Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright (c) 2019, Intel Corporation. */
0003 
0004 #include "ice_common.h"
0005 #include "ice_flex_pipe.h"
0006 #include "ice_flow.h"
0007 #include "ice.h"
0008 
0009 /* For supporting double VLAN mode, it is necessary to enable or disable certain
0010  * boost tcam entries. The metadata labels names that match the following
0011  * prefixes will be saved to allow enabling double VLAN mode.
0012  */
0013 #define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM"    /* enable these entries */
0014 #define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM"    /* disable these entries */
0015 
0016 /* To support tunneling entries by PF, the package will append the PF number to
0017  * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
0018  */
0019 #define ICE_TNL_PRE "TNL_"
0020 static const struct ice_tunnel_type_scan tnls[] = {
0021     { TNL_VXLAN,        "TNL_VXLAN_PF" },
0022     { TNL_GENEVE,       "TNL_GENEVE_PF" },
0023     { TNL_LAST,     "" }
0024 };
0025 
0026 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
0027     /* SWITCH */
0028     {
0029         ICE_SID_XLT0_SW,
0030         ICE_SID_XLT_KEY_BUILDER_SW,
0031         ICE_SID_XLT1_SW,
0032         ICE_SID_XLT2_SW,
0033         ICE_SID_PROFID_TCAM_SW,
0034         ICE_SID_PROFID_REDIR_SW,
0035         ICE_SID_FLD_VEC_SW,
0036         ICE_SID_CDID_KEY_BUILDER_SW,
0037         ICE_SID_CDID_REDIR_SW
0038     },
0039 
0040     /* ACL */
0041     {
0042         ICE_SID_XLT0_ACL,
0043         ICE_SID_XLT_KEY_BUILDER_ACL,
0044         ICE_SID_XLT1_ACL,
0045         ICE_SID_XLT2_ACL,
0046         ICE_SID_PROFID_TCAM_ACL,
0047         ICE_SID_PROFID_REDIR_ACL,
0048         ICE_SID_FLD_VEC_ACL,
0049         ICE_SID_CDID_KEY_BUILDER_ACL,
0050         ICE_SID_CDID_REDIR_ACL
0051     },
0052 
0053     /* FD */
0054     {
0055         ICE_SID_XLT0_FD,
0056         ICE_SID_XLT_KEY_BUILDER_FD,
0057         ICE_SID_XLT1_FD,
0058         ICE_SID_XLT2_FD,
0059         ICE_SID_PROFID_TCAM_FD,
0060         ICE_SID_PROFID_REDIR_FD,
0061         ICE_SID_FLD_VEC_FD,
0062         ICE_SID_CDID_KEY_BUILDER_FD,
0063         ICE_SID_CDID_REDIR_FD
0064     },
0065 
0066     /* RSS */
0067     {
0068         ICE_SID_XLT0_RSS,
0069         ICE_SID_XLT_KEY_BUILDER_RSS,
0070         ICE_SID_XLT1_RSS,
0071         ICE_SID_XLT2_RSS,
0072         ICE_SID_PROFID_TCAM_RSS,
0073         ICE_SID_PROFID_REDIR_RSS,
0074         ICE_SID_FLD_VEC_RSS,
0075         ICE_SID_CDID_KEY_BUILDER_RSS,
0076         ICE_SID_CDID_REDIR_RSS
0077     },
0078 
0079     /* PE */
0080     {
0081         ICE_SID_XLT0_PE,
0082         ICE_SID_XLT_KEY_BUILDER_PE,
0083         ICE_SID_XLT1_PE,
0084         ICE_SID_XLT2_PE,
0085         ICE_SID_PROFID_TCAM_PE,
0086         ICE_SID_PROFID_REDIR_PE,
0087         ICE_SID_FLD_VEC_PE,
0088         ICE_SID_CDID_KEY_BUILDER_PE,
0089         ICE_SID_CDID_REDIR_PE
0090     }
0091 };
0092 
0093 /**
0094  * ice_sect_id - returns section ID
0095  * @blk: block type
0096  * @sect: section type
0097  *
0098  * This helper function returns the proper section ID given a block type and a
0099  * section type.
