Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright (c) 2018, Intel Corporation. */
0003 
0004 #include "ice_lib.h"
0005 #include "ice_switch.h"
0006 
0007 #define ICE_ETH_DA_OFFSET       0
0008 #define ICE_ETH_ETHTYPE_OFFSET      12
0009 #define ICE_ETH_VLAN_TCI_OFFSET     14
0010 #define ICE_MAX_VLAN_ID         0xFFF
0011 #define ICE_IPV6_ETHER_ID       0x86DD
0012 
0013 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
0014  * struct to configure any switch filter rules.
0015  * {DA (6 bytes), SA(6 bytes),
0016  * Ether type (2 bytes for header without VLAN tag) OR
0017  * VLAN tag (4 bytes for header with VLAN tag) }
0018  *
0019  * Word on Hardcoded values
0020  * byte 0 = 0x2: to identify it as locally administered DA MAC
0021  * byte 6 = 0x2: to identify it as locally administered SA MAC
0022  * byte 12 = 0x81 & byte 13 = 0x00:
0023  *  In case of VLAN filter first two bytes defines ether type (0x8100)
0024  *  and remaining two bytes are placeholder for programming a given VLAN ID
0025  *  In case of Ether type filter it is treated as header without VLAN tag
0026  *  and byte 12 and 13 is used to program a given Ether type instead
0027  */
0028 #define DUMMY_ETH_HDR_LEN       16
0029 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
0030                             0x2, 0, 0, 0, 0, 0,
0031                             0x81, 0, 0, 0};
0032 
0033 enum {
0034     ICE_PKT_OUTER_IPV6  = BIT(0),
0035     ICE_PKT_TUN_GTPC    = BIT(1),
0036     ICE_PKT_TUN_GTPU    = BIT(2),
0037     ICE_PKT_TUN_NVGRE   = BIT(3),
0038     ICE_PKT_TUN_UDP     = BIT(4),
0039     ICE_PKT_INNER_IPV6  = BIT(5),
0040     ICE_PKT_INNER_TCP   = BIT(6),
0041     ICE_PKT_INNER_UDP   = BIT(7),
0042     ICE_PKT_GTP_NOPAY   = BIT(8),
0043     ICE_PKT_KMALLOC     = BIT(9),
0044     ICE_PKT_PPPOE       = BIT(10),
0045 };
0046 
0047 struct ice_dummy_pkt_offsets {
0048     enum ice_protocol_type type;
0049     u16 offset; /* ICE_PROTOCOL_LAST indicates end of list */
0050 };
0051 
0052 struct ice_dummy_pkt_profile {
0053     const struct ice_dummy_pkt_offsets *offsets;
0054     const u8 *pkt;
0055     u32 match;
0056     u16 pkt_len;
0057     u16 offsets_len;
0058 };
0059 
0060 #define ICE_DECLARE_PKT_OFFSETS(type)                   \
0061     static const struct ice_dummy_pkt_offsets           \
0062     ice_dummy_##type##_packet_offsets[]
0063 
0064 #define ICE_DECLARE_PKT_TEMPLATE(type)                  \
0065     static const u8 ice_dummy_##type##_packet[]
0066 
0067 #define ICE_PKT_PROFILE(type, m) {                  \
0068     .match      = (m),                      \
0069     .pkt        = ice_dummy_##type##_packet,            \
0070     .pkt_len    = sizeof(ice_dummy_##type##_packet),        \
0071     .offsets    = ice_dummy_##type##_packet_offsets,        \
0072     .offsets_len    = sizeof(ice_dummy_##type##_packet_offsets),    \
0073 }
0074 
0075 ICE_DECLARE_PKT_OFFSETS(vlan) = {
0076     { ICE_VLAN_OFOS,        12 },
0077 };
0078 
0079 ICE_DECLARE_PKT_TEMPLATE(vlan) = {
0080     0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_OFOS 12 */
0081 };
0082 
0083 ICE_DECLARE_PKT_OFFSETS(qinq) = {
0084     { ICE_VLAN_EX,          12 },
0085     { ICE_VLAN_IN,          16 },
0086 };
0087 
0088 ICE_DECLARE_PKT_TEMPLATE(qinq) = {
0089     0x91, 0x00, 0x00, 0x00, /* ICE_VLAN_EX 12 */
0090     0x81, 0x00, 0x00, 0x00, /* ICE_VLAN_IN 16 */
0091 };
0092 
0093 ICE_DECLARE_PKT_OFFSETS(gre_tcp) = {
0094     { ICE_MAC_OFOS,     0 },
0095     { ICE_ETYPE_OL,     12 },
0096     { ICE_IPV4_OFOS,    14 },
0097     { ICE_NVGRE,        34 },
0098     { ICE_MAC_IL,       42 },
0099     { ICE_ETYPE_IL,     54 },
0100     { ICE_IPV4_IL,      56 },
0101     { ICE_TCP_IL,       76 },
0102     { ICE_PROTOCOL_LAST,    0 },
0103 };
0104 
0105 ICE_DECLARE_PKT_TEMPLATE(gre_tcp) = {
0106     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0107     0x00, 0x00, 0x00, 0x00,
0108     0x00, 0x00, 0x00, 0x00,
0109 
0110     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0111 
0112     0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
0113     0x00, 0x00, 0x00, 0x00,
0114     0x00, 0x2F, 0x00, 0x00,
0115     0x00, 0x00, 0x00, 0x00,
0116     0x00, 0x00, 0x00, 0x00,
0117 
0118     0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
0119     0x00, 0x00, 0x00, 0x00,
0120 
0121     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
0122     0x00, 0x00, 0x00, 0x00,
0123     0x00, 0x00, 0x00, 0x00,
0124 
0125     0x08, 0x00,     /* ICE_ETYPE_IL 54 */
0126 
0127     0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
0128     0x00, 0x00, 0x00, 0x00,
0129     0x00, 0x06, 0x00, 0x00,
0130     0x00, 0x00, 0x00, 0x00,
0131     0x00, 0x00, 0x00, 0x00,
0132 
0133     0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 76 */
0134     0x00, 0x00, 0x00, 0x00,
0135     0x00, 0x00, 0x00, 0x00,
0136     0x50, 0x02, 0x20, 0x00,
0137     0x00, 0x00, 0x00, 0x00
0138 };
0139 
0140 ICE_DECLARE_PKT_OFFSETS(gre_udp) = {
0141     { ICE_MAC_OFOS,     0 },
0142     { ICE_ETYPE_OL,     12 },
0143     { ICE_IPV4_OFOS,    14 },
0144     { ICE_NVGRE,        34 },
0145     { ICE_MAC_IL,       42 },
0146     { ICE_ETYPE_IL,     54 },
0147     { ICE_IPV4_IL,      56 },
0148     { ICE_UDP_ILOS,     76 },
0149     { ICE_PROTOCOL_LAST,    0 },
0150 };
0151 
0152 ICE_DECLARE_PKT_TEMPLATE(gre_udp) = {
0153     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0154     0x00, 0x00, 0x00, 0x00,
0155     0x00, 0x00, 0x00, 0x00,
0156 
0157     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0158 
0159     0x45, 0x00, 0x00, 0x3E, /* ICE_IPV4_OFOS 14 */
0160     0x00, 0x00, 0x00, 0x00,
0161     0x00, 0x2F, 0x00, 0x00,
0162     0x00, 0x00, 0x00, 0x00,
0163     0x00, 0x00, 0x00, 0x00,
0164 
0165     0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
0166     0x00, 0x00, 0x00, 0x00,
0167 
0168     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
0169     0x00, 0x00, 0x00, 0x00,
0170     0x00, 0x00, 0x00, 0x00,
0171 
0172     0x08, 0x00,     /* ICE_ETYPE_IL 54 */
0173 
0174     0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 56 */
0175     0x00, 0x00, 0x00, 0x00,
0176     0x00, 0x11, 0x00, 0x00,
0177     0x00, 0x00, 0x00, 0x00,
0178     0x00, 0x00, 0x00, 0x00,
0179 
0180     0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 76 */
0181     0x00, 0x08, 0x00, 0x00,
0182 };
0183 
0184 ICE_DECLARE_PKT_OFFSETS(udp_tun_tcp) = {
0185     { ICE_MAC_OFOS,     0 },
0186     { ICE_ETYPE_OL,     12 },
0187     { ICE_IPV4_OFOS,    14 },
0188     { ICE_UDP_OF,       34 },
0189     { ICE_VXLAN,        42 },
0190     { ICE_GENEVE,       42 },
0191     { ICE_VXLAN_GPE,    42 },
0192     { ICE_MAC_IL,       50 },
0193     { ICE_ETYPE_IL,     62 },
0194     { ICE_IPV4_IL,      64 },
0195     { ICE_TCP_IL,       84 },
0196     { ICE_PROTOCOL_LAST,    0 },
0197 };
0198 
0199 ICE_DECLARE_PKT_TEMPLATE(udp_tun_tcp) = {
0200     0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
0201     0x00, 0x00, 0x00, 0x00,
0202     0x00, 0x00, 0x00, 0x00,
0203 
0204     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0205 
0206     0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
0207     0x00, 0x01, 0x00, 0x00,
0208     0x40, 0x11, 0x00, 0x00,
0209     0x00, 0x00, 0x00, 0x00,
0210     0x00, 0x00, 0x00, 0x00,
0211 
0212     0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
0213     0x00, 0x46, 0x00, 0x00,
0214 
0215     0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
0216     0x00, 0x00, 0x00, 0x00,
0217 
0218     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
0219     0x00, 0x00, 0x00, 0x00,
0220     0x00, 0x00, 0x00, 0x00,
0221 
0222     0x08, 0x00,     /* ICE_ETYPE_IL 62 */
0223 
0224     0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_IL 64 */
0225     0x00, 0x01, 0x00, 0x00,
0226     0x40, 0x06, 0x00, 0x00,
0227     0x00, 0x00, 0x00, 0x00,
0228     0x00, 0x00, 0x00, 0x00,
0229 
0230     0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 84 */
0231     0x00, 0x00, 0x00, 0x00,
0232     0x00, 0x00, 0x00, 0x00,
0233     0x50, 0x02, 0x20, 0x00,
0234     0x00, 0x00, 0x00, 0x00
0235 };
0236 
0237 ICE_DECLARE_PKT_OFFSETS(udp_tun_udp) = {
0238     { ICE_MAC_OFOS,     0 },
0239     { ICE_ETYPE_OL,     12 },
0240     { ICE_IPV4_OFOS,    14 },
0241     { ICE_UDP_OF,       34 },
0242     { ICE_VXLAN,        42 },
0243     { ICE_GENEVE,       42 },
0244     { ICE_VXLAN_GPE,    42 },
0245     { ICE_MAC_IL,       50 },
0246     { ICE_ETYPE_IL,     62 },
0247     { ICE_IPV4_IL,      64 },
0248     { ICE_UDP_ILOS,     84 },
0249     { ICE_PROTOCOL_LAST,    0 },
0250 };
0251 
0252 ICE_DECLARE_PKT_TEMPLATE(udp_tun_udp) = {
0253     0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
0254     0x00, 0x00, 0x00, 0x00,
0255     0x00, 0x00, 0x00, 0x00,
0256 
0257     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0258 
0259     0x45, 0x00, 0x00, 0x4e, /* ICE_IPV4_OFOS 14 */
0260     0x00, 0x01, 0x00, 0x00,
0261     0x00, 0x11, 0x00, 0x00,
0262     0x00, 0x00, 0x00, 0x00,
0263     0x00, 0x00, 0x00, 0x00,
0264 
0265     0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
0266     0x00, 0x3a, 0x00, 0x00,
0267 
0268     0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
0269     0x00, 0x00, 0x00, 0x00,
0270 
0271     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
0272     0x00, 0x00, 0x00, 0x00,
0273     0x00, 0x00, 0x00, 0x00,
0274 
0275     0x08, 0x00,     /* ICE_ETYPE_IL 62 */
0276 
0277     0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_IL 64 */
0278     0x00, 0x01, 0x00, 0x00,
0279     0x00, 0x11, 0x00, 0x00,
0280     0x00, 0x00, 0x00, 0x00,
0281     0x00, 0x00, 0x00, 0x00,
0282 
0283     0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 84 */
0284     0x00, 0x08, 0x00, 0x00,
0285 };
0286 
0287 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_tcp) = {
0288     { ICE_MAC_OFOS,     0 },
0289     { ICE_ETYPE_OL,     12 },
0290     { ICE_IPV4_OFOS,    14 },
0291     { ICE_NVGRE,        34 },
0292     { ICE_MAC_IL,       42 },
0293     { ICE_ETYPE_IL,     54 },
0294     { ICE_IPV6_IL,      56 },
0295     { ICE_TCP_IL,       96 },
0296     { ICE_PROTOCOL_LAST,    0 },
0297 };
0298 
0299 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_tcp) = {
0300     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0301     0x00, 0x00, 0x00, 0x00,
0302     0x00, 0x00, 0x00, 0x00,
0303 
0304     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0305 
0306     0x45, 0x00, 0x00, 0x66, /* ICE_IPV4_OFOS 14 */
0307     0x00, 0x00, 0x00, 0x00,
0308     0x00, 0x2F, 0x00, 0x00,
0309     0x00, 0x00, 0x00, 0x00,
0310     0x00, 0x00, 0x00, 0x00,
0311 
0312     0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
0313     0x00, 0x00, 0x00, 0x00,
0314 
0315     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
0316     0x00, 0x00, 0x00, 0x00,
0317     0x00, 0x00, 0x00, 0x00,
0318 
0319     0x86, 0xdd,     /* ICE_ETYPE_IL 54 */
0320 
0321     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
0322     0x00, 0x08, 0x06, 0x40,
0323     0x00, 0x00, 0x00, 0x00,
0324     0x00, 0x00, 0x00, 0x00,
0325     0x00, 0x00, 0x00, 0x00,
0326     0x00, 0x00, 0x00, 0x00,
0327     0x00, 0x00, 0x00, 0x00,
0328     0x00, 0x00, 0x00, 0x00,
0329     0x00, 0x00, 0x00, 0x00,
0330     0x00, 0x00, 0x00, 0x00,
0331 
0332     0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 96 */
0333     0x00, 0x00, 0x00, 0x00,
0334     0x00, 0x00, 0x00, 0x00,
0335     0x50, 0x02, 0x20, 0x00,
0336     0x00, 0x00, 0x00, 0x00
0337 };
0338 
0339 ICE_DECLARE_PKT_OFFSETS(gre_ipv6_udp) = {
0340     { ICE_MAC_OFOS,     0 },
0341     { ICE_ETYPE_OL,     12 },
0342     { ICE_IPV4_OFOS,    14 },
0343     { ICE_NVGRE,        34 },
0344     { ICE_MAC_IL,       42 },
0345     { ICE_ETYPE_IL,     54 },
0346     { ICE_IPV6_IL,      56 },
0347     { ICE_UDP_ILOS,     96 },
0348     { ICE_PROTOCOL_LAST,    0 },
0349 };
0350 
0351 ICE_DECLARE_PKT_TEMPLATE(gre_ipv6_udp) = {
0352     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0353     0x00, 0x00, 0x00, 0x00,
0354     0x00, 0x00, 0x00, 0x00,
0355 
0356     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0357 
0358     0x45, 0x00, 0x00, 0x5a, /* ICE_IPV4_OFOS 14 */
0359     0x00, 0x00, 0x00, 0x00,
0360     0x00, 0x2F, 0x00, 0x00,
0361     0x00, 0x00, 0x00, 0x00,
0362     0x00, 0x00, 0x00, 0x00,
0363 
0364     0x80, 0x00, 0x65, 0x58, /* ICE_NVGRE 34 */
0365     0x00, 0x00, 0x00, 0x00,
0366 
0367     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 42 */
0368     0x00, 0x00, 0x00, 0x00,
0369     0x00, 0x00, 0x00, 0x00,
0370 
0371     0x86, 0xdd,     /* ICE_ETYPE_IL 54 */
0372 
0373     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 56 */
0374     0x00, 0x08, 0x11, 0x40,
0375     0x00, 0x00, 0x00, 0x00,
0376     0x00, 0x00, 0x00, 0x00,
0377     0x00, 0x00, 0x00, 0x00,
0378     0x00, 0x00, 0x00, 0x00,
0379     0x00, 0x00, 0x00, 0x00,
0380     0x00, 0x00, 0x00, 0x00,
0381     0x00, 0x00, 0x00, 0x00,
0382     0x00, 0x00, 0x00, 0x00,
0383 
0384     0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 96 */
0385     0x00, 0x08, 0x00, 0x00,
0386 };
0387 
0388 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_tcp) = {
0389     { ICE_MAC_OFOS,     0 },
0390     { ICE_ETYPE_OL,     12 },
0391     { ICE_IPV4_OFOS,    14 },
0392     { ICE_UDP_OF,       34 },
0393     { ICE_VXLAN,        42 },
0394     { ICE_GENEVE,       42 },
0395     { ICE_VXLAN_GPE,    42 },
0396     { ICE_MAC_IL,       50 },
0397     { ICE_ETYPE_IL,     62 },
0398     { ICE_IPV6_IL,      64 },
0399     { ICE_TCP_IL,       104 },
0400     { ICE_PROTOCOL_LAST,    0 },
0401 };
0402 
0403 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_tcp) = {
0404     0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
0405     0x00, 0x00, 0x00, 0x00,
0406     0x00, 0x00, 0x00, 0x00,
0407 
0408     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0409 
0410     0x45, 0x00, 0x00, 0x6e, /* ICE_IPV4_OFOS 14 */
0411     0x00, 0x01, 0x00, 0x00,
0412     0x40, 0x11, 0x00, 0x00,
0413     0x00, 0x00, 0x00, 0x00,
0414     0x00, 0x00, 0x00, 0x00,
0415 
0416     0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
0417     0x00, 0x5a, 0x00, 0x00,
0418 
0419     0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
0420     0x00, 0x00, 0x00, 0x00,
0421 
0422     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
0423     0x00, 0x00, 0x00, 0x00,
0424     0x00, 0x00, 0x00, 0x00,
0425 
0426     0x86, 0xdd,     /* ICE_ETYPE_IL 62 */
0427 
0428     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
0429     0x00, 0x08, 0x06, 0x40,
0430     0x00, 0x00, 0x00, 0x00,
0431     0x00, 0x00, 0x00, 0x00,
0432     0x00, 0x00, 0x00, 0x00,
0433     0x00, 0x00, 0x00, 0x00,
0434     0x00, 0x00, 0x00, 0x00,
0435     0x00, 0x00, 0x00, 0x00,
0436     0x00, 0x00, 0x00, 0x00,
0437     0x00, 0x00, 0x00, 0x00,
0438 
0439     0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 104 */
0440     0x00, 0x00, 0x00, 0x00,
0441     0x00, 0x00, 0x00, 0x00,
0442     0x50, 0x02, 0x20, 0x00,
0443     0x00, 0x00, 0x00, 0x00
0444 };
0445 
0446 ICE_DECLARE_PKT_OFFSETS(udp_tun_ipv6_udp) = {
0447     { ICE_MAC_OFOS,     0 },
0448     { ICE_ETYPE_OL,     12 },
0449     { ICE_IPV4_OFOS,    14 },
0450     { ICE_UDP_OF,       34 },
0451     { ICE_VXLAN,        42 },
0452     { ICE_GENEVE,       42 },
0453     { ICE_VXLAN_GPE,    42 },
0454     { ICE_MAC_IL,       50 },
0455     { ICE_ETYPE_IL,     62 },
0456     { ICE_IPV6_IL,      64 },
0457     { ICE_UDP_ILOS,     104 },
0458     { ICE_PROTOCOL_LAST,    0 },
0459 };
0460 
0461 ICE_DECLARE_PKT_TEMPLATE(udp_tun_ipv6_udp) = {
0462     0x00, 0x00, 0x00, 0x00,  /* ICE_MAC_OFOS 0 */
0463     0x00, 0x00, 0x00, 0x00,
0464     0x00, 0x00, 0x00, 0x00,
0465 
0466     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0467 
0468     0x45, 0x00, 0x00, 0x62, /* ICE_IPV4_OFOS 14 */
0469     0x00, 0x01, 0x00, 0x00,
0470     0x00, 0x11, 0x00, 0x00,
0471     0x00, 0x00, 0x00, 0x00,
0472     0x00, 0x00, 0x00, 0x00,
0473 
0474     0x00, 0x00, 0x12, 0xb5, /* ICE_UDP_OF 34 */
0475     0x00, 0x4e, 0x00, 0x00,
0476 
0477     0x00, 0x00, 0x65, 0x58, /* ICE_VXLAN 42 */
0478     0x00, 0x00, 0x00, 0x00,
0479 
0480     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_IL 50 */
0481     0x00, 0x00, 0x00, 0x00,
0482     0x00, 0x00, 0x00, 0x00,
0483 
0484     0x86, 0xdd,     /* ICE_ETYPE_IL 62 */
0485 
0486     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_IL 64 */
0487     0x00, 0x08, 0x11, 0x40,
0488     0x00, 0x00, 0x00, 0x00,
0489     0x00, 0x00, 0x00, 0x00,
0490     0x00, 0x00, 0x00, 0x00,
0491     0x00, 0x00, 0x00, 0x00,
0492     0x00, 0x00, 0x00, 0x00,
0493     0x00, 0x00, 0x00, 0x00,
0494     0x00, 0x00, 0x00, 0x00,
0495     0x00, 0x00, 0x00, 0x00,
0496 
0497     0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 104 */
0498     0x00, 0x08, 0x00, 0x00,
0499 };
0500 
0501 /* offset info for MAC + IPv4 + UDP dummy packet */
0502 ICE_DECLARE_PKT_OFFSETS(udp) = {
0503     { ICE_MAC_OFOS,     0 },
0504     { ICE_ETYPE_OL,     12 },
0505     { ICE_IPV4_OFOS,    14 },
0506     { ICE_UDP_ILOS,     34 },
0507     { ICE_PROTOCOL_LAST,    0 },
0508 };
0509 
0510 /* Dummy packet for MAC + IPv4 + UDP */
0511 ICE_DECLARE_PKT_TEMPLATE(udp) = {
0512     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0513     0x00, 0x00, 0x00, 0x00,
0514     0x00, 0x00, 0x00, 0x00,
0515 
0516     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0517 
0518     0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 14 */
0519     0x00, 0x01, 0x00, 0x00,
0520     0x00, 0x11, 0x00, 0x00,
0521     0x00, 0x00, 0x00, 0x00,
0522     0x00, 0x00, 0x00, 0x00,
0523 
0524     0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 34 */
0525     0x00, 0x08, 0x00, 0x00,
0526 
0527     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0528 };
0529 
0530 /* offset info for MAC + IPv4 + TCP dummy packet */
0531 ICE_DECLARE_PKT_OFFSETS(tcp) = {
0532     { ICE_MAC_OFOS,     0 },
0533     { ICE_ETYPE_OL,     12 },
0534     { ICE_IPV4_OFOS,    14 },
0535     { ICE_TCP_IL,       34 },
0536     { ICE_PROTOCOL_LAST,    0 },
0537 };
0538 
0539 /* Dummy packet for MAC + IPv4 + TCP */
0540 ICE_DECLARE_PKT_TEMPLATE(tcp) = {
0541     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0542     0x00, 0x00, 0x00, 0x00,
0543     0x00, 0x00, 0x00, 0x00,
0544 
0545     0x08, 0x00,     /* ICE_ETYPE_OL 12 */
0546 
0547     0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 14 */
0548     0x00, 0x01, 0x00, 0x00,
0549     0x00, 0x06, 0x00, 0x00,
0550     0x00, 0x00, 0x00, 0x00,
0551     0x00, 0x00, 0x00, 0x00,
0552 
0553     0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 34 */
0554     0x00, 0x00, 0x00, 0x00,
0555     0x00, 0x00, 0x00, 0x00,
0556     0x50, 0x00, 0x00, 0x00,
0557     0x00, 0x00, 0x00, 0x00,
0558 
0559     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0560 };
0561 
0562 ICE_DECLARE_PKT_OFFSETS(tcp_ipv6) = {
0563     { ICE_MAC_OFOS,     0 },
0564     { ICE_ETYPE_OL,     12 },
0565     { ICE_IPV6_OFOS,    14 },
0566     { ICE_TCP_IL,       54 },
0567     { ICE_PROTOCOL_LAST,    0 },
0568 };
0569 
0570 ICE_DECLARE_PKT_TEMPLATE(tcp_ipv6) = {
0571     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0572     0x00, 0x00, 0x00, 0x00,
0573     0x00, 0x00, 0x00, 0x00,
0574 
0575     0x86, 0xDD,     /* ICE_ETYPE_OL 12 */
0576 
0577     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
0578     0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
0579     0x00, 0x00, 0x00, 0x00,
0580     0x00, 0x00, 0x00, 0x00,
0581     0x00, 0x00, 0x00, 0x00,
0582     0x00, 0x00, 0x00, 0x00,
0583     0x00, 0x00, 0x00, 0x00,
0584     0x00, 0x00, 0x00, 0x00,
0585     0x00, 0x00, 0x00, 0x00,
0586     0x00, 0x00, 0x00, 0x00,
0587 
0588     0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 54 */
0589     0x00, 0x00, 0x00, 0x00,
0590     0x00, 0x00, 0x00, 0x00,
0591     0x50, 0x00, 0x00, 0x00,
0592     0x00, 0x00, 0x00, 0x00,
0593 
0594     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0595 };
0596 
0597 /* IPv6 + UDP */
0598 ICE_DECLARE_PKT_OFFSETS(udp_ipv6) = {
0599     { ICE_MAC_OFOS,     0 },
0600     { ICE_ETYPE_OL,     12 },
0601     { ICE_IPV6_OFOS,    14 },
0602     { ICE_UDP_ILOS,     54 },
0603     { ICE_PROTOCOL_LAST,    0 },
0604 };
0605 
0606 /* IPv6 + UDP dummy packet */
0607 ICE_DECLARE_PKT_TEMPLATE(udp_ipv6) = {
0608     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
0609     0x00, 0x00, 0x00, 0x00,
0610     0x00, 0x00, 0x00, 0x00,
0611 
0612     0x86, 0xDD,     /* ICE_ETYPE_OL 12 */
0613 
0614     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 40 */
0615     0x00, 0x10, 0x11, 0x00, /* Next header UDP */
0616     0x00, 0x00, 0x00, 0x00,
0617     0x00, 0x00, 0x00, 0x00,
0618     0x00, 0x00, 0x00, 0x00,
0619     0x00, 0x00, 0x00, 0x00,
0620     0x00, 0x00, 0x00, 0x00,
0621     0x00, 0x00, 0x00, 0x00,
0622     0x00, 0x00, 0x00, 0x00,
0623     0x00, 0x00, 0x00, 0x00,
0624 
0625     0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 54 */
0626     0x00, 0x10, 0x00, 0x00,
0627 
0628     0x00, 0x00, 0x00, 0x00, /* needed for ESP packets */
0629     0x00, 0x00, 0x00, 0x00,
0630 
0631     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0632 };
0633 
0634 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
0635 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_tcp) = {
0636     { ICE_MAC_OFOS,     0 },
0637     { ICE_IPV4_OFOS,    14 },
0638     { ICE_UDP_OF,       34 },
0639     { ICE_GTP,      42 },
0640     { ICE_IPV4_IL,      62 },
0641     { ICE_TCP_IL,       82 },
0642     { ICE_PROTOCOL_LAST,    0 },
0643 };
0644 
0645 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_tcp) = {
0646     0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
0647     0x00, 0x00, 0x00, 0x00,
0648     0x00, 0x00, 0x00, 0x00,
0649     0x08, 0x00,
0650 
0651     0x45, 0x00, 0x00, 0x58, /* IP 14 */
0652     0x00, 0x00, 0x00, 0x00,
0653     0x00, 0x11, 0x00, 0x00,
0654     0x00, 0x00, 0x00, 0x00,
0655     0x00, 0x00, 0x00, 0x00,
0656 
0657     0x00, 0x00, 0x08, 0x68, /* UDP 34 */
0658     0x00, 0x44, 0x00, 0x00,
0659 
0660     0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 42 */
0661     0x00, 0x00, 0x00, 0x00,
0662     0x00, 0x00, 0x00, 0x85,
0663 
0664     0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
0665     0x00, 0x00, 0x00, 0x00,
0666 
0667     0x45, 0x00, 0x00, 0x28, /* IP 62 */
0668     0x00, 0x00, 0x00, 0x00,
0669     0x00, 0x06, 0x00, 0x00,
0670     0x00, 0x00, 0x00, 0x00,
0671     0x00, 0x00, 0x00, 0x00,
0672 
0673     0x00, 0x00, 0x00, 0x00, /* TCP 82 */
0674     0x00, 0x00, 0x00, 0x00,
0675     0x00, 0x00, 0x00, 0x00,
0676     0x50, 0x00, 0x00, 0x00,
0677     0x00, 0x00, 0x00, 0x00,
0678 
0679     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0680 };
0681 
0682 /* Outer IPv4 + Outer UDP + GTP + Inner IPv4 + Inner UDP */
0683 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4_udp) = {
0684     { ICE_MAC_OFOS,     0 },
0685     { ICE_IPV4_OFOS,    14 },
0686     { ICE_UDP_OF,       34 },
0687     { ICE_GTP,      42 },
0688     { ICE_IPV4_IL,      62 },
0689     { ICE_UDP_ILOS,     82 },
0690     { ICE_PROTOCOL_LAST,    0 },
0691 };
0692 
0693 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4_udp) = {
0694     0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
0695     0x00, 0x00, 0x00, 0x00,
0696     0x00, 0x00, 0x00, 0x00,
0697     0x08, 0x00,
0698 
0699     0x45, 0x00, 0x00, 0x4c, /* IP 14 */
0700     0x00, 0x00, 0x00, 0x00,
0701     0x00, 0x11, 0x00, 0x00,
0702     0x00, 0x00, 0x00, 0x00,
0703     0x00, 0x00, 0x00, 0x00,
0704 
0705     0x00, 0x00, 0x08, 0x68, /* UDP 34 */
0706     0x00, 0x38, 0x00, 0x00,
0707 
0708     0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 42 */
0709     0x00, 0x00, 0x00, 0x00,
