_wmb();
6215 
6216     /* set next_to_watch value indicating a packet is present */
6217     first->next_to_watch = tx_desc;
6218 
6219     i++;
6220     if (i == tx_ring->count)
6221         i = 0;
6222 
6223     tx_ring->next_to_use = i;
6224 
6225     /* Make sure there is space in the ring for the next send. */
6226     igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6227 
6228     if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6229         writel(i, tx_ring->tail);
6230     }
6231     return 0;
6232 
6233 dma_error:
6234     dev_err(tx_ring->dev, "TX DMA map failed\n");
6235     tx_buffer = &tx_ring->tx_buffer_info[i];
6236 
6237     /* clear dma mappings for failed tx_buffer_info map */
6238     while (tx_buffer != first) {
6239         if (dma_unmap_len(tx_buffer, len))
6240             dma_unmap_page(tx_ring->dev,
6241                        dma_unmap_addr(tx_buffer, dma),
6242                        dma_unmap_len(tx_buffer, len),
6243                        DMA_TO_DEVICE);
6244         dma_unmap_len_set(tx_buffer, len, 0);
6245 
6246         if (i-- == 0)
6247             i += tx_ring->count;
6248         tx_buffer = &tx_ring->tx_buffer_info[i];
6249     }
6250 
6251     if (dma_unmap_len(tx_buffer, len))
6252         dma_unmap_single(tx_ring->dev,
6253                  dma_unmap_addr(tx_buffer, dma),
6254                  dma_unmap_len(tx_buffer, len),
6255                  DMA_TO_DEVICE);
6256     dma_unmap_len_set(tx_buffer, len, 0);
6257 
6258     dev_kfree_skb_any(tx_buffer->skb);
6259     tx_buffer->skb = NULL;
6260 
6261     tx_ring->next_to_use = i;
6262 
6263     return -1;
6264 }
6265 
6266 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6267               struct igb_ring *tx_ring,
6268               struct xdp_frame *xdpf)
6269 {
6270     struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6271     u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6272     u16 count, i, index = tx_ring->next_to_use;
6273     struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6274     struct igb_tx_buffer *tx_buffer = tx_head;
6275     union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6276     u32 len = xdpf->len, cmd_type, olinfo_status;
6277     void *data = xdpf->data;
6278 
6279     count = TXD_USE_COUNT(len);
6280     for (i = 0; i < nr_frags; i++)
6281         count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6282 
6283     if (igb_maybe_stop_tx(tx_ring, count + 3))
6284         return IGB_XDP_CONSUMED;
6285 
6286     i = 0;
6287     /* record the location of the first descriptor for this packet */
6288     tx_head->bytecount = xdp_get_frame_len(xdpf);
6289     tx_head->type = IGB_TYPE_XDP;
6290     tx_head->gso_segs = 1;
6291     tx_head->xdpf = xdpf;
6292 
6293     olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6294     /* 82575 requires a unique index per ring */
6295     if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6296         olinfo_status |= tx_ring->reg_idx << 4;
6297     tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6298 
6299     for (;;) {
6300         dma_addr_t dma;
6301 
6302         dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6303         if (dma_mapping_error(tx_ring->dev, dma))
6304             goto unmap;
6305 
6306         /* record length, and DMA address */
6307         dma_unmap_len_set(tx_buffer, len, len);
6308         dma_unmap_addr_set(tx_buffer, dma, dma);
6309 
6310         /* put descriptor type bits */
6311         cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6312                E1000_ADVTXD_DCMD_IFCS | len;
6313 
6314         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6315         tx_desc->read.buffer_addr = cpu_to_le64(dma);
6316 
6317         tx_buffer->protocol = 0;
6318 
6319         if (++index == tx_ring->count)
6320             index = 0;
6321 
6322         if (i == nr_frags)
6323             break;
6324 
6325         tx_buffer = &tx_ring->tx_buffer_info[index];
6326         tx_desc = IGB_TX_DESC(tx_ring, index);
6327         tx_desc->read.olinfo_status = 0;
6328 
6329         data = skb_frag_address(&sinfo->frags[i]);
6330         len = skb_frag_size(&sinfo->frags[i]);
6331         i++;
6332     }
6333     tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6334 
6335     netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6336     /* set the timestamp */
6337     tx_head->time_stamp = jiffies;
6338 
6339     /* Avoid any potential race with xdp_xmit and cleanup */
6340     smp_wmb();
6341 
6342     /* set next_to_watch value indicating a packet is present */
6343     tx_head->next_to_watch = tx_desc;
6344     tx_ring->next_to_use = index;
6345 
6346     /* Make sure there is space in the ring for the next send. */
6347     igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6348 
6349     if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6350         writel(index, tx_ring->tail);
6351 
6352     return IGB_XDP_TX;
6353 
6354 unmap:
6355     for (;;) {
6356         tx_buffer = &tx_ring->tx_buffer_info[index];
6357         if (dma_unmap_len(tx_buffer, len))
6358             dma_unmap_page(tx_ring->dev,
6359                        dma_unmap_addr(tx_buffer, dma),
6360                        dma_unmap_len(tx_buffer, len),
6361                        DMA_TO_DEVICE);
6362         dma_unmap_len_set(tx_buffer, len, 0);
6363         if (tx_buffer == tx_head)
6364             break;
6365 
6366         if (!index)
6367             index += tx_ring->count;
6368         index--;
6369     }
6370 
6371     return IGB_XDP_CONSUMED;
6372 }
6373 
6374 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6375                 struct igb_ring *tx_ring)
6376 {
6377     struct igb_tx_buffer *first;
6378     int tso;
6379     u32 tx_flags = 0;
6380     unsigned short f;
6381     u16 count = TXD_USE_COUNT(skb_headlen(skb));
6382     __be16 protocol = vlan_get_protocol(skb);
6383     u8 hdr_len = 0;
6384 
6385     /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6386      *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6387      *       + 2 desc gap to keep tail from touching head,
6388      *       + 1 desc for context descriptor,
6389      * otherwise try next time
6390      */
6391     for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6392         count += TXD_USE_COUNT(skb_frag_size(
6393                         &skb_shinfo(skb)->frags[f]));
6394 
6395     if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6396         /* this is a hard error */
6397         return NETDEV_TX_BUSY;
6398     }
6399 
6400     /* record the location of the first descriptor for this packet */
6401     first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6402     first->type = IGB_TYPE_SKB;
6403     first->skb = skb;
6404     first->bytecount = skb->len;
6405     first->gso_segs = 1;
6406 
6407     if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6408         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6409 
6410         if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6411             !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6412                        &adapter->state)) {
6413             skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6414             tx_flags |= IGB_TX_FLAGS_TSTAMP;
6415 
6416             adapter->ptp_tx_skb = skb_get(skb);
6417             adapter->ptp_tx_start = jiffies;
6418             if (adapter->hw.mac.type == e1000_82576)
6419                 schedule_work(&adapter->ptp_tx_work);
6420         } else {
6421             adapter->tx_hwtstamp_skipped++;
6422         }
6423     }
6424 
6425     if (skb_vlan_tag_present(skb)) {
6426         tx_flags |= IGB_TX_FLAGS_VLAN;
6427         tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6428     }
6429 
6430     /* record initial flags and protocol */
6431     first->tx_flags = tx_flags;
6432     first->protocol = protocol;
6433 
6434     tso = igb_tso(tx_ring, first, &hdr_len);
6435     if (tso < 0)
6436         goto out_drop;
6437     else if (!tso)
6438         igb_tx_csum(tx_ring, first);
6439 
6440     if (igb_tx_map(tx_ring, first, hdr_len))
6441         goto cleanup_tx_tstamp;
6442 
6443     return NETDEV_TX_OK;
6444 
6445 out_drop:
6446     dev_kfree_skb_any(first->skb);
6447     first->skb = NULL;
6448 cleanup_tx_tstamp:
6449     if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6450         struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6451 
6452         dev_kfree_skb_any(adapter->ptp_tx_skb);
6453         adapter->ptp_tx_skb = NULL;
6454         if (adapter->hw.mac.type == e1000_82576)
6455             cancel_work_sync(&adapter->ptp_tx_work);
6456         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6457     }
6458 
6459     return NETDEV_TX_OK;
6460 }
6461 
6462 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6463                             struct sk_buff *skb)
6464 {
6465     unsigned int r_idx = skb->queue_mapping;
6466 
6467     if (r_idx >= adapter->num_tx_queues)
6468         r_idx = r_idx % adapter->num_tx_queues;
6469 
6470     return adapter->tx_ring[r_idx];
6471 }
6472 
6473 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6474                   struct net_device *netdev)
6475 {
6476     struct igb_adapter *adapter = netdev_priv(netdev);
6477 
6478     /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6479      * in order to meet this minimum size requirement.
6480      */
6481     if (skb_put_padto(skb, 17))
6482         return NETDEV_TX_OK;
6483 
6484     return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6485 }
6486 
6487 /**
6488  *  igb_tx_timeout - Respond to a Tx Hang
6489  *  @netdev: network interface device structure
6490  *  @txqueue: number of the Tx queue that hung (unused)
6491  **/
6492 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6493 {
6494     struct igb_adapter *adapter = netdev_priv(netdev);
6495     struct e1000_hw *hw = &adapter->hw;
6496 
6497     /* Do the reset outside of interrupt context */
6498     adapter->tx_timeout_count++;
6499 
6500     if (hw->mac.type >= e1000_82580)
6501         hw->dev_spec._82575.global_device_reset = true;
6502 
6503     schedule_work(&adapter->reset_task);
6504     wr32(E1000_EICS,
6505          (adapter->eims_enable_mask & ~adapter->eims_other));
6506 }
6507 
6508 static void igb_reset_task(struct work_struct *work)
6509 {
6510     struct igb_adapter *adapter;
6511     adapter = container_of(work, struct igb_adapter, reset_task);
6512 
6513     rtnl_lock();
6514     /* If we're already down or resetting, just bail */
6515     if (test_bit(__IGB_DOWN, &adapter->state) ||
6516         test_bit(__IGB_RESETTING, &adapter->state)) {
6517         rtnl_unlock();
6518         return;
6519     }
6520 
6521     igb_dump(adapter);
6522     netdev_err(adapter->netdev, "Reset adapter\n");
6523     igb_reinit_locked(adapter);
6524     rtnl_unlock();
6525 }
6526 
6527 /**
6528  *  igb_get_stats64 - Get System Network Statistics
6529  *  @netdev: network interface device structure
6530  *  @stats: rtnl_link_stats64 pointer
6531  **/
6532 static void igb_get_stats64(struct net_device *netdev,
6533                 struct rtnl_link_stats64 *stats)
6534 {
6535     struct igb_adapter *adapter = netdev_priv(netdev);
6536 
6537     spin_lock(&adapter->stats64_lock);
6538     igb_update_stats(adapter);
6539     memcpy(stats, &adapter->stats64, sizeof(*stats));
6540     spin_unlock(&adapter->stats64_lock);
6541 }
6542 
6543 /**
6544  *  igb_change_mtu - Change the Maximum Transfer Unit
6545  *  @netdev: network interface device structure
6546  *  @new_mtu: new value for maximum frame size
6547  *
6548  *  Returns 0 on success, negative on failure
6549  **/
6550 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6551 {
6552     struct igb_adapter *adapter = netdev_priv(netdev);
6553     int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6554 
6555     if (adapter->xdp_prog) {
6556         int i;
6557 
6558         for (i = 0; i < adapter->num_rx_queues; i++) {
6559             struct igb_ring *ring = adapter->rx_ring[i];
6560 
6561             if (max_frame > igb_rx_bufsz(ring)) {
6562                 netdev_warn(adapter->netdev,
6563                         "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6564                         max_frame);
6565                 return -EINVAL;
6566             }
6567         }
6568     }
6569 
6570     /* adjust max frame to be at least the size of a standard frame */
6571     if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6572         max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6573 
6574     while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6575         usleep_range(1000, 2000);
6576 
6577     /* igb_down has a dependency on max_frame_size */
6578     adapter->max_frame_size = max_frame;
6579 
6580     if (netif_running(netdev))
6581         igb_down(adapter);
6582 
6583     netdev_dbg(netdev, "changing MTU from %d to %d\n",
6584            netdev->mtu, new_mtu);
6585     netdev->mtu = new_mtu;
6586 
6587     if (netif_running(netdev))
6588         igb_up(adapter);
6589     else
6590         igb_reset(adapter);
6591 
6592     clear_bit(__IGB_RESETTING, &adapter->state);
6593 
6594     return 0;
6595 }
6596 
6597 /**
6598  *  igb_update_stats - Update the board statistics counters
6599  *  @adapter: board private structure
6600  **/
6601 void igb_update_stats(struct igb_adapter *adapter)
6602 {
6603     struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6604     struct e1000_hw *hw = &adapter->hw;
6605     struct pci_dev *pdev = adapter->pdev;
6606     u32 reg, mpc;
6607     int i;
6608     u64 bytes, packets;
6609     unsigned int start;
6610     u64 _bytes, _packets;
6611 
6612     /* Prevent stats update while adapter is being reset, or if the pci
6613      * connection is down.
