0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/types.h>
0009 #include <linux/if_ether.h>
0010
0011 #include "e1000_hw.h"
0012 #include "e1000_i210.h"
0013
0014 static s32 igb_update_flash_i210(struct e1000_hw *hw);
0015
0016
0017
0018
0019
0020
0021
0022 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
0023 {
0024 u32 swsm;
0025 s32 timeout = hw->nvm.word_size + 1;
0026 s32 i = 0;
0027
0028
0029 while (i < timeout) {
0030 swsm = rd32(E1000_SWSM);
0031 if (!(swsm & E1000_SWSM_SMBI))
0032 break;
0033
0034 udelay(50);
0035 i++;
0036 }
0037
0038 if (i == timeout) {
0039
0040
0041
0042 if (hw->dev_spec._82575.clear_semaphore_once) {
0043 hw->dev_spec._82575.clear_semaphore_once = false;
0044 igb_put_hw_semaphore(hw);
0045 for (i = 0; i < timeout; i++) {
0046 swsm = rd32(E1000_SWSM);
0047 if (!(swsm & E1000_SWSM_SMBI))
0048 break;
0049
0050 udelay(50);
0051 }
0052 }
0053
0054
0055 if (i == timeout) {
0056 hw_dbg("Driver can't access device - SMBI bit is set.\n");
0057 return -E1000_ERR_NVM;
0058 }
0059 }
0060
0061
0062 for (i = 0; i < timeout; i++) {
0063 swsm = rd32(E1000_SWSM);
0064 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
0065
0066
0067 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
0068 break;
0069
0070 udelay(50);
0071 }
0072
0073 if (i == timeout) {
0074
0075 igb_put_hw_semaphore(hw);
0076 hw_dbg("Driver can't access the NVM\n");
0077 return -E1000_ERR_NVM;
0078 }
0079
0080 return 0;
0081 }
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092 static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
0093 {
0094 return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
0095 }
0096
0097
0098
0099
0100
0101
0102
0103
0104 static void igb_release_nvm_i210(struct e1000_hw *hw)
0105 {
0106 igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
0107 }
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
0118 {
0119 u32 swfw_sync;
0120 u32 swmask = mask;
0121 u32 fwmask = mask << 16;
0122 s32 ret_val = 0;
0123 s32 i = 0, timeout = 200;
0124
0125 while (i < timeout) {
0126 if (igb_get_hw_semaphore_i210(hw)) {
0127 ret_val = -E1000_ERR_SWFW_SYNC;
0128 goto out;
0129 }
0130
0131 swfw_sync = rd32(E1000_SW_FW_SYNC);
0132 if (!(swfw_sync & (fwmask | swmask)))
0133 break;
0134
0135
0136 igb_put_hw_semaphore(hw);
0137 mdelay(5);
0138 i++;
0139 }
0140
0141 if (i == timeout) {
0142 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
0143 ret_val = -E1000_ERR_SWFW_SYNC;
0144 goto out;
0145 }
0146
0147 swfw_sync |= swmask;
0148 wr32(E1000_SW_FW_SYNC, swfw_sync);
0149
0150 igb_put_hw_semaphore(hw);
0151 out:
0152 return ret_val;
0153 }
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
0164 {
0165 u32 swfw_sync;
0166
0167 while (igb_get_hw_semaphore_i210(hw))
0168 ;
0169
0170 swfw_sync = rd32(E1000_SW_FW_SYNC);
0171 swfw_sync &= ~mask;
0172 wr32(E1000_SW_FW_SYNC, swfw_sync);
0173
0174 igb_put_hw_semaphore(hw);
0175 }
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187 static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
0188 u16 *data)
0189 {
0190 s32 status = 0;
0191 u16 i, count;
0192
0193
0194
0195
0196
0197 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
0198 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
0199 E1000_EERD_EEWR_MAX_COUNT : (words - i);
0200 if (!(hw->nvm.ops.acquire(hw))) {
0201 status = igb_read_nvm_eerd(hw, offset, count,
0202 data + i);
0203 hw->nvm.ops.release(hw);
0204 } else {
0205 status = E1000_ERR_SWFW_SYNC;
0206 }
0207
0208 if (status)
0209 break;
0210 }
0211
0212 return status;
0213 }
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
0228 u16 *data)
0229 {
