Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright (c) 2018, Intel Corporation. */
0003 
0004 #include "ice.h"
0005 #include "ice_base.h"
0006 #include "ice_flow.h"
0007 #include "ice_lib.h"
0008 #include "ice_fltr.h"
0009 #include "ice_dcb_lib.h"
0010 #include "ice_devlink.h"
0011 #include "ice_vsi_vlan_ops.h"
0012 
0013 /**
0014  * ice_vsi_type_str - maps VSI type enum to string equivalents
0015  * @vsi_type: VSI type enum
0016  */
0017 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
0018 {
0019     switch (vsi_type) {
0020     case ICE_VSI_PF:
0021         return "ICE_VSI_PF";
0022     case ICE_VSI_VF:
0023         return "ICE_VSI_VF";
0024     case ICE_VSI_CTRL:
0025         return "ICE_VSI_CTRL";
0026     case ICE_VSI_CHNL:
0027         return "ICE_VSI_CHNL";
0028     case ICE_VSI_LB:
0029         return "ICE_VSI_LB";
0030     case ICE_VSI_SWITCHDEV_CTRL:
0031         return "ICE_VSI_SWITCHDEV_CTRL";
0032     default:
0033         return "unknown";
0034     }
0035 }
0036 
0037 /**
0038  * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
0039  * @vsi: the VSI being configured
0040  * @ena: start or stop the Rx rings
0041  *
0042  * First enable/disable all of the Rx rings, flush any remaining writes, and
0043  * then verify that they have all been enabled/disabled successfully. This will
0044  * let all of the register writes complete when enabling/disabling the Rx rings
0045  * before waiting for the change in hardware to complete.
0046  */
0047 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
0048 {
0049     int ret = 0;
0050     u16 i;
0051 
0052     ice_for_each_rxq(vsi, i)
0053         ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
0054 
0055     ice_flush(&vsi->back->hw);
0056 
0057     ice_for_each_rxq(vsi, i) {
0058         ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
0059         if (ret)
0060             break;
0061     }
0062 
0063     return ret;
0064 }
0065 
0066 /**
0067  * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
0068  * @vsi: VSI pointer
0069  *
0070  * On error: returns error code (negative)
0071  * On success: returns 0
0072  */
0073 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
0074 {
0075     struct ice_pf *pf = vsi->back;
0076     struct device *dev;
0077 
0078     dev = ice_pf_to_dev(pf);
0079     if (vsi->type == ICE_VSI_CHNL)
0080         return 0;
0081 
0082     /* allocate memory for both Tx and Rx ring pointers */
0083     vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
0084                      sizeof(*vsi->tx_rings), GFP_KERNEL);
0085     if (!vsi->tx_rings)
0086         return -ENOMEM;
0087 
0088     vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
0089                      sizeof(*vsi->rx_rings), GFP_KERNEL);
0090     if (!vsi->rx_rings)
0091         goto err_rings;
0092 
0093     /* txq_map needs to have enough space to track both Tx (stack) rings
0094      * and XDP rings; at this point vsi->num_xdp_txq might not be set,
0095      * so use num_possible_cpus() as we want to always provide XDP ring
0096      * per CPU, regardless of queue count settings from user that might
0097      * have come from ethtool's set_channels() callback;
0098      */
0099     vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
0100                     sizeof(*vsi->txq_map), GFP_KERNEL);
0101 
0102     if (!vsi->txq_map)
0103         goto err_txq_map;
0104 
0105     vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
0106                     sizeof(*vsi->rxq_map), GFP_KERNEL);
0107     if (!vsi->rxq_map)
0108         goto err_rxq_map;
0109 
0110     /* There is no need to allocate q_vectors for a loopback VSI. */
0111     if (vsi->type == ICE_VSI_LB)
0112         return 0;
0113 
0114     /* allocate memory for q_vector pointers */
0115     vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
0116                       sizeof(*vsi->q_vectors), GFP_KERNEL);
0117     if (!vsi->q_vectors)
0118         goto err_vectors;
0119 
0120     vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
0121     if (!vsi->af_xdp_zc_qps)
0122         goto err_zc_qps;
0123 
0124     return 0;
0125 
0126 err_zc_qps:
0127     devm_kfree(dev, vsi->q_vectors);
0128 err_vectors:
0129     devm_kfree(dev, vsi->rxq_map);
0130 err_rxq_map:
0131     devm_kfree(dev, vsi->txq_map);
0132 err_txq_map:
0133     devm_kfree(dev, vsi->rx_rings);
0134 err_rings:
0135     devm_kfree(dev, vsi->tx_rings);
0136     return -ENOMEM;
0137 }
0138 
0139 /**
0140  * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
0141  * @vsi: the VSI being configured
0142  */
0143 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
0144 {
0145     switch (vsi->type) {
0146     case ICE_VSI_PF:
0147     case ICE_VSI_SWITCHDEV_CTRL:
0148     case ICE_VSI_CTRL:
0149     case ICE_VSI_LB:
0150         /* a user could change the values of num_[tr]x_desc using
0151          * ethtool -G so we should keep those values instead of
0152          * overwriting them with the defaults.
0153          */
0154         if (!vsi->num_rx_desc)
0155             vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
0156         if (!vsi->num_tx_desc)
0157             vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
0158         break;
0159     default:
0160         dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
0161             vsi->type);
0162         break;
0163     }
0164 }
0165 
0166 /**
0167  * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
0168  * @vsi: the VSI being configured
0169  * @vf: the VF associated with this VSI, if any
0170  *
0171  * Return 0 on success and a negative value on error
0172  */
0173 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
0174 {
0175     enum ice_vsi_type vsi_type = vsi->type;
0176     struct ice_pf *pf = vsi->back;
0177 
0178     if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
0179         return;
0180 
0181     switch (vsi_type) {
0182     case ICE_VSI_PF:
0183         if (vsi->req_txq) {
0184             vsi->alloc_txq = vsi->req_txq;
0185             vsi->num_txq = vsi->req_txq;
0186         } else {
0187             vsi->alloc_txq = min3(pf->num_lan_msix,
0188                           ice_get_avail_txq_count(pf),
0189                           (u16)num_online_cpus());
0190         }
0191 
0192         pf->num_lan_tx = vsi->alloc_txq;
0193 
0194         /* only 1 Rx queue unless RSS is enabled */
0195         if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
0196             vsi->alloc_rxq = 1;
0197         } else {
0198             if (vsi->req_rxq) {
0199                 vsi->alloc_rxq = vsi->req_rxq;
0200                 vsi->num_rxq = vsi->req_rxq;
0201             } else {
0202                 vsi->alloc_rxq = min3(pf->num_lan_msix,
0203                               ice_get_avail_rxq_count(pf),
0204                               (u16)num_online_cpus());
0205             }
0206         }
0207 
0208         pf->num_lan_rx = vsi->alloc_rxq;
0209 
0210         vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
0211                        max_t(int, vsi->alloc_rxq,
0212                          vsi->alloc_txq));
0213         break;
0214     case ICE_VSI_SWITCHDEV_CTRL:
0215         /* The number of queues for ctrl VSI is equal to number of VFs.
0216          * Each ring is associated to the corresponding VF_PR netdev.
0217          */
0218         vsi->alloc_txq = ice_get_num_vfs(pf);
0219         vsi->alloc_rxq = vsi->alloc_txq;
0220         vsi->num_q_vectors = 1;
0221         break;
0222     case ICE_VSI_VF:
0223         if (vf->num_req_qs)
0224             vf->num_vf_qs = vf->num_req_qs;
0225         vsi->alloc_txq = vf->num_vf_qs;
0226         vsi->alloc_rxq = vf->num_vf_qs;
0227         /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
0228          * data queue interrupts). Since vsi->num_q_vectors is number
0229          * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
0230          * original vector count
0231          */
0232         vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
0233         break;
0234     case ICE_VSI_CTRL:
0235         vsi->alloc_txq = 1;
0236         vsi->alloc_rxq = 1;
0237         vsi->num_q_vectors = 1;
0238         break;
0239     case ICE_VSI_CHNL:
0240         vsi->alloc_txq = 0;
0241         vsi->alloc_rxq = 0;
0242         break;
0243     case ICE_VSI_LB:
0244         vsi->alloc_txq = 1;
0245         vsi->alloc_rxq = 1;
0246         break;
0247     default:
0248         dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
0249         break;
0250     }
0251 
0252     ice_vsi_set_num_desc(vsi);
0253 }
0254 
0255 /**
0256  * ice_get_free_slot - get the next non-NULL location index in array
0257  * @array: array to search
0258  * @size: size of the array
0259  * @curr: last known occupied index to be used as a search hint
0260  *
0261  * void * is being used to keep the functionality generic. This lets us use this
0262  * function on any array of pointers.
0263  */
0264 static int ice_get_free_slot(void *array, int size, int curr)
0265 {
0266     int **tmp_array = (int **)array;
0267     int next;
0268 
0269     if (curr < (size - 1) && !tmp_array[curr + 1]) {
0270         next = curr + 1;
0271     } else {
0272         int i = 0;
0273 
0274         while ((i < size) && (tmp_array[i]))
0275             i++;
0276         if (i == size)
0277             next = ICE_NO_VSI;
0278         else
0279             next = i;
0280     }
0281     return next;
0282 }
0283 
0284 /**
0285  * ice_vsi_delete - delete a VSI from the switch
0286  * @vsi: pointer to VSI being removed
0287  */
0288 void ice_vsi_delete(struct ice_vsi *vsi)
0289 {
0290     struct ice_pf *pf = vsi->back;
0291     struct ice_vsi_ctx *ctxt;
0292     int status;
0293 
0294     ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
0295     if (!ctxt)
0296         return;
0297 
0298     if (vsi->type == ICE_VSI_VF)
0299         ctxt->vf_num = vsi->vf->vf_id;
0300     ctxt->vsi_num = vsi->vsi_num;
0301 
0302     memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
0303 
0304     status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
0305     if (status)
0306         dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
0307             vsi->vsi_num, status);
0308 
0309     kfree(ctxt);
0310 }
0311 
0312 /**
0313  * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
0314  * @vsi: pointer to VSI being cleared
0315  */
0316 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
0317 {
0318     struct ice_pf *pf = vsi->back;
0319     struct device *dev;
0320 
0321     dev = ice_pf_to_dev(pf);
0322 
0323     if (vsi->af_xdp_zc_qps) {
0324         bitmap_free(vsi->af_xdp_zc_qps);
0325         vsi->af_xdp_zc_qps = NULL;
0326     }
0327     /* free the ring and vector containers */
0328     if (vsi->q_vectors) {
0329         devm_kfree(dev, vsi->q_vectors);
0330         vsi->q_vectors = NULL;
0331     }
0332     if (vsi->tx_rings) {
0333         devm_kfree(dev, vsi->tx_rings);
0334         vsi->tx_rings = NULL;
0335     }
0336     if (vsi->rx_rings) {
0337         devm_kfree(dev, vsi->rx_rings);
0338         vsi->rx_rings = NULL;
0339     }
0340     if (vsi->txq_map) {
0341         devm_kfree(dev, vsi->txq_map);
0342         vsi->txq_map = NULL;
0343     }
0344     if (vsi->rxq_map) {
0345         devm_kfree(dev, vsi->rxq_map);
0346         vsi->rxq_map = NULL;
0347     }
0348 }
0349 
0350 /**
0351  * ice_vsi_clear - clean up and deallocate the provided VSI
0352  * @vsi: pointer to VSI being cleared
0353  *
0354  * This deallocates the VSI's queue resources, removes it from the PF's
0355  * VSI array if necessary, and deallocates the VSI
0356  *
0357  * Returns 0 on success, negative on failure
0358  */
0359 int ice_vsi_clear(struct ice_vsi *vsi)
0360 {
0361     struct ice_pf *pf = NULL;
0362     struct device *dev;
0363 
0364     if (!vsi)
0365         return 0;
0366 
0367     if (!vsi->back)
0368         return -EINVAL;
0369 
0370     pf = vsi->back;
0371     dev = ice_pf_to_dev(pf);
0372 
0373     if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
0374         dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
0375         return -EINVAL;
0376     }
0377 
0378     mutex_lock(&pf->sw_mutex);
0379     /* updates the PF for this cleared VSI */
0380 
0381     pf->vsi[vsi->idx] = NULL;
0382     if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
0383         pf->next_vsi = vsi->idx;
0384     if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
0385         pf->next_vsi = vsi->idx;
0386 
0387     ice_vsi_free_arrays(vsi);
0388     mutex_unlock(&pf->sw_mutex);
0389     devm_kfree(dev, vsi);
0390 
0391     return 0;
0392 }
0393 
0394 /**
0395  * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
0396  * @irq: interrupt number
0397  * @data: pointer to a q_vector
0398  */
0399 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
0400 {
0401     struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
0402 
0403     if (!q_vector->tx.tx_ring)
0404         return IRQ_HANDLED;
0405 
0406 #define FDIR_RX_DESC_CLEAN_BUDGET 64
0407     ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
0408     ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
0409 
0410     return IRQ_HANDLED;
0411 }
0412 
0413 /**
0414  * ice_msix_clean_rings - MSIX mode Interrupt Handler
0415  * @irq: interrupt number
0416  * @data: pointer to a q_vector
0417  */
0418 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
0419 {
0420     struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
0421 
0422     if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
0423         return IRQ_HANDLED;
0424 
0425     q_vector->total_events++;
0426 
0427     napi_schedule(&q_vector->napi);
0428 
0429     return IRQ_HANDLED;
0430 }
0431 
0432 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
0433 {
0434     struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
0435     struct ice_pf *pf = q_vector->vsi->back;
0436     struct ice_vf *vf;
0437     unsigned int bkt;
0438 
0439     if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
0440         return IRQ_HANDLED;
0441 
0442     rcu_read_lock();
0443     ice_for_each_vf_rcu(pf, bkt, vf)
0444         napi_schedule(&vf->repr->q_vector->napi);
0445     rcu_read_unlock();
0446 
0447     return IRQ_HANDLED;
0448 }
0449 
0450 /**
0451  * ice_vsi_alloc - Allocates the next available struct VSI in the PF
0452  * @pf: board private structure
0453  * @vsi_type: type of VSI
0454  * @ch: ptr to channel
0455  * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
0456  *
0457  * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
0458  * it may be NULL in the case there is no association with a VF. For
0459  * ICE_VSI_VF the VF pointer *must not* be NULL.
0460  *
0461  * returns a pointer to a VSI on success, NULL on failure.
0462  */
0463 static struct ice_vsi *
0464 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
0465           struct ice_channel *ch, struct ice_vf *vf)
0466 {
0467     struct device *dev = ice_pf_to_dev(pf);
0468     struct ice_vsi *vsi = NULL;
0469 
0470     if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
0471         return NULL;
0472 
0473     /* Need to protect the allocation of the VSIs at the PF level */
0474     mutex_lock(&pf->sw_mutex);
0475 
0476     /* If we have already allocated our maximum number of VSIs,
0477      * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
0478      * is available to be populated
0479      */
0480     if (pf->next_vsi == ICE_NO_VSI) {
0481         dev_dbg(dev, "out of VSI slots!\n");
0482         goto unlock_pf;
0483     }
0484 
0485     vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
0486     if (!vsi)
0487         goto unlock_pf;
0488 
0489     vsi->type = vsi_type;
0490     vsi->back = pf;
0491     set_bit(ICE_VSI_DOWN, vsi->state);
0492 
0493     if (vsi_type == ICE_VSI_VF)
0494         ice_vsi_set_num_qs(vsi, vf);
0495     else if (vsi_type != ICE_VSI_CHNL)
0496         ice_vsi_set_num_qs(vsi, NULL);
0497 
0498     switch (vsi->type) {
0499     case ICE_VSI_SWITCHDEV_CTRL:
0500         if (ice_vsi_alloc_arrays(vsi))
0501             goto err_rings;
0502 
0503         /* Setup eswitch MSIX irq handler for VSI */
0504         vsi->irq_handler = ice_eswitch_msix_clean_rings;
0505         break;
0506     case ICE_VSI_PF:
0507         if (ice_vsi_alloc_arrays(vsi))
0508             goto err_rings;
0509 
0510         /* Setup default MSIX irq handler for VSI */
0511         vsi->irq_handler = ice_msix_clean_rings;
0512         break;
0513     case ICE_VSI_CTRL:
0514         if (ice_vsi_alloc_arrays(vsi))
0515             goto err_rings;
0516 
0517         /* Setup ctrl VSI MSIX irq handler */
0518         vsi->irq_handler = ice_msix_clean_ctrl_vsi;
0519 
0520         /* For the PF control VSI this is NULL, for the VF control VSI
0521          * this will be the first VF to allocate it.