6614      */
6615     if (adapter->link_speed == 0)
6616         return;
6617     if (pci_channel_offline(pdev))
6618         return;
6619 
6620     bytes = 0;
6621     packets = 0;
6622 
6623     rcu_read_lock();
6624     for (i = 0; i < adapter->num_rx_queues; i++) {
6625         struct igb_ring *ring = adapter->rx_ring[i];
6626         u32 rqdpc = rd32(E1000_RQDPC(i));
6627         if (hw->mac.type >= e1000_i210)
6628             wr32(E1000_RQDPC(i), 0);
6629 
6630         if (rqdpc) {
6631             ring->rx_stats.drops += rqdpc;
6632             net_stats->rx_fifo_errors += rqdpc;
6633         }
6634 
6635         do {
6636             start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6637             _bytes = ring->rx_stats.bytes;
6638             _packets = ring->rx_stats.packets;
6639         } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6640         bytes += _bytes;
6641         packets += _packets;
6642     }
6643 
6644     net_stats->rx_bytes = bytes;
6645     net_stats->rx_packets = packets;
6646 
6647     bytes = 0;
6648     packets = 0;
6649     for (i = 0; i < adapter->num_tx_queues; i++) {
6650         struct igb_ring *ring = adapter->tx_ring[i];
6651         do {
6652             start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6653             _bytes = ring->tx_stats.bytes;
6654             _packets = ring->tx_stats.packets;
6655         } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6656         bytes += _bytes;
6657         packets += _packets;
6658     }
6659     net_stats->tx_bytes = bytes;
6660     net_stats->tx_packets = packets;
6661     rcu_read_unlock();
6662 
6663     /* read stats registers */
6664     adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6665     adapter->stats.gprc += rd32(E1000_GPRC);
6666     adapter->stats.gorc += rd32(E1000_GORCL);
6667     rd32(E1000_GORCH); /* clear GORCL */
6668     adapter->stats.bprc += rd32(E1000_BPRC);
6669     adapter->stats.mprc += rd32(E1000_MPRC);
6670     adapter->stats.roc += rd32(E1000_ROC);
6671 
6672     adapter->stats.prc64 += rd32(E1000_PRC64);
6673     adapter->stats.prc127 += rd32(E1000_PRC127);
6674     adapter->stats.prc255 += rd32(E1000_PRC255);
6675     adapter->stats.prc511 += rd32(E1000_PRC511);
6676     adapter->stats.prc1023 += rd32(E1000_PRC1023);
6677     adapter->stats.prc1522 += rd32(E1000_PRC1522);
6678     adapter->stats.symerrs += rd32(E1000_SYMERRS);
6679     adapter->stats.sec += rd32(E1000_SEC);
6680 
6681     mpc = rd32(E1000_MPC);
6682     adapter->stats.mpc += mpc;
6683     net_stats->rx_fifo_errors += mpc;
6684     adapter->stats.scc += rd32(E1000_SCC);
6685     adapter->stats.ecol += rd32(E1000_ECOL);
6686     adapter->stats.mcc += rd32(E1000_MCC);
6687     adapter->stats.latecol += rd32(E1000_LATECOL);
6688     adapter->stats.dc += rd32(E1000_DC);
6689     adapter->stats.rlec += rd32(E1000_RLEC);
6690     adapter->stats.xonrxc += rd32(E1000_XONRXC);
6691     adapter->stats.xontxc += rd32(E1000_XONTXC);
6692     adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6693     adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6694     adapter->stats.fcruc += rd32(E1000_FCRUC);
6695     adapter->stats.gptc += rd32(E1000_GPTC);
6696     adapter->stats.gotc += rd32(E1000_GOTCL);
6697     rd32(E1000_GOTCH); /* clear GOTCL */
6698     adapter->stats.rnbc += rd32(E1000_RNBC);
6699     adapter->stats.ruc += rd32(E1000_RUC);
6700     adapter->stats.rfc += rd32(E1000_RFC);
6701     adapter->stats.rjc += rd32(E1000_RJC);
6702     adapter->stats.tor += rd32(E1000_TORH);
6703     adapter->stats.tot += rd32(E1000_TOTH);
6704     adapter->stats.tpr += rd32(E1000_TPR);
6705 
6706     adapter->stats.ptc64 += rd32(E1000_PTC64);
6707     adapter->stats.ptc127 += rd32(E1000_PTC127);
6708     adapter->stats.ptc255 += rd32(E1000_PTC255);
6709     adapter->stats.ptc511 += rd32(E1000_PTC511);
6710     adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6711     adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6712 
6713     adapter->stats.mptc += rd32(E1000_MPTC);
6714     adapter->stats.bptc += rd32(E1000_BPTC);
6715 
6716     adapter->stats.tpt += rd32(E1000_TPT);
6717     adapter->stats.colc += rd32(E1000_COLC);
6718 
6719     adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6720     /* read internal phy specific stats */
6721     reg = rd32(E1000_CTRL_EXT);
6722     if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6723         adapter->stats.rxerrc += rd32(E1000_RXERRC);
6724 
6725         /* this stat has invalid values on i210/i211 */
6726         if ((hw->mac.type != e1000_i210) &&
6727             (hw->mac.type != e1000_i211))
6728             adapter->stats.tncrs += rd32(E1000_TNCRS);
6729     }
6730 
6731     adapter->stats.tsctc += rd32(E1000_TSCTC);
6732     adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6733 
6734     adapter->stats.iac += rd32(E1000_IAC);
6735     adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6736     adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6737     adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6738     adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6739     adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6740     adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6741     adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6742     adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6743 
6744     /* Fill out the OS statistics structure */
6745     net_stats->multicast = adapter->stats.mprc;
6746     net_stats->collisions = adapter->stats.colc;
6747 
6748     /* Rx Errors */
6749 
6750     /* RLEC on some newer hardware can be incorrect so build
6751      * our own version based on RUC and ROC
6752      */
6753     net_stats->rx_errors = adapter->stats.rxerrc +
6754         adapter->stats.crcerrs + adapter->stats.algnerrc +
6755         adapter->stats.ruc + adapter->stats.roc +
6756         adapter->stats.cexterr;
6757     net_stats->rx_length_errors = adapter->stats.ruc +
6758                       adapter->stats.roc;
6759     net_stats->rx_crc_errors = adapter->stats.crcerrs;
6760     net_stats->rx_frame_errors = adapter->stats.algnerrc;
6761     net_stats->rx_missed_errors = adapter->stats.mpc;
6762 
6763     /* Tx Errors */
6764     net_stats->tx_errors = adapter->stats.ecol +
6765                    adapter->stats.latecol;
6766     net_stats->tx_aborted_errors = adapter->stats.ecol;
6767     net_stats->tx_window_errors = adapter->stats.latecol;
6768     net_stats->tx_carrier_errors = adapter->stats.tncrs;
6769 
6770     /* Tx Dropped needs to be maintained elsewhere */
6771 
6772     /* Management Stats */
6773     adapter->stats.mgptc += rd32(E1000_MGTPTC);
6774     adapter->stats.mgprc += rd32(E1000_MGTPRC);
6775     adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6776 
6777     /* OS2BMC Stats */
6778     reg = rd32(E1000_MANC);
6779     if (reg & E1000_MANC_EN_BMC2OS) {
6780         adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6781         adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6782         adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6783         adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6784     }
6785 }
6786 
6787 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6788 {
6789     int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6790     struct e1000_hw *hw = &adapter->hw;
6791     struct timespec64 ts;
6792     u32 tsauxc;
6793 
6794     if (pin < 0 || pin >= IGB_N_PEROUT)
6795         return;
6796 
6797     spin_lock(&adapter->tmreg_lock);
6798 
6799     if (hw->mac.type == e1000_82580 ||
6800         hw->mac.type == e1000_i354 ||
6801         hw->mac.type == e1000_i350) {
6802         s64 ns = timespec64_to_ns(&adapter->perout[pin].period);
6803         u32 systiml, systimh, level_mask, level, rem;
6804         u64 systim, now;
6805 
6806         /* read systim registers in sequence */
6807         rd32(E1000_SYSTIMR);
6808         systiml = rd32(E1000_SYSTIML);
6809         systimh = rd32(E1000_SYSTIMH);
6810         systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6811         now = timecounter_cyc2time(&adapter->tc, systim);
6812 
6813         if (pin < 2) {
6814             level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6815             level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6816         } else {
6817             level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6818             level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6819         }
6820 
6821         div_u64_rem(now, ns, &rem);
6822         systim = systim + (ns - rem);
6823 
6824         /* synchronize pin level with rising/falling edges */
6825         div_u64_rem(now, ns << 1, &rem);
6826         if (rem < ns) {
6827             /* first half of period */
6828             if (level == 0) {
6829                 /* output is already low, skip this period */
6830                 systim += ns;
6831                 pr_notice("igb: periodic output on %s missed falling edge\n",
6832                       adapter->sdp_config[pin].name);
6833             }
6834         } else {
6835             /* second half of period */
6836             if (level == 1) {
6837                 /* output is already high, skip this period */
6838                 systim += ns;
6839                 pr_notice("igb: periodic output on %s missed rising edge\n",
6840                       adapter->sdp_config[pin].name);
6841             }
6842         }
6843 
6844         /* for this chip family tv_sec is the upper part of the binary value,
6845          * so not seconds
6846          */
6847         ts.tv_nsec = (u32)systim;
6848         ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6849     } else {
6850         ts = timespec64_add(adapter->perout[pin].start,
6851                     adapter->perout[pin].period);
6852     }
6853 
6854     /* u32 conversion of tv_sec is safe until y2106 */
6855     wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6856     wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6857     tsauxc = rd32(E1000_TSAUXC);
6858     tsauxc |= TSAUXC_EN_TT0;
6859     wr32(E1000_TSAUXC, tsauxc);
6860     adapter->perout[pin].start = ts;
6861 
6862     spin_unlock(&adapter->tmreg_lock);
6863 }
6864 
6865 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6866 {
6867     int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6868     int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6869     int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6870     struct e1000_hw *hw = &adapter->hw;
6871     struct ptp_clock_event event;
6872     struct timespec64 ts;
6873 
6874     if (pin < 0 || pin >= IGB_N_EXTTS)
6875         return;
6876 
6877     if (hw->mac.type == e1000_82580 ||
6878         hw->mac.type == e1000_i354 ||
6879         hw->mac.type == e1000_i350) {
6880         s64 ns = rd32(auxstmpl);
6881 
6882         ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6883         ts = ns_to_timespec64(ns);
6884     } else {
6885         ts.tv_nsec = rd32(auxstmpl);
6886         ts.tv_sec  = rd32(auxstmph);
6887     }
6888 
6889     event.type = PTP_CLOCK_EXTTS;
6890     event.index = tsintr_tt;
6891     event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6892     ptp_clock_event(adapter->ptp_clock, &event);
6893 }
6894 
6895 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6896 {
6897     struct e1000_hw *hw = &adapter->hw;
6898     u32 ack = 0, tsicr = rd32(E1000_TSICR);
6899     struct ptp_clock_event event;
6900 
6901     if (tsicr & TSINTR_SYS_WRAP) {
6902         event.type = PTP_CLOCK_PPS;
6903         if (adapter->ptp_caps.pps)
6904             ptp_clock_event(adapter->ptp_clock, &event);
6905         ack |= TSINTR_SYS_WRAP;
6906     }
6907 
6908     if (tsicr & E1000_TSICR_TXTS) {
6909         /* retrieve hardware timestamp */
6910         schedule_work(&adapter->ptp_tx_work);
6911         ack |= E1000_TSICR_TXTS;
6912     }
6913 
6914     if (tsicr & TSINTR_TT0) {
6915         igb_perout(adapter, 0);
6916         ack |= TSINTR_TT0;
6917     }
6918 
6919     if (tsicr & TSINTR_TT1) {
6920         igb_perout(adapter, 1);
6921         ack |= TSINTR_TT1;
6922     }
6923 
6924     if (tsicr & TSINTR_AUTT0) {
6925         igb_extts(adapter, 0);
6926         ack |= TSINTR_AUTT0;
6927     }
6928 
6929     if (tsicr & TSINTR_AUTT1) {
6930         igb_extts(adapter, 1);
6931         ack |= TSINTR_AUTT1;
6932     }
6933 
6934     /* acknowledge the interrupts */
6935     wr32(E1000_TSICR, ack);
6936 }
6937 
6938 static irqreturn_t igb_msix_other(int irq, void *data)
6939 {
6940     struct igb_adapter *adapter = data;
6941     struct e1000_hw *hw = &adapter->hw;
6942     u32 icr = rd32(E1000_ICR);
6943     /* reading ICR causes bit 31 of EICR to be cleared */
6944 
6945     if (icr & E1000_ICR_DRSTA)
6946         schedule_work(&adapter->reset_task);
6947 
6948     if (icr & E1000_ICR_DOUTSYNC) {
6949         /* HW is reporting DMA is out of sync */
6950         adapter->stats.doosync++;
6951         /* The DMA Out of Sync is also indication of a spoof event
6952          * in IOV mode. Check the Wrong VM Behavior register to
6953          * see if it is really a spoof event.
6954          */
6955         igb_check_wvbr(adapter);
6956     }
6957 
6958     /* Check for a mailbox event */
6959     if (icr & E1000_ICR_VMMB)
6960         igb_msg_task(adapter);
6961 
6962     if (icr & E1000_ICR_LSC) {
6963         hw->mac.get_link_status = 1;
6964         /* guard against interrupt when we're going down */
6965         if (!test_bit(__IGB_DOWN, &adapter->state))
6966             mod_timer(&adapter->watchdog_timer, jiffies + 1);
6967     }
6968 
6969     if (icr & E1000_ICR_TS)
6970         igb_tsync_interrupt(adapter);
6971 
6972     wr32(E1000_EIMS, adapter->eims_other);
6973 
6974     return IRQ_HANDLED;
6975 }
6976 
6977 static void igb_write_itr(struct igb_q_vector *q_vector)
6978 {
6979     struct igb_adapter *adapter = q_vector->adapter;
6980     u32 itr_val = q_vector->itr_val & 0x7FFC;
6981 
6982     if (!q_vector->set_itr)
6983         return;
6984 
6985     if (!itr_val)
6986         itr_val = 0x4;
6987 
6988     if (adapter->hw.mac.type == e1000_82575)
6989         itr_val |= itr_val << 16;
6990     else
6991         itr_val |= E1000_EITR_CNT_IGNR;
6992 
6993     writel(itr_val, q_vector->itr_register);
6994     q_vector->set_itr = 0;
6995 }
6996 
6997 static irqreturn_t igb_msix_ring(int irq, void *data)
6998 {
6999     struct igb_q_vector *q_vector = data;
7000 
7001     /* Write the ITR value calculated from the previous interrupt. */
7002     igb_write_itr(q_vector);
7003 
7004     napi_schedule(&q_vector->napi);
7005 
7006     return IRQ_HANDLED;
7007 }
7008 
7009 #ifdef CONFIG_IGB_DCA
7010 static void igb_update_tx_dca(struct igb_adapter *adapter,
7011                   struct igb_ring *tx_ring,
7012                   int cpu)
7013 {
7014     struct e1000_hw *hw = &adapter->hw;
7015     u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7016 
7017     if (hw->mac.type != e1000_82575)
7018         txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7019 
7020     /* We can enable relaxed ordering for reads, but not writes when
7021      * DCA is enabled.  This is due to a known issue in some chipsets
7022      * which will cause the DCA tag to be cleared.
7023      */
7024     txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7025           E1000_DCA_TXCTRL_DATA_RRO_EN |
7026           E1000_DCA_TXCTRL_DESC_DCA_EN;
7027 
7028     wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7029 }
7030 
7031 static void igb_update_rx_dca(struct igb_adapter *adapter,
7032                   struct igb_ring *rx_ring,
7033                   int cpu)
7034 {
7035     struct e1000_hw *hw = &adapter->hw;
7036     u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7037 
7038     if (hw->mac.type != e1000_82575)
7039         rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7040 
7041     /* We can enable relaxed ordering for reads, but not writes when
7042      * DCA is enabled.  This is due to a known issue in some chipsets
7043      * which will cause the DCA tag to be cleared.