0710     0x00, 0x00, 0x00, 0x85,
0711 
0712     0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
0713     0x00, 0x00, 0x00, 0x00,
0714 
0715     0x45, 0x00, 0x00, 0x1c, /* IP 62 */
0716     0x00, 0x00, 0x00, 0x00,
0717     0x00, 0x11, 0x00, 0x00,
0718     0x00, 0x00, 0x00, 0x00,
0719     0x00, 0x00, 0x00, 0x00,
0720 
0721     0x00, 0x00, 0x00, 0x00, /* UDP 82 */
0722     0x00, 0x08, 0x00, 0x00,
0723 
0724     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0725 };
0726 
0727 /* Outer IPv6 + Outer UDP + GTP + Inner IPv4 + Inner TCP */
0728 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_tcp) = {
0729     { ICE_MAC_OFOS,     0 },
0730     { ICE_IPV4_OFOS,    14 },
0731     { ICE_UDP_OF,       34 },
0732     { ICE_GTP,      42 },
0733     { ICE_IPV6_IL,      62 },
0734     { ICE_TCP_IL,       102 },
0735     { ICE_PROTOCOL_LAST,    0 },
0736 };
0737 
0738 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_tcp) = {
0739     0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
0740     0x00, 0x00, 0x00, 0x00,
0741     0x00, 0x00, 0x00, 0x00,
0742     0x08, 0x00,
0743 
0744     0x45, 0x00, 0x00, 0x6c, /* IP 14 */
0745     0x00, 0x00, 0x00, 0x00,
0746     0x00, 0x11, 0x00, 0x00,
0747     0x00, 0x00, 0x00, 0x00,
0748     0x00, 0x00, 0x00, 0x00,
0749 
0750     0x00, 0x00, 0x08, 0x68, /* UDP 34 */
0751     0x00, 0x58, 0x00, 0x00,
0752 
0753     0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 42 */
0754     0x00, 0x00, 0x00, 0x00,
0755     0x00, 0x00, 0x00, 0x85,
0756 
0757     0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
0758     0x00, 0x00, 0x00, 0x00,
0759 
0760     0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
0761     0x00, 0x14, 0x06, 0x00,
0762     0x00, 0x00, 0x00, 0x00,
0763     0x00, 0x00, 0x00, 0x00,
0764     0x00, 0x00, 0x00, 0x00,
0765     0x00, 0x00, 0x00, 0x00,
0766     0x00, 0x00, 0x00, 0x00,
0767     0x00, 0x00, 0x00, 0x00,
0768     0x00, 0x00, 0x00, 0x00,
0769     0x00, 0x00, 0x00, 0x00,
0770 
0771     0x00, 0x00, 0x00, 0x00, /* TCP 102 */
0772     0x00, 0x00, 0x00, 0x00,
0773     0x00, 0x00, 0x00, 0x00,
0774     0x50, 0x00, 0x00, 0x00,
0775     0x00, 0x00, 0x00, 0x00,
0776 
0777     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0778 };
0779 
0780 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv6_udp) = {
0781     { ICE_MAC_OFOS,     0 },
0782     { ICE_IPV4_OFOS,    14 },
0783     { ICE_UDP_OF,       34 },
0784     { ICE_GTP,      42 },
0785     { ICE_IPV6_IL,      62 },
0786     { ICE_UDP_ILOS,     102 },
0787     { ICE_PROTOCOL_LAST,    0 },
0788 };
0789 
0790 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv6_udp) = {
0791     0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
0792     0x00, 0x00, 0x00, 0x00,
0793     0x00, 0x00, 0x00, 0x00,
0794     0x08, 0x00,
0795 
0796     0x45, 0x00, 0x00, 0x60, /* IP 14 */
0797     0x00, 0x00, 0x00, 0x00,
0798     0x00, 0x11, 0x00, 0x00,
0799     0x00, 0x00, 0x00, 0x00,
0800     0x00, 0x00, 0x00, 0x00,
0801 
0802     0x00, 0x00, 0x08, 0x68, /* UDP 34 */
0803     0x00, 0x4c, 0x00, 0x00,
0804 
0805     0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 42 */
0806     0x00, 0x00, 0x00, 0x00,
0807     0x00, 0x00, 0x00, 0x85,
0808 
0809     0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 54 */
0810     0x00, 0x00, 0x00, 0x00,
0811 
0812     0x60, 0x00, 0x00, 0x00, /* IPv6 62 */
0813     0x00, 0x08, 0x11, 0x00,
0814     0x00, 0x00, 0x00, 0x00,
0815     0x00, 0x00, 0x00, 0x00,
0816     0x00, 0x00, 0x00, 0x00,
0817     0x00, 0x00, 0x00, 0x00,
0818     0x00, 0x00, 0x00, 0x00,
0819     0x00, 0x00, 0x00, 0x00,
0820     0x00, 0x00, 0x00, 0x00,
0821     0x00, 0x00, 0x00, 0x00,
0822 
0823     0x00, 0x00, 0x00, 0x00, /* UDP 102 */
0824     0x00, 0x08, 0x00, 0x00,
0825 
0826     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0827 };
0828 
0829 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_tcp) = {
0830     { ICE_MAC_OFOS,     0 },
0831     { ICE_IPV6_OFOS,    14 },
0832     { ICE_UDP_OF,       54 },
0833     { ICE_GTP,      62 },
0834     { ICE_IPV4_IL,      82 },
0835     { ICE_TCP_IL,       102 },
0836     { ICE_PROTOCOL_LAST,    0 },
0837 };
0838 
0839 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_tcp) = {
0840     0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
0841     0x00, 0x00, 0x00, 0x00,
0842     0x00, 0x00, 0x00, 0x00,
0843     0x86, 0xdd,
0844 
0845     0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
0846     0x00, 0x44, 0x11, 0x00,
0847     0x00, 0x00, 0x00, 0x00,
0848     0x00, 0x00, 0x00, 0x00,
0849     0x00, 0x00, 0x00, 0x00,
0850     0x00, 0x00, 0x00, 0x00,
0851     0x00, 0x00, 0x00, 0x00,
0852     0x00, 0x00, 0x00, 0x00,
0853     0x00, 0x00, 0x00, 0x00,
0854     0x00, 0x00, 0x00, 0x00,
0855 
0856     0x00, 0x00, 0x08, 0x68, /* UDP 54 */
0857     0x00, 0x44, 0x00, 0x00,
0858 
0859     0x34, 0xff, 0x00, 0x34, /* ICE_GTP Header 62 */
0860     0x00, 0x00, 0x00, 0x00,
0861     0x00, 0x00, 0x00, 0x85,
0862 
0863     0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
0864     0x00, 0x00, 0x00, 0x00,
0865 
0866     0x45, 0x00, 0x00, 0x28, /* IP 82 */
0867     0x00, 0x00, 0x00, 0x00,
0868     0x00, 0x06, 0x00, 0x00,
0869     0x00, 0x00, 0x00, 0x00,
0870     0x00, 0x00, 0x00, 0x00,
0871 
0872     0x00, 0x00, 0x00, 0x00, /* TCP 102 */
0873     0x00, 0x00, 0x00, 0x00,
0874     0x00, 0x00, 0x00, 0x00,
0875     0x50, 0x00, 0x00, 0x00,
0876     0x00, 0x00, 0x00, 0x00,
0877 
0878     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0879 };
0880 
0881 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv4_udp) = {
0882     { ICE_MAC_OFOS,     0 },
0883     { ICE_IPV6_OFOS,    14 },
0884     { ICE_UDP_OF,       54 },
0885     { ICE_GTP,      62 },
0886     { ICE_IPV4_IL,      82 },
0887     { ICE_UDP_ILOS,     102 },
0888     { ICE_PROTOCOL_LAST,    0 },
0889 };
0890 
0891 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv4_udp) = {
0892     0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
0893     0x00, 0x00, 0x00, 0x00,
0894     0x00, 0x00, 0x00, 0x00,
0895     0x86, 0xdd,
0896 
0897     0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
0898     0x00, 0x38, 0x11, 0x00,
0899     0x00, 0x00, 0x00, 0x00,
0900     0x00, 0x00, 0x00, 0x00,
0901     0x00, 0x00, 0x00, 0x00,
0902     0x00, 0x00, 0x00, 0x00,
0903     0x00, 0x00, 0x00, 0x00,
0904     0x00, 0x00, 0x00, 0x00,
0905     0x00, 0x00, 0x00, 0x00,
0906     0x00, 0x00, 0x00, 0x00,
0907 
0908     0x00, 0x00, 0x08, 0x68, /* UDP 54 */
0909     0x00, 0x38, 0x00, 0x00,
0910 
0911     0x34, 0xff, 0x00, 0x28, /* ICE_GTP Header 62 */
0912     0x00, 0x00, 0x00, 0x00,
0913     0x00, 0x00, 0x00, 0x85,
0914 
0915     0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
0916     0x00, 0x00, 0x00, 0x00,
0917 
0918     0x45, 0x00, 0x00, 0x1c, /* IP 82 */
0919     0x00, 0x00, 0x00, 0x00,
0920     0x00, 0x11, 0x00, 0x00,
0921     0x00, 0x00, 0x00, 0x00,
0922     0x00, 0x00, 0x00, 0x00,
0923 
0924     0x00, 0x00, 0x00, 0x00, /* UDP 102 */
0925     0x00, 0x08, 0x00, 0x00,
0926 
0927     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0928 };
0929 
0930 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_tcp) = {
0931     { ICE_MAC_OFOS,     0 },
0932     { ICE_IPV6_OFOS,    14 },
0933     { ICE_UDP_OF,       54 },
0934     { ICE_GTP,      62 },
0935     { ICE_IPV6_IL,      82 },
0936     { ICE_TCP_IL,       122 },
0937     { ICE_PROTOCOL_LAST,    0 },
0938 };
0939 
0940 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_tcp) = {
0941     0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
0942     0x00, 0x00, 0x00, 0x00,
0943     0x00, 0x00, 0x00, 0x00,
0944     0x86, 0xdd,
0945 
0946     0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
0947     0x00, 0x58, 0x11, 0x00,
0948     0x00, 0x00, 0x00, 0x00,
0949     0x00, 0x00, 0x00, 0x00,
0950     0x00, 0x00, 0x00, 0x00,
0951     0x00, 0x00, 0x00, 0x00,
0952     0x00, 0x00, 0x00, 0x00,
0953     0x00, 0x00, 0x00, 0x00,
0954     0x00, 0x00, 0x00, 0x00,
0955     0x00, 0x00, 0x00, 0x00,
0956 
0957     0x00, 0x00, 0x08, 0x68, /* UDP 54 */
0958     0x00, 0x58, 0x00, 0x00,
0959 
0960     0x34, 0xff, 0x00, 0x48, /* ICE_GTP Header 62 */
0961     0x00, 0x00, 0x00, 0x00,
0962     0x00, 0x00, 0x00, 0x85,
0963 
0964     0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
0965     0x00, 0x00, 0x00, 0x00,
0966 
0967     0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
0968     0x00, 0x14, 0x06, 0x00,
0969     0x00, 0x00, 0x00, 0x00,
0970     0x00, 0x00, 0x00, 0x00,
0971     0x00, 0x00, 0x00, 0x00,
0972     0x00, 0x00, 0x00, 0x00,
0973     0x00, 0x00, 0x00, 0x00,
0974     0x00, 0x00, 0x00, 0x00,
0975     0x00, 0x00, 0x00, 0x00,
0976     0x00, 0x00, 0x00, 0x00,
0977 
0978     0x00, 0x00, 0x00, 0x00, /* TCP 122 */
0979     0x00, 0x00, 0x00, 0x00,
0980     0x00, 0x00, 0x00, 0x00,
0981     0x50, 0x00, 0x00, 0x00,
0982     0x00, 0x00, 0x00, 0x00,
0983 
0984     0x00, 0x00, /* 2 bytes for 4 byte alignment */
0985 };
0986 
0987 ICE_DECLARE_PKT_OFFSETS(ipv6_gtpu_ipv6_udp) = {
0988     { ICE_MAC_OFOS,     0 },
0989     { ICE_IPV6_OFOS,    14 },
0990     { ICE_UDP_OF,       54 },
0991     { ICE_GTP,      62 },
0992     { ICE_IPV6_IL,      82 },
0993     { ICE_UDP_ILOS,     122 },
0994     { ICE_PROTOCOL_LAST,    0 },
0995 };
0996 
0997 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtpu_ipv6_udp) = {
0998     0x00, 0x00, 0x00, 0x00, /* Ethernet 0 */
0999     0x00, 0x00, 0x00, 0x00,
1000     0x00, 0x00, 0x00, 0x00,
1001     0x86, 0xdd,
1002 
1003     0x60, 0x00, 0x00, 0x00, /* IPv6 14 */
1004     0x00, 0x4c, 0x11, 0x00,
1005     0x00, 0x00, 0x00, 0x00,
1006     0x00, 0x00, 0x00, 0x00,
1007     0x00, 0x00, 0x00, 0x00,
1008     0x00, 0x00, 0x00, 0x00,
1009     0x00, 0x00, 0x00, 0x00,
1010     0x00, 0x00, 0x00, 0x00,
1011     0x00, 0x00, 0x00, 0x00,
1012     0x00, 0x00, 0x00, 0x00,
1013 
1014     0x00, 0x00, 0x08, 0x68, /* UDP 54 */
1015     0x00, 0x4c, 0x00, 0x00,
1016 
1017     0x34, 0xff, 0x00, 0x3c, /* ICE_GTP Header 62 */
1018     0x00, 0x00, 0x00, 0x00,
1019     0x00, 0x00, 0x00, 0x85,
1020 
1021     0x02, 0x00, 0x00, 0x00, /* GTP_PDUSession_ExtensionHeader 74 */
1022     0x00, 0x00, 0x00, 0x00,
1023 
1024     0x60, 0x00, 0x00, 0x00, /* IPv6 82 */
1025     0x00, 0x08, 0x11, 0x00,
1026     0x00, 0x00, 0x00, 0x00,
1027     0x00, 0x00, 0x00, 0x00,
1028     0x00, 0x00, 0x00, 0x00,
1029     0x00, 0x00, 0x00, 0x00,
1030     0x00, 0x00, 0x00, 0x00,
1031     0x00, 0x00, 0x00, 0x00,
1032     0x00, 0x00, 0x00, 0x00,
1033     0x00, 0x00, 0x00, 0x00,
1034 
1035     0x00, 0x00, 0x00, 0x00, /* UDP 122 */
1036     0x00, 0x08, 0x00, 0x00,
1037 
1038     0x00, 0x00, /* 2 bytes for 4 byte alignment */
1039 };
1040 
1041 ICE_DECLARE_PKT_OFFSETS(ipv4_gtpu_ipv4) = {
1042     { ICE_MAC_OFOS,     0 },
1043     { ICE_IPV4_OFOS,    14 },
1044     { ICE_UDP_OF,       34 },
1045     { ICE_GTP_NO_PAY,   42 },
1046     { ICE_PROTOCOL_LAST,    0 },
1047 };
1048 
1049 ICE_DECLARE_PKT_TEMPLATE(ipv4_gtpu_ipv4) = {
1050     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1051     0x00, 0x00, 0x00, 0x00,
1052     0x00, 0x00, 0x00, 0x00,
1053     0x08, 0x00,
1054 
1055     0x45, 0x00, 0x00, 0x44, /* ICE_IPV4_OFOS 14 */
1056     0x00, 0x00, 0x40, 0x00,
1057     0x40, 0x11, 0x00, 0x00,
1058     0x00, 0x00, 0x00, 0x00,
1059     0x00, 0x00, 0x00, 0x00,
1060 
1061     0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 34 */
1062     0x00, 0x00, 0x00, 0x00,
1063 
1064     0x34, 0xff, 0x00, 0x28, /* ICE_GTP 42 */
1065     0x00, 0x00, 0x00, 0x00,
1066     0x00, 0x00, 0x00, 0x85,
1067 
1068     0x02, 0x00, 0x00, 0x00, /* PDU Session extension header */
1069     0x00, 0x00, 0x00, 0x00,
1070 
1071     0x45, 0x00, 0x00, 0x14, /* ICE_IPV4_IL 62 */
1072     0x00, 0x00, 0x40, 0x00,
1073     0x40, 0x00, 0x00, 0x00,
1074     0x00, 0x00, 0x00, 0x00,
1075     0x00, 0x00, 0x00, 0x00,
1076     0x00, 0x00,
1077 };
1078 
1079 ICE_DECLARE_PKT_OFFSETS(ipv6_gtp) = {
1080     { ICE_MAC_OFOS,     0 },
1081     { ICE_IPV6_OFOS,    14 },
1082     { ICE_UDP_OF,       54 },
1083     { ICE_GTP_NO_PAY,   62 },
1084     { ICE_PROTOCOL_LAST,    0 },
1085 };
1086 
1087 ICE_DECLARE_PKT_TEMPLATE(ipv6_gtp) = {
1088     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1089     0x00, 0x00, 0x00, 0x00,
1090     0x00, 0x00, 0x00, 0x00,
1091     0x86, 0xdd,
1092 
1093     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 14 */
1094     0x00, 0x6c, 0x11, 0x00, /* Next header UDP*/
1095     0x00, 0x00, 0x00, 0x00,
1096     0x00, 0x00, 0x00, 0x00,
1097     0x00, 0x00, 0x00, 0x00,
1098     0x00, 0x00, 0x00, 0x00,
1099     0x00, 0x00, 0x00, 0x00,
1100     0x00, 0x00, 0x00, 0x00,
1101     0x00, 0x00, 0x00, 0x00,
1102     0x00, 0x00, 0x00, 0x00,
1103 
1104     0x08, 0x68, 0x08, 0x68, /* ICE_UDP_OF 54 */
1105     0x00, 0x00, 0x00, 0x00,
1106 
1107     0x30, 0x00, 0x00, 0x28, /* ICE_GTP 62 */
1108     0x00, 0x00, 0x00, 0x00,
1109 
1110     0x00, 0x00,
1111 };
1112 
1113 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_tcp) = {
1114     { ICE_MAC_OFOS,     0 },
1115     { ICE_ETYPE_OL,     12 },
1116     { ICE_PPPOE,        14 },
1117     { ICE_IPV4_OFOS,    22 },
1118     { ICE_TCP_IL,       42 },
1119     { ICE_PROTOCOL_LAST,    0 },
1120 };
1121 
1122 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_tcp) = {
1123     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1124     0x00, 0x00, 0x00, 0x00,
1125     0x00, 0x00, 0x00, 0x00,
1126 
1127     0x88, 0x64,     /* ICE_ETYPE_OL 12 */
1128 
1129     0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1130     0x00, 0x16,
1131 
1132     0x00, 0x21,     /* PPP Link Layer 20 */
1133 
1134     0x45, 0x00, 0x00, 0x28, /* ICE_IPV4_OFOS 22 */
1135     0x00, 0x01, 0x00, 0x00,
1136     0x00, 0x06, 0x00, 0x00,
1137     0x00, 0x00, 0x00, 0x00,
1138     0x00, 0x00, 0x00, 0x00,
1139 
1140     0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 42 */
1141     0x00, 0x00, 0x00, 0x00,
1142     0x00, 0x00, 0x00, 0x00,
1143     0x50, 0x00, 0x00, 0x00,
1144     0x00, 0x00, 0x00, 0x00,
1145 
1146     0x00, 0x00,     /* 2 bytes for 4 bytes alignment */
1147 };
1148 
1149 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv4_udp) = {
1150     { ICE_MAC_OFOS,     0 },
1151     { ICE_ETYPE_OL,     12 },
1152     { ICE_PPPOE,        14 },
1153     { ICE_IPV4_OFOS,    22 },
1154     { ICE_UDP_ILOS,     42 },
1155     { ICE_PROTOCOL_LAST,    0 },
1156 };
1157 
1158 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv4_udp) = {
1159     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1160     0x00, 0x00, 0x00, 0x00,
1161     0x00, 0x00, 0x00, 0x00,
1162 
1163     0x88, 0x64,     /* ICE_ETYPE_OL 12 */
1164 
1165     0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1166     0x00, 0x16,
1167 
1168     0x00, 0x21,     /* PPP Link Layer 20 */
1169 
1170     0x45, 0x00, 0x00, 0x1c, /* ICE_IPV4_OFOS 22 */
1171     0x00, 0x01, 0x00, 0x00,
1172     0x00, 0x11, 0x00, 0x00,
1173     0x00, 0x00, 0x00, 0x00,
1174     0x00, 0x00, 0x00, 0x00,
1175 
1176     0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 42 */
1177     0x00, 0x08, 0x00, 0x00,
1178 
1179     0x00, 0x00,     /* 2 bytes for 4 bytes alignment */
1180 };
1181 
1182 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_tcp) = {
1183     { ICE_MAC_OFOS,     0 },
1184     { ICE_ETYPE_OL,     12 },
1185     { ICE_PPPOE,        14 },
1186     { ICE_IPV6_OFOS,    22 },
1187     { ICE_TCP_IL,       62 },
1188     { ICE_PROTOCOL_LAST,    0 },
1189 };
1190 
1191 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_tcp) = {
1192     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1193     0x00, 0x00, 0x00, 0x00,
1194     0x00, 0x00, 0x00, 0x00,
1195 
1196     0x88, 0x64,     /* ICE_ETYPE_OL 12 */
1197 
1198     0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1199     0x00, 0x2a,
1200 
1201     0x00, 0x57,     /* PPP Link Layer 20 */
1202 
1203     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1204     0x00, 0x14, 0x06, 0x00, /* Next header is TCP */
1205     0x00, 0x00, 0x00, 0x00,
1206     0x00, 0x00, 0x00, 0x00,
1207     0x00, 0x00, 0x00, 0x00,
1208     0x00, 0x00, 0x00, 0x00,
1209     0x00, 0x00, 0x00, 0x00,
1210     0x00, 0x00, 0x00, 0x00,
1211     0x00, 0x00, 0x00, 0x00,
1212     0x00, 0x00, 0x00, 0x00,
1213 
1214     0x00, 0x00, 0x00, 0x00, /* ICE_TCP_IL 62 */
1215     0x00, 0x00, 0x00, 0x00,
1216     0x00, 0x00, 0x00, 0x00,
1217     0x50, 0x00, 0x00, 0x00,
1218     0x00, 0x00, 0x00, 0x00,
1219 
1220     0x00, 0x00,     /* 2 bytes for 4 bytes alignment */
1221 };
1222 
1223 ICE_DECLARE_PKT_OFFSETS(pppoe_ipv6_udp) = {
1224     { ICE_MAC_OFOS,     0 },
1225     { ICE_ETYPE_OL,     12 },
1226     { ICE_PPPOE,        14 },
1227     { ICE_IPV6_OFOS,    22 },
1228     { ICE_UDP_ILOS,     62 },
1229     { ICE_PROTOCOL_LAST,    0 },
1230 };
1231 
1232 ICE_DECLARE_PKT_TEMPLATE(pppoe_ipv6_udp) = {
1233     0x00, 0x00, 0x00, 0x00, /* ICE_MAC_OFOS 0 */
1234     0x00, 0x00, 0x00, 0x00,
1235     0x00, 0x00, 0x00, 0x00,
1236 
1237     0x88, 0x64,     /* ICE_ETYPE_OL 12 */
1238 
1239     0x11, 0x00, 0x00, 0x00, /* ICE_PPPOE 14 */
1240     0x00, 0x2a,
1241 
1242     0x00, 0x57,     /* PPP Link Layer 20 */
1243 
1244     0x60, 0x00, 0x00, 0x00, /* ICE_IPV6_OFOS 22 */
1245     0x00, 0x08, 0x11, 0x00, /* Next header UDP*/
1246     0x00, 0x00, 0x00, 0x00,
1247     0x00, 0x00, 0x00, 0x00,
1248     0x00, 0x00, 0x00, 0x00,
1249     0x00, 0x00, 0x00, 0x00,
1250     0x00, 0x00, 0x00, 0x00,
1251     0x00, 0x00, 0x00, 0x00,
1252     0x00, 0x00, 0x00, 0x00,
1253     0x00, 0x00, 0x00, 0x00,
1254 
1255     0x00, 0x00, 0x00, 0x00, /* ICE_UDP_ILOS 62 */
1256     0x00, 0x08, 0x00, 0x00,
1257 
1258     0x00, 0x00,     /* 2 bytes for 4 bytes alignment */
1259 };
1260 
1261 static const struct ice_dummy_pkt_profile ice_dummy_pkt_profiles[] = {
1262     ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPU | ICE_PKT_OUTER_IPV6 |
1263                   ICE_PKT_GTP_NOPAY),
1264     ICE_PKT_PROFILE(ipv6_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1265                         ICE_PKT_OUTER_IPV6 |
1266                         ICE_PKT_INNER_IPV6 |
1267                         ICE_PKT_INNER_UDP),
1268     ICE_PKT_PROFILE(ipv6_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1269                         ICE_PKT_OUTER_IPV6 |
1270                         ICE_PKT_INNER_IPV6),
1271     ICE_PKT_PROFILE(ipv6_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1272                         ICE_PKT_OUTER_IPV6 |
1273                         ICE_PKT_INNER_UDP),
1274     ICE_PKT_PROFILE(ipv6_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU |
1275                         ICE_PKT_OUTER_IPV6),
1276     ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPU | ICE_PKT_GTP_NOPAY),
1277     ICE_PKT_PROFILE(ipv4_gtpu_ipv6_udp, ICE_PKT_TUN_GTPU |
1278                         ICE_PKT_INNER_IPV6 |
1279                         ICE_PKT_INNER_UDP),
1280     ICE_PKT_PROFILE(ipv4_gtpu_ipv6_tcp, ICE_PKT_TUN_GTPU |
1281                         ICE_PKT_INNER_IPV6),
1282     ICE_PKT_PROFILE(ipv4_gtpu_ipv4_udp, ICE_PKT_TUN_GTPU |
1283                         ICE_PKT_INNER_UDP),
1284     ICE_PKT_PROFILE(ipv4_gtpu_ipv4_tcp, ICE_PKT_TUN_GTPU),
1285     ICE_PKT_PROFILE(ipv6_gtp, ICE_PKT_TUN_GTPC | ICE_PKT_OUTER_IPV6),
1286     ICE_PKT_PROFILE(ipv4_gtpu_ipv4, ICE_PKT_TUN_GTPC),
1287     ICE_PKT_PROFILE(pppoe_ipv6_udp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6 |
1288                     ICE_PKT_INNER_UDP),
1289     ICE_PKT_PROFILE(pppoe_ipv6_tcp, ICE_PKT_PPPOE | ICE_PKT_OUTER_IPV6),
1290     ICE_PKT_PROFILE(pppoe_ipv4_udp, ICE_PKT_PPPOE | ICE_PKT_INNER_UDP),
1291     ICE_PKT_PROFILE(pppoe_ipv4_tcp, ICE_PKT_PPPOE),
1292     ICE_PKT_PROFILE(gre_ipv6_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6 |
1293                       ICE_PKT_INNER_TCP),
1294     ICE_PKT_PROFILE(gre_tcp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_TCP),
1295     ICE_PKT_PROFILE(gre_ipv6_udp, ICE_PKT_TUN_NVGRE | ICE_PKT_INNER_IPV6),
1296     ICE_PKT_PROFILE(gre_udp, ICE_PKT_TUN_NVGRE),
1297     ICE_PKT_PROFILE(udp_tun_ipv6_tcp, ICE_PKT_TUN_UDP |
1298                       ICE_PKT_INNER_IPV6 |
1299                       ICE_PKT_INNER_TCP),
1300     ICE_PKT_PROFILE(udp_tun_tcp, ICE_PKT_TUN_UDP | ICE_PKT_INNER_TCP),
1301     ICE_PKT_PROFILE(udp_tun_ipv6_udp, ICE_PKT_TUN_UDP |
1302                       ICE_PKT_INNER_IPV6),
1303     ICE_PKT_PROFILE(udp_tun_udp, ICE_PKT_TUN_UDP),
1304     ICE_PKT_PROFILE(udp_ipv6, ICE_PKT_OUTER_IPV6 | ICE_PKT_INNER_UDP),
1305     ICE_PKT_PROFILE(udp, ICE_PKT_INNER_UDP),
1306     ICE_PKT_PROFILE(tcp_ipv6, ICE_PKT_OUTER_IPV6),
1307     ICE_PKT_PROFILE(tcp, 0),
1308 };
1309 
1310 #define ICE_SW_RULE_RX_TX_HDR_SIZE(s, l)    struct_size((s), hdr_data, (l))
1311 #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s)   \
1312     ICE_SW_RULE_RX_TX_HDR_SIZE((s), DUMMY_ETH_HDR_LEN)
1313 #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s)    \
1314     ICE_SW_RULE_RX_TX_HDR_SIZE((s), 0)
1315 #define ICE_SW_RULE_LG_ACT_SIZE(s, n)       struct_size((s), act, (n))
1316 #define ICE_SW_RULE_VSI_LIST_SIZE(s, n)     struct_size((s), vsi, (n))
1317 
1318 /* this is a recipe to profile association bitmap */
1319 static DECLARE_BITMAP(recipe_to_profile[ICE_MAX_NUM_RECIPES],
1320               ICE_MAX_NUM_PROFILES);
1321 
1322 /* this is a profile to recipe association bitmap */
1323 static DECLARE_BITMAP(profile_to_recipe[ICE_MAX_NUM_PROFILES],
1324               ICE_MAX_NUM_RECIPES);
1325 
1326 /**
1327  * ice_init_def_sw_recp - initialize the recipe book keeping tables
1328  * @hw: pointer to the HW struct
1329  *
1330  * Allocate memory for the entire recipe table and initialize the structures/
1331  * entries corresponding to basic recipes.
1332  */
1333 int ice_init_def_sw_recp(struct ice_hw *hw)
1334 {
1335     struct ice_sw_recipe *recps;
1336     u8 i;
1337 
1338     recps = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_NUM_RECIPES,
1339                  sizeof(*recps), GFP_KERNEL);
1340     if (!recps)
1341         return -ENOMEM;
1342 
1343     for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
1344         recps[i].root_rid = i;
1345         INIT_LIST_HEAD(&recps[i].filt_rules);
1346         INIT_LIST_HEAD(&recps[i].filt_replay_rules);
1347         INIT_LIST_HEAD(&recps[i].rg_list);
1348         mutex_init(&recps[i].filt_rule_lock);
1349     }
1350 
1351     hw->switch_info->recp_list = recps;
1352 
1353     return 0;
1354 }
1355 
1356 /**
1357  * ice_aq_get_sw_cfg - get switch configuration
1358  * @hw: pointer to the hardware structure
1359  * @buf: pointer to the result buffer
1360  * @buf_size: length of the buffer available for response
1361  * @req_desc: pointer to requested descriptor
1362  * @num_elems: pointer to number of elements
1363  * @cd: pointer to command details structure or NULL
1364  *
1365  * Get switch configuration (0x0200) to be placed in buf.
1366  * This admin command returns information such as initial VSI/port number
1367  * and switch ID it belongs to.
1368  *
1369  * NOTE: *req_desc is both an input/output parameter.
1370  * The caller of this function first calls this function with *request_desc set
1371  * to 0. If the response from f/w has *req_desc set to 0, all the switch
1372  * configuration information has been returned; if non-zero (meaning not all
1373  * the information was returned), the caller should call this function again
1374  * with *req_desc set to the previous value returned by f/w to get the
1375  * next block of switch configuration information.
1376  *
1377  * *num_elems is output only parameter. This reflects the number of elements
1378  * in response buffer. The caller of this function to use *num_elems while
1379  * parsing the response buffer.