0522          */
0523         vsi->vf = vf;
0524         break;
0525     case ICE_VSI_VF:
0526         if (ice_vsi_alloc_arrays(vsi))
0527             goto err_rings;
0528         vsi->vf = vf;
0529         break;
0530     case ICE_VSI_CHNL:
0531         if (!ch)
0532             goto err_rings;
0533         vsi->num_rxq = ch->num_rxq;
0534         vsi->num_txq = ch->num_txq;
0535         vsi->next_base_q = ch->base_q;
0536         break;
0537     case ICE_VSI_LB:
0538         if (ice_vsi_alloc_arrays(vsi))
0539             goto err_rings;
0540         break;
0541     default:
0542         dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
0543         goto unlock_pf;
0544     }
0545 
0546     if (vsi->type == ICE_VSI_CTRL && !vf) {
0547         /* Use the last VSI slot as the index for PF control VSI */
0548         vsi->idx = pf->num_alloc_vsi - 1;
0549         pf->ctrl_vsi_idx = vsi->idx;
0550         pf->vsi[vsi->idx] = vsi;
0551     } else {
0552         /* fill slot and make note of the index */
0553         vsi->idx = pf->next_vsi;
0554         pf->vsi[pf->next_vsi] = vsi;
0555 
0556         /* prepare pf->next_vsi for next use */
0557         pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
0558                          pf->next_vsi);
0559     }
0560 
0561     if (vsi->type == ICE_VSI_CTRL && vf)
0562         vf->ctrl_vsi_idx = vsi->idx;
0563     goto unlock_pf;
0564 
0565 err_rings:
0566     devm_kfree(dev, vsi);
0567     vsi = NULL;
0568 unlock_pf:
0569     mutex_unlock(&pf->sw_mutex);
0570     return vsi;
0571 }
0572 
0573 /**
0574  * ice_alloc_fd_res - Allocate FD resource for a VSI
0575  * @vsi: pointer to the ice_vsi
0576  *
0577  * This allocates the FD resources
0578  *
0579  * Returns 0 on success, -EPERM on no-op or -EIO on failure
0580  */
0581 static int ice_alloc_fd_res(struct ice_vsi *vsi)
0582 {
0583     struct ice_pf *pf = vsi->back;
0584     u32 g_val, b_val;
0585 
0586     /* Flow Director filters are only allocated/assigned to the PF VSI or
0587      * CHNL VSI which passes the traffic. The CTRL VSI is only used to
0588      * add/delete filters so resources are not allocated to it
0589      */
0590     if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
0591         return -EPERM;
0592 
0593     if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
0594           vsi->type == ICE_VSI_CHNL))
0595         return -EPERM;
0596 
0597     /* FD filters from guaranteed pool per VSI */
0598     g_val = pf->hw.func_caps.fd_fltr_guar;
0599     if (!g_val)
0600         return -EPERM;
0601 
0602     /* FD filters from best effort pool */
0603     b_val = pf->hw.func_caps.fd_fltr_best_effort;
0604     if (!b_val)
0605         return -EPERM;
0606 
0607     /* PF main VSI gets only 64 FD resources from guaranteed pool
0608      * when ADQ is configured.
0609      */
0610 #define ICE_PF_VSI_GFLTR    64
0611 
0612     /* determine FD filter resources per VSI from shared(best effort) and
0613      * dedicated pool
0614      */
0615     if (vsi->type == ICE_VSI_PF) {
0616         vsi->num_gfltr = g_val;
0617         /* if MQPRIO is configured, main VSI doesn't get all FD
0618          * resources from guaranteed pool. PF VSI gets 64 FD resources
0619          */
0620         if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
0621             if (g_val < ICE_PF_VSI_GFLTR)
0622                 return -EPERM;
0623             /* allow bare minimum entries for PF VSI */
0624             vsi->num_gfltr = ICE_PF_VSI_GFLTR;
0625         }
0626 
0627         /* each VSI gets same "best_effort" quota */
0628         vsi->num_bfltr = b_val;
0629     } else if (vsi->type == ICE_VSI_VF) {
0630         vsi->num_gfltr = 0;
0631 
0632         /* each VSI gets same "best_effort" quota */
0633         vsi->num_bfltr = b_val;
0634     } else {
0635         struct ice_vsi *main_vsi;
0636         int numtc;
0637 
0638         main_vsi = ice_get_main_vsi(pf);
0639         if (!main_vsi)
0640             return -EPERM;
0641 
0642         if (!main_vsi->all_numtc)
0643             return -EINVAL;
0644 
0645         /* figure out ADQ numtc */
0646         numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
0647 
0648         /* only one TC but still asking resources for channels,
0649          * invalid config
0650          */
0651         if (numtc < ICE_CHNL_START_TC)
0652             return -EPERM;
0653 
0654         g_val -= ICE_PF_VSI_GFLTR;
0655         /* channel VSIs gets equal share from guaranteed pool */
0656         vsi->num_gfltr = g_val / numtc;
0657 
0658         /* each VSI gets same "best_effort" quota */
0659         vsi->num_bfltr = b_val;
0660     }
0661 
0662     return 0;
0663 }
0664 
0665 /**
0666  * ice_vsi_get_qs - Assign queues from PF to VSI
0667  * @vsi: the VSI to assign queues to
0668  *
0669  * Returns 0 on success and a negative value on error
0670  */
0671 static int ice_vsi_get_qs(struct ice_vsi *vsi)
0672 {
0673     struct ice_pf *pf = vsi->back;
0674     struct ice_qs_cfg tx_qs_cfg = {
0675         .qs_mutex = &pf->avail_q_mutex,
0676         .pf_map = pf->avail_txqs,
0677         .pf_map_size = pf->max_pf_txqs,
0678         .q_count = vsi->alloc_txq,
0679         .scatter_count = ICE_MAX_SCATTER_TXQS,
0680         .vsi_map = vsi->txq_map,
0681         .vsi_map_offset = 0,
0682         .mapping_mode = ICE_VSI_MAP_CONTIG
0683     };
0684     struct ice_qs_cfg rx_qs_cfg = {
0685         .qs_mutex = &pf->avail_q_mutex,
0686         .pf_map = pf->avail_rxqs,
0687         .pf_map_size = pf->max_pf_rxqs,
0688         .q_count = vsi->alloc_rxq,
0689         .scatter_count = ICE_MAX_SCATTER_RXQS,
0690         .vsi_map = vsi->rxq_map,
0691         .vsi_map_offset = 0,
0692         .mapping_mode = ICE_VSI_MAP_CONTIG
0693     };
0694     int ret;
0695 
0696     if (vsi->type == ICE_VSI_CHNL)
0697         return 0;
0698 
0699     ret = __ice_vsi_get_qs(&tx_qs_cfg);
0700     if (ret)
0701         return ret;
0702     vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
0703 
0704     ret = __ice_vsi_get_qs(&rx_qs_cfg);
0705     if (ret)
0706         return ret;
0707     vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
0708 
0709     return 0;
0710 }
0711 
0712 /**
0713  * ice_vsi_put_qs - Release queues from VSI to PF
0714  * @vsi: the VSI that is going to release queues
0715  */
0716 static void ice_vsi_put_qs(struct ice_vsi *vsi)
0717 {
0718     struct ice_pf *pf = vsi->back;
0719     int i;
0720 
0721     mutex_lock(&pf->avail_q_mutex);
0722 
0723     ice_for_each_alloc_txq(vsi, i) {
0724         clear_bit(vsi->txq_map[i], pf->avail_txqs);
0725         vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
0726     }
0727 
0728     ice_for_each_alloc_rxq(vsi, i) {
0729         clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
0730         vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
0731     }
0732 
0733     mutex_unlock(&pf->avail_q_mutex);
0734 }
0735 
0736 /**
0737  * ice_is_safe_mode
0738  * @pf: pointer to the PF struct
0739  *
0740  * returns true if driver is in safe mode, false otherwise
0741  */
0742 bool ice_is_safe_mode(struct ice_pf *pf)
0743 {
0744     return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
0745 }
0746 
0747 /**
0748  * ice_is_rdma_ena
0749  * @pf: pointer to the PF struct
0750  *
0751  * returns true if RDMA is currently supported, false otherwise
0752  */
0753 bool ice_is_rdma_ena(struct ice_pf *pf)
0754 {
0755     return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
0756 }
0757 
0758 /**
0759  * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
0760  * @vsi: the VSI being cleaned up
0761  *
0762  * This function deletes RSS input set for all flows that were configured
0763  * for this VSI
0764  */
0765 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
0766 {
0767     struct ice_pf *pf = vsi->back;
0768     int status;
0769 
0770     if (ice_is_safe_mode(pf))
0771         return;
0772 
0773     status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
0774     if (status)
0775         dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
0776             vsi->vsi_num, status);
0777 }
0778 
0779 /**
0780  * ice_rss_clean - Delete RSS related VSI structures and configuration
0781  * @vsi: the VSI being removed
0782  */
0783 static void ice_rss_clean(struct ice_vsi *vsi)
0784 {
0785     struct ice_pf *pf = vsi->back;
0786     struct device *dev;
0787 
0788     dev = ice_pf_to_dev(pf);
0789 
0790     if (vsi->rss_hkey_user)
0791         devm_kfree(dev, vsi->rss_hkey_user);
0792     if (vsi->rss_lut_user)
0793         devm_kfree(dev, vsi->rss_lut_user);
0794 
0795     ice_vsi_clean_rss_flow_fld(vsi);
0796     /* remove RSS replay list */
0797     if (!ice_is_safe_mode(pf))
0798         ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
0799 }
0800 
0801 /**
0802  * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
0803  * @vsi: the VSI being configured
0804  */
0805 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
0806 {
0807     struct ice_hw_common_caps *cap;
0808     struct ice_pf *pf = vsi->back;
0809 
0810     if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
0811         vsi->rss_size = 1;
0812         return;
0813     }
0814 
0815     cap = &pf->hw.func_caps.common_cap;
0816     switch (vsi->type) {
0817     case ICE_VSI_CHNL:
0818     case ICE_VSI_PF:
0819         /* PF VSI will inherit RSS instance of PF */
0820         vsi->rss_table_size = (u16)cap->rss_table_size;
0821         if (vsi->type == ICE_VSI_CHNL)
0822             vsi->rss_size = min_t(u16, vsi->num_rxq,
0823                           BIT(cap->rss_table_entry_width));
0824         else
0825             vsi->rss_size = min_t(u16, num_online_cpus(),
0826                           BIT(cap->rss_table_entry_width));
0827         vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
0828         break;
0829     case ICE_VSI_SWITCHDEV_CTRL:
0830         vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
0831         vsi->rss_size = min_t(u16, num_online_cpus(),
0832                       BIT(cap->rss_table_entry_width));
0833         vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
0834         break;
0835     case ICE_VSI_VF:
0836         /* VF VSI will get a small RSS table.
0837          * For VSI_LUT, LUT size should be set to 64 bytes.
0838          */
0839         vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
0840         vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
0841         vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
0842         break;
0843     case ICE_VSI_LB:
0844         break;
0845     default:
0846         dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
0847             ice_vsi_type_str(vsi->type));
0848         break;
0849     }
0850 }
0851 
0852 /**
0853  * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
0854  * @hw: HW structure used to determine the VLAN mode of the device
0855  * @ctxt: the VSI context being set
0856  *
0857  * This initializes a default VSI context for all sections except the Queues.
0858  */
0859 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
0860 {
0861     u32 table = 0;
0862 
0863     memset(&ctxt->info, 0, sizeof(ctxt->info));
0864     /* VSI's should be allocated from shared pool */
0865     ctxt->alloc_from_pool = true;
0866     /* Src pruning enabled by default */
0867     ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
0868     /* Traffic from VSI can be sent to LAN */
0869     ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
0870     /* allow all untagged/tagged packets by default on Tx */
0871     ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
0872                   ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
0873                  ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
0874     /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
0875      * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
0876      *
0877      * DVM - leave inner VLAN in packet by default
0878      */
0879     if (ice_is_dvm_ena(hw)) {
0880         ctxt->info.inner_vlan_flags |=
0881             ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
0882         ctxt->info.outer_vlan_flags =
0883             (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
0884              ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
0885             ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
0886         ctxt->info.outer_vlan_flags |=
0887             (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
0888              ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
0889             ICE_AQ_VSI_OUTER_TAG_TYPE_M;
0890         ctxt->info.outer_vlan_flags |=
0891             FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
0892                    ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
0893     }
0894     /* Have 1:1 UP mapping for both ingress/egress tables */
0895     table |= ICE_UP_TABLE_TRANSLATE(0, 0);
0896     table |= ICE_UP_TABLE_TRANSLATE(1, 1);
0897     table |= ICE_UP_TABLE_TRANSLATE(2, 2);
0898     table |= ICE_UP_TABLE_TRANSLATE(3, 3);
0899     table |= ICE_UP_TABLE_TRANSLATE(4, 4);
0900     table |= ICE_UP_TABLE_TRANSLATE(5, 5);
0901     table |= ICE_UP_TABLE_TRANSLATE(6, 6);
0902     table |= ICE_UP_TABLE_TRANSLATE(7, 7);
0903     ctxt->info.ingress_table = cpu_to_le32(table);
0904     ctxt->info.egress_table = cpu_to_le32(table);
0905     /* Have 1:1 UP mapping for outer to inner UP table */
0906     ctxt->info.outer_up_table = cpu_to_le32(table);
0907     /* No Outer tag support outer_tag_flags remains to zero */
0908 }
0909 
0910 /**
0911  * ice_vsi_setup_q_map - Setup a VSI queue map
0912  * @vsi: the VSI being configured
0913  * @ctxt: VSI context structure
0914  */
0915 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
0916 {
0917     u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
0918     u16 num_txq_per_tc, num_rxq_per_tc;
0919     u16 qcount_tx = vsi->alloc_txq;
0920     u16 qcount_rx = vsi->alloc_rxq;
0921     u8 netdev_tc = 0;
0922     int i;
0923 
0924     if (!vsi->tc_cfg.numtc) {
0925         /* at least TC0 should be enabled by default */
0926         vsi->tc_cfg.numtc = 1;
0927         vsi->tc_cfg.ena_tc = 1;
0928     }
0929 
0930     num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
0931     if (!num_rxq_per_tc)
0932         num_rxq_per_tc = 1;
0933     num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
0934     if (!num_txq_per_tc)
0935         num_txq_per_tc = 1;
0936 
0937     /* find the (rounded up) power-of-2 of qcount */
0938     pow = (u16)order_base_2(num_rxq_per_tc);
0939 
0940     /* TC mapping is a function of the number of Rx queues assigned to the
0941      * VSI for each traffic class and the offset of these queues.
0942      * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
0943      * queues allocated to TC0. No:of queues is a power-of-2.
0944      *
0945      * If TC is not enabled, the queue offset is set to 0, and allocate one
0946      * queue, this way, traffic for the given TC will be sent to the default
0947      * queue.