7044      */
7045     rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7046           E1000_DCA_RXCTRL_DESC_DCA_EN;
7047 
7048     wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7049 }
7050 
7051 static void igb_update_dca(struct igb_q_vector *q_vector)
7052 {
7053     struct igb_adapter *adapter = q_vector->adapter;
7054     int cpu = get_cpu();
7055 
7056     if (q_vector->cpu == cpu)
7057         goto out_no_update;
7058 
7059     if (q_vector->tx.ring)
7060         igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7061 
7062     if (q_vector->rx.ring)
7063         igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7064 
7065     q_vector->cpu = cpu;
7066 out_no_update:
7067     put_cpu();
7068 }
7069 
7070 static void igb_setup_dca(struct igb_adapter *adapter)
7071 {
7072     struct e1000_hw *hw = &adapter->hw;
7073     int i;
7074 
7075     if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7076         return;
7077 
7078     /* Always use CB2 mode, difference is masked in the CB driver. */
7079     wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7080 
7081     for (i = 0; i < adapter->num_q_vectors; i++) {
7082         adapter->q_vector[i]->cpu = -1;
7083         igb_update_dca(adapter->q_vector[i]);
7084     }
7085 }
7086 
7087 static int __igb_notify_dca(struct device *dev, void *data)
7088 {
7089     struct net_device *netdev = dev_get_drvdata(dev);
7090     struct igb_adapter *adapter = netdev_priv(netdev);
7091     struct pci_dev *pdev = adapter->pdev;
7092     struct e1000_hw *hw = &adapter->hw;
7093     unsigned long event = *(unsigned long *)data;
7094 
7095     switch (event) {
7096     case DCA_PROVIDER_ADD:
7097         /* if already enabled, don't do it again */
7098         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7099             break;
7100         if (dca_add_requester(dev) == 0) {
7101             adapter->flags |= IGB_FLAG_DCA_ENABLED;
7102             dev_info(&pdev->dev, "DCA enabled\n");
7103             igb_setup_dca(adapter);
7104             break;
7105         }
7106         fallthrough; /* since DCA is disabled. */
7107     case DCA_PROVIDER_REMOVE:
7108         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7109             /* without this a class_device is left
7110              * hanging around in the sysfs model
7111              */
7112             dca_remove_requester(dev);
7113             dev_info(&pdev->dev, "DCA disabled\n");
7114             adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7115             wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7116         }
7117         break;
7118     }
7119 
7120     return 0;
7121 }
7122 
7123 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7124               void *p)
7125 {
7126     int ret_val;
7127 
7128     ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7129                      __igb_notify_dca);
7130 
7131     return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7132 }
7133 #endif /* CONFIG_IGB_DCA */
7134 
7135 #ifdef CONFIG_PCI_IOV
7136 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7137 {
7138     unsigned char mac_addr[ETH_ALEN];
7139 
7140     eth_zero_addr(mac_addr);
7141     igb_set_vf_mac(adapter, vf, mac_addr);
7142 
7143     /* By default spoof check is enabled for all VFs */
7144     adapter->vf_data[vf].spoofchk_enabled = true;
7145 
7146     /* By default VFs are not trusted */
7147     adapter->vf_data[vf].trusted = false;
7148 
7149     return 0;
7150 }
7151 
7152 #endif
7153 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7154 {
7155     struct e1000_hw *hw = &adapter->hw;
7156     u32 ping;
7157     int i;
7158 
7159     for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7160         ping = E1000_PF_CONTROL_MSG;
7161         if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7162             ping |= E1000_VT_MSGTYPE_CTS;
7163         igb_write_mbx(hw, &ping, 1, i);
7164     }
7165 }
7166 
7167 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7168 {
7169     struct e1000_hw *hw = &adapter->hw;
7170     u32 vmolr = rd32(E1000_VMOLR(vf));
7171     struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7172 
7173     vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7174                 IGB_VF_FLAG_MULTI_PROMISC);
7175     vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7176 
7177     if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7178         vmolr |= E1000_VMOLR_MPME;
7179         vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7180         *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7181     } else {
7182         /* if we have hashes and we are clearing a multicast promisc
7183          * flag we need to write the hashes to the MTA as this step
7184          * was previously skipped
7185          */
7186         if (vf_data->num_vf_mc_hashes > 30) {
7187             vmolr |= E1000_VMOLR_MPME;
7188         } else if (vf_data->num_vf_mc_hashes) {
7189             int j;
7190 
7191             vmolr |= E1000_VMOLR_ROMPE;
7192             for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7193                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7194         }
7195     }
7196 
7197     wr32(E1000_VMOLR(vf), vmolr);
7198 
7199     /* there are flags left unprocessed, likely not supported */
7200     if (*msgbuf & E1000_VT_MSGINFO_MASK)
7201         return -EINVAL;
7202 
7203     return 0;
7204 }
7205 
7206 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7207                   u32 *msgbuf, u32 vf)
7208 {
7209     int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7210     u16 *hash_list = (u16 *)&msgbuf[1];
7211     struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7212     int i;
7213 
7214     /* salt away the number of multicast addresses assigned
7215      * to this VF for later use to restore when the PF multi cast
7216      * list changes
7217      */
7218     vf_data->num_vf_mc_hashes = n;
7219 
7220     /* only up to 30 hash values supported */
7221     if (n > 30)
7222         n = 30;
7223 
7224     /* store the hashes for later use */
7225     for (i = 0; i < n; i++)
7226         vf_data->vf_mc_hashes[i] = hash_list[i];
7227 
7228     /* Flush and reset the mta with the new values */
7229     igb_set_rx_mode(adapter->netdev);
7230 
7231     return 0;
7232 }
7233 
7234 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7235 {
7236     struct e1000_hw *hw = &adapter->hw;
7237     struct vf_data_storage *vf_data;
7238     int i, j;
7239 
7240     for (i = 0; i < adapter->vfs_allocated_count; i++) {
7241         u32 vmolr = rd32(E1000_VMOLR(i));
7242 
7243         vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7244 
7245         vf_data = &adapter->vf_data[i];
7246 
7247         if ((vf_data->num_vf_mc_hashes > 30) ||
7248             (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7249             vmolr |= E1000_VMOLR_MPME;
7250         } else if (vf_data->num_vf_mc_hashes) {
7251             vmolr |= E1000_VMOLR_ROMPE;
7252             for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7253                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7254         }
7255         wr32(E1000_VMOLR(i), vmolr);
7256     }
7257 }
7258 
7259 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7260 {
7261     struct e1000_hw *hw = &adapter->hw;
7262     u32 pool_mask, vlvf_mask, i;
7263 
7264     /* create mask for VF and other pools */
7265     pool_mask = E1000_VLVF_POOLSEL_MASK;
7266     vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7267 
7268     /* drop PF from pool bits */
7269     pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7270                  adapter->vfs_allocated_count);
7271 
7272     /* Find the vlan filter for this id */
7273     for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7274         u32 vlvf = rd32(E1000_VLVF(i));
7275         u32 vfta_mask, vid, vfta;
7276 
7277         /* remove the vf from the pool */
7278         if (!(vlvf & vlvf_mask))
7279             continue;
7280 
7281         /* clear out bit from VLVF */
7282         vlvf ^= vlvf_mask;
7283 
7284         /* if other pools are present, just remove ourselves */
7285         if (vlvf & pool_mask)
7286             goto update_vlvfb;
7287 
7288         /* if PF is present, leave VFTA */
7289         if (vlvf & E1000_VLVF_POOLSEL_MASK)
7290             goto update_vlvf;
7291 
7292         vid = vlvf & E1000_VLVF_VLANID_MASK;
7293         vfta_mask = BIT(vid % 32);
7294 
7295         /* clear bit from VFTA */
7296         vfta = adapter->shadow_vfta[vid / 32];
7297         if (vfta & vfta_mask)
7298             hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7299 update_vlvf:
7300         /* clear pool selection enable */
7301         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7302             vlvf &= E1000_VLVF_POOLSEL_MASK;
7303         else
7304             vlvf = 0;
7305 update_vlvfb:
7306         /* clear pool bits */
7307         wr32(E1000_VLVF(i), vlvf);
7308     }
7309 }
7310 
7311 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7312 {
7313     u32 vlvf;
7314     int idx;
7315 
7316     /* short cut the special case */
7317     if (vlan == 0)
7318         return 0;
7319 
7320     /* Search for the VLAN id in the VLVF entries */
7321     for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7322         vlvf = rd32(E1000_VLVF(idx));
7323         if ((vlvf & VLAN_VID_MASK) == vlan)
7324             break;
7325     }
7326 
7327     return idx;
7328 }
7329 
7330 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7331 {
7332     struct e1000_hw *hw = &adapter->hw;
7333     u32 bits, pf_id;
7334     int idx;
7335 
7336     idx = igb_find_vlvf_entry(hw, vid);
7337     if (!idx)
7338         return;
7339 
7340     /* See if any other pools are set for this VLAN filter
7341      * entry other than the PF.
7342      */
7343     pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7344     bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7345     bits &= rd32(E1000_VLVF(idx));
7346 
7347     /* Disable the filter so this falls into the default pool. */
7348     if (!bits) {
7349         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7350             wr32(E1000_VLVF(idx), BIT(pf_id));
7351         else
7352             wr32(E1000_VLVF(idx), 0);
7353     }
7354 }
7355 
7356 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7357                bool add, u32 vf)
7358 {
7359     int pf_id = adapter->vfs_allocated_count;
7360     struct e1000_hw *hw = &adapter->hw;
7361     int err;
7362 
7363     /* If VLAN overlaps with one the PF is currently monitoring make
7364      * sure that we are able to allocate a VLVF entry.  This may be
7365      * redundant but it guarantees PF will maintain visibility to
7366      * the VLAN.
7367      */
7368     if (add && test_bit(vid, adapter->active_vlans)) {
7369         err = igb_vfta_set(hw, vid, pf_id, true, false);
7370         if (err)
7371             return err;
7372     }
7373 
7374     err = igb_vfta_set(hw, vid, vf, add, false);
7375 
7376     if (add && !err)
7377         return err;
7378 
7379     /* If we failed to add the VF VLAN or we are removing the VF VLAN
7380      * we may need to drop the PF pool bit in order to allow us to free
7381      * up the VLVF resources.
7382      */
7383     if (test_bit(vid, adapter->active_vlans) ||
7384         (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7385         igb_update_pf_vlvf(adapter, vid);
7386 
7387     return err;
7388 }
7389 
7390 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7391 {
7392     struct e1000_hw *hw = &adapter->hw;
7393 
7394     if (vid)
7395         wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7396     else
7397         wr32(E1000_VMVIR(vf), 0);
7398 }
7399 
7400 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7401                 u16 vlan, u8 qos)
7402 {
7403     int err;
7404 
7405     err = igb_set_vf_vlan(adapter, vlan, true, vf);
7406     if (err)
7407         return err;
7408 
7409     igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7410     igb_set_vmolr(adapter, vf, !vlan);
7411 
7412     /* revoke access to previous VLAN */
7413     if (vlan != adapter->vf_data[vf].pf_vlan)
7414         igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7415                 false, vf);
7416 
7417     adapter->vf_data[vf].pf_vlan = vlan;
7418     adapter->vf_data[vf].pf_qos = qos;
7419     igb_set_vf_vlan_strip(adapter, vf, true);
7420     dev_info(&adapter->pdev->dev,
7421          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7422     if (test_bit(__IGB_DOWN, &adapter->state)) {
7423         dev_warn(&adapter->pdev->dev,
7424              "The VF VLAN has been set, but the PF device is not up.\n");
7425         dev_warn(&adapter->pdev->dev,
7426              "Bring the PF device up before attempting to use the VF device.\n");
7427     }
7428 
7429     return err;
7430 }
7431 
7432 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7433 {
7434     /* Restore tagless access via VLAN 0 */
7435     igb_set_vf_vlan(adapter, 0, true, vf);
7436 
7437     igb_set_vmvir(adapter, 0, vf);
7438     igb_set_vmolr(adapter, vf, true);
7439 
7440     /* Remove any PF assigned VLAN */
7441     if (adapter->vf_data[vf].pf_vlan)
7442         igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7443                 false, vf);
7444 
7445     adapter->vf_data[vf].pf_vlan = 0;
7446     adapter->vf_data[vf].pf_qos = 0;
7447     igb_set_vf_vlan_strip(adapter, vf, false);
7448 
7449     return 0;
7450 }
7451 
7452 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7453                    u16 vlan, u8 qos, __be16 vlan_proto)
7454 {
7455     struct igb_adapter *adapter = netdev_priv(netdev);
7456 
7457     if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7458         return -EINVAL;
7459 
7460     if (vlan_proto != htons(ETH_P_8021Q))
7461         return -EPROTONOSUPPORT;
7462 
7463     return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7464                    igb_disable_port_vlan(adapter, vf);
7465 }
7466 
7467 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7468 {
7469     int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7470     int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7471     int ret;
7472 
7473     if (adapter->vf_data[vf].pf_vlan)
7474         return -1;
7475 
7476     /* VLAN 0 is a special case, don't allow it to be removed */
7477     if (!vid && !add)
7478         return 0;
7479 
7480     ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7481     if (!ret)
7482         igb_set_vf_vlan_strip(adapter, vf, !!vid);
7483     return ret;
7484 }
7485 
7486 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7487 {
7488     struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7489 
7490     /* clear flags - except flag that indicates PF has set the MAC */
7491     vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7492     vf_data->last_nack = jiffies;
7493 
7494     /* reset vlans for device */
7495     igb_clear_vf_vfta(adapter, vf);
7496     igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7497     igb_set_vmvir(adapter, vf_data->pf_vlan |
7498                    (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7499     igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7500     igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7501 
7502     /* reset multicast table array for vf */
7503     adapter->vf_data[vf].num_vf_mc_hashes = 0;
7504 
7505     /* Flush and reset the mta with the new values */
7506     igb_set_rx_mode(adapter->netdev);
7507 }
7508 
7509 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7510 {
7511     unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7512 
7513     /* clear mac address as we were hotplug removed/added */
7514     if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7515         eth_zero_addr(vf_mac);
7516 
7517     /* process remaining reset events */
7518     igb_vf_reset(adapter, vf);
7519 }
7520 
7521 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7522 {
7523     struct e1000_hw *hw = &adapter->hw;
7524     unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7525     u32 reg, msgbuf[3];
7526     u8 *addr = (u8 *)(&msgbuf[1]);
7527 
7528     /* process all the same items cleared in a function level reset */
7529     igb_vf_reset(adapter, vf);
7530 
7531     /* set vf mac address */
7532     igb_set_vf_mac(adapter, vf, vf_mac);
7533 
7534     /* enable transmit and receive for vf */
7535     reg = rd32(E1000_VFTE);
7536     wr32(E1000_VFTE, reg | BIT(vf));
7537     reg = rd32(E1000_VFRE);
7538     wr32(E1000_VFRE, reg | BIT(vf));
7539 
7540     adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7541 
7542     /* reply to reset with ack and vf mac address */
7543     if (!is_zero_ether_addr(vf_mac)) {
7544         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7545         memcpy(addr, vf_mac, ETH_ALEN);
7546     } else {
7547         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7548     }
7549     igb_write_mbx(hw, msgbuf, 3, vf);
7550 }
7551 
7552 static void igb_flush_mac_table(struct igb_adapter *adapter)
7553 {
7554     struct e1000_hw *hw = &adapter->hw;
7555     int i;
7556 
7557     for (i = 0; i < hw->mac.rar_entry_count; i++) {
7558         adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7559         eth_zero_addr(adapter->mac_table[i].addr);
7560         adapter->mac_table[i].queue = 0;
7561         igb_rar_set_index(adapter, i);
7562     }
7563 }
7564 
7565 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7566 {
7567     struct e1000_hw *hw = &adapter->hw;
7568     /* do not count rar entries reserved for VFs MAC addresses */
7569     int rar_entries = hw->mac.rar_entry_count -
7570               adapter->vfs_allocated_count;
7571     int i, count = 0;
7572 
7573     for (i = 0; i < rar_entries; i++) {
7574         /* do not count default entries */
7575         if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7576             continue;
7577 
7578         /* do not count "in use" entries for different queues */
7579         if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7580             (adapter->mac_table[i].queue != queue))
7581             continue;
7582 
7583         count++;
7584     }
7585 
7586     return count;
7587 }
7588 
7589 /* Set default MAC address for the PF in the first RAR entry */
7590 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7591 {
7592     struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7593 
7594     ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7595     mac_table->queue = adapter->vfs_allocated_count;
7596     mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7597 
7598     igb_rar_set_index(adapter, 0);
7599 }
7600 
7601 /* If the filter to be added and an already existing filter express
7602  * the same address and address type, it should be possible to only
7603  * override the other configurations, for example the queue to steer
7604  * traffic.
7605  */
7606 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7607                       const u8 *addr, const u8 flags)
7608 {
7609     if (!(entry->state & IGB_MAC_STATE_IN_USE))
7610         return true;
7611 
7612     if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7613         (flags & IGB_MAC_STATE_SRC_ADDR))
7614         return false;
7615 
7616     if (!ether_addr_equal(addr, entry->addr))
7617         return false;
7618 
7619     return true;
7620 }
7621 
7622 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7623  * 'flags' is used to indicate what kind of match is made, match is by
7624  * default for the destination address, if matching by source address
7625  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7626  */
7627 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7628                     const u8 *addr, const u8 queue,
7629                     const u8 flags)
7630 {
7631     struct e1000_hw *hw = &adapter->hw;
7632     int rar_entries = hw->mac.rar_entry_count -
7633               adapter->vfs_allocated_count;
7634     int i;
7635 
7636     if (is_zero_ether_addr(addr))
7637         return -EINVAL;
7638 
7639     /* Search for the first empty entry in the MAC table.
7640      * Do not touch entries at the end of the table reserved for the VF MAC
7641      * addresses.