0100  */
0101 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
0102 {
0103     return ice_sect_lkup[blk][sect];
0104 }
0105 
0106 /**
0107  * ice_pkg_val_buf
0108  * @buf: pointer to the ice buffer
0109  *
0110  * This helper function validates a buffer's header.
0111  */
0112 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
0113 {
0114     struct ice_buf_hdr *hdr;
0115     u16 section_count;
0116     u16 data_end;
0117 
0118     hdr = (struct ice_buf_hdr *)buf->buf;
0119     /* verify data */
0120     section_count = le16_to_cpu(hdr->section_count);
0121     if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
0122         return NULL;
0123 
0124     data_end = le16_to_cpu(hdr->data_end);
0125     if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
0126         return NULL;
0127 
0128     return hdr;
0129 }
0130 
0131 /**
0132  * ice_find_buf_table
0133  * @ice_seg: pointer to the ice segment
0134  *
0135  * Returns the address of the buffer table within the ice segment.
0136  */
0137 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
0138 {
0139     struct ice_nvm_table *nvms;
0140 
0141     nvms = (struct ice_nvm_table *)
0142         (ice_seg->device_table +
0143          le32_to_cpu(ice_seg->device_table_count));
0144 
0145     return (__force struct ice_buf_table *)
0146         (nvms->vers + le32_to_cpu(nvms->table_count));
0147 }
0148 
0149 /**
0150  * ice_pkg_enum_buf
0151  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
0152  * @state: pointer to the enum state
0153  *
0154  * This function will enumerate all the buffers in the ice segment. The first
0155  * call is made with the ice_seg parameter non-NULL; on subsequent calls,
0156  * ice_seg is set to NULL which continues the enumeration. When the function
0157  * returns a NULL pointer, then the end of the buffers has been reached, or an
0158  * unexpected value has been detected (for example an invalid section count or
0159  * an invalid buffer end value).
0160  */
0161 static struct ice_buf_hdr *
0162 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
0163 {
0164     if (ice_seg) {
0165         state->buf_table = ice_find_buf_table(ice_seg);
0166         if (!state->buf_table)
0167             return NULL;
0168 
0169         state->buf_idx = 0;
0170         return ice_pkg_val_buf(state->buf_table->buf_array);
0171     }
0172 
0173     if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
0174         return ice_pkg_val_buf(state->buf_table->buf_array +
0175                        state->buf_idx);
0176     else
0177         return NULL;
0178 }
0179 
0180 /**
0181  * ice_pkg_advance_sect
0182  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
0183  * @state: pointer to the enum state
0184  *
0185  * This helper function will advance the section within the ice segment,
0186  * also advancing the buffer if needed.
0187  */
0188 static bool
0189 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
0190 {
0191     if (!ice_seg && !state->buf)
0192         return false;
0193 
0194     if (!ice_seg && state->buf)
0195         if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
0196             return true;
0197 
0198     state->buf = ice_pkg_enum_buf(ice_seg, state);
0199     if (!state->buf)
0200         return false;
0201 
0202     /* start of new buffer, reset section index */
0203     state->sect_idx = 0;
0204     return true;
0205 }
0206 
0207 /**
0208  * ice_pkg_enum_section
0209  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
0210  * @state: pointer to the enum state
0211  * @sect_type: section type to enumerate
0212  *
0213  * This function will enumerate all the sections of a particular type in the
0214  * ice segment. The first call is made with the ice_seg parameter non-NULL;
0215  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
0216  * When the function returns a NULL pointer, then the end of the matching
0217  * sections has been reached.