0948      *
0949      * Setup number and offset of Rx queues for all TCs for the VSI
0950      */
0951     ice_for_each_traffic_class(i) {
0952         if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
0953             /* TC is not enabled */
0954             vsi->tc_cfg.tc_info[i].qoffset = 0;
0955             vsi->tc_cfg.tc_info[i].qcount_rx = 1;
0956             vsi->tc_cfg.tc_info[i].qcount_tx = 1;
0957             vsi->tc_cfg.tc_info[i].netdev_tc = 0;
0958             ctxt->info.tc_mapping[i] = 0;
0959             continue;
0960         }
0961 
0962         /* TC is enabled */
0963         vsi->tc_cfg.tc_info[i].qoffset = offset;
0964         vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
0965         vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
0966         vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
0967 
0968         qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
0969             ICE_AQ_VSI_TC_Q_OFFSET_M) |
0970             ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
0971              ICE_AQ_VSI_TC_Q_NUM_M);
0972         offset += num_rxq_per_tc;
0973         tx_count += num_txq_per_tc;
0974         ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
0975     }
0976 
0977     /* if offset is non-zero, means it is calculated correctly based on
0978      * enabled TCs for a given VSI otherwise qcount_rx will always
0979      * be correct and non-zero because it is based off - VSI's
0980      * allocated Rx queues which is at least 1 (hence qcount_tx will be
0981      * at least 1)
0982      */
0983     if (offset)
0984         rx_count = offset;
0985     else
0986         rx_count = num_rxq_per_tc;
0987 
0988     if (rx_count > vsi->alloc_rxq) {
0989         dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
0990             rx_count, vsi->alloc_rxq);
0991         return -EINVAL;
0992     }
0993 
0994     if (tx_count > vsi->alloc_txq) {
0995         dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
0996             tx_count, vsi->alloc_txq);
0997         return -EINVAL;
0998     }
0999 
1000     vsi->num_txq = tx_count;
1001     vsi->num_rxq = rx_count;
1002 
1003     if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1004         dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1005         /* since there is a chance that num_rxq could have been changed
1006          * in the above for loop, make num_txq equal to num_rxq.
1007          */
1008         vsi->num_txq = vsi->num_rxq;
1009     }
1010 
1011     /* Rx queue mapping */
1012     ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1013     /* q_mapping buffer holds the info for the first queue allocated for
1014      * this VSI in the PF space and also the number of queues associated
1015      * with this VSI.
1016      */
1017     ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1018     ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1019 
1020     return 0;
1021 }
1022 
1023 /**
1024  * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1025  * @ctxt: the VSI context being set
1026  * @vsi: the VSI being configured
1027  */
1028 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1029 {
1030     u8 dflt_q_group, dflt_q_prio;
1031     u16 dflt_q, report_q, val;
1032 
1033     if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1034         vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1035         return;
1036 
1037     val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1038     ctxt->info.valid_sections |= cpu_to_le16(val);
1039     dflt_q = 0;
1040     dflt_q_group = 0;
1041     report_q = 0;
1042     dflt_q_prio = 0;
1043 
1044     /* enable flow director filtering/programming */
1045     val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1046     ctxt->info.fd_options = cpu_to_le16(val);
1047     /* max of allocated flow director filters */
1048     ctxt->info.max_fd_fltr_dedicated =
1049             cpu_to_le16(vsi->num_gfltr);
1050     /* max of shared flow director filters any VSI may program */
1051     ctxt->info.max_fd_fltr_shared =
1052             cpu_to_le16(vsi->num_bfltr);
1053     /* default queue index within the VSI of the default FD */
1054     val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1055            ICE_AQ_VSI_FD_DEF_Q_M);
1056     /* target queue or queue group to the FD filter */
1057     val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1058         ICE_AQ_VSI_FD_DEF_GRP_M);
1059     ctxt->info.fd_def_q = cpu_to_le16(val);
1060     /* queue index on which FD filter completion is reported */
1061     val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1062            ICE_AQ_VSI_FD_REPORT_Q_M);
1063     /* priority of the default qindex action */
1064     val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1065         ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1066     ctxt->info.fd_report_opt = cpu_to_le16(val);
1067 }
1068 
1069 /**
1070  * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1071  * @ctxt: the VSI context being set
1072  * @vsi: the VSI being configured
1073  */
1074 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1075 {
1076     u8 lut_type, hash_type;
1077     struct device *dev;
1078     struct ice_pf *pf;
1079 
1080     pf = vsi->back;
1081     dev = ice_pf_to_dev(pf);
1082 
1083     switch (vsi->type) {
1084     case ICE_VSI_CHNL:
1085     case ICE_VSI_PF:
1086         /* PF VSI will inherit RSS instance of PF */
1087         lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1088         hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1089         break;
1090     case ICE_VSI_VF:
1091         /* VF VSI will gets a small RSS table which is a VSI LUT type */
1092         lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1093         hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1094         break;
1095     default:
1096         dev_dbg(dev, "Unsupported VSI type %s\n",
1097             ice_vsi_type_str(vsi->type));
1098         return;
1099     }
1100 
1101     ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1102                 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1103                 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1104                  ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1105 }
1106 
1107 static void
1108 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1109 {
1110     struct ice_pf *pf = vsi->back;
1111     u16 qcount, qmap;
1112     u8 offset = 0;
1113     int pow;
1114 
1115     qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1116 
1117     pow = order_base_2(qcount);
1118     qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1119          ICE_AQ_VSI_TC_Q_OFFSET_M) |
1120          ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1121            ICE_AQ_VSI_TC_Q_NUM_M);
1122 
1123     ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1124     ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1125     ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1126     ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1127 }
1128 
1129 /**
1130  * ice_vsi_init - Create and initialize a VSI
1131  * @vsi: the VSI being configured
1132  * @init_vsi: is this call creating a VSI
1133  *
1134  * This initializes a VSI context depending on the VSI type to be added and
1135  * passes it down to the add_vsi aq command to create a new VSI.
1136  */
1137 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
1138 {
1139     struct ice_pf *pf = vsi->back;
1140     struct ice_hw *hw = &pf->hw;
1141     struct ice_vsi_ctx *ctxt;
1142     struct device *dev;
1143     int ret = 0;
1144 
1145     dev = ice_pf_to_dev(pf);
1146     ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1147     if (!ctxt)
1148         return -ENOMEM;
1149 
1150     switch (vsi->type) {
1151     case ICE_VSI_CTRL:
1152     case ICE_VSI_LB:
1153     case ICE_VSI_PF:
1154         ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1155         break;
1156     case ICE_VSI_SWITCHDEV_CTRL:
1157     case ICE_VSI_CHNL:
1158         ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1159         break;
1160     case ICE_VSI_VF:
1161         ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1162         /* VF number here is the absolute VF number (0-255) */
1163         ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1164         break;
1165     default:
1166         ret = -ENODEV;
1167         goto out;
1168     }
1169 
1170     /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1171      * prune enabled
1172      */
1173     if (vsi->type == ICE_VSI_CHNL) {
1174         struct ice_vsi *main_vsi;
1175 
1176         main_vsi = ice_get_main_vsi(pf);
1177         if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1178             ctxt->info.sw_flags2 |=
1179                 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1180         else
1181             ctxt->info.sw_flags2 &=
1182                 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1183     }
1184 
1185     ice_set_dflt_vsi_ctx(hw, ctxt);
1186     if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1187         ice_set_fd_vsi_ctx(ctxt, vsi);
1188     /* if the switch is in VEB mode, allow VSI loopback */
1189     if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1190         ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1191 
1192     /* Set LUT type and HASH type if RSS is enabled */
1193     if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1194         vsi->type != ICE_VSI_CTRL) {
1195         ice_set_rss_vsi_ctx(ctxt, vsi);
1196         /* if updating VSI context, make sure to set valid_section:
1197          * to indicate which section of VSI context being updated
1198          */
1199         if (!init_vsi)
1200             ctxt->info.valid_sections |=
1201                 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1202     }
1203 
1204     ctxt->info.sw_id = vsi->port_info->sw_id;
1205     if (vsi->type == ICE_VSI_CHNL) {
1206         ice_chnl_vsi_setup_q_map(vsi, ctxt);
1207     } else {
1208         ret = ice_vsi_setup_q_map(vsi, ctxt);
1209         if (ret)
1210             goto out;
1211 
1212         if (!init_vsi) /* means VSI being updated */
1213             /* must to indicate which section of VSI context are
1214              * being modified
1215              */
1216             ctxt->info.valid_sections |=
1217                 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1218     }
1219 
1220     /* Allow control frames out of main VSI */
1221     if (vsi->type == ICE_VSI_PF) {
1222         ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1223         ctxt->info.valid_sections |=
1224             cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1225     }
1226 
1227     if (init_vsi) {
1228         ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1229         if (ret) {
1230             dev_err(dev, "Add VSI failed, err %d\n", ret);
1231             ret = -EIO;
1232             goto out;
1233         }
1234     } else {
1235         ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1236         if (ret) {
1237             dev_err(dev, "Update VSI failed, err %d\n", ret);
1238             ret = -EIO;
1239             goto out;
1240         }
1241     }
1242 
1243     /* keep context for update VSI operations */
1244     vsi->info = ctxt->info;
1245 
1246     /* record VSI number returned */
1247     vsi->vsi_num = ctxt->vsi_num;
1248 
1249 out:
1250     kfree(ctxt);
1251     return ret;
1252 }
1253 
1254 /**
1255  * ice_free_res - free a block of resources
1256  * @res: pointer to the resource
1257  * @index: starting index previously returned by ice_get_res
1258  * @id: identifier to track owner
1259  *
1260  * Returns number of resources freed
1261  */
1262 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1263 {
1264     int count = 0;
1265     int i;
1266 
1267     if (!res || index >= res->end)
1268         return -EINVAL;
1269 
1270     id |= ICE_RES_VALID_BIT;
1271     for (i = index; i < res->end && res->list[i] == id; i++) {
1272         res->list[i] = 0;
1273         count++;
1274     }
1275 
1276     return count;
1277 }
1278 
1279 /**
1280  * ice_search_res - Search the tracker for a block of resources
1281  * @res: pointer to the resource
1282  * @needed: size of the block needed
1283  * @id: identifier to track owner
1284  *
1285  * Returns the base item index of the block, or -ENOMEM for error
1286  */
1287 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1288 {
1289     u16 start = 0, end = 0;
1290 
1291     if (needed > res->end)
1292         return -ENOMEM;
1293 
1294     id |= ICE_RES_VALID_BIT;
1295 
1296     do {
1297         /* skip already allocated entries */
1298         if (res->list[end++] & ICE_RES_VALID_BIT) {
1299             start = end;
1300             if ((start + needed) > res->end)
1301                 break;
1302         }
1303 
1304         if (end == (start + needed)) {
1305             int i = start;
1306 
1307             /* there was enough, so assign it to the requestor */
1308             while (i != end)
1309                 res->list[i++] = id;
1310 
1311             return start;
1312         }
1313     } while (end < res->end);
1314 
1315     return -ENOMEM;
1316 }
1317 
1318 /**
1319  * ice_get_free_res_count - Get free count from a resource tracker
1320  * @res: Resource tracker instance
1321  */
1322 static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1323 {
1324     u16 i, count = 0;
1325 
1326     for (i = 0; i < res->end; i++)
1327         if (!(res->list[i] & ICE_RES_VALID_BIT))
1328             count++;
1329 
1330     return count;
1331 }
1332 
1333 /**
1334  * ice_get_res - get a block of resources
1335  * @pf: board private structure
1336  * @res: pointer to the resource
1337  * @needed: size of the block needed
1338  * @id: identifier to track owner
1339  *
1340  * Returns the base item index of the block, or negative for error
1341  */
1342 int
1343 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1344 {
1345     if (!res || !pf)
1346         return -EINVAL;
1347 
1348     if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1349         dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1350             needed, res->num_entries, id);
1351         return -EINVAL;
1352     }
1353 
1354     return ice_search_res(res, needed, id);
1355 }
1356 
1357 /**
1358  * ice_get_vf_ctrl_res - Get VF control VSI resource
1359  * @pf: pointer to the PF structure
1360  * @vsi: the VSI to allocate a resource for
1361  *
1362  * Look up whether another VF has already allocated the control VSI resource.
1363  * If so, re-use this resource so that we share it among all VFs.
1364  *
1365  * Otherwise, allocate the resource and return it.
1366  */
1367 static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
1368 {
1369     struct ice_vf *vf;
1370     unsigned int bkt;
1371     int base;
1372 
1373     rcu_read_lock();
1374     ice_for_each_vf_rcu(pf, bkt, vf) {
1375         if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1376             base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1377             rcu_read_unlock();
1378             return base;
1379         }
1380     }
1381     rcu_read_unlock();
1382 
1383     return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
1384                ICE_RES_VF_CTRL_VEC_ID);
1385 }
1386 
1387 /**
1388  * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1389  * @vsi: ptr to the VSI
1390  *
1391  * This should only be called after ice_vsi_alloc() which allocates the
1392  * corresponding SW VSI structure and initializes num_queue_pairs for the
1393  * newly allocated VSI.
1394  *
1395  * Returns 0 on success or negative on failure
1396  */
1397 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1398 {
1399     struct ice_pf *pf = vsi->back;
1400     struct device *dev;
1401     u16 num_q_vectors;
1402     int base;
1403 
1404     dev = ice_pf_to_dev(pf);
1405     /* SRIOV doesn't grab irq_tracker entries for each VSI */
1406     if (vsi->type == ICE_VSI_VF)
1407         return 0;
1408     if (vsi->type == ICE_VSI_CHNL)
1409         return 0;
1410 
1411     if (vsi->base_vector) {
1412         dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1413             vsi->vsi_num, vsi->base_vector);
1414         return -EEXIST;
1415     }
1416 
1417     num_q_vectors = vsi->num_q_vectors;
1418     /* reserve slots from OS requested IRQs */
1419     if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
1420         base = ice_get_vf_ctrl_res(pf, vsi);
1421     } else {
1422         base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1423                    vsi->idx);
1424     }
1425 
1426     if (base < 0) {
1427         dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1428             ice_get_free_res_count(pf->irq_tracker),
1429             ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1430         return -ENOENT;
1431     }
1432     vsi->base_vector = (u16)base;
1433     pf->num_avail_sw_msix -= num_q_vectors;
1434 
1435     return 0;
1436 }
1437 
1438 /**
1439  * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1440  * @vsi: the VSI having rings deallocated
1441  */
1442 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1443 {
1444     int i;
1445 
1446     /* Avoid stale references by clearing map from vector to ring */
1447     if (vsi->q_vectors) {
1448         ice_for_each_q_vector(vsi, i) {
1449             struct ice_q_vector *q_vector = vsi->q_vectors[i];
1450 
1451             if (q_vector) {
1452                 q_vector->tx.tx_ring = NULL;
1453                 q_vector->rx.rx_ring = NULL;
1454             }
1455         }
1456     }
1457 
1458     if (vsi->tx_rings) {
1459         ice_for_each_alloc_txq(vsi, i) {
1460             if (vsi->tx_rings[i]) {
1461                 kfree_rcu(vsi->tx_rings[i], rcu);
1462                 WRITE_ONCE(vsi->tx_rings[i], NULL);
1463             }
1464         }
1465     }
1466     if (vsi->rx_rings) {
1467         ice_for_each_alloc_rxq(vsi, i) {
1468             if (vsi->rx_rings[i]) {
1469                 kfree_rcu(vsi->rx_rings[i], rcu);
1470                 WRITE_ONCE(vsi->rx_rings[i], NULL);
1471             }
1472         }
1473     }
1474 }
1475 
1476 /**
1477  * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1478  * @vsi: VSI which is having rings allocated
1479  */
1480 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1481 {
1482     bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1483     struct ice_pf *pf = vsi->back;
1484     struct device *dev;
1485     u16 i;
1486 
1487     dev = ice_pf_to_dev(pf);
1488     /* Allocate Tx rings */
1489     ice_for_each_alloc_txq(vsi, i) {
1490         struct ice_tx_ring *ring;
1491 
1492         /* allocate with kzalloc(), free with kfree_rcu() */
1493         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1494 
1495         if (!ring)
1496             goto err_out;
1497 
1498         ring->q_index = i;
1499         ring->reg_idx = vsi->txq_map[i];
1500         ring->vsi = vsi;
1501         ring->tx_tstamps = &pf->ptp.port.tx;
1502         ring->dev = dev;
1503         ring->count = vsi->num_tx_desc;
1504         ring->txq_teid = ICE_INVAL_TEID;
1505         if (dvm_ena)
1506             ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1507         else
1508             ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1509         WRITE_ONCE(vsi->tx_rings[i], ring);
1510     }
1511 
1512     /* Allocate Rx rings */
1513     ice_for_each_alloc_rxq(vsi, i) {
1514         struct ice_rx_ring *ring;
1515 
1516         /* allocate with kzalloc(), free with kfree_rcu() */
1517         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1518         if (!ring)
1519             goto err_out;
1520 
1521         ring->q_index = i;
1522         ring->reg_idx = vsi->rxq_map[i];
1523         ring->vsi = vsi;
1524         ring->netdev = vsi->netdev;
1525         ring->dev = dev;
1526         ring->count = vsi->num_rx_desc;
1527         WRITE_ONCE(vsi->rx_rings[i], ring);
1528     }
1529 
1530     return 0;
1531 
1532 err_out:
1533     ice_vsi_clear_rings(vsi);
1534     return -ENOMEM;
1535 }
1536 
1537 /**
1538  * ice_vsi_manage_rss_lut - disable/enable RSS
1539  * @vsi: the VSI being changed
1540  * @ena: boolean value indicating if this is an enable or disable request
1541  *
1542  * In the event of disable request for RSS, this function will zero out RSS
1543  * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1544  * LUT.