7642      */
7643     for (i = 0; i < rar_entries; i++) {
7644         if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7645                            addr, flags))
7646             continue;
7647 
7648         ether_addr_copy(adapter->mac_table[i].addr, addr);
7649         adapter->mac_table[i].queue = queue;
7650         adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7651 
7652         igb_rar_set_index(adapter, i);
7653         return i;
7654     }
7655 
7656     return -ENOSPC;
7657 }
7658 
7659 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7660                   const u8 queue)
7661 {
7662     return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7663 }
7664 
7665 /* Remove a MAC filter for 'addr' directing matching traffic to
7666  * 'queue', 'flags' is used to indicate what kind of match need to be
7667  * removed, match is by default for the destination address, if
7668  * matching by source address is to be removed the flag
7669  * IGB_MAC_STATE_SRC_ADDR can be used.
7670  */
7671 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7672                     const u8 *addr, const u8 queue,
7673                     const u8 flags)
7674 {
7675     struct e1000_hw *hw = &adapter->hw;
7676     int rar_entries = hw->mac.rar_entry_count -
7677               adapter->vfs_allocated_count;
7678     int i;
7679 
7680     if (is_zero_ether_addr(addr))
7681         return -EINVAL;
7682 
7683     /* Search for matching entry in the MAC table based on given address
7684      * and queue. Do not touch entries at the end of the table reserved
7685      * for the VF MAC addresses.
7686      */
7687     for (i = 0; i < rar_entries; i++) {
7688         if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7689             continue;
7690         if ((adapter->mac_table[i].state & flags) != flags)
7691             continue;
7692         if (adapter->mac_table[i].queue != queue)
7693             continue;
7694         if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7695             continue;
7696 
7697         /* When a filter for the default address is "deleted",
7698          * we return it to its initial configuration
7699          */
7700         if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7701             adapter->mac_table[i].state =
7702                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7703             adapter->mac_table[i].queue =
7704                 adapter->vfs_allocated_count;
7705         } else {
7706             adapter->mac_table[i].state = 0;
7707             adapter->mac_table[i].queue = 0;
7708             eth_zero_addr(adapter->mac_table[i].addr);
7709         }
7710 
7711         igb_rar_set_index(adapter, i);
7712         return 0;
7713     }
7714 
7715     return -ENOENT;
7716 }
7717 
7718 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7719                   const u8 queue)
7720 {
7721     return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7722 }
7723 
7724 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7725                 const u8 *addr, u8 queue, u8 flags)
7726 {
7727     struct e1000_hw *hw = &adapter->hw;
7728 
7729     /* In theory, this should be supported on 82575 as well, but
7730      * that part wasn't easily accessible during development.
7731      */
7732     if (hw->mac.type != e1000_i210)
7733         return -EOPNOTSUPP;
7734 
7735     return igb_add_mac_filter_flags(adapter, addr, queue,
7736                     IGB_MAC_STATE_QUEUE_STEERING | flags);
7737 }
7738 
7739 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7740                 const u8 *addr, u8 queue, u8 flags)
7741 {
7742     return igb_del_mac_filter_flags(adapter, addr, queue,
7743                     IGB_MAC_STATE_QUEUE_STEERING | flags);
7744 }
7745 
7746 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7747 {
7748     struct igb_adapter *adapter = netdev_priv(netdev);
7749     int ret;
7750 
7751     ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7752 
7753     return min_t(int, ret, 0);
7754 }
7755 
7756 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7757 {
7758     struct igb_adapter *adapter = netdev_priv(netdev);
7759 
7760     igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7761 
7762     return 0;
7763 }
7764 
7765 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7766                  const u32 info, const u8 *addr)
7767 {
7768     struct pci_dev *pdev = adapter->pdev;
7769     struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7770     struct list_head *pos;
7771     struct vf_mac_filter *entry = NULL;
7772     int ret = 0;
7773 
7774     if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7775         !vf_data->trusted) {
7776         dev_warn(&pdev->dev,
7777              "VF %d requested MAC filter but is administratively denied\n",
7778               vf);
7779         return -EINVAL;
7780     }
7781     if (!is_valid_ether_addr(addr)) {
7782         dev_warn(&pdev->dev,
7783              "VF %d attempted to set invalid MAC filter\n",
7784               vf);
7785         return -EINVAL;
7786     }
7787 
7788     switch (info) {
7789     case E1000_VF_MAC_FILTER_CLR:
7790         /* remove all unicast MAC filters related to the current VF */
7791         list_for_each(pos, &adapter->vf_macs.l) {
7792             entry = list_entry(pos, struct vf_mac_filter, l);
7793             if (entry->vf == vf) {
7794                 entry->vf = -1;
7795                 entry->free = true;
7796                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7797             }
7798         }
7799         break;
7800     case E1000_VF_MAC_FILTER_ADD:
7801         /* try to find empty slot in the list */
7802         list_for_each(pos, &adapter->vf_macs.l) {
7803             entry = list_entry(pos, struct vf_mac_filter, l);
7804             if (entry->free)
7805                 break;
7806         }
7807 
7808         if (entry && entry->free) {
7809             entry->free = false;
7810             entry->vf = vf;
7811             ether_addr_copy(entry->vf_mac, addr);
7812 
7813             ret = igb_add_mac_filter(adapter, addr, vf);
7814             ret = min_t(int, ret, 0);
7815         } else {
7816             ret = -ENOSPC;
7817         }
7818 
7819         if (ret == -ENOSPC)
7820             dev_warn(&pdev->dev,
7821                  "VF %d has requested MAC filter but there is no space for it\n",
7822                  vf);
7823         break;
7824     default:
7825         ret = -EINVAL;
7826         break;
7827     }
7828 
7829     return ret;
7830 }
7831 
7832 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7833 {
7834     struct pci_dev *pdev = adapter->pdev;
7835     struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7836     u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7837 
7838     /* The VF MAC Address is stored in a packed array of bytes
7839      * starting at the second 32 bit word of the msg array
7840      */
7841     unsigned char *addr = (unsigned char *)&msg[1];
7842     int ret = 0;
7843 
7844     if (!info) {
7845         if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7846             !vf_data->trusted) {
7847             dev_warn(&pdev->dev,
7848                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7849                  vf);
7850             return -EINVAL;
7851         }
7852 
7853         if (!is_valid_ether_addr(addr)) {
7854             dev_warn(&pdev->dev,
7855                  "VF %d attempted to set invalid MAC\n",
7856                  vf);
7857             return -EINVAL;
7858         }
7859 
7860         ret = igb_set_vf_mac(adapter, vf, addr);
7861     } else {
7862         ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7863     }
7864 
7865     return ret;
7866 }
7867 
7868 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7869 {
7870     struct e1000_hw *hw = &adapter->hw;
7871     struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7872     u32 msg = E1000_VT_MSGTYPE_NACK;
7873 
7874     /* if device isn't clear to send it shouldn't be reading either */
7875     if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7876         time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7877         igb_write_mbx(hw, &msg, 1, vf);
7878         vf_data->last_nack = jiffies;
7879     }
7880 }
7881 
7882 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7883 {
7884     struct pci_dev *pdev = adapter->pdev;
7885     u32 msgbuf[E1000_VFMAILBOX_SIZE];
7886     struct e1000_hw *hw = &adapter->hw;
7887     struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7888     s32 retval;
7889 
7890     retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7891 
7892     if (retval) {
7893         /* if receive failed revoke VF CTS stats and restart init */
7894         dev_err(&pdev->dev, "Error receiving message from VF\n");
7895         vf_data->flags &= ~IGB_VF_FLAG_CTS;
7896         if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7897             goto unlock;
7898         goto out;
7899     }
7900 
7901     /* this is a message we already processed, do nothing */
7902     if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7903         goto unlock;
7904 
7905     /* until the vf completes a reset it should not be
7906      * allowed to start any configuration.
7907      */
7908     if (msgbuf[0] == E1000_VF_RESET) {
7909         /* unlocks mailbox */
7910         igb_vf_reset_msg(adapter, vf);
7911         return;
7912     }
7913 
7914     if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7915         if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7916             goto unlock;
7917         retval = -1;
7918         goto out;
7919     }
7920 
7921     switch ((msgbuf[0] & 0xFFFF)) {
7922     case E1000_VF_SET_MAC_ADDR:
7923         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7924         break;
7925     case E1000_VF_SET_PROMISC:
7926         retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7927         break;
7928     case E1000_VF_SET_MULTICAST:
7929         retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7930         break;
7931     case E1000_VF_SET_LPE:
7932         retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7933         break;
7934     case E1000_VF_SET_VLAN:
7935         retval = -1;
7936         if (vf_data->pf_vlan)
7937             dev_warn(&pdev->dev,
7938                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7939                  vf);
7940         else
7941             retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7942         break;
7943     default:
7944         dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7945         retval = -1;
7946         break;
7947     }
7948 
7949     msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7950 out:
7951     /* notify the VF of the results of what it sent us */
7952     if (retval)
7953         msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7954     else
7955         msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7956 
7957     /* unlocks mailbox */
7958     igb_write_mbx(hw, msgbuf, 1, vf);
7959     return;
7960 
7961 unlock:
7962     igb_unlock_mbx(hw, vf);
7963 }
7964 
7965 static void igb_msg_task(struct igb_adapter *adapter)
7966 {
7967     struct e1000_hw *hw = &adapter->hw;
7968     unsigned long flags;
7969     u32 vf;
7970 
7971     spin_lock_irqsave(&adapter->vfs_lock, flags);
7972     for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7973         /* process any reset requests */
7974         if (!igb_check_for_rst(hw, vf))
7975             igb_vf_reset_event(adapter, vf);
7976 
7977         /* process any messages pending */
7978         if (!igb_check_for_msg(hw, vf))
7979             igb_rcv_msg_from_vf(adapter, vf);
7980 
7981         /* process any acks */
7982         if (!igb_check_for_ack(hw, vf))
7983             igb_rcv_ack_from_vf(adapter, vf);
7984     }
7985     spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7986 }
7987 
7988 /**
7989  *  igb_set_uta - Set unicast filter table address
7990  *  @adapter: board private structure
7991  *  @set: boolean indicating if we are setting or clearing bits
7992  *
7993  *  The unicast table address is a register array of 32-bit registers.
7994  *  The table is meant to be used in a way similar to how the MTA is used
7995  *  however due to certain limitations in the hardware it is necessary to
7996  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7997  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7998  **/
7999 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8000 {
8001     struct e1000_hw *hw = &adapter->hw;
8002     u32 uta = set ? ~0 : 0;
8003     int i;
8004 
8005     /* we only need to do this if VMDq is enabled */
8006     if (!adapter->vfs_allocated_count)
8007         return;
8008 
8009     for (i = hw->mac.uta_reg_count; i--;)
8010         array_wr32(E1000_UTA, i, uta);
8011 }
8012 
8013 /**
8014  *  igb_intr_msi - Interrupt Handler
8015  *  @irq: interrupt number
8016  *  @data: pointer to a network interface device structure
8017  **/
8018 static irqreturn_t igb_intr_msi(int irq, void *data)
8019 {
8020     struct igb_adapter *adapter = data;
8021     struct igb_q_vector *q_vector = adapter->q_vector[0];
8022     struct e1000_hw *hw = &adapter->hw;
8023     /* read ICR disables interrupts using IAM */
8024     u32 icr = rd32(E1000_ICR);
8025 
8026     igb_write_itr(q_vector);
8027 
8028     if (icr & E1000_ICR_DRSTA)
8029         schedule_work(&adapter->reset_task);
8030 
8031     if (icr & E1000_ICR_DOUTSYNC) {
8032         /* HW is reporting DMA is out of sync */
8033         adapter->stats.doosync++;
8034     }
8035 
8036     if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8037         hw->mac.get_link_status = 1;
8038         if (!test_bit(__IGB_DOWN, &adapter->state))
8039             mod_timer(&adapter->watchdog_timer, jiffies + 1);
8040     }
8041 
8042     if (icr & E1000_ICR_TS)
8043         igb_tsync_interrupt(adapter);
8044 
8045     napi_schedule(&q_vector->napi);
8046 
8047     return IRQ_HANDLED;
8048 }
8049 
8050 /**
8051  *  igb_intr - Legacy Interrupt Handler
8052  *  @irq: interrupt number
8053  *  @data: pointer to a network interface device structure
8054  **/
8055 static irqreturn_t igb_intr(int irq, void *data)
8056 {
8057     struct igb_adapter *adapter = data;
8058     struct igb_q_vector *q_vector = adapter->q_vector[0];
8059     struct e1000_hw *hw = &adapter->hw;
8060     /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8061      * need for the IMC write
8062      */
8063     u32 icr = rd32(E1000_ICR);
8064 
8065     /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8066      * not set, then the adapter didn't send an interrupt
8067      */
8068     if (!(icr & E1000_ICR_INT_ASSERTED))
8069         return IRQ_NONE;
8070 
8071     igb_write_itr(q_vector);
8072 
8073     if (icr & E1000_ICR_DRSTA)
8074         schedule_work(&adapter->reset_task);
8075 
8076     if (icr & E1000_ICR_DOUTSYNC) {
8077         /* HW is reporting DMA is out of sync */
8078         adapter->stats.doosync++;
8079     }
8080 
8081     if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8082         hw->mac.get_link_status = 1;
8083         /* guard against interrupt when we're going down */
8084         if (!test_bit(__IGB_DOWN, &adapter->state))
8085             mod_timer(&adapter->watchdog_timer, jiffies + 1);
8086     }
8087 
8088     if (icr & E1000_ICR_TS)
8089         igb_tsync_interrupt(adapter);
8090 
8091     napi_schedule(&q_vector->napi);
8092 
8093     return IRQ_HANDLED;
8094 }
8095 
8096 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8097 {
8098     struct igb_adapter *adapter = q_vector->adapter;
8099     struct e1000_hw *hw = &adapter->hw;
8100 
8101     if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8102         (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8103         if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8104             igb_set_itr(q_vector);
8105         else
8106             igb_update_ring_itr(q_vector);
8107     }
8108 
8109     if (!test_bit(__IGB_DOWN, &adapter->state)) {
8110         if (adapter->flags & IGB_FLAG_HAS_MSIX)
8111             wr32(E1000_EIMS, q_vector->eims_value);
8112         else
8113             igb_irq_enable(adapter);
8114     }
8115 }
8116 
8117 /**
8118  *  igb_poll - NAPI Rx polling callback
8119  *  @napi: napi polling structure
8120  *  @budget: count of how many packets we should handle
8121  **/
8122 static int igb_poll(struct napi_struct *napi, int budget)
8123 {
8124     struct igb_q_vector *q_vector = container_of(napi,
8125                              struct igb_q_vector,
8126                              napi);
8127     bool clean_complete = true;
8128     int work_done = 0;
8129 
8130 #ifdef CONFIG_IGB_DCA
8131     if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8132         igb_update_dca(q_vector);
8133 #endif
8134     if (q_vector->tx.ring)
8135         clean_complete = igb_clean_tx_irq(q_vector, budget);
8136 
8137     if (q_vector->rx.ring) {
8138         int cleaned = igb_clean_rx_irq(q_vector, budget);
8139 
8140         work_done += cleaned;
8141         if (cleaned >= budget)
8142             clean_complete = false;
8143     }
8144 
8145     /* If all work not completed, return budget and keep polling */
8146     if (!clean_complete)
8147         return budget;
8148 
8149     /* Exit the polling mode, but don't re-enable interrupts if stack might
8150      * poll us due to busy-polling
8151      */
8152     if (likely(napi_complete_done(napi, work_done)))
8153         igb_ring_irq_enable(q_vector);
8154 
8155     return work_done;
8156 }
8157 
8158 /**
8159  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8160  *  @q_vector: pointer to q_vector containing needed info
8161  *  @napi_budget: Used to determine if we are in netpoll
8162  *