1380  */
1381 static int
1382 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf,
1383           u16 buf_size, u16 *req_desc, u16 *num_elems,
1384           struct ice_sq_cd *cd)
1385 {
1386     struct ice_aqc_get_sw_cfg *cmd;
1387     struct ice_aq_desc desc;
1388     int status;
1389 
1390     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
1391     cmd = &desc.params.get_sw_conf;
1392     cmd->element = cpu_to_le16(*req_desc);
1393 
1394     status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1395     if (!status) {
1396         *req_desc = le16_to_cpu(cmd->element);
1397         *num_elems = le16_to_cpu(cmd->num_elems);
1398     }
1399 
1400     return status;
1401 }
1402 
1403 /**
1404  * ice_aq_add_vsi
1405  * @hw: pointer to the HW struct
1406  * @vsi_ctx: pointer to a VSI context struct
1407  * @cd: pointer to command details structure or NULL
1408  *
1409  * Add a VSI context to the hardware (0x0210)
1410  */
1411 static int
1412 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1413            struct ice_sq_cd *cd)
1414 {
1415     struct ice_aqc_add_update_free_vsi_resp *res;
1416     struct ice_aqc_add_get_update_free_vsi *cmd;
1417     struct ice_aq_desc desc;
1418     int status;
1419 
1420     cmd = &desc.params.vsi_cmd;
1421     res = &desc.params.add_update_free_vsi_res;
1422 
1423     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
1424 
1425     if (!vsi_ctx->alloc_from_pool)
1426         cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num |
1427                        ICE_AQ_VSI_IS_VALID);
1428     cmd->vf_id = vsi_ctx->vf_num;
1429 
1430     cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags);
1431 
1432     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1433 
1434     status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1435                  sizeof(vsi_ctx->info), cd);
1436 
1437     if (!status) {
1438         vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M;
1439         vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used);
1440         vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free);
1441     }
1442 
1443     return status;
1444 }
1445 
1446 /**
1447  * ice_aq_free_vsi
1448  * @hw: pointer to the HW struct
1449  * @vsi_ctx: pointer to a VSI context struct
1450  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1451  * @cd: pointer to command details structure or NULL
1452  *
1453  * Free VSI context info from hardware (0x0213)
1454  */
1455 static int
1456 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1457         bool keep_vsi_alloc, struct ice_sq_cd *cd)
1458 {
1459     struct ice_aqc_add_update_free_vsi_resp *resp;
1460     struct ice_aqc_add_get_update_free_vsi *cmd;
1461     struct ice_aq_desc desc;
1462     int status;
1463 
1464     cmd = &desc.params.vsi_cmd;
1465     resp = &desc.params.add_update_free_vsi_res;
1466 
1467     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
1468 
1469     cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1470     if (keep_vsi_alloc)
1471         cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC);
1472 
1473     status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1474     if (!status) {
1475         vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1476         vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1477     }
1478 
1479     return status;
1480 }
1481 
1482 /**
1483  * ice_aq_update_vsi
1484  * @hw: pointer to the HW struct
1485  * @vsi_ctx: pointer to a VSI context struct
1486  * @cd: pointer to command details structure or NULL
1487  *
1488  * Update VSI context in the hardware (0x0211)
1489  */
1490 static int
1491 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
1492           struct ice_sq_cd *cd)
1493 {
1494     struct ice_aqc_add_update_free_vsi_resp *resp;
1495     struct ice_aqc_add_get_update_free_vsi *cmd;
1496     struct ice_aq_desc desc;
1497     int status;
1498 
1499     cmd = &desc.params.vsi_cmd;
1500     resp = &desc.params.add_update_free_vsi_res;
1501 
1502     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
1503 
1504     cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
1505 
1506     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1507 
1508     status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
1509                  sizeof(vsi_ctx->info), cd);
1510 
1511     if (!status) {
1512         vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used);
1513         vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free);
1514     }
1515 
1516     return status;
1517 }
1518 
1519 /**
1520  * ice_is_vsi_valid - check whether the VSI is valid or not
1521  * @hw: pointer to the HW struct
1522  * @vsi_handle: VSI handle
1523  *
1524  * check whether the VSI is valid or not
1525  */
1526 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
1527 {
1528     return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
1529 }
1530 
1531 /**
1532  * ice_get_hw_vsi_num - return the HW VSI number
1533  * @hw: pointer to the HW struct
1534  * @vsi_handle: VSI handle
1535  *
1536  * return the HW VSI number
1537  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
1538  */
1539 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
1540 {
1541     return hw->vsi_ctx[vsi_handle]->vsi_num;
1542 }
1543 
1544 /**
1545  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
1546  * @hw: pointer to the HW struct
1547  * @vsi_handle: VSI handle
1548  *
1549  * return the VSI context entry for a given VSI handle
1550  */
1551 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1552 {
1553     return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
1554 }
1555 
1556 /**
1557  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
1558  * @hw: pointer to the HW struct
1559  * @vsi_handle: VSI handle
1560  * @vsi: VSI context pointer
1561  *
1562  * save the VSI context entry for a given VSI handle
1563  */
1564 static void
1565 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
1566 {
1567     hw->vsi_ctx[vsi_handle] = vsi;
1568 }
1569 
1570 /**
1571  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
1572  * @hw: pointer to the HW struct
1573  * @vsi_handle: VSI handle
1574  */
1575 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
1576 {
1577     struct ice_vsi_ctx *vsi;
1578     u8 i;
1579 
1580     vsi = ice_get_vsi_ctx(hw, vsi_handle);
1581     if (!vsi)
1582         return;
1583     ice_for_each_traffic_class(i) {
1584         if (vsi->lan_q_ctx[i]) {
1585             devm_kfree(ice_hw_to_dev(hw), vsi->lan_q_ctx[i]);
1586             vsi->lan_q_ctx[i] = NULL;
1587         }
1588         if (vsi->rdma_q_ctx[i]) {
1589             devm_kfree(ice_hw_to_dev(hw), vsi->rdma_q_ctx[i]);
1590             vsi->rdma_q_ctx[i] = NULL;
1591         }
1592     }
1593 }
1594 
1595 /**
1596  * ice_clear_vsi_ctx - clear the VSI context entry
1597  * @hw: pointer to the HW struct
1598  * @vsi_handle: VSI handle
1599  *
1600  * clear the VSI context entry
1601  */
1602 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
1603 {
1604     struct ice_vsi_ctx *vsi;
1605 
1606     vsi = ice_get_vsi_ctx(hw, vsi_handle);
1607     if (vsi) {
1608         ice_clear_vsi_q_ctx(hw, vsi_handle);
1609         devm_kfree(ice_hw_to_dev(hw), vsi);
1610         hw->vsi_ctx[vsi_handle] = NULL;
1611     }
1612 }
1613 
1614 /**
1615  * ice_clear_all_vsi_ctx - clear all the VSI context entries
1616  * @hw: pointer to the HW struct
1617  */
1618 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
1619 {
1620     u16 i;
1621 
1622     for (i = 0; i < ICE_MAX_VSI; i++)
1623         ice_clear_vsi_ctx(hw, i);
1624 }
1625 
1626 /**
1627  * ice_add_vsi - add VSI context to the hardware and VSI handle list
1628  * @hw: pointer to the HW struct
1629  * @vsi_handle: unique VSI handle provided by drivers
1630  * @vsi_ctx: pointer to a VSI context struct
1631  * @cd: pointer to command details structure or NULL
1632  *
1633  * Add a VSI context to the hardware also add it into the VSI handle list.
1634  * If this function gets called after reset for existing VSIs then update
1635  * with the new HW VSI number in the corresponding VSI handle list entry.
1636  */
1637 int
1638 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1639         struct ice_sq_cd *cd)
1640 {
1641     struct ice_vsi_ctx *tmp_vsi_ctx;
1642     int status;
1643 
1644     if (vsi_handle >= ICE_MAX_VSI)
1645         return -EINVAL;
1646     status = ice_aq_add_vsi(hw, vsi_ctx, cd);
1647     if (status)
1648         return status;
1649     tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1650     if (!tmp_vsi_ctx) {
1651         /* Create a new VSI context */
1652         tmp_vsi_ctx = devm_kzalloc(ice_hw_to_dev(hw),
1653                        sizeof(*tmp_vsi_ctx), GFP_KERNEL);
1654         if (!tmp_vsi_ctx) {
1655             ice_aq_free_vsi(hw, vsi_ctx, false, cd);
1656             return -ENOMEM;
1657         }
1658         *tmp_vsi_ctx = *vsi_ctx;
1659         ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
1660     } else {
1661         /* update with new HW VSI num */
1662         tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
1663     }
1664 
1665     return 0;
1666 }
1667 
1668 /**
1669  * ice_free_vsi- free VSI context from hardware and VSI handle list
1670  * @hw: pointer to the HW struct
1671  * @vsi_handle: unique VSI handle
1672  * @vsi_ctx: pointer to a VSI context struct
1673  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
1674  * @cd: pointer to command details structure or NULL
1675  *
1676  * Free VSI context info from hardware as well as from VSI handle list
1677  */
1678 int
1679 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1680          bool keep_vsi_alloc, struct ice_sq_cd *cd)
1681 {
1682     int status;
1683 
1684     if (!ice_is_vsi_valid(hw, vsi_handle))
1685         return -EINVAL;
1686     vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1687     status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
1688     if (!status)
1689         ice_clear_vsi_ctx(hw, vsi_handle);
1690     return status;
1691 }
1692 
1693 /**
1694  * ice_update_vsi
1695  * @hw: pointer to the HW struct
1696  * @vsi_handle: unique VSI handle
1697  * @vsi_ctx: pointer to a VSI context struct
1698  * @cd: pointer to command details structure or NULL
1699  *
1700  * Update VSI context in the hardware
1701  */
1702 int
1703 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
1704            struct ice_sq_cd *cd)
1705 {
1706     if (!ice_is_vsi_valid(hw, vsi_handle))
1707         return -EINVAL;
1708     vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
1709     return ice_aq_update_vsi(hw, vsi_ctx, cd);
1710 }
1711 
1712 /**
1713  * ice_cfg_rdma_fltr - enable/disable RDMA filtering on VSI
1714  * @hw: pointer to HW struct
1715  * @vsi_handle: VSI SW index
1716  * @enable: boolean for enable/disable
1717  */
1718 int
1719 ice_cfg_rdma_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable)
1720 {
1721     struct ice_vsi_ctx *ctx;
1722 
1723     ctx = ice_get_vsi_ctx(hw, vsi_handle);
1724     if (!ctx)
1725         return -EIO;
1726 
1727     if (enable)
1728         ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1729     else
1730         ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN;
1731 
1732     return ice_update_vsi(hw, vsi_handle, ctx, NULL);
1733 }
1734 
1735 /**
1736  * ice_aq_alloc_free_vsi_list
1737  * @hw: pointer to the HW struct
1738  * @vsi_list_id: VSI list ID returned or used for lookup
1739  * @lkup_type: switch rule filter lookup type
1740  * @opc: switch rules population command type - pass in the command opcode
1741  *
1742  * allocates or free a VSI list resource
1743  */
1744 static int
1745 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
1746                enum ice_sw_lkup_type lkup_type,
1747                enum ice_adminq_opc opc)
1748 {
1749     struct ice_aqc_alloc_free_res_elem *sw_buf;
1750     struct ice_aqc_res_elem *vsi_ele;
1751     u16 buf_len;
1752     int status;
1753 
1754     buf_len = struct_size(sw_buf, elem, 1);
1755     sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL);
1756     if (!sw_buf)
1757         return -ENOMEM;
1758     sw_buf->num_elems = cpu_to_le16(1);
1759 
1760     if (lkup_type == ICE_SW_LKUP_MAC ||
1761         lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1762         lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1763         lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1764         lkup_type == ICE_SW_LKUP_PROMISC ||
1765         lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1766         lkup_type == ICE_SW_LKUP_DFLT) {
1767         sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
1768     } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1769         sw_buf->res_type =
1770             cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1771     } else {
1772         status = -EINVAL;
1773         goto ice_aq_alloc_free_vsi_list_exit;
1774     }
1775 
1776     if (opc == ice_aqc_opc_free_res)
1777         sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id);
1778 
1779     status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
1780     if (status)
1781         goto ice_aq_alloc_free_vsi_list_exit;
1782 
1783     if (opc == ice_aqc_opc_alloc_res) {
1784         vsi_ele = &sw_buf->elem[0];
1785         *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp);
1786     }
1787 
1788 ice_aq_alloc_free_vsi_list_exit:
1789     devm_kfree(ice_hw_to_dev(hw), sw_buf);
1790     return status;
1791 }
1792 
1793 /**
1794  * ice_aq_sw_rules - add/update/remove switch rules
1795  * @hw: pointer to the HW struct
1796  * @rule_list: pointer to switch rule population list
1797  * @rule_list_sz: total size of the rule list in bytes
1798  * @num_rules: number of switch rules in the rule_list
1799  * @opc: switch rules population command type - pass in the command opcode
1800  * @cd: pointer to command details structure or NULL
1801  *
1802  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1803  */
1804 int
1805 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1806         u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1807 {
1808     struct ice_aq_desc desc;
1809     int status;
1810 
1811     if (opc != ice_aqc_opc_add_sw_rules &&
1812         opc != ice_aqc_opc_update_sw_rules &&
1813         opc != ice_aqc_opc_remove_sw_rules)
1814         return -EINVAL;
1815 
1816     ice_fill_dflt_direct_cmd_desc(&desc, opc);
1817 
1818     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1819     desc.params.sw_rules.num_rules_fltr_entry_index =
1820         cpu_to_le16(num_rules);
1821     status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1822     if (opc != ice_aqc_opc_add_sw_rules &&
1823         hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
1824         status = -ENOENT;
1825 
1826     return status;
1827 }
1828 
1829 /**
1830  * ice_aq_add_recipe - add switch recipe
1831  * @hw: pointer to the HW struct
1832  * @s_recipe_list: pointer to switch rule population list
1833  * @num_recipes: number of switch recipes in the list
1834  * @cd: pointer to command details structure or NULL
1835  *
1836  * Add(0x0290)
1837  */
1838 static int
1839 ice_aq_add_recipe(struct ice_hw *hw,
1840           struct ice_aqc_recipe_data_elem *s_recipe_list,
1841           u16 num_recipes, struct ice_sq_cd *cd)
1842 {
1843     struct ice_aqc_add_get_recipe *cmd;
1844     struct ice_aq_desc desc;
1845     u16 buf_size;
1846 
1847     cmd = &desc.params.add_get_recipe;
1848     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1849 
1850     cmd->num_sub_recipes = cpu_to_le16(num_recipes);
1851     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1852 
1853     buf_size = num_recipes * sizeof(*s_recipe_list);
1854 
1855     return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1856 }
1857 
1858 /**
1859  * ice_aq_get_recipe - get switch recipe
1860  * @hw: pointer to the HW struct
1861  * @s_recipe_list: pointer to switch rule population list
1862  * @num_recipes: pointer to the number of recipes (input and output)
1863  * @recipe_root: root recipe number of recipe(s) to retrieve
1864  * @cd: pointer to command details structure or NULL
1865  *
1866  * Get(0x0292)
1867  *
1868  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1869  * On output, *num_recipes will equal the number of entries returned in
1870  * s_recipe_list.
1871  *
1872  * The caller must supply enough space in s_recipe_list to hold all possible
1873  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1874  */
1875 static int
1876 ice_aq_get_recipe(struct ice_hw *hw,
1877           struct ice_aqc_recipe_data_elem *s_recipe_list,
1878           u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1879 {
1880     struct ice_aqc_add_get_recipe *cmd;
1881     struct ice_aq_desc desc;
1882     u16 buf_size;
1883     int status;
1884 
1885     if (*num_recipes != ICE_MAX_NUM_RECIPES)
1886         return -EINVAL;
1887 
1888     cmd = &desc.params.add_get_recipe;
1889     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1890 
1891     cmd->return_index = cpu_to_le16(recipe_root);
1892     cmd->num_sub_recipes = 0;
1893 
1894     buf_size = *num_recipes * sizeof(*s_recipe_list);
1895 
1896     status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1897     *num_recipes = le16_to_cpu(cmd->num_sub_recipes);
1898 
1899     return status;
1900 }
1901 
1902 /**
1903  * ice_update_recipe_lkup_idx - update a default recipe based on the lkup_idx
1904  * @hw: pointer to the HW struct
1905  * @params: parameters used to update the default recipe
1906  *
1907  * This function only supports updating default recipes and it only supports
1908  * updating a single recipe based on the lkup_idx at a time.
1909  *
1910  * This is done as a read-modify-write operation. First, get the current recipe
1911  * contents based on the recipe's ID. Then modify the field vector index and
1912  * mask if it's valid at the lkup_idx. Finally, use the add recipe AQ to update
1913  * the pre-existing recipe with the modifications.
1914  */
1915 int
1916 ice_update_recipe_lkup_idx(struct ice_hw *hw,
1917                struct ice_update_recipe_lkup_idx_params *params)
1918 {
1919     struct ice_aqc_recipe_data_elem *rcp_list;
1920     u16 num_recps = ICE_MAX_NUM_RECIPES;
1921     int status;
1922 
1923     rcp_list = kcalloc(num_recps, sizeof(*rcp_list), GFP_KERNEL);
1924     if (!rcp_list)
1925         return -ENOMEM;
1926 
1927     /* read current recipe list from firmware */
1928     rcp_list->recipe_indx = params->rid;
1929     status = ice_aq_get_recipe(hw, rcp_list, &num_recps, params->rid, NULL);
1930     if (status) {
1931         ice_debug(hw, ICE_DBG_SW, "Failed to get recipe %d, status %d\n",
1932               params->rid, status);
1933         goto error_out;
1934     }
1935 
1936     /* only modify existing recipe's lkup_idx and mask if valid, while
1937      * leaving all other fields the same, then update the recipe firmware
1938      */
1939     rcp_list->content.lkup_indx[params->lkup_idx] = params->fv_idx;
1940     if (params->mask_valid)
1941         rcp_list->content.mask[params->lkup_idx] =
1942             cpu_to_le16(params->mask);
1943 
1944     if (params->ignore_valid)
1945         rcp_list->content.lkup_indx[params->lkup_idx] |=
1946             ICE_AQ_RECIPE_LKUP_IGNORE;
1947 
1948     status = ice_aq_add_recipe(hw, &rcp_list[0], 1, NULL);
1949     if (status)
1950         ice_debug(hw, ICE_DBG_SW, "Failed to update recipe %d lkup_idx %d fv_idx %d mask %d mask_valid %s, status %d\n",
1951               params->rid, params->lkup_idx, params->fv_idx,
1952               params->mask, params->mask_valid ? "true" : "false",
1953               status);
1954 
1955 error_out:
1956     kfree(rcp_list);
1957     return status;
1958 }
1959 
1960 /**
1961  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
1962  * @hw: pointer to the HW struct
1963  * @profile_id: package profile ID to associate the recipe with
1964  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1965  * @cd: pointer to command details structure or NULL
1966  * Recipe to profile association (0x0291)
1967  */
1968 static int
1969 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1970                  struct ice_sq_cd *cd)
1971 {
1972     struct ice_aqc_recipe_to_profile *cmd;
1973     struct ice_aq_desc desc;
1974 
1975     cmd = &desc.params.recipe_to_profile;
1976     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
1977     cmd->profile_id = cpu_to_le16(profile_id);
1978     /* Set the recipe ID bit in the bitmask to let the device know which
1979      * profile we are associating the recipe to
1980      */
1981     memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc));
1982 
1983     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1984 }
1985 
1986 /**
1987  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
1988  * @hw: pointer to the HW struct
1989  * @profile_id: package profile ID to associate the recipe with
1990  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1991  * @cd: pointer to command details structure or NULL
1992  * Associate profile ID with given recipe (0x0293)
1993  */
1994 static int
1995 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1996                  struct ice_sq_cd *cd)
1997 {
1998     struct ice_aqc_recipe_to_profile *cmd;
1999     struct ice_aq_desc desc;
2000     int status;
2001 
2002     cmd = &desc.params.recipe_to_profile;
2003     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
2004     cmd->profile_id = cpu_to_le16(profile_id);
2005 
2006     status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2007     if (!status)
2008         memcpy(r_bitmap, cmd->recipe_assoc, sizeof(cmd->recipe_assoc));
2009 
2010     return status;
2011 }
2012 
2013 /**
2014  * ice_alloc_recipe - add recipe resource
2015  * @hw: pointer to the hardware structure
2016  * @rid: recipe ID returned as response to AQ call
2017  */
2018 static int ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
2019 {
2020     struct ice_aqc_alloc_free_res_elem *sw_buf;
2021     u16 buf_len;
2022     int status;
2023 
2024     buf_len = struct_size(sw_buf, elem, 1);
2025     sw_buf = kzalloc(buf_len, GFP_KERNEL);
2026     if (!sw_buf)
2027         return -ENOMEM;
2028 
2029     sw_buf->num_elems = cpu_to_le16(1);
2030     sw_buf->res_type = cpu_to_le16((ICE_AQC_RES_TYPE_RECIPE <<
2031                     ICE_AQC_RES_TYPE_S) |
2032                     ICE_AQC_RES_TYPE_FLAG_SHARED);
2033     status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
2034                        ice_aqc_opc_alloc_res, NULL);
2035     if (!status)
2036         *rid = le16_to_cpu(sw_buf->elem[0].e.sw_resp);
2037     kfree(sw_buf);
2038 
2039     return status;
2040 }
2041 
2042 /**
2043  * ice_get_recp_to_prof_map - updates recipe to profile mapping
2044  * @hw: pointer to hardware structure
2045  *
2046  * This function is used to populate recipe_to_profile matrix where index to
2047  * this array is the recipe ID and the element is the mapping of which profiles
2048  * is this recipe mapped to.
2049  */
2050 static void ice_get_recp_to_prof_map(struct ice_hw *hw)
2051 {
2052     DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
2053     u16 i;
2054 
2055     for (i = 0; i < hw->switch_info->max_used_prof_index + 1; i++) {
2056         u16 j;
2057 
2058         bitmap_zero(profile_to_recipe[i], ICE_MAX_NUM_RECIPES);
2059         bitmap_zero(r_bitmap, ICE_MAX_NUM_RECIPES);
2060         if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
2061             continue;
2062         bitmap_copy(profile_to_recipe[i], r_bitmap,
2063                 ICE_MAX_NUM_RECIPES);
2064         for_each_set_bit(j, r_bitmap, ICE_MAX_NUM_RECIPES)
2065             set_bit(i, recipe_to_profile[j]);
2066     }
2067 }
2068 
2069 /**
2070  * ice_collect_result_idx - copy result index values
2071  * @buf: buffer that contains the result index
2072  * @recp: the recipe struct to copy data into
2073  */
2074 static void
2075 ice_collect_result_idx(struct ice_aqc_recipe_data_elem *buf,
2076                struct ice_sw_recipe *recp)
2077 {
2078     if (buf->content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2079         set_bit(buf->content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2080             recp->res_idxs);
2081 }
2082 
2083 /**
2084  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
2085  * @hw: pointer to hardware structure
2086  * @recps: struct that we need to populate
2087  * @rid: recipe ID that we are populating
2088  * @refresh_required: true if we should get recipe to profile mapping from FW
2089  *
2090  * This function is used to populate all the necessary entries into our
2091  * bookkeeping so that we have a current list of all the recipes that are
2092  * programmed in the firmware.
2093  */
2094 static int
2095 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid,
2096             bool *refresh_required)
2097 {
2098     DECLARE_BITMAP(result_bm, ICE_MAX_FV_WORDS);
2099     struct ice_aqc_recipe_data_elem *tmp;
2100     u16 num_recps = ICE_MAX_NUM_RECIPES;
2101     struct ice_prot_lkup_ext *lkup_exts;
2102     u8 fv_word_idx = 0;
2103     u16 sub_recps;
2104     int status;
2105 
2106     bitmap_zero(result_bm, ICE_MAX_FV_WORDS);
2107 
2108     /* we need a buffer big enough to accommodate all the recipes */
2109     tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
2110     if (!tmp)
2111         return -ENOMEM;
2112 
2113     tmp[0].recipe_indx = rid;
2114     status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
2115     /* non-zero status meaning recipe doesn't exist */
2116     if (status)
2117         goto err_unroll;
2118 
2119     /* Get recipe to profile map so that we can get the fv from lkups that
2120      * we read for a recipe from FW. Since we want to minimize the number of
2121      * times we make this FW call, just make one call and cache the copy
2122      * until a new recipe is added. This operation is only required the
2123      * first time to get the changes from FW. Then to search existing
2124      * entries we don't need to update the cache again until another recipe
2125      * gets added.
2126      */
2127     if (*refresh_required) {
2128         ice_get_recp_to_prof_map(hw);
2129         *refresh_required = false;
2130     }
2131 
2132     /* Start populating all the entries for recps[rid] based on lkups from
2133      * firmware. Note that we are only creating the root recipe in our
2134      * database.
2135      */
2136     lkup_exts = &recps[rid].lkup_exts;
2137 
2138     for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
2139         struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
2140         struct ice_recp_grp_entry *rg_entry;
2141         u8 i, prof, idx, prot = 0;
2142         bool is_root;
2143         u16 off = 0;
2144 
2145         rg_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rg_entry),
2146                     GFP_KERNEL);
2147         if (!rg_entry) {
2148             status = -ENOMEM;
2149             goto err_unroll;
2150         }
2151 
2152         idx = root_bufs.recipe_indx;
2153         is_root = root_bufs.content.rid & ICE_AQ_RECIPE_ID_IS_ROOT;
2154 
2155         /* Mark all result indices in this chain */
2156         if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
2157             set_bit(root_bufs.content.result_indx & ~ICE_AQ_RECIPE_RESULT_EN,
2158                 result_bm);
2159 
2160         /* get the first profile that is associated with rid */
2161         prof = find_first_bit(recipe_to_profile[idx],
2162                       ICE_MAX_NUM_PROFILES);
2163         for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
2164             u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
2165 
2166             rg_entry->fv_idx[i] = lkup_indx;
2167             rg_entry->fv_mask[i] =
2168                 le16_to_cpu(root_bufs.content.mask[i + 1]);
2169 
2170             /* If the recipe is a chained recipe then all its
2171              * child recipe's result will have a result index.
2172              * To fill fv_words we should not use those result
2173              * index, we only need the protocol ids and offsets.
2174              * We will skip all the fv_idx which stores result
2175              * index in them. We also need to skip any fv_idx which
2176              * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
2177              * valid offset value.
2178              */
2179             if (test_bit(rg_entry->fv_idx[i], hw->switch_info->prof_res_bm[prof]) ||
2180                 rg_entry->fv_idx[i] & ICE_AQ_RECIPE_LKUP_IGNORE ||
2181                 rg_entry->fv_idx[i] == 0)
2182                 continue;
2183 
2184             ice_find_prot_off(hw, ICE_BLK_SW, prof,
2185                       rg_entry->fv_idx[i], &prot, &off);
2186             lkup_exts->fv_words[fv_word_idx].prot_id = prot;
2187             lkup_exts->fv_words[fv_word_idx].off = off;
2188             lkup_exts->field_mask[fv_word_idx] =
2189                 rg_entry->fv_mask[i];
2190             fv_word_idx++;
2191         }
2192         /* populate rg_list with the data from the child entry of this
2193          * recipe
2194          */
2195         list_add(&rg_entry->l_entry, &recps[rid].rg_list);
2196 
2197         /* Propagate some data to the recipe database */
2198         recps[idx].is_root = !!is_root;
2199         recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2200         bitmap_zero(recps[idx].res_idxs, ICE_MAX_FV_WORDS);
2201         if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN) {
2202             recps[idx].chain_idx = root_bufs.content.result_indx &
2203                 ~ICE_AQ_RECIPE_RESULT_EN;
2204             set_bit(recps[idx].chain_idx, recps[idx].res_idxs);
2205         } else {
2206             recps[idx].chain_idx = ICE_INVAL_CHAIN_IND;
2207         }
2208 
2209         if (!is_root)
2210             continue;
2211 
2212         /* Only do the following for root recipes entries */
2213         memcpy(recps[idx].r_bitmap, root_bufs.recipe_bitmap,
2214                sizeof(recps[idx].r_bitmap));
2215         recps[idx].root_rid = root_bufs.content.rid &
2216             ~ICE_AQ_RECIPE_ID_IS_ROOT;
2217         recps[idx].priority = root_bufs.content.act_ctrl_fwd_priority;
2218     }
2219 
2220     /* Complete initialization of the root recipe entry */
2221     lkup_exts->n_val_words = fv_word_idx;
2222     recps[rid].big_recp = (num_recps > 1);
2223     recps[rid].n_grp_count = (u8)num_recps;
2224     recps[rid].root_buf = devm_kmemdup(ice_hw_to_dev(hw), tmp,
2225                        recps[rid].n_grp_count * sizeof(*recps[rid].root_buf),
2226                        GFP_KERNEL);
2227     if (!recps[rid].root_buf) {
2228         status = -ENOMEM;
2229         goto err_unroll;
2230     }
2231 
2232     /* Copy result indexes */
2233     bitmap_copy(recps[rid].res_idxs, result_bm, ICE_MAX_FV_WORDS);
2234     recps[rid].recp_created = true;
2235 
2236 err_unroll:
2237     kfree(tmp);
2238     return status;
2239 }
2240 
2241 /* ice_init_port_info - Initialize port_info with switch configuration data
2242  * @pi: pointer to port_info
2243  * @vsi_port_num: VSI number or port number
2244  * @type: Type of switch element (port or VSI)
2245  * @swid: switch ID of the switch the element is attached to
2246  * @pf_vf_num: PF or VF number
2247  * @is_vf: true if the element is a VF, false otherwise
2248  */
2249 static void
2250 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
2251            u16 swid, u16 pf_vf_num, bool is_vf)
2252 {
2253     switch (type) {
2254     case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
2255         pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
2256         pi->sw_id = swid;
2257         pi->pf_vf_num = pf_vf_num;
2258         pi->is_vf = is_vf;
2259         break;
2260     default:
2261         ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n");
2262         break;
2263     }
2264 }
2265 
2266 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
2267  * @hw: pointer to the hardware structure
2268  */
2269 int ice_get_initial_sw_cfg(struct ice_hw *hw)
2270 {
2271     struct ice_aqc_get_sw_cfg_resp_elem *rbuf;
2272     u16 req_desc = 0;
2273     u16 num_elems;
2274     int status;
2275     u16 i;
2276 
2277     rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN,
2278                 GFP_KERNEL);
2279 
2280     if (!rbuf)
2281         return -ENOMEM;
2282 
2283     /* Multiple calls to ice_aq_get_sw_cfg may be required
2284      * to get all the switch configuration information. The need
2285      * for additional calls is indicated by ice_aq_get_sw_cfg
2286      * writing a non-zero value in req_desc
2287      */
2288     do {
2289         struct ice_aqc_get_sw_cfg_resp_elem *ele;
2290 
2291         status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
2292                        &req_desc, &num_elems, NULL);
2293 
2294         if (status)
2295             break;
2296 
2297         for (i = 0, ele = rbuf; i < num_elems; i++, ele++) {
2298             u16 pf_vf_num, swid, vsi_port_num;
2299             bool is_vf = false;
2300             u8 res_type;
2301 
2302             vsi_port_num = le16_to_cpu(ele->vsi_port_num) &
2303                 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
2304 
2305             pf_vf_num = le16_to_cpu(ele->pf_vf_num) &
2306                 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
2307 
2308             swid = le16_to_cpu(ele->swid);
2309 
2310             if (le16_to_cpu(ele->pf_vf_num) &
2311                 ICE_AQC_GET_SW_CONF_RESP_IS_VF)
2312                 is_vf = true;
2313 
2314             res_type = (u8)(le16_to_cpu(ele->vsi_port_num) >>
2315                     ICE_AQC_GET_SW_CONF_RESP_TYPE_S);
2316 
2317             if (res_type == ICE_AQC_GET_SW_CONF_RESP_VSI) {
2318                 /* FW VSI is not needed. Just continue. */
2319                 continue;
2320             }
2321 
2322             ice_init_port_info(hw->port_info, vsi_port_num,
2323                        res_type, swid, pf_vf_num, is_vf);
2324         }
2325     } while (req_desc && !status);
2326 
2327     devm_kfree(ice_hw_to_dev(hw), rbuf);
2328     return status;
2329 }
2330 
2331 /**
2332  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
2333  * @hw: pointer to the hardware structure
2334  * @fi: filter info structure to fill/update
2335  *
2336  * This helper function populates the lb_en and lan_en elements of the provided
2337  * ice_fltr_info struct using the switch's type and characteristics of the
2338  * switch rule being configured.
2339  */
2340 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
2341 {
2342     fi->lb_en = false;
2343     fi->lan_en = false;
2344     if ((fi->flag & ICE_FLTR_TX) &&
2345         (fi->fltr_act == ICE_FWD_TO_VSI ||
2346          fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2347          fi->fltr_act == ICE_FWD_TO_Q ||
2348          fi->fltr_act == ICE_FWD_TO_QGRP)) {
2349         /* Setting LB for prune actions will result in replicated
2350          * packets to the internal switch that will be dropped.
2351          */
2352         if (fi->lkup_type != ICE_SW_LKUP_VLAN)
2353             fi->lb_en = true;
2354 
2355         /* Set lan_en to TRUE if
2356          * 1. The switch is a VEB AND
2357          * 2
2358          * 2.1 The lookup is a directional lookup like ethertype,
2359          * promiscuous, ethertype-MAC, promiscuous-VLAN
2360          * and default-port OR
2361          * 2.2 The lookup is VLAN, OR
2362          * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
2363          * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
2364          *
2365          * OR
2366          *
2367          * The switch is a VEPA.
2368          *
2369          * In all other cases, the LAN enable has to be set to false.