0218  */
0219 static void *
0220 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
0221              u32 sect_type)
0222 {
0223     u16 offset, size;
0224 
0225     if (ice_seg)
0226         state->type = sect_type;
0227 
0228     if (!ice_pkg_advance_sect(ice_seg, state))
0229         return NULL;
0230 
0231     /* scan for next matching section */
0232     while (state->buf->section_entry[state->sect_idx].type !=
0233            cpu_to_le32(state->type))
0234         if (!ice_pkg_advance_sect(NULL, state))
0235             return NULL;
0236 
0237     /* validate section */
0238     offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
0239     if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
0240         return NULL;
0241 
0242     size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
0243     if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
0244         return NULL;
0245 
0246     /* make sure the section fits in the buffer */
0247     if (offset + size > ICE_PKG_BUF_SIZE)
0248         return NULL;
0249 
0250     state->sect_type =
0251         le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
0252 
0253     /* calc pointer to this section */
0254     state->sect = ((u8 *)state->buf) +
0255         le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
0256 
0257     return state->sect;
0258 }
0259 
0260 /**
0261  * ice_pkg_enum_entry
0262  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
0263  * @state: pointer to the enum state
0264  * @sect_type: section type to enumerate
0265  * @offset: pointer to variable that receives the offset in the table (optional)
0266  * @handler: function that handles access to the entries into the section type
0267  *
0268  * This function will enumerate all the entries in particular section type in
0269  * the ice segment. The first call is made with the ice_seg parameter non-NULL;
0270  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
0271  * When the function returns a NULL pointer, then the end of the entries has
0272  * been reached.
0273  *
0274  * Since each section may have a different header and entry size, the handler
0275  * function is needed to determine the number and location entries in each
0276  * section.
0277  *
0278  * The offset parameter is optional, but should be used for sections that
0279  * contain an offset for each section table. For such cases, the section handler
0280  * function must return the appropriate offset + index to give the absolution
0281  * offset for each entry. For example, if the base for a section's header
0282  * indicates a base offset of 10, and the index for the entry is 2, then
0283  * section handler function should set the offset to 10 + 2 = 12.
0284  */
0285 static void *
0286 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
0287            u32 sect_type, u32 *offset,
0288            void *(*handler)(u32 sect_type, void *section,
0289                     u32 index, u32 *offset))
0290 {
0291     void *entry;
0292 
0293     if (ice_seg) {
0294         if (!handler)
0295             return NULL;
0296 
0297         if (!ice_pkg_enum_section(ice_seg, state, sect_type))
0298             return NULL;
0299 
0300         state->entry_idx = 0;
0301         state->handler = handler;
0302     } else {
0303         state->entry_idx++;
0304     }
0305 
0306     if (!state->handler)
0307         return NULL;
0308 
0309     /* get entry */
0310     entry = state->handler(state->sect_type, state->sect, state->entry_idx,
0311                    offset);
0312     if (!entry) {
0313         /* end of a section, look for another section of this type */
0314         if (!ice_pkg_enum_section(NULL, state, 0))
0315             return NULL;
0316 
0317         state->entry_idx = 0;
0318         entry = state->handler(state->sect_type, state->sect,
0319                        state->entry_idx, offset);
0320     }
0321 
0322     return entry;
0323 }
0324 
0325 /**
0326  * ice_hw_ptype_ena - check if the PTYPE is enabled or not
0327  * @hw: pointer to the HW structure
0328  * @ptype: the hardware PTYPE
0329  */
0330 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
0331 {
0332     return ptype < ICE_FLOW_PTYPE_MAX &&
0333            test_bit(ptype, hw->hw_ptype);
0334 }
0335 
0336 /**
0337  * ice_marker_ptype_tcam_handler
0338  * @sect_type: section type
0339  * @section: pointer to section
0340  * @index: index of the Marker PType TCAM entry to be returned
0341  * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
0342  *
0343  * This is a callback function that can be passed to ice_pkg_enum_entry.
0344  * Handles enumeration of individual Marker PType TCAM entries.
