Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright (C) 2021, Intel Corporation. */
0003 
0004 #include "ice.h"
0005 #include "ice_lib.h"
0006 #include "ice_trace.h"
0007 
0008 #define E810_OUT_PROP_DELAY_NS 1
0009 
0010 #define UNKNOWN_INCVAL_E822 0x100000000ULL
0011 
0012 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
0013     /* name    idx   func         chan */
0014     { "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
0015     { "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
0016     { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
0017     { "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
0018     { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
0019 };
0020 
0021 /**
0022  * ice_get_sma_config_e810t
0023  * @hw: pointer to the hw struct
0024  * @ptp_pins: pointer to the ptp_pin_desc struture
0025  *
0026  * Read the configuration of the SMA control logic and put it into the
0027  * ptp_pin_desc structure
0028  */
0029 static int
0030 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
0031 {
0032     u8 data, i;
0033     int status;
0034 
0035     /* Read initial pin state */
0036     status = ice_read_sma_ctrl_e810t(hw, &data);
0037     if (status)
0038         return status;
0039 
0040     /* initialize with defaults */
0041     for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
0042         snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
0043              "%s", ice_pin_desc_e810t[i].name);
0044         ptp_pins[i].index = ice_pin_desc_e810t[i].index;
0045         ptp_pins[i].func = ice_pin_desc_e810t[i].func;
0046         ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
0047     }
0048 
0049     /* Parse SMA1/UFL1 */
0050     switch (data & ICE_SMA1_MASK_E810T) {
0051     case ICE_SMA1_MASK_E810T:
0052     default:
0053         ptp_pins[SMA1].func = PTP_PF_NONE;
0054         ptp_pins[UFL1].func = PTP_PF_NONE;
0055         break;
0056     case ICE_SMA1_DIR_EN_E810T:
0057         ptp_pins[SMA1].func = PTP_PF_PEROUT;
0058         ptp_pins[UFL1].func = PTP_PF_NONE;
0059         break;
0060     case ICE_SMA1_TX_EN_E810T:
0061         ptp_pins[SMA1].func = PTP_PF_EXTTS;
0062         ptp_pins[UFL1].func = PTP_PF_NONE;
0063         break;
0064     case 0:
0065         ptp_pins[SMA1].func = PTP_PF_EXTTS;
0066         ptp_pins[UFL1].func = PTP_PF_PEROUT;
0067         break;
0068     }
0069 
0070     /* Parse SMA2/UFL2 */
0071     switch (data & ICE_SMA2_MASK_E810T) {
0072     case ICE_SMA2_MASK_E810T:
0073     default:
0074         ptp_pins[SMA2].func = PTP_PF_NONE;
0075         ptp_pins[UFL2].func = PTP_PF_NONE;
0076         break;
0077     case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
0078         ptp_pins[SMA2].func = PTP_PF_EXTTS;
0079         ptp_pins[UFL2].func = PTP_PF_NONE;
0080         break;
0081     case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
0082         ptp_pins[SMA2].func = PTP_PF_PEROUT;
0083         ptp_pins[UFL2].func = PTP_PF_NONE;
0084         break;
0085     case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
0086         ptp_pins[SMA2].func = PTP_PF_NONE;
0087         ptp_pins[UFL2].func = PTP_PF_EXTTS;
0088         break;
0089     case ICE_SMA2_DIR_EN_E810T:
0090         ptp_pins[SMA2].func = PTP_PF_PEROUT;
0091         ptp_pins[UFL2].func = PTP_PF_EXTTS;
0092         break;
0093     }
0094 
0095     return 0;
0096 }
0097 
0098 /**
0099  * ice_ptp_set_sma_config_e810t
0100  * @hw: pointer to the hw struct
0101  * @ptp_pins: pointer to the ptp_pin_desc struture
0102  *
0103  * Set the configuration of the SMA control logic based on the configuration in
0104  * num_pins parameter
0105  */
0106 static int
0107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
0108                  const struct ptp_pin_desc *ptp_pins)
0109 {
0110     int status;
0111     u8 data;
0112 
0113     /* SMA1 and UFL1 cannot be set to TX at the same time */
0114     if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
0115         ptp_pins[UFL1].func == PTP_PF_PEROUT)
0116         return -EINVAL;
0117 
0118     /* SMA2 and UFL2 cannot be set to RX at the same time */
0119     if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
0120         ptp_pins[UFL2].func == PTP_PF_EXTTS)
0121         return -EINVAL;
0122 
0123     /* Read initial pin state value */
0124     status = ice_read_sma_ctrl_e810t(hw, &data);
0125     if (status)
0126         return status;
0127 
0128     /* Set the right sate based on the desired configuration */
0129     data &= ~ICE_SMA1_MASK_E810T;
0130     if (ptp_pins[SMA1].func == PTP_PF_NONE &&
0131         ptp_pins[UFL1].func == PTP_PF_NONE) {
0132         dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
0133         data |= ICE_SMA1_MASK_E810T;
0134     } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
0135            ptp_pins[UFL1].func == PTP_PF_NONE) {
0136         dev_info(ice_hw_to_dev(hw), "SMA1 RX");
0137         data |= ICE_SMA1_TX_EN_E810T;
0138     } else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
0139            ptp_pins[UFL1].func == PTP_PF_PEROUT) {
0140         /* U.FL 1 TX will always enable SMA 1 RX */
0141         dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
0142     } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
0143            ptp_pins[UFL1].func == PTP_PF_PEROUT) {
0144         dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
0145     } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
0146            ptp_pins[UFL1].func == PTP_PF_NONE) {
0147         dev_info(ice_hw_to_dev(hw), "SMA1 TX");
0148         data |= ICE_SMA1_DIR_EN_E810T;
0149     }
0150 
0151     data &= ~ICE_SMA2_MASK_E810T;
0152     if (ptp_pins[SMA2].func == PTP_PF_NONE &&
0153         ptp_pins[UFL2].func == PTP_PF_NONE) {
0154         dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
0155         data |= ICE_SMA2_MASK_E810T;
0156     } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
0157             ptp_pins[UFL2].func == PTP_PF_NONE) {
0158         dev_info(ice_hw_to_dev(hw), "SMA2 RX");
0159         data |= (ICE_SMA2_TX_EN_E810T |
0160              ICE_SMA2_UFL2_RX_DIS_E810T);
0161     } else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
0162            ptp_pins[UFL2].func == PTP_PF_EXTTS) {
0163         dev_info(ice_hw_to_dev(hw), "UFL2 RX");
0164         data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
0165     } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
0166            ptp_pins[UFL2].func == PTP_PF_NONE) {
0167         dev_info(ice_hw_to_dev(hw), "SMA2 TX");
0168         data |= (ICE_SMA2_DIR_EN_E810T |
0169              ICE_SMA2_UFL2_RX_DIS_E810T);
0170     } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
0171            ptp_pins[UFL2].func == PTP_PF_EXTTS) {
0172         dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
0173         data |= ICE_SMA2_DIR_EN_E810T;
0174     }
0175 
0176     return ice_write_sma_ctrl_e810t(hw, data);
0177 }
0178 
0179 /**
0180  * ice_ptp_set_sma_e810t
0181  * @info: the driver's PTP info structure
0182  * @pin: pin index in kernel structure
0183  * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
0184  *
0185  * Set the configuration of a single SMA pin
0186  */
0187 static int
0188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
0189               enum ptp_pin_function func)
0190 {
0191     struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
0192     struct ice_pf *pf = ptp_info_to_pf(info);
0193     struct ice_hw *hw = &pf->hw;
0194     int err;
0195 
0196     if (pin < SMA1 || func > PTP_PF_PEROUT)
0197         return -EOPNOTSUPP;
0198 
0199     err = ice_get_sma_config_e810t(hw, ptp_pins);
0200     if (err)
0201         return err;
0202 
0203     /* Disable the same function on the other pin sharing the channel */
0204     if (pin == SMA1 && ptp_pins[UFL1].func == func)
0205         ptp_pins[UFL1].func = PTP_PF_NONE;
0206     if (pin == UFL1 && ptp_pins[SMA1].func == func)
0207         ptp_pins[SMA1].func = PTP_PF_NONE;
0208 
0209     if (pin == SMA2 && ptp_pins[UFL2].func == func)
0210         ptp_pins[UFL2].func = PTP_PF_NONE;
0211     if (pin == UFL2 && ptp_pins[SMA2].func == func)
0212         ptp_pins[SMA2].func = PTP_PF_NONE;
0213 
0214     /* Set up new pin function in the temp table */
0215     ptp_pins[pin].func = func;
0216 
0217     return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
0218 }
0219 
0220 /**
0221  * ice_verify_pin_e810t
0222  * @info: the driver's PTP info structure
0223  * @pin: Pin index
0224  * @func: Assigned function
0225  * @chan: Assigned channel
0226  *
0227  * Verify if pin supports requested pin function. If the Check pins consistency.