0230 struct e1000_nvm_info *nvm = &hw->nvm;
0231 u32 i, k, eewr = 0;
0232 u32 attempts = 100000;
0233 s32 ret_val = 0;
0234
0235
0236
0237
0238 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
0239 (words == 0)) {
0240 hw_dbg("nvm parameter(s) out of bounds\n");
0241 ret_val = -E1000_ERR_NVM;
0242 goto out;
0243 }
0244
0245 for (i = 0; i < words; i++) {
0246 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
0247 (data[i] << E1000_NVM_RW_REG_DATA) |
0248 E1000_NVM_RW_REG_START;
0249
0250 wr32(E1000_SRWR, eewr);
0251
0252 for (k = 0; k < attempts; k++) {
0253 if (E1000_NVM_RW_REG_DONE &
0254 rd32(E1000_SRWR)) {
0255 ret_val = 0;
0256 break;
0257 }
0258 udelay(5);
0259 }
0260
0261 if (ret_val) {
0262 hw_dbg("Shadow RAM write EEWR timed out\n");
0263 break;
0264 }
0265 }
0266
0267 out:
0268 return ret_val;
0269 }
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287 static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
0288 u16 *data)
0289 {
0290 s32 status = 0;
0291 u16 i, count;
0292
0293
0294
0295
0296
0297 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
0298 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
0299 E1000_EERD_EEWR_MAX_COUNT : (words - i);
0300 if (!(hw->nvm.ops.acquire(hw))) {
0301 status = igb_write_nvm_srwr(hw, offset, count,
0302 data + i);
0303 hw->nvm.ops.release(hw);
0304 } else {
0305 status = E1000_ERR_SWFW_SYNC;
0306 }
0307
0308 if (status)
0309 break;
0310 }
0311
0312 return status;
0313 }
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
0325 {
0326 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
0327 u32 invm_dword;
0328 u16 i;
0329 u8 record_type, word_address;
0330
0331 for (i = 0; i < E1000_INVM_SIZE; i++) {
0332 invm_dword = rd32(E1000_INVM_DATA_REG(i));
0333
0334 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
0335 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
0336 break;
0337 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
0338 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
0339 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
0340 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
0341 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
0342 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
0343 if (word_address == address) {
0344 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
0345 hw_dbg("Read INVM Word 0x%02x = %x\n",
0346 address, *data);
0347 status = 0;
0348 break;
0349 }
0350 }
0351 }
0352 if (status)
0353 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
0354 return status;
0355 }
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
0367 u16 __always_unused words, u16 *data)
0368 {
0369 s32 ret_val = 0;
0370
0371
0372 switch (offset) {
0373 case NVM_MAC_ADDR:
0374 ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
0375 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
0376 &data[1]);
0377 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
0378 &data[2]);
0379 if (ret_val)
0380 hw_dbg("MAC Addr not found in iNVM\n");
0381 break;
0382 case NVM_INIT_CTRL_2:
0383 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
0384 if (ret_val) {
0385 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
0386 ret_val = 0;
0387 }
0388 break;
0389 case NVM_INIT_CTRL_4:
0390 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
0391 if (ret_val) {
0392 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
0393 ret_val = 0;
0394 }
0395 break;
0396 case NVM_LED_1_CFG:
0397 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
0398 if (ret_val) {
0399 *data = NVM_LED_1_CFG_DEFAULT_I211;
0400 ret_val = 0;
0401 }
0402 break;
0403 case NVM_LED_0_2_CFG:
0404 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
0405 if (ret_val) {
0406 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
0407 ret_val = 0;
0408 }
0409 break;
0410 case NVM_ID_LED_SETTINGS:
0411 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
0412 if (ret_val) {
0413 *data = ID_LED_RESERVED_FFFF;
0414 ret_val = 0;
0415 }
0416 break;
0417 case NVM_SUB_DEV_ID:
0418 *data = hw->subsystem_device_id;
0419 break;
0420 case NVM_SUB_VEN_ID:
0421 *data = hw->subsystem_vendor_id;
0422 break;
0423 case NVM_DEV_ID:
0424 *data = hw->device_id;
0425 break;
0426 case NVM_VEN_ID:
0427 *data = hw->vendor_id;
0428 break;
0429 default:
0430 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
0431 *data = NVM_RESERVED_WORD;
0432 break;
0433 }
0434 return ret_val;
0435 }
0436
0437
0438
0439
0440
0441
0442
0443
0444 s32 igb_read_invm_version(struct e1000_hw *hw,
0445 struct e1000_fw_version *invm_ver) {
0446 u32 *record = NULL;
0447 u32 *next_record = NULL;
0448 u32 i = 0;
0449 u32 invm_dword = 0;
0450 u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
0451 E1000_INVM_RECORD_SIZE_IN_BYTES);
0452 u32 buffer[E1000_INVM_SIZE];
0453 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
0454 u16 version = 0;
0455
0456
0457 for (i = 0; i < E1000_INVM_SIZE; i++) {
0458 invm_dword = rd32(E1000_INVM_DATA_REG(i));
0459 buffer[i] = invm_dword;
0460 }
0461
0462
0463 for (i = 1; i < invm_blocks; i++) {
0464 record = &buffer[invm_blocks - i];
0465 next_record = &buffer[invm_blocks - i + 1];
0466
0467
0468 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
0469 version = 0;
0470 status = 0;
0471 break;
0472 }
0473
0474 else if ((i == 1) &&
0475 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
0476 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
0477 status = 0;
0478 break;
0479 }
0480
0481
0482
0483 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
0484 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
0485 (i != 1))) {
0486 version = (*next_record & E1000_INVM_VER_FIELD_TWO)
0487 >> 13;
0488 status = 0;
0489 break;
0490 }
0491
0492
0493
0494 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
0495 ((*record & 0x3) == 0)) {
0496 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
0497 status = 0;
0498 break;
0499 }
0500 }
0501
0502 if (!status) {
0503 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
0504 >> E1000_INVM_MAJOR_SHIFT;
0505 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
0506 }
0507
0508 for (i = 1; i < invm_blocks; i++) {
0509 record = &buffer[invm_blocks - i];
0510 next_record = &buffer[invm_blocks - i + 1];
0511
0512
0513 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
0514 invm_ver->invm_img_type = 0;
0515 status = 0;
0516 break;
0517 }
0518
0519 else if ((((*record & 0x3) == 0) &&
0520 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
0521 ((((*record & 0x3) != 0) && (i != 1)))) {
0522 invm_ver->invm_img_type =
0523 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
0524 status = 0;
0525 break;
0526 }
0527 }
0528 return status;
0529 }
0530
0531
0532
0533
0534
0535
0536
0537
0538 static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
0539 {
0540 s32 status = 0;
0541 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
0542
0543 if (!(hw->nvm.ops.acquire(hw))) {
0544
0545
0546
0547
0548
0549 read_op_ptr = hw->nvm.ops.read;
0550 hw->nvm.ops.read = igb_read_nvm_eerd;
0551
0552 status = igb_validate_nvm_checksum(hw);
0553
0554
0555 hw->nvm.ops.read = read_op_ptr;
0556
0557 hw->nvm.ops.release(hw);
0558 } else {
0559 status = E1000_ERR_SWFW_SYNC;
0560 }
0561
0562 return status;
0563 }