0345  */
0346 static void *
0347 ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index,
0348                   u32 *offset)
0349 {
0350     struct ice_marker_ptype_tcam_section *marker_ptype;
0351 
0352     if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
0353         return NULL;
0354 
0355     if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
0356         return NULL;
0357 
0358     if (offset)
0359         *offset = 0;
0360 
0361     marker_ptype = section;
0362     if (index >= le16_to_cpu(marker_ptype->count))
0363         return NULL;
0364 
0365     return marker_ptype->tcam + index;
0366 }
0367 
0368 /**
0369  * ice_fill_hw_ptype - fill the enabled PTYPE bit information
0370  * @hw: pointer to the HW structure
0371  */
0372 static void ice_fill_hw_ptype(struct ice_hw *hw)
0373 {
0374     struct ice_marker_ptype_tcam_entry *tcam;
0375     struct ice_seg *seg = hw->seg;
0376     struct ice_pkg_enum state;
0377 
0378     bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
0379     if (!seg)
0380         return;
0381 
0382     memset(&state, 0, sizeof(state));
0383 
0384     do {
0385         tcam = ice_pkg_enum_entry(seg, &state,
0386                       ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
0387                       ice_marker_ptype_tcam_handler);
0388         if (tcam &&
0389             le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
0390             le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
0391             set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
0392 
0393         seg = NULL;
0394     } while (tcam);
0395 }
0396 
0397 /**
0398  * ice_boost_tcam_handler
0399  * @sect_type: section type
0400  * @section: pointer to section
0401  * @index: index of the boost TCAM entry to be returned
0402  * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
0403  *
0404  * This is a callback function that can be passed to ice_pkg_enum_entry.
0405  * Handles enumeration of individual boost TCAM entries.
0406  */
0407 static void *
0408 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
0409 {
0410     struct ice_boost_tcam_section *boost;
0411 
0412     if (!section)
0413         return NULL;
0414 
0415     if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
0416         return NULL;
0417 
0418     /* cppcheck-suppress nullPointer */
0419     if (index > ICE_MAX_BST_TCAMS_IN_BUF)
0420         return NULL;
0421 
0422     if (offset)
0423         *offset = 0;
0424 
0425     boost = section;
0426     if (index >= le16_to_cpu(boost->count))
0427         return NULL;
0428 
0429     return boost->tcam + index;
0430 }
0431 
0432 /**
0433  * ice_find_boost_entry
0434  * @ice_seg: pointer to the ice segment (non-NULL)
0435  * @addr: Boost TCAM address of entry to search for
0436  * @entry: returns pointer to the entry
0437  *
0438  * Finds a particular Boost TCAM entry and returns a pointer to that entry
0439  * if it is found. The ice_seg parameter must not be NULL since the first call
0440  * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
0441  */
0442 static int
0443 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
0444              struct ice_boost_tcam_entry **entry)
0445 {
0446     struct ice_boost_tcam_entry *tcam;
0447     struct ice_pkg_enum state;
0448 
0449     memset(&state, 0, sizeof(state));
0450 
0451     if (!ice_seg)
0452         return -EINVAL;
0453 
0454     do {
0455         tcam = ice_pkg_enum_entry(ice_seg, &state,
0456                       ICE_SID_RXPARSER_BOOST_TCAM, NULL,
0457                       ice_boost_tcam_handler);
0458         if (tcam && le16_to_cpu(tcam->addr) == addr) {
0459             *entry = tcam;
0460             return 0;
0461         }
0462 
0463         ice_seg = NULL;
0464     } while (tcam);
0465 
0466     *entry = NULL;
0467     return -EIO;
0468 }
0469 
0470 /**
0471  * ice_label_enum_handler
0472  * @sect_type: section type
0473  * @section: pointer to section
0474  * @index: index of the label entry to be returned
0475  * @offset: pointer to receive absolute offset, always zero for label sections
0476  *
0477  * This is a callback function that can be passed to ice_pkg_enum_entry.