0228  * Reconfigure the SMA logic attached to the given pin to enable its
0229  * desired functionality
0230  */
0231 static int
0232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
0233              enum ptp_pin_function func, unsigned int chan)
0234 {
0235     /* Don't allow channel reassignment */
0236     if (chan != ice_pin_desc_e810t[pin].chan)
0237         return -EOPNOTSUPP;
0238 
0239     /* Check if functions are properly assigned */
0240     switch (func) {
0241     case PTP_PF_NONE:
0242         break;
0243     case PTP_PF_EXTTS:
0244         if (pin == UFL1)
0245             return -EOPNOTSUPP;
0246         break;
0247     case PTP_PF_PEROUT:
0248         if (pin == UFL2 || pin == GNSS)
0249             return -EOPNOTSUPP;
0250         break;
0251     case PTP_PF_PHYSYNC:
0252         return -EOPNOTSUPP;
0253     }
0254 
0255     return ice_ptp_set_sma_e810t(info, pin, func);
0256 }
0257 
0258 /**
0259  * ice_set_tx_tstamp - Enable or disable Tx timestamping
0260  * @pf: The PF pointer to search in
0261  * @on: bool value for whether timestamps are enabled or disabled
0262  */
0263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
0264 {
0265     struct ice_vsi *vsi;
0266     u32 val;
0267     u16 i;
0268 
0269     vsi = ice_get_main_vsi(pf);
0270     if (!vsi)
0271         return;
0272 
0273     /* Set the timestamp enable flag for all the Tx rings */
0274     ice_for_each_txq(vsi, i) {
0275         if (!vsi->tx_rings[i])
0276             continue;
0277         vsi->tx_rings[i]->ptp_tx = on;
0278     }
0279 
0280     /* Configure the Tx timestamp interrupt */
0281     val = rd32(&pf->hw, PFINT_OICR_ENA);
0282     if (on)
0283         val |= PFINT_OICR_TSYN_TX_M;
0284     else
0285         val &= ~PFINT_OICR_TSYN_TX_M;
0286     wr32(&pf->hw, PFINT_OICR_ENA, val);
0287 
0288     pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
0289 }
0290 
0291 /**
0292  * ice_set_rx_tstamp - Enable or disable Rx timestamping
0293  * @pf: The PF pointer to search in
0294  * @on: bool value for whether timestamps are enabled or disabled
0295  */
0296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
0297 {
0298     struct ice_vsi *vsi;
0299     u16 i;
0300 
0301     vsi = ice_get_main_vsi(pf);
0302     if (!vsi)
0303         return;
0304 
0305     /* Set the timestamp flag for all the Rx rings */
0306     ice_for_each_rxq(vsi, i) {
0307         if (!vsi->rx_rings[i])
0308             continue;
0309         vsi->rx_rings[i]->ptp_rx = on;
0310     }
0311 
0312     pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
0313                            HWTSTAMP_FILTER_NONE;
0314 }
0315 
0316 /**
0317  * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
0318  * @pf: Board private structure
0319  * @ena: bool value to enable or disable time stamp
0320  *
0321  * This function will configure timestamping during PTP initialization
0322  * and deinitialization
0323  */
0324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
0325 {
0326     ice_set_tx_tstamp(pf, ena);
0327     ice_set_rx_tstamp(pf, ena);
0328 }
0329 
0330 /**
0331  * ice_get_ptp_clock_index - Get the PTP clock index
0332  * @pf: the PF pointer
0333  *
0334  * Determine the clock index of the PTP clock associated with this device. If
0335  * this is the PF controlling the clock, just use the local access to the
0336  * clock device pointer.
0337  *
0338  * Otherwise, read from the driver shared parameters to determine the clock
0339  * index value.
0340  *
0341  * Returns: the index of the PTP clock associated with this device, or -1 if
0342  * there is no associated clock.
0343  */
0344 int ice_get_ptp_clock_index(struct ice_pf *pf)
0345 {
0346     struct device *dev = ice_pf_to_dev(pf);
0347     enum ice_aqc_driver_params param_idx;
0348     struct ice_hw *hw = &pf->hw;
0349     u8 tmr_idx;
0350     u32 value;
0351     int err;
0352 
0353     /* Use the ptp_clock structure if we're the main PF */
0354     if (pf->ptp.clock)
0355         return ptp_clock_index(pf->ptp.clock);
0356 
0357     tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
0358     if (!tmr_idx)
0359         param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
0360     else
0361         param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
0362 
0363     err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
0364     if (err) {
0365         dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
0366             err, ice_aq_str(hw->adminq.sq_last_status));
0367         return -1;
0368     }
0369 
0370     /* The PTP clock index is an integer, and will be between 0 and
0371      * INT_MAX. The highest bit of the driver shared parameter is used to
0372      * indicate whether or not the currently stored clock index is valid.
0373      */
0374     if (!(value & PTP_SHARED_CLK_IDX_VALID))
0375         return -1;
0376 
0377     return value & ~PTP_SHARED_CLK_IDX_VALID;
0378 }
0379 
0380 /**
0381  * ice_set_ptp_clock_index - Set the PTP clock index
0382  * @pf: the PF pointer
0383  *
0384  * Set the PTP clock index for this device into the shared driver parameters,
0385  * so that other PFs associated with this device can read it.
0386  *
0387  * If the PF is unable to store the clock index, it will log an error, but
0388  * will continue operating PTP.
0389  */
0390 static void ice_set_ptp_clock_index(struct ice_pf *pf)
0391 {
0392     struct device *dev = ice_pf_to_dev(pf);
0393     enum ice_aqc_driver_params param_idx;
0394     struct ice_hw *hw = &pf->hw;
0395     u8 tmr_idx;
0396     u32 value;
0397     int err;
0398 
0399     if (!pf->ptp.clock)
0400         return;
0401 
0402     tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
0403     if (!tmr_idx)
0404         param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
0405     else
0406         param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
0407 
0408     value = (u32)ptp_clock_index(pf->ptp.clock);
0409     if (value > INT_MAX) {
0410         dev_err(dev, "PTP Clock index is too large to store\n");
0411         return;
0412     }
0413     value |= PTP_SHARED_CLK_IDX_VALID;
0414 
0415     err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
0416     if (err) {
0417         dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
0418             err, ice_aq_str(hw->adminq.sq_last_status));
0419     }
0420 }
0421 
0422 /**
0423  * ice_clear_ptp_clock_index - Clear the PTP clock index
0424  * @pf: the PF pointer
0425  *
0426  * Clear the PTP clock index for this device. Must be called when
0427  * unregistering the PTP clock, in order to ensure other PFs stop reporting
0428  * a clock object that no longer exists.
0429  */
0430 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
0431 {
0432     struct device *dev = ice_pf_to_dev(pf);
0433     enum ice_aqc_driver_params param_idx;
0434     struct ice_hw *hw = &pf->hw;
0435     u8 tmr_idx;
0436     int err;
0437 
0438     /* Do not clear the index if we don't own the timer */
0439     if (!hw->func_caps.ts_func_info.src_tmr_owned)
0440         return;
0441 
0442     tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
0443     if (!tmr_idx)
0444         param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
0445     else
0446         param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
0447 
0448     err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
0449     if (err) {
0450         dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
0451             err, ice_aq_str(hw->adminq.sq_last_status));
0452     }
0453 }
0454 
0455 /**
0456  * ice_ptp_read_src_clk_reg - Read the source clock register
0457  * @pf: Board private structure
0458  * @sts: Optional parameter for holding a pair of system timestamps from
0459  *       the system clock. Will be ignored if NULL is given.
0460  */
0461 static u64
0462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
0463 {
0464     struct ice_hw *hw = &pf->hw;
0465     u32 hi, lo, lo2;
0466     u8 tmr_idx;
0467 
0468     tmr_idx = ice_get_ptp_src_clock_index(hw);
0469     /* Read the system timestamp pre PHC read */
0470     ptp_read_system_prets(sts);
0471 
0472     lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
0473 
0474     /* Read the system timestamp post PHC read */
0475     ptp_read_system_postts(sts);
0476 
0477     hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
0478     lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
0479 
0480     if (lo2 < lo) {
0481         /* if TIME_L rolled over read TIME_L again and update
0482          * system timestamps
0483          */
0484         ptp_read_system_prets(sts);
0485         lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
0486         ptp_read_system_postts(sts);
0487         hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
0488     }
0489 
0490     return ((u64)hi << 32) | lo;
0491 }
0492 
0493 /**
0494  * ice_ptp_update_cached_phctime - Update the cached PHC time values
0495  * @pf: Board specific private structure
0496  *
0497  * This function updates the system time values which are cached in the PF
0498  * structure and the Rx rings.
0499  *
0500  * This function must be called periodically to ensure that the cached value
0501  * is never more than 2 seconds old. It must also be called whenever the PHC
0502  * time has been changed.
0503  *
0504  * Return:
0505  * * 0 - OK, successfully updated
0506  * * -EAGAIN - PF was busy, need to reschedule the update
0507  */
0508 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
0509 {
0510     u64 systime;
0511     int i;
0512 
0513     if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
0514         return -EAGAIN;
0515 
0516     /* Read the current PHC time */
0517     systime = ice_ptp_read_src_clk_reg(pf, NULL);
0518 
0519     /* Update the cached PHC time stored in the PF structure */
0520     WRITE_ONCE(pf->ptp.cached_phc_time, systime);
0521 
0522     ice_for_each_vsi(pf, i) {
0523         struct ice_vsi *vsi = pf->vsi[i];
0524         int j;
0525 
0526         if (!vsi)
0527             continue;
0528 
0529         if (vsi->type != ICE_VSI_PF)
0530             continue;
0531 
0532         ice_for_each_rxq(vsi, j) {
0533             if (!vsi->rx_rings[j])
0534                 continue;
0535             WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
0536         }
0537     }
0538     clear_bit(ICE_CFG_BUSY, pf->state);
0539 
0540     return 0;
0541 }
0542 
0543 /**
0544  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
0545  * @cached_phc_time: recently cached copy of PHC time
0546  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
0547  *
0548  * Hardware captures timestamps which contain only 32 bits of nominal
0549  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
0550  * Note that the captured timestamp values may be 40 bits, but the lower
0551  * 8 bits are sub-nanoseconds and generally discarded.
0552  *
0553  * Extend the 32bit nanosecond timestamp using the following algorithm and
0554  * assumptions:
0555  *
0556  * 1) have a recently cached copy of the PHC time
0557  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
0558  *    seconds) before or after the PHC time was captured.
0559  * 3) calculate the delta between the cached time and the timestamp
0560  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
0561  *    captured after the PHC time. In this case, the full timestamp is just
0562  *    the cached PHC time plus the delta.
0563  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
0564  *    timestamp was captured *before* the PHC time, i.e. because the PHC
0565  *    cache was updated after the timestamp was captured by hardware. In this
0566  *    case, the full timestamp is the cached time minus the inverse delta.
0567  *
0568  * This algorithm works even if the PHC time was updated after a Tx timestamp
0569  * was requested, but before the Tx timestamp event was reported from
0570  * hardware.
0571  *
0572  * This calculation primarily relies on keeping the cached PHC time up to
0573  * date. If the timestamp was captured more than 2^31 nanoseconds after the
0574  * PHC time, it is possible that the lower 32bits of PHC time have
0575  * overflowed more than once, and we might generate an incorrect timestamp.
0576  *
0577  * This is prevented by (a) periodically updating the cached PHC time once
0578  * a second, and (b) discarding any Tx timestamp packet if it has waited for
0579  * a timestamp for more than one second.
0580  */
0581 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
0582 {
0583     u32 delta, phc_time_lo;
0584     u64 ns;
0585 
0586     /* Extract the lower 32 bits of the PHC time */
0587     phc_time_lo = (u32)cached_phc_time;
0588 
0589     /* Calculate the delta between the lower 32bits of the cached PHC
0590      * time and the in_tstamp value
0591      */
0592     delta = (in_tstamp - phc_time_lo);
0593 
0594     /* Do not assume that the in_tstamp is always more recent than the
0595      * cached PHC time. If the delta is large, it indicates that the
0596      * in_tstamp was taken in the past, and should be converted
0597      * forward.