1545  */
1546 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1547 {
1548     u8 *lut;
1549 
1550     lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1551     if (!lut)
1552         return;
1553 
1554     if (ena) {
1555         if (vsi->rss_lut_user)
1556             memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1557         else
1558             ice_fill_rss_lut(lut, vsi->rss_table_size,
1559                      vsi->rss_size);
1560     }
1561 
1562     ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1563     kfree(lut);
1564 }
1565 
1566 /**
1567  * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1568  * @vsi: VSI to be configured
1569  */
1570 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1571 {
1572     struct ice_pf *pf = vsi->back;
1573     struct device *dev;
1574     u8 *lut, *key;
1575     int err;
1576 
1577     dev = ice_pf_to_dev(pf);
1578     if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1579         (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1580         vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1581     } else {
1582         vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1583 
1584         /* If orig_rss_size is valid and it is less than determined
1585          * main VSI's rss_size, update main VSI's rss_size to be
1586          * orig_rss_size so that when tc-qdisc is deleted, main VSI
1587          * RSS table gets programmed to be correct (whatever it was
1588          * to begin with (prior to setup-tc for ADQ config)
1589          */
1590         if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1591             vsi->orig_rss_size <= vsi->num_rxq) {
1592             vsi->rss_size = vsi->orig_rss_size;
1593             /* now orig_rss_size is used, reset it to zero */
1594             vsi->orig_rss_size = 0;
1595         }
1596     }
1597 
1598     lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1599     if (!lut)
1600         return -ENOMEM;
1601 
1602     if (vsi->rss_lut_user)
1603         memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1604     else
1605         ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1606 
1607     err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1608     if (err) {
1609         dev_err(dev, "set_rss_lut failed, error %d\n", err);
1610         goto ice_vsi_cfg_rss_exit;
1611     }
1612 
1613     key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1614     if (!key) {
1615         err = -ENOMEM;
1616         goto ice_vsi_cfg_rss_exit;
1617     }
1618 
1619     if (vsi->rss_hkey_user)
1620         memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1621     else
1622         netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1623 
1624     err = ice_set_rss_key(vsi, key);
1625     if (err)
1626         dev_err(dev, "set_rss_key failed, error %d\n", err);
1627 
1628     kfree(key);
1629 ice_vsi_cfg_rss_exit:
1630     kfree(lut);
1631     return err;
1632 }
1633 
1634 /**
1635  * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1636  * @vsi: VSI to be configured
1637  *
1638  * This function will only be called during the VF VSI setup. Upon successful
1639  * completion of package download, this function will configure default RSS
1640  * input sets for VF VSI.
1641  */
1642 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1643 {
1644     struct ice_pf *pf = vsi->back;
1645     struct device *dev;
1646     int status;
1647 
1648     dev = ice_pf_to_dev(pf);
1649     if (ice_is_safe_mode(pf)) {
1650         dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1651             vsi->vsi_num);
1652         return;
1653     }
1654 
1655     status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1656     if (status)
1657         dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1658             vsi->vsi_num, status);
1659 }
1660 
1661 /**
1662  * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1663  * @vsi: VSI to be configured
1664  *
1665  * This function will only be called after successful download package call
1666  * during initialization of PF. Since the downloaded package will erase the
1667  * RSS section, this function will configure RSS input sets for different
1668  * flow types. The last profile added has the highest priority, therefore 2
1669  * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1670  * (i.e. IPv4 src/dst TCP src/dst port).
1671  */
1672 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1673 {
1674     u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1675     struct ice_pf *pf = vsi->back;
1676     struct ice_hw *hw = &pf->hw;
1677     struct device *dev;
1678     int status;
1679 
1680     dev = ice_pf_to_dev(pf);
1681     if (ice_is_safe_mode(pf)) {
1682         dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1683             vsi_num);
1684         return;
1685     }
1686     /* configure RSS for IPv4 with input set IP src/dst */
1687     status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1688                  ICE_FLOW_SEG_HDR_IPV4);
1689     if (status)
1690         dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1691             vsi_num, status);
1692 
1693     /* configure RSS for IPv6 with input set IPv6 src/dst */
1694     status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1695                  ICE_FLOW_SEG_HDR_IPV6);
1696     if (status)
1697         dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1698             vsi_num, status);
1699 
1700     /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1701     status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1702                  ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1703     if (status)
1704         dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1705             vsi_num, status);
1706 
1707     /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1708     status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1709                  ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1710     if (status)
1711         dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1712             vsi_num, status);
1713 
1714     /* configure RSS for sctp4 with input set IP src/dst */
1715     status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1716                  ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1717     if (status)
1718         dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1719             vsi_num, status);
1720 
1721     /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1722     status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1723                  ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1724     if (status)
1725         dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1726             vsi_num, status);
1727 
1728     /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1729     status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1730                  ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1731     if (status)
1732         dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1733             vsi_num, status);
1734 
1735     /* configure RSS for sctp6 with input set IPv6 src/dst */
1736     status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1737                  ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1738     if (status)
1739         dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1740             vsi_num, status);
1741 
1742     status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1743                  ICE_FLOW_SEG_HDR_ESP);
1744     if (status)
1745         dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1746             vsi_num, status);
1747 }
1748 
1749 /**
1750  * ice_pf_state_is_nominal - checks the PF for nominal state
1751  * @pf: pointer to PF to check
1752  *
1753  * Check the PF's state for a collection of bits that would indicate
1754  * the PF is in a state that would inhibit normal operation for
1755  * driver functionality.
1756  *
1757  * Returns true if PF is in a nominal state, false otherwise
1758  */
1759 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1760 {
1761     DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1762 
1763     if (!pf)
1764         return false;
1765 
1766     bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1767     if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1768         return false;
1769 
1770     return true;
1771 }
1772 
1773 /**
1774  * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1775  * @vsi: the VSI to be updated
1776  */
1777 void ice_update_eth_stats(struct ice_vsi *vsi)
1778 {
1779     struct ice_eth_stats *prev_es, *cur_es;
1780     struct ice_hw *hw = &vsi->back->hw;
1781     u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1782 
1783     prev_es = &vsi->eth_stats_prev;
1784     cur_es = &vsi->eth_stats;
1785 
1786     ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1787               &prev_es->rx_bytes, &cur_es->rx_bytes);
1788 
1789     ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1790               &prev_es->rx_unicast, &cur_es->rx_unicast);
1791 
1792     ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1793               &prev_es->rx_multicast, &cur_es->rx_multicast);
1794 
1795     ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1796               &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1797 
1798     ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1799               &prev_es->rx_discards, &cur_es->rx_discards);
1800 
1801     ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1802               &prev_es->tx_bytes, &cur_es->tx_bytes);
1803 
1804     ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1805               &prev_es->tx_unicast, &cur_es->tx_unicast);
1806 
1807     ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1808               &prev_es->tx_multicast, &cur_es->tx_multicast);
1809 
1810     ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1811               &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1812 
1813     ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1814               &prev_es->tx_errors, &cur_es->tx_errors);
1815 
1816     vsi->stat_offsets_loaded = true;
1817 }
1818 
1819 /**
1820  * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1821  * @vsi: VSI
1822  */
1823 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1824 {
1825     if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1826         vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1827         vsi->rx_buf_len = ICE_RXBUF_2048;
1828 #if (PAGE_SIZE < 8192)
1829     } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1830            (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1831         vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1832         vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1833 #endif
1834     } else {
1835         vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1836 #if (PAGE_SIZE < 8192)
1837         vsi->rx_buf_len = ICE_RXBUF_3072;
1838 #else
1839         vsi->rx_buf_len = ICE_RXBUF_2048;
1840 #endif
1841     }
1842 }
1843 
1844 /**
1845  * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1846  * @hw: HW pointer
1847  * @pf_q: index of the Rx queue in the PF's queue space
1848  * @rxdid: flexible descriptor RXDID
1849  * @prio: priority for the RXDID for this queue
1850  * @ena_ts: true to enable timestamp and false to disable timestamp
1851  */
1852 void
1853 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1854             bool ena_ts)
1855 {
1856     int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1857 
1858     /* clear any previous values */
1859     regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1860             QRXFLXP_CNTXT_RXDID_PRIO_M |
1861             QRXFLXP_CNTXT_TS_M);
1862 
1863     regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1864         QRXFLXP_CNTXT_RXDID_IDX_M;
1865 
1866     regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1867         QRXFLXP_CNTXT_RXDID_PRIO_M;
1868 
1869     if (ena_ts)
1870         /* Enable TimeSync on this queue */
1871         regval |= QRXFLXP_CNTXT_TS_M;
1872 
1873     wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1874 }
1875 
1876 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1877 {
1878     if (q_idx >= vsi->num_rxq)
1879         return -EINVAL;
1880 
1881     return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1882 }
1883 
1884 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1885 {
1886     struct ice_aqc_add_tx_qgrp *qg_buf;
1887     int err;
1888 
1889     if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1890         return -EINVAL;
1891 
1892     qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1893     if (!qg_buf)
1894         return -ENOMEM;
1895 
1896     qg_buf->num_txqs = 1;
1897 
1898     err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1899     kfree(qg_buf);
1900     return err;
1901 }
1902 
1903 /**
1904  * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1905  * @vsi: the VSI being configured
1906  *
1907  * Return 0 on success and a negative value on error
1908  * Configure the Rx VSI for operation.
1909  */
1910 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1911 {
1912     u16 i;
1913 
1914     if (vsi->type == ICE_VSI_VF)
1915         goto setup_rings;
1916 
1917     ice_vsi_cfg_frame_size(vsi);
1918 setup_rings:
1919     /* set up individual rings */
1920     ice_for_each_rxq(vsi, i) {
1921         int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1922 
1923         if (err)
1924             return err;
1925     }
1926 
1927     return 0;
1928 }
1929 
1930 /**
1931  * ice_vsi_cfg_txqs - Configure the VSI for Tx
1932  * @vsi: the VSI being configured
1933  * @rings: Tx ring array to be configured
1934  * @count: number of Tx ring array elements
1935  *
1936  * Return 0 on success and a negative value on error
1937  * Configure the Tx VSI for operation.
1938  */
1939 static int
1940 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1941 {
1942     struct ice_aqc_add_tx_qgrp *qg_buf;
1943     u16 q_idx = 0;
1944     int err = 0;
1945 
1946     qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1947     if (!qg_buf)
1948         return -ENOMEM;
1949 
1950     qg_buf->num_txqs = 1;
1951 
1952     for (q_idx = 0; q_idx < count; q_idx++) {
1953         err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1954         if (err)
1955             goto err_cfg_txqs;
1956     }
1957 
1958 err_cfg_txqs:
1959     kfree(qg_buf);
1960     return err;
1961 }
1962 
1963 /**
1964  * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1965  * @vsi: the VSI being configured
1966  *
1967  * Return 0 on success and a negative value on error
1968  * Configure the Tx VSI for operation.
1969  */
1970 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1971 {
1972     return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1973 }
1974 
1975 /**
1976  * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1977  * @vsi: the VSI being configured
1978  *
1979  * Return 0 on success and a negative value on error
1980  * Configure the Tx queues dedicated for XDP in given VSI for operation.
1981  */
1982 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1983 {
1984     int ret;
1985     int i;
1986 
1987     ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1988     if (ret)
1989         return ret;
1990 
1991     ice_for_each_rxq(vsi, i)
1992         ice_tx_xsk_pool(vsi, i);
1993 
1994     return ret;
1995 }
1996 
1997 /**
1998  * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1999  * @intrl: interrupt rate limit in usecs
2000  * @gran: interrupt rate limit granularity in usecs
2001  *
2002  * This function converts a decimal interrupt rate limit in usecs to the format
2003  * expected by firmware.
2004  */
2005 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
2006 {
2007     u32 val = intrl / gran;
2008 
2009     if (val)
2010         return val | GLINT_RATE_INTRL_ENA_M;
2011     return 0;
2012 }
2013 
2014 /**
2015  * ice_write_intrl - write throttle rate limit to interrupt specific register
2016  * @q_vector: pointer to interrupt specific structure
2017  * @intrl: throttle rate limit in microseconds to write
2018  */
2019 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
2020 {
2021     struct ice_hw *hw = &q_vector->vsi->back->hw;
2022 
2023     wr32(hw, GLINT_RATE(q_vector->reg_idx),
2024          ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
2025 }
2026 
2027 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
2028 {
2029     switch (rc->type) {
2030     case ICE_RX_CONTAINER:
2031         if (rc->rx_ring)
2032             return rc->rx_ring->q_vector;
2033         break;
2034     case ICE_TX_CONTAINER:
2035         if (rc->tx_ring)
2036             return rc->tx_ring->q_vector;
2037         break;
2038     default:
2039         break;
2040     }
2041 
2042     return NULL;
2043 }
2044 
2045 /**
2046  * __ice_write_itr - write throttle rate to register
2047  * @q_vector: pointer to interrupt data structure
2048  * @rc: pointer to ring container
2049  * @itr: throttle rate in microseconds to write
2050  */
2051 static void __ice_write_itr(struct ice_q_vector *q_vector,
2052                 struct ice_ring_container *rc, u16 itr)
2053 {
2054     struct ice_hw *hw = &q_vector->vsi->back->hw;
2055 
2056     wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2057          ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2058 }
2059 
2060 /**
2061  * ice_write_itr - write throttle rate to queue specific register
2062  * @rc: pointer to ring container
2063  * @itr: throttle rate in microseconds to write
2064  */
2065 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2066 {
2067     struct ice_q_vector *q_vector;
2068 
2069     q_vector = ice_pull_qvec_from_rc(rc);
2070     if (!q_vector)
2071         return;
2072 
2073     __ice_write_itr(q_vector, rc, itr);
2074 }
2075 
2076 /**
2077  * ice_set_q_vector_intrl - set up interrupt rate limiting
2078  * @q_vector: the vector to be configured
2079  *
2080  * Interrupt rate limiting is local to the vector, not per-queue so we must
2081  * detect if either ring container has dynamic moderation enabled to decide
2082  * what to set the interrupt rate limit to via INTRL settings. In the case that
2083  * dynamic moderation is disabled on both, write the value with the cached
2084  * setting to make sure INTRL register matches the user visible value.
2085  */
2086 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2087 {
2088     if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2089         /* in the case of dynamic enabled, cap each vector to no more
2090          * than (4 us) 250,000 ints/sec, which allows low latency
2091          * but still less than 500,000 interrupts per second, which
2092          * reduces CPU a bit in the case of the lowest latency
2093          * setting. The 4 here is a value in microseconds.