0478  * Handles enumeration of individual label entries.
0479  */
0480 static void *
0481 ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
0482                u32 *offset)
0483 {
0484     struct ice_label_section *labels;
0485 
0486     if (!section)
0487         return NULL;
0488 
0489     /* cppcheck-suppress nullPointer */
0490     if (index > ICE_MAX_LABELS_IN_BUF)
0491         return NULL;
0492 
0493     if (offset)
0494         *offset = 0;
0495 
0496     labels = section;
0497     if (index >= le16_to_cpu(labels->count))
0498         return NULL;
0499 
0500     return labels->label + index;
0501 }
0502 
0503 /**
0504  * ice_enum_labels
0505  * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
0506  * @type: the section type that will contain the label (0 on subsequent calls)
0507  * @state: ice_pkg_enum structure that will hold the state of the enumeration
0508  * @value: pointer to a value that will return the label's value if found
0509  *
0510  * Enumerates a list of labels in the package. The caller will call
0511  * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
0512  * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
0513  * the end of the list has been reached.
0514  */
0515 static char *
0516 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
0517         u16 *value)
0518 {
0519     struct ice_label *label;
0520 
0521     /* Check for valid label section on first call */
0522     if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
0523         return NULL;
0524 
0525     label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
0526                    ice_label_enum_handler);
0527     if (!label)
0528         return NULL;
0529 
0530     *value = le16_to_cpu(label->value);
0531     return label->name;
0532 }
0533 
0534 /**
0535  * ice_add_tunnel_hint
0536  * @hw: pointer to the HW structure
0537  * @label_name: label text
0538  * @val: value of the tunnel port boost entry
0539  */
0540 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
0541 {
0542     if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
0543         u16 i;
0544 
0545         for (i = 0; tnls[i].type != TNL_LAST; i++) {
0546             size_t len = strlen(tnls[i].label_prefix);
0547 
0548             /* Look for matching label start, before continuing */
0549             if (strncmp(label_name, tnls[i].label_prefix, len))
0550                 continue;
0551 
0552             /* Make sure this label matches our PF. Note that the PF
0553              * character ('0' - '7') will be located where our
0554              * prefix string's null terminator is located.
0555              */
0556             if ((label_name[len] - '0') == hw->pf_id) {
0557                 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
0558                 hw->tnl.tbl[hw->tnl.count].valid = false;
0559                 hw->tnl.tbl[hw->tnl.count].boost_addr = val;
0560                 hw->tnl.tbl[hw->tnl.count].port = 0;
0561                 hw->tnl.count++;
0562                 break;
0563             }
0564         }
0565     }
0566 }
0567 
0568 /**
0569  * ice_add_dvm_hint
0570  * @hw: pointer to the HW structure
0571  * @val: value of the boost entry
0572  * @enable: true if entry needs to be enabled, or false if needs to be disabled
0573  */
0574 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
0575 {
0576     if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
0577         hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
0578         hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
0579         hw->dvm_upd.count++;
0580     }
0581 }
0582 
0583 /**
0584  * ice_init_pkg_hints
0585  * @hw: pointer to the HW structure
0586  * @ice_seg: pointer to the segment of the package scan (non-NULL)
0587  *
0588  * This function will scan the package and save off relevant information
0589  * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
0590  * since the first call to ice_enum_labels requires a pointer to an actual
0591  * ice_seg structure.