0598      */
0599     if (delta > (U32_MAX / 2)) {
0600         /* reverse the delta calculation here */
0601         delta = (phc_time_lo - in_tstamp);
0602         ns = cached_phc_time - delta;
0603     } else {
0604         ns = cached_phc_time + delta;
0605     }
0606 
0607     return ns;
0608 }
0609 
0610 /**
0611  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
0612  * @pf: Board private structure
0613  * @in_tstamp: Ingress/egress 40b timestamp value
0614  *
0615  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
0616  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
0617  *
0618  *  *--------------------------------------------------------------*
0619  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
0620  *  *--------------------------------------------------------------*
0621  *
0622  * The low bit is an indicator of whether the timestamp is valid. The next
0623  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
0624  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
0625  *
0626  * It is assumed that the caller verifies the timestamp is valid prior to
0627  * calling this function.
0628  *
0629  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
0630  * time stored in the device private PTP structure as the basis for timestamp
0631  * extension.
0632  *
0633  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
0634  * algorithm.
0635  */
0636 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
0637 {
0638     const u64 mask = GENMASK_ULL(31, 0);
0639 
0640     return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
0641                      (in_tstamp >> 8) & mask);
0642 }
0643 
0644 /**
0645  * ice_ptp_read_time - Read the time from the device
0646  * @pf: Board private structure
0647  * @ts: timespec structure to hold the current time value
0648  * @sts: Optional parameter for holding a pair of system timestamps from
0649  *       the system clock. Will be ignored if NULL is given.
0650  *
0651  * This function reads the source clock registers and stores them in a timespec.
0652  * However, since the registers are 64 bits of nanoseconds, we must convert the
0653  * result to a timespec before we can return.
0654  */
0655 static void
0656 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
0657           struct ptp_system_timestamp *sts)
0658 {
0659     u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
0660 
0661     *ts = ns_to_timespec64(time_ns);
0662 }
0663 
0664 /**
0665  * ice_ptp_write_init - Set PHC time to provided value
0666  * @pf: Board private structure
0667  * @ts: timespec structure that holds the new time value
0668  *
0669  * Set the PHC time to the specified time provided in the timespec.
0670  */
0671 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
0672 {
0673     u64 ns = timespec64_to_ns(ts);
0674     struct ice_hw *hw = &pf->hw;
0675 
0676     return ice_ptp_init_time(hw, ns);
0677 }
0678 
0679 /**
0680  * ice_ptp_write_adj - Adjust PHC clock time atomically
0681  * @pf: Board private structure
0682  * @adj: Adjustment in nanoseconds
0683  *
0684  * Perform an atomic adjustment of the PHC time by the specified number of
0685  * nanoseconds.
0686  */
0687 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
0688 {
0689     struct ice_hw *hw = &pf->hw;
0690 
0691     return ice_ptp_adj_clock(hw, adj);
0692 }
0693 
0694 /**
0695  * ice_base_incval - Get base timer increment value
0696  * @pf: Board private structure
0697  *
0698  * Look up the base timer increment value for this device. The base increment
0699  * value is used to define the nominal clock tick rate. This increment value
0700  * is programmed during device initialization. It is also used as the basis
0701  * for calculating adjustments using scaled_ppm.
0702  */
0703 static u64 ice_base_incval(struct ice_pf *pf)
0704 {
0705     struct ice_hw *hw = &pf->hw;
0706     u64 incval;
0707 
0708     if (ice_is_e810(hw))
0709         incval = ICE_PTP_NOMINAL_INCVAL_E810;
0710     else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
0711         incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
0712     else
0713         incval = UNKNOWN_INCVAL_E822;
0714 
0715     dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
0716         incval);
0717 
0718     return incval;
0719 }
0720 
0721 /**
0722  * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad
0723  * @pf: The PF private data structure
0724  * @quad: The quad (0-4)
0725  */
0726 static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad)
0727 {
0728     struct ice_hw *hw = &pf->hw;
0729 
0730     ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
0731     ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
0732 }
0733 
0734 /**
0735  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
0736  * @port: PTP port for which Tx FIFO is checked
0737  */
0738 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
0739 {
0740     int quad = port->port_num / ICE_PORTS_PER_QUAD;
0741     int offs = port->port_num % ICE_PORTS_PER_QUAD;
0742     struct ice_pf *pf;
0743     struct ice_hw *hw;
0744     u32 val, phy_sts;
0745     int err;
0746 
0747     pf = ptp_port_to_pf(port);
0748     hw = &pf->hw;
0749 
0750     if (port->tx_fifo_busy_cnt == FIFO_OK)
0751         return 0;
0752 
0753     /* need to read FIFO state */
0754     if (offs == 0 || offs == 1)
0755         err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
0756                          &val);
0757     else
0758         err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
0759                          &val);
0760 
0761     if (err) {
0762         dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
0763             port->port_num, err);
0764         return err;
0765     }
0766 
0767     if (offs & 0x1)
0768         phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
0769     else
0770         phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
0771 
0772     if (phy_sts & FIFO_EMPTY) {
0773         port->tx_fifo_busy_cnt = FIFO_OK;
0774         return 0;
0775     }
0776 
0777     port->tx_fifo_busy_cnt++;
0778 
0779     dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
0780         port->tx_fifo_busy_cnt, port->port_num);
0781 
0782     if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
0783         dev_dbg(ice_pf_to_dev(pf),
0784             "Port %d Tx FIFO still not empty; resetting quad %d\n",
0785             port->port_num, quad);
0786         ice_ptp_reset_ts_memory_quad(pf, quad);
0787         port->tx_fifo_busy_cnt = FIFO_OK;
0788         return 0;
0789     }
0790 
0791     return -EAGAIN;
0792 }
0793 
0794 /**
0795  * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid
0796  * @port: the PTP port to check
0797  *
0798  * Checks whether the Tx offset for the PHY associated with this port is
0799  * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
0800  * not.
0801  */
0802 static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port)
0803 {
0804     struct ice_pf *pf = ptp_port_to_pf(port);
0805     struct device *dev = ice_pf_to_dev(pf);
0806     struct ice_hw *hw = &pf->hw;
0807     u32 val;
0808     int err;
0809 
0810     err = ice_ptp_check_tx_fifo(port);
0811     if (err)
0812         return err;
0813 
0814     err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS,
0815                     &val);
0816     if (err) {
0817         dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n",
0818             port->port_num, err);
0819         return -EAGAIN;
0820     }
0821 
0822     if (!(val & P_REG_TX_OV_STATUS_OV_M))
0823         return -EAGAIN;
0824 
0825     return 0;
0826 }
0827 
0828 /**
0829  * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid
0830  * @port: the PTP port to check
0831  *
0832  * Checks whether the Rx offset for the PHY associated with this port is
0833  * valid. Returns 0 if the offset is valid, and a non-zero error code if it is
0834  * not.
0835  */
0836 static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port)
0837 {
0838     struct ice_pf *pf = ptp_port_to_pf(port);
0839     struct device *dev = ice_pf_to_dev(pf);
0840     struct ice_hw *hw = &pf->hw;
0841     int err;
0842     u32 val;
0843 
0844     err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS,
0845                     &val);
0846     if (err) {
0847         dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n",
0848             port->port_num, err);
0849         return err;
0850     }
0851 
0852     if (!(val & P_REG_RX_OV_STATUS_OV_M))
0853         return -EAGAIN;
0854 
0855     return 0;
0856 }
0857 
0858 /**
0859  * ice_ptp_check_offset_valid - Check port offset valid bit
0860  * @port: Port for which offset valid bit is checked
0861  *
0862  * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the
0863  * offset is not ready.
0864  */
0865 static int ice_ptp_check_offset_valid(struct ice_ptp_port *port)
0866 {
0867     int tx_err, rx_err;
0868 
0869     /* always check both Tx and Rx offset validity */
0870     tx_err = ice_ptp_check_tx_offset_valid(port);
0871     rx_err = ice_ptp_check_rx_offset_valid(port);
0872 
0873     if (tx_err || rx_err)
0874         return -EAGAIN;
0875 
0876     return 0;
0877 }
0878 
0879 /**
0880  * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets
0881  * @work: Pointer to the kthread_work structure for this task
0882  *
0883  * Check whether both the Tx and Rx offsets are valid for enabling the vernier
0884  * calibration.
0885  *
0886  * Once we have valid offsets from hardware, update the total Tx and Rx
0887  * offsets, and exit bypass mode. This enables more precise timestamps using
0888  * the extra data measured during the vernier calibration process.
0889  */
0890 static void ice_ptp_wait_for_offset_valid(struct kthread_work *work)
0891 {
0892     struct ice_ptp_port *port;
0893     int err;
0894     struct device *dev;
0895     struct ice_pf *pf;
0896     struct ice_hw *hw;
0897 
0898     port = container_of(work, struct ice_ptp_port, ov_work.work);
0899     pf = ptp_port_to_pf(port);
0900     hw = &pf->hw;
0901     dev = ice_pf_to_dev(pf);
0902 
0903     if (ice_ptp_check_offset_valid(port)) {
0904         /* Offsets not ready yet, try again later */
0905         kthread_queue_delayed_work(pf->ptp.kworker,
0906                        &port->ov_work,
0907                        msecs_to_jiffies(100));
0908         return;
0909     }
0910 
0911     /* Offsets are valid, so it is safe to exit bypass mode */
0912     err = ice_phy_exit_bypass_e822(hw, port->port_num);
0913     if (err) {
0914         dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n",
0915              port->port_num, err);
0916         return;
0917     }
0918 }
0919 
0920 /**
0921  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
0922  * @ptp_port: PTP port to stop
0923  */
0924 static int
0925 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
0926 {
0927     struct ice_pf *pf = ptp_port_to_pf(ptp_port);
0928     u8 port = ptp_port->port_num;
0929     struct ice_hw *hw = &pf->hw;
0930     int err;
0931 
0932     if (ice_is_e810(hw))
0933         return 0;
0934 
0935     mutex_lock(&ptp_port->ps_lock);
0936 
0937     kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
0938 
0939     err = ice_stop_phy_timer_e822(hw, port, true);
0940     if (err)
0941         dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
0942             port, err);
0943 
0944     mutex_unlock(&ptp_port->ps_lock);
0945 
0946     return err;
0947 }
0948 
0949 /**
0950  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
0951  * @ptp_port: PTP port for which the PHY start is set
0952  *
0953  * Start the PHY timestamping block, and initiate Vernier timestamping
0954  * calibration. If timestamping cannot be calibrated (such as if link is down)
0955  * then disable the timestamping block instead.