8163  *  returns true if ring is completely cleaned
8164  **/
8165 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8166 {
8167     struct igb_adapter *adapter = q_vector->adapter;
8168     struct igb_ring *tx_ring = q_vector->tx.ring;
8169     struct igb_tx_buffer *tx_buffer;
8170     union e1000_adv_tx_desc *tx_desc;
8171     unsigned int total_bytes = 0, total_packets = 0;
8172     unsigned int budget = q_vector->tx.work_limit;
8173     unsigned int i = tx_ring->next_to_clean;
8174 
8175     if (test_bit(__IGB_DOWN, &adapter->state))
8176         return true;
8177 
8178     tx_buffer = &tx_ring->tx_buffer_info[i];
8179     tx_desc = IGB_TX_DESC(tx_ring, i);
8180     i -= tx_ring->count;
8181 
8182     do {
8183         union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8184 
8185         /* if next_to_watch is not set then there is no work pending */
8186         if (!eop_desc)
8187             break;
8188 
8189         /* prevent any other reads prior to eop_desc */
8190         smp_rmb();
8191 
8192         /* if DD is not set pending work has not been completed */
8193         if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8194             break;
8195 
8196         /* clear next_to_watch to prevent false hangs */
8197         tx_buffer->next_to_watch = NULL;
8198 
8199         /* update the statistics for this packet */
8200         total_bytes += tx_buffer->bytecount;
8201         total_packets += tx_buffer->gso_segs;
8202 
8203         /* free the skb */
8204         if (tx_buffer->type == IGB_TYPE_SKB)
8205             napi_consume_skb(tx_buffer->skb, napi_budget);
8206         else
8207             xdp_return_frame(tx_buffer->xdpf);
8208 
8209         /* unmap skb header data */
8210         dma_unmap_single(tx_ring->dev,
8211                  dma_unmap_addr(tx_buffer, dma),
8212                  dma_unmap_len(tx_buffer, len),
8213                  DMA_TO_DEVICE);
8214 
8215         /* clear tx_buffer data */
8216         dma_unmap_len_set(tx_buffer, len, 0);
8217 
8218         /* clear last DMA location and unmap remaining buffers */
8219         while (tx_desc != eop_desc) {
8220             tx_buffer++;
8221             tx_desc++;
8222             i++;
8223             if (unlikely(!i)) {
8224                 i -= tx_ring->count;
8225                 tx_buffer = tx_ring->tx_buffer_info;
8226                 tx_desc = IGB_TX_DESC(tx_ring, 0);
8227             }
8228 
8229             /* unmap any remaining paged data */
8230             if (dma_unmap_len(tx_buffer, len)) {
8231                 dma_unmap_page(tx_ring->dev,
8232                            dma_unmap_addr(tx_buffer, dma),
8233                            dma_unmap_len(tx_buffer, len),
8234                            DMA_TO_DEVICE);
8235                 dma_unmap_len_set(tx_buffer, len, 0);
8236             }
8237         }
8238 
8239         /* move us one more past the eop_desc for start of next pkt */
8240         tx_buffer++;
8241         tx_desc++;
8242         i++;
8243         if (unlikely(!i)) {
8244             i -= tx_ring->count;
8245             tx_buffer = tx_ring->tx_buffer_info;
8246             tx_desc = IGB_TX_DESC(tx_ring, 0);
8247         }
8248 
8249         /* issue prefetch for next Tx descriptor */
8250         prefetch(tx_desc);
8251 
8252         /* update budget accounting */
8253         budget--;
8254     } while (likely(budget));
8255 
8256     netdev_tx_completed_queue(txring_txq(tx_ring),
8257                   total_packets, total_bytes);
8258     i += tx_ring->count;
8259     tx_ring->next_to_clean = i;
8260     u64_stats_update_begin(&tx_ring->tx_syncp);
8261     tx_ring->tx_stats.bytes += total_bytes;
8262     tx_ring->tx_stats.packets += total_packets;
8263     u64_stats_update_end(&tx_ring->tx_syncp);
8264     q_vector->tx.total_bytes += total_bytes;
8265     q_vector->tx.total_packets += total_packets;
8266 
8267     if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8268         struct e1000_hw *hw = &adapter->hw;
8269 
8270         /* Detect a transmit hang in hardware, this serializes the
8271          * check with the clearing of time_stamp and movement of i
8272          */
8273         clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8274         if (tx_buffer->next_to_watch &&
8275             time_after(jiffies, tx_buffer->time_stamp +
8276                    (adapter->tx_timeout_factor * HZ)) &&
8277             !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8278 
8279             /* detected Tx unit hang */
8280             dev_err(tx_ring->dev,
8281                 "Detected Tx Unit Hang\n"
8282                 "  Tx Queue             <%d>\n"
8283                 "  TDH                  <%x>\n"
8284                 "  TDT                  <%x>\n"
8285                 "  next_to_use          <%x>\n"
8286                 "  next_to_clean        <%x>\n"
8287                 "buffer_info[next_to_clean]\n"
8288                 "  time_stamp           <%lx>\n"
8289                 "  next_to_watch        <%p>\n"
8290                 "  jiffies              <%lx>\n"
8291                 "  desc.status          <%x>\n",
8292                 tx_ring->queue_index,
8293                 rd32(E1000_TDH(tx_ring->reg_idx)),
8294                 readl(tx_ring->tail),
8295                 tx_ring->next_to_use,
8296                 tx_ring->next_to_clean,
8297                 tx_buffer->time_stamp,
8298                 tx_buffer->next_to_watch,
8299                 jiffies,
8300                 tx_buffer->next_to_watch->wb.status);
8301             netif_stop_subqueue(tx_ring->netdev,
8302                         tx_ring->queue_index);
8303 
8304             /* we are about to reset, no point in enabling stuff */
8305             return true;
8306         }
8307     }
8308 
8309 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8310     if (unlikely(total_packets &&
8311         netif_carrier_ok(tx_ring->netdev) &&
8312         igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8313         /* Make sure that anybody stopping the queue after this
8314          * sees the new next_to_clean.
8315          */
8316         smp_mb();
8317         if (__netif_subqueue_stopped(tx_ring->netdev,
8318                          tx_ring->queue_index) &&
8319             !(test_bit(__IGB_DOWN, &adapter->state))) {
8320             netif_wake_subqueue(tx_ring->netdev,
8321                         tx_ring->queue_index);
8322 
8323             u64_stats_update_begin(&tx_ring->tx_syncp);
8324             tx_ring->tx_stats.restart_queue++;
8325             u64_stats_update_end(&tx_ring->tx_syncp);
8326         }
8327     }
8328 
8329     return !!budget;
8330 }
8331 
8332 /**
8333  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8334  *  @rx_ring: rx descriptor ring to store buffers on
8335  *  @old_buff: donor buffer to have page reused
8336  *
8337  *  Synchronizes page for reuse by the adapter
8338  **/
8339 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8340                   struct igb_rx_buffer *old_buff)
8341 {
8342     struct igb_rx_buffer *new_buff;
8343     u16 nta = rx_ring->next_to_alloc;
8344 
8345     new_buff = &rx_ring->rx_buffer_info[nta];
8346 
8347     /* update, and store next to alloc */
8348     nta++;
8349     rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8350 
8351     /* Transfer page from old buffer to new buffer.
8352      * Move each member individually to avoid possible store
8353      * forwarding stalls.
8354      */
8355     new_buff->dma       = old_buff->dma;
8356     new_buff->page      = old_buff->page;
8357     new_buff->page_offset   = old_buff->page_offset;
8358     new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8359 }
8360 
8361 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8362                   int rx_buf_pgcnt)
8363 {
8364     unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8365     struct page *page = rx_buffer->page;
8366 
8367     /* avoid re-using remote and pfmemalloc pages */
8368     if (!dev_page_is_reusable(page))
8369         return false;
8370 
8371 #if (PAGE_SIZE < 8192)
8372     /* if we are only owner of page we can reuse it */
8373     if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8374         return false;
8375 #else
8376 #define IGB_LAST_OFFSET \
8377     (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8378 
8379     if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8380         return false;
8381 #endif
8382 
8383     /* If we have drained the page fragment pool we need to update
8384      * the pagecnt_bias and page count so that we fully restock the
8385      * number of references the driver holds.
8386      */
8387     if (unlikely(pagecnt_bias == 1)) {
8388         page_ref_add(page, USHRT_MAX - 1);
8389         rx_buffer->pagecnt_bias = USHRT_MAX;
8390     }
8391 
8392     return true;
8393 }
8394 
8395 /**
8396  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8397  *  @rx_ring: rx descriptor ring to transact packets on
8398  *  @rx_buffer: buffer containing page to add
8399  *  @skb: sk_buff to place the data into
8400  *  @size: size of buffer to be added
8401  *
8402  *  This function will add the data contained in rx_buffer->page to the skb.
8403  **/
8404 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8405                 struct igb_rx_buffer *rx_buffer,
8406                 struct sk_buff *skb,
8407                 unsigned int size)
8408 {
8409 #if (PAGE_SIZE < 8192)
8410     unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8411 #else
8412     unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8413                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8414                 SKB_DATA_ALIGN(size);
8415 #endif
8416     skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8417             rx_buffer->page_offset, size, truesize);
8418 #if (PAGE_SIZE < 8192)
8419     rx_buffer->page_offset ^= truesize;
8420 #else
8421     rx_buffer->page_offset += truesize;
8422 #endif
8423 }
8424 
8425 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8426                      struct igb_rx_buffer *rx_buffer,
8427                      struct xdp_buff *xdp,
8428                      ktime_t timestamp)
8429 {
8430 #if (PAGE_SIZE < 8192)
8431     unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8432 #else
8433     unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8434                            xdp->data_hard_start);
8435 #endif
8436     unsigned int size = xdp->data_end - xdp->data;
8437     unsigned int headlen;
8438     struct sk_buff *skb;
8439 
8440     /* prefetch first cache line of first page */
8441     net_prefetch(xdp->data);
8442 
8443     /* allocate a skb to store the frags */
8444     skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8445     if (unlikely(!skb))
8446         return NULL;
8447 
8448     if (timestamp)
8449         skb_hwtstamps(skb)->hwtstamp = timestamp;
8450 
8451     /* Determine available headroom for copy */
8452     headlen = size;
8453     if (headlen > IGB_RX_HDR_LEN)
8454         headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8455 
8456     /* align pull length to size of long to optimize memcpy performance */
8457     memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8458 
8459     /* update all of the pointers */
8460     size -= headlen;
8461     if (size) {
8462         skb_add_rx_frag(skb, 0, rx_buffer->page,
8463                 (xdp->data + headlen) - page_address(rx_buffer->page),
8464                 size, truesize);
8465 #if (PAGE_SIZE < 8192)
8466         rx_buffer->page_offset ^= truesize;
8467 #else
8468         rx_buffer->page_offset += truesize;
8469 #endif
8470     } else {
8471         rx_buffer->pagecnt_bias++;
8472     }
8473 
8474     return skb;
8475 }
8476 
8477 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8478                      struct igb_rx_buffer *rx_buffer,
8479                      struct xdp_buff *xdp,
8480                      ktime_t timestamp)
8481 {
8482 #if (PAGE_SIZE < 8192)
8483     unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8484 #else
8485     unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8486                 SKB_DATA_ALIGN(xdp->data_end -
8487                            xdp->data_hard_start);
8488 #endif
8489     unsigned int metasize = xdp->data - xdp->data_meta;
8490     struct sk_buff *skb;
8491 
8492     /* prefetch first cache line of first page */
8493     net_prefetch(xdp->data_meta);
8494 
8495     /* build an skb around the page buffer */
8496     skb = napi_build_skb(xdp->data_hard_start, truesize);
8497     if (unlikely(!skb))
8498         return NULL;
8499 
8500     /* update pointers within the skb to store the data */
8501     skb_reserve(skb, xdp->data - xdp->data_hard_start);
8502     __skb_put(skb, xdp->data_end - xdp->data);
8503 
8504     if (metasize)
8505         skb_metadata_set(skb, metasize);
8506 
8507     if (timestamp)
8508         skb_hwtstamps(skb)->hwtstamp = timestamp;
8509 
8510     /* update buffer offset */
8511 #if (PAGE_SIZE < 8192)
8512     rx_buffer->page_offset ^= truesize;
8513 #else
8514     rx_buffer->page_offset += truesize;
8515 #endif
8516 
8517     return skb;
8518 }
8519 
8520 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8521                    struct igb_ring *rx_ring,
8522                    struct xdp_buff *xdp)
8523 {
8524     int err, result = IGB_XDP_PASS;
8525     struct bpf_prog *xdp_prog;
8526     u32 act;
8527 
8528     xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8529 
8530     if (!xdp_prog)
8531         goto xdp_out;
8532 
8533     prefetchw(xdp->data_hard_start); /* xdp_frame write */
8534 
8535     act = bpf_prog_run_xdp(xdp_prog, xdp);
8536     switch (act) {
8537     case XDP_PASS:
8538         break;
8539     case XDP_TX:
8540         result = igb_xdp_xmit_back(adapter, xdp);
8541         if (result == IGB_XDP_CONSUMED)
8542             goto out_failure;
8543         break;
8544     case XDP_REDIRECT:
8545         err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8546         if (err)
8547             goto out_failure;
8548         result = IGB_XDP_REDIR;
8549         break;
8550     default:
8551         bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8552         fallthrough;
8553     case XDP_ABORTED:
8554 out_failure:
8555         trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8556         fallthrough;
8557     case XDP_DROP:
8558         result = IGB_XDP_CONSUMED;
8559         break;
8560     }
8561 xdp_out:
8562     return ERR_PTR(-result);
8563 }
8564 
8565 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8566                       unsigned int size)
8567 {
8568     unsigned int truesize;
8569 
8570 #if (PAGE_SIZE < 8192)
8571     truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8572 #else
8573     truesize = ring_uses_build_skb(rx_ring) ?
8574         SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8575         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8576         SKB_DATA_ALIGN(size);
8577 #endif
8578     return truesize;
8579 }
8580 
8581 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8582                    struct igb_rx_buffer *rx_buffer,
8583                    unsigned int size)
8584 {
8585     unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8586 #if (PAGE_SIZE < 8192)
8587     rx_buffer->page_offset ^= truesize;
8588 #else
8589     rx_buffer->page_offset += truesize;
8590 #endif
8591 }
8592 
8593 static inline void igb_rx_checksum(struct igb_ring *ring,
8594                    union e1000_adv_rx_desc *rx_desc,
8595                    struct sk_buff *skb)
8596 {
8597     skb_checksum_none_assert(skb);
8598 
8599     /* Ignore Checksum bit is set */
8600     if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8601         return;
8602 
8603     /* Rx checksum disabled via ethtool */
8604     if (!(ring->netdev->features & NETIF_F_RXCSUM))
8605         return;
8606 
8607     /* TCP/UDP checksum error bit is set */
8608     if (igb_test_staterr(rx_desc,
8609                  E1000_RXDEXT_STATERR_TCPE |
8610                  E1000_RXDEXT_STATERR_IPE)) {
8611         /* work around errata with sctp packets where the TCPE aka
8612          * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8613          * packets, (aka let the stack check the crc32c)
8614          */
8615         if (!((skb->len == 60) &&
8616               test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8617             u64_stats_update_begin(&ring->rx_syncp);
8618             ring->rx_stats.csum_err++;
8619             u64_stats_update_end(&ring->rx_syncp);
8620         }
8621         /* let the stack verify checksum errors */
8622         return;
8623     }
8624     /* It must be a TCP or UDP packet with a valid checksum */
8625     if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8626                       E1000_RXD_STAT_UDPCS))
8627         skb->ip_summed = CHECKSUM_UNNECESSARY;
8628 
8629     dev_dbg(ring->dev, "cksum success: bits %08X\n",
8630         le32_to_cpu(rx_desc->wb.upper.status_error));
8631 }
8632 
8633 static inline void igb_rx_hash(struct igb_ring *ring,
8634                    union e1000_adv_rx_desc *rx_desc,
8635                    struct sk_buff *skb)
8636 {
8637     if (ring->netdev->features & NETIF_F_RXHASH)
8638         skb_set_hash(skb,
8639                  le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8640                  PKT_HASH_TYPE_L3);
8641 }
8642 
8643 /**
8644  *  igb_is_non_eop - process handling of non-EOP buffers
8645  *  @rx_ring: Rx ring being processed
8646  *  @rx_desc: Rx descriptor for current buffer
8647  *
8648  *  This function updates next to clean.  If the buffer is an EOP buffer
8649  *  this function exits returning false, otherwise it will place the
8650  *  sk_buff in the next buffer to be chained and return true indicating
8651  *  that this is in fact a non-EOP buffer.