0592  */
0593 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
0594 {
0595     struct ice_pkg_enum state;
0596     char *label_name;
0597     u16 val;
0598     int i;
0599 
0600     memset(&hw->tnl, 0, sizeof(hw->tnl));
0601     memset(&state, 0, sizeof(state));
0602 
0603     if (!ice_seg)
0604         return;
0605 
0606     label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
0607                      &val);
0608 
0609     while (label_name) {
0610         if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
0611             /* check for a tunnel entry */
0612             ice_add_tunnel_hint(hw, label_name, val);
0613 
0614         /* check for a dvm mode entry */
0615         else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
0616             ice_add_dvm_hint(hw, val, true);
0617 
0618         /* check for a svm mode entry */
0619         else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
0620             ice_add_dvm_hint(hw, val, false);
0621 
0622         label_name = ice_enum_labels(NULL, 0, &state, &val);
0623     }
0624 
0625     /* Cache the appropriate boost TCAM entry pointers for tunnels */
0626     for (i = 0; i < hw->tnl.count; i++) {
0627         ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
0628                      &hw->tnl.tbl[i].boost_entry);
0629         if (hw->tnl.tbl[i].boost_entry) {
0630             hw->tnl.tbl[i].valid = true;
0631             if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
0632                 hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
0633         }
0634     }
0635 
0636     /* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
0637     for (i = 0; i < hw->dvm_upd.count; i++)
0638         ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
0639                      &hw->dvm_upd.tbl[i].boost_entry);
0640 }
0641 
0642 /* Key creation */
0643 
0644 #define ICE_DC_KEY  0x1 /* don't care */
0645 #define ICE_DC_KEYINV   0x1
0646 #define ICE_NM_KEY  0x0 /* never match */
0647 #define ICE_NM_KEYINV   0x0
0648 #define ICE_0_KEY   0x1 /* match 0 */
0649 #define ICE_0_KEYINV    0x0
0650 #define ICE_1_KEY   0x0 /* match 1 */
0651 #define ICE_1_KEYINV    0x1
0652 
0653 /**
0654  * ice_gen_key_word - generate 16-bits of a key/mask word
0655  * @val: the value
0656  * @valid: valid bits mask (change only the valid bits)
0657  * @dont_care: don't care mask
0658  * @nvr_mtch: never match mask
0659  * @key: pointer to an array of where the resulting key portion
0660  * @key_inv: pointer to an array of where the resulting key invert portion
0661  *
0662  * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
0663  * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
0664  * of key and 8 bits of key invert.
0665  *
0666  *     '0' =    b01, always match a 0 bit
0667  *     '1' =    b10, always match a 1 bit
0668  *     '?' =    b11, don't care bit (always matches)
0669  *     '~' =    b00, never match bit
0670  *
0671  * Input:
0672  *          val:         b0  1  0  1  0  1
0673  *          dont_care:   b0  0  1  1  0  0
0674  *          never_mtch:  b0  0  0  0  1  1
0675  *          ------------------------------
0676  * Result:  key:        b01 10 11 11 00 00
0677  */
0678 static int
0679 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
0680          u8 *key_inv)
0681 {
0682     u8 in_key = *key, in_key_inv = *key_inv;
0683     u8 i;
0684 
0685     /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
0686     if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
0687         return -EIO;
0688 
0689     *key = 0;
0690     *key_inv = 0;
0691 
0692     /* encode the 8 bits into 8-bit key and 8-bit key invert */
0693     for (i = 0; i < 8; i++) {
0694         *key >>= 1;
0695         *key_inv >>= 1;
0696 
0697         if (!(valid & 0x1)) { /* change only valid bits */
0698             *key |= (in_key & 0x1) << 7;
0699             *key_inv |= (in_key_inv & 0x1) << 7;
0700         } else if (dont_care & 0x1) { /* don't care bit */
0701             *key |= ICE_DC_KEY << 7;
0702             *key_inv |= ICE_DC_KEYINV << 7;
0703         } else if (nvr_mtch & 0x1) { /* never match bit */
0704             *key |= ICE_NM_KEY << 7;
0705             *key_inv |= ICE_NM_KEYINV << 7;
0706         } else if (val & 0x01) { /* exact 1 match */
0707             *key |= ICE_1_KEY << 7;
0708             *key_inv |= ICE_1_KEYINV << 7;
0709         } else { /* exact 0 match */
0710             *key |= ICE_0_KEY << 7;
0711             *key_inv |= ICE_0_KEYINV << 7;
0712         }
0713 
0714         dont_care >>= 1;
0715         nvr_mtch >>= 1;
0716         valid >>= 1;
0717         val >>= 1;
0718         in_key >>= 1;
0719         in_key_inv >>= 1;
0720     }
0721 
0722     return 0;
0723 }
0724 
0725 /**
0726  * ice_bits_max_set - determine if the number of bits set is within a maximum
0727  * @mask: pointer to the byte array which is the mask
0728  * @size: the number of bytes in the mask
0729  * @max: the max number of set bits
0730  *
0731  * This function determines if there are at most 'max' number of bits set in an
0732  * array. Returns true if the number for bits set is <= max or will return false
0733  * otherwise.