2370          */
2371         if (hw->evb_veb) {
2372             if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2373                 fi->lkup_type == ICE_SW_LKUP_PROMISC ||
2374                 fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2375                 fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2376                 fi->lkup_type == ICE_SW_LKUP_DFLT ||
2377                 fi->lkup_type == ICE_SW_LKUP_VLAN ||
2378                 (fi->lkup_type == ICE_SW_LKUP_MAC &&
2379                  !is_unicast_ether_addr(fi->l_data.mac.mac_addr)) ||
2380                 (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
2381                  !is_unicast_ether_addr(fi->l_data.mac.mac_addr)))
2382                 fi->lan_en = true;
2383         } else {
2384             fi->lan_en = true;
2385         }
2386     }
2387 }
2388 
2389 /**
2390  * ice_fill_sw_rule - Helper function to fill switch rule structure
2391  * @hw: pointer to the hardware structure
2392  * @f_info: entry containing packet forwarding information
2393  * @s_rule: switch rule structure to be filled in based on mac_entry
2394  * @opc: switch rules population command type - pass in the command opcode
2395  */
2396 static void
2397 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
2398          struct ice_sw_rule_lkup_rx_tx *s_rule,
2399          enum ice_adminq_opc opc)
2400 {
2401     u16 vlan_id = ICE_MAX_VLAN_ID + 1;
2402     u16 vlan_tpid = ETH_P_8021Q;
2403     void *daddr = NULL;
2404     u16 eth_hdr_sz;
2405     u8 *eth_hdr;
2406     u32 act = 0;
2407     __be16 *off;
2408     u8 q_rgn;
2409 
2410     if (opc == ice_aqc_opc_remove_sw_rules) {
2411         s_rule->act = 0;
2412         s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2413         s_rule->hdr_len = 0;
2414         return;
2415     }
2416 
2417     eth_hdr_sz = sizeof(dummy_eth_header);
2418     eth_hdr = s_rule->hdr_data;
2419 
2420     /* initialize the ether header with a dummy header */
2421     memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz);
2422     ice_fill_sw_info(hw, f_info);
2423 
2424     switch (f_info->fltr_act) {
2425     case ICE_FWD_TO_VSI:
2426         act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
2427             ICE_SINGLE_ACT_VSI_ID_M;
2428         if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2429             act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2430                 ICE_SINGLE_ACT_VALID_BIT;
2431         break;
2432     case ICE_FWD_TO_VSI_LIST:
2433         act |= ICE_SINGLE_ACT_VSI_LIST;
2434         act |= (f_info->fwd_id.vsi_list_id <<
2435             ICE_SINGLE_ACT_VSI_LIST_ID_S) &
2436             ICE_SINGLE_ACT_VSI_LIST_ID_M;
2437         if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
2438             act |= ICE_SINGLE_ACT_VSI_FORWARDING |
2439                 ICE_SINGLE_ACT_VALID_BIT;
2440         break;
2441     case ICE_FWD_TO_Q:
2442         act |= ICE_SINGLE_ACT_TO_Q;
2443         act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2444             ICE_SINGLE_ACT_Q_INDEX_M;
2445         break;
2446     case ICE_DROP_PACKET:
2447         act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
2448             ICE_SINGLE_ACT_VALID_BIT;
2449         break;
2450     case ICE_FWD_TO_QGRP:
2451         q_rgn = f_info->qgrp_size > 0 ?
2452             (u8)ilog2(f_info->qgrp_size) : 0;
2453         act |= ICE_SINGLE_ACT_TO_Q;
2454         act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
2455             ICE_SINGLE_ACT_Q_INDEX_M;
2456         act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
2457             ICE_SINGLE_ACT_Q_REGION_M;
2458         break;
2459     default:
2460         return;
2461     }
2462 
2463     if (f_info->lb_en)
2464         act |= ICE_SINGLE_ACT_LB_ENABLE;
2465     if (f_info->lan_en)
2466         act |= ICE_SINGLE_ACT_LAN_ENABLE;
2467 
2468     switch (f_info->lkup_type) {
2469     case ICE_SW_LKUP_MAC:
2470         daddr = f_info->l_data.mac.mac_addr;
2471         break;
2472     case ICE_SW_LKUP_VLAN:
2473         vlan_id = f_info->l_data.vlan.vlan_id;
2474         if (f_info->l_data.vlan.tpid_valid)
2475             vlan_tpid = f_info->l_data.vlan.tpid;
2476         if (f_info->fltr_act == ICE_FWD_TO_VSI ||
2477             f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
2478             act |= ICE_SINGLE_ACT_PRUNE;
2479             act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
2480         }
2481         break;
2482     case ICE_SW_LKUP_ETHERTYPE_MAC:
2483         daddr = f_info->l_data.ethertype_mac.mac_addr;
2484         fallthrough;
2485     case ICE_SW_LKUP_ETHERTYPE:
2486         off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2487         *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype);
2488         break;
2489     case ICE_SW_LKUP_MAC_VLAN:
2490         daddr = f_info->l_data.mac_vlan.mac_addr;
2491         vlan_id = f_info->l_data.mac_vlan.vlan_id;
2492         break;
2493     case ICE_SW_LKUP_PROMISC_VLAN:
2494         vlan_id = f_info->l_data.mac_vlan.vlan_id;
2495         fallthrough;
2496     case ICE_SW_LKUP_PROMISC:
2497         daddr = f_info->l_data.mac_vlan.mac_addr;
2498         break;
2499     default:
2500         break;
2501     }
2502 
2503     s_rule->hdr.type = (f_info->flag & ICE_FLTR_RX) ?
2504         cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) :
2505         cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
2506 
2507     /* Recipe set depending on lookup type */
2508     s_rule->recipe_id = cpu_to_le16(f_info->lkup_type);
2509     s_rule->src = cpu_to_le16(f_info->src);
2510     s_rule->act = cpu_to_le32(act);
2511 
2512     if (daddr)
2513         ether_addr_copy(eth_hdr + ICE_ETH_DA_OFFSET, daddr);
2514 
2515     if (!(vlan_id > ICE_MAX_VLAN_ID)) {
2516         off = (__force __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
2517         *off = cpu_to_be16(vlan_id);
2518         off = (__force __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
2519         *off = cpu_to_be16(vlan_tpid);
2520     }
2521 
2522     /* Create the switch rule with the final dummy Ethernet header */
2523     if (opc != ice_aqc_opc_update_sw_rules)
2524         s_rule->hdr_len = cpu_to_le16(eth_hdr_sz);
2525 }
2526 
2527 /**
2528  * ice_add_marker_act
2529  * @hw: pointer to the hardware structure
2530  * @m_ent: the management entry for which sw marker needs to be added
2531  * @sw_marker: sw marker to tag the Rx descriptor with
2532  * @l_id: large action resource ID
2533  *
2534  * Create a large action to hold software marker and update the switch rule
2535  * entry pointed by m_ent with newly created large action
2536  */
2537 static int
2538 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
2539            u16 sw_marker, u16 l_id)
2540 {
2541     struct ice_sw_rule_lkup_rx_tx *rx_tx;
2542     struct ice_sw_rule_lg_act *lg_act;
2543     /* For software marker we need 3 large actions
2544      * 1. FWD action: FWD TO VSI or VSI LIST
2545      * 2. GENERIC VALUE action to hold the profile ID
2546      * 3. GENERIC VALUE action to hold the software marker ID
2547      */
2548     const u16 num_lg_acts = 3;
2549     u16 lg_act_size;
2550     u16 rules_size;
2551     int status;
2552     u32 act;
2553     u16 id;
2554 
2555     if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
2556         return -EINVAL;
2557 
2558     /* Create two back-to-back switch rules and submit them to the HW using
2559      * one memory buffer:
2560      *    1. Large Action
2561      *    2. Look up Tx Rx
2562      */
2563     lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(lg_act, num_lg_acts);
2564     rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(rx_tx);
2565     lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL);
2566     if (!lg_act)
2567         return -ENOMEM;
2568 
2569     rx_tx = (typeof(rx_tx))((u8 *)lg_act + lg_act_size);
2570 
2571     /* Fill in the first switch rule i.e. large action */
2572     lg_act->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT);
2573     lg_act->index = cpu_to_le16(l_id);
2574     lg_act->size = cpu_to_le16(num_lg_acts);
2575 
2576     /* First action VSI forwarding or VSI list forwarding depending on how
2577      * many VSIs
2578      */
2579     id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
2580         m_ent->fltr_info.fwd_id.hw_vsi_id;
2581 
2582     act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
2583     act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M;
2584     if (m_ent->vsi_count > 1)
2585         act |= ICE_LG_ACT_VSI_LIST;
2586     lg_act->act[0] = cpu_to_le32(act);
2587 
2588     /* Second action descriptor type */
2589     act = ICE_LG_ACT_GENERIC;
2590 
2591     act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
2592     lg_act->act[1] = cpu_to_le32(act);
2593 
2594     act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
2595            ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
2596 
2597     /* Third action Marker value */
2598     act |= ICE_LG_ACT_GENERIC;
2599     act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
2600         ICE_LG_ACT_GENERIC_VALUE_M;
2601 
2602     lg_act->act[2] = cpu_to_le32(act);
2603 
2604     /* call the fill switch rule to fill the lookup Tx Rx structure */
2605     ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
2606              ice_aqc_opc_update_sw_rules);
2607 
2608     /* Update the action to point to the large action ID */
2609     rx_tx->act = cpu_to_le32(ICE_SINGLE_ACT_PTR |
2610                  ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
2611                   ICE_SINGLE_ACT_PTR_VAL_M));
2612 
2613     /* Use the filter rule ID of the previously created rule with single
2614      * act. Once the update happens, hardware will treat this as large
2615      * action
2616      */
2617     rx_tx->index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id);
2618 
2619     status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
2620                  ice_aqc_opc_update_sw_rules, NULL);
2621     if (!status) {
2622         m_ent->lg_act_idx = l_id;
2623         m_ent->sw_marker_id = sw_marker;
2624     }
2625 
2626     devm_kfree(ice_hw_to_dev(hw), lg_act);
2627     return status;
2628 }
2629 
2630 /**
2631  * ice_create_vsi_list_map
2632  * @hw: pointer to the hardware structure
2633  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
2634  * @num_vsi: number of VSI handles in the array
2635  * @vsi_list_id: VSI list ID generated as part of allocate resource
2636  *
2637  * Helper function to create a new entry of VSI list ID to VSI mapping
2638  * using the given VSI list ID
2639  */
2640 static struct ice_vsi_list_map_info *
2641 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2642             u16 vsi_list_id)
2643 {
2644     struct ice_switch_info *sw = hw->switch_info;
2645     struct ice_vsi_list_map_info *v_map;
2646     int i;
2647 
2648     v_map = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*v_map), GFP_KERNEL);
2649     if (!v_map)
2650         return NULL;
2651 
2652     v_map->vsi_list_id = vsi_list_id;
2653     v_map->ref_cnt = 1;
2654     for (i = 0; i < num_vsi; i++)
2655         set_bit(vsi_handle_arr[i], v_map->vsi_map);
2656 
2657     list_add(&v_map->list_entry, &sw->vsi_list_map_head);
2658     return v_map;
2659 }
2660 
2661 /**
2662  * ice_update_vsi_list_rule
2663  * @hw: pointer to the hardware structure
2664  * @vsi_handle_arr: array of VSI handles to form a VSI list
2665  * @num_vsi: number of VSI handles in the array
2666  * @vsi_list_id: VSI list ID generated as part of allocate resource
2667  * @remove: Boolean value to indicate if this is a remove action
2668  * @opc: switch rules population command type - pass in the command opcode
2669  * @lkup_type: lookup type of the filter
2670  *
2671  * Call AQ command to add a new switch rule or update existing switch rule
2672  * using the given VSI list ID
2673  */
2674 static int
2675 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2676              u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
2677              enum ice_sw_lkup_type lkup_type)
2678 {
2679     struct ice_sw_rule_vsi_list *s_rule;
2680     u16 s_rule_size;
2681     u16 rule_type;
2682     int status;
2683     int i;
2684 
2685     if (!num_vsi)
2686         return -EINVAL;
2687 
2688     if (lkup_type == ICE_SW_LKUP_MAC ||
2689         lkup_type == ICE_SW_LKUP_MAC_VLAN ||
2690         lkup_type == ICE_SW_LKUP_ETHERTYPE ||
2691         lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
2692         lkup_type == ICE_SW_LKUP_PROMISC ||
2693         lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
2694         lkup_type == ICE_SW_LKUP_DFLT)
2695         rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
2696             ICE_AQC_SW_RULES_T_VSI_LIST_SET;
2697     else if (lkup_type == ICE_SW_LKUP_VLAN)
2698         rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
2699             ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
2700     else
2701         return -EINVAL;
2702 
2703     s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, num_vsi);
2704     s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
2705     if (!s_rule)
2706         return -ENOMEM;
2707     for (i = 0; i < num_vsi; i++) {
2708         if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
2709             status = -EINVAL;
2710             goto exit;
2711         }
2712         /* AQ call requires hw_vsi_id(s) */
2713         s_rule->vsi[i] =
2714             cpu_to_le16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
2715     }
2716 
2717     s_rule->hdr.type = cpu_to_le16(rule_type);
2718     s_rule->number_vsi = cpu_to_le16(num_vsi);
2719     s_rule->index = cpu_to_le16(vsi_list_id);
2720 
2721     status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
2722 
2723 exit:
2724     devm_kfree(ice_hw_to_dev(hw), s_rule);
2725     return status;
2726 }
2727 
2728 /**
2729  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
2730  * @hw: pointer to the HW struct
2731  * @vsi_handle_arr: array of VSI handles to form a VSI list
2732  * @num_vsi: number of VSI handles in the array
2733  * @vsi_list_id: stores the ID of the VSI list to be created
2734  * @lkup_type: switch rule filter's lookup type
2735  */
2736 static int
2737 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
2738              u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
2739 {
2740     int status;
2741 
2742     status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
2743                         ice_aqc_opc_alloc_res);
2744     if (status)
2745         return status;
2746 
2747     /* Update the newly created VSI list to include the specified VSIs */
2748     return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
2749                     *vsi_list_id, false,
2750                     ice_aqc_opc_add_sw_rules, lkup_type);
2751 }
2752 
2753 /**
2754  * ice_create_pkt_fwd_rule
2755  * @hw: pointer to the hardware structure
2756  * @f_entry: entry containing packet forwarding information
2757  *
2758  * Create switch rule with given filter information and add an entry
2759  * to the corresponding filter management list to track this switch rule
2760  * and VSI mapping
2761  */
2762 static int
2763 ice_create_pkt_fwd_rule(struct ice_hw *hw,
2764             struct ice_fltr_list_entry *f_entry)
2765 {
2766     struct ice_fltr_mgmt_list_entry *fm_entry;
2767     struct ice_sw_rule_lkup_rx_tx *s_rule;
2768     enum ice_sw_lkup_type l_type;
2769     struct ice_sw_recipe *recp;
2770     int status;
2771 
2772     s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2773                   ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2774                   GFP_KERNEL);
2775     if (!s_rule)
2776         return -ENOMEM;
2777     fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry),
2778                 GFP_KERNEL);
2779     if (!fm_entry) {
2780         status = -ENOMEM;
2781         goto ice_create_pkt_fwd_rule_exit;
2782     }
2783 
2784     fm_entry->fltr_info = f_entry->fltr_info;
2785 
2786     /* Initialize all the fields for the management entry */
2787     fm_entry->vsi_count = 1;
2788     fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
2789     fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
2790     fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
2791 
2792     ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
2793              ice_aqc_opc_add_sw_rules);
2794 
2795     status = ice_aq_sw_rules(hw, s_rule,
2796                  ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2797                  ice_aqc_opc_add_sw_rules, NULL);
2798     if (status) {
2799         devm_kfree(ice_hw_to_dev(hw), fm_entry);
2800         goto ice_create_pkt_fwd_rule_exit;
2801     }
2802 
2803     f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2804     fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->index);
2805 
2806     /* The book keeping entries will get removed when base driver
2807      * calls remove filter AQ command
2808      */
2809     l_type = fm_entry->fltr_info.lkup_type;
2810     recp = &hw->switch_info->recp_list[l_type];
2811     list_add(&fm_entry->list_entry, &recp->filt_rules);
2812 
2813 ice_create_pkt_fwd_rule_exit:
2814     devm_kfree(ice_hw_to_dev(hw), s_rule);
2815     return status;
2816 }
2817 
2818 /**
2819  * ice_update_pkt_fwd_rule
2820  * @hw: pointer to the hardware structure
2821  * @f_info: filter information for switch rule
2822  *
2823  * Call AQ command to update a previously created switch rule with a
2824  * VSI list ID
2825  */
2826 static int
2827 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
2828 {
2829     struct ice_sw_rule_lkup_rx_tx *s_rule;
2830     int status;
2831 
2832     s_rule = devm_kzalloc(ice_hw_to_dev(hw),
2833                   ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule),
2834                   GFP_KERNEL);
2835     if (!s_rule)
2836         return -ENOMEM;
2837 
2838     ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2839 
2840     s_rule->index = cpu_to_le16(f_info->fltr_rule_id);
2841 
2842     /* Update switch rule with new rule set to forward VSI list */
2843     status = ice_aq_sw_rules(hw, s_rule,
2844                  ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule), 1,
2845                  ice_aqc_opc_update_sw_rules, NULL);
2846 
2847     devm_kfree(ice_hw_to_dev(hw), s_rule);
2848     return status;
2849 }
2850 
2851 /**
2852  * ice_update_sw_rule_bridge_mode
2853  * @hw: pointer to the HW struct
2854  *
2855  * Updates unicast switch filter rules based on VEB/VEPA mode
2856  */
2857 int ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2858 {
2859     struct ice_switch_info *sw = hw->switch_info;
2860     struct ice_fltr_mgmt_list_entry *fm_entry;
2861     struct list_head *rule_head;
2862     struct mutex *rule_lock; /* Lock to protect filter rule list */
2863     int status = 0;
2864 
2865     rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2866     rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2867 
2868     mutex_lock(rule_lock);
2869     list_for_each_entry(fm_entry, rule_head, list_entry) {
2870         struct ice_fltr_info *fi = &fm_entry->fltr_info;
2871         u8 *addr = fi->l_data.mac.mac_addr;
2872 
2873         /* Update unicast Tx rules to reflect the selected
2874          * VEB/VEPA mode
2875          */
2876         if ((fi->flag & ICE_FLTR_TX) && is_unicast_ether_addr(addr) &&
2877             (fi->fltr_act == ICE_FWD_TO_VSI ||
2878              fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2879              fi->fltr_act == ICE_FWD_TO_Q ||
2880              fi->fltr_act == ICE_FWD_TO_QGRP)) {
2881             status = ice_update_pkt_fwd_rule(hw, fi);
2882             if (status)
2883                 break;
2884         }
2885     }
2886 
2887     mutex_unlock(rule_lock);
2888 
2889     return status;
2890 }
2891 
2892 /**
2893  * ice_add_update_vsi_list
2894  * @hw: pointer to the hardware structure
2895  * @m_entry: pointer to current filter management list entry
2896  * @cur_fltr: filter information from the book keeping entry
2897  * @new_fltr: filter information with the new VSI to be added
2898  *
2899  * Call AQ command to add or update previously created VSI list with new VSI.
2900  *
2901  * Helper function to do book keeping associated with adding filter information
2902  * The algorithm to do the book keeping is described below :
2903  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2904  *  if only one VSI has been added till now
2905  *      Allocate a new VSI list and add two VSIs
2906  *      to this list using switch rule command
2907  *      Update the previously created switch rule with the
2908  *      newly created VSI list ID
2909  *  if a VSI list was previously created
2910  *      Add the new VSI to the previously created VSI list set
2911  *      using the update switch rule command
2912  */
2913 static int
2914 ice_add_update_vsi_list(struct ice_hw *hw,
2915             struct ice_fltr_mgmt_list_entry *m_entry,
2916             struct ice_fltr_info *cur_fltr,
2917             struct ice_fltr_info *new_fltr)
2918 {
2919     u16 vsi_list_id = 0;
2920     int status = 0;
2921 
2922     if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2923          cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2924         return -EOPNOTSUPP;
2925 
2926     if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2927          new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2928         (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2929          cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2930         return -EOPNOTSUPP;
2931 
2932     if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2933         /* Only one entry existed in the mapping and it was not already
2934          * a part of a VSI list. So, create a VSI list with the old and
2935          * new VSIs.
2936          */
2937         struct ice_fltr_info tmp_fltr;
2938         u16 vsi_handle_arr[2];
2939 
2940         /* A rule already exists with the new VSI being added */
2941         if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
2942             return -EEXIST;
2943 
2944         vsi_handle_arr[0] = cur_fltr->vsi_handle;
2945         vsi_handle_arr[1] = new_fltr->vsi_handle;
2946         status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2947                           &vsi_list_id,
2948                           new_fltr->lkup_type);
2949         if (status)
2950             return status;
2951 
2952         tmp_fltr = *new_fltr;
2953         tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
2954         tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2955         tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2956         /* Update the previous switch rule of "MAC forward to VSI" to
2957          * "MAC fwd to VSI list"
2958          */
2959         status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2960         if (status)
2961             return status;
2962 
2963         cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
2964         cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2965         m_entry->vsi_list_info =
2966             ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2967                         vsi_list_id);
2968 
2969         if (!m_entry->vsi_list_info)
2970             return -ENOMEM;
2971 
2972         /* If this entry was large action then the large action needs
2973          * to be updated to point to FWD to VSI list
2974          */
2975         if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
2976             status =
2977                 ice_add_marker_act(hw, m_entry,
2978                            m_entry->sw_marker_id,
2979                            m_entry->lg_act_idx);
2980     } else {
2981         u16 vsi_handle = new_fltr->vsi_handle;
2982         enum ice_adminq_opc opcode;
2983 
2984         if (!m_entry->vsi_list_info)
2985             return -EIO;
2986 
2987         /* A rule already exists with the new VSI being added */
2988         if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
2989             return 0;
2990 
2991         /* Update the previously created VSI list set with
2992          * the new VSI ID passed in
2993          */
2994         vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
2995         opcode = ice_aqc_opc_update_sw_rules;
2996 
2997         status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
2998                           vsi_list_id, false, opcode,
2999                           new_fltr->lkup_type);
3000         /* update VSI list mapping info with new VSI ID */
3001         if (!status)
3002             set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
3003     }
3004     if (!status)
3005         m_entry->vsi_count++;
3006     return status;
3007 }
3008 
3009 /**
3010  * ice_find_rule_entry - Search a rule entry
3011  * @hw: pointer to the hardware structure
3012  * @recp_id: lookup type for which the specified rule needs to be searched
3013  * @f_info: rule information
3014  *
3015  * Helper function to search for a given rule entry
3016  * Returns pointer to entry storing the rule if found
3017  */
3018 static struct ice_fltr_mgmt_list_entry *
3019 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
3020 {
3021     struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
3022     struct ice_switch_info *sw = hw->switch_info;
3023     struct list_head *list_head;
3024 
3025     list_head = &sw->recp_list[recp_id].filt_rules;
3026     list_for_each_entry(list_itr, list_head, list_entry) {
3027         if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3028                 sizeof(f_info->l_data)) &&
3029             f_info->flag == list_itr->fltr_info.flag) {
3030             ret = list_itr;
3031             break;
3032         }
3033     }
3034     return ret;
3035 }
3036 
3037 /**
3038  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
3039  * @hw: pointer to the hardware structure
3040  * @recp_id: lookup type for which VSI lists needs to be searched
3041  * @vsi_handle: VSI handle to be found in VSI list
3042  * @vsi_list_id: VSI list ID found containing vsi_handle
3043  *
3044  * Helper function to search a VSI list with single entry containing given VSI
3045  * handle element. This can be extended further to search VSI list with more
3046  * than 1 vsi_count. Returns pointer to VSI list entry if found.
3047  */
3048 static struct ice_vsi_list_map_info *
3049 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
3050             u16 *vsi_list_id)
3051 {
3052     struct ice_vsi_list_map_info *map_info = NULL;
3053     struct ice_switch_info *sw = hw->switch_info;
3054     struct ice_fltr_mgmt_list_entry *list_itr;
3055     struct list_head *list_head;
3056 
3057     list_head = &sw->recp_list[recp_id].filt_rules;
3058     list_for_each_entry(list_itr, list_head, list_entry) {
3059         if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) {
3060             map_info = list_itr->vsi_list_info;
3061             if (test_bit(vsi_handle, map_info->vsi_map)) {
3062                 *vsi_list_id = map_info->vsi_list_id;
3063                 return map_info;
3064             }
3065         }
3066     }
3067     return NULL;
3068 }
3069 
3070 /**
3071  * ice_add_rule_internal - add rule for a given lookup type
3072  * @hw: pointer to the hardware structure
3073  * @recp_id: lookup type (recipe ID) for which rule has to be added
3074  * @f_entry: structure containing MAC forwarding information
3075  *
3076  * Adds or updates the rule lists for a given recipe
3077  */
3078 static int
3079 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
3080               struct ice_fltr_list_entry *f_entry)
3081 {
3082     struct ice_switch_info *sw = hw->switch_info;
3083     struct ice_fltr_info *new_fltr, *cur_fltr;
3084     struct ice_fltr_mgmt_list_entry *m_entry;
3085     struct mutex *rule_lock; /* Lock to protect filter rule list */
3086     int status = 0;
3087 
3088     if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3089         return -EINVAL;
3090     f_entry->fltr_info.fwd_id.hw_vsi_id =
3091         ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3092 
3093     rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3094 
3095     mutex_lock(rule_lock);
3096     new_fltr = &f_entry->fltr_info;
3097     if (new_fltr->flag & ICE_FLTR_RX)
3098         new_fltr->src = hw->port_info->lport;
3099     else if (new_fltr->flag & ICE_FLTR_TX)
3100         new_fltr->src = f_entry->fltr_info.fwd_id.hw_vsi_id;
3101 
3102     m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
3103     if (!m_entry) {
3104         mutex_unlock(rule_lock);
3105         return ice_create_pkt_fwd_rule(hw, f_entry);
3106     }
3107 
3108     cur_fltr = &m_entry->fltr_info;
3109     status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
3110     mutex_unlock(rule_lock);
3111 
3112     return status;
3113 }
3114 
3115 /**
3116  * ice_remove_vsi_list_rule
3117  * @hw: pointer to the hardware structure
3118  * @vsi_list_id: VSI list ID generated as part of allocate resource
3119  * @lkup_type: switch rule filter lookup type
3120  *
3121  * The VSI list should be emptied before this function is called to remove the
3122  * VSI list.
3123  */
3124 static int
3125 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
3126              enum ice_sw_lkup_type lkup_type)
3127 {
3128     struct ice_sw_rule_vsi_list *s_rule;
3129     u16 s_rule_size;
3130     int status;
3131 
3132     s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(s_rule, 0);
3133     s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL);
3134     if (!s_rule)
3135         return -ENOMEM;
3136 
3137     s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
3138     s_rule->index = cpu_to_le16(vsi_list_id);
3139 
3140     /* Free the vsi_list resource that we allocated. It is assumed that the
3141      * list is empty at this point.
3142      */
3143     status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
3144                         ice_aqc_opc_free_res);
3145 
3146     devm_kfree(ice_hw_to_dev(hw), s_rule);
3147     return status;
3148 }
3149 
3150 /**
3151  * ice_rem_update_vsi_list
3152  * @hw: pointer to the hardware structure
3153  * @vsi_handle: VSI handle of the VSI to remove
3154  * @fm_list: filter management entry for which the VSI list management needs to
3155  *           be done
3156  */
3157 static int
3158 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
3159             struct ice_fltr_mgmt_list_entry *fm_list)
3160 {
3161     enum ice_sw_lkup_type lkup_type;
3162     u16 vsi_list_id;
3163     int status = 0;
3164 
3165     if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
3166         fm_list->vsi_count == 0)
3167         return -EINVAL;
3168 
3169     /* A rule with the VSI being removed does not exist */
3170     if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
3171         return -ENOENT;
3172 
3173     lkup_type = fm_list->fltr_info.lkup_type;
3174     vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
3175     status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
3176                       ice_aqc_opc_update_sw_rules,
3177                       lkup_type);
3178     if (status)
3179         return status;
3180 
3181     fm_list->vsi_count--;
3182     clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
3183 
3184     if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
3185         struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
3186         struct ice_vsi_list_map_info *vsi_list_info =
3187             fm_list->vsi_list_info;
3188         u16 rem_vsi_handle;
3189 
3190         rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
3191                         ICE_MAX_VSI);
3192         if (!ice_is_vsi_valid(hw, rem_vsi_handle))
3193             return -EIO;
3194 
3195         /* Make sure VSI list is empty before removing it below */
3196         status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
3197                           vsi_list_id, true,
3198                           ice_aqc_opc_update_sw_rules,
3199                           lkup_type);
3200         if (status)
3201             return status;
3202 
3203         tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
3204         tmp_fltr_info.fwd_id.hw_vsi_id =
3205             ice_get_hw_vsi_num(hw, rem_vsi_handle);
3206         tmp_fltr_info.vsi_handle = rem_vsi_handle;
3207         status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
3208         if (status) {
3209             ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
3210                   tmp_fltr_info.fwd_id.hw_vsi_id, status);
3211             return status;
3212         }
3213 
3214         fm_list->fltr_info = tmp_fltr_info;
3215     }
3216 
3217     if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
3218         (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
3219         struct ice_vsi_list_map_info *vsi_list_info =
3220             fm_list->vsi_list_info;
3221 
3222         /* Remove the VSI list since it is no longer used */
3223         status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
3224         if (status) {
3225             ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
3226                   vsi_list_id, status);
3227             return status;
3228         }
3229 
3230         list_del(&vsi_list_info->list_entry);
3231         devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
3232         fm_list->vsi_list_info = NULL;
3233     }
3234 
3235     return status;
3236 }
3237 
3238 /**
3239  * ice_remove_rule_internal - Remove a filter rule of a given type
3240  * @hw: pointer to the hardware structure
3241  * @recp_id: recipe ID for which the rule needs to removed
3242  * @f_entry: rule entry containing filter information
3243  */
3244 static int
3245 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
3246              struct ice_fltr_list_entry *f_entry)
3247 {
3248     struct ice_switch_info *sw = hw->switch_info;
3249     struct ice_fltr_mgmt_list_entry *list_elem;
3250     struct mutex *rule_lock; /* Lock to protect filter rule list */
3251     bool remove_rule = false;
3252     u16 vsi_handle;
3253     int status = 0;
3254 
3255     if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3256         return -EINVAL;
3257     f_entry->fltr_info.fwd_id.hw_vsi_id =
3258         ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3259 
3260     rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
3261     mutex_lock(rule_lock);
3262     list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
3263     if (!list_elem) {
3264         status = -ENOENT;
3265         goto exit;
3266     }
3267 
3268     if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
3269         remove_rule = true;
3270     } else if (!list_elem->vsi_list_info) {
3271         status = -ENOENT;
3272         goto exit;
3273     } else if (list_elem->vsi_list_info->ref_cnt > 1) {
3274         /* a ref_cnt > 1 indicates that the vsi_list is being
3275          * shared by multiple rules. Decrement the ref_cnt and
3276          * remove this rule, but do not modify the list, as it
3277          * is in-use by other rules.
3278          */
3279         list_elem->vsi_list_info->ref_cnt--;
3280         remove_rule = true;
3281     } else {
3282         /* a ref_cnt of 1 indicates the vsi_list is only used
3283          * by one rule. However, the original removal request is only
3284          * for a single VSI. Update the vsi_list first, and only
3285          * remove the rule if there are no further VSIs in this list.