0956  */
0957 static int
0958 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
0959 {
0960     struct ice_pf *pf = ptp_port_to_pf(ptp_port);
0961     u8 port = ptp_port->port_num;
0962     struct ice_hw *hw = &pf->hw;
0963     int err;
0964 
0965     if (ice_is_e810(hw))
0966         return 0;
0967 
0968     if (!ptp_port->link_up)
0969         return ice_ptp_port_phy_stop(ptp_port);
0970 
0971     mutex_lock(&ptp_port->ps_lock);
0972 
0973     kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
0974 
0975     /* temporarily disable Tx timestamps while calibrating PHY offset */
0976     ptp_port->tx.calibrating = true;
0977     ptp_port->tx_fifo_busy_cnt = 0;
0978 
0979     /* Start the PHY timer in bypass mode */
0980     err = ice_start_phy_timer_e822(hw, port, true);
0981     if (err)
0982         goto out_unlock;
0983 
0984     /* Enable Tx timestamps right away */
0985     ptp_port->tx.calibrating = false;
0986 
0987     kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
0988 
0989 out_unlock:
0990     if (err)
0991         dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
0992             port, err);
0993 
0994     mutex_unlock(&ptp_port->ps_lock);
0995 
0996     return err;
0997 }
0998 
0999 /**
1000  * ice_ptp_link_change - Set or clear port registers for timestamping
1001  * @pf: Board private structure
1002  * @port: Port for which the PHY start is set
1003  * @linkup: Link is up or down
1004  */
1005 int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1006 {
1007     struct ice_ptp_port *ptp_port;
1008 
1009     if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
1010         return 0;
1011 
1012     if (port >= ICE_NUM_EXTERNAL_PORTS)
1013         return -EINVAL;
1014 
1015     ptp_port = &pf->ptp.port;
1016     if (ptp_port->port_num != port)
1017         return -EINVAL;
1018 
1019     /* Update cached link err for this port immediately */
1020     ptp_port->link_up = linkup;
1021 
1022     if (!test_bit(ICE_FLAG_PTP, pf->flags))
1023         /* PTP is not setup */
1024         return -EAGAIN;
1025 
1026     return ice_ptp_port_phy_restart(ptp_port);
1027 }
1028 
1029 /**
1030  * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads
1031  * @pf: The PF private data structure
1032  */
1033 static void ice_ptp_reset_ts_memory(struct ice_pf *pf)
1034 {
1035     int quad;
1036 
1037     quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD;
1038     ice_ptp_reset_ts_memory_quad(pf, quad);
1039 }
1040 
1041 /**
1042  * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1043  * @pf: PF private structure
1044  * @ena: bool value to enable or disable interrupt
1045  * @threshold: Minimum number of packets at which intr is triggered
1046  *
1047  * Utility function to enable or disable Tx timestamp interrupt and threshold
1048  */
1049 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1050 {
1051     struct ice_hw *hw = &pf->hw;
1052     int err = 0;
1053     int quad;
1054     u32 val;
1055 
1056     ice_ptp_reset_ts_memory(pf);
1057 
1058     for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1059         err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1060                          &val);
1061         if (err)
1062             break;
1063 
1064         if (ena) {
1065             val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1066             val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1067             val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1068                 Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1069         } else {
1070             val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1071         }
1072 
1073         err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1074                           val);
1075         if (err)
1076             break;
1077     }
1078 
1079     if (err)
1080         dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1081             err);
1082     return err;
1083 }
1084 
1085 /**
1086  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1087  * @pf: Board private structure
1088  */
1089 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1090 {
1091     ice_ptp_port_phy_restart(&pf->ptp.port);
1092 }
1093 
1094 /**
1095  * ice_ptp_adjfine - Adjust clock increment rate
1096  * @info: the driver's PTP info structure
1097  * @scaled_ppm: Parts per million with 16-bit fractional field
1098  *
1099  * Adjust the frequency of the clock by the indicated scaled ppm from the
1100  * base frequency.
1101  */
1102 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1103 {
1104     struct ice_pf *pf = ptp_info_to_pf(info);
1105     struct ice_hw *hw = &pf->hw;
1106     u64 incval, diff;
1107     int neg_adj = 0;
1108     int err;
1109 
1110     incval = ice_base_incval(pf);
1111 
1112     if (scaled_ppm < 0) {
1113         neg_adj = 1;
1114         scaled_ppm = -scaled_ppm;
1115     }
1116 
1117     diff = mul_u64_u64_div_u64(incval, (u64)scaled_ppm,
1118                    1000000ULL << 16);
1119     if (neg_adj)
1120         incval -= diff;
1121     else
1122         incval += diff;
1123 
1124     err = ice_ptp_write_incval_locked(hw, incval);
1125     if (err) {
1126         dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1127             err);
1128         return -EIO;
1129     }
1130 
1131     return 0;
1132 }
1133 
1134 /**
1135  * ice_ptp_extts_work - Workqueue task function
1136  * @work: external timestamp work structure
1137  *
1138  * Service for PTP external clock event
1139  */
1140 static void ice_ptp_extts_work(struct kthread_work *work)
1141 {
1142     struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work);
1143     struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
1144     struct ptp_clock_event event;
1145     struct ice_hw *hw = &pf->hw;
1146     u8 chan, tmr_idx;
1147     u32 hi, lo;
1148 
1149     tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1150     /* Event time is captured by one of the two matched registers
1151      *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1152      *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1153      * Event is defined in GLTSYN_EVNT_0 register
1154      */
1155     for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1156         /* Check if channel is enabled */
1157         if (pf->ptp.ext_ts_irq & (1 << chan)) {
1158             lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1159             hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1160             event.timestamp = (((u64)hi) << 32) | lo;
1161             event.type = PTP_CLOCK_EXTTS;
1162             event.index = chan;
1163 
1164             /* Fire event */
1165             ptp_clock_event(pf->ptp.clock, &event);
1166             pf->ptp.ext_ts_irq &= ~(1 << chan);
1167         }
1168     }
1169 }
1170 
1171 /**
1172  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1173  * @pf: Board private structure
1174  * @ena: true to enable; false to disable
1175  * @chan: GPIO channel (0-3)
1176  * @gpio_pin: GPIO pin
1177  * @extts_flags: request flags from the ptp_extts_request.flags
1178  */
1179 static int
1180 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1181           unsigned int extts_flags)
1182 {
1183     u32 func, aux_reg, gpio_reg, irq_reg;
1184     struct ice_hw *hw = &pf->hw;
1185     u8 tmr_idx;
1186 
1187     if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1188         return -EINVAL;
1189 
1190     tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1191 
1192     irq_reg = rd32(hw, PFINT_OICR_ENA);
1193 
1194     if (ena) {
1195         /* Enable the interrupt */
1196         irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1197         aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1198 
1199 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
1200 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE    BIT(1)
1201 
1202         /* set event level to requested edge */
1203         if (extts_flags & PTP_FALLING_EDGE)
1204             aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1205         if (extts_flags & PTP_RISING_EDGE)
1206             aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1207 
1208         /* Write GPIO CTL reg.
1209          * 0x1 is input sampled by EVENT register(channel)
1210          * + num_in_channels * tmr_idx
1211          */
1212         func = 1 + chan + (tmr_idx * 3);
1213         gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1214                 GLGEN_GPIO_CTL_PIN_FUNC_M);
1215         pf->ptp.ext_ts_chan |= (1 << chan);
1216     } else {
1217         /* clear the values we set to reset defaults */
1218         aux_reg = 0;
1219         gpio_reg = 0;
1220         pf->ptp.ext_ts_chan &= ~(1 << chan);
1221         if (!pf->ptp.ext_ts_chan)
1222             irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1223     }
1224 
1225     wr32(hw, PFINT_OICR_ENA, irq_reg);
1226     wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1227     wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1228 
1229     return 0;
1230 }
1231 
1232 /**
1233  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1234  * @pf: Board private structure
1235  * @chan: GPIO channel (0-3)
1236  * @config: desired periodic clk configuration. NULL will disable channel
1237  * @store: If set to true the values will be stored
1238  *
1239  * Configure the internal clock generator modules to generate the clock wave of
1240  * specified period.
1241  */
1242 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1243                   struct ice_perout_channel *config, bool store)
1244 {
1245     u64 current_time, period, start_time, phase;
1246     struct ice_hw *hw = &pf->hw;
1247     u32 func, val, gpio_pin;
1248     u8 tmr_idx;
1249 
1250     tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1251 
1252     /* 0. Reset mode & out_en in AUX_OUT */
1253     wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1254 
1255     /* If we're disabling the output, clear out CLKO and TGT and keep
1256      * output level low
1257      */
1258     if (!config || !config->ena) {
1259         wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1260         wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1261         wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1262 
1263         val = GLGEN_GPIO_CTL_PIN_DIR_M;
1264         gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1265         wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1266 
1267         /* Store the value if requested */
1268         if (store)
1269             memset(&pf->ptp.perout_channels[chan], 0,
1270                    sizeof(struct ice_perout_channel));
1271 
1272         return 0;
1273     }
1274     period = config->period;
1275     start_time = config->start_time;
1276     div64_u64_rem(start_time, period, &phase);
1277     gpio_pin = config->gpio_pin;
1278 
1279     /* 1. Write clkout with half of required period value */
1280     if (period & 0x1) {
1281         dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1282         goto err;
1283     }
1284 
1285     period >>= 1;
1286 
1287     /* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1288      */
1289 #define MIN_PULSE 3
1290     if (period <= MIN_PULSE || period > U32_MAX) {
1291         dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1292             MIN_PULSE * 2);
1293         goto err;
1294     }
1295 
1296     wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1297 
1298     /* Allow time for programming before start_time is hit */
1299     current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1300 
1301     /* if start time is in the past start the timer at the nearest second
1302      * maintaining phase
1303      */
1304     if (start_time < current_time)
1305         start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1306                        NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1307 
1308     if (ice_is_e810(hw))
1309         start_time -= E810_OUT_PROP_DELAY_NS;
1310     else
1311         start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1312 
1313     /* 2. Write TARGET time */
1314     wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1315     wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1316 
1317     /* 3. Write AUX_OUT register */
1318     val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1319     wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1320 
1321     /* 4. write GPIO CTL reg */
1322     func = 8 + chan + (tmr_idx * 4);
1323     val = GLGEN_GPIO_CTL_PIN_DIR_M |
1324           ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1325     wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1326 
1327     /* Store the value if requested */
1328     if (store) {
1329         memcpy(&pf->ptp.perout_channels[chan], config,
1330                sizeof(struct ice_perout_channel));
1331         pf->ptp.perout_channels[chan].start_time = phase;
1332     }
1333 
1334     return 0;
1335 err:
1336     dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1337     return -EFAULT;
1338 }
1339 
1340 /**
1341  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1342  * @pf: pointer to the PF structure
1343  *
1344  * Disable all currently configured clock outputs. This is necessary before
1345  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1346  * re-enable the clocks again.