8652  **/
8653 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8654                union e1000_adv_rx_desc *rx_desc)
8655 {
8656     u32 ntc = rx_ring->next_to_clean + 1;
8657 
8658     /* fetch, update, and store next to clean */
8659     ntc = (ntc < rx_ring->count) ? ntc : 0;
8660     rx_ring->next_to_clean = ntc;
8661 
8662     prefetch(IGB_RX_DESC(rx_ring, ntc));
8663 
8664     if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8665         return false;
8666 
8667     return true;
8668 }
8669 
8670 /**
8671  *  igb_cleanup_headers - Correct corrupted or empty headers
8672  *  @rx_ring: rx descriptor ring packet is being transacted on
8673  *  @rx_desc: pointer to the EOP Rx descriptor
8674  *  @skb: pointer to current skb being fixed
8675  *
8676  *  Address the case where we are pulling data in on pages only
8677  *  and as such no data is present in the skb header.
8678  *
8679  *  In addition if skb is not at least 60 bytes we need to pad it so that
8680  *  it is large enough to qualify as a valid Ethernet frame.
8681  *
8682  *  Returns true if an error was encountered and skb was freed.
8683  **/
8684 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8685                 union e1000_adv_rx_desc *rx_desc,
8686                 struct sk_buff *skb)
8687 {
8688     /* XDP packets use error pointer so abort at this point */
8689     if (IS_ERR(skb))
8690         return true;
8691 
8692     if (unlikely((igb_test_staterr(rx_desc,
8693                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8694         struct net_device *netdev = rx_ring->netdev;
8695         if (!(netdev->features & NETIF_F_RXALL)) {
8696             dev_kfree_skb_any(skb);
8697             return true;
8698         }
8699     }
8700 
8701     /* if eth_skb_pad returns an error the skb was freed */
8702     if (eth_skb_pad(skb))
8703         return true;
8704 
8705     return false;
8706 }
8707 
8708 /**
8709  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8710  *  @rx_ring: rx descriptor ring packet is being transacted on
8711  *  @rx_desc: pointer to the EOP Rx descriptor
8712  *  @skb: pointer to current skb being populated
8713  *
8714  *  This function checks the ring, descriptor, and packet information in
8715  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8716  *  other fields within the skb.
8717  **/
8718 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8719                    union e1000_adv_rx_desc *rx_desc,
8720                    struct sk_buff *skb)
8721 {
8722     struct net_device *dev = rx_ring->netdev;
8723 
8724     igb_rx_hash(rx_ring, rx_desc, skb);
8725 
8726     igb_rx_checksum(rx_ring, rx_desc, skb);
8727 
8728     if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8729         !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8730         igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8731 
8732     if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8733         igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8734         u16 vid;
8735 
8736         if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8737             test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8738             vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8739         else
8740             vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8741 
8742         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8743     }
8744 
8745     skb_record_rx_queue(skb, rx_ring->queue_index);
8746 
8747     skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8748 }
8749 
8750 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8751 {
8752     return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8753 }
8754 
8755 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8756                            const unsigned int size, int *rx_buf_pgcnt)
8757 {
8758     struct igb_rx_buffer *rx_buffer;
8759 
8760     rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8761     *rx_buf_pgcnt =
8762 #if (PAGE_SIZE < 8192)
8763         page_count(rx_buffer->page);
8764 #else
8765         0;
8766 #endif
8767     prefetchw(rx_buffer->page);
8768 
8769     /* we are reusing so sync this buffer for CPU use */
8770     dma_sync_single_range_for_cpu(rx_ring->dev,
8771                       rx_buffer->dma,
8772                       rx_buffer->page_offset,
8773                       size,
8774                       DMA_FROM_DEVICE);
8775 
8776     rx_buffer->pagecnt_bias--;
8777 
8778     return rx_buffer;
8779 }
8780 
8781 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8782                   struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8783 {
8784     if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8785         /* hand second half of page back to the ring */
8786         igb_reuse_rx_page(rx_ring, rx_buffer);
8787     } else {
8788         /* We are not reusing the buffer so unmap it and free
8789          * any references we are holding to it
8790          */
8791         dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8792                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8793                      IGB_RX_DMA_ATTR);
8794         __page_frag_cache_drain(rx_buffer->page,
8795                     rx_buffer->pagecnt_bias);
8796     }
8797 
8798     /* clear contents of rx_buffer */
8799     rx_buffer->page = NULL;
8800 }
8801 
8802 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8803 {
8804     struct igb_adapter *adapter = q_vector->adapter;
8805     struct igb_ring *rx_ring = q_vector->rx.ring;
8806     struct sk_buff *skb = rx_ring->skb;
8807     unsigned int total_bytes = 0, total_packets = 0;
8808     u16 cleaned_count = igb_desc_unused(rx_ring);
8809     unsigned int xdp_xmit = 0;
8810     struct xdp_buff xdp;
8811     u32 frame_sz = 0;
8812     int rx_buf_pgcnt;
8813 
8814     /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8815 #if (PAGE_SIZE < 8192)
8816     frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8817 #endif
8818     xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8819 
8820     while (likely(total_packets < budget)) {
8821         union e1000_adv_rx_desc *rx_desc;
8822         struct igb_rx_buffer *rx_buffer;
8823         ktime_t timestamp = 0;
8824         int pkt_offset = 0;
8825         unsigned int size;
8826         void *pktbuf;
8827 
8828         /* return some buffers to hardware, one at a time is too slow */
8829         if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8830             igb_alloc_rx_buffers(rx_ring, cleaned_count);
8831             cleaned_count = 0;
8832         }
8833 
8834         rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8835         size = le16_to_cpu(rx_desc->wb.upper.length);
8836         if (!size)
8837             break;
8838 
8839         /* This memory barrier is needed to keep us from reading
8840          * any other fields out of the rx_desc until we know the
8841          * descriptor has been written back
8842          */
8843         dma_rmb();
8844 
8845         rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8846         pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8847 
8848         /* pull rx packet timestamp if available and valid */
8849         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8850             int ts_hdr_len;
8851 
8852             ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8853                              pktbuf, &timestamp);
8854 
8855             pkt_offset += ts_hdr_len;
8856             size -= ts_hdr_len;
8857         }
8858 
8859         /* retrieve a buffer from the ring */
8860         if (!skb) {
8861             unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8862             unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8863 
8864             xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8865             xdp_buff_clear_frags_flag(&xdp);
8866 #if (PAGE_SIZE > 4096)
8867             /* At larger PAGE_SIZE, frame_sz depend on len size */
8868             xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8869 #endif
8870             skb = igb_run_xdp(adapter, rx_ring, &xdp);
8871         }
8872 
8873         if (IS_ERR(skb)) {
8874             unsigned int xdp_res = -PTR_ERR(skb);
8875 
8876             if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8877                 xdp_xmit |= xdp_res;
8878                 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8879             } else {
8880                 rx_buffer->pagecnt_bias++;
8881             }
8882             total_packets++;
8883             total_bytes += size;
8884         } else if (skb)
8885             igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8886         else if (ring_uses_build_skb(rx_ring))
8887             skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8888                         timestamp);
8889         else
8890             skb = igb_construct_skb(rx_ring, rx_buffer,
8891                         &xdp, timestamp);
8892 
8893         /* exit if we failed to retrieve a buffer */
8894         if (!skb) {
8895             rx_ring->rx_stats.alloc_failed++;
8896             rx_buffer->pagecnt_bias++;
8897             break;
8898         }
8899 
8900         igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8901         cleaned_count++;
8902 
8903         /* fetch next buffer in frame if non-eop */
8904         if (igb_is_non_eop(rx_ring, rx_desc))
8905             continue;
8906 
8907         /* verify the packet layout is correct */
8908         if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8909             skb = NULL;
8910             continue;
8911         }
8912 
8913         /* probably a little skewed due to removing CRC */
8914         total_bytes += skb->len;
8915 
8916         /* populate checksum, timestamp, VLAN, and protocol */
8917         igb_process_skb_fields(rx_ring, rx_desc, skb);
8918 
8919         napi_gro_receive(&q_vector->napi, skb);
8920 
8921         /* reset skb pointer */
8922         skb = NULL;
8923 
8924         /* update budget accounting */
8925         total_packets++;
8926     }
8927 
8928     /* place incomplete frames back on ring for completion */
8929     rx_ring->skb = skb;
8930 
8931     if (xdp_xmit & IGB_XDP_REDIR)
8932         xdp_do_flush();
8933 
8934     if (xdp_xmit & IGB_XDP_TX) {
8935         struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8936 
8937         igb_xdp_ring_update_tail(tx_ring);
8938     }
8939 
8940     u64_stats_update_begin(&rx_ring->rx_syncp);
8941     rx_ring->rx_stats.packets += total_packets;
8942     rx_ring->rx_stats.bytes += total_bytes;
8943     u64_stats_update_end(&rx_ring->rx_syncp);
8944     q_vector->rx.total_packets += total_packets;
8945     q_vector->rx.total_bytes += total_bytes;
8946 
8947     if (cleaned_count)
8948         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8949 
8950     return total_packets;
8951 }
8952 
8953 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8954                   struct igb_rx_buffer *bi)
8955 {
8956     struct page *page = bi->page;
8957     dma_addr_t dma;
8958 
8959     /* since we are recycling buffers we should seldom need to alloc */
8960     if (likely(page))
8961         return true;
8962 
8963     /* alloc new page for storage */
8964     page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8965     if (unlikely(!page)) {
8966         rx_ring->rx_stats.alloc_failed++;
8967         return false;
8968     }
8969 
8970     /* map page for use */
8971     dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8972                  igb_rx_pg_size(rx_ring),
8973                  DMA_FROM_DEVICE,
8974                  IGB_RX_DMA_ATTR);
8975 
8976     /* if mapping failed free memory back to system since
8977      * there isn't much point in holding memory we can't use
8978      */
8979     if (dma_mapping_error(rx_ring->dev, dma)) {
8980         __free_pages(page, igb_rx_pg_order(rx_ring));
8981 
8982         rx_ring->rx_stats.alloc_failed++;
8983         return false;
8984     }
8985 
8986     bi->dma = dma;
8987     bi->page = page;
8988     bi->page_offset = igb_rx_offset(rx_ring);
8989     page_ref_add(page, USHRT_MAX - 1);
8990     bi->pagecnt_bias = USHRT_MAX;
8991 
8992     return true;
8993 }
8994 
8995 /**
8996  *  igb_alloc_rx_buffers - Replace used receive buffers
8997  *  @rx_ring: rx descriptor ring to allocate new receive buffers
8998  *  @cleaned_count: count of buffers to allocate
8999  **/
9000 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9001 {
9002     union e1000_adv_rx_desc *rx_desc;
9003     struct igb_rx_buffer *bi;
9004     u16 i = rx_ring->next_to_use;
9005     u16 bufsz;
9006 
9007     /* nothing to do */
9008     if (!cleaned_count)
9009         return;
9010 
9011     rx_desc = IGB_RX_DESC(rx_ring, i);
9012     bi = &rx_ring->rx_buffer_info[i];
9013     i -= rx_ring->count;
9014 
9015     bufsz = igb_rx_bufsz(rx_ring);
9016 
9017     do {
9018         if (!igb_alloc_mapped_page(rx_ring, bi))
9019             break;
9020 
9021         /* sync the buffer for use by the device */
9022         dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9023                          bi->page_offset, bufsz,
9024                          DMA_FROM_DEVICE);
9025 
9026         /* Refresh the desc even if buffer_addrs didn't change
9027          * because each write-back erases this info.
9028          */
9029         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9030 
9031         rx_desc++;
9032         bi++;
9033         i++;
9034         if (unlikely(!i)) {
9035             rx_desc = IGB_RX_DESC(rx_ring, 0);
9036             bi = rx_ring->rx_buffer_info;
9037             i -= rx_ring->count;
9038         }
9039 
9040         /* clear the length for the next_to_use descriptor */
9041         rx_desc->wb.upper.length = 0;
9042 
9043         cleaned_count--;
9044     } while (cleaned_count);
9045 
9046     i += rx_ring->count;
9047 
9048     if (rx_ring->next_to_use != i) {
9049         /* record the next descriptor to use */
9050         rx_ring->next_to_use = i;
9051 
9052         /* update next to alloc since we have filled the ring */
9053         rx_ring->next_to_alloc = i;
9054 
9055         /* Force memory writes to complete before letting h/w
9056          * know there are new descriptors to fetch.  (Only
9057          * applicable for weak-ordered memory model archs,
9058          * such as IA-64).