3286          */
3287         vsi_handle = f_entry->fltr_info.vsi_handle;
3288         status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
3289         if (status)
3290             goto exit;
3291         /* if VSI count goes to zero after updating the VSI list */
3292         if (list_elem->vsi_count == 0)
3293             remove_rule = true;
3294     }
3295 
3296     if (remove_rule) {
3297         /* Remove the lookup rule */
3298         struct ice_sw_rule_lkup_rx_tx *s_rule;
3299 
3300         s_rule = devm_kzalloc(ice_hw_to_dev(hw),
3301                       ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3302                       GFP_KERNEL);
3303         if (!s_rule) {
3304             status = -ENOMEM;
3305             goto exit;
3306         }
3307 
3308         ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
3309                  ice_aqc_opc_remove_sw_rules);
3310 
3311         status = ice_aq_sw_rules(hw, s_rule,
3312                      ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule),
3313                      1, ice_aqc_opc_remove_sw_rules, NULL);
3314 
3315         /* Remove a book keeping from the list */
3316         devm_kfree(ice_hw_to_dev(hw), s_rule);
3317 
3318         if (status)
3319             goto exit;
3320 
3321         list_del(&list_elem->list_entry);
3322         devm_kfree(ice_hw_to_dev(hw), list_elem);
3323     }
3324 exit:
3325     mutex_unlock(rule_lock);
3326     return status;
3327 }
3328 
3329 /**
3330  * ice_mac_fltr_exist - does this MAC filter exist for given VSI
3331  * @hw: pointer to the hardware structure
3332  * @mac: MAC address to be checked (for MAC filter)
3333  * @vsi_handle: check MAC filter for this VSI
3334  */
3335 bool ice_mac_fltr_exist(struct ice_hw *hw, u8 *mac, u16 vsi_handle)
3336 {
3337     struct ice_fltr_mgmt_list_entry *entry;
3338     struct list_head *rule_head;
3339     struct ice_switch_info *sw;
3340     struct mutex *rule_lock; /* Lock to protect filter rule list */
3341     u16 hw_vsi_id;
3342 
3343     if (!ice_is_vsi_valid(hw, vsi_handle))
3344         return false;
3345 
3346     hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3347     sw = hw->switch_info;
3348     rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3349     if (!rule_head)
3350         return false;
3351 
3352     rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3353     mutex_lock(rule_lock);
3354     list_for_each_entry(entry, rule_head, list_entry) {
3355         struct ice_fltr_info *f_info = &entry->fltr_info;
3356         u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3357 
3358         if (is_zero_ether_addr(mac_addr))
3359             continue;
3360 
3361         if (f_info->flag != ICE_FLTR_TX ||
3362             f_info->src_id != ICE_SRC_ID_VSI ||
3363             f_info->lkup_type != ICE_SW_LKUP_MAC ||
3364             f_info->fltr_act != ICE_FWD_TO_VSI ||
3365             hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3366             continue;
3367 
3368         if (ether_addr_equal(mac, mac_addr)) {
3369             mutex_unlock(rule_lock);
3370             return true;
3371         }
3372     }
3373     mutex_unlock(rule_lock);
3374     return false;
3375 }
3376 
3377 /**
3378  * ice_vlan_fltr_exist - does this VLAN filter exist for given VSI
3379  * @hw: pointer to the hardware structure
3380  * @vlan_id: VLAN ID
3381  * @vsi_handle: check MAC filter for this VSI
3382  */
3383 bool ice_vlan_fltr_exist(struct ice_hw *hw, u16 vlan_id, u16 vsi_handle)
3384 {
3385     struct ice_fltr_mgmt_list_entry *entry;
3386     struct list_head *rule_head;
3387     struct ice_switch_info *sw;
3388     struct mutex *rule_lock; /* Lock to protect filter rule list */
3389     u16 hw_vsi_id;
3390 
3391     if (vlan_id > ICE_MAX_VLAN_ID)
3392         return false;
3393 
3394     if (!ice_is_vsi_valid(hw, vsi_handle))
3395         return false;
3396 
3397     hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3398     sw = hw->switch_info;
3399     rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3400     if (!rule_head)
3401         return false;
3402 
3403     rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3404     mutex_lock(rule_lock);
3405     list_for_each_entry(entry, rule_head, list_entry) {
3406         struct ice_fltr_info *f_info = &entry->fltr_info;
3407         u16 entry_vlan_id = f_info->l_data.vlan.vlan_id;
3408         struct ice_vsi_list_map_info *map_info;
3409 
3410         if (entry_vlan_id > ICE_MAX_VLAN_ID)
3411             continue;
3412 
3413         if (f_info->flag != ICE_FLTR_TX ||
3414             f_info->src_id != ICE_SRC_ID_VSI ||
3415             f_info->lkup_type != ICE_SW_LKUP_VLAN)
3416             continue;
3417 
3418         /* Only allowed filter action are FWD_TO_VSI/_VSI_LIST */
3419         if (f_info->fltr_act != ICE_FWD_TO_VSI &&
3420             f_info->fltr_act != ICE_FWD_TO_VSI_LIST)
3421             continue;
3422 
3423         if (f_info->fltr_act == ICE_FWD_TO_VSI) {
3424             if (hw_vsi_id != f_info->fwd_id.hw_vsi_id)
3425                 continue;
3426         } else if (f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
3427             /* If filter_action is FWD_TO_VSI_LIST, make sure
3428              * that VSI being checked is part of VSI list
3429              */
3430             if (entry->vsi_count == 1 &&
3431                 entry->vsi_list_info) {
3432                 map_info = entry->vsi_list_info;
3433                 if (!test_bit(vsi_handle, map_info->vsi_map))
3434                     continue;
3435             }
3436         }
3437 
3438         if (vlan_id == entry_vlan_id) {
3439             mutex_unlock(rule_lock);
3440             return true;
3441         }
3442     }
3443     mutex_unlock(rule_lock);
3444 
3445     return false;
3446 }
3447 
3448 /**
3449  * ice_add_mac - Add a MAC address based filter rule
3450  * @hw: pointer to the hardware structure
3451  * @m_list: list of MAC addresses and forwarding information
3452  *
3453  * IMPORTANT: When the ucast_shared flag is set to false and m_list has
3454  * multiple unicast addresses, the function assumes that all the
3455  * addresses are unique in a given add_mac call. It doesn't
3456  * check for duplicates in this case, removing duplicates from a given
3457  * list should be taken care of in the caller of this function.
3458  */
3459 int ice_add_mac(struct ice_hw *hw, struct list_head *m_list)
3460 {
3461     struct ice_sw_rule_lkup_rx_tx *s_rule, *r_iter;
3462     struct ice_fltr_list_entry *m_list_itr;
3463     struct list_head *rule_head;
3464     u16 total_elem_left, s_rule_size;
3465     struct ice_switch_info *sw;
3466     struct mutex *rule_lock; /* Lock to protect filter rule list */
3467     u16 num_unicast = 0;
3468     int status = 0;
3469     u8 elem_sent;
3470 
3471     if (!m_list || !hw)
3472         return -EINVAL;
3473 
3474     s_rule = NULL;
3475     sw = hw->switch_info;
3476     rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3477     list_for_each_entry(m_list_itr, m_list, list_entry) {
3478         u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
3479         u16 vsi_handle;
3480         u16 hw_vsi_id;
3481 
3482         m_list_itr->fltr_info.flag = ICE_FLTR_TX;
3483         vsi_handle = m_list_itr->fltr_info.vsi_handle;
3484         if (!ice_is_vsi_valid(hw, vsi_handle))
3485             return -EINVAL;
3486         hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3487         m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
3488         /* update the src in case it is VSI num */
3489         if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
3490             return -EINVAL;
3491         m_list_itr->fltr_info.src = hw_vsi_id;
3492         if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
3493             is_zero_ether_addr(add))
3494             return -EINVAL;
3495         if (is_unicast_ether_addr(add) && !hw->ucast_shared) {
3496             /* Don't overwrite the unicast address */
3497             mutex_lock(rule_lock);
3498             if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC,
3499                         &m_list_itr->fltr_info)) {
3500                 mutex_unlock(rule_lock);
3501                 return -EEXIST;
3502             }
3503             mutex_unlock(rule_lock);
3504             num_unicast++;
3505         } else if (is_multicast_ether_addr(add) ||
3506                (is_unicast_ether_addr(add) && hw->ucast_shared)) {
3507             m_list_itr->status =
3508                 ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
3509                               m_list_itr);
3510             if (m_list_itr->status)
3511                 return m_list_itr->status;
3512         }
3513     }
3514 
3515     mutex_lock(rule_lock);
3516     /* Exit if no suitable entries were found for adding bulk switch rule */
3517     if (!num_unicast) {
3518         status = 0;
3519         goto ice_add_mac_exit;
3520     }
3521 
3522     rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
3523 
3524     /* Allocate switch rule buffer for the bulk update for unicast */
3525     s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE(s_rule);
3526     s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size,
3527                   GFP_KERNEL);
3528     if (!s_rule) {
3529         status = -ENOMEM;
3530         goto ice_add_mac_exit;
3531     }
3532 
3533     r_iter = s_rule;
3534     list_for_each_entry(m_list_itr, m_list, list_entry) {
3535         struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
3536         u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3537 
3538         if (is_unicast_ether_addr(mac_addr)) {
3539             ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
3540                      ice_aqc_opc_add_sw_rules);
3541             r_iter = (typeof(s_rule))((u8 *)r_iter + s_rule_size);
3542         }
3543     }
3544 
3545     /* Call AQ bulk switch rule update for all unicast addresses */
3546     r_iter = s_rule;
3547     /* Call AQ switch rule in AQ_MAX chunk */
3548     for (total_elem_left = num_unicast; total_elem_left > 0;
3549          total_elem_left -= elem_sent) {
3550         struct ice_sw_rule_lkup_rx_tx *entry = r_iter;
3551 
3552         elem_sent = min_t(u8, total_elem_left,
3553                   (ICE_AQ_MAX_BUF_LEN / s_rule_size));
3554         status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
3555                      elem_sent, ice_aqc_opc_add_sw_rules,
3556                      NULL);
3557         if (status)
3558             goto ice_add_mac_exit;
3559         r_iter = (typeof(s_rule))
3560             ((u8 *)r_iter + (elem_sent * s_rule_size));
3561     }
3562 
3563     /* Fill up rule ID based on the value returned from FW */
3564     r_iter = s_rule;
3565     list_for_each_entry(m_list_itr, m_list, list_entry) {
3566         struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
3567         u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
3568         struct ice_fltr_mgmt_list_entry *fm_entry;
3569 
3570         if (is_unicast_ether_addr(mac_addr)) {
3571             f_info->fltr_rule_id = le16_to_cpu(r_iter->index);
3572             f_info->fltr_act = ICE_FWD_TO_VSI;
3573             /* Create an entry to track this MAC address */
3574             fm_entry = devm_kzalloc(ice_hw_to_dev(hw),
3575                         sizeof(*fm_entry), GFP_KERNEL);
3576             if (!fm_entry) {
3577                 status = -ENOMEM;
3578                 goto ice_add_mac_exit;
3579             }
3580             fm_entry->fltr_info = *f_info;
3581             fm_entry->vsi_count = 1;
3582             /* The book keeping entries will get removed when
3583              * base driver calls remove filter AQ command
3584              */
3585 
3586             list_add(&fm_entry->list_entry, rule_head);
3587             r_iter = (typeof(s_rule))((u8 *)r_iter + s_rule_size);
3588         }
3589     }
3590 
3591 ice_add_mac_exit:
3592     mutex_unlock(rule_lock);
3593     if (s_rule)
3594         devm_kfree(ice_hw_to_dev(hw), s_rule);
3595     return status;
3596 }
3597 
3598 /**
3599  * ice_add_vlan_internal - Add one VLAN based filter rule
3600  * @hw: pointer to the hardware structure
3601  * @f_entry: filter entry containing one VLAN information
3602  */
3603 static int
3604 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
3605 {
3606     struct ice_switch_info *sw = hw->switch_info;
3607     struct ice_fltr_mgmt_list_entry *v_list_itr;
3608     struct ice_fltr_info *new_fltr, *cur_fltr;
3609     enum ice_sw_lkup_type lkup_type;
3610     u16 vsi_list_id = 0, vsi_handle;
3611     struct mutex *rule_lock; /* Lock to protect filter rule list */
3612     int status = 0;
3613 
3614     if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
3615         return -EINVAL;
3616 
3617     f_entry->fltr_info.fwd_id.hw_vsi_id =
3618         ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
3619     new_fltr = &f_entry->fltr_info;
3620 
3621     /* VLAN ID should only be 12 bits */
3622     if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
3623         return -EINVAL;
3624 
3625     if (new_fltr->src_id != ICE_SRC_ID_VSI)
3626         return -EINVAL;
3627 
3628     new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
3629     lkup_type = new_fltr->lkup_type;
3630     vsi_handle = new_fltr->vsi_handle;
3631     rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3632     mutex_lock(rule_lock);
3633     v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
3634     if (!v_list_itr) {
3635         struct ice_vsi_list_map_info *map_info = NULL;
3636 
3637         if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
3638             /* All VLAN pruning rules use a VSI list. Check if
3639              * there is already a VSI list containing VSI that we
3640              * want to add. If found, use the same vsi_list_id for
3641              * this new VLAN rule or else create a new list.
3642              */
3643             map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
3644                                vsi_handle,
3645                                &vsi_list_id);
3646             if (!map_info) {
3647                 status = ice_create_vsi_list_rule(hw,
3648                                   &vsi_handle,
3649                                   1,
3650                                   &vsi_list_id,
3651                                   lkup_type);
3652                 if (status)
3653                     goto exit;
3654             }
3655             /* Convert the action to forwarding to a VSI list. */
3656             new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
3657             new_fltr->fwd_id.vsi_list_id = vsi_list_id;
3658         }
3659 
3660         status = ice_create_pkt_fwd_rule(hw, f_entry);
3661         if (!status) {
3662             v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
3663                              new_fltr);
3664             if (!v_list_itr) {
3665                 status = -ENOENT;
3666                 goto exit;
3667             }
3668             /* reuse VSI list for new rule and increment ref_cnt */
3669             if (map_info) {
3670                 v_list_itr->vsi_list_info = map_info;
3671                 map_info->ref_cnt++;
3672             } else {
3673                 v_list_itr->vsi_list_info =
3674                     ice_create_vsi_list_map(hw, &vsi_handle,
3675                                 1, vsi_list_id);
3676             }
3677         }
3678     } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
3679         /* Update existing VSI list to add new VSI ID only if it used
3680          * by one VLAN rule.
3681          */
3682         cur_fltr = &v_list_itr->fltr_info;
3683         status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
3684                          new_fltr);
3685     } else {
3686         /* If VLAN rule exists and VSI list being used by this rule is
3687          * referenced by more than 1 VLAN rule. Then create a new VSI
3688          * list appending previous VSI with new VSI and update existing
3689          * VLAN rule to point to new VSI list ID
3690          */
3691         struct ice_fltr_info tmp_fltr;
3692         u16 vsi_handle_arr[2];
3693         u16 cur_handle;
3694 
3695         /* Current implementation only supports reusing VSI list with
3696          * one VSI count. We should never hit below condition
3697          */
3698         if (v_list_itr->vsi_count > 1 &&
3699             v_list_itr->vsi_list_info->ref_cnt > 1) {
3700             ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
3701             status = -EIO;
3702             goto exit;
3703         }
3704 
3705         cur_handle =
3706             find_first_bit(v_list_itr->vsi_list_info->vsi_map,
3707                        ICE_MAX_VSI);
3708 
3709         /* A rule already exists with the new VSI being added */
3710         if (cur_handle == vsi_handle) {
3711             status = -EEXIST;
3712             goto exit;
3713         }
3714 
3715         vsi_handle_arr[0] = cur_handle;
3716         vsi_handle_arr[1] = vsi_handle;
3717         status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
3718                           &vsi_list_id, lkup_type);
3719         if (status)
3720             goto exit;
3721 
3722         tmp_fltr = v_list_itr->fltr_info;
3723         tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
3724         tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
3725         tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
3726         /* Update the previous switch rule to a new VSI list which
3727          * includes current VSI that is requested
3728          */
3729         status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
3730         if (status)
3731             goto exit;
3732 
3733         /* before overriding VSI list map info. decrement ref_cnt of
3734          * previous VSI list
3735          */
3736         v_list_itr->vsi_list_info->ref_cnt--;
3737 
3738         /* now update to newly created list */
3739         v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
3740         v_list_itr->vsi_list_info =
3741             ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
3742                         vsi_list_id);
3743         v_list_itr->vsi_count++;
3744     }
3745 
3746 exit:
3747     mutex_unlock(rule_lock);
3748     return status;
3749 }
3750 
3751 /**
3752  * ice_add_vlan - Add VLAN based filter rule
3753  * @hw: pointer to the hardware structure
3754  * @v_list: list of VLAN entries and forwarding information
3755  */
3756 int ice_add_vlan(struct ice_hw *hw, struct list_head *v_list)
3757 {
3758     struct ice_fltr_list_entry *v_list_itr;
3759 
3760     if (!v_list || !hw)
3761         return -EINVAL;
3762 
3763     list_for_each_entry(v_list_itr, v_list, list_entry) {
3764         if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
3765             return -EINVAL;
3766         v_list_itr->fltr_info.flag = ICE_FLTR_TX;
3767         v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
3768         if (v_list_itr->status)
3769             return v_list_itr->status;
3770     }
3771     return 0;
3772 }
3773 
3774 /**
3775  * ice_add_eth_mac - Add ethertype and MAC based filter rule
3776  * @hw: pointer to the hardware structure
3777  * @em_list: list of ether type MAC filter, MAC is optional
3778  *
3779  * This function requires the caller to populate the entries in
3780  * the filter list with the necessary fields (including flags to
3781  * indicate Tx or Rx rules).
3782  */
3783 int ice_add_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3784 {
3785     struct ice_fltr_list_entry *em_list_itr;
3786 
3787     if (!em_list || !hw)
3788         return -EINVAL;
3789 
3790     list_for_each_entry(em_list_itr, em_list, list_entry) {
3791         enum ice_sw_lkup_type l_type =
3792             em_list_itr->fltr_info.lkup_type;
3793 
3794         if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3795             l_type != ICE_SW_LKUP_ETHERTYPE)
3796             return -EINVAL;
3797 
3798         em_list_itr->status = ice_add_rule_internal(hw, l_type,
3799                                 em_list_itr);
3800         if (em_list_itr->status)
3801             return em_list_itr->status;
3802     }
3803     return 0;
3804 }
3805 
3806 /**
3807  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3808  * @hw: pointer to the hardware structure
3809  * @em_list: list of ethertype or ethertype MAC entries
3810  */
3811 int ice_remove_eth_mac(struct ice_hw *hw, struct list_head *em_list)
3812 {
3813     struct ice_fltr_list_entry *em_list_itr, *tmp;
3814 
3815     if (!em_list || !hw)
3816         return -EINVAL;
3817 
3818     list_for_each_entry_safe(em_list_itr, tmp, em_list, list_entry) {
3819         enum ice_sw_lkup_type l_type =
3820             em_list_itr->fltr_info.lkup_type;
3821 
3822         if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3823             l_type != ICE_SW_LKUP_ETHERTYPE)
3824             return -EINVAL;
3825 
3826         em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3827                                    em_list_itr);
3828         if (em_list_itr->status)
3829             return em_list_itr->status;
3830     }
3831     return 0;
3832 }
3833 
3834 /**
3835  * ice_rem_sw_rule_info
3836  * @hw: pointer to the hardware structure
3837  * @rule_head: pointer to the switch list structure that we want to delete
3838  */
3839 static void
3840 ice_rem_sw_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3841 {
3842     if (!list_empty(rule_head)) {
3843         struct ice_fltr_mgmt_list_entry *entry;
3844         struct ice_fltr_mgmt_list_entry *tmp;
3845 
3846         list_for_each_entry_safe(entry, tmp, rule_head, list_entry) {
3847             list_del(&entry->list_entry);
3848             devm_kfree(ice_hw_to_dev(hw), entry);
3849         }
3850     }
3851 }
3852 
3853 /**
3854  * ice_rem_adv_rule_info
3855  * @hw: pointer to the hardware structure
3856  * @rule_head: pointer to the switch list structure that we want to delete
3857  */
3858 static void
3859 ice_rem_adv_rule_info(struct ice_hw *hw, struct list_head *rule_head)
3860 {
3861     struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3862     struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3863 
3864     if (list_empty(rule_head))
3865         return;
3866 
3867     list_for_each_entry_safe(lst_itr, tmp_entry, rule_head, list_entry) {
3868         list_del(&lst_itr->list_entry);
3869         devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
3870         devm_kfree(ice_hw_to_dev(hw), lst_itr);
3871     }
3872 }
3873 
3874 /**
3875  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3876  * @pi: pointer to the port_info structure
3877  * @vsi_handle: VSI handle to set as default
3878  * @set: true to add the above mentioned switch rule, false to remove it
3879  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3880  *
3881  * add filter rule to set/unset given VSI as default VSI for the switch
3882  * (represented by swid)
3883  */
3884 int
3885 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3886          u8 direction)
3887 {
3888     struct ice_fltr_list_entry f_list_entry;
3889     struct ice_fltr_info f_info;
3890     struct ice_hw *hw = pi->hw;
3891     u16 hw_vsi_id;
3892     int status;
3893 
3894     if (!ice_is_vsi_valid(hw, vsi_handle))
3895         return -EINVAL;
3896 
3897     hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3898 
3899     memset(&f_info, 0, sizeof(f_info));
3900 
3901     f_info.lkup_type = ICE_SW_LKUP_DFLT;
3902     f_info.flag = direction;
3903     f_info.fltr_act = ICE_FWD_TO_VSI;
3904     f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3905     f_info.vsi_handle = vsi_handle;
3906 
3907     if (f_info.flag & ICE_FLTR_RX) {
3908         f_info.src = hw->port_info->lport;
3909         f_info.src_id = ICE_SRC_ID_LPORT;
3910     } else if (f_info.flag & ICE_FLTR_TX) {
3911         f_info.src_id = ICE_SRC_ID_VSI;
3912         f_info.src = hw_vsi_id;
3913     }
3914     f_list_entry.fltr_info = f_info;
3915 
3916     if (set)
3917         status = ice_add_rule_internal(hw, ICE_SW_LKUP_DFLT,
3918                            &f_list_entry);
3919     else
3920         status = ice_remove_rule_internal(hw, ICE_SW_LKUP_DFLT,
3921                           &f_list_entry);
3922 
3923     return status;
3924 }
3925 
3926 /**
3927  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3928  * @fm_entry: filter entry to inspect
3929  * @vsi_handle: VSI handle to compare with filter info
3930  */
3931 static bool
3932 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3933 {
3934     return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3935          fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3936         (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3937          fm_entry->vsi_list_info &&
3938          (test_bit(vsi_handle, fm_entry->vsi_list_info->vsi_map))));
3939 }
3940 
3941 /**
3942  * ice_check_if_dflt_vsi - check if VSI is default VSI
3943  * @pi: pointer to the port_info structure
3944  * @vsi_handle: vsi handle to check for in filter list
3945  * @rule_exists: indicates if there are any VSI's in the rule list
3946  *
3947  * checks if the VSI is in a default VSI list, and also indicates
3948  * if the default VSI list is empty
3949  */
3950 bool
3951 ice_check_if_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle,
3952               bool *rule_exists)
3953 {
3954     struct ice_fltr_mgmt_list_entry *fm_entry;
3955     struct ice_sw_recipe *recp_list;
3956     struct list_head *rule_head;
3957     struct mutex *rule_lock; /* Lock to protect filter rule list */
3958     bool ret = false;
3959 
3960     recp_list = &pi->hw->switch_info->recp_list[ICE_SW_LKUP_DFLT];
3961     rule_lock = &recp_list->filt_rule_lock;
3962     rule_head = &recp_list->filt_rules;
3963 
3964     mutex_lock(rule_lock);
3965 
3966     if (rule_exists && !list_empty(rule_head))
3967         *rule_exists = true;
3968 
3969     list_for_each_entry(fm_entry, rule_head, list_entry) {
3970         if (ice_vsi_uses_fltr(fm_entry, vsi_handle)) {
3971             ret = true;
3972             break;
3973         }
3974     }
3975 
3976     mutex_unlock(rule_lock);
3977 
3978     return ret;
3979 }
3980 
3981 /**
3982  * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
3983  * @hw: pointer to the hardware structure
3984  * @recp_id: lookup type for which the specified rule needs to be searched
3985  * @f_info: rule information
3986  *
3987  * Helper function to search for a unicast rule entry - this is to be used
3988  * to remove unicast MAC filter that is not shared with other VSIs on the
3989  * PF switch.
3990  *
3991  * Returns pointer to entry storing the rule if found
3992  */
3993 static struct ice_fltr_mgmt_list_entry *
3994 ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id,
3995               struct ice_fltr_info *f_info)
3996 {
3997     struct ice_switch_info *sw = hw->switch_info;
3998     struct ice_fltr_mgmt_list_entry *list_itr;
3999     struct list_head *list_head;
4000 
4001     list_head = &sw->recp_list[recp_id].filt_rules;
4002     list_for_each_entry(list_itr, list_head, list_entry) {
4003         if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
4004                 sizeof(f_info->l_data)) &&
4005             f_info->fwd_id.hw_vsi_id ==
4006             list_itr->fltr_info.fwd_id.hw_vsi_id &&
4007             f_info->flag == list_itr->fltr_info.flag)
4008             return list_itr;
4009     }
4010     return NULL;
4011 }
4012 
4013 /**
4014  * ice_remove_mac - remove a MAC address based filter rule
4015  * @hw: pointer to the hardware structure
4016  * @m_list: list of MAC addresses and forwarding information
4017  *
4018  * This function removes either a MAC filter rule or a specific VSI from a
4019  * VSI list for a multicast MAC address.
4020  *
4021  * Returns -ENOENT if a given entry was not added by ice_add_mac. Caller should
4022  * be aware that this call will only work if all the entries passed into m_list
4023  * were added previously. It will not attempt to do a partial remove of entries
4024  * that were found.
4025  */
4026 int ice_remove_mac(struct ice_hw *hw, struct list_head *m_list)
4027 {
4028     struct ice_fltr_list_entry *list_itr, *tmp;
4029     struct mutex *rule_lock; /* Lock to protect filter rule list */
4030 
4031     if (!m_list)
4032         return -EINVAL;
4033 
4034     rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
4035     list_for_each_entry_safe(list_itr, tmp, m_list, list_entry) {
4036         enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
4037         u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
4038         u16 vsi_handle;
4039 
4040         if (l_type != ICE_SW_LKUP_MAC)
4041             return -EINVAL;
4042 
4043         vsi_handle = list_itr->fltr_info.vsi_handle;
4044         if (!ice_is_vsi_valid(hw, vsi_handle))
4045             return -EINVAL;
4046 
4047         list_itr->fltr_info.fwd_id.hw_vsi_id =
4048                     ice_get_hw_vsi_num(hw, vsi_handle);
4049         if (is_unicast_ether_addr(add) && !hw->ucast_shared) {
4050             /* Don't remove the unicast address that belongs to
4051              * another VSI on the switch, since it is not being
4052              * shared...
4053              */
4054             mutex_lock(rule_lock);
4055             if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC,
4056                                &list_itr->fltr_info)) {
4057                 mutex_unlock(rule_lock);
4058                 return -ENOENT;
4059             }
4060             mutex_unlock(rule_lock);
4061         }
4062         list_itr->status = ice_remove_rule_internal(hw,
4063                                 ICE_SW_LKUP_MAC,
4064                                 list_itr);
4065         if (list_itr->status)
4066             return list_itr->status;
4067     }
4068     return 0;
4069 }
4070 
4071 /**
4072  * ice_remove_vlan - Remove VLAN based filter rule
4073  * @hw: pointer to the hardware structure
4074  * @v_list: list of VLAN entries and forwarding information
4075  */
4076 int ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list)
4077 {
4078     struct ice_fltr_list_entry *v_list_itr, *tmp;
4079 
4080     if (!v_list || !hw)
4081         return -EINVAL;
4082 
4083     list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4084         enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
4085 
4086         if (l_type != ICE_SW_LKUP_VLAN)
4087             return -EINVAL;
4088         v_list_itr->status = ice_remove_rule_internal(hw,
4089                                   ICE_SW_LKUP_VLAN,
4090                                   v_list_itr);
4091         if (v_list_itr->status)
4092             return v_list_itr->status;
4093     }
4094     return 0;
4095 }
4096 
4097 /**
4098  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
4099  * @hw: pointer to the hardware structure
4100  * @vsi_handle: VSI handle to remove filters from
4101  * @vsi_list_head: pointer to the list to add entry to
4102  * @fi: pointer to fltr_info of filter entry to copy & add
4103  *
4104  * Helper function, used when creating a list of filters to remove from
4105  * a specific VSI. The entry added to vsi_list_head is a COPY of the
4106  * original filter entry, with the exception of fltr_info.fltr_act and
4107  * fltr_info.fwd_id fields. These are set such that later logic can
4108  * extract which VSI to remove the fltr from, and pass on that information.
4109  */
4110 static int
4111 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4112                    struct list_head *vsi_list_head,
4113                    struct ice_fltr_info *fi)
4114 {
4115     struct ice_fltr_list_entry *tmp;
4116 
4117     /* this memory is freed up in the caller function
4118      * once filters for this VSI are removed
4119      */
4120     tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL);
4121     if (!tmp)
4122         return -ENOMEM;
4123 
4124     tmp->fltr_info = *fi;
4125 
4126     /* Overwrite these fields to indicate which VSI to remove filter from,
4127      * so find and remove logic can extract the information from the
4128      * list entries. Note that original entries will still have proper
4129      * values.
4130      */
4131     tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
4132     tmp->fltr_info.vsi_handle = vsi_handle;
4133     tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4134 
4135     list_add(&tmp->list_entry, vsi_list_head);
4136 
4137     return 0;
4138 }
4139 
4140 /**
4141  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
4142  * @hw: pointer to the hardware structure
4143  * @vsi_handle: VSI handle to remove filters from
4144  * @lkup_list_head: pointer to the list that has certain lookup type filters
4145  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
4146  *
4147  * Locates all filters in lkup_list_head that are used by the given VSI,
4148  * and adds COPIES of those entries to vsi_list_head (intended to be used
4149  * to remove the listed filters).
4150  * Note that this means all entries in vsi_list_head must be explicitly
4151  * deallocated by the caller when done with list.
4152  */
4153 static int
4154 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
4155              struct list_head *lkup_list_head,
4156              struct list_head *vsi_list_head)
4157 {
4158     struct ice_fltr_mgmt_list_entry *fm_entry;
4159     int status = 0;
4160 
4161     /* check to make sure VSI ID is valid and within boundary */
4162     if (!ice_is_vsi_valid(hw, vsi_handle))
4163         return -EINVAL;
4164 
4165     list_for_each_entry(fm_entry, lkup_list_head, list_entry) {
4166         if (!ice_vsi_uses_fltr(fm_entry, vsi_handle))
4167             continue;
4168 
4169         status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4170                             vsi_list_head,
4171                             &fm_entry->fltr_info);
4172         if (status)
4173             return status;
4174     }
4175     return status;
4176 }
4177 
4178 /**
4179  * ice_determine_promisc_mask
4180  * @fi: filter info to parse
4181  *
4182  * Helper function to determine which ICE_PROMISC_ mask corresponds
4183  * to given filter into.
4184  */
4185 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
4186 {
4187     u16 vid = fi->l_data.mac_vlan.vlan_id;
4188     u8 *macaddr = fi->l_data.mac.mac_addr;
4189     bool is_tx_fltr = false;
4190     u8 promisc_mask = 0;
4191 
4192     if (fi->flag == ICE_FLTR_TX)
4193         is_tx_fltr = true;
4194 
4195     if (is_broadcast_ether_addr(macaddr))
4196         promisc_mask |= is_tx_fltr ?
4197             ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
4198     else if (is_multicast_ether_addr(macaddr))
4199         promisc_mask |= is_tx_fltr ?
4200             ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
4201     else if (is_unicast_ether_addr(macaddr))
4202         promisc_mask |= is_tx_fltr ?
4203             ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
4204     if (vid)
4205         promisc_mask |= is_tx_fltr ?