1347  */
1348 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1349 {
1350     uint i;
1351 
1352     for (i = 0; i < pf->ptp.info.n_per_out; i++)
1353         if (pf->ptp.perout_channels[i].ena)
1354             ice_ptp_cfg_clkout(pf, i, NULL, false);
1355 }
1356 
1357 /**
1358  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1359  * @pf: pointer to the PF structure
1360  *
1361  * Enable all currently configured clock outputs. Use this after
1362  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1363  * their configuration.
1364  */
1365 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1366 {
1367     uint i;
1368 
1369     for (i = 0; i < pf->ptp.info.n_per_out; i++)
1370         if (pf->ptp.perout_channels[i].ena)
1371             ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1372                        false);
1373 }
1374 
1375 /**
1376  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1377  * @info: the driver's PTP info structure
1378  * @rq: The requested feature to change
1379  * @on: Enable/disable flag
1380  */
1381 static int
1382 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1383              struct ptp_clock_request *rq, int on)
1384 {
1385     struct ice_pf *pf = ptp_info_to_pf(info);
1386     struct ice_perout_channel clk_cfg = {0};
1387     bool sma_pres = false;
1388     unsigned int chan;
1389     u32 gpio_pin;
1390     int err;
1391 
1392     if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1393         sma_pres = true;
1394 
1395     switch (rq->type) {
1396     case PTP_CLK_REQ_PEROUT:
1397         chan = rq->perout.index;
1398         if (sma_pres) {
1399             if (chan == ice_pin_desc_e810t[SMA1].chan)
1400                 clk_cfg.gpio_pin = GPIO_20;
1401             else if (chan == ice_pin_desc_e810t[SMA2].chan)
1402                 clk_cfg.gpio_pin = GPIO_22;
1403             else
1404                 return -1;
1405         } else if (ice_is_e810t(&pf->hw)) {
1406             if (chan == 0)
1407                 clk_cfg.gpio_pin = GPIO_20;
1408             else
1409                 clk_cfg.gpio_pin = GPIO_22;
1410         } else if (chan == PPS_CLK_GEN_CHAN) {
1411             clk_cfg.gpio_pin = PPS_PIN_INDEX;
1412         } else {
1413             clk_cfg.gpio_pin = chan;
1414         }
1415 
1416         clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1417                    rq->perout.period.nsec);
1418         clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1419                        rq->perout.start.nsec);
1420         clk_cfg.ena = !!on;
1421 
1422         err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1423         break;
1424     case PTP_CLK_REQ_EXTTS:
1425         chan = rq->extts.index;
1426         if (sma_pres) {
1427             if (chan < ice_pin_desc_e810t[SMA2].chan)
1428                 gpio_pin = GPIO_21;
1429             else
1430                 gpio_pin = GPIO_23;
1431         } else if (ice_is_e810t(&pf->hw)) {
1432             if (chan == 0)
1433                 gpio_pin = GPIO_21;
1434             else
1435                 gpio_pin = GPIO_23;
1436         } else {
1437             gpio_pin = chan;
1438         }
1439 
1440         err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1441                     rq->extts.flags);
1442         break;
1443     default:
1444         return -EOPNOTSUPP;
1445     }
1446 
1447     return err;
1448 }
1449 
1450 /**
1451  * ice_ptp_gettimex64 - Get the time of the clock
1452  * @info: the driver's PTP info structure
1453  * @ts: timespec64 structure to hold the current time value
1454  * @sts: Optional parameter for holding a pair of system timestamps from
1455  *       the system clock. Will be ignored if NULL is given.
1456  *
1457  * Read the device clock and return the correct value on ns, after converting it
1458  * into a timespec struct.
1459  */
1460 static int
1461 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1462            struct ptp_system_timestamp *sts)
1463 {
1464     struct ice_pf *pf = ptp_info_to_pf(info);
1465     struct ice_hw *hw = &pf->hw;
1466 
1467     if (!ice_ptp_lock(hw)) {
1468         dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1469         return -EBUSY;
1470     }
1471 
1472     ice_ptp_read_time(pf, ts, sts);
1473     ice_ptp_unlock(hw);
1474 
1475     return 0;
1476 }
1477 
1478 /**
1479  * ice_ptp_settime64 - Set the time of the clock
1480  * @info: the driver's PTP info structure
1481  * @ts: timespec64 structure that holds the new time value
1482  *
1483  * Set the device clock to the user input value. The conversion from timespec
1484  * to ns happens in the write function.
1485  */
1486 static int
1487 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1488 {
1489     struct ice_pf *pf = ptp_info_to_pf(info);
1490     struct timespec64 ts64 = *ts;
1491     struct ice_hw *hw = &pf->hw;
1492     int err;
1493 
1494     /* For Vernier mode, we need to recalibrate after new settime
1495      * Start with disabling timestamp block
1496      */
1497     if (pf->ptp.port.link_up)
1498         ice_ptp_port_phy_stop(&pf->ptp.port);
1499 
1500     if (!ice_ptp_lock(hw)) {
1501         err = -EBUSY;
1502         goto exit;
1503     }
1504 
1505     /* Disable periodic outputs */
1506     ice_ptp_disable_all_clkout(pf);
1507 
1508     err = ice_ptp_write_init(pf, &ts64);
1509     ice_ptp_unlock(hw);
1510 
1511     if (!err)
1512         ice_ptp_update_cached_phctime(pf);
1513 
1514     /* Reenable periodic outputs */
1515     ice_ptp_enable_all_clkout(pf);
1516 
1517     /* Recalibrate and re-enable timestamp block */
1518     if (pf->ptp.port.link_up)
1519         ice_ptp_port_phy_restart(&pf->ptp.port);
1520 exit:
1521     if (err) {
1522         dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1523         return err;
1524     }
1525 
1526     return 0;
1527 }
1528 
1529 /**
1530  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1531  * @info: the driver's PTP info structure
1532  * @delta: Offset in nanoseconds to adjust the time by
1533  */
1534 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1535 {
1536     struct timespec64 now, then;
1537     int ret;
1538 
1539     then = ns_to_timespec64(delta);
1540     ret = ice_ptp_gettimex64(info, &now, NULL);
1541     if (ret)
1542         return ret;
1543     now = timespec64_add(now, then);
1544 
1545     return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1546 }
1547 
1548 /**
1549  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1550  * @info: the driver's PTP info structure
1551  * @delta: Offset in nanoseconds to adjust the time by
1552  */
1553 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1554 {
1555     struct ice_pf *pf = ptp_info_to_pf(info);
1556     struct ice_hw *hw = &pf->hw;
1557     struct device *dev;
1558     int err;
1559 
1560     dev = ice_pf_to_dev(pf);
1561 
1562     /* Hardware only supports atomic adjustments using signed 32-bit
1563      * integers. For any adjustment outside this range, perform
1564      * a non-atomic get->adjust->set flow.
1565      */
1566     if (delta > S32_MAX || delta < S32_MIN) {
1567         dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1568         return ice_ptp_adjtime_nonatomic(info, delta);
1569     }
1570 
1571     if (!ice_ptp_lock(hw)) {
1572         dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1573         return -EBUSY;
1574     }
1575 
1576     /* Disable periodic outputs */
1577     ice_ptp_disable_all_clkout(pf);
1578 
1579     err = ice_ptp_write_adj(pf, delta);
1580 
1581     /* Reenable periodic outputs */
1582     ice_ptp_enable_all_clkout(pf);
1583 
1584     ice_ptp_unlock(hw);
1585 
1586     if (err) {
1587         dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1588         return err;
1589     }
1590 
1591     ice_ptp_update_cached_phctime(pf);
1592 
1593     return 0;
1594 }
1595 
1596 #ifdef CONFIG_ICE_HWTS
1597 /**
1598  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1599  * @device: Current device time
1600  * @system: System counter value read synchronously with device time
1601  * @ctx: Context provided by timekeeping code
1602  *
1603  * Read device and system (ART) clock simultaneously and return the corrected
1604  * clock values in ns.
1605  */
1606 static int
1607 ice_ptp_get_syncdevicetime(ktime_t *device,
1608                struct system_counterval_t *system,
1609                void *ctx)
1610 {
1611     struct ice_pf *pf = (struct ice_pf *)ctx;
1612     struct ice_hw *hw = &pf->hw;
1613     u32 hh_lock, hh_art_ctl;
1614     int i;
1615 
1616     /* Get the HW lock */
1617     hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1618     if (hh_lock & PFHH_SEM_BUSY_M) {
1619         dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1620         return -EFAULT;
1621     }
1622 
1623     /* Start the ART and device clock sync sequence */
1624     hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1625     hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1626     wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1627 
1628 #define MAX_HH_LOCK_TRIES 100
1629 
1630     for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1631         /* Wait for sync to complete */
1632         hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1633         if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1634             udelay(1);
1635             continue;
1636         } else {
1637             u32 hh_ts_lo, hh_ts_hi, tmr_idx;
1638             u64 hh_ts;
1639 
1640             tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
1641             /* Read ART time */
1642             hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
1643             hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
1644             hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1645             *system = convert_art_ns_to_tsc(hh_ts);
1646             /* Read Device source clock time */
1647             hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
1648             hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
1649             hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
1650             *device = ns_to_ktime(hh_ts);
1651             break;
1652         }
1653     }
1654     /* Release HW lock */
1655     hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1656     hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
1657     wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
1658 
1659     if (i == MAX_HH_LOCK_TRIES)
1660         return -ETIMEDOUT;
1661 
1662     return 0;
1663 }
1664 
1665 /**
1666  * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
1667  * @info: the driver's PTP info structure
1668  * @cts: The memory to fill the cross timestamp info
1669  *
1670  * Capture a cross timestamp between the ART and the device PTP hardware
1671  * clock. Fill the cross timestamp information and report it back to the
1672  * caller.
1673  *
1674  * This is only valid for E822 devices which have support for generating the
1675  * cross timestamp via PCIe PTM.