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573 static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
0574 {
0575 s32 ret_val = 0;
0576 u16 checksum = 0;
0577 u16 i, nvm_data;
0578
0579
0580
0581
0582
0583 ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
0584 if (ret_val) {
0585 hw_dbg("EEPROM read failed\n");
0586 goto out;
0587 }
0588
0589 if (!(hw->nvm.ops.acquire(hw))) {
0590
0591
0592
0593
0594
0595 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
0596 ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
0597 if (ret_val) {
0598 hw->nvm.ops.release(hw);
0599 hw_dbg("NVM Read Error while updating checksum.\n");
0600 goto out;
0601 }
0602 checksum += nvm_data;
0603 }
0604 checksum = (u16) NVM_SUM - checksum;
0605 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
0606 &checksum);
0607 if (ret_val) {
0608 hw->nvm.ops.release(hw);
0609 hw_dbg("NVM Write Error while updating checksum.\n");
0610 goto out;
0611 }
0612
0613 hw->nvm.ops.release(hw);
0614
0615 ret_val = igb_update_flash_i210(hw);
0616 } else {
0617 ret_val = -E1000_ERR_SWFW_SYNC;
0618 }
0619 out:
0620 return ret_val;
0621 }
0622
0623
0624
0625
0626
0627
0628 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
0629 {
0630 s32 ret_val = -E1000_ERR_NVM;
0631 u32 i, reg;
0632
0633 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
0634 reg = rd32(E1000_EECD);
0635 if (reg & E1000_EECD_FLUDONE_I210) {
0636 ret_val = 0;
0637 break;
0638 }
0639 udelay(5);
0640 }
0641
0642 return ret_val;
0643 }
0644
0645
0646
0647
0648
0649
0650 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
0651 {
0652 u32 eec = 0;
0653 bool ret_val = false;
0654
0655 eec = rd32(E1000_EECD);
0656 if (eec & E1000_EECD_FLASH_DETECTED_I210)
0657 ret_val = true;
0658
0659 return ret_val;
0660 }
0661
0662
0663
0664
0665
0666
0667 static s32 igb_update_flash_i210(struct e1000_hw *hw)
0668 {
0669 s32 ret_val = 0;
0670 u32 flup;
0671
0672 ret_val = igb_pool_flash_update_done_i210(hw);
0673 if (ret_val == -E1000_ERR_NVM) {
0674 hw_dbg("Flash update time out\n");
0675 goto out;
0676 }
0677
0678 flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
0679 wr32(E1000_EECD, flup);
0680
0681 ret_val = igb_pool_flash_update_done_i210(hw);
0682 if (ret_val)
0683 hw_dbg("Flash update time out\n");
0684 else
0685 hw_dbg("Flash update complete\n");
0686
0687 out:
0688 return ret_val;
0689 }
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
0700 {
0701 s32 ret_val;
0702
0703 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
0704 if (ret_val) {
0705 hw_dbg("NVM Read Error\n");
0706 goto out;
0707 }
0708
0709 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
0710 switch (hw->phy.media_type) {
0711 case e1000_media_type_internal_serdes:
0712 *data = ID_LED_DEFAULT_I210_SERDES;
0713 break;
0714 case e1000_media_type_copper:
0715 default:
0716 *data = ID_LED_DEFAULT_I210;
0717 break;
0718 }
0719 }
0720 out:
0721 return ret_val;
0722 }
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
0733 u8 dev_addr, u16 *data, bool read)
0734 {
0735 s32 ret_val = 0;
0736
0737 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
0738 if (ret_val)
0739 return ret_val;
0740
0741 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
0742 if (ret_val)
0743 return ret_val;
0744
0745 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
0746 dev_addr);
0747 if (ret_val)
0748 return ret_val;
0749
0750 if (read)
0751 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
0752 else
0753 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
0754 if (ret_val)
0755 return ret_val;
0756
0757
0758 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