4206             ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
4207 
4208     return promisc_mask;
4209 }
4210 
4211 /**
4212  * ice_remove_promisc - Remove promisc based filter rules
4213  * @hw: pointer to the hardware structure
4214  * @recp_id: recipe ID for which the rule needs to removed
4215  * @v_list: list of promisc entries
4216  */
4217 static int
4218 ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct list_head *v_list)
4219 {
4220     struct ice_fltr_list_entry *v_list_itr, *tmp;
4221 
4222     list_for_each_entry_safe(v_list_itr, tmp, v_list, list_entry) {
4223         v_list_itr->status =
4224             ice_remove_rule_internal(hw, recp_id, v_list_itr);
4225         if (v_list_itr->status)
4226             return v_list_itr->status;
4227     }
4228     return 0;
4229 }
4230 
4231 /**
4232  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
4233  * @hw: pointer to the hardware structure
4234  * @vsi_handle: VSI handle to clear mode
4235  * @promisc_mask: mask of promiscuous config bits to clear
4236  * @vid: VLAN ID to clear VLAN promiscuous
4237  */
4238 int
4239 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4240               u16 vid)
4241 {
4242     struct ice_switch_info *sw = hw->switch_info;
4243     struct ice_fltr_list_entry *fm_entry, *tmp;
4244     struct list_head remove_list_head;
4245     struct ice_fltr_mgmt_list_entry *itr;
4246     struct list_head *rule_head;
4247     struct mutex *rule_lock;    /* Lock to protect filter rule list */
4248     int status = 0;
4249     u8 recipe_id;
4250 
4251     if (!ice_is_vsi_valid(hw, vsi_handle))
4252         return -EINVAL;
4253 
4254     if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX))
4255         recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4256     else
4257         recipe_id = ICE_SW_LKUP_PROMISC;
4258 
4259     rule_head = &sw->recp_list[recipe_id].filt_rules;
4260     rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
4261 
4262     INIT_LIST_HEAD(&remove_list_head);
4263 
4264     mutex_lock(rule_lock);
4265     list_for_each_entry(itr, rule_head, list_entry) {
4266         struct ice_fltr_info *fltr_info;
4267         u8 fltr_promisc_mask = 0;
4268 
4269         if (!ice_vsi_uses_fltr(itr, vsi_handle))
4270             continue;
4271         fltr_info = &itr->fltr_info;
4272 
4273         if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN &&
4274             vid != fltr_info->l_data.mac_vlan.vlan_id)
4275             continue;
4276 
4277         fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info);
4278 
4279         /* Skip if filter is not completely specified by given mask */
4280         if (fltr_promisc_mask & ~promisc_mask)
4281             continue;
4282 
4283         status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
4284                             &remove_list_head,
4285                             fltr_info);
4286         if (status) {
4287             mutex_unlock(rule_lock);
4288             goto free_fltr_list;
4289         }
4290     }
4291     mutex_unlock(rule_lock);
4292 
4293     status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
4294 
4295 free_fltr_list:
4296     list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4297         list_del(&fm_entry->list_entry);
4298         devm_kfree(ice_hw_to_dev(hw), fm_entry);
4299     }
4300 
4301     return status;
4302 }
4303 
4304 /**
4305  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
4306  * @hw: pointer to the hardware structure
4307  * @vsi_handle: VSI handle to configure
4308  * @promisc_mask: mask of promiscuous config bits
4309  * @vid: VLAN ID to set VLAN promiscuous
4310  */
4311 int
4312 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
4313 {
4314     enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
4315     struct ice_fltr_list_entry f_list_entry;
4316     struct ice_fltr_info new_fltr;
4317     bool is_tx_fltr;
4318     int status = 0;
4319     u16 hw_vsi_id;
4320     int pkt_type;
4321     u8 recipe_id;
4322 
4323     if (!ice_is_vsi_valid(hw, vsi_handle))
4324         return -EINVAL;
4325     hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4326 
4327     memset(&new_fltr, 0, sizeof(new_fltr));
4328 
4329     if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
4330         new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
4331         new_fltr.l_data.mac_vlan.vlan_id = vid;
4332         recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
4333     } else {
4334         new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
4335         recipe_id = ICE_SW_LKUP_PROMISC;
4336     }
4337 
4338     /* Separate filters must be set for each direction/packet type
4339      * combination, so we will loop over the mask value, store the
4340      * individual type, and clear it out in the input mask as it
4341      * is found.
4342      */
4343     while (promisc_mask) {
4344         u8 *mac_addr;
4345 
4346         pkt_type = 0;
4347         is_tx_fltr = false;
4348 
4349         if (promisc_mask & ICE_PROMISC_UCAST_RX) {
4350             promisc_mask &= ~ICE_PROMISC_UCAST_RX;
4351             pkt_type = UCAST_FLTR;
4352         } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
4353             promisc_mask &= ~ICE_PROMISC_UCAST_TX;
4354             pkt_type = UCAST_FLTR;
4355             is_tx_fltr = true;
4356         } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
4357             promisc_mask &= ~ICE_PROMISC_MCAST_RX;
4358             pkt_type = MCAST_FLTR;
4359         } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
4360             promisc_mask &= ~ICE_PROMISC_MCAST_TX;
4361             pkt_type = MCAST_FLTR;
4362             is_tx_fltr = true;
4363         } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
4364             promisc_mask &= ~ICE_PROMISC_BCAST_RX;
4365             pkt_type = BCAST_FLTR;
4366         } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
4367             promisc_mask &= ~ICE_PROMISC_BCAST_TX;
4368             pkt_type = BCAST_FLTR;
4369             is_tx_fltr = true;
4370         }
4371 
4372         /* Check for VLAN promiscuous flag */
4373         if (promisc_mask & ICE_PROMISC_VLAN_RX) {
4374             promisc_mask &= ~ICE_PROMISC_VLAN_RX;
4375         } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
4376             promisc_mask &= ~ICE_PROMISC_VLAN_TX;
4377             is_tx_fltr = true;
4378         }
4379 
4380         /* Set filter DA based on packet type */
4381         mac_addr = new_fltr.l_data.mac.mac_addr;
4382         if (pkt_type == BCAST_FLTR) {
4383             eth_broadcast_addr(mac_addr);
4384         } else if (pkt_type == MCAST_FLTR ||
4385                pkt_type == UCAST_FLTR) {
4386             /* Use the dummy ether header DA */
4387             ether_addr_copy(mac_addr, dummy_eth_header);
4388             if (pkt_type == MCAST_FLTR)
4389                 mac_addr[0] |= 0x1; /* Set multicast bit */
4390         }
4391 
4392         /* Need to reset this to zero for all iterations */
4393         new_fltr.flag = 0;
4394         if (is_tx_fltr) {
4395             new_fltr.flag |= ICE_FLTR_TX;
4396             new_fltr.src = hw_vsi_id;
4397         } else {
4398             new_fltr.flag |= ICE_FLTR_RX;
4399             new_fltr.src = hw->port_info->lport;
4400         }
4401 
4402         new_fltr.fltr_act = ICE_FWD_TO_VSI;
4403         new_fltr.vsi_handle = vsi_handle;
4404         new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
4405         f_list_entry.fltr_info = new_fltr;
4406 
4407         status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
4408         if (status)
4409             goto set_promisc_exit;
4410     }
4411 
4412 set_promisc_exit:
4413     return status;
4414 }
4415 
4416 /**
4417  * ice_set_vlan_vsi_promisc
4418  * @hw: pointer to the hardware structure
4419  * @vsi_handle: VSI handle to configure
4420  * @promisc_mask: mask of promiscuous config bits
4421  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
4422  *
4423  * Configure VSI with all associated VLANs to given promiscuous mode(s)
4424  */
4425 int
4426 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
4427              bool rm_vlan_promisc)
4428 {
4429     struct ice_switch_info *sw = hw->switch_info;
4430     struct ice_fltr_list_entry *list_itr, *tmp;
4431     struct list_head vsi_list_head;
4432     struct list_head *vlan_head;
4433     struct mutex *vlan_lock; /* Lock to protect filter rule list */
4434     u16 vlan_id;
4435     int status;
4436 
4437     INIT_LIST_HEAD(&vsi_list_head);
4438     vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
4439     vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
4440     mutex_lock(vlan_lock);
4441     status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
4442                       &vsi_list_head);
4443     mutex_unlock(vlan_lock);
4444     if (status)
4445         goto free_fltr_list;
4446 
4447     list_for_each_entry(list_itr, &vsi_list_head, list_entry) {
4448         /* Avoid enabling or disabling VLAN zero twice when in double
4449          * VLAN mode
4450          */
4451         if (ice_is_dvm_ena(hw) &&
4452             list_itr->fltr_info.l_data.vlan.tpid == 0)
4453             continue;
4454 
4455         vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
4456         if (rm_vlan_promisc)
4457             status = ice_clear_vsi_promisc(hw, vsi_handle,
4458                                promisc_mask, vlan_id);
4459         else
4460             status = ice_set_vsi_promisc(hw, vsi_handle,
4461                              promisc_mask, vlan_id);
4462         if (status && status != -EEXIST)
4463             break;
4464     }
4465 
4466 free_fltr_list:
4467     list_for_each_entry_safe(list_itr, tmp, &vsi_list_head, list_entry) {
4468         list_del(&list_itr->list_entry);
4469         devm_kfree(ice_hw_to_dev(hw), list_itr);
4470     }
4471     return status;
4472 }
4473 
4474 /**
4475  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
4476  * @hw: pointer to the hardware structure
4477  * @vsi_handle: VSI handle to remove filters from
4478  * @lkup: switch rule filter lookup type
4479  */
4480 static void
4481 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
4482              enum ice_sw_lkup_type lkup)
4483 {
4484     struct ice_switch_info *sw = hw->switch_info;
4485     struct ice_fltr_list_entry *fm_entry;
4486     struct list_head remove_list_head;
4487     struct list_head *rule_head;
4488     struct ice_fltr_list_entry *tmp;
4489     struct mutex *rule_lock;    /* Lock to protect filter rule list */
4490     int status;
4491 
4492     INIT_LIST_HEAD(&remove_list_head);
4493     rule_lock = &sw->recp_list[lkup].filt_rule_lock;
4494     rule_head = &sw->recp_list[lkup].filt_rules;
4495     mutex_lock(rule_lock);
4496     status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
4497                       &remove_list_head);
4498     mutex_unlock(rule_lock);
4499     if (status)
4500         goto free_fltr_list;
4501 
4502     switch (lkup) {
4503     case ICE_SW_LKUP_MAC:
4504         ice_remove_mac(hw, &remove_list_head);
4505         break;
4506     case ICE_SW_LKUP_VLAN:
4507         ice_remove_vlan(hw, &remove_list_head);
4508         break;
4509     case ICE_SW_LKUP_PROMISC:
4510     case ICE_SW_LKUP_PROMISC_VLAN:
4511         ice_remove_promisc(hw, lkup, &remove_list_head);
4512         break;
4513     case ICE_SW_LKUP_MAC_VLAN:
4514     case ICE_SW_LKUP_ETHERTYPE:
4515     case ICE_SW_LKUP_ETHERTYPE_MAC:
4516     case ICE_SW_LKUP_DFLT:
4517     case ICE_SW_LKUP_LAST:
4518     default:
4519         ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type %d\n", lkup);
4520         break;
4521     }
4522 
4523 free_fltr_list:
4524     list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) {
4525         list_del(&fm_entry->list_entry);
4526         devm_kfree(ice_hw_to_dev(hw), fm_entry);
4527     }
4528 }
4529 
4530 /**
4531  * ice_remove_vsi_fltr - Remove all filters for a VSI
4532  * @hw: pointer to the hardware structure
4533  * @vsi_handle: VSI handle to remove filters from
4534  */
4535 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
4536 {
4537     ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
4538     ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
4539     ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
4540     ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
4541     ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
4542     ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
4543     ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
4544     ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
4545 }
4546 
4547 /**
4548  * ice_alloc_res_cntr - allocating resource counter
4549  * @hw: pointer to the hardware structure
4550  * @type: type of resource
4551  * @alloc_shared: if set it is shared else dedicated
4552  * @num_items: number of entries requested for FD resource type
4553  * @counter_id: counter index returned by AQ call
4554  */
4555 int
4556 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4557            u16 *counter_id)
4558 {
4559     struct ice_aqc_alloc_free_res_elem *buf;
4560     u16 buf_len;
4561     int status;
4562 
4563     /* Allocate resource */
4564     buf_len = struct_size(buf, elem, 1);
4565     buf = kzalloc(buf_len, GFP_KERNEL);
4566     if (!buf)
4567         return -ENOMEM;
4568 
4569     buf->num_elems = cpu_to_le16(num_items);
4570     buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4571                       ICE_AQC_RES_TYPE_M) | alloc_shared);
4572 
4573     status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4574                        ice_aqc_opc_alloc_res, NULL);
4575     if (status)
4576         goto exit;
4577 
4578     *counter_id = le16_to_cpu(buf->elem[0].e.sw_resp);
4579 
4580 exit:
4581     kfree(buf);
4582     return status;
4583 }
4584 
4585 /**
4586  * ice_free_res_cntr - free resource counter
4587  * @hw: pointer to the hardware structure
4588  * @type: type of resource
4589  * @alloc_shared: if set it is shared else dedicated
4590  * @num_items: number of entries to be freed for FD resource type
4591  * @counter_id: counter ID resource which needs to be freed
4592  */
4593 int
4594 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
4595           u16 counter_id)
4596 {
4597     struct ice_aqc_alloc_free_res_elem *buf;
4598     u16 buf_len;
4599     int status;
4600 
4601     /* Free resource */
4602     buf_len = struct_size(buf, elem, 1);
4603     buf = kzalloc(buf_len, GFP_KERNEL);
4604     if (!buf)
4605         return -ENOMEM;
4606 
4607     buf->num_elems = cpu_to_le16(num_items);
4608     buf->res_type = cpu_to_le16(((type << ICE_AQC_RES_TYPE_S) &
4609                       ICE_AQC_RES_TYPE_M) | alloc_shared);
4610     buf->elem[0].e.sw_resp = cpu_to_le16(counter_id);
4611 
4612     status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
4613                        ice_aqc_opc_free_res, NULL);
4614     if (status)
4615         ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n");
4616 
4617     kfree(buf);
4618     return status;
4619 }
4620 
4621 /* This is mapping table entry that maps every word within a given protocol
4622  * structure to the real byte offset as per the specification of that
4623  * protocol header.
4624  * for example dst address is 3 words in ethertype header and corresponding
4625  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4626  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4627  * matching entry describing its field. This needs to be updated if new
4628  * structure is added to that union.
4629  */
4630 static const struct ice_prot_ext_tbl_entry ice_prot_ext[ICE_PROTOCOL_LAST] = {
4631     { ICE_MAC_OFOS,     { 0, 2, 4, 6, 8, 10, 12 } },
4632     { ICE_MAC_IL,       { 0, 2, 4, 6, 8, 10, 12 } },
4633     { ICE_ETYPE_OL,     { 0 } },
4634     { ICE_ETYPE_IL,     { 0 } },
4635     { ICE_VLAN_OFOS,    { 2, 0 } },
4636     { ICE_IPV4_OFOS,    { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4637     { ICE_IPV4_IL,      { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4638     { ICE_IPV6_OFOS,    { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4639                  26, 28, 30, 32, 34, 36, 38 } },
4640     { ICE_IPV6_IL,      { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4641                  26, 28, 30, 32, 34, 36, 38 } },
4642     { ICE_TCP_IL,       { 0, 2 } },
4643     { ICE_UDP_OF,       { 0, 2 } },
4644     { ICE_UDP_ILOS,     { 0, 2 } },
4645     { ICE_VXLAN,        { 8, 10, 12, 14 } },
4646     { ICE_GENEVE,       { 8, 10, 12, 14 } },
4647     { ICE_NVGRE,        { 0, 2, 4, 6 } },
4648     { ICE_GTP,      { 8, 10, 12, 14, 16, 18, 20, 22 } },
4649     { ICE_GTP_NO_PAY,   { 8, 10, 12, 14 } },
4650     { ICE_PPPOE,        { 0, 2, 4, 6 } },
4651     { ICE_VLAN_EX,          { 2, 0 } },
4652     { ICE_VLAN_IN,          { 2, 0 } },
4653 };
4654 
4655 static struct ice_protocol_entry ice_prot_id_tbl[ICE_PROTOCOL_LAST] = {
4656     { ICE_MAC_OFOS,     ICE_MAC_OFOS_HW },
4657     { ICE_MAC_IL,       ICE_MAC_IL_HW },
4658     { ICE_ETYPE_OL,     ICE_ETYPE_OL_HW },
4659     { ICE_ETYPE_IL,     ICE_ETYPE_IL_HW },
4660     { ICE_VLAN_OFOS,    ICE_VLAN_OL_HW },
4661     { ICE_IPV4_OFOS,    ICE_IPV4_OFOS_HW },
4662     { ICE_IPV4_IL,      ICE_IPV4_IL_HW },
4663     { ICE_IPV6_OFOS,    ICE_IPV6_OFOS_HW },
4664     { ICE_IPV6_IL,      ICE_IPV6_IL_HW },
4665     { ICE_TCP_IL,       ICE_TCP_IL_HW },
4666     { ICE_UDP_OF,       ICE_UDP_OF_HW },
4667     { ICE_UDP_ILOS,     ICE_UDP_ILOS_HW },
4668     { ICE_VXLAN,        ICE_UDP_OF_HW },
4669     { ICE_GENEVE,       ICE_UDP_OF_HW },
4670     { ICE_NVGRE,        ICE_GRE_OF_HW },
4671     { ICE_GTP,      ICE_UDP_OF_HW },
4672     { ICE_GTP_NO_PAY,   ICE_UDP_ILOS_HW },
4673     { ICE_PPPOE,        ICE_PPPOE_HW },
4674     { ICE_VLAN_EX,          ICE_VLAN_OF_HW },
4675     { ICE_VLAN_IN,          ICE_VLAN_OL_HW },
4676 };
4677 
4678 /**
4679  * ice_find_recp - find a recipe
4680  * @hw: pointer to the hardware structure
4681  * @lkup_exts: extension sequence to match
4682  * @tun_type: type of recipe tunnel
4683  *
4684  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4685  */
4686 static u16
4687 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts,
4688           enum ice_sw_tunnel_type tun_type)
4689 {
4690     bool refresh_required = true;
4691     struct ice_sw_recipe *recp;
4692     u8 i;
4693 
4694     /* Walk through existing recipes to find a match */
4695     recp = hw->switch_info->recp_list;
4696     for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4697         /* If recipe was not created for this ID, in SW bookkeeping,
4698          * check if FW has an entry for this recipe. If the FW has an
4699          * entry update it in our SW bookkeeping and continue with the
4700          * matching.
4701          */
4702         if (!recp[i].recp_created)
4703             if (ice_get_recp_frm_fw(hw,
4704                         hw->switch_info->recp_list, i,
4705                         &refresh_required))
4706                 continue;
4707 
4708         /* Skip inverse action recipes */
4709         if (recp[i].root_buf && recp[i].root_buf->content.act_ctrl &
4710             ICE_AQ_RECIPE_ACT_INV_ACT)
4711             continue;
4712 
4713         /* if number of words we are looking for match */
4714         if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4715             struct ice_fv_word *ar = recp[i].lkup_exts.fv_words;
4716             struct ice_fv_word *be = lkup_exts->fv_words;
4717             u16 *cr = recp[i].lkup_exts.field_mask;
4718             u16 *de = lkup_exts->field_mask;
4719             bool found = true;
4720             u8 pe, qr;
4721 
4722             /* ar, cr, and qr are related to the recipe words, while
4723              * be, de, and pe are related to the lookup words
4724              */
4725             for (pe = 0; pe < lkup_exts->n_val_words; pe++) {
4726                 for (qr = 0; qr < recp[i].lkup_exts.n_val_words;
4727                      qr++) {
4728                     if (ar[qr].off == be[pe].off &&
4729                         ar[qr].prot_id == be[pe].prot_id &&
4730                         cr[qr] == de[pe])
4731                         /* Found the "pe"th word in the
4732                          * given recipe
4733                          */
4734                         break;
4735                 }
4736                 /* After walking through all the words in the
4737                  * "i"th recipe if "p"th word was not found then
4738                  * this recipe is not what we are looking for.
4739                  * So break out from this loop and try the next
4740                  * recipe
4741                  */
4742                 if (qr >= recp[i].lkup_exts.n_val_words) {
4743                     found = false;
4744                     break;
4745                 }
4746             }
4747             /* If for "i"th recipe the found was never set to false
4748              * then it means we found our match
4749              * Also tun type of recipe needs to be checked
4750              */
4751             if (found && recp[i].tun_type == tun_type)
4752                 return i; /* Return the recipe ID */
4753         }
4754     }
4755     return ICE_MAX_NUM_RECIPES;
4756 }
4757 
4758 /**
4759  * ice_change_proto_id_to_dvm - change proto id in prot_id_tbl
4760  *
4761  * As protocol id for outer vlan is different in dvm and svm, if dvm is
4762  * supported protocol array record for outer vlan has to be modified to
4763  * reflect the value proper for DVM.
4764  */
4765 void ice_change_proto_id_to_dvm(void)
4766 {
4767     u8 i;
4768 
4769     for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4770         if (ice_prot_id_tbl[i].type == ICE_VLAN_OFOS &&
4771             ice_prot_id_tbl[i].protocol_id != ICE_VLAN_OF_HW)
4772             ice_prot_id_tbl[i].protocol_id = ICE_VLAN_OF_HW;
4773 }
4774 
4775 /**
4776  * ice_prot_type_to_id - get protocol ID from protocol type
4777  * @type: protocol type
4778  * @id: pointer to variable that will receive the ID
4779  *
4780  * Returns true if found, false otherwise
4781  */
4782 static bool ice_prot_type_to_id(enum ice_protocol_type type, u8 *id)
4783 {
4784     u8 i;
4785 
4786     for (i = 0; i < ARRAY_SIZE(ice_prot_id_tbl); i++)
4787         if (ice_prot_id_tbl[i].type == type) {
4788             *id = ice_prot_id_tbl[i].protocol_id;
4789             return true;
4790         }
4791     return false;
4792 }
4793 
4794 /**
4795  * ice_fill_valid_words - count valid words
4796  * @rule: advanced rule with lookup information
4797  * @lkup_exts: byte offset extractions of the words that are valid
4798  *
4799  * calculate valid words in a lookup rule using mask value
4800  */
4801 static u8
4802 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4803              struct ice_prot_lkup_ext *lkup_exts)
4804 {
4805     u8 j, word, prot_id, ret_val;
4806 
4807     if (!ice_prot_type_to_id(rule->type, &prot_id))
4808         return 0;
4809 
4810     word = lkup_exts->n_val_words;
4811 
4812     for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4813         if (((u16 *)&rule->m_u)[j] &&
4814             rule->type < ARRAY_SIZE(ice_prot_ext)) {
4815             /* No more space to accommodate */
4816             if (word >= ICE_MAX_CHAIN_WORDS)
4817                 return 0;
4818             lkup_exts->fv_words[word].off =
4819                 ice_prot_ext[rule->type].offs[j];
4820             lkup_exts->fv_words[word].prot_id =
4821                 ice_prot_id_tbl[rule->type].protocol_id;
4822             lkup_exts->field_mask[word] =
4823                 be16_to_cpu(((__force __be16 *)&rule->m_u)[j]);
4824             word++;
4825         }
4826 
4827     ret_val = word - lkup_exts->n_val_words;
4828     lkup_exts->n_val_words = word;
4829 
4830     return ret_val;
4831 }
4832 
4833 /**
4834  * ice_create_first_fit_recp_def - Create a recipe grouping
4835  * @hw: pointer to the hardware structure
4836  * @lkup_exts: an array of protocol header extractions
4837  * @rg_list: pointer to a list that stores new recipe groups
4838  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4839  *
4840  * Using first fit algorithm, take all the words that are still not done
4841  * and start grouping them in 4-word groups. Each group makes up one
4842  * recipe.
4843  */
4844 static int
4845 ice_create_first_fit_recp_def(struct ice_hw *hw,
4846                   struct ice_prot_lkup_ext *lkup_exts,
4847                   struct list_head *rg_list,
4848                   u8 *recp_cnt)
4849 {
4850     struct ice_pref_recipe_group *grp = NULL;
4851     u8 j;
4852 
4853     *recp_cnt = 0;
4854 
4855     /* Walk through every word in the rule to check if it is not done. If so
4856      * then this word needs to be part of a new recipe.
4857      */
4858     for (j = 0; j < lkup_exts->n_val_words; j++)
4859         if (!test_bit(j, lkup_exts->done)) {
4860             if (!grp ||
4861                 grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4862                 struct ice_recp_grp_entry *entry;
4863 
4864                 entry = devm_kzalloc(ice_hw_to_dev(hw),
4865                              sizeof(*entry),
4866                              GFP_KERNEL);
4867                 if (!entry)
4868                     return -ENOMEM;
4869                 list_add(&entry->l_entry, rg_list);
4870                 grp = &entry->r_group;
4871                 (*recp_cnt)++;
4872             }
4873 
4874             grp->pairs[grp->n_val_pairs].prot_id =
4875                 lkup_exts->fv_words[j].prot_id;
4876             grp->pairs[grp->n_val_pairs].off =
4877                 lkup_exts->fv_words[j].off;
4878             grp->mask[grp->n_val_pairs] = lkup_exts->field_mask[j];
4879             grp->n_val_pairs++;
4880         }
4881 
4882     return 0;
4883 }
4884 
4885 /**
4886  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4887  * @hw: pointer to the hardware structure
4888  * @fv_list: field vector with the extraction sequence information
4889  * @rg_list: recipe groupings with protocol-offset pairs
4890  *
4891  * Helper function to fill in the field vector indices for protocol-offset
4892  * pairs. These indexes are then ultimately programmed into a recipe.
4893  */
4894 static int
4895 ice_fill_fv_word_index(struct ice_hw *hw, struct list_head *fv_list,
4896                struct list_head *rg_list)
4897 {
4898     struct ice_sw_fv_list_entry *fv;
4899     struct ice_recp_grp_entry *rg;
4900     struct ice_fv_word *fv_ext;
4901 
4902     if (list_empty(fv_list))
4903         return 0;
4904 
4905     fv = list_first_entry(fv_list, struct ice_sw_fv_list_entry,
4906                   list_entry);
4907     fv_ext = fv->fv_ptr->ew;
4908 
4909     list_for_each_entry(rg, rg_list, l_entry) {
4910         u8 i;
4911 
4912         for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4913             struct ice_fv_word *pr;
4914             bool found = false;
4915             u16 mask;
4916             u8 j;
4917 
4918             pr = &rg->r_group.pairs[i];
4919             mask = rg->r_group.mask[i];
4920 
4921             for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4922                 if (fv_ext[j].prot_id == pr->prot_id &&
4923                     fv_ext[j].off == pr->off) {
4924                     found = true;
4925 
4926                     /* Store index of field vector */
4927                     rg->fv_idx[i] = j;
4928                     rg->fv_mask[i] = mask;
4929                     break;
4930                 }
4931 
4932             /* Protocol/offset could not be found, caller gave an
4933              * invalid pair
4934              */
4935             if (!found)
4936                 return -EINVAL;
4937         }
4938     }
4939 
4940     return 0;
4941 }
4942 
4943 /**
4944  * ice_find_free_recp_res_idx - find free result indexes for recipe
4945  * @hw: pointer to hardware structure
4946  * @profiles: bitmap of profiles that will be associated with the new recipe
4947  * @free_idx: pointer to variable to receive the free index bitmap
4948  *
4949  * The algorithm used here is:
4950  *  1. When creating a new recipe, create a set P which contains all
4951  *     Profiles that will be associated with our new recipe
4952  *
4953  *  2. For each Profile p in set P:
4954  *      a. Add all recipes associated with Profile p into set R
4955  *      b. Optional : PossibleIndexes &= profile[p].possibleIndexes
4956  *      [initially PossibleIndexes should be 0xFFFFFFFFFFFFFFFF]
4957  *      i. Or just assume they all have the same possible indexes:
4958  *          44, 45, 46, 47
4959  *          i.e., PossibleIndexes = 0x0000F00000000000
4960  *
4961  *  3. For each Recipe r in set R:
4962  *      a. UsedIndexes |= (bitwise or ) recipe[r].res_indexes
4963  *      b. FreeIndexes = UsedIndexes ^ PossibleIndexes
4964  *
4965  *  FreeIndexes will contain the bits indicating the indexes free for use,
4966  *      then the code needs to update the recipe[r].used_result_idx_bits to
4967  *      indicate which indexes were selected for use by this recipe.
4968  */
4969 static u16
4970 ice_find_free_recp_res_idx(struct ice_hw *hw, const unsigned long *profiles,
4971                unsigned long *free_idx)
4972 {
4973     DECLARE_BITMAP(possible_idx, ICE_MAX_FV_WORDS);
4974     DECLARE_BITMAP(recipes, ICE_MAX_NUM_RECIPES);
4975     DECLARE_BITMAP(used_idx, ICE_MAX_FV_WORDS);
4976     u16 bit;
4977 
4978     bitmap_zero(recipes, ICE_MAX_NUM_RECIPES);
4979     bitmap_zero(used_idx, ICE_MAX_FV_WORDS);
4980 
4981     bitmap_fill(possible_idx, ICE_MAX_FV_WORDS);
4982 
4983     /* For each profile we are going to associate the recipe with, add the
4984      * recipes that are associated with that profile. This will give us
4985      * the set of recipes that our recipe may collide with. Also, determine
4986      * what possible result indexes are usable given this set of profiles.
4987      */
4988     for_each_set_bit(bit, profiles, ICE_MAX_NUM_PROFILES) {
4989         bitmap_or(recipes, recipes, profile_to_recipe[bit],
4990               ICE_MAX_NUM_RECIPES);
4991         bitmap_and(possible_idx, possible_idx,
4992                hw->switch_info->prof_res_bm[bit],
4993                ICE_MAX_FV_WORDS);
4994     }
4995 
4996     /* For each recipe that our new recipe may collide with, determine
4997      * which indexes have been used.
4998      */
4999     for_each_set_bit(bit, recipes, ICE_MAX_NUM_RECIPES)
5000         bitmap_or(used_idx, used_idx,
5001               hw->switch_info->recp_list[bit].res_idxs,
5002               ICE_MAX_FV_WORDS);
5003 
5004     bitmap_xor(free_idx, used_idx, possible_idx, ICE_MAX_FV_WORDS);
5005 
5006     /* return number of free indexes */
5007     return (u16)bitmap_weight(free_idx, ICE_MAX_FV_WORDS);
5008 }
5009 
5010 /**
5011  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
5012  * @hw: pointer to hardware structure
5013  * @rm: recipe management list entry
5014  * @profiles: bitmap of profiles that will be associated.
5015  */
5016 static int
5017 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
5018           unsigned long *profiles)
5019 {
5020     DECLARE_BITMAP(result_idx_bm, ICE_MAX_FV_WORDS);
5021     struct ice_aqc_recipe_data_elem *tmp;
5022     struct ice_aqc_recipe_data_elem *buf;
5023     struct ice_recp_grp_entry *entry;
5024     u16 free_res_idx;
5025     u16 recipe_count;
5026     u8 chain_idx;
5027     u8 recps = 0;
5028     int status;
5029 
5030     /* When more than one recipe are required, another recipe is needed to
5031      * chain them together. Matching a tunnel metadata ID takes up one of
5032      * the match fields in the chaining recipe reducing the number of
5033      * chained recipes by one.
5034      */
5035      /* check number of free result indices */
5036     bitmap_zero(result_idx_bm, ICE_MAX_FV_WORDS);
5037     free_res_idx = ice_find_free_recp_res_idx(hw, profiles, result_idx_bm);
5038 
5039     ice_debug(hw, ICE_DBG_SW, "Result idx slots: %d, need %d\n",
5040           free_res_idx, rm->n_grp_count);
5041 
5042     if (rm->n_grp_count > 1) {
5043         if (rm->n_grp_count > free_res_idx)
5044             return -ENOSPC;
5045 
5046         rm->n_grp_count++;
5047     }
5048 
5049     if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE)
5050         return -ENOSPC;
5051 
5052     tmp = kcalloc(ICE_MAX_NUM_RECIPES, sizeof(*tmp), GFP_KERNEL);
5053     if (!tmp)
5054         return -ENOMEM;
5055 
5056     buf = devm_kcalloc(ice_hw_to_dev(hw), rm->n_grp_count, sizeof(*buf),
5057                GFP_KERNEL);
5058     if (!buf) {
5059         status = -ENOMEM;
5060         goto err_mem;
5061     }
5062 
5063     bitmap_zero(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
5064     recipe_count = ICE_MAX_NUM_RECIPES;
5065     status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
5066                    NULL);
5067     if (status || recipe_count == 0)
5068         goto err_unroll;
5069 
5070     /* Allocate the recipe resources, and configure them according to the
5071      * match fields from protocol headers and extracted field vectors.