1676  *
1677  * In order to correctly correlate the ART timestamp back to the TSC time, the
1678  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
1679  */
1680 static int
1681 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
1682                 struct system_device_crosststamp *cts)
1683 {
1684     struct ice_pf *pf = ptp_info_to_pf(info);
1685 
1686     return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
1687                          pf, NULL, cts);
1688 }
1689 #endif /* CONFIG_ICE_HWTS */
1690 
1691 /**
1692  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
1693  * @pf: Board private structure
1694  * @ifr: ioctl data
1695  *
1696  * Copy the timestamping config to user buffer
1697  */
1698 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
1699 {
1700     struct hwtstamp_config *config;
1701 
1702     if (!test_bit(ICE_FLAG_PTP, pf->flags))
1703         return -EIO;
1704 
1705     config = &pf->ptp.tstamp_config;
1706 
1707     return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1708         -EFAULT : 0;
1709 }
1710 
1711 /**
1712  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
1713  * @pf: Board private structure
1714  * @config: hwtstamp settings requested or saved
1715  */
1716 static int
1717 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
1718 {
1719     switch (config->tx_type) {
1720     case HWTSTAMP_TX_OFF:
1721         ice_set_tx_tstamp(pf, false);
1722         break;
1723     case HWTSTAMP_TX_ON:
1724         ice_set_tx_tstamp(pf, true);
1725         break;
1726     default:
1727         return -ERANGE;
1728     }
1729 
1730     switch (config->rx_filter) {
1731     case HWTSTAMP_FILTER_NONE:
1732         ice_set_rx_tstamp(pf, false);
1733         break;
1734     case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1735     case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1736     case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1737     case HWTSTAMP_FILTER_PTP_V2_EVENT:
1738     case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1739     case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1740     case HWTSTAMP_FILTER_PTP_V2_SYNC:
1741     case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1742     case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1743     case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1744     case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1745     case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1746     case HWTSTAMP_FILTER_NTP_ALL:
1747     case HWTSTAMP_FILTER_ALL:
1748         ice_set_rx_tstamp(pf, true);
1749         break;
1750     default:
1751         return -ERANGE;
1752     }
1753 
1754     return 0;
1755 }
1756 
1757 /**
1758  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
1759  * @pf: Board private structure
1760  * @ifr: ioctl data
1761  *
1762  * Get the user config and store it
1763  */
1764 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
1765 {
1766     struct hwtstamp_config config;
1767     int err;
1768 
1769     if (!test_bit(ICE_FLAG_PTP, pf->flags))
1770         return -EAGAIN;
1771 
1772     if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1773         return -EFAULT;
1774 
1775     err = ice_ptp_set_timestamp_mode(pf, &config);
1776     if (err)
1777         return err;
1778 
1779     /* Return the actual configuration set */
1780     config = pf->ptp.tstamp_config;
1781 
1782     return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1783         -EFAULT : 0;
1784 }
1785 
1786 /**
1787  * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
1788  * @rx_ring: Ring to get the VSI info
1789  * @rx_desc: Receive descriptor
1790  * @skb: Particular skb to send timestamp with
1791  *
1792  * The driver receives a notification in the receive descriptor with timestamp.
1793  * The timestamp is in ns, so we must convert the result first.
1794  */
1795 void
1796 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
1797             union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
1798 {
1799     u32 ts_high;
1800     u64 ts_ns;
1801 
1802     /* Populate timesync data into skb */
1803     if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) {
1804         struct skb_shared_hwtstamps *hwtstamps;
1805 
1806         /* Use ice_ptp_extend_32b_ts directly, using the ring-specific
1807          * cached PHC value, rather than accessing the PF. This also
1808          * allows us to simply pass the upper 32bits of nanoseconds
1809          * directly. Calling ice_ptp_extend_40b_ts is unnecessary as
1810          * it would just discard these bits itself.
1811          */
1812         ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
1813         ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high);
1814 
1815         hwtstamps = skb_hwtstamps(skb);
1816         memset(hwtstamps, 0, sizeof(*hwtstamps));
1817         hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
1818     }
1819 }
1820 
1821 /**
1822  * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
1823  * @pf: pointer to the PF structure
1824  * @info: PTP clock info structure
1825  *
1826  * Disable the OS access to the SMA pins. Called to clear out the OS
1827  * indications of pin support when we fail to setup the E810-T SMA control
1828  * register.
1829  */
1830 static void
1831 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1832 {
1833     struct device *dev = ice_pf_to_dev(pf);
1834 
1835     dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
1836 
1837     info->enable = NULL;
1838     info->verify = NULL;
1839     info->n_pins = 0;
1840     info->n_ext_ts = 0;
1841     info->n_per_out = 0;
1842 }
1843 
1844 /**
1845  * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
1846  * @pf: pointer to the PF structure
1847  * @info: PTP clock info structure
1848  *
1849  * Finish setting up the SMA pins by allocating pin_config, and setting it up
1850  * according to the current status of the SMA. On failure, disable all of the
1851  * extended SMA pin support.
1852  */
1853 static void
1854 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1855 {
1856     struct device *dev = ice_pf_to_dev(pf);
1857     int err;
1858 
1859     /* Allocate memory for kernel pins interface */
1860     info->pin_config = devm_kcalloc(dev, info->n_pins,
1861                     sizeof(*info->pin_config), GFP_KERNEL);
1862     if (!info->pin_config) {
1863         ice_ptp_disable_sma_pins_e810t(pf, info);
1864         return;
1865     }
1866 
1867     /* Read current SMA status */
1868     err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
1869     if (err)
1870         ice_ptp_disable_sma_pins_e810t(pf, info);
1871 }
1872 
1873 /**
1874  * ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs
1875  * @pf: pointer to the PF instance
1876  * @info: PTP clock capabilities
1877  */
1878 static void
1879 ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
1880 {
1881     /* Check if SMA controller is in the netlist */
1882     if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) &&
1883         !ice_is_pca9575_present(&pf->hw))
1884         ice_clear_feature_support(pf, ICE_F_SMA_CTRL);
1885 
1886     if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1887         info->n_ext_ts = N_EXT_TS_E810_NO_SMA;
1888         info->n_per_out = N_PER_OUT_E810T_NO_SMA;
1889         return;
1890     }
1891 
1892     info->n_per_out = N_PER_OUT_E810T;
1893 
1894     if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) {
1895         info->n_ext_ts = N_EXT_TS_E810;
1896         info->n_pins = NUM_PTP_PINS_E810T;
1897         info->verify = ice_verify_pin_e810t;
1898     }
1899 
1900     /* Complete setup of the SMA pins */
1901     ice_ptp_setup_sma_pins_e810t(pf, info);
1902 }
1903 
1904 /**
1905  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
1906  * @pf: pointer to the PF instance
1907  * @info: PTP clock capabilities
1908  */
1909 static void ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
1910 {
1911     info->n_per_out = N_PER_OUT_E810;
1912 
1913     if (!ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
1914         return;
1915 
1916     info->n_ext_ts = N_EXT_TS_E810;
1917 }
1918 
1919 /**
1920  * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
1921  * @pf: Board private structure
1922  * @info: PTP info to fill
1923  *
1924  * Assign functions to the PTP capabiltiies structure for E822 devices.
1925  * Functions which operate across all device families should be set directly
1926  * in ice_ptp_set_caps. Only add functions here which are distinct for E822
1927  * devices.
1928  */
1929 static void
1930 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
1931 {
1932 #ifdef CONFIG_ICE_HWTS
1933     if (boot_cpu_has(X86_FEATURE_ART) &&
1934         boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
1935         info->getcrosststamp = ice_ptp_getcrosststamp_e822;
1936 #endif /* CONFIG_ICE_HWTS */
1937 }
1938 
1939 /**
1940  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
1941  * @pf: Board private structure
1942  * @info: PTP info to fill
1943  *
1944  * Assign functions to the PTP capabiltiies structure for E810 devices.
1945  * Functions which operate across all device families should be set directly
1946  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
1947  * devices.
1948  */
1949 static void
1950 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
1951 {
1952     info->enable = ice_ptp_gpio_enable_e810;
1953 
1954     if (ice_is_e810t(&pf->hw))
1955         ice_ptp_setup_pins_e810t(pf, info);
1956     else
1957         ice_ptp_setup_pins_e810(pf, info);
1958 }
1959 
1960 /**
1961  * ice_ptp_set_caps - Set PTP capabilities
1962  * @pf: Board private structure
1963  */
1964 static void ice_ptp_set_caps(struct ice_pf *pf)
1965 {
1966     struct ptp_clock_info *info = &pf->ptp.info;
1967     struct device *dev = ice_pf_to_dev(pf);
1968 
1969     snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
1970          dev_driver_string(dev), dev_name(dev));
1971     info->owner = THIS_MODULE;
1972     info->max_adj = 999999999;
1973     info->adjtime = ice_ptp_adjtime;
1974     info->adjfine = ice_ptp_adjfine;
1975     info->gettimex64 = ice_ptp_gettimex64;
1976     info->settime64 = ice_ptp_settime64;
1977 
1978     if (ice_is_e810(&pf->hw))
1979         ice_ptp_set_funcs_e810(pf, info);
1980     else
1981         ice_ptp_set_funcs_e822(pf, info);
1982 }
1983 
1984 /**
1985  * ice_ptp_create_clock - Create PTP clock device for userspace
1986  * @pf: Board private structure
1987  *
1988  * This function creates a new PTP clock device. It only creates one if we
1989  * don't already have one. Will return error if it can't create one, but success
1990  * if we already have a device. Should be used by ice_ptp_init to create clock
1991  * initially, and prevent global resets from creating new clock devices.
1992  */
1993 static long ice_ptp_create_clock(struct ice_pf *pf)
1994 {
1995     struct ptp_clock_info *info;
1996     struct ptp_clock *clock;
1997     struct device *dev;
1998 
1999     /* No need to create a clock device if we already have one */
2000     if (pf->ptp.clock)
2001         return 0;
2002 
2003     ice_ptp_set_caps(pf);
2004 
2005     info = &pf->ptp.info;
2006     dev = ice_pf_to_dev(pf);
2007 
2008     /* Attempt to register the clock before enabling the hardware. */
2009     clock = ptp_clock_register(info, dev);
2010     if (IS_ERR(clock))
2011         return PTR_ERR(clock);
2012 
2013     pf->ptp.clock = clock;
2014 
2015     return 0;
2016 }
2017 
2018 /**
2019  * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port
2020  * @work: pointer to the kthread_work struct
2021  *
2022  * Process timestamps captured by the PHY associated with this port. To do
2023  * this, loop over each index with a waiting skb.
2024  *
2025  * If a given index has a valid timestamp, perform the following steps:
2026  *
2027  * 1) copy the timestamp out of the PHY register
2028  * 4) clear the timestamp valid bit in the PHY register
2029  * 5) unlock the index by clearing the associated in_use bit.