0734  */
0735 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
0736 {
0737     u16 count = 0;
0738     u16 i;
0739 
0740     /* check each byte */
0741     for (i = 0; i < size; i++) {
0742         /* if 0, go to next byte */
0743         if (!mask[i])
0744             continue;
0745 
0746         /* We know there is at least one set bit in this byte because of
0747          * the above check; if we already have found 'max' number of
0748          * bits set, then we can return failure now.
0749          */
0750         if (count == max)
0751             return false;
0752 
0753         /* count the bits in this byte, checking threshold */
0754         count += hweight8(mask[i]);
0755         if (count > max)
0756             return false;
0757     }
0758 
0759     return true;
0760 }
0761 
0762 /**
0763  * ice_set_key - generate a variable sized key with multiples of 16-bits
0764  * @key: pointer to where the key will be stored
0765  * @size: the size of the complete key in bytes (must be even)
0766  * @val: array of 8-bit values that makes up the value portion of the key
0767  * @upd: array of 8-bit masks that determine what key portion to update
0768  * @dc: array of 8-bit masks that make up the don't care mask
0769  * @nm: array of 8-bit masks that make up the never match mask
0770  * @off: the offset of the first byte in the key to update
0771  * @len: the number of bytes in the key update
0772  *
0773  * This function generates a key from a value, a don't care mask and a never
0774  * match mask.
0775  * upd, dc, and nm are optional parameters, and can be NULL:
0776  *  upd == NULL --> upd mask is all 1's (update all bits)
0777  *  dc == NULL --> dc mask is all 0's (no don't care bits)
0778  *  nm == NULL --> nm mask is all 0's (no never match bits)
0779  */
0780 static int
0781 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
0782         u16 len)
0783 {
0784     u16 half_size;
0785     u16 i;
0786 
0787     /* size must be a multiple of 2 bytes. */
0788     if (size % 2)
0789         return -EIO;
0790 
0791     half_size = size / 2;
0792     if (off + len > half_size)
0793         return -EIO;
0794 
0795     /* Make sure at most one bit is set in the never match mask. Having more
0796      * than one never match mask bit set will cause HW to consume excessive
0797      * power otherwise; this is a power management efficiency check.
0798      */
0799 #define ICE_NVR_MTCH_BITS_MAX   1
0800     if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
0801         return -EIO;
0802 
0803     for (i = 0; i < len; i++)
0804         if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
0805                      dc ? dc[i] : 0, nm ? nm[i] : 0,
0806                      key + off + i, key + half_size + off + i))
0807             return -EIO;
0808 
0809     return 0;
0810 }
0811 
0812 /**
0813  * ice_acquire_global_cfg_lock
0814  * @hw: pointer to the HW structure
0815  * @access: access type (read or write)
0816  *
0817  * This function will request ownership of the global config lock for reading
0818  * or writing of the package. When attempting to obtain write access, the
0819  * caller must check for the following two return values:
0820  *
0821  * 0         -  Means the caller has acquired the global config lock
0822  *              and can perform writing of the package.
0823  * -EALREADY - Indicates another driver has already written the
0824  *             package or has found that no update was necessary; in