5072      */
5073     chain_idx = find_first_bit(result_idx_bm, ICE_MAX_FV_WORDS);
5074     list_for_each_entry(entry, &rm->rg_list, l_entry) {
5075         u8 i;
5076 
5077         status = ice_alloc_recipe(hw, &entry->rid);
5078         if (status)
5079             goto err_unroll;
5080 
5081         /* Clear the result index of the located recipe, as this will be
5082          * updated, if needed, later in the recipe creation process.
5083          */
5084         tmp[0].content.result_indx = 0;
5085 
5086         buf[recps] = tmp[0];
5087         buf[recps].recipe_indx = (u8)entry->rid;
5088         /* if the recipe is a non-root recipe RID should be programmed
5089          * as 0 for the rules to be applied correctly.
5090          */
5091         buf[recps].content.rid = 0;
5092         memset(&buf[recps].content.lkup_indx, 0,
5093                sizeof(buf[recps].content.lkup_indx));
5094 
5095         /* All recipes use look-up index 0 to match switch ID. */
5096         buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5097         buf[recps].content.mask[0] =
5098             cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5099         /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
5100          * to be 0
5101          */
5102         for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5103             buf[recps].content.lkup_indx[i] = 0x80;
5104             buf[recps].content.mask[i] = 0;
5105         }
5106 
5107         for (i = 0; i < entry->r_group.n_val_pairs; i++) {
5108             buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
5109             buf[recps].content.mask[i + 1] =
5110                 cpu_to_le16(entry->fv_mask[i]);
5111         }
5112 
5113         if (rm->n_grp_count > 1) {
5114             /* Checks to see if there really is a valid result index
5115              * that can be used.
5116              */
5117             if (chain_idx >= ICE_MAX_FV_WORDS) {
5118                 ice_debug(hw, ICE_DBG_SW, "No chain index available\n");
5119                 status = -ENOSPC;
5120                 goto err_unroll;
5121             }
5122 
5123             entry->chain_idx = chain_idx;
5124             buf[recps].content.result_indx =
5125                 ICE_AQ_RECIPE_RESULT_EN |
5126                 ((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
5127                  ICE_AQ_RECIPE_RESULT_DATA_M);
5128             clear_bit(chain_idx, result_idx_bm);
5129             chain_idx = find_first_bit(result_idx_bm,
5130                            ICE_MAX_FV_WORDS);
5131         }
5132 
5133         /* fill recipe dependencies */
5134         bitmap_zero((unsigned long *)buf[recps].recipe_bitmap,
5135                 ICE_MAX_NUM_RECIPES);
5136         set_bit(buf[recps].recipe_indx,
5137             (unsigned long *)buf[recps].recipe_bitmap);
5138         buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5139         recps++;
5140     }
5141 
5142     if (rm->n_grp_count == 1) {
5143         rm->root_rid = buf[0].recipe_indx;
5144         set_bit(buf[0].recipe_indx, rm->r_bitmap);
5145         buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
5146         if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
5147             memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
5148                    sizeof(buf[0].recipe_bitmap));
5149         } else {
5150             status = -EINVAL;
5151             goto err_unroll;
5152         }
5153         /* Applicable only for ROOT_RECIPE, set the fwd_priority for
5154          * the recipe which is getting created if specified
5155          * by user. Usually any advanced switch filter, which results
5156          * into new extraction sequence, ended up creating a new recipe
5157          * of type ROOT and usually recipes are associated with profiles
5158          * Switch rule referreing newly created recipe, needs to have
5159          * either/or 'fwd' or 'join' priority, otherwise switch rule
5160          * evaluation will not happen correctly. In other words, if
5161          * switch rule to be evaluated on priority basis, then recipe
5162          * needs to have priority, otherwise it will be evaluated last.
5163          */
5164         buf[0].content.act_ctrl_fwd_priority = rm->priority;
5165     } else {
5166         struct ice_recp_grp_entry *last_chain_entry;
5167         u16 rid, i;
5168 
5169         /* Allocate the last recipe that will chain the outcomes of the
5170          * other recipes together
5171          */
5172         status = ice_alloc_recipe(hw, &rid);
5173         if (status)
5174             goto err_unroll;
5175 
5176         buf[recps].recipe_indx = (u8)rid;
5177         buf[recps].content.rid = (u8)rid;
5178         buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
5179         /* the new entry created should also be part of rg_list to
5180          * make sure we have complete recipe
5181          */
5182         last_chain_entry = devm_kzalloc(ice_hw_to_dev(hw),
5183                         sizeof(*last_chain_entry),
5184                         GFP_KERNEL);
5185         if (!last_chain_entry) {
5186             status = -ENOMEM;
5187             goto err_unroll;
5188         }
5189         last_chain_entry->rid = rid;
5190         memset(&buf[recps].content.lkup_indx, 0,
5191                sizeof(buf[recps].content.lkup_indx));
5192         /* All recipes use look-up index 0 to match switch ID. */
5193         buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
5194         buf[recps].content.mask[0] =
5195             cpu_to_le16(ICE_AQ_SW_ID_LKUP_MASK);
5196         for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
5197             buf[recps].content.lkup_indx[i] =
5198                 ICE_AQ_RECIPE_LKUP_IGNORE;
5199             buf[recps].content.mask[i] = 0;
5200         }
5201 
5202         i = 1;
5203         /* update r_bitmap with the recp that is used for chaining */
5204         set_bit(rid, rm->r_bitmap);
5205         /* this is the recipe that chains all the other recipes so it
5206          * should not have a chaining ID to indicate the same
5207          */
5208         last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
5209         list_for_each_entry(entry, &rm->rg_list, l_entry) {
5210             last_chain_entry->fv_idx[i] = entry->chain_idx;
5211             buf[recps].content.lkup_indx[i] = entry->chain_idx;
5212             buf[recps].content.mask[i++] = cpu_to_le16(0xFFFF);
5213             set_bit(entry->rid, rm->r_bitmap);
5214         }
5215         list_add(&last_chain_entry->l_entry, &rm->rg_list);
5216         if (sizeof(buf[recps].recipe_bitmap) >=
5217             sizeof(rm->r_bitmap)) {
5218             memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
5219                    sizeof(buf[recps].recipe_bitmap));
5220         } else {
5221             status = -EINVAL;
5222             goto err_unroll;
5223         }
5224         buf[recps].content.act_ctrl_fwd_priority = rm->priority;
5225 
5226         recps++;
5227         rm->root_rid = (u8)rid;
5228     }
5229     status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5230     if (status)
5231         goto err_unroll;
5232 
5233     status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
5234     ice_release_change_lock(hw);
5235     if (status)
5236         goto err_unroll;
5237 
5238     /* Every recipe that just got created add it to the recipe
5239      * book keeping list
5240      */
5241     list_for_each_entry(entry, &rm->rg_list, l_entry) {
5242         struct ice_switch_info *sw = hw->switch_info;
5243         bool is_root, idx_found = false;
5244         struct ice_sw_recipe *recp;
5245         u16 idx, buf_idx = 0;
5246 
5247         /* find buffer index for copying some data */
5248         for (idx = 0; idx < rm->n_grp_count; idx++)
5249             if (buf[idx].recipe_indx == entry->rid) {
5250                 buf_idx = idx;
5251                 idx_found = true;
5252             }
5253 
5254         if (!idx_found) {
5255             status = -EIO;
5256             goto err_unroll;
5257         }
5258 
5259         recp = &sw->recp_list[entry->rid];
5260         is_root = (rm->root_rid == entry->rid);
5261         recp->is_root = is_root;
5262 
5263         recp->root_rid = entry->rid;
5264         recp->big_recp = (is_root && rm->n_grp_count > 1);
5265 
5266         memcpy(&recp->ext_words, entry->r_group.pairs,
5267                entry->r_group.n_val_pairs * sizeof(struct ice_fv_word));
5268 
5269         memcpy(recp->r_bitmap, buf[buf_idx].recipe_bitmap,
5270                sizeof(recp->r_bitmap));
5271 
5272         /* Copy non-result fv index values and masks to recipe. This
5273          * call will also update the result recipe bitmask.
5274          */
5275         ice_collect_result_idx(&buf[buf_idx], recp);
5276 
5277         /* for non-root recipes, also copy to the root, this allows
5278          * easier matching of a complete chained recipe
5279          */
5280         if (!is_root)
5281             ice_collect_result_idx(&buf[buf_idx],
5282                            &sw->recp_list[rm->root_rid]);
5283 
5284         recp->n_ext_words = entry->r_group.n_val_pairs;
5285         recp->chain_idx = entry->chain_idx;
5286         recp->priority = buf[buf_idx].content.act_ctrl_fwd_priority;
5287         recp->n_grp_count = rm->n_grp_count;
5288         recp->tun_type = rm->tun_type;
5289         recp->recp_created = true;
5290     }
5291     rm->root_buf = buf;
5292     kfree(tmp);
5293     return status;
5294 
5295 err_unroll:
5296 err_mem:
5297     kfree(tmp);
5298     devm_kfree(ice_hw_to_dev(hw), buf);
5299     return status;
5300 }
5301 
5302 /**
5303  * ice_create_recipe_group - creates recipe group
5304  * @hw: pointer to hardware structure
5305  * @rm: recipe management list entry
5306  * @lkup_exts: lookup elements
5307  */
5308 static int
5309 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
5310             struct ice_prot_lkup_ext *lkup_exts)
5311 {
5312     u8 recp_count = 0;
5313     int status;
5314 
5315     rm->n_grp_count = 0;
5316 
5317     /* Create recipes for words that are marked not done by packing them
5318      * as best fit.
5319      */
5320     status = ice_create_first_fit_recp_def(hw, lkup_exts,
5321                            &rm->rg_list, &recp_count);
5322     if (!status) {
5323         rm->n_grp_count += recp_count;
5324         rm->n_ext_words = lkup_exts->n_val_words;
5325         memcpy(&rm->ext_words, lkup_exts->fv_words,
5326                sizeof(rm->ext_words));
5327         memcpy(rm->word_masks, lkup_exts->field_mask,
5328                sizeof(rm->word_masks));
5329     }
5330 
5331     return status;
5332 }
5333 
5334 /**
5335  * ice_tun_type_match_word - determine if tun type needs a match mask
5336  * @tun_type: tunnel type
5337  * @mask: mask to be used for the tunnel
5338  */
5339 static bool ice_tun_type_match_word(enum ice_sw_tunnel_type tun_type, u16 *mask)
5340 {
5341     switch (tun_type) {
5342     case ICE_SW_TUN_GENEVE:
5343     case ICE_SW_TUN_VXLAN:
5344     case ICE_SW_TUN_NVGRE:
5345     case ICE_SW_TUN_GTPU:
5346     case ICE_SW_TUN_GTPC:
5347         *mask = ICE_TUN_FLAG_MASK;
5348         return true;
5349 
5350     default:
5351         *mask = 0;
5352         return false;
5353     }
5354 }
5355 
5356 /**
5357  * ice_add_special_words - Add words that are not protocols, such as metadata
5358  * @rinfo: other information regarding the rule e.g. priority and action info
5359  * @lkup_exts: lookup word structure
5360  * @dvm_ena: is double VLAN mode enabled
5361  */
5362 static int
5363 ice_add_special_words(struct ice_adv_rule_info *rinfo,
5364               struct ice_prot_lkup_ext *lkup_exts, bool dvm_ena)
5365 {
5366     u16 mask;
5367 
5368     /* If this is a tunneled packet, then add recipe index to match the
5369      * tunnel bit in the packet metadata flags.
5370      */
5371     if (ice_tun_type_match_word(rinfo->tun_type, &mask)) {
5372         if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5373             u8 word = lkup_exts->n_val_words++;
5374 
5375             lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5376             lkup_exts->fv_words[word].off = ICE_TUN_FLAG_MDID_OFF;
5377             lkup_exts->field_mask[word] = mask;
5378         } else {
5379             return -ENOSPC;
5380         }
5381     }
5382 
5383     if (rinfo->vlan_type != 0 && dvm_ena) {
5384         if (lkup_exts->n_val_words < ICE_MAX_CHAIN_WORDS) {
5385             u8 word = lkup_exts->n_val_words++;
5386 
5387             lkup_exts->fv_words[word].prot_id = ICE_META_DATA_ID_HW;
5388             lkup_exts->fv_words[word].off = ICE_VLAN_FLAG_MDID_OFF;
5389             lkup_exts->field_mask[word] =
5390                     ICE_PKT_FLAGS_0_TO_15_VLAN_FLAGS_MASK;
5391         } else {
5392             return -ENOSPC;
5393         }
5394     }
5395 
5396     return 0;
5397 }
5398 
5399 /* ice_get_compat_fv_bitmap - Get compatible field vector bitmap for rule
5400  * @hw: pointer to hardware structure
5401  * @rinfo: other information regarding the rule e.g. priority and action info
5402  * @bm: pointer to memory for returning the bitmap of field vectors
5403  */
5404 static void
5405 ice_get_compat_fv_bitmap(struct ice_hw *hw, struct ice_adv_rule_info *rinfo,
5406              unsigned long *bm)
5407 {
5408     enum ice_prof_type prof_type;
5409 
5410     bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
5411 
5412     switch (rinfo->tun_type) {
5413     case ICE_NON_TUN:
5414         prof_type = ICE_PROF_NON_TUN;
5415         break;
5416     case ICE_ALL_TUNNELS:
5417         prof_type = ICE_PROF_TUN_ALL;
5418         break;
5419     case ICE_SW_TUN_GENEVE:
5420     case ICE_SW_TUN_VXLAN:
5421         prof_type = ICE_PROF_TUN_UDP;
5422         break;
5423     case ICE_SW_TUN_NVGRE:
5424         prof_type = ICE_PROF_TUN_GRE;
5425         break;
5426     case ICE_SW_TUN_GTPU:
5427         prof_type = ICE_PROF_TUN_GTPU;
5428         break;
5429     case ICE_SW_TUN_GTPC:
5430         prof_type = ICE_PROF_TUN_GTPC;
5431         break;
5432     case ICE_SW_TUN_AND_NON_TUN:
5433     default:
5434         prof_type = ICE_PROF_ALL;
5435         break;
5436     }
5437 
5438     ice_get_sw_fv_bitmap(hw, prof_type, bm);
5439 }
5440 
5441 /**
5442  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
5443  * @hw: pointer to hardware structure
5444  * @lkups: lookup elements or match criteria for the advanced recipe, one
5445  *  structure per protocol header
5446  * @lkups_cnt: number of protocols
5447  * @rinfo: other information regarding the rule e.g. priority and action info
5448  * @rid: return the recipe ID of the recipe created
5449  */
5450 static int
5451 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5452            u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
5453 {
5454     DECLARE_BITMAP(fv_bitmap, ICE_MAX_NUM_PROFILES);
5455     DECLARE_BITMAP(profiles, ICE_MAX_NUM_PROFILES);
5456     struct ice_prot_lkup_ext *lkup_exts;
5457     struct ice_recp_grp_entry *r_entry;
5458     struct ice_sw_fv_list_entry *fvit;
5459     struct ice_recp_grp_entry *r_tmp;
5460     struct ice_sw_fv_list_entry *tmp;
5461     struct ice_sw_recipe *rm;
5462     int status = 0;
5463     u8 i;
5464 
5465     if (!lkups_cnt)
5466         return -EINVAL;
5467 
5468     lkup_exts = kzalloc(sizeof(*lkup_exts), GFP_KERNEL);
5469     if (!lkup_exts)
5470         return -ENOMEM;
5471 
5472     /* Determine the number of words to be matched and if it exceeds a
5473      * recipe's restrictions
5474      */
5475     for (i = 0; i < lkups_cnt; i++) {
5476         u16 count;
5477 
5478         if (lkups[i].type >= ICE_PROTOCOL_LAST) {
5479             status = -EIO;
5480             goto err_free_lkup_exts;
5481         }
5482 
5483         count = ice_fill_valid_words(&lkups[i], lkup_exts);
5484         if (!count) {
5485             status = -EIO;
5486             goto err_free_lkup_exts;
5487         }
5488     }
5489 
5490     rm = kzalloc(sizeof(*rm), GFP_KERNEL);
5491     if (!rm) {
5492         status = -ENOMEM;
5493         goto err_free_lkup_exts;
5494     }
5495 
5496     /* Get field vectors that contain fields extracted from all the protocol
5497      * headers being programmed.
5498      */
5499     INIT_LIST_HEAD(&rm->fv_list);
5500     INIT_LIST_HEAD(&rm->rg_list);
5501 
5502     /* Get bitmap of field vectors (profiles) that are compatible with the
5503      * rule request; only these will be searched in the subsequent call to
5504      * ice_get_sw_fv_list.
5505      */
5506     ice_get_compat_fv_bitmap(hw, rinfo, fv_bitmap);
5507 
5508     status = ice_get_sw_fv_list(hw, lkup_exts, fv_bitmap, &rm->fv_list);
5509     if (status)
5510         goto err_unroll;
5511 
5512     /* Create any special protocol/offset pairs, such as looking at tunnel
5513      * bits by extracting metadata
5514      */
5515     status = ice_add_special_words(rinfo, lkup_exts, ice_is_dvm_ena(hw));
5516     if (status)
5517         goto err_free_lkup_exts;
5518 
5519     /* Group match words into recipes using preferred recipe grouping
5520      * criteria.
5521      */
5522     status = ice_create_recipe_group(hw, rm, lkup_exts);
5523     if (status)
5524         goto err_unroll;
5525 
5526     /* set the recipe priority if specified */
5527     rm->priority = (u8)rinfo->priority;
5528 
5529     /* Find offsets from the field vector. Pick the first one for all the
5530      * recipes.
5531      */
5532     status = ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5533     if (status)
5534         goto err_unroll;
5535 
5536     /* get bitmap of all profiles the recipe will be associated with */
5537     bitmap_zero(profiles, ICE_MAX_NUM_PROFILES);
5538     list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5539         ice_debug(hw, ICE_DBG_SW, "profile: %d\n", fvit->profile_id);
5540         set_bit((u16)fvit->profile_id, profiles);
5541     }
5542 
5543     /* Look for a recipe which matches our requested fv / mask list */
5544     *rid = ice_find_recp(hw, lkup_exts, rinfo->tun_type);
5545     if (*rid < ICE_MAX_NUM_RECIPES)
5546         /* Success if found a recipe that match the existing criteria */
5547         goto err_unroll;
5548 
5549     rm->tun_type = rinfo->tun_type;
5550     /* Recipe we need does not exist, add a recipe */
5551     status = ice_add_sw_recipe(hw, rm, profiles);
5552     if (status)
5553         goto err_unroll;
5554 
5555     /* Associate all the recipes created with all the profiles in the
5556      * common field vector.
5557      */
5558     list_for_each_entry(fvit, &rm->fv_list, list_entry) {
5559         DECLARE_BITMAP(r_bitmap, ICE_MAX_NUM_RECIPES);
5560         u16 j;
5561 
5562         status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5563                               (u8 *)r_bitmap, NULL);
5564         if (status)
5565             goto err_unroll;
5566 
5567         bitmap_or(r_bitmap, r_bitmap, rm->r_bitmap,
5568               ICE_MAX_NUM_RECIPES);
5569         status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5570         if (status)
5571             goto err_unroll;
5572 
5573         status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5574                               (u8 *)r_bitmap,
5575                               NULL);
5576         ice_release_change_lock(hw);
5577 
5578         if (status)
5579             goto err_unroll;
5580 
5581         /* Update profile to recipe bitmap array */
5582         bitmap_copy(profile_to_recipe[fvit->profile_id], r_bitmap,
5583                 ICE_MAX_NUM_RECIPES);
5584 
5585         /* Update recipe to profile bitmap array */
5586         for_each_set_bit(j, rm->r_bitmap, ICE_MAX_NUM_RECIPES)
5587             set_bit((u16)fvit->profile_id, recipe_to_profile[j]);
5588     }
5589 
5590     *rid = rm->root_rid;
5591     memcpy(&hw->switch_info->recp_list[*rid].lkup_exts, lkup_exts,
5592            sizeof(*lkup_exts));
5593 err_unroll:
5594     list_for_each_entry_safe(r_entry, r_tmp, &rm->rg_list, l_entry) {
5595         list_del(&r_entry->l_entry);
5596         devm_kfree(ice_hw_to_dev(hw), r_entry);
5597     }
5598 
5599     list_for_each_entry_safe(fvit, tmp, &rm->fv_list, list_entry) {
5600         list_del(&fvit->list_entry);
5601         devm_kfree(ice_hw_to_dev(hw), fvit);
5602     }
5603 
5604     if (rm->root_buf)
5605         devm_kfree(ice_hw_to_dev(hw), rm->root_buf);
5606 
5607     kfree(rm);
5608 
5609 err_free_lkup_exts:
5610     kfree(lkup_exts);
5611 
5612     return status;
5613 }
5614 
5615 /**
5616  * ice_dummy_packet_add_vlan - insert VLAN header to dummy pkt
5617  *
5618  * @dummy_pkt: dummy packet profile pattern to which VLAN tag(s) will be added
5619  * @num_vlan: number of VLAN tags
5620  */
5621 static struct ice_dummy_pkt_profile *
5622 ice_dummy_packet_add_vlan(const struct ice_dummy_pkt_profile *dummy_pkt,
5623               u32 num_vlan)
5624 {
5625     struct ice_dummy_pkt_profile *profile;
5626     struct ice_dummy_pkt_offsets *offsets;
5627     u32 buf_len, off, etype_off, i;
5628     u8 *pkt;
5629 
5630     if (num_vlan < 1 || num_vlan > 2)
5631         return ERR_PTR(-EINVAL);
5632 
5633     off = num_vlan * VLAN_HLEN;
5634 
5635     buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet_offsets)) +
5636           dummy_pkt->offsets_len;
5637     offsets = kzalloc(buf_len, GFP_KERNEL);
5638     if (!offsets)
5639         return ERR_PTR(-ENOMEM);
5640 
5641     offsets[0] = dummy_pkt->offsets[0];
5642     if (num_vlan == 2) {
5643         offsets[1] = ice_dummy_qinq_packet_offsets[0];
5644         offsets[2] = ice_dummy_qinq_packet_offsets[1];
5645     } else if (num_vlan == 1) {
5646         offsets[1] = ice_dummy_vlan_packet_offsets[0];
5647     }
5648 
5649     for (i = 1; dummy_pkt->offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5650         offsets[i + num_vlan].type = dummy_pkt->offsets[i].type;
5651         offsets[i + num_vlan].offset =
5652             dummy_pkt->offsets[i].offset + off;
5653     }
5654     offsets[i + num_vlan] = dummy_pkt->offsets[i];
5655 
5656     etype_off = dummy_pkt->offsets[1].offset;
5657 
5658     buf_len = array_size(num_vlan, sizeof(ice_dummy_vlan_packet)) +
5659           dummy_pkt->pkt_len;
5660     pkt = kzalloc(buf_len, GFP_KERNEL);
5661     if (!pkt) {
5662         kfree(offsets);
5663         return ERR_PTR(-ENOMEM);
5664     }
5665 
5666     memcpy(pkt, dummy_pkt->pkt, etype_off);
5667     memcpy(pkt + etype_off,
5668            num_vlan == 2 ? ice_dummy_qinq_packet : ice_dummy_vlan_packet,
5669            off);
5670     memcpy(pkt + etype_off + off, dummy_pkt->pkt + etype_off,
5671            dummy_pkt->pkt_len - etype_off);
5672 
5673     profile = kzalloc(sizeof(*profile), GFP_KERNEL);
5674     if (!profile) {
5675         kfree(offsets);
5676         kfree(pkt);
5677         return ERR_PTR(-ENOMEM);
5678     }
5679 
5680     profile->offsets = offsets;
5681     profile->pkt = pkt;
5682     profile->pkt_len = buf_len;
5683     profile->match |= ICE_PKT_KMALLOC;
5684 
5685     return profile;
5686 }
5687 
5688 /**
5689  * ice_find_dummy_packet - find dummy packet
5690  *
5691  * @lkups: lookup elements or match criteria for the advanced recipe, one
5692  *     structure per protocol header
5693  * @lkups_cnt: number of protocols
5694  * @tun_type: tunnel type
5695  *
5696  * Returns the &ice_dummy_pkt_profile corresponding to these lookup params.
5697  */
5698 static const struct ice_dummy_pkt_profile *
5699 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5700               enum ice_sw_tunnel_type tun_type)
5701 {
5702     const struct ice_dummy_pkt_profile *ret = ice_dummy_pkt_profiles;
5703     u32 match = 0, vlan_count = 0;
5704     u16 i;
5705 
5706     switch (tun_type) {
5707     case ICE_SW_TUN_GTPC:
5708         match |= ICE_PKT_TUN_GTPC;
5709         break;
5710     case ICE_SW_TUN_GTPU:
5711         match |= ICE_PKT_TUN_GTPU;
5712         break;
5713     case ICE_SW_TUN_NVGRE:
5714         match |= ICE_PKT_TUN_NVGRE;
5715         break;
5716     case ICE_SW_TUN_GENEVE:
5717     case ICE_SW_TUN_VXLAN:
5718         match |= ICE_PKT_TUN_UDP;
5719         break;
5720     default:
5721         break;
5722     }
5723 
5724     for (i = 0; i < lkups_cnt; i++) {
5725         if (lkups[i].type == ICE_UDP_ILOS)
5726             match |= ICE_PKT_INNER_UDP;
5727         else if (lkups[i].type == ICE_TCP_IL)
5728             match |= ICE_PKT_INNER_TCP;
5729         else if (lkups[i].type == ICE_IPV6_OFOS)
5730             match |= ICE_PKT_OUTER_IPV6;
5731         else if (lkups[i].type == ICE_VLAN_OFOS ||
5732              lkups[i].type == ICE_VLAN_EX)
5733             vlan_count++;
5734         else if (lkups[i].type == ICE_VLAN_IN)
5735             vlan_count++;
5736         else if (lkups[i].type == ICE_ETYPE_OL &&
5737              lkups[i].h_u.ethertype.ethtype_id ==
5738                 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5739              lkups[i].m_u.ethertype.ethtype_id ==
5740                 cpu_to_be16(0xFFFF))
5741             match |= ICE_PKT_OUTER_IPV6;
5742         else if (lkups[i].type == ICE_ETYPE_IL &&
5743              lkups[i].h_u.ethertype.ethtype_id ==
5744                 cpu_to_be16(ICE_IPV6_ETHER_ID) &&
5745              lkups[i].m_u.ethertype.ethtype_id ==
5746                 cpu_to_be16(0xFFFF))
5747             match |= ICE_PKT_INNER_IPV6;
5748         else if (lkups[i].type == ICE_IPV6_IL)
5749             match |= ICE_PKT_INNER_IPV6;
5750         else if (lkups[i].type == ICE_GTP_NO_PAY)
5751             match |= ICE_PKT_GTP_NOPAY;
5752         else if (lkups[i].type == ICE_PPPOE) {
5753             match |= ICE_PKT_PPPOE;
5754             if (lkups[i].h_u.pppoe_hdr.ppp_prot_id ==
5755                 htons(PPP_IPV6))
5756                 match |= ICE_PKT_OUTER_IPV6;
5757         }
5758     }
5759 
5760     while (ret->match && (match & ret->match) != ret->match)
5761         ret++;
5762 
5763     if (vlan_count != 0)
5764         ret = ice_dummy_packet_add_vlan(ret, vlan_count);
5765 
5766     return ret;
5767 }
5768 
5769 /**
5770  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5771  *
5772  * @lkups: lookup elements or match criteria for the advanced recipe, one
5773  *     structure per protocol header
5774  * @lkups_cnt: number of protocols
5775  * @s_rule: stores rule information from the match criteria
5776  * @profile: dummy packet profile (the template, its size and header offsets)
5777  */
5778 static int
5779 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5780               struct ice_sw_rule_lkup_rx_tx *s_rule,
5781               const struct ice_dummy_pkt_profile *profile)
5782 {
5783     u8 *pkt;
5784     u16 i;
5785 
5786     /* Start with a packet with a pre-defined/dummy content. Then, fill
5787      * in the header values to be looked up or matched.
5788      */
5789     pkt = s_rule->hdr_data;
5790 
5791     memcpy(pkt, profile->pkt, profile->pkt_len);
5792 
5793     for (i = 0; i < lkups_cnt; i++) {
5794         const struct ice_dummy_pkt_offsets *offsets = profile->offsets;
5795         enum ice_protocol_type type;
5796         u16 offset = 0, len = 0, j;
5797         bool found = false;
5798 
5799         /* find the start of this layer; it should be found since this
5800          * was already checked when search for the dummy packet
5801          */
5802         type = lkups[i].type;
5803         for (j = 0; offsets[j].type != ICE_PROTOCOL_LAST; j++) {
5804             if (type == offsets[j].type) {
5805                 offset = offsets[j].offset;
5806                 found = true;
5807                 break;
5808             }
5809         }
5810         /* this should never happen in a correct calling sequence */
5811         if (!found)
5812             return -EINVAL;
5813 
5814         switch (lkups[i].type) {
5815         case ICE_MAC_OFOS:
5816         case ICE_MAC_IL:
5817             len = sizeof(struct ice_ether_hdr);
5818             break;
5819         case ICE_ETYPE_OL:
5820         case ICE_ETYPE_IL:
5821             len = sizeof(struct ice_ethtype_hdr);
5822             break;
5823         case ICE_VLAN_OFOS:
5824         case ICE_VLAN_EX:
5825         case ICE_VLAN_IN:
5826             len = sizeof(struct ice_vlan_hdr);
5827             break;
5828         case ICE_IPV4_OFOS:
5829         case ICE_IPV4_IL:
5830             len = sizeof(struct ice_ipv4_hdr);
5831             break;
5832         case ICE_IPV6_OFOS:
5833         case ICE_IPV6_IL:
5834             len = sizeof(struct ice_ipv6_hdr);
5835             break;
5836         case ICE_TCP_IL:
5837         case ICE_UDP_OF:
5838         case ICE_UDP_ILOS:
5839             len = sizeof(struct ice_l4_hdr);
5840             break;
5841         case ICE_SCTP_IL:
5842             len = sizeof(struct ice_sctp_hdr);
5843             break;
5844         case ICE_NVGRE:
5845             len = sizeof(struct ice_nvgre_hdr);
5846             break;
5847         case ICE_VXLAN:
5848         case ICE_GENEVE:
5849             len = sizeof(struct ice_udp_tnl_hdr);
5850             break;
5851         case ICE_GTP_NO_PAY:
5852         case ICE_GTP:
5853             len = sizeof(struct ice_udp_gtp_hdr);
5854             break;
5855         case ICE_PPPOE:
5856             len = sizeof(struct ice_pppoe_hdr);
5857             break;
5858         default:
5859             return -EINVAL;
5860         }
5861 
5862         /* the length should be a word multiple */
5863         if (len % ICE_BYTES_PER_WORD)
5864             return -EIO;
5865 
5866         /* We have the offset to the header start, the length, the
5867          * caller's header values and mask. Use this information to
5868          * copy the data into the dummy packet appropriately based on
5869          * the mask. Note that we need to only write the bits as
5870          * indicated by the mask to make sure we don't improperly write
5871          * over any significant packet data.