2030  * 2) extend the 40b timestamp value to get a 64bit timestamp
2031  * 3) send that timestamp to the stack
2032  *
2033  * After looping, if we still have waiting SKBs, then re-queue the work. This
2034  * may cause us effectively poll even when not strictly necessary. We do this
2035  * because it's possible a new timestamp was requested around the same time as
2036  * the interrupt. In some cases hardware might not interrupt us again when the
2037  * timestamp is captured.
2038  *
2039  * Note that we only take the tracking lock when clearing the bit and when
2040  * checking if we need to re-queue this task. The only place where bits can be
2041  * set is the hard xmit routine where an SKB has a request flag set. The only
2042  * places where we clear bits are this work function, or the periodic cleanup
2043  * thread. If the cleanup thread clears a bit we're processing we catch it
2044  * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
2045  * starts a new timestamp, we might not begin processing it right away but we
2046  * will notice it at the end when we re-queue the work item. If a Tx thread
2047  * starts a new timestamp just after this function exits without re-queuing,
2048  * the interrupt when the timestamp finishes should trigger. Avoiding holding
2049  * the lock for the entire function is important in order to ensure that Tx
2050  * threads do not get blocked while waiting for the lock.
2051  */
2052 static void ice_ptp_tx_tstamp_work(struct kthread_work *work)
2053 {
2054     struct ice_ptp_port *ptp_port;
2055     struct ice_ptp_tx *tx;
2056     struct ice_pf *pf;
2057     struct ice_hw *hw;
2058     u8 idx;
2059 
2060     tx = container_of(work, struct ice_ptp_tx, work);
2061     if (!tx->init)
2062         return;
2063 
2064     ptp_port = container_of(tx, struct ice_ptp_port, tx);
2065     pf = ptp_port_to_pf(ptp_port);
2066     hw = &pf->hw;
2067 
2068     for_each_set_bit(idx, tx->in_use, tx->len) {
2069         struct skb_shared_hwtstamps shhwtstamps = {};
2070         u8 phy_idx = idx + tx->quad_offset;
2071         u64 raw_tstamp, tstamp;
2072         struct sk_buff *skb;
2073         int err;
2074 
2075         ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
2076 
2077         err = ice_read_phy_tstamp(hw, tx->quad, phy_idx,
2078                       &raw_tstamp);
2079         if (err)
2080             continue;
2081 
2082         ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
2083 
2084         /* Check if the timestamp is invalid or stale */
2085         if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
2086             raw_tstamp == tx->tstamps[idx].cached_tstamp)
2087             continue;
2088 
2089         /* The timestamp is valid, so we'll go ahead and clear this
2090          * index and then send the timestamp up to the stack.
2091          */
2092         spin_lock(&tx->lock);
2093         tx->tstamps[idx].cached_tstamp = raw_tstamp;
2094         clear_bit(idx, tx->in_use);
2095         skb = tx->tstamps[idx].skb;
2096         tx->tstamps[idx].skb = NULL;
2097         spin_unlock(&tx->lock);
2098 
2099         /* it's (unlikely but) possible we raced with the cleanup
2100          * thread for discarding old timestamp requests.
2101          */
2102         if (!skb)
2103             continue;
2104 
2105         /* Extend the timestamp using cached PHC time */
2106         tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
2107         shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
2108 
2109         ice_trace(tx_tstamp_complete, skb, idx);
2110 
2111         skb_tstamp_tx(skb, &shhwtstamps);
2112         dev_kfree_skb_any(skb);
2113     }
2114 
2115     /* Check if we still have work to do. If so, re-queue this task to
2116      * poll for remaining timestamps.
2117      */
2118     spin_lock(&tx->lock);
2119     if (!bitmap_empty(tx->in_use, tx->len))
2120         kthread_queue_work(pf->ptp.kworker, &tx->work);
2121     spin_unlock(&tx->lock);
2122 }
2123 
2124 /**
2125  * ice_ptp_request_ts - Request an available Tx timestamp index
2126  * @tx: the PTP Tx timestamp tracker to request from
2127  * @skb: the SKB to associate with this timestamp request
2128  */
2129 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2130 {
2131     u8 idx;
2132 
2133     /* Check if this tracker is initialized */
2134     if (!tx->init || tx->calibrating)
2135         return -1;
2136 
2137     spin_lock(&tx->lock);
2138     /* Find and set the first available index */
2139     idx = find_first_zero_bit(tx->in_use, tx->len);
2140     if (idx < tx->len) {
2141         /* We got a valid index that no other thread could have set. Store
2142          * a reference to the skb and the start time to allow discarding old
2143          * requests.
2144          */
2145         set_bit(idx, tx->in_use);
2146         tx->tstamps[idx].start = jiffies;
2147         tx->tstamps[idx].skb = skb_get(skb);
2148         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2149         ice_trace(tx_tstamp_request, skb, idx);
2150     }
2151 
2152     spin_unlock(&tx->lock);
2153 
2154     /* return the appropriate PHY timestamp register index, -1 if no
2155      * indexes were available.
2156      */
2157     if (idx >= tx->len)
2158         return -1;
2159     else
2160         return idx + tx->quad_offset;
2161 }
2162 
2163 /**
2164  * ice_ptp_process_ts - Spawn kthread work to handle timestamps
2165  * @pf: Board private structure
2166  *
2167  * Queue work required to process the PTP Tx timestamps outside of interrupt
2168  * context.
2169  */
2170 void ice_ptp_process_ts(struct ice_pf *pf)
2171 {
2172     if (pf->ptp.port.tx.init)
2173         kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work);
2174 }
2175 
2176 /**
2177  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
2178  * @tx: Tx tracking structure to initialize
2179  *
2180  * Assumes that the length has already been initialized. Do not call directly,
2181  * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
2182  */
2183 static int
2184 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
2185 {
2186     tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
2187     if (!tx->tstamps)
2188         return -ENOMEM;
2189 
2190     tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
2191     if (!tx->in_use) {
2192         kfree(tx->tstamps);
2193         tx->tstamps = NULL;
2194         return -ENOMEM;
2195     }
2196 
2197     spin_lock_init(&tx->lock);
2198     kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work);
2199 
2200     tx->init = 1;
2201 
2202     return 0;
2203 }
2204 
2205 /**
2206  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
2207  * @pf: Board private structure
2208  * @tx: the tracker to flush
2209  */
2210 static void
2211 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
2212 {
2213     u8 idx;
2214 
2215     for (idx = 0; idx < tx->len; idx++) {
2216         u8 phy_idx = idx + tx->quad_offset;
2217 
2218         spin_lock(&tx->lock);
2219         if (tx->tstamps[idx].skb) {
2220             dev_kfree_skb_any(tx->tstamps[idx].skb);
2221             tx->tstamps[idx].skb = NULL;
2222         }
2223         clear_bit(idx, tx->in_use);
2224         spin_unlock(&tx->lock);
2225 
2226         /* Clear any potential residual timestamp in the PHY block */
2227         if (!pf->hw.reset_ongoing)
2228             ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
2229     }
2230 }
2231 
2232 /**
2233  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
2234  * @pf: Board private structure
2235  * @tx: Tx tracking structure to release
2236  *
2237  * Free memory associated with the Tx timestamp tracker.
2238  */
2239 static void
2240 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
2241 {
2242     tx->init = 0;
2243 
2244     kthread_cancel_work_sync(&tx->work);
2245 
2246     ice_ptp_flush_tx_tracker(pf, tx);
2247 
2248     kfree(tx->tstamps);
2249     tx->tstamps = NULL;
2250 
2251     bitmap_free(tx->in_use);
2252     tx->in_use = NULL;
2253 
2254     tx->len = 0;
2255 }
2256 
2257 /**
2258  * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
2259  * @pf: Board private structure
2260  * @tx: the Tx tracking structure to initialize
2261  * @port: the port this structure tracks
2262  *
2263  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
2264  * the timestamp block is shared for all ports in the same quad. To avoid
2265  * ports using the same timestamp index, logically break the block of
2266  * registers into chunks based on the port number.
2267  */
2268 static int
2269 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
2270 {
2271     tx->quad = port / ICE_PORTS_PER_QUAD;
2272     tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT;
2273     tx->len = INDEX_PER_PORT;
2274 
2275     return ice_ptp_alloc_tx_tracker(tx);
2276 }
2277 
2278 /**
2279  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
2280  * @pf: Board private structure
2281  * @tx: the Tx tracking structure to initialize
2282  *
2283  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
2284  * port has its own block of timestamps, independent of the other ports.
2285  */
2286 static int
2287 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
2288 {
2289     tx->quad = pf->hw.port_info->lport;
2290     tx->quad_offset = 0;
2291     tx->len = INDEX_PER_QUAD;
2292 
2293     return ice_ptp_alloc_tx_tracker(tx);
2294 }
2295 
2296 /**
2297  * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
2298  * @hw: pointer to the hw struct
2299  * @tx: PTP Tx tracker to clean up
2300  *
2301  * Loop through the Tx timestamp requests and see if any of them have been
2302  * waiting for a long time. Discard any SKBs that have been waiting for more
2303  * than 2 seconds. This is long enough to be reasonably sure that the
2304  * timestamp will never be captured. This might happen if the packet gets
2305  * discarded before it reaches the PHY timestamping block.