2094          */
2095         ice_write_intrl(q_vector, 4);
2096     } else {
2097         ice_write_intrl(q_vector, q_vector->intrl);
2098     }
2099 }
2100 
2101 /**
2102  * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2103  * @vsi: the VSI being configured
2104  *
2105  * This configures MSIX mode interrupts for the PF VSI, and should not be used
2106  * for the VF VSI.
2107  */
2108 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2109 {
2110     struct ice_pf *pf = vsi->back;
2111     struct ice_hw *hw = &pf->hw;
2112     u16 txq = 0, rxq = 0;
2113     int i, q;
2114 
2115     ice_for_each_q_vector(vsi, i) {
2116         struct ice_q_vector *q_vector = vsi->q_vectors[i];
2117         u16 reg_idx = q_vector->reg_idx;
2118 
2119         ice_cfg_itr(hw, q_vector);
2120 
2121         /* Both Transmit Queue Interrupt Cause Control register
2122          * and Receive Queue Interrupt Cause control register
2123          * expects MSIX_INDX field to be the vector index
2124          * within the function space and not the absolute
2125          * vector index across PF or across device.
2126          * For SR-IOV VF VSIs queue vector index always starts
2127          * with 1 since first vector index(0) is used for OICR
2128          * in VF space. Since VMDq and other PF VSIs are within
2129          * the PF function space, use the vector index that is
2130          * tracked for this PF.
2131          */
2132         for (q = 0; q < q_vector->num_ring_tx; q++) {
2133             ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2134                           q_vector->tx.itr_idx);
2135             txq++;
2136         }
2137 
2138         for (q = 0; q < q_vector->num_ring_rx; q++) {
2139             ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2140                           q_vector->rx.itr_idx);
2141             rxq++;
2142         }
2143     }
2144 }
2145 
2146 /**
2147  * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2148  * @vsi: the VSI whose rings are to be enabled
2149  *
2150  * Returns 0 on success and a negative value on error
2151  */
2152 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2153 {
2154     return ice_vsi_ctrl_all_rx_rings(vsi, true);
2155 }
2156 
2157 /**
2158  * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2159  * @vsi: the VSI whose rings are to be disabled
2160  *
2161  * Returns 0 on success and a negative value on error
2162  */
2163 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2164 {
2165     return ice_vsi_ctrl_all_rx_rings(vsi, false);
2166 }
2167 
2168 /**
2169  * ice_vsi_stop_tx_rings - Disable Tx rings
2170  * @vsi: the VSI being configured
2171  * @rst_src: reset source
2172  * @rel_vmvf_num: Relative ID of VF/VM
2173  * @rings: Tx ring array to be stopped
2174  * @count: number of Tx ring array elements
2175  */
2176 static int
2177 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2178               u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2179 {
2180     u16 q_idx;
2181 
2182     if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2183         return -EINVAL;
2184 
2185     for (q_idx = 0; q_idx < count; q_idx++) {
2186         struct ice_txq_meta txq_meta = { };
2187         int status;
2188 
2189         if (!rings || !rings[q_idx])
2190             return -EINVAL;
2191 
2192         ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2193         status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2194                           rings[q_idx], &txq_meta);
2195 
2196         if (status)
2197             return status;
2198     }
2199 
2200     return 0;
2201 }
2202 
2203 /**
2204  * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2205  * @vsi: the VSI being configured
2206  * @rst_src: reset source
2207  * @rel_vmvf_num: Relative ID of VF/VM
2208  */
2209 int
2210 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2211               u16 rel_vmvf_num)
2212 {
2213     return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2214 }
2215 
2216 /**
2217  * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2218  * @vsi: the VSI being configured
2219  */
2220 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2221 {
2222     return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2223 }
2224 
2225 /**
2226  * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2227  * @vsi: VSI to check whether or not VLAN pruning is enabled.
2228  *
2229  * returns true if Rx VLAN pruning is enabled and false otherwise.
2230  */
2231 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2232 {
2233     if (!vsi)
2234         return false;
2235 
2236     return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2237 }
2238 
2239 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2240 {
2241     if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2242         vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2243         vsi->tc_cfg.numtc = 1;
2244         return;
2245     }
2246 
2247     /* set VSI TC information based on DCB config */
2248     ice_vsi_set_dcb_tc_cfg(vsi);
2249 }
2250 
2251 /**
2252  * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2253  * @vsi: VSI to set the q_vectors register index on
2254  */
2255 static int
2256 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2257 {
2258     u16 i;
2259 
2260     if (!vsi || !vsi->q_vectors)
2261         return -EINVAL;
2262 
2263     ice_for_each_q_vector(vsi, i) {
2264         struct ice_q_vector *q_vector = vsi->q_vectors[i];
2265 
2266         if (!q_vector) {
2267             dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2268                 i, vsi->vsi_num);
2269             goto clear_reg_idx;
2270         }
2271 
2272         if (vsi->type == ICE_VSI_VF) {
2273             struct ice_vf *vf = vsi->vf;
2274 
2275             q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2276         } else {
2277             q_vector->reg_idx =
2278                 q_vector->v_idx + vsi->base_vector;
2279         }
2280     }
2281 
2282     return 0;
2283 
2284 clear_reg_idx:
2285     ice_for_each_q_vector(vsi, i) {
2286         struct ice_q_vector *q_vector = vsi->q_vectors[i];
2287 
2288         if (q_vector)
2289             q_vector->reg_idx = 0;
2290     }
2291 
2292     return -EINVAL;
2293 }
2294 
2295 /**
2296  * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2297  * @vsi: the VSI being configured
2298  * @tx: bool to determine Tx or Rx rule
2299  * @create: bool to determine create or remove Rule
2300  */
2301 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2302 {
2303     int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2304             enum ice_sw_fwd_act_type act);
2305     struct ice_pf *pf = vsi->back;
2306     struct device *dev;
2307     int status;
2308 
2309     dev = ice_pf_to_dev(pf);
2310     eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2311 
2312     if (tx) {
2313         status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2314                   ICE_DROP_PACKET);
2315     } else {
2316         if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2317             status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2318                               create);
2319         } else {
2320             status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2321                       ICE_FWD_TO_VSI);
2322         }
2323     }
2324 
2325     if (status)
2326         dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2327             create ? "adding" : "removing", tx ? "TX" : "RX",
2328             vsi->vsi_num, status);
2329 }
2330 
2331 /**
2332  * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2333  * @vsi: pointer to the VSI
2334  *
2335  * This function will allocate new scheduler aggregator now if needed and will
2336  * move specified VSI into it.
2337  */
2338 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2339 {
2340     struct device *dev = ice_pf_to_dev(vsi->back);
2341     struct ice_agg_node *agg_node_iter = NULL;
2342     u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2343     struct ice_agg_node *agg_node = NULL;
2344     int node_offset, max_agg_nodes = 0;
2345     struct ice_port_info *port_info;
2346     struct ice_pf *pf = vsi->back;
2347     u32 agg_node_id_start = 0;
2348     int status;
2349 
2350     /* create (as needed) scheduler aggregator node and move VSI into
2351      * corresponding aggregator node
2352      * - PF aggregator node to contains VSIs of type _PF and _CTRL
2353      * - VF aggregator nodes will contain VF VSI
2354      */
2355     port_info = pf->hw.port_info;
2356     if (!port_info)
2357         return;
2358 
2359     switch (vsi->type) {
2360     case ICE_VSI_CTRL:
2361     case ICE_VSI_CHNL:
2362     case ICE_VSI_LB:
2363     case ICE_VSI_PF:
2364     case ICE_VSI_SWITCHDEV_CTRL:
2365         max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2366         agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2367         agg_node_iter = &pf->pf_agg_node[0];
2368         break;
2369     case ICE_VSI_VF:
2370         /* user can create 'n' VFs on a given PF, but since max children
2371          * per aggregator node can be only 64. Following code handles
2372          * aggregator(s) for VF VSIs, either selects a agg_node which
2373          * was already created provided num_vsis < 64, otherwise
2374          * select next available node, which will be created
2375          */
2376         max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2377         agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2378         agg_node_iter = &pf->vf_agg_node[0];
2379         break;
2380     default:
2381         /* other VSI type, handle later if needed */
2382         dev_dbg(dev, "unexpected VSI type %s\n",
2383             ice_vsi_type_str(vsi->type));
2384         return;
2385     }
2386 
2387     /* find the appropriate aggregator node */
2388     for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2389         /* see if we can find space in previously created
2390          * node if num_vsis < 64, otherwise skip
2391          */
2392         if (agg_node_iter->num_vsis &&
2393             agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2394             agg_node_iter++;
2395             continue;
2396         }
2397 
2398         if (agg_node_iter->valid &&
2399             agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2400             agg_id = agg_node_iter->agg_id;
2401             agg_node = agg_node_iter;
2402             break;
2403         }
2404 
2405         /* find unclaimed agg_id */
2406         if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2407             agg_id = node_offset + agg_node_id_start;
2408             agg_node = agg_node_iter;
2409             break;
2410         }
2411         /* move to next agg_node */
2412         agg_node_iter++;
2413     }
2414 
2415     if (!agg_node)
2416         return;
2417 
2418     /* if selected aggregator node was not created, create it */
2419     if (!agg_node->valid) {
2420         status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2421                      (u8)vsi->tc_cfg.ena_tc);
2422         if (status) {
2423             dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2424                 agg_id);
2425             return;
2426         }
2427         /* aggregator node is created, store the needed info */
2428         agg_node->valid = true;
2429         agg_node->agg_id = agg_id;
2430     }
2431 
2432     /* move VSI to corresponding aggregator node */
2433     status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2434                      (u8)vsi->tc_cfg.ena_tc);
2435     if (status) {
2436         dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2437             vsi->idx, agg_id);
2438         return;
2439     }
2440 
2441     /* keep active children count for aggregator node */
2442     agg_node->num_vsis++;
2443 
2444     /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2445      * to aggregator node
2446      */
2447     vsi->agg_node = agg_node;
2448     dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2449         vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2450         vsi->agg_node->num_vsis);
2451 }
2452 
2453 /**
2454  * ice_vsi_setup - Set up a VSI by a given type
2455  * @pf: board private structure
2456  * @pi: pointer to the port_info instance
2457  * @vsi_type: VSI type
2458  * @vf: pointer to VF to which this VSI connects. This field is used primarily
2459  *      for the ICE_VSI_VF type. Other VSI types should pass NULL.
2460  * @ch: ptr to channel
2461  *
2462  * This allocates the sw VSI structure and its queue resources.
2463  *
2464  * Returns pointer to the successfully allocated and configured VSI sw struct on
2465  * success, NULL on failure.
2466  */
2467 struct ice_vsi *
2468 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2469           enum ice_vsi_type vsi_type, struct ice_vf *vf,
2470           struct ice_channel *ch)
2471 {
2472     u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2473     struct device *dev = ice_pf_to_dev(pf);
2474     struct ice_vsi *vsi;
2475     int ret, i;
2476 
2477     if (vsi_type == ICE_VSI_CHNL)
2478         vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
2479     else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2480         vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
2481     else
2482         vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
2483 
2484     if (!vsi) {
2485         dev_err(dev, "could not allocate VSI\n");
2486         return NULL;
2487     }
2488 
2489     vsi->port_info = pi;
2490     vsi->vsw = pf->first_sw;
2491     if (vsi->type == ICE_VSI_PF)
2492         vsi->ethtype = ETH_P_PAUSE;
2493 
2494     ice_alloc_fd_res(vsi);
2495 
2496     if (vsi_type != ICE_VSI_CHNL) {
2497         if (ice_vsi_get_qs(vsi)) {
2498             dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2499                 vsi->idx);
2500             goto unroll_vsi_alloc;
2501         }
2502     }
2503 
2504     /* set RSS capabilities */
2505     ice_vsi_set_rss_params(vsi);
2506 
2507     /* set TC configuration */
2508     ice_vsi_set_tc_cfg(vsi);
2509 
2510     /* create the VSI */
2511     ret = ice_vsi_init(vsi, true);
2512     if (ret)
2513         goto unroll_get_qs;
2514 
2515     ice_vsi_init_vlan_ops(vsi);
2516 
2517     switch (vsi->type) {
2518     case ICE_VSI_CTRL:
2519     case ICE_VSI_SWITCHDEV_CTRL:
2520     case ICE_VSI_PF:
2521         ret = ice_vsi_alloc_q_vectors(vsi);
2522         if (ret)
2523             goto unroll_vsi_init;
2524 
2525         ret = ice_vsi_setup_vector_base(vsi);
2526         if (ret)
2527             goto unroll_alloc_q_vector;
2528 
2529         ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2530         if (ret)
2531             goto unroll_vector_base;
2532 
2533         ret = ice_vsi_alloc_rings(vsi);
2534         if (ret)
2535             goto unroll_vector_base;
2536 
2537         ice_vsi_map_rings_to_vectors(vsi);
2538 
2539         /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2540         if (vsi->type != ICE_VSI_CTRL)
2541             /* Do not exit if configuring RSS had an issue, at
2542              * least receive traffic on first queue. Hence no
2543              * need to capture return value
2544              */
2545             if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2546                 ice_vsi_cfg_rss_lut_key(vsi);
2547                 ice_vsi_set_rss_flow_fld(vsi);
2548             }
2549         ice_init_arfs(vsi);
2550         break;
2551     case ICE_VSI_CHNL:
2552         if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2553             ice_vsi_cfg_rss_lut_key(vsi);
2554             ice_vsi_set_rss_flow_fld(vsi);
2555         }
2556         break;
2557     case ICE_VSI_VF:
2558         /* VF driver will take care of creating netdev for this type and
2559          * map queues to vectors through Virtchnl, PF driver only
2560          * creates a VSI and corresponding structures for bookkeeping
2561          * purpose
2562          */
2563         ret = ice_vsi_alloc_q_vectors(vsi);
2564         if (ret)
2565             goto unroll_vsi_init;
2566 
2567         ret = ice_vsi_alloc_rings(vsi);
2568         if (ret)
2569             goto unroll_alloc_q_vector;
2570 
2571         ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2572         if (ret)
2573             goto unroll_vector_base;
2574 
2575         /* Do not exit if configuring RSS had an issue, at least
2576          * receive traffic on first queue. Hence no need to capture
2577          * return value
2578          */
2579         if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2580             ice_vsi_cfg_rss_lut_key(vsi);
2581             ice_vsi_set_vf_rss_flow_fld(vsi);
2582         }
2583         break;
2584     case ICE_VSI_LB:
2585         ret = ice_vsi_alloc_rings(vsi);
2586         if (ret)
2587             goto unroll_vsi_init;
2588         break;
2589     default:
2590         /* clean up the resources and exit */
2591         goto unroll_vsi_init;
2592     }
2593 
2594     /* configure VSI nodes based on number of queues and TC's */
2595     ice_for_each_traffic_class(i) {
2596         if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2597             continue;
2598 
2599         if (vsi->type == ICE_VSI_CHNL) {
2600             if (!vsi->alloc_txq && vsi->num_txq)
2601                 max_txqs[i] = vsi->num_txq;
2602             else
2603                 max_txqs[i] = pf->num_lan_tx;
2604         } else {
2605             max_txqs[i] = vsi->alloc_txq;
2606         }
2607     }
2608 
2609     dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2610     ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2611                   max_txqs);
2612     if (ret) {
2613         dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2614             vsi->vsi_num, ret);
2615         goto unroll_clear_rings;
2616     }
2617 
2618     /* Add switch rule to drop all Tx Flow Control Frames, of look up
2619      * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2620      * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2621      * The rule is added once for PF VSI in order to create appropriate
2622      * recipe, since VSI/VSI list is ignored with drop action...
2623      * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2624      * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2625      * settings in the HW.