0759 if (ret_val)
0760 return ret_val;
0761
0762 return ret_val;
0763 }
0764
0765
0766
0767
0768
0769
0770
0771
0772 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
0773 {
0774 return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
0775 }
0776
0777
0778
0779
0780
0781
0782
0783
0784 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
0785 {
0786 return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
0787 }
0788
0789
0790
0791
0792
0793 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
0794 {
0795 struct e1000_nvm_info *nvm = &hw->nvm;
0796
0797 nvm->ops.acquire = igb_acquire_nvm_i210;
0798 nvm->ops.release = igb_release_nvm_i210;
0799 nvm->ops.valid_led_default = igb_valid_led_default_i210;
0800
0801
0802 if (igb_get_flash_presence_i210(hw)) {
0803 hw->nvm.type = e1000_nvm_flash_hw;
0804 nvm->ops.read = igb_read_nvm_srrd_i210;
0805 nvm->ops.write = igb_write_nvm_srwr_i210;
0806 nvm->ops.validate = igb_validate_nvm_checksum_i210;
0807 nvm->ops.update = igb_update_nvm_checksum_i210;
0808 } else {
0809 hw->nvm.type = e1000_nvm_invm;
0810 nvm->ops.read = igb_read_invm_i210;
0811 nvm->ops.write = NULL;
0812 nvm->ops.validate = NULL;
0813 nvm->ops.update = NULL;
0814 }
0815 return 0;
0816 }
0817
0818
0819
0820
0821
0822
0823
0824
0825 s32 igb_pll_workaround_i210(struct e1000_hw *hw)
0826 {
0827 s32 ret_val;
0828 u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
0829 u16 nvm_word, phy_word, pci_word, tmp_nvm;
0830 int i;
0831
0832
0833 wuc = rd32(E1000_WUC);
0834 mdicnfg = rd32(E1000_MDICNFG);
0835 reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
0836 wr32(E1000_MDICNFG, reg_val);
0837
0838
0839 ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
0840 &nvm_word);
0841 if (ret_val)
0842 nvm_word = E1000_INVM_DEFAULT_AL;
0843 tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
0844 igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
0845 phy_word = E1000_PHY_PLL_UNCONF;
0846 for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
0847
0848 igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
0849 if ((phy_word & E1000_PHY_PLL_UNCONF)
0850 != E1000_PHY_PLL_UNCONF) {
0851 ret_val = 0;
0852 break;
0853 } else {
0854 ret_val = -E1000_ERR_PHY;
0855 }
0856
0857 ctrl = rd32(E1000_CTRL);
0858 wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
0859
0860 ctrl_ext = rd32(E1000_CTRL_EXT);
0861 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
0862 wr32(E1000_CTRL_EXT, ctrl_ext);
0863
0864 wr32(E1000_WUC, 0);
0865 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
0866 wr32(E1000_EEARBC_I210, reg_val);
0867
0868 igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
0869 pci_word |= E1000_PCI_PMCSR_D3;
0870 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
0871 usleep_range(1000, 2000);
0872 pci_word &= ~E1000_PCI_PMCSR_D3;
0873 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
0874 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
0875 wr32(E1000_EEARBC_I210, reg_val);
0876
0877
0878 wr32(E1000_WUC, wuc);
0879 }
0880 igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
0881
0882 wr32(E1000_MDICNFG, mdicnfg);
0883 return ret_val;
0884 }
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895
0896 s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
0897 {
0898 s32 timeout = PHY_CFG_TIMEOUT;
0899 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
0900
0901 while (timeout) {
0902 if (rd32(E1000_EEMNGCTL_I210) & mask)
0903 break;
0904 usleep_range(1000, 2000);
0905 timeout--;
0906 }
0907 if (!timeout)
0908 hw_dbg("MNG configuration cycle has not completed.\n");
0909
0910 return 0;
0911 }