2306  */
2307 static void ice_ptp_tx_tstamp_cleanup(struct ice_hw *hw, struct ice_ptp_tx *tx)
2308 {
2309     u8 idx;
2310 
2311     if (!tx->init)
2312         return;
2313 
2314     for_each_set_bit(idx, tx->in_use, tx->len) {
2315         struct sk_buff *skb;
2316         u64 raw_tstamp;
2317 
2318         /* Check if this SKB has been waiting for too long */
2319         if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
2320             continue;
2321 
2322         /* Read tstamp to be able to use this register again */
2323         ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset,
2324                     &raw_tstamp);
2325 
2326         spin_lock(&tx->lock);
2327         skb = tx->tstamps[idx].skb;
2328         tx->tstamps[idx].skb = NULL;
2329         clear_bit(idx, tx->in_use);
2330         spin_unlock(&tx->lock);
2331 
2332         /* Free the SKB after we've cleared the bit */
2333         dev_kfree_skb_any(skb);
2334     }
2335 }
2336 
2337 static void ice_ptp_periodic_work(struct kthread_work *work)
2338 {
2339     struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2340     struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2341     int err;
2342 
2343     if (!test_bit(ICE_FLAG_PTP, pf->flags))
2344         return;
2345 
2346     err = ice_ptp_update_cached_phctime(pf);
2347 
2348     ice_ptp_tx_tstamp_cleanup(&pf->hw, &pf->ptp.port.tx);
2349 
2350     /* Run twice a second or reschedule if phc update failed */
2351     kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2352                    msecs_to_jiffies(err ? 10 : 500));
2353 }
2354 
2355 /**
2356  * ice_ptp_reset - Initialize PTP hardware clock support after reset
2357  * @pf: Board private structure
2358  */
2359 void ice_ptp_reset(struct ice_pf *pf)
2360 {
2361     struct ice_ptp *ptp = &pf->ptp;
2362     struct ice_hw *hw = &pf->hw;
2363     struct timespec64 ts;
2364     int err, itr = 1;
2365     u64 time_diff;
2366 
2367     if (test_bit(ICE_PFR_REQ, pf->state))
2368         goto pfr;
2369 
2370     if (!hw->func_caps.ts_func_info.src_tmr_owned)
2371         goto reset_ts;
2372 
2373     err = ice_ptp_init_phc(hw);
2374     if (err)
2375         goto err;
2376 
2377     /* Acquire the global hardware lock */
2378     if (!ice_ptp_lock(hw)) {
2379         err = -EBUSY;
2380         goto err;
2381     }
2382 
2383     /* Write the increment time value to PHY and LAN */
2384     err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2385     if (err) {
2386         ice_ptp_unlock(hw);
2387         goto err;
2388     }
2389 
2390     /* Write the initial Time value to PHY and LAN using the cached PHC
2391      * time before the reset and time difference between stopping and
2392      * starting the clock.
2393      */
2394     if (ptp->cached_phc_time) {
2395         time_diff = ktime_get_real_ns() - ptp->reset_time;
2396         ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2397     } else {
2398         ts = ktime_to_timespec64(ktime_get_real());
2399     }
2400     err = ice_ptp_write_init(pf, &ts);
2401     if (err) {
2402         ice_ptp_unlock(hw);
2403         goto err;
2404     }
2405 
2406     /* Release the global hardware lock */
2407     ice_ptp_unlock(hw);
2408 
2409     if (!ice_is_e810(hw)) {
2410         /* Enable quad interrupts */
2411         err = ice_ptp_tx_ena_intr(pf, true, itr);
2412         if (err)
2413             goto err;
2414     }
2415 
2416 reset_ts:
2417     /* Restart the PHY timestamping block */
2418     ice_ptp_reset_phy_timestamping(pf);
2419 
2420 pfr:
2421     /* Init Tx structures */
2422     if (ice_is_e810(&pf->hw)) {
2423         err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2424     } else {
2425         kthread_init_delayed_work(&ptp->port.ov_work,
2426                       ice_ptp_wait_for_offset_valid);
2427         err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2428                        ptp->port.port_num);
2429     }
2430     if (err)
2431         goto err;
2432 
2433     set_bit(ICE_FLAG_PTP, pf->flags);
2434 
2435     /* Start periodic work going */
2436     kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2437 
2438     dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2439     return;
2440 
2441 err:
2442     dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2443 }
2444 
2445 /**
2446  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2447  * @pf: Board private structure
2448  */
2449 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2450 {
2451     struct ice_ptp *ptp = &pf->ptp;
2452     u8 src_tmr;
2453 
2454     clear_bit(ICE_FLAG_PTP, pf->flags);
2455 
2456     /* Disable timestamping for both Tx and Rx */
2457     ice_ptp_cfg_timestamp(pf, false);
2458 
2459     kthread_cancel_delayed_work_sync(&ptp->work);
2460     kthread_cancel_work_sync(&ptp->extts_work);
2461 
2462     if (test_bit(ICE_PFR_REQ, pf->state))
2463         return;
2464 
2465     ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2466 
2467     /* Disable periodic outputs */
2468     ice_ptp_disable_all_clkout(pf);
2469 
2470     src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2471 
2472     /* Disable source clock */
2473     wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2474 
2475     /* Acquire PHC and system timer to restore after reset */
2476     ptp->reset_time = ktime_get_real_ns();
2477 }
2478 
2479 /**
2480  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2481  * @pf: Board private structure
2482  *
2483  * Setup and initialize a PTP clock device that represents the device hardware
2484  * clock. Save the clock index for other functions connected to the same
2485  * hardware resource.
2486  */
2487 static int ice_ptp_init_owner(struct ice_pf *pf)
2488 {
2489     struct ice_hw *hw = &pf->hw;
2490     struct timespec64 ts;
2491     int err, itr = 1;
2492 
2493     err = ice_ptp_init_phc(hw);
2494     if (err) {
2495         dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2496             err);
2497         return err;
2498     }
2499 
2500     /* Acquire the global hardware lock */
2501     if (!ice_ptp_lock(hw)) {
2502         err = -EBUSY;
2503         goto err_exit;
2504     }
2505 
2506     /* Write the increment time value to PHY and LAN */
2507     err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2508     if (err) {
2509         ice_ptp_unlock(hw);
2510         goto err_exit;
2511     }
2512 
2513     ts = ktime_to_timespec64(ktime_get_real());
2514     /* Write the initial Time value to PHY and LAN */
2515     err = ice_ptp_write_init(pf, &ts);
2516     if (err) {
2517         ice_ptp_unlock(hw);
2518         goto err_exit;
2519     }
2520 
2521     /* Release the global hardware lock */
2522     ice_ptp_unlock(hw);
2523 
2524     if (!ice_is_e810(hw)) {
2525         /* Enable quad interrupts */
2526         err = ice_ptp_tx_ena_intr(pf, true, itr);
2527         if (err)
2528             goto err_exit;
2529     }
2530 
2531     /* Ensure we have a clock device */
2532     err = ice_ptp_create_clock(pf);
2533     if (err)
2534         goto err_clk;
2535 
2536     /* Store the PTP clock index for other PFs */
2537     ice_set_ptp_clock_index(pf);
2538 
2539     return 0;
2540 
2541 err_clk:
2542     pf->ptp.clock = NULL;
2543 err_exit:
2544     return err;
2545 }
2546 
2547 /**
2548  * ice_ptp_init_work - Initialize PTP work threads
2549  * @pf: Board private structure
2550  * @ptp: PF PTP structure
2551  */
2552 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2553 {
2554     struct kthread_worker *kworker;
2555 
2556     /* Initialize work functions */
2557     kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2558     kthread_init_work(&ptp->extts_work, ice_ptp_extts_work);
2559 
2560     /* Allocate a kworker for handling work required for the ports
2561      * connected to the PTP hardware clock.
2562      */
2563     kworker = kthread_create_worker(0, "ice-ptp-%s",
2564                     dev_name(ice_pf_to_dev(pf)));
2565     if (IS_ERR(kworker))
2566         return PTR_ERR(kworker);
2567 
2568     ptp->kworker = kworker;
2569 
2570     /* Start periodic work going */
2571     kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2572 
2573     return 0;
2574 }
2575 
2576 /**
2577  * ice_ptp_init_port - Initialize PTP port structure
2578  * @pf: Board private structure
2579  * @ptp_port: PTP port structure
2580  */
2581 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2582 {
2583     mutex_init(&ptp_port->ps_lock);
2584 
2585     if (ice_is_e810(&pf->hw))
2586         return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2587 
2588     kthread_init_delayed_work(&ptp_port->ov_work,
2589                   ice_ptp_wait_for_offset_valid);
2590     return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2591 }
2592 
2593 /**
2594  * ice_ptp_init - Initialize PTP hardware clock support
2595  * @pf: Board private structure
2596  *
2597  * Set up the device for interacting with the PTP hardware clock for all
2598  * functions, both the function that owns the clock hardware, and the
2599  * functions connected to the clock hardware.
2600  *
2601  * The clock owner will allocate and register a ptp_clock with the
2602  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2603  * items used for asynchronous work such as Tx timestamps and periodic work.
2604  */
2605 void ice_ptp_init(struct ice_pf *pf)
2606 {
2607     struct ice_ptp *ptp = &pf->ptp;
2608     struct ice_hw *hw = &pf->hw;
2609     int err;
2610 
2611     /* If this function owns the clock hardware, it must allocate and
2612      * configure the PTP clock device to represent it.
2613      */
2614     if (hw->func_caps.ts_func_info.src_tmr_owned) {
2615         err = ice_ptp_init_owner(pf);
2616         if (err)
2617             goto err;
2618     }
2619 
2620     ptp->port.port_num = hw->pf_id;
2621     err = ice_ptp_init_port(pf, &ptp->port);
2622     if (err)
2623         goto err;
2624 
2625     /* Start the PHY timestamping block */
2626     ice_ptp_reset_phy_timestamping(pf);
2627 
2628     set_bit(ICE_FLAG_PTP, pf->flags);
2629     err = ice_ptp_init_work(pf, ptp);
2630     if (err)
2631         goto err;
2632 
2633     dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2634     return;
2635 
2636 err:
2637     /* If we registered a PTP clock, release it */
2638     if (pf->ptp.clock) {
2639         ptp_clock_unregister(ptp->clock);
2640         pf->ptp.clock = NULL;
2641     }
2642     clear_bit(ICE_FLAG_PTP, pf->flags);
2643     dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2644 }
2645 
2646 /**
2647  * ice_ptp_release - Disable the driver/HW support and unregister the clock
2648  * @pf: Board private structure
2649  *
2650  * This function handles the cleanup work required from the initialization by
2651  * clearing out the important information and unregistering the clock
2652  */
2653 void ice_ptp_release(struct ice_pf *pf)
2654 {
2655     if (!test_bit(ICE_FLAG_PTP, pf->flags))
2656         return;
2657 
2658     /* Disable timestamping for both Tx and Rx */
2659     ice_ptp_cfg_timestamp(pf, false);
2660 
2661     ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2662 
2663     clear_bit(ICE_FLAG_PTP, pf->flags);
2664 
2665     kthread_cancel_delayed_work_sync(&pf->ptp.work);
2666 
2667     ice_ptp_port_phy_stop(&pf->ptp.port);
2668     mutex_destroy(&pf->ptp.port.ps_lock);
2669     if (pf->ptp.kworker) {
2670         kthread_destroy_worker(pf->ptp.kworker);
2671         pf->ptp.kworker = NULL;
2672     }
2673 
2674     if (!pf->ptp.clock)
2675         return;
2676 
2677     /* Disable periodic outputs */
2678     ice_ptp_disable_all_clkout(pf);
2679 
2680     ice_clear_ptp_clock_index(pf);
2681     ptp_clock_unregister(pf->ptp.clock);
2682     pf->ptp.clock = NULL;
2683 
2684     dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2685 }