2626      */
2627     if (!ice_is_safe_mode(pf))
2628         if (vsi->type == ICE_VSI_PF) {
2629             ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2630                      ICE_DROP_PACKET);
2631             ice_cfg_sw_lldp(vsi, true, true);
2632         }
2633 
2634     if (!vsi->agg_node)
2635         ice_set_agg_vsi(vsi);
2636     return vsi;
2637 
2638 unroll_clear_rings:
2639     ice_vsi_clear_rings(vsi);
2640 unroll_vector_base:
2641     /* reclaim SW interrupts back to the common pool */
2642     ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2643     pf->num_avail_sw_msix += vsi->num_q_vectors;
2644 unroll_alloc_q_vector:
2645     ice_vsi_free_q_vectors(vsi);
2646 unroll_vsi_init:
2647     ice_vsi_delete(vsi);
2648 unroll_get_qs:
2649     ice_vsi_put_qs(vsi);
2650 unroll_vsi_alloc:
2651     if (vsi_type == ICE_VSI_VF)
2652         ice_enable_lag(pf->lag);
2653     ice_vsi_clear(vsi);
2654 
2655     return NULL;
2656 }
2657 
2658 /**
2659  * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2660  * @vsi: the VSI being cleaned up
2661  */
2662 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2663 {
2664     struct ice_pf *pf = vsi->back;
2665     struct ice_hw *hw = &pf->hw;
2666     u32 txq = 0;
2667     u32 rxq = 0;
2668     int i, q;
2669 
2670     ice_for_each_q_vector(vsi, i) {
2671         struct ice_q_vector *q_vector = vsi->q_vectors[i];
2672 
2673         ice_write_intrl(q_vector, 0);
2674         for (q = 0; q < q_vector->num_ring_tx; q++) {
2675             ice_write_itr(&q_vector->tx, 0);
2676             wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2677             if (ice_is_xdp_ena_vsi(vsi)) {
2678                 u32 xdp_txq = txq + vsi->num_xdp_txq;
2679 
2680                 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2681             }
2682             txq++;
2683         }
2684 
2685         for (q = 0; q < q_vector->num_ring_rx; q++) {
2686             ice_write_itr(&q_vector->rx, 0);
2687             wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2688             rxq++;
2689         }
2690     }
2691 
2692     ice_flush(hw);
2693 }
2694 
2695 /**
2696  * ice_vsi_free_irq - Free the IRQ association with the OS
2697  * @vsi: the VSI being configured
2698  */
2699 void ice_vsi_free_irq(struct ice_vsi *vsi)
2700 {
2701     struct ice_pf *pf = vsi->back;
2702     int base = vsi->base_vector;
2703     int i;
2704 
2705     if (!vsi->q_vectors || !vsi->irqs_ready)
2706         return;
2707 
2708     ice_vsi_release_msix(vsi);
2709     if (vsi->type == ICE_VSI_VF)
2710         return;
2711 
2712     vsi->irqs_ready = false;
2713     ice_free_cpu_rx_rmap(vsi);
2714 
2715     ice_for_each_q_vector(vsi, i) {
2716         u16 vector = i + base;
2717         int irq_num;
2718 
2719         irq_num = pf->msix_entries[vector].vector;
2720 
2721         /* free only the irqs that were actually requested */
2722         if (!vsi->q_vectors[i] ||
2723             !(vsi->q_vectors[i]->num_ring_tx ||
2724               vsi->q_vectors[i]->num_ring_rx))
2725             continue;
2726 
2727         /* clear the affinity notifier in the IRQ descriptor */
2728         if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2729             irq_set_affinity_notifier(irq_num, NULL);
2730 
2731         /* clear the affinity_mask in the IRQ descriptor */
2732         irq_set_affinity_hint(irq_num, NULL);
2733         synchronize_irq(irq_num);
2734         devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2735     }
2736 }
2737 
2738 /**
2739  * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2740  * @vsi: the VSI having resources freed
2741  */
2742 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2743 {
2744     int i;
2745 
2746     if (!vsi->tx_rings)
2747         return;
2748 
2749     ice_for_each_txq(vsi, i)
2750         if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2751             ice_free_tx_ring(vsi->tx_rings[i]);
2752 }
2753 
2754 /**
2755  * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2756  * @vsi: the VSI having resources freed
2757  */
2758 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2759 {
2760     int i;
2761 
2762     if (!vsi->rx_rings)
2763         return;
2764 
2765     ice_for_each_rxq(vsi, i)
2766         if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2767             ice_free_rx_ring(vsi->rx_rings[i]);
2768 }
2769 
2770 /**
2771  * ice_vsi_close - Shut down a VSI
2772  * @vsi: the VSI being shut down
2773  */
2774 void ice_vsi_close(struct ice_vsi *vsi)
2775 {
2776     if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2777         ice_down(vsi);
2778 
2779     ice_vsi_free_irq(vsi);
2780     ice_vsi_free_tx_rings(vsi);
2781     ice_vsi_free_rx_rings(vsi);
2782 }
2783 
2784 /**
2785  * ice_ena_vsi - resume a VSI
2786  * @vsi: the VSI being resume
2787  * @locked: is the rtnl_lock already held
2788  */
2789 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2790 {
2791     int err = 0;
2792 
2793     if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2794         return 0;
2795 
2796     clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2797 
2798     if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2799         if (netif_running(vsi->netdev)) {
2800             if (!locked)
2801                 rtnl_lock();
2802 
2803             err = ice_open_internal(vsi->netdev);
2804 
2805             if (!locked)
2806                 rtnl_unlock();
2807         }
2808     } else if (vsi->type == ICE_VSI_CTRL) {
2809         err = ice_vsi_open_ctrl(vsi);
2810     }
2811 
2812     return err;
2813 }
2814 
2815 /**
2816  * ice_dis_vsi - pause a VSI
2817  * @vsi: the VSI being paused
2818  * @locked: is the rtnl_lock already held
2819  */
2820 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2821 {
2822     if (test_bit(ICE_VSI_DOWN, vsi->state))
2823         return;
2824 
2825     set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2826 
2827     if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2828         if (netif_running(vsi->netdev)) {
2829             if (!locked)
2830                 rtnl_lock();
2831 
2832             ice_vsi_close(vsi);
2833 
2834             if (!locked)
2835                 rtnl_unlock();
2836         } else {
2837             ice_vsi_close(vsi);
2838         }
2839     } else if (vsi->type == ICE_VSI_CTRL ||
2840            vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2841         ice_vsi_close(vsi);
2842     }
2843 }
2844 
2845 /**
2846  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2847  * @vsi: the VSI being un-configured
2848  */
2849 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2850 {
2851     int base = vsi->base_vector;
2852     struct ice_pf *pf = vsi->back;
2853     struct ice_hw *hw = &pf->hw;
2854     u32 val;
2855     int i;
2856 
2857     /* disable interrupt causation from each queue */
2858     if (vsi->tx_rings) {
2859         ice_for_each_txq(vsi, i) {
2860             if (vsi->tx_rings[i]) {
2861                 u16 reg;
2862 
2863                 reg = vsi->tx_rings[i]->reg_idx;
2864                 val = rd32(hw, QINT_TQCTL(reg));
2865                 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2866                 wr32(hw, QINT_TQCTL(reg), val);
2867             }
2868         }
2869     }
2870 
2871     if (vsi->rx_rings) {
2872         ice_for_each_rxq(vsi, i) {
2873             if (vsi->rx_rings[i]) {
2874                 u16 reg;
2875 
2876                 reg = vsi->rx_rings[i]->reg_idx;
2877                 val = rd32(hw, QINT_RQCTL(reg));
2878                 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2879                 wr32(hw, QINT_RQCTL(reg), val);
2880             }
2881         }
2882     }
2883 
2884     /* disable each interrupt */
2885     ice_for_each_q_vector(vsi, i) {
2886         if (!vsi->q_vectors[i])
2887             continue;
2888         wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2889     }
2890 
2891     ice_flush(hw);
2892 
2893     /* don't call synchronize_irq() for VF's from the host */
2894     if (vsi->type == ICE_VSI_VF)
2895         return;
2896 
2897     ice_for_each_q_vector(vsi, i)
2898         synchronize_irq(pf->msix_entries[i + base].vector);
2899 }
2900 
2901 /**
2902  * ice_napi_del - Remove NAPI handler for the VSI
2903  * @vsi: VSI for which NAPI handler is to be removed
2904  */
2905 void ice_napi_del(struct ice_vsi *vsi)
2906 {
2907     int v_idx;
2908 
2909     if (!vsi->netdev)
2910         return;
2911 
2912     ice_for_each_q_vector(vsi, v_idx)
2913         netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2914 }
2915 
2916 /**
2917  * ice_free_vf_ctrl_res - Free the VF control VSI resource
2918  * @pf: pointer to PF structure
2919  * @vsi: the VSI to free resources for
2920  *
2921  * Check if the VF control VSI resource is still in use. If no VF is using it
2922  * any more, release the VSI resource. Otherwise, leave it to be cleaned up
2923  * once no other VF uses it.
2924  */
2925 static void ice_free_vf_ctrl_res(struct ice_pf *pf,  struct ice_vsi *vsi)
2926 {
2927     struct ice_vf *vf;
2928     unsigned int bkt;
2929 
2930     rcu_read_lock();
2931     ice_for_each_vf_rcu(pf, bkt, vf) {
2932         if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
2933             rcu_read_unlock();
2934             return;
2935         }
2936     }
2937     rcu_read_unlock();
2938 
2939     /* No other VFs left that have control VSI. It is now safe to reclaim
2940      * SW interrupts back to the common pool.
2941      */
2942     ice_free_res(pf->irq_tracker, vsi->base_vector,
2943              ICE_RES_VF_CTRL_VEC_ID);
2944     pf->num_avail_sw_msix += vsi->num_q_vectors;
2945 }
2946 
2947 /**
2948  * ice_vsi_release - Delete a VSI and free its resources
2949  * @vsi: the VSI being removed
2950  *
2951  * Returns 0 on success or < 0 on error
2952  */
2953 int ice_vsi_release(struct ice_vsi *vsi)
2954 {
2955     struct ice_pf *pf;
2956     int err;
2957 
2958     if (!vsi->back)
2959         return -ENODEV;
2960     pf = vsi->back;
2961 
2962     /* do not unregister while driver is in the reset recovery pending
2963      * state. Since reset/rebuild happens through PF service task workqueue,
2964      * it's not a good idea to unregister netdev that is associated to the
2965      * PF that is running the work queue items currently. This is done to
2966      * avoid check_flush_dependency() warning on this wq
2967      */
2968     if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2969         (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2970         unregister_netdev(vsi->netdev);
2971         clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2972     }
2973 
2974     if (vsi->type == ICE_VSI_PF)
2975         ice_devlink_destroy_pf_port(pf);
2976 
2977     if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2978         ice_rss_clean(vsi);
2979 
2980     /* Disable VSI and free resources */
2981     if (vsi->type != ICE_VSI_LB)
2982         ice_vsi_dis_irq(vsi);
2983     ice_vsi_close(vsi);
2984 
2985     /* SR-IOV determines needed MSIX resources all at once instead of per
2986      * VSI since when VFs are spawned we know how many VFs there are and how
2987      * many interrupts each VF needs. SR-IOV MSIX resources are also
2988      * cleared in the same manner.
2989      */
2990     if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
2991         ice_free_vf_ctrl_res(pf, vsi);
2992     } else if (vsi->type != ICE_VSI_VF) {
2993         /* reclaim SW interrupts back to the common pool */
2994         ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2995         pf->num_avail_sw_msix += vsi->num_q_vectors;
2996     }
2997 
2998     if (!ice_is_safe_mode(pf)) {
2999         if (vsi->type == ICE_VSI_PF) {
3000             ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
3001                         ICE_DROP_PACKET);
3002             ice_cfg_sw_lldp(vsi, true, false);
3003             /* The Rx rule will only exist to remove if the LLDP FW
3004              * engine is currently stopped
3005              */
3006             if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
3007                 ice_cfg_sw_lldp(vsi, false, false);
3008         }
3009     }
3010 
3011     if (ice_is_vsi_dflt_vsi(vsi))
3012         ice_clear_dflt_vsi(vsi);
3013     ice_fltr_remove_all(vsi);
3014     ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3015     err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3016     if (err)
3017         dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3018             vsi->vsi_num, err);
3019     ice_vsi_delete(vsi);
3020     ice_vsi_free_q_vectors(vsi);
3021 
3022     if (vsi->netdev) {
3023         if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
3024             unregister_netdev(vsi->netdev);
3025             clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
3026         }
3027         if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
3028             free_netdev(vsi->netdev);
3029             vsi->netdev = NULL;
3030             clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3031         }
3032     }
3033 
3034     if (vsi->type == ICE_VSI_VF &&
3035         vsi->agg_node && vsi->agg_node->valid)
3036         vsi->agg_node->num_vsis--;
3037     ice_vsi_clear_rings(vsi);
3038 
3039     ice_vsi_put_qs(vsi);
3040 
3041     /* retain SW VSI data structure since it is needed to unregister and
3042      * free VSI netdev when PF is not in reset recovery pending state,\
3043      * for ex: during rmmod.
3044      */
3045     if (!ice_is_reset_in_progress(pf->state))
3046         ice_vsi_clear(vsi);
3047 
3048     return 0;
3049 }
3050 
3051 /**
3052  * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
3053  * @vsi: VSI connected with q_vectors
3054  * @coalesce: array of struct with stored coalesce
3055  *
3056  * Returns array size.
3057  */
3058 static int
3059 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
3060                  struct ice_coalesce_stored *coalesce)
3061 {
3062     int i;
3063 
3064     ice_for_each_q_vector(vsi, i) {
3065         struct ice_q_vector *q_vector = vsi->q_vectors[i];
3066 
3067         coalesce[i].itr_tx = q_vector->tx.itr_settings;
3068         coalesce[i].itr_rx = q_vector->rx.itr_settings;
3069         coalesce[i].intrl = q_vector->intrl;
3070 
3071         if (i < vsi->num_txq)
3072             coalesce[i].tx_valid = true;
3073         if (i < vsi->num_rxq)
3074             coalesce[i].rx_valid = true;
3075     }
3076 
3077     return vsi->num_q_vectors;
3078 }
3079 
3080 /**
3081  * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3082  * @vsi: VSI connected with q_vectors
3083  * @coalesce: pointer to array of struct with stored coalesce
3084  * @size: size of coalesce array
3085  *
3086  * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3087  * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3088  * to default value.
3089  */
3090 static void
3091 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3092                  struct ice_coalesce_stored *coalesce, int size)
3093 {
3094     struct ice_ring_container *rc;
3095     int i;
3096 
3097     if ((size && !coalesce) || !vsi)
3098         return;
3099 
3100     /* There are a couple of cases that have to be handled here:
3101      *   1. The case where the number of queue vectors stays the same, but
3102      *      the number of Tx or Rx rings changes (the first for loop)
3103      *   2. The case where the number of queue vectors increased (the
3104      *      second for loop)
3105      */
3106     for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3107         /* There are 2 cases to handle here and they are the same for
3108          * both Tx and Rx:
3109          *   if the entry was valid previously (coalesce[i].[tr]x_valid
3110          *   and the loop variable is less than the number of rings
3111          *   allocated, then write the previous values
3112          *
3113          *   if the entry was not valid previously, but the number of
3114          *   rings is less than are allocated (this means the number of
3115          *   rings increased from previously), then write out the
3116          *   values in the first element
3117          *
3118          *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
3119          *   as there is no harm because the dynamic algorithm
3120          *   will just overwrite.