9059          */
9060         dma_wmb();
9061         writel(i, rx_ring->tail);
9062     }
9063 }
9064 
9065 /**
9066  * igb_mii_ioctl -
9067  * @netdev: pointer to netdev struct
9068  * @ifr: interface structure
9069  * @cmd: ioctl command to execute
9070  **/
9071 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9072 {
9073     struct igb_adapter *adapter = netdev_priv(netdev);
9074     struct mii_ioctl_data *data = if_mii(ifr);
9075 
9076     if (adapter->hw.phy.media_type != e1000_media_type_copper)
9077         return -EOPNOTSUPP;
9078 
9079     switch (cmd) {
9080     case SIOCGMIIPHY:
9081         data->phy_id = adapter->hw.phy.addr;
9082         break;
9083     case SIOCGMIIREG:
9084         if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9085                      &data->val_out))
9086             return -EIO;
9087         break;
9088     case SIOCSMIIREG:
9089     default:
9090         return -EOPNOTSUPP;
9091     }
9092     return 0;
9093 }
9094 
9095 /**
9096  * igb_ioctl -
9097  * @netdev: pointer to netdev struct
9098  * @ifr: interface structure
9099  * @cmd: ioctl command to execute
9100  **/
9101 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9102 {
9103     switch (cmd) {
9104     case SIOCGMIIPHY:
9105     case SIOCGMIIREG:
9106     case SIOCSMIIREG:
9107         return igb_mii_ioctl(netdev, ifr, cmd);
9108     case SIOCGHWTSTAMP:
9109         return igb_ptp_get_ts_config(netdev, ifr);
9110     case SIOCSHWTSTAMP:
9111         return igb_ptp_set_ts_config(netdev, ifr);
9112     default:
9113         return -EOPNOTSUPP;
9114     }
9115 }
9116 
9117 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9118 {
9119     struct igb_adapter *adapter = hw->back;
9120 
9121     pci_read_config_word(adapter->pdev, reg, value);
9122 }
9123 
9124 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9125 {
9126     struct igb_adapter *adapter = hw->back;
9127 
9128     pci_write_config_word(adapter->pdev, reg, *value);
9129 }
9130 
9131 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9132 {
9133     struct igb_adapter *adapter = hw->back;
9134 
9135     if (pcie_capability_read_word(adapter->pdev, reg, value))
9136         return -E1000_ERR_CONFIG;
9137 
9138     return 0;
9139 }
9140 
9141 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9142 {
9143     struct igb_adapter *adapter = hw->back;
9144 
9145     if (pcie_capability_write_word(adapter->pdev, reg, *value))
9146         return -E1000_ERR_CONFIG;
9147 
9148     return 0;
9149 }
9150 
9151 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9152 {
9153     struct igb_adapter *adapter = netdev_priv(netdev);
9154     struct e1000_hw *hw = &adapter->hw;
9155     u32 ctrl, rctl;
9156     bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9157 
9158     if (enable) {
9159         /* enable VLAN tag insert/strip */
9160         ctrl = rd32(E1000_CTRL);
9161         ctrl |= E1000_CTRL_VME;
9162         wr32(E1000_CTRL, ctrl);
9163 
9164         /* Disable CFI check */
9165         rctl = rd32(E1000_RCTL);
9166         rctl &= ~E1000_RCTL_CFIEN;
9167         wr32(E1000_RCTL, rctl);
9168     } else {
9169         /* disable VLAN tag insert/strip */
9170         ctrl = rd32(E1000_CTRL);
9171         ctrl &= ~E1000_CTRL_VME;
9172         wr32(E1000_CTRL, ctrl);
9173     }
9174 
9175     igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9176 }
9177 
9178 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9179                    __be16 proto, u16 vid)
9180 {
9181     struct igb_adapter *adapter = netdev_priv(netdev);
9182     struct e1000_hw *hw = &adapter->hw;
9183     int pf_id = adapter->vfs_allocated_count;
9184 
9185     /* add the filter since PF can receive vlans w/o entry in vlvf */
9186     if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9187         igb_vfta_set(hw, vid, pf_id, true, !!vid);
9188 
9189     set_bit(vid, adapter->active_vlans);
9190 
9191     return 0;
9192 }
9193 
9194 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9195                 __be16 proto, u16 vid)
9196 {
9197     struct igb_adapter *adapter = netdev_priv(netdev);
9198     int pf_id = adapter->vfs_allocated_count;
9199     struct e1000_hw *hw = &adapter->hw;
9200 
9201     /* remove VID from filter table */
9202     if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9203         igb_vfta_set(hw, vid, pf_id, false, true);
9204 
9205     clear_bit(vid, adapter->active_vlans);
9206 
9207     return 0;
9208 }
9209 
9210 static void igb_restore_vlan(struct igb_adapter *adapter)
9211 {
9212     u16 vid = 1;
9213 
9214     igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9215     igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9216 
9217     for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9218         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9219 }
9220 
9221 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9222 {
9223     struct pci_dev *pdev = adapter->pdev;
9224     struct e1000_mac_info *mac = &adapter->hw.mac;
9225 
9226     mac->autoneg = 0;
9227 
9228     /* Make sure dplx is at most 1 bit and lsb of speed is not set
9229      * for the switch() below to work
9230      */
9231     if ((spd & 1) || (dplx & ~1))
9232         goto err_inval;
9233 
9234     /* Fiber NIC's only allow 1000 gbps Full duplex
9235      * and 100Mbps Full duplex for 100baseFx sfp
9236      */
9237     if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9238         switch (spd + dplx) {
9239         case SPEED_10 + DUPLEX_HALF:
9240         case SPEED_10 + DUPLEX_FULL:
9241         case SPEED_100 + DUPLEX_HALF:
9242             goto err_inval;
9243         default:
9244             break;
9245         }
9246     }
9247 
9248     switch (spd + dplx) {
9249     case SPEED_10 + DUPLEX_HALF:
9250         mac->forced_speed_duplex = ADVERTISE_10_HALF;
9251         break;
9252     case SPEED_10 + DUPLEX_FULL:
9253         mac->forced_speed_duplex = ADVERTISE_10_FULL;
9254         break;
9255     case SPEED_100 + DUPLEX_HALF:
9256         mac->forced_speed_duplex = ADVERTISE_100_HALF;
9257         break;
9258     case SPEED_100 + DUPLEX_FULL:
9259         mac->forced_speed_duplex = ADVERTISE_100_FULL;
9260         break;
9261     case SPEED_1000 + DUPLEX_FULL:
9262         mac->autoneg = 1;
9263         adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9264         break;
9265     case SPEED_1000 + DUPLEX_HALF: /* not supported */
9266     default:
9267         goto err_inval;
9268     }
9269 
9270     /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9271     adapter->hw.phy.mdix = AUTO_ALL_MODES;
9272 
9273     return 0;
9274 
9275 err_inval:
9276     dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9277     return -EINVAL;
9278 }
9279 
9280 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9281               bool runtime)
9282 {
9283     struct net_device *netdev = pci_get_drvdata(pdev);
9284     struct igb_adapter *adapter = netdev_priv(netdev);
9285     struct e1000_hw *hw = &adapter->hw;
9286     u32 ctrl, rctl, status;
9287     u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9288     bool wake;
9289 
9290     rtnl_lock();
9291     netif_device_detach(netdev);
9292 
9293     if (netif_running(netdev))
9294         __igb_close(netdev, true);
9295 
9296     igb_ptp_suspend(adapter);
9297 
9298     igb_clear_interrupt_scheme(adapter);
9299     rtnl_unlock();
9300 
9301     status = rd32(E1000_STATUS);
9302     if (status & E1000_STATUS_LU)
9303         wufc &= ~E1000_WUFC_LNKC;
9304 
9305     if (wufc) {
9306         igb_setup_rctl(adapter);
9307         igb_set_rx_mode(netdev);
9308 
9309         /* turn on all-multi mode if wake on multicast is enabled */
9310         if (wufc & E1000_WUFC_MC) {
9311             rctl = rd32(E1000_RCTL);
9312             rctl |= E1000_RCTL_MPE;
9313             wr32(E1000_RCTL, rctl);
9314         }
9315 
9316         ctrl = rd32(E1000_CTRL);
9317         ctrl |= E1000_CTRL_ADVD3WUC;
9318         wr32(E1000_CTRL, ctrl);
9319 
9320         /* Allow time for pending master requests to run */
9321         igb_disable_pcie_master(hw);
9322 
9323         wr32(E1000_WUC, E1000_WUC_PME_EN);
9324         wr32(E1000_WUFC, wufc);
9325     } else {
9326         wr32(E1000_WUC, 0);
9327         wr32(E1000_WUFC, 0);
9328     }
9329 
9330     wake = wufc || adapter->en_mng_pt;
9331     if (!wake)
9332         igb_power_down_link(adapter);
9333     else
9334         igb_power_up_link(adapter);
9335 
9336     if (enable_wake)
9337         *enable_wake = wake;
9338 
9339     /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9340      * would have already happened in close and is redundant.
9341      */
9342     igb_release_hw_control(adapter);
9343 
9344     pci_disable_device(pdev);
9345 
9346     return 0;
9347 }
9348 
9349 static void igb_deliver_wake_packet(struct net_device *netdev)
9350 {
9351     struct igb_adapter *adapter = netdev_priv(netdev);
9352     struct e1000_hw *hw = &adapter->hw;
9353     struct sk_buff *skb;
9354     u32 wupl;
9355 
9356     wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9357 
9358     /* WUPM stores only the first 128 bytes of the wake packet.
9359      * Read the packet only if we have the whole thing.
9360      */
9361     if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9362         return;
9363 
9364     skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9365     if (!skb)
9366         return;
9367 
9368     skb_put(skb, wupl);
9369 
9370     /* Ensure reads are 32-bit aligned */
9371     wupl = roundup(wupl, 4);
9372 
9373     memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9374 
9375     skb->protocol = eth_type_trans(skb, netdev);
9376     netif_rx(skb);
9377 }
9378 
9379 static int __maybe_unused igb_suspend(struct device *dev)
9380 {
9381     return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9382 }
9383 
9384 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9385 {
9386     struct pci_dev *pdev = to_pci_dev(dev);
9387     struct net_device *netdev = pci_get_drvdata(pdev);
9388     struct igb_adapter *adapter = netdev_priv(netdev);
9389     struct e1000_hw *hw = &adapter->hw;
9390     u32 err, val;
9391 
9392     pci_set_power_state(pdev, PCI_D0);
9393     pci_restore_state(pdev);
9394     pci_save_state(pdev);
9395 
9396     if (!pci_device_is_present(pdev))
9397         return -ENODEV;
9398     err = pci_enable_device_mem(pdev);
9399     if (err) {
9400         dev_err(&pdev->dev,
9401             "igb: Cannot enable PCI device from suspend\n");
9402         return err;
9403     }
9404     pci_set_master(pdev);
9405 
9406     pci_enable_wake(pdev, PCI_D3hot, 0);
9407     pci_enable_wake(pdev, PCI_D3cold, 0);
9408 
9409     if (igb_init_interrupt_scheme(adapter, true)) {
9410         dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9411         return -ENOMEM;
9412     }
9413 
9414     igb_reset(adapter);
9415 
9416     /* let the f/w know that the h/w is now under the control of the
9417      * driver.
9418      */
9419     igb_get_hw_control(adapter);
9420 
9421     val = rd32(E1000_WUS);
9422     if (val & WAKE_PKT_WUS)
9423         igb_deliver_wake_packet(netdev);
9424 
9425     wr32(E1000_WUS, ~0);
9426 
9427     if (!rpm)
9428         rtnl_lock();
9429     if (!err && netif_running(netdev))
9430         err = __igb_open(netdev, true);
9431 
9432     if (!err)
9433         netif_device_attach(netdev);
9434     if (!rpm)
9435         rtnl_unlock();
9436 
9437     return err;
9438 }
9439 
9440 static int __maybe_unused igb_resume(struct device *dev)
9441 {
9442     return __igb_resume(dev, false);
9443 }
9444 
9445 static int __maybe_unused igb_runtime_idle(struct device *dev)
9446 {
9447     struct net_device *netdev = dev_get_drvdata(dev);
9448     struct igb_adapter *adapter = netdev_priv(netdev);
9449 
9450     if (!igb_has_link(adapter))
9451         pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9452 
9453     return -EBUSY;
9454 }
9455 
9456 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9457 {
9458     return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9459 }
9460 
9461 static int __maybe_unused igb_runtime_resume(struct device *dev)
9462 {
9463     return __igb_resume(dev, true);
9464 }
9465 
9466 static void igb_shutdown(struct pci_dev *pdev)
9467 {
9468     bool wake;
9469 
9470     __igb_shutdown(pdev, &wake, 0);
9471 
9472     if (system_state == SYSTEM_POWER_OFF) {
9473         pci_wake_from_d3(pdev, wake);
9474         pci_set_power_state(pdev, PCI_D3hot);
9475     }
9476 }
9477 
9478 #ifdef CONFIG_PCI_IOV
9479 static int igb_sriov_reinit(struct pci_dev *dev)
9480 {
9481     struct net_device *netdev = pci_get_drvdata(dev);
9482     struct igb_adapter *adapter = netdev_priv(netdev);
9483     struct pci_dev *pdev = adapter->pdev;
9484 
9485     rtnl_lock();
9486 
9487     if (netif_running(netdev))
9488         igb_close(netdev);
9489     else
9490         igb_reset(adapter);
9491 
9492     igb_clear_interrupt_scheme(adapter);
9493 
9494     igb_init_queue_configuration(adapter);
9495 
9496     if (igb_init_interrupt_scheme(adapter, true)) {
9497         rtnl_unlock();
9498         dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9499         return -ENOMEM;
9500     }
9501 
9502     if (netif_running(netdev))
9503         igb_open(netdev);
9504 
9505     rtnl_unlock();
9506 
9507     return 0;
9508 }
9509 
9510 static int igb_pci_disable_sriov(struct pci_dev *dev)
9511 {
9512     int err = igb_disable_sriov(dev);
9513 
9514     if (!err)
9515         err = igb_sriov_reinit(dev);
9516 
9517     return err;
9518 }
9519 
9520 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9521 {
9522     int err = igb_enable_sriov(dev, num_vfs);
9523 
9524     if (err)
9525         goto out;
9526 
9527     err = igb_sriov_reinit(dev);
9528     if (!err)
9529         return num_vfs;
9530 
9531 out:
9532     return err;
9533 }
9534 
9535 #endif
9536 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9537 {
9538 #ifdef CONFIG_PCI_IOV
9539     if (num_vfs == 0)
9540         return igb_pci_disable_sriov(dev);
9541     else
9542         return igb_pci_enable_sriov(dev, num_vfs);
9543 #endif
9544     return 0;
9545 }
9546 
9547 /**
9548  *  igb_io_error_detected - called when PCI error is detected
9549  *  @pdev: Pointer to PCI device
9550  *  @state: The current pci connection state
9551  *
9552  *  This function is called after a PCI bus error affecting
9553  *  this device has been detected.
9554  **/
9555 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9556                           pci_channel_state_t state)
9557 {
9558     struct net_device *netdev = pci_get_drvdata(pdev);
9559     struct igb_adapter *adapter = netdev_priv(netdev);
9560 
9561     netif_device_detach(netdev);
9562 
9563     if (state == pci_channel_io_perm_failure)
9564         return PCI_ERS_RESULT_DISCONNECT;
9565 
9566     if (netif_running(netdev))
9567         igb_down(adapter);
9568     pci_disable_device(pdev);
9569 
9570     /* Request a slot reset. */
9571     return PCI_ERS_RESULT_NEED_RESET;
9572 }
9573 
9574 /**
9575  *  igb_io_slot_reset - called after the pci bus has been reset.
9576  *  @pdev: Pointer to PCI device
9577  *
9578  *  Restart the card from scratch, as if from a cold-boot. Implementation
9579  *  resembles the first-half of the __igb_resume routine.
9580  **/
9581 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9582 {
9583     struct net_device *netdev = pci_get_drvdata(pdev);
9584     struct igb_adapter *adapter = netdev_priv(netdev);
9585     struct e1000_hw *hw = &adapter->hw;
9586     pci_ers_result_t result;
9587 
9588     if (pci_enable_device_mem(pdev)) {
9589         dev_err(&pdev->dev,
9590             "Cannot re-enable PCI device after reset.\n");
9591         result = PCI_ERS_RESULT_DISCONNECT;
9592     } else {
9593         pci_set_master(pdev);
9594         pci_restore_state(pdev);
9595         pci_save_state(pdev);
9596 
9597         pci_enable_wake(pdev, PCI_D3hot, 0);
9598         pci_enable_wake(pdev, PCI_D3cold, 0);
9599 
9600         /* In case of PCI error, adapter lose its HW address
9601          * so we should re-assign it here.
9602          */
9603         hw->hw_addr = adapter->io_addr;
9604 
9605         igb_reset(adapter);
9606         wr32(E1000_WUS, ~0);
9607         result = PCI_ERS_RESULT_RECOVERED;
9608     }
9609 
9610     return result;
9611 }
9612 
9613 /**
9614  *  igb_io_resume - called when traffic can start flowing again.
9615  *  @pdev: Pointer to PCI device
9616  *
9617  *  This callback is called when the error recovery driver tells us that
9618  *  its OK to resume normal operation. Implementation resembles the
9619  *  second-half of the __igb_resume routine.
9620  */
9621 static void igb_io_resume(struct pci_dev *pdev)
9622 {
9623     struct net_device *netdev = pci_get_drvdata(pdev);
9624     struct igb_adapter *adapter = netdev_priv(netdev);
9625 
9626     if (netif_running(netdev)) {
9627         if (igb_up(adapter)) {
9628             dev_err(&pdev->dev, "igb_up failed after reset\n");
9629             return;
9630         }
9631     }
9632 
9633     netif_device_attach(netdev);
9634 
9635     /* let the f/w know that the h/w is now under the control of the
9636      * driver.