5872          */
5873         for (j = 0; j < len / sizeof(u16); j++) {
5874             u16 *ptr = (u16 *)(pkt + offset);
5875             u16 mask = lkups[i].m_raw[j];
5876 
5877             if (!mask)
5878                 continue;
5879 
5880             ptr[j] = (ptr[j] & ~mask) | (lkups[i].h_raw[j] & mask);
5881         }
5882     }
5883 
5884     s_rule->hdr_len = cpu_to_le16(profile->pkt_len);
5885 
5886     return 0;
5887 }
5888 
5889 /**
5890  * ice_fill_adv_packet_tun - fill dummy packet with udp tunnel port
5891  * @hw: pointer to the hardware structure
5892  * @tun_type: tunnel type
5893  * @pkt: dummy packet to fill in
5894  * @offsets: offset info for the dummy packet
5895  */
5896 static int
5897 ice_fill_adv_packet_tun(struct ice_hw *hw, enum ice_sw_tunnel_type tun_type,
5898             u8 *pkt, const struct ice_dummy_pkt_offsets *offsets)
5899 {
5900     u16 open_port, i;
5901 
5902     switch (tun_type) {
5903     case ICE_SW_TUN_VXLAN:
5904         if (!ice_get_open_tunnel_port(hw, &open_port, TNL_VXLAN))
5905             return -EIO;
5906         break;
5907     case ICE_SW_TUN_GENEVE:
5908         if (!ice_get_open_tunnel_port(hw, &open_port, TNL_GENEVE))
5909             return -EIO;
5910         break;
5911     default:
5912         /* Nothing needs to be done for this tunnel type */
5913         return 0;
5914     }
5915 
5916     /* Find the outer UDP protocol header and insert the port number */
5917     for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5918         if (offsets[i].type == ICE_UDP_OF) {
5919             struct ice_l4_hdr *hdr;
5920             u16 offset;
5921 
5922             offset = offsets[i].offset;
5923             hdr = (struct ice_l4_hdr *)&pkt[offset];
5924             hdr->dst_port = cpu_to_be16(open_port);
5925 
5926             return 0;
5927         }
5928     }
5929 
5930     return -EIO;
5931 }
5932 
5933 /**
5934  * ice_fill_adv_packet_vlan - fill dummy packet with VLAN tag type
5935  * @vlan_type: VLAN tag type
5936  * @pkt: dummy packet to fill in
5937  * @offsets: offset info for the dummy packet
5938  */
5939 static int
5940 ice_fill_adv_packet_vlan(u16 vlan_type, u8 *pkt,
5941              const struct ice_dummy_pkt_offsets *offsets)
5942 {
5943     u16 i;
5944 
5945     /* Find VLAN header and insert VLAN TPID */
5946     for (i = 0; offsets[i].type != ICE_PROTOCOL_LAST; i++) {
5947         if (offsets[i].type == ICE_VLAN_OFOS ||
5948             offsets[i].type == ICE_VLAN_EX) {
5949             struct ice_vlan_hdr *hdr;
5950             u16 offset;
5951 
5952             offset = offsets[i].offset;
5953             hdr = (struct ice_vlan_hdr *)&pkt[offset];
5954             hdr->type = cpu_to_be16(vlan_type);
5955 
5956             return 0;
5957         }
5958     }
5959 
5960     return -EIO;
5961 }
5962 
5963 /**
5964  * ice_find_adv_rule_entry - Search a rule entry
5965  * @hw: pointer to the hardware structure
5966  * @lkups: lookup elements or match criteria for the advanced recipe, one
5967  *     structure per protocol header
5968  * @lkups_cnt: number of protocols
5969  * @recp_id: recipe ID for which we are finding the rule
5970  * @rinfo: other information regarding the rule e.g. priority and action info
5971  *
5972  * Helper function to search for a given advance rule entry
5973  * Returns pointer to entry storing the rule if found
5974  */
5975 static struct ice_adv_fltr_mgmt_list_entry *
5976 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5977             u16 lkups_cnt, u16 recp_id,
5978             struct ice_adv_rule_info *rinfo)
5979 {
5980     struct ice_adv_fltr_mgmt_list_entry *list_itr;
5981     struct ice_switch_info *sw = hw->switch_info;
5982     int i;
5983 
5984     list_for_each_entry(list_itr, &sw->recp_list[recp_id].filt_rules,
5985                 list_entry) {
5986         bool lkups_matched = true;
5987 
5988         if (lkups_cnt != list_itr->lkups_cnt)
5989             continue;
5990         for (i = 0; i < list_itr->lkups_cnt; i++)
5991             if (memcmp(&list_itr->lkups[i], &lkups[i],
5992                    sizeof(*lkups))) {
5993                 lkups_matched = false;
5994                 break;
5995             }
5996         if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
5997             rinfo->tun_type == list_itr->rule_info.tun_type &&
5998             rinfo->vlan_type == list_itr->rule_info.vlan_type &&
5999             lkups_matched)
6000             return list_itr;
6001     }
6002     return NULL;
6003 }
6004 
6005 /**
6006  * ice_adv_add_update_vsi_list
6007  * @hw: pointer to the hardware structure
6008  * @m_entry: pointer to current adv filter management list entry
6009  * @cur_fltr: filter information from the book keeping entry
6010  * @new_fltr: filter information with the new VSI to be added
6011  *
6012  * Call AQ command to add or update previously created VSI list with new VSI.
6013  *
6014  * Helper function to do book keeping associated with adding filter information
6015  * The algorithm to do the booking keeping is described below :
6016  * When a VSI needs to subscribe to a given advanced filter
6017  *  if only one VSI has been added till now
6018  *      Allocate a new VSI list and add two VSIs
6019  *      to this list using switch rule command
6020  *      Update the previously created switch rule with the
6021  *      newly created VSI list ID
6022  *  if a VSI list was previously created
6023  *      Add the new VSI to the previously created VSI list set
6024  *      using the update switch rule command
6025  */
6026 static int
6027 ice_adv_add_update_vsi_list(struct ice_hw *hw,
6028                 struct ice_adv_fltr_mgmt_list_entry *m_entry,
6029                 struct ice_adv_rule_info *cur_fltr,
6030                 struct ice_adv_rule_info *new_fltr)
6031 {
6032     u16 vsi_list_id = 0;
6033     int status;
6034 
6035     if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
6036         cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6037         cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
6038         return -EOPNOTSUPP;
6039 
6040     if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
6041          new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
6042         (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6043          cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
6044         return -EOPNOTSUPP;
6045 
6046     if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
6047          /* Only one entry existed in the mapping and it was not already
6048           * a part of a VSI list. So, create a VSI list with the old and
6049           * new VSIs.
6050           */
6051         struct ice_fltr_info tmp_fltr;
6052         u16 vsi_handle_arr[2];
6053 
6054         /* A rule already exists with the new VSI being added */
6055         if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
6056             new_fltr->sw_act.fwd_id.hw_vsi_id)
6057             return -EEXIST;
6058 
6059         vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
6060         vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
6061         status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
6062                           &vsi_list_id,
6063                           ICE_SW_LKUP_LAST);
6064         if (status)
6065             return status;
6066 
6067         memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6068         tmp_fltr.flag = m_entry->rule_info.sw_act.flag;
6069         tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
6070         tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
6071         tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
6072         tmp_fltr.lkup_type = ICE_SW_LKUP_LAST;
6073 
6074         /* Update the previous switch rule of "forward to VSI" to
6075          * "fwd to VSI list"
6076          */
6077         status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6078         if (status)
6079             return status;
6080 
6081         cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
6082         cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
6083         m_entry->vsi_list_info =
6084             ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
6085                         vsi_list_id);
6086     } else {
6087         u16 vsi_handle = new_fltr->sw_act.vsi_handle;
6088 
6089         if (!m_entry->vsi_list_info)
6090             return -EIO;
6091 
6092         /* A rule already exists with the new VSI being added */
6093         if (test_bit(vsi_handle, m_entry->vsi_list_info->vsi_map))
6094             return 0;
6095 
6096         /* Update the previously created VSI list set with
6097          * the new VSI ID passed in
6098          */
6099         vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
6100 
6101         status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
6102                           vsi_list_id, false,
6103                           ice_aqc_opc_update_sw_rules,
6104                           ICE_SW_LKUP_LAST);
6105         /* update VSI list mapping info with new VSI ID */
6106         if (!status)
6107             set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map);
6108     }
6109     if (!status)
6110         m_entry->vsi_count++;
6111     return status;
6112 }
6113 
6114 /**
6115  * ice_add_adv_rule - helper function to create an advanced switch rule
6116  * @hw: pointer to the hardware structure
6117  * @lkups: information on the words that needs to be looked up. All words
6118  * together makes one recipe
6119  * @lkups_cnt: num of entries in the lkups array
6120  * @rinfo: other information related to the rule that needs to be programmed
6121  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
6122  *               ignored is case of error.
6123  *
6124  * This function can program only 1 rule at a time. The lkups is used to
6125  * describe the all the words that forms the "lookup" portion of the recipe.
6126  * These words can span multiple protocols. Callers to this function need to
6127  * pass in a list of protocol headers with lookup information along and mask
6128  * that determines which words are valid from the given protocol header.
6129  * rinfo describes other information related to this rule such as forwarding
6130  * IDs, priority of this rule, etc.
6131  */
6132 int
6133 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6134          u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
6135          struct ice_rule_query_data *added_entry)
6136 {
6137     struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
6138     struct ice_sw_rule_lkup_rx_tx *s_rule = NULL;
6139     const struct ice_dummy_pkt_profile *profile;
6140     u16 rid = 0, i, rule_buf_sz, vsi_handle;
6141     struct list_head *rule_head;
6142     struct ice_switch_info *sw;
6143     u16 word_cnt;
6144     u32 act = 0;
6145     int status;
6146     u8 q_rgn;
6147 
6148     /* Initialize profile to result index bitmap */
6149     if (!hw->switch_info->prof_res_bm_init) {
6150         hw->switch_info->prof_res_bm_init = 1;
6151         ice_init_prof_result_bm(hw);
6152     }
6153 
6154     if (!lkups_cnt)
6155         return -EINVAL;
6156 
6157     /* get # of words we need to match */
6158     word_cnt = 0;
6159     for (i = 0; i < lkups_cnt; i++) {
6160         u16 j;
6161 
6162         for (j = 0; j < ARRAY_SIZE(lkups->m_raw); j++)
6163             if (lkups[i].m_raw[j])
6164                 word_cnt++;
6165     }
6166 
6167     if (!word_cnt)
6168         return -EINVAL;
6169 
6170     if (word_cnt > ICE_MAX_CHAIN_WORDS)
6171         return -ENOSPC;
6172 
6173     /* locate a dummy packet */
6174     profile = ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type);
6175     if (IS_ERR(profile))
6176         return PTR_ERR(profile);
6177 
6178     if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
6179           rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
6180           rinfo->sw_act.fltr_act == ICE_FWD_TO_QGRP ||
6181           rinfo->sw_act.fltr_act == ICE_DROP_PACKET)) {
6182         status = -EIO;
6183         goto free_pkt_profile;
6184     }
6185 
6186     vsi_handle = rinfo->sw_act.vsi_handle;
6187     if (!ice_is_vsi_valid(hw, vsi_handle)) {
6188         status =  -EINVAL;
6189         goto free_pkt_profile;
6190     }
6191 
6192     if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6193         rinfo->sw_act.fwd_id.hw_vsi_id =
6194             ice_get_hw_vsi_num(hw, vsi_handle);
6195     if (rinfo->sw_act.flag & ICE_FLTR_TX)
6196         rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
6197 
6198     status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
6199     if (status)
6200         goto free_pkt_profile;
6201     m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6202     if (m_entry) {
6203         /* we have to add VSI to VSI_LIST and increment vsi_count.
6204          * Also Update VSI list so that we can change forwarding rule
6205          * if the rule already exists, we will check if it exists with
6206          * same vsi_id, if not then add it to the VSI list if it already
6207          * exists if not then create a VSI list and add the existing VSI
6208          * ID and the new VSI ID to the list
6209          * We will add that VSI to the list
6210          */
6211         status = ice_adv_add_update_vsi_list(hw, m_entry,
6212                              &m_entry->rule_info,
6213                              rinfo);
6214         if (added_entry) {
6215             added_entry->rid = rid;
6216             added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
6217             added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6218         }
6219         goto free_pkt_profile;
6220     }
6221     rule_buf_sz = ICE_SW_RULE_RX_TX_HDR_SIZE(s_rule, profile->pkt_len);
6222     s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6223     if (!s_rule) {
6224         status = -ENOMEM;
6225         goto free_pkt_profile;
6226     }
6227     if (!rinfo->flags_info.act_valid) {
6228         act |= ICE_SINGLE_ACT_LAN_ENABLE;
6229         act |= ICE_SINGLE_ACT_LB_ENABLE;
6230     } else {
6231         act |= rinfo->flags_info.act & (ICE_SINGLE_ACT_LAN_ENABLE |
6232                         ICE_SINGLE_ACT_LB_ENABLE);
6233     }
6234 
6235     switch (rinfo->sw_act.fltr_act) {
6236     case ICE_FWD_TO_VSI:
6237         act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
6238             ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
6239         act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
6240         break;
6241     case ICE_FWD_TO_Q:
6242         act |= ICE_SINGLE_ACT_TO_Q;
6243         act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6244                ICE_SINGLE_ACT_Q_INDEX_M;
6245         break;
6246     case ICE_FWD_TO_QGRP:
6247         q_rgn = rinfo->sw_act.qgrp_size > 0 ?
6248             (u8)ilog2(rinfo->sw_act.qgrp_size) : 0;
6249         act |= ICE_SINGLE_ACT_TO_Q;
6250         act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
6251                ICE_SINGLE_ACT_Q_INDEX_M;
6252         act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
6253                ICE_SINGLE_ACT_Q_REGION_M;
6254         break;
6255     case ICE_DROP_PACKET:
6256         act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
6257                ICE_SINGLE_ACT_VALID_BIT;
6258         break;
6259     default:
6260         status = -EIO;
6261         goto err_ice_add_adv_rule;
6262     }
6263 
6264     /* set the rule LOOKUP type based on caller specified 'Rx'
6265      * instead of hardcoding it to be either LOOKUP_TX/RX
6266      *
6267      * for 'Rx' set the source to be the port number
6268      * for 'Tx' set the source to be the source HW VSI number (determined
6269      * by caller)
6270      */
6271     if (rinfo->rx) {
6272         s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX);
6273         s_rule->src = cpu_to_le16(hw->port_info->lport);
6274     } else {
6275         s_rule->hdr.type = cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX);
6276         s_rule->src = cpu_to_le16(rinfo->sw_act.src);
6277     }
6278 
6279     s_rule->recipe_id = cpu_to_le16(rid);
6280     s_rule->act = cpu_to_le32(act);
6281 
6282     status = ice_fill_adv_dummy_packet(lkups, lkups_cnt, s_rule, profile);
6283     if (status)
6284         goto err_ice_add_adv_rule;
6285 
6286     if (rinfo->tun_type != ICE_NON_TUN &&
6287         rinfo->tun_type != ICE_SW_TUN_AND_NON_TUN) {
6288         status = ice_fill_adv_packet_tun(hw, rinfo->tun_type,
6289                          s_rule->hdr_data,
6290                          profile->offsets);
6291         if (status)
6292             goto err_ice_add_adv_rule;
6293     }
6294 
6295     if (rinfo->vlan_type != 0 && ice_is_dvm_ena(hw)) {
6296         status = ice_fill_adv_packet_vlan(rinfo->vlan_type,
6297                           s_rule->hdr_data,
6298                           profile->offsets);
6299         if (status)
6300             goto err_ice_add_adv_rule;
6301     }
6302 
6303     status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6304                  rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
6305                  NULL);
6306     if (status)
6307         goto err_ice_add_adv_rule;
6308     adv_fltr = devm_kzalloc(ice_hw_to_dev(hw),
6309                 sizeof(struct ice_adv_fltr_mgmt_list_entry),
6310                 GFP_KERNEL);
6311     if (!adv_fltr) {
6312         status = -ENOMEM;
6313         goto err_ice_add_adv_rule;
6314     }
6315 
6316     adv_fltr->lkups = devm_kmemdup(ice_hw_to_dev(hw), lkups,
6317                        lkups_cnt * sizeof(*lkups), GFP_KERNEL);
6318     if (!adv_fltr->lkups) {
6319         status = -ENOMEM;
6320         goto err_ice_add_adv_rule;
6321     }
6322 
6323     adv_fltr->lkups_cnt = lkups_cnt;
6324     adv_fltr->rule_info = *rinfo;
6325     adv_fltr->rule_info.fltr_rule_id = le16_to_cpu(s_rule->index);
6326     sw = hw->switch_info;
6327     sw->recp_list[rid].adv_rule = true;
6328     rule_head = &sw->recp_list[rid].filt_rules;
6329 
6330     if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
6331         adv_fltr->vsi_count = 1;
6332 
6333     /* Add rule entry to book keeping list */
6334     list_add(&adv_fltr->list_entry, rule_head);
6335     if (added_entry) {
6336         added_entry->rid = rid;
6337         added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
6338         added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
6339     }
6340 err_ice_add_adv_rule:
6341     if (status && adv_fltr) {
6342         devm_kfree(ice_hw_to_dev(hw), adv_fltr->lkups);
6343         devm_kfree(ice_hw_to_dev(hw), adv_fltr);
6344     }
6345 
6346     kfree(s_rule);
6347 
6348 free_pkt_profile:
6349     if (profile->match & ICE_PKT_KMALLOC) {
6350         kfree(profile->offsets);
6351         kfree(profile->pkt);
6352         kfree(profile);
6353     }
6354 
6355     return status;
6356 }
6357 
6358 /**
6359  * ice_replay_vsi_fltr - Replay filters for requested VSI
6360  * @hw: pointer to the hardware structure
6361  * @vsi_handle: driver VSI handle
6362  * @recp_id: Recipe ID for which rules need to be replayed
6363  * @list_head: list for which filters need to be replayed
6364  *
6365  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6366  * It is required to pass valid VSI handle.
6367  */
6368 static int
6369 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6370             struct list_head *list_head)
6371 {
6372     struct ice_fltr_mgmt_list_entry *itr;
6373     int status = 0;
6374     u16 hw_vsi_id;
6375 
6376     if (list_empty(list_head))
6377         return status;
6378     hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6379 
6380     list_for_each_entry(itr, list_head, list_entry) {
6381         struct ice_fltr_list_entry f_entry;
6382 
6383         f_entry.fltr_info = itr->fltr_info;
6384         if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6385             itr->fltr_info.vsi_handle == vsi_handle) {
6386             /* update the src in case it is VSI num */
6387             if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6388                 f_entry.fltr_info.src = hw_vsi_id;
6389             status = ice_add_rule_internal(hw, recp_id, &f_entry);
6390             if (status)
6391                 goto end;
6392             continue;
6393         }
6394         if (!itr->vsi_list_info ||
6395             !test_bit(vsi_handle, itr->vsi_list_info->vsi_map))
6396             continue;
6397         /* Clearing it so that the logic can add it back */
6398         clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6399         f_entry.fltr_info.vsi_handle = vsi_handle;
6400         f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6401         /* update the src in case it is VSI num */
6402         if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6403             f_entry.fltr_info.src = hw_vsi_id;
6404         if (recp_id == ICE_SW_LKUP_VLAN)
6405             status = ice_add_vlan_internal(hw, &f_entry);
6406         else
6407             status = ice_add_rule_internal(hw, recp_id, &f_entry);
6408         if (status)
6409             goto end;
6410     }
6411 end:
6412     return status;
6413 }
6414 
6415 /**
6416  * ice_adv_rem_update_vsi_list
6417  * @hw: pointer to the hardware structure
6418  * @vsi_handle: VSI handle of the VSI to remove
6419  * @fm_list: filter management entry for which the VSI list management needs to
6420  *       be done
6421  */
6422 static int
6423 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
6424                 struct ice_adv_fltr_mgmt_list_entry *fm_list)
6425 {
6426     struct ice_vsi_list_map_info *vsi_list_info;
6427     enum ice_sw_lkup_type lkup_type;
6428     u16 vsi_list_id;
6429     int status;
6430 
6431     if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
6432         fm_list->vsi_count == 0)
6433         return -EINVAL;
6434 
6435     /* A rule with the VSI being removed does not exist */
6436     if (!test_bit(vsi_handle, fm_list->vsi_list_info->vsi_map))
6437         return -ENOENT;
6438 
6439     lkup_type = ICE_SW_LKUP_LAST;
6440     vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
6441     status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
6442                       ice_aqc_opc_update_sw_rules,
6443                       lkup_type);
6444     if (status)
6445         return status;
6446 
6447     fm_list->vsi_count--;
6448     clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
6449     vsi_list_info = fm_list->vsi_list_info;
6450     if (fm_list->vsi_count == 1) {
6451         struct ice_fltr_info tmp_fltr;
6452         u16 rem_vsi_handle;
6453 
6454         rem_vsi_handle = find_first_bit(vsi_list_info->vsi_map,
6455                         ICE_MAX_VSI);
6456         if (!ice_is_vsi_valid(hw, rem_vsi_handle))
6457             return -EIO;
6458 
6459         /* Make sure VSI list is empty before removing it below */
6460         status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
6461                           vsi_list_id, true,
6462                           ice_aqc_opc_update_sw_rules,
6463                           lkup_type);
6464         if (status)
6465             return status;
6466 
6467         memset(&tmp_fltr, 0, sizeof(tmp_fltr));
6468         tmp_fltr.flag = fm_list->rule_info.sw_act.flag;
6469         tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
6470         fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
6471         tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
6472         tmp_fltr.fwd_id.hw_vsi_id =
6473             ice_get_hw_vsi_num(hw, rem_vsi_handle);
6474         fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
6475             ice_get_hw_vsi_num(hw, rem_vsi_handle);
6476         fm_list->rule_info.sw_act.vsi_handle = rem_vsi_handle;
6477 
6478         /* Update the previous switch rule of "MAC forward to VSI" to
6479          * "MAC fwd to VSI list"
6480          */
6481         status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
6482         if (status) {
6483             ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
6484                   tmp_fltr.fwd_id.hw_vsi_id, status);
6485             return status;
6486         }
6487         fm_list->vsi_list_info->ref_cnt--;
6488 
6489         /* Remove the VSI list since it is no longer used */
6490         status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
6491         if (status) {
6492             ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n",
6493                   vsi_list_id, status);
6494             return status;
6495         }
6496 
6497         list_del(&vsi_list_info->list_entry);
6498         devm_kfree(ice_hw_to_dev(hw), vsi_list_info);
6499         fm_list->vsi_list_info = NULL;
6500     }
6501 
6502     return status;
6503 }
6504 
6505 /**
6506  * ice_rem_adv_rule - removes existing advanced switch rule
6507  * @hw: pointer to the hardware structure
6508  * @lkups: information on the words that needs to be looked up. All words
6509  *         together makes one recipe
6510  * @lkups_cnt: num of entries in the lkups array
6511  * @rinfo: Its the pointer to the rule information for the rule
6512  *
6513  * This function can be used to remove 1 rule at a time. The lkups is
6514  * used to describe all the words that forms the "lookup" portion of the
6515  * rule. These words can span multiple protocols. Callers to this function
6516  * need to pass in a list of protocol headers with lookup information along
6517  * and mask that determines which words are valid from the given protocol
6518  * header. rinfo describes other information related to this rule such as
6519  * forwarding IDs, priority of this rule, etc.
6520  */
6521 static int
6522 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
6523          u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
6524 {
6525     struct ice_adv_fltr_mgmt_list_entry *list_elem;
6526     struct ice_prot_lkup_ext lkup_exts;
6527     bool remove_rule = false;
6528     struct mutex *rule_lock; /* Lock to protect filter rule list */
6529     u16 i, rid, vsi_handle;
6530     int status = 0;
6531 
6532     memset(&lkup_exts, 0, sizeof(lkup_exts));
6533     for (i = 0; i < lkups_cnt; i++) {
6534         u16 count;
6535 
6536         if (lkups[i].type >= ICE_PROTOCOL_LAST)
6537             return -EIO;
6538 
6539         count = ice_fill_valid_words(&lkups[i], &lkup_exts);
6540         if (!count)
6541             return -EIO;
6542     }
6543 
6544     /* Create any special protocol/offset pairs, such as looking at tunnel
6545      * bits by extracting metadata
6546      */
6547     status = ice_add_special_words(rinfo, &lkup_exts, ice_is_dvm_ena(hw));
6548     if (status)
6549         return status;
6550 
6551     rid = ice_find_recp(hw, &lkup_exts, rinfo->tun_type);
6552     /* If did not find a recipe that match the existing criteria */
6553     if (rid == ICE_MAX_NUM_RECIPES)
6554         return -EINVAL;
6555 
6556     rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
6557     list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
6558     /* the rule is already removed */
6559     if (!list_elem)
6560         return 0;
6561     mutex_lock(rule_lock);
6562     if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
6563         remove_rule = true;
6564     } else if (list_elem->vsi_count > 1) {
6565         remove_rule = false;
6566         vsi_handle = rinfo->sw_act.vsi_handle;
6567         status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6568     } else {
6569         vsi_handle = rinfo->sw_act.vsi_handle;
6570         status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
6571         if (status) {
6572             mutex_unlock(rule_lock);
6573             return status;
6574         }
6575         if (list_elem->vsi_count == 0)
6576             remove_rule = true;
6577     }
6578     mutex_unlock(rule_lock);
6579     if (remove_rule) {
6580         struct ice_sw_rule_lkup_rx_tx *s_rule;
6581         u16 rule_buf_sz;
6582 
6583         rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE(s_rule);
6584         s_rule = kzalloc(rule_buf_sz, GFP_KERNEL);
6585         if (!s_rule)
6586             return -ENOMEM;
6587         s_rule->act = 0;
6588         s_rule->index = cpu_to_le16(list_elem->rule_info.fltr_rule_id);
6589         s_rule->hdr_len = 0;
6590         status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
6591                      rule_buf_sz, 1,
6592                      ice_aqc_opc_remove_sw_rules, NULL);
6593         if (!status || status == -ENOENT) {
6594             struct ice_switch_info *sw = hw->switch_info;
6595 
6596             mutex_lock(rule_lock);
6597             list_del(&list_elem->list_entry);
6598             devm_kfree(ice_hw_to_dev(hw), list_elem->lkups);
6599             devm_kfree(ice_hw_to_dev(hw), list_elem);
6600             mutex_unlock(rule_lock);
6601             if (list_empty(&sw->recp_list[rid].filt_rules))
6602                 sw->recp_list[rid].adv_rule = false;
6603         }
6604         kfree(s_rule);
6605     }
6606     return status;
6607 }
6608 
6609 /**
6610  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
6611  * @hw: pointer to the hardware structure
6612  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
6613  *
6614  * This function is used to remove 1 rule at a time. The removal is based on
6615  * the remove_entry parameter. This function will remove rule for a given
6616  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
6617  */
6618 int
6619 ice_rem_adv_rule_by_id(struct ice_hw *hw,
6620                struct ice_rule_query_data *remove_entry)
6621 {
6622     struct ice_adv_fltr_mgmt_list_entry *list_itr;
6623     struct list_head *list_head;
6624     struct ice_adv_rule_info rinfo;
6625     struct ice_switch_info *sw;
6626 
6627     sw = hw->switch_info;
6628     if (!sw->recp_list[remove_entry->rid].recp_created)
6629         return -EINVAL;
6630     list_head = &sw->recp_list[remove_entry->rid].filt_rules;
6631     list_for_each_entry(list_itr, list_head, list_entry) {
6632         if (list_itr->rule_info.fltr_rule_id ==
6633             remove_entry->rule_id) {
6634             rinfo = list_itr->rule_info;
6635             rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
6636             return ice_rem_adv_rule(hw, list_itr->lkups,
6637                         list_itr->lkups_cnt, &rinfo);
6638         }
6639     }
6640     /* either list is empty or unable to find rule */
6641     return -ENOENT;
6642 }
6643 
6644 /**
6645  * ice_rem_adv_rule_for_vsi - removes existing advanced switch rules for a
6646  *                            given VSI handle
6647  * @hw: pointer to the hardware structure
6648  * @vsi_handle: VSI handle for which we are supposed to remove all the rules.
6649  *
6650  * This function is used to remove all the rules for a given VSI and as soon
6651  * as removing a rule fails, it will return immediately with the error code,
6652  * else it will return success.
6653  */
6654 int ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
6655 {
6656     struct ice_adv_fltr_mgmt_list_entry *list_itr, *tmp_entry;
6657     struct ice_vsi_list_map_info *map_info;
6658     struct ice_adv_rule_info rinfo;
6659     struct list_head *list_head;
6660     struct ice_switch_info *sw;
6661     int status;
6662     u8 rid;
6663 
6664     sw = hw->switch_info;
6665     for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
6666         if (!sw->recp_list[rid].recp_created)
6667             continue;
6668         if (!sw->recp_list[rid].adv_rule)
6669             continue;
6670 
6671         list_head = &sw->recp_list[rid].filt_rules;
6672         list_for_each_entry_safe(list_itr, tmp_entry, list_head,
6673                      list_entry) {
6674             rinfo = list_itr->rule_info;
6675 
6676             if (rinfo.sw_act.fltr_act == ICE_FWD_TO_VSI_LIST) {
6677                 map_info = list_itr->vsi_list_info;
6678                 if (!map_info)
6679                     continue;
6680 
6681                 if (!test_bit(vsi_handle, map_info->vsi_map))
6682                     continue;
6683             } else if (rinfo.sw_act.vsi_handle != vsi_handle) {
6684                 continue;
6685             }
6686 
6687             rinfo.sw_act.vsi_handle = vsi_handle;
6688             status = ice_rem_adv_rule(hw, list_itr->lkups,
6689                           list_itr->lkups_cnt, &rinfo);
6690             if (status)
6691                 return status;
6692         }
6693     }
6694     return 0;
6695 }
6696 
6697 /**
6698  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6699  * @hw: pointer to the hardware structure
6700  * @vsi_handle: driver VSI handle
6701  * @list_head: list for which filters need to be replayed
6702  *
6703  * Replay the advanced rule for the given VSI.
6704  */
6705 static int
6706 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6707             struct list_head *list_head)
6708 {
6709     struct ice_rule_query_data added_entry = { 0 };
6710     struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6711     int status = 0;
6712 
6713     if (list_empty(list_head))
6714         return status;
6715     list_for_each_entry(adv_fltr, list_head, list_entry) {
6716         struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6717         u16 lk_cnt = adv_fltr->lkups_cnt;
6718 
6719         if (vsi_handle != rinfo->sw_act.vsi_handle)
6720             continue;
6721         status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6722                       &added_entry);
6723         if (status)
6724             break;
6725     }
6726     return status;
6727 }
6728 
6729 /**
6730  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6731  * @hw: pointer to the hardware structure
6732  * @vsi_handle: driver VSI handle
6733  *
6734  * Replays filters for requested VSI via vsi_handle.
6735  */
6736 int ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6737 {
6738     struct ice_switch_info *sw = hw->switch_info;
6739     int status;
6740     u8 i;
6741 
6742     for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6743         struct list_head *head;
6744 
6745         head = &sw->recp_list[i].filt_replay_rules;
6746         if (!sw->recp_list[i].adv_rule)
6747             status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6748         else
6749             status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6750         if (status)
6751             return status;
6752     }
6753     return status;
6754 }
6755 
6756 /**
6757  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6758  * @hw: pointer to the HW struct
6759  *
6760  * Deletes the filter replay rules.
6761  */
6762 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6763 {
6764     struct ice_switch_info *sw = hw->switch_info;
6765     u8 i;
6766 
6767     if (!sw)
6768         return;
6769 
6770     for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6771         if (!list_empty(&sw->recp_list[i].filt_replay_rules)) {
6772             struct list_head *l_head;
6773 
6774             l_head = &sw->recp_list[i].filt_replay_rules;
6775             if (!sw->recp_list[i].adv_rule)
6776                 ice_rem_sw_rule_info(hw, l_head);
6777             else
6778                 ice_rem_adv_rule_info(hw, l_head);
6779         }
6780     }
6781 }