3121          */
3122         if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3123             rc = &vsi->q_vectors[i]->rx;
3124             rc->itr_settings = coalesce[i].itr_rx;
3125             ice_write_itr(rc, rc->itr_setting);
3126         } else if (i < vsi->alloc_rxq) {
3127             rc = &vsi->q_vectors[i]->rx;
3128             rc->itr_settings = coalesce[0].itr_rx;
3129             ice_write_itr(rc, rc->itr_setting);
3130         }
3131 
3132         if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3133             rc = &vsi->q_vectors[i]->tx;
3134             rc->itr_settings = coalesce[i].itr_tx;
3135             ice_write_itr(rc, rc->itr_setting);
3136         } else if (i < vsi->alloc_txq) {
3137             rc = &vsi->q_vectors[i]->tx;
3138             rc->itr_settings = coalesce[0].itr_tx;
3139             ice_write_itr(rc, rc->itr_setting);
3140         }
3141 
3142         vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3143         ice_set_q_vector_intrl(vsi->q_vectors[i]);
3144     }
3145 
3146     /* the number of queue vectors increased so write whatever is in
3147      * the first element
3148      */
3149     for (; i < vsi->num_q_vectors; i++) {
3150         /* transmit */
3151         rc = &vsi->q_vectors[i]->tx;
3152         rc->itr_settings = coalesce[0].itr_tx;
3153         ice_write_itr(rc, rc->itr_setting);
3154 
3155         /* receive */
3156         rc = &vsi->q_vectors[i]->rx;
3157         rc->itr_settings = coalesce[0].itr_rx;
3158         ice_write_itr(rc, rc->itr_setting);
3159 
3160         vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3161         ice_set_q_vector_intrl(vsi->q_vectors[i]);
3162     }
3163 }
3164 
3165 /**
3166  * ice_vsi_rebuild - Rebuild VSI after reset
3167  * @vsi: VSI to be rebuild
3168  * @init_vsi: is this an initialization or a reconfigure of the VSI
3169  *
3170  * Returns 0 on success and negative value on failure
3171  */
3172 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3173 {
3174     u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3175     struct ice_coalesce_stored *coalesce;
3176     int prev_num_q_vectors = 0;
3177     enum ice_vsi_type vtype;
3178     struct ice_pf *pf;
3179     int ret, i;
3180 
3181     if (!vsi)
3182         return -EINVAL;
3183 
3184     pf = vsi->back;
3185     vtype = vsi->type;
3186     if (WARN_ON(vtype == ICE_VSI_VF && !vsi->vf))
3187         return -EINVAL;
3188 
3189     ice_vsi_init_vlan_ops(vsi);
3190 
3191     coalesce = kcalloc(vsi->num_q_vectors,
3192                sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3193     if (!coalesce)
3194         return -ENOMEM;
3195 
3196     prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3197 
3198     ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3199     ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
3200     if (ret)
3201         dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
3202             vsi->vsi_num, ret);
3203     ice_vsi_free_q_vectors(vsi);
3204 
3205     /* SR-IOV determines needed MSIX resources all at once instead of per
3206      * VSI since when VFs are spawned we know how many VFs there are and how
3207      * many interrupts each VF needs. SR-IOV MSIX resources are also
3208      * cleared in the same manner.
3209      */
3210     if (vtype != ICE_VSI_VF) {
3211         /* reclaim SW interrupts back to the common pool */
3212         ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3213         pf->num_avail_sw_msix += vsi->num_q_vectors;
3214         vsi->base_vector = 0;
3215     }
3216 
3217     if (ice_is_xdp_ena_vsi(vsi))
3218         /* return value check can be skipped here, it always returns
3219          * 0 if reset is in progress
3220          */
3221         ice_destroy_xdp_rings(vsi);
3222     ice_vsi_put_qs(vsi);
3223     ice_vsi_clear_rings(vsi);
3224     ice_vsi_free_arrays(vsi);
3225     if (vtype == ICE_VSI_VF)
3226         ice_vsi_set_num_qs(vsi, vsi->vf);
3227     else
3228         ice_vsi_set_num_qs(vsi, NULL);
3229 
3230     ret = ice_vsi_alloc_arrays(vsi);
3231     if (ret < 0)
3232         goto err_vsi;
3233 
3234     ice_vsi_get_qs(vsi);
3235 
3236     ice_alloc_fd_res(vsi);
3237     ice_vsi_set_tc_cfg(vsi);
3238 
3239     /* Initialize VSI struct elements and create VSI in FW */
3240     ret = ice_vsi_init(vsi, init_vsi);
3241     if (ret < 0)
3242         goto err_vsi;
3243 
3244     switch (vtype) {
3245     case ICE_VSI_CTRL:
3246     case ICE_VSI_SWITCHDEV_CTRL:
3247     case ICE_VSI_PF:
3248         ret = ice_vsi_alloc_q_vectors(vsi);
3249         if (ret)
3250             goto err_rings;
3251 
3252         ret = ice_vsi_setup_vector_base(vsi);
3253         if (ret)
3254             goto err_vectors;
3255 
3256         ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3257         if (ret)
3258             goto err_vectors;
3259 
3260         ret = ice_vsi_alloc_rings(vsi);
3261         if (ret)
3262             goto err_vectors;
3263 
3264         ice_vsi_map_rings_to_vectors(vsi);
3265         if (ice_is_xdp_ena_vsi(vsi)) {
3266             ret = ice_vsi_determine_xdp_res(vsi);
3267             if (ret)
3268                 goto err_vectors;
3269             ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3270             if (ret)
3271                 goto err_vectors;
3272         }
3273         /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3274         if (vtype != ICE_VSI_CTRL)
3275             /* Do not exit if configuring RSS had an issue, at
3276              * least receive traffic on first queue. Hence no
3277              * need to capture return value
3278              */
3279             if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3280                 ice_vsi_cfg_rss_lut_key(vsi);
3281         break;
3282     case ICE_VSI_VF:
3283         ret = ice_vsi_alloc_q_vectors(vsi);
3284         if (ret)
3285             goto err_rings;
3286 
3287         ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3288         if (ret)
3289             goto err_vectors;
3290 
3291         ret = ice_vsi_alloc_rings(vsi);
3292         if (ret)
3293             goto err_vectors;
3294 
3295         break;
3296     case ICE_VSI_CHNL:
3297         if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
3298             ice_vsi_cfg_rss_lut_key(vsi);
3299             ice_vsi_set_rss_flow_fld(vsi);
3300         }
3301         break;
3302     default:
3303         break;
3304     }
3305 
3306     /* configure VSI nodes based on number of queues and TC's */
3307     for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3308         /* configure VSI nodes based on number of queues and TC's.
3309          * ADQ creates VSIs for each TC/Channel but doesn't
3310          * allocate queues instead it reconfigures the PF queues
3311          * as per the TC command. So max_txqs should point to the
3312          * PF Tx queues.
3313          */
3314         if (vtype == ICE_VSI_CHNL)
3315             max_txqs[i] = pf->num_lan_tx;
3316         else
3317             max_txqs[i] = vsi->alloc_txq;
3318 
3319         if (ice_is_xdp_ena_vsi(vsi))
3320             max_txqs[i] += vsi->num_xdp_txq;
3321     }
3322 
3323     if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3324         /* If MQPRIO is set, means channel code path, hence for main
3325          * VSI's, use TC as 1
3326          */
3327         ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3328     else
3329         ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3330                       vsi->tc_cfg.ena_tc, max_txqs);
3331 
3332     if (ret) {
3333         dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
3334             vsi->vsi_num, ret);
3335         if (init_vsi) {
3336             ret = -EIO;
3337             goto err_vectors;
3338         } else {
3339             return ice_schedule_reset(pf, ICE_RESET_PFR);
3340         }
3341     }
3342     ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3343     kfree(coalesce);
3344 
3345     return 0;
3346 
3347 err_vectors:
3348     ice_vsi_free_q_vectors(vsi);
3349 err_rings:
3350     if (vsi->netdev) {
3351         vsi->current_netdev_flags = 0;
3352         unregister_netdev(vsi->netdev);
3353         free_netdev(vsi->netdev);
3354         vsi->netdev = NULL;
3355     }
3356 err_vsi:
3357     ice_vsi_clear(vsi);
3358     set_bit(ICE_RESET_FAILED, pf->state);
3359     kfree(coalesce);
3360     return ret;
3361 }
3362 
3363 /**
3364  * ice_is_reset_in_progress - check for a reset in progress
3365  * @state: PF state field
3366  */
3367 bool ice_is_reset_in_progress(unsigned long *state)
3368 {
3369     return test_bit(ICE_RESET_OICR_RECV, state) ||
3370            test_bit(ICE_PFR_REQ, state) ||
3371            test_bit(ICE_CORER_REQ, state) ||
3372            test_bit(ICE_GLOBR_REQ, state);
3373 }
3374 
3375 /**
3376  * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3377  * @pf: pointer to the PF structure
3378  * @timeout: length of time to wait, in jiffies
3379  *
3380  * Wait (sleep) for a short time until the driver finishes cleaning up from
3381  * a device reset. The caller must be able to sleep. Use this to delay
3382  * operations that could fail while the driver is cleaning up after a device
3383  * reset.
3384  *
3385  * Returns 0 on success, -EBUSY if the reset is not finished within the
3386  * timeout, and -ERESTARTSYS if the thread was interrupted.
3387  */
3388 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3389 {
3390     long ret;
3391 
3392     ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3393                            !ice_is_reset_in_progress(pf->state),
3394                            timeout);
3395     if (ret < 0)
3396         return ret;
3397     else if (!ret)
3398         return -EBUSY;
3399     else
3400         return 0;
3401 }
3402 
3403 /**
3404  * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3405  * @vsi: VSI being configured
3406  * @ctx: the context buffer returned from AQ VSI update command
3407  */
3408 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3409 {
3410     vsi->info.mapping_flags = ctx->info.mapping_flags;
3411     memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3412            sizeof(vsi->info.q_mapping));
3413     memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3414            sizeof(vsi->info.tc_mapping));
3415 }
3416 
3417 /**
3418  * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3419  * @vsi: the VSI being configured
3420  * @ena_tc: TC map to be enabled
3421  */
3422 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3423 {
3424     struct net_device *netdev = vsi->netdev;
3425     struct ice_pf *pf = vsi->back;
3426     int numtc = vsi->tc_cfg.numtc;
3427     struct ice_dcbx_cfg *dcbcfg;
3428     u8 netdev_tc;
3429     int i;
3430 
3431     if (!netdev)
3432         return;
3433 
3434     /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3435     if (vsi->type == ICE_VSI_CHNL)
3436         return;
3437 
3438     if (!ena_tc) {
3439         netdev_reset_tc(netdev);
3440         return;
3441     }
3442 
3443     if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3444         numtc = vsi->all_numtc;
3445 
3446     if (netdev_set_num_tc(netdev, numtc))
3447         return;
3448 
3449     dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3450 
3451     ice_for_each_traffic_class(i)
3452         if (vsi->tc_cfg.ena_tc & BIT(i))
3453             netdev_set_tc_queue(netdev,
3454                         vsi->tc_cfg.tc_info[i].netdev_tc,
3455                         vsi->tc_cfg.tc_info[i].qcount_tx,
3456                         vsi->tc_cfg.tc_info[i].qoffset);
3457     /* setup TC queue map for CHNL TCs */
3458     ice_for_each_chnl_tc(i) {
3459         if (!(vsi->all_enatc & BIT(i)))
3460             break;
3461         if (!vsi->mqprio_qopt.qopt.count[i])
3462             break;
3463         netdev_set_tc_queue(netdev, i,
3464                     vsi->mqprio_qopt.qopt.count[i],
3465                     vsi->mqprio_qopt.qopt.offset[i]);
3466     }
3467 
3468     if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3469         return;
3470 
3471     for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3472         u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3473 
3474         /* Get the mapped netdev TC# for the UP */
3475         netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3476         netdev_set_prio_tc_map(netdev, i, netdev_tc);
3477     }
3478 }
3479 
3480 /**
3481  * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3482  * @vsi: the VSI being configured,
3483  * @ctxt: VSI context structure
3484  * @ena_tc: number of traffic classes to enable
3485  *
3486  * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3487  */
3488 static int
3489 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3490                u8 ena_tc)
3491 {
3492     u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3493     u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3494     int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3495     u16 new_txq, new_rxq;
3496     u8 netdev_tc = 0;
3497     int i;
3498 
3499     vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3500 
3501     pow = order_base_2(tc0_qcount);
3502     qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3503         ICE_AQ_VSI_TC_Q_OFFSET_M) |
3504         ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3505 
3506     ice_for_each_traffic_class(i) {
3507         if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3508             /* TC is not enabled */
3509             vsi->tc_cfg.tc_info[i].qoffset = 0;
3510             vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3511             vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3512             vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3513             ctxt->info.tc_mapping[i] = 0;
3514             continue;
3515         }
3516 
3517         offset = vsi->mqprio_qopt.qopt.offset[i];
3518         qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3519         qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3520         vsi->tc_cfg.tc_info[i].qoffset = offset;
3521         vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3522         vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3523         vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3524     }
3525 
3526     if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3527         ice_for_each_chnl_tc(i) {
3528             if (!(vsi->all_enatc & BIT(i)))
3529                 continue;
3530             offset = vsi->mqprio_qopt.qopt.offset[i];
3531             qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3532             qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3533         }
3534     }
3535 
3536     new_txq = offset + qcount_tx;
3537     if (new_txq > vsi->alloc_txq) {
3538         dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3539             new_txq, vsi->alloc_txq);
3540         return -EINVAL;
3541     }
3542 
3543     new_rxq = offset + qcount_rx;
3544     if (new_rxq > vsi->alloc_rxq) {
3545         dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3546             new_rxq, vsi->alloc_rxq);
3547         return -EINVAL;
3548     }
3549 
3550     /* Set actual Tx/Rx queue pairs */
3551     vsi->num_txq = new_txq;
3552     vsi->num_rxq = new_rxq;
3553 
3554     /* Setup queue TC[0].qmap for given VSI context */
3555     ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3556     ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3557     ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3558 
3559     /* Find queue count available for channel VSIs and starting offset
3560      * for channel VSIs
3561      */
3562     if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3563         vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3564         vsi->next_base_q = tc0_qcount;
3565     }
3566     dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
3567     dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
3568     dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3569         vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3570 
3571     return 0;
3572 }
3573 
3574 /**
3575  * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3576  * @vsi: VSI to be configured
3577  * @ena_tc: TC bitmap
3578  *
3579  * VSI queues expected to be quiesced before calling this function
3580  */
3581 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3582 {
3583     u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3584     struct ice_pf *pf = vsi->back;
3585     struct ice_tc_cfg old_tc_cfg;
3586     struct ice_vsi_ctx *ctx;
3587     struct device *dev;
3588     int i, ret = 0;
3589     u8 num_tc = 0;
3590 
3591     dev = ice_pf_to_dev(pf);
3592     if (vsi->tc_cfg.ena_tc == ena_tc &&
3593         vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3594         return ret;
3595 
3596     ice_for_each_traffic_class(i) {
3597         /* build bitmap of enabled TCs */
3598         if (ena_tc & BIT(i))
3599             num_tc++;
3600         /* populate max_txqs per TC */
3601         max_txqs[i] = vsi->alloc_txq;
3602         /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3603          * zero for CHNL VSI, hence use num_txq instead as max_txqs
3604          */
3605         if (vsi->type == ICE_VSI_CHNL &&
3606             test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3607             max_txqs[i] = vsi->num_txq;
3608     }
3609 
3610     memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3611     vsi->tc_cfg.ena_tc = ena_tc;
3612     vsi->tc_cfg.numtc = num_tc;
3613 
3614     ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3615     if (!ctx)
3616         return -ENOMEM;
3617 
3618     ctx->vf_num = 0;
3619     ctx->info = vsi->info;
3620 
3621     if (vsi->type == ICE_VSI_PF &&
3622         test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3623         ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3624     else
3625         ret = ice_vsi_setup_q_map(vsi, ctx);
3626 
3627     if (ret) {
3628         memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3629         goto out;
3630     }
3631 
3632     /* must to indicate which section of VSI context are being modified */
3633     ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3634     ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3635     if (ret) {
3636         dev_info(dev, "Failed VSI Update\n");
3637         goto out;
3638     }
3639 
3640     if (vsi->type == ICE_VSI_PF &&
3641         test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3642         ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3643     else
3644         ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3645                       vsi->tc_cfg.ena_tc, max_txqs);
3646 
3647     if (ret) {
3648         dev_err(dev, "VSI %d failed TC config, error %d\n",
3649             vsi->vsi_num, ret);
3650         goto out;
3651     }
3652     ice_vsi_update_q_map(vsi, ctx);
3653     vsi->info.valid_sections = 0;
3654 
3655     ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3656 out:
3657     kfree(ctx);
3658     return ret;
3659 }
3660 
3661 /**
3662  * ice_update_ring_stats - Update ring statistics
3663  * @stats: stats to be updated
3664  * @pkts: number of processed packets
3665  * @bytes: number of processed bytes
3666  *
3667  * This function assumes that caller has acquired a u64_stats_sync lock.