9637      */
9638     igb_get_hw_control(adapter);
9639 }
9640 
9641 /**
9642  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9643  *  @adapter: Pointer to adapter structure
9644  *  @index: Index of the RAR entry which need to be synced with MAC table
9645  **/
9646 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9647 {
9648     struct e1000_hw *hw = &adapter->hw;
9649     u32 rar_low, rar_high;
9650     u8 *addr = adapter->mac_table[index].addr;
9651 
9652     /* HW expects these to be in network order when they are plugged
9653      * into the registers which are little endian.  In order to guarantee
9654      * that ordering we need to do an leXX_to_cpup here in order to be
9655      * ready for the byteswap that occurs with writel
9656      */
9657     rar_low = le32_to_cpup((__le32 *)(addr));
9658     rar_high = le16_to_cpup((__le16 *)(addr + 4));
9659 
9660     /* Indicate to hardware the Address is Valid. */
9661     if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9662         if (is_valid_ether_addr(addr))
9663             rar_high |= E1000_RAH_AV;
9664 
9665         if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9666             rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9667 
9668         switch (hw->mac.type) {
9669         case e1000_82575:
9670         case e1000_i210:
9671             if (adapter->mac_table[index].state &
9672                 IGB_MAC_STATE_QUEUE_STEERING)
9673                 rar_high |= E1000_RAH_QSEL_ENABLE;
9674 
9675             rar_high |= E1000_RAH_POOL_1 *
9676                     adapter->mac_table[index].queue;
9677             break;
9678         default:
9679             rar_high |= E1000_RAH_POOL_1 <<
9680                     adapter->mac_table[index].queue;
9681             break;
9682         }
9683     }
9684 
9685     wr32(E1000_RAL(index), rar_low);
9686     wrfl();
9687     wr32(E1000_RAH(index), rar_high);
9688     wrfl();
9689 }
9690 
9691 static int igb_set_vf_mac(struct igb_adapter *adapter,
9692               int vf, unsigned char *mac_addr)
9693 {
9694     struct e1000_hw *hw = &adapter->hw;
9695     /* VF MAC addresses start at end of receive addresses and moves
9696      * towards the first, as a result a collision should not be possible
9697      */
9698     int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9699     unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9700 
9701     ether_addr_copy(vf_mac_addr, mac_addr);
9702     ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9703     adapter->mac_table[rar_entry].queue = vf;
9704     adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9705     igb_rar_set_index(adapter, rar_entry);
9706 
9707     return 0;
9708 }
9709 
9710 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9711 {
9712     struct igb_adapter *adapter = netdev_priv(netdev);
9713 
9714     if (vf >= adapter->vfs_allocated_count)
9715         return -EINVAL;
9716 
9717     /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9718      * flag and allows to overwrite the MAC via VF netdev.  This
9719      * is necessary to allow libvirt a way to restore the original
9720      * MAC after unbinding vfio-pci and reloading igbvf after shutting
9721      * down a VM.
9722      */
9723     if (is_zero_ether_addr(mac)) {
9724         adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9725         dev_info(&adapter->pdev->dev,
9726              "remove administratively set MAC on VF %d\n",
9727              vf);
9728     } else if (is_valid_ether_addr(mac)) {
9729         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9730         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9731              mac, vf);
9732         dev_info(&adapter->pdev->dev,
9733              "Reload the VF driver to make this change effective.");
9734         /* Generate additional warning if PF is down */
9735         if (test_bit(__IGB_DOWN, &adapter->state)) {
9736             dev_warn(&adapter->pdev->dev,
9737                  "The VF MAC address has been set, but the PF device is not up.\n");
9738             dev_warn(&adapter->pdev->dev,
9739                  "Bring the PF device up before attempting to use the VF device.\n");
9740         }
9741     } else {
9742         return -EINVAL;
9743     }
9744     return igb_set_vf_mac(adapter, vf, mac);
9745 }
9746 
9747 static int igb_link_mbps(int internal_link_speed)
9748 {
9749     switch (internal_link_speed) {
9750     case SPEED_100:
9751         return 100;
9752     case SPEED_1000:
9753         return 1000;
9754     default:
9755         return 0;
9756     }
9757 }
9758 
9759 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9760                   int link_speed)
9761 {
9762     int rf_dec, rf_int;
9763     u32 bcnrc_val;
9764 
9765     if (tx_rate != 0) {
9766         /* Calculate the rate factor values to set */
9767         rf_int = link_speed / tx_rate;
9768         rf_dec = (link_speed - (rf_int * tx_rate));
9769         rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9770              tx_rate;
9771 
9772         bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9773         bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9774                   E1000_RTTBCNRC_RF_INT_MASK);
9775         bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9776     } else {
9777         bcnrc_val = 0;
9778     }
9779 
9780     wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9781     /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9782      * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9783      */
9784     wr32(E1000_RTTBCNRM, 0x14);
9785     wr32(E1000_RTTBCNRC, bcnrc_val);
9786 }
9787 
9788 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9789 {
9790     int actual_link_speed, i;
9791     bool reset_rate = false;
9792 
9793     /* VF TX rate limit was not set or not supported */
9794     if ((adapter->vf_rate_link_speed == 0) ||
9795         (adapter->hw.mac.type != e1000_82576))
9796         return;
9797 
9798     actual_link_speed = igb_link_mbps(adapter->link_speed);
9799     if (actual_link_speed != adapter->vf_rate_link_speed) {
9800         reset_rate = true;
9801         adapter->vf_rate_link_speed = 0;
9802         dev_info(&adapter->pdev->dev,
9803              "Link speed has been changed. VF Transmit rate is disabled\n");
9804     }
9805 
9806     for (i = 0; i < adapter->vfs_allocated_count; i++) {
9807         if (reset_rate)
9808             adapter->vf_data[i].tx_rate = 0;
9809 
9810         igb_set_vf_rate_limit(&adapter->hw, i,
9811                       adapter->vf_data[i].tx_rate,
9812                       actual_link_speed);
9813     }
9814 }
9815 
9816 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9817                  int min_tx_rate, int max_tx_rate)
9818 {
9819     struct igb_adapter *adapter = netdev_priv(netdev);
9820     struct e1000_hw *hw = &adapter->hw;
9821     int actual_link_speed;
9822 
9823     if (hw->mac.type != e1000_82576)
9824         return -EOPNOTSUPP;
9825 
9826     if (min_tx_rate)
9827         return -EINVAL;
9828 
9829     actual_link_speed = igb_link_mbps(adapter->link_speed);
9830     if ((vf >= adapter->vfs_allocated_count) ||
9831         (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9832         (max_tx_rate < 0) ||
9833         (max_tx_rate > actual_link_speed))
9834         return -EINVAL;
9835 
9836     adapter->vf_rate_link_speed = actual_link_speed;
9837     adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9838     igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9839 
9840     return 0;
9841 }
9842 
9843 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9844                    bool setting)
9845 {
9846     struct igb_adapter *adapter = netdev_priv(netdev);
9847     struct e1000_hw *hw = &adapter->hw;
9848     u32 reg_val, reg_offset;
9849 
9850     if (!adapter->vfs_allocated_count)
9851         return -EOPNOTSUPP;
9852 
9853     if (vf >= adapter->vfs_allocated_count)
9854         return -EINVAL;
9855 
9856     reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9857     reg_val = rd32(reg_offset);
9858     if (setting)
9859         reg_val |= (BIT(vf) |
9860                 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9861     else
9862         reg_val &= ~(BIT(vf) |
9863                  BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9864     wr32(reg_offset, reg_val);
9865 
9866     adapter->vf_data[vf].spoofchk_enabled = setting;
9867     return 0;
9868 }
9869 
9870 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9871 {
9872     struct igb_adapter *adapter = netdev_priv(netdev);
9873 
9874     if (vf >= adapter->vfs_allocated_count)
9875         return -EINVAL;
9876     if (adapter->vf_data[vf].trusted == setting)
9877         return 0;
9878 
9879     adapter->vf_data[vf].trusted = setting;
9880 
9881     dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9882          vf, setting ? "" : "not ");
9883     return 0;
9884 }
9885 
9886 static int igb_ndo_get_vf_config(struct net_device *netdev,
9887                  int vf, struct ifla_vf_info *ivi)
9888 {
9889     struct igb_adapter *adapter = netdev_priv(netdev);
9890     if (vf >= adapter->vfs_allocated_count)
9891         return -EINVAL;
9892     ivi->vf = vf;
9893     memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9894     ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9895     ivi->min_tx_rate = 0;
9896     ivi->vlan = adapter->vf_data[vf].pf_vlan;
9897     ivi->qos = adapter->vf_data[vf].pf_qos;
9898     ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9899     ivi->trusted = adapter->vf_data[vf].trusted;
9900     return 0;
9901 }
9902 
9903 static void igb_vmm_control(struct igb_adapter *adapter)
9904 {
9905     struct e1000_hw *hw = &adapter->hw;
9906     u32 reg;
9907 
9908     switch (hw->mac.type) {
9909     case e1000_82575:
9910     case e1000_i210:
9911     case e1000_i211:
9912     case e1000_i354:
9913     default:
9914         /* replication is not supported for 82575 */
9915         return;
9916     case e1000_82576:
9917         /* notify HW that the MAC is adding vlan tags */
9918         reg = rd32(E1000_DTXCTL);
9919         reg |= E1000_DTXCTL_VLAN_ADDED;
9920         wr32(E1000_DTXCTL, reg);
9921         fallthrough;
9922     case e1000_82580:
9923         /* enable replication vlan tag stripping */
9924         reg = rd32(E1000_RPLOLR);
9925         reg |= E1000_RPLOLR_STRVLAN;
9926         wr32(E1000_RPLOLR, reg);
9927         fallthrough;
9928     case e1000_i350:
9929         /* none of the above registers are supported by i350 */
9930         break;
9931     }
9932 
9933     if (adapter->vfs_allocated_count) {
9934         igb_vmdq_set_loopback_pf(hw, true);
9935         igb_vmdq_set_replication_pf(hw, true);
9936         igb_vmdq_set_anti_spoofing_pf(hw, true,
9937                           adapter->vfs_allocated_count);
9938     } else {
9939         igb_vmdq_set_loopback_pf(hw, false);
9940         igb_vmdq_set_replication_pf(hw, false);
9941     }
9942 }
9943 
9944 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9945 {
9946     struct e1000_hw *hw = &adapter->hw;
9947     u32 dmac_thr;
9948     u16 hwm;
9949     u32 reg;
9950 
9951     if (hw->mac.type > e1000_82580) {
9952         if (adapter->flags & IGB_FLAG_DMAC) {
9953             /* force threshold to 0. */
9954             wr32(E1000_DMCTXTH, 0);
9955 
9956             /* DMA Coalescing high water mark needs to be greater
9957              * than the Rx threshold. Set hwm to PBA - max frame
9958              * size in 16B units, capping it at PBA - 6KB.
9959              */
9960             hwm = 64 * (pba - 6);
9961             reg = rd32(E1000_FCRTC);
9962             reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9963             reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9964                 & E1000_FCRTC_RTH_COAL_MASK);
9965             wr32(E1000_FCRTC, reg);
9966 
9967             /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9968              * frame size, capping it at PBA - 10KB.
9969              */
9970             dmac_thr = pba - 10;
9971             reg = rd32(E1000_DMACR);
9972             reg &= ~E1000_DMACR_DMACTHR_MASK;
9973             reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9974                 & E1000_DMACR_DMACTHR_MASK);
9975 
9976             /* transition to L0x or L1 if available..*/
9977             reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9978 
9979             /* watchdog timer= +-1000 usec in 32usec intervals */
9980             reg |= (1000 >> 5);
9981 
9982             /* Disable BMC-to-OS Watchdog Enable */
9983             if (hw->mac.type != e1000_i354)
9984                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9985             wr32(E1000_DMACR, reg);
9986 
9987             /* no lower threshold to disable
9988              * coalescing(smart fifb)-UTRESH=0
9989              */
9990             wr32(E1000_DMCRTRH, 0);
9991 
9992             reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9993 
9994             wr32(E1000_DMCTLX, reg);
9995 
9996             /* free space in tx packet buffer to wake from
9997              * DMA coal
9998              */
9999             wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10000                  (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10001         }
10002 
10003         if (hw->mac.type >= e1000_i210 ||
10004             (adapter->flags & IGB_FLAG_DMAC)) {
10005             reg = rd32(E1000_PCIEMISC);
10006             reg |= E1000_PCIEMISC_LX_DECISION;
10007             wr32(E1000_PCIEMISC, reg);
10008         } /* endif adapter->dmac is not disabled */
10009     } else if (hw->mac.type == e1000_82580) {
10010         u32 reg = rd32(E1000_PCIEMISC);
10011 
10012         wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10013         wr32(E1000_DMACR, 0);
10014     }
10015 }
10016 
10017 /**
10018  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10019  *  @hw: pointer to hardware structure
10020  *  @byte_offset: byte offset to read
10021  *  @dev_addr: device address
10022  *  @data: value read
10023  *
10024  *  Performs byte read operation over I2C interface at
10025  *  a specified device address.
10026  **/
10027 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10028               u8 dev_addr, u8 *data)
10029 {
10030     struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10031     struct i2c_client *this_client = adapter->i2c_client;
10032     s32 status;
10033     u16 swfw_mask = 0;
10034 
10035     if (!this_client)
10036         return E1000_ERR_I2C;
10037 
10038     swfw_mask = E1000_SWFW_PHY0_SM;
10039 
10040     if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10041         return E1000_ERR_SWFW_SYNC;
10042 
10043     status = i2c_smbus_read_byte_data(this_client, byte_offset);
10044     hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10045 
10046     if (status < 0)
10047         return E1000_ERR_I2C;
10048     else {
10049         *data = status;
10050         return 0;
10051     }
10052 }
10053 
10054 /**
10055  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10056  *  @hw: pointer to hardware structure
10057  *  @byte_offset: byte offset to write
10058  *  @dev_addr: device address
10059  *  @data: value to write
10060  *
10061  *  Performs byte write operation over I2C interface at
10062  *  a specified device address.
10063  **/
10064 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10065                u8 dev_addr, u8 data)
10066 {
10067     struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10068     struct i2c_client *this_client = adapter->i2c_client;
10069     s32 status;
10070     u16 swfw_mask = E1000_SWFW_PHY0_SM;
10071 
10072     if (!this_client)
10073         return E1000_ERR_I2C;
10074 
10075     if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10076         return E1000_ERR_SWFW_SYNC;
10077     status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10078     hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10079 
10080     if (status)
10081         return E1000_ERR_I2C;
10082     else
10083         return 0;
10084 
10085 }
10086 
10087 int igb_reinit_queues(struct igb_adapter *adapter)
10088 {
10089     struct net_device *netdev = adapter->netdev;
10090     struct pci_dev *pdev = adapter->pdev;
10091     int err = 0;
10092 
10093     if (netif_running(netdev))
10094         igb_close(netdev);
10095 
10096     igb_reset_interrupt_capability(adapter);
10097 
10098     if (igb_init_interrupt_scheme(adapter, true)) {
10099         dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10100         return -ENOMEM;
10101     }
10102 
10103     if (netif_running(netdev))
10104         err = igb_open(netdev);
10105 
10106     return err;
10107 }
10108 
10109 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10110 {
10111     struct igb_nfc_filter *rule;
10112 
10113     spin_lock(&adapter->nfc_lock);
10114 
10115     hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10116         igb_erase_filter(adapter, rule);
10117 
10118     hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10119         igb_erase_filter(adapter, rule);
10120 
10121     spin_unlock(&adapter->nfc_lock);
10122 }
10123 
10124 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10125 {
10126     struct igb_nfc_filter *rule;
10127 
10128     spin_lock(&adapter->nfc_lock);
10129 
10130     hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10131         igb_add_filter(adapter, rule);
10132 
10133     spin_unlock(&adapter->nfc_lock);
10134 }
10135 /* igb_main.c */