3668  */
3669 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3670 {
3671     stats->bytes += bytes;
3672     stats->pkts += pkts;
3673 }
3674 
3675 /**
3676  * ice_update_tx_ring_stats - Update Tx ring specific counters
3677  * @tx_ring: ring to update
3678  * @pkts: number of processed packets
3679  * @bytes: number of processed bytes
3680  */
3681 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3682 {
3683     u64_stats_update_begin(&tx_ring->syncp);
3684     ice_update_ring_stats(&tx_ring->stats, pkts, bytes);
3685     u64_stats_update_end(&tx_ring->syncp);
3686 }
3687 
3688 /**
3689  * ice_update_rx_ring_stats - Update Rx ring specific counters
3690  * @rx_ring: ring to update
3691  * @pkts: number of processed packets
3692  * @bytes: number of processed bytes
3693  */
3694 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3695 {
3696     u64_stats_update_begin(&rx_ring->syncp);
3697     ice_update_ring_stats(&rx_ring->stats, pkts, bytes);
3698     u64_stats_update_end(&rx_ring->syncp);
3699 }
3700 
3701 /**
3702  * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3703  * @pi: port info of the switch with default VSI
3704  *
3705  * Return true if the there is a single VSI in default forwarding VSI list
3706  */
3707 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3708 {
3709     bool exists = false;
3710 
3711     ice_check_if_dflt_vsi(pi, 0, &exists);
3712     return exists;
3713 }
3714 
3715 /**
3716  * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3717  * @vsi: VSI to compare against default forwarding VSI
3718  *
3719  * If this VSI passed in is the default forwarding VSI then return true, else
3720  * return false
3721  */
3722 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3723 {
3724     return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3725 }
3726 
3727 /**
3728  * ice_set_dflt_vsi - set the default forwarding VSI
3729  * @vsi: VSI getting set as the default forwarding VSI on the switch
3730  *
3731  * If the VSI passed in is already the default VSI and it's enabled just return
3732  * success.
3733  *
3734  * Otherwise try to set the VSI passed in as the switch's default VSI and
3735  * return the result.
3736  */
3737 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3738 {
3739     struct device *dev;
3740     int status;
3741 
3742     if (!vsi)
3743         return -EINVAL;
3744 
3745     dev = ice_pf_to_dev(vsi->back);
3746 
3747     /* the VSI passed in is already the default VSI */
3748     if (ice_is_vsi_dflt_vsi(vsi)) {
3749         dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3750             vsi->vsi_num);
3751         return 0;
3752     }
3753 
3754     status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3755     if (status) {
3756         dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3757             vsi->vsi_num, status);
3758         return status;
3759     }
3760 
3761     return 0;
3762 }
3763 
3764 /**
3765  * ice_clear_dflt_vsi - clear the default forwarding VSI
3766  * @vsi: VSI to remove from filter list
3767  *
3768  * If the switch has no default VSI or it's not enabled then return error.
3769  *
3770  * Otherwise try to clear the default VSI and return the result.
3771  */
3772 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3773 {
3774     struct device *dev;
3775     int status;
3776 
3777     if (!vsi)
3778         return -EINVAL;
3779 
3780     dev = ice_pf_to_dev(vsi->back);
3781 
3782     /* there is no default VSI configured */
3783     if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3784         return -ENODEV;
3785 
3786     status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3787                   ICE_FLTR_RX);
3788     if (status) {
3789         dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3790             vsi->vsi_num, status);
3791         return -EIO;
3792     }
3793 
3794     return 0;
3795 }
3796 
3797 /**
3798  * ice_get_link_speed_mbps - get link speed in Mbps
3799  * @vsi: the VSI whose link speed is being queried
3800  *
3801  * Return current VSI link speed and 0 if the speed is unknown.
3802  */
3803 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3804 {
3805     switch (vsi->port_info->phy.link_info.link_speed) {
3806     case ICE_AQ_LINK_SPEED_100GB:
3807         return SPEED_100000;
3808     case ICE_AQ_LINK_SPEED_50GB:
3809         return SPEED_50000;
3810     case ICE_AQ_LINK_SPEED_40GB:
3811         return SPEED_40000;
3812     case ICE_AQ_LINK_SPEED_25GB:
3813         return SPEED_25000;
3814     case ICE_AQ_LINK_SPEED_20GB:
3815         return SPEED_20000;
3816     case ICE_AQ_LINK_SPEED_10GB:
3817         return SPEED_10000;
3818     case ICE_AQ_LINK_SPEED_5GB:
3819         return SPEED_5000;
3820     case ICE_AQ_LINK_SPEED_2500MB:
3821         return SPEED_2500;
3822     case ICE_AQ_LINK_SPEED_1000MB:
3823         return SPEED_1000;
3824     case ICE_AQ_LINK_SPEED_100MB:
3825         return SPEED_100;
3826     case ICE_AQ_LINK_SPEED_10MB:
3827         return SPEED_10;
3828     case ICE_AQ_LINK_SPEED_UNKNOWN:
3829     default:
3830         return 0;
3831     }
3832 }
3833 
3834 /**
3835  * ice_get_link_speed_kbps - get link speed in Kbps
3836  * @vsi: the VSI whose link speed is being queried
3837  *
3838  * Return current VSI link speed and 0 if the speed is unknown.
3839  */
3840 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3841 {
3842     int speed_mbps;
3843 
3844     speed_mbps = ice_get_link_speed_mbps(vsi);
3845 
3846     return speed_mbps * 1000;
3847 }
3848 
3849 /**
3850  * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3851  * @vsi: VSI to be configured
3852  * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3853  *
3854  * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3855  * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3856  * on TC 0.
3857  */
3858 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3859 {
3860     struct ice_pf *pf = vsi->back;
3861     struct device *dev;
3862     int status;
3863     int speed;
3864 
3865     dev = ice_pf_to_dev(pf);
3866     if (!vsi->port_info) {
3867         dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3868             vsi->idx, vsi->type);
3869         return -EINVAL;
3870     }
3871 
3872     speed = ice_get_link_speed_kbps(vsi);
3873     if (min_tx_rate > (u64)speed) {
3874         dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3875             min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3876             speed);
3877         return -EINVAL;
3878     }
3879 
3880     /* Configure min BW for VSI limit */
3881     if (min_tx_rate) {
3882         status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3883                            ICE_MIN_BW, min_tx_rate);
3884         if (status) {
3885             dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3886                 min_tx_rate, ice_vsi_type_str(vsi->type),
3887                 vsi->idx);
3888             return status;
3889         }
3890 
3891         dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3892             min_tx_rate, ice_vsi_type_str(vsi->type));
3893     } else {
3894         status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3895                             vsi->idx, 0,
3896                             ICE_MIN_BW);
3897         if (status) {
3898             dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3899                 ice_vsi_type_str(vsi->type), vsi->idx);
3900             return status;
3901         }
3902 
3903         dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3904             ice_vsi_type_str(vsi->type), vsi->idx);
3905     }
3906 
3907     return 0;
3908 }
3909 
3910 /**
3911  * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3912  * @vsi: VSI to be configured
3913  * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3914  *
3915  * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3916  * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3917  * on TC 0.
3918  */
3919 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3920 {
3921     struct ice_pf *pf = vsi->back;
3922     struct device *dev;
3923     int status;
3924     int speed;
3925 
3926     dev = ice_pf_to_dev(pf);
3927     if (!vsi->port_info) {
3928         dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3929             vsi->idx, vsi->type);
3930         return -EINVAL;
3931     }
3932 
3933     speed = ice_get_link_speed_kbps(vsi);
3934     if (max_tx_rate > (u64)speed) {
3935         dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3936             max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3937             speed);
3938         return -EINVAL;
3939     }
3940 
3941     /* Configure max BW for VSI limit */
3942     if (max_tx_rate) {
3943         status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3944                            ICE_MAX_BW, max_tx_rate);
3945         if (status) {
3946             dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3947                 max_tx_rate, ice_vsi_type_str(vsi->type),
3948                 vsi->idx);
3949             return status;
3950         }
3951 
3952         dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3953             max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3954     } else {
3955         status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3956                             vsi->idx, 0,
3957                             ICE_MAX_BW);
3958         if (status) {
3959             dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3960                 ice_vsi_type_str(vsi->type), vsi->idx);
3961             return status;
3962         }
3963 
3964         dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3965             ice_vsi_type_str(vsi->type), vsi->idx);
3966     }
3967 
3968     return 0;
3969 }
3970 
3971 /**
3972  * ice_set_link - turn on/off physical link
3973  * @vsi: VSI to modify physical link on
3974  * @ena: turn on/off physical link
3975  */
3976 int ice_set_link(struct ice_vsi *vsi, bool ena)
3977 {
3978     struct device *dev = ice_pf_to_dev(vsi->back);
3979     struct ice_port_info *pi = vsi->port_info;
3980     struct ice_hw *hw = pi->hw;
3981     int status;
3982 
3983     if (vsi->type != ICE_VSI_PF)
3984         return -EINVAL;
3985 
3986     status = ice_aq_set_link_restart_an(pi, ena, NULL);
3987 
3988     /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3989      * this is not a fatal error, so print a warning message and return
3990      * a success code. Return an error if FW returns an error code other
3991      * than ICE_AQ_RC_EMODE
3992      */
3993     if (status == -EIO) {
3994         if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3995             dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3996                 (ena ? "ON" : "OFF"), status,
3997                 ice_aq_str(hw->adminq.sq_last_status));
3998     } else if (status) {
3999         dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
4000             (ena ? "ON" : "OFF"), status,
4001             ice_aq_str(hw->adminq.sq_last_status));
4002         return status;
4003     }
4004 
4005     return 0;
4006 }
4007 
4008 /**
4009  * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
4010  * @vsi: VSI used to add VLAN filters
4011  *
4012  * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
4013  * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
4014  * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
4015  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
4016  *
4017  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
4018  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
4019  * traffic in SVM, since the VLAN TPID isn't part of filtering.
4020  *
4021  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
4022  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4023  * part of filtering.
4024  */
4025 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4026 {
4027     struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4028     struct ice_vlan vlan;
4029     int err;
4030 
4031     vlan = ICE_VLAN(0, 0, 0);
4032     err = vlan_ops->add_vlan(vsi, &vlan);
4033     if (err && err != -EEXIST)
4034         return err;
4035 
4036     /* in SVM both VLAN 0 filters are identical */
4037     if (!ice_is_dvm_ena(&vsi->back->hw))
4038         return 0;
4039 
4040     vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4041     err = vlan_ops->add_vlan(vsi, &vlan);
4042     if (err && err != -EEXIST)
4043         return err;
4044 
4045     return 0;
4046 }
4047 
4048 /**
4049  * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
4050  * @vsi: VSI used to add VLAN filters
4051  *
4052  * Delete the VLAN 0 filters in the same manner that they were added in
4053  * ice_vsi_add_vlan_zero.
4054  */
4055 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4056 {
4057     struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
4058     struct ice_vlan vlan;
4059     int err;
4060 
4061     vlan = ICE_VLAN(0, 0, 0);
4062     err = vlan_ops->del_vlan(vsi, &vlan);
4063     if (err && err != -EEXIST)
4064         return err;
4065 
4066     /* in SVM both VLAN 0 filters are identical */
4067     if (!ice_is_dvm_ena(&vsi->back->hw))
4068         return 0;
4069 
4070     vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
4071     err = vlan_ops->del_vlan(vsi, &vlan);
4072     if (err && err != -EEXIST)
4073         return err;
4074 
4075     /* when deleting the last VLAN filter, make sure to disable the VLAN
4076      * promisc mode so the filter isn't left by accident
4077      */
4078     return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
4079                     ICE_MCAST_VLAN_PROMISC_BITS, 0);
4080 }
4081 
4082 /**
4083  * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
4084  * @vsi: VSI used to get the VLAN mode
4085  *
4086  * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
4087  * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
4088  */
4089 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
4090 {
4091 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
4092 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
4093     /* no VLAN 0 filter is created when a port VLAN is active */
4094     if (vsi->type == ICE_VSI_VF) {
4095         if (WARN_ON(!vsi->vf))
4096             return 0;
4097 
4098         if (ice_vf_is_port_vlan_ena(vsi->vf))
4099             return 0;
4100     }
4101 
4102     if (ice_is_dvm_ena(&vsi->back->hw))
4103         return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
4104     else
4105         return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
4106 }
4107 
4108 /**
4109  * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
4110  * @vsi: VSI used to determine if any non-zero VLANs have been added
4111  */
4112 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
4113 {
4114     return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
4115 }
4116 
4117 /**
4118  * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
4119  * @vsi: VSI used to get the number of non-zero VLANs added
4120  */
4121 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
4122 {
4123     return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
4124 }
4125 
4126 /**
4127  * ice_is_feature_supported
4128  * @pf: pointer to the struct ice_pf instance
4129  * @f: feature enum to be checked
4130  *
4131  * returns true if feature is supported, false otherwise
4132  */
4133 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
4134 {
4135     if (f < 0 || f >= ICE_F_MAX)
4136         return false;
4137 
4138     return test_bit(f, pf->features);
4139 }
4140 
4141 /**
4142  * ice_set_feature_support
4143  * @pf: pointer to the struct ice_pf instance
4144  * @f: feature enum to set
4145  */
4146 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
4147 {
4148     if (f < 0 || f >= ICE_F_MAX)
4149         return;
4150 
4151     set_bit(f, pf->features);
4152 }
4153 
4154 /**
4155  * ice_clear_feature_support
4156  * @pf: pointer to the struct ice_pf instance
4157  * @f: feature enum to clear
4158  */
4159 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
4160 {
4161     if (f < 0 || f >= ICE_F_MAX)
4162         return;
4163 
4164     clear_bit(f, pf->features);
4165 }
4166 
4167 /**
4168  * ice_init_feature_support
4169  * @pf: pointer to the struct ice_pf instance
4170  *
4171  * called during init to setup supported feature
4172  */
4173 void ice_init_feature_support(struct ice_pf *pf)
4174 {
4175     switch (pf->hw.device_id) {
4176     case ICE_DEV_ID_E810C_BACKPLANE:
4177     case ICE_DEV_ID_E810C_QSFP:
4178     case ICE_DEV_ID_E810C_SFP:
4179         ice_set_feature_support(pf, ICE_F_DSCP);
4180         ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4181         if (ice_is_e810t(&pf->hw)) {
4182             ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4183             if (ice_gnss_is_gps_present(&pf->hw))
4184                 ice_set_feature_support(pf, ICE_F_GNSS);
4185         }
4186         break;
4187     default:
4188         break;
4189     }
4190 }
4191 
4192 /**
4193  * ice_vsi_update_security - update security block in VSI
4194  * @vsi: pointer to VSI structure
4195  * @fill: function pointer to fill ctx
4196  */
4197 int
4198 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4199 {
4200     struct ice_vsi_ctx ctx = { 0 };
4201 
4202     ctx.info = vsi->info;
4203     ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4204     fill(&ctx);
4205 
4206     if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4207         return -ENODEV;
4208 
4209     vsi->info = ctx.info;
4210     return 0;
4211 }
4212 
4213 /**
4214  * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4215  * @ctx: pointer to VSI ctx structure
4216  */
4217 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4218 {
4219     ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4220                    (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4221                 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4222 }
4223 
4224 /**
4225  * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4226  * @ctx: pointer to VSI ctx structure
4227  */
4228 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4229 {
4230     ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4231                    ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4232                  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4233 }
4234 
4235 /**
4236  * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4237  * @ctx: pointer to VSI ctx structure
4238  */
4239 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4240 {
4241     ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4242 }
4243 
4244 /**
4245  * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4246  * @ctx: pointer to VSI ctx structure
4247  */
4248 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4249 {
4250     ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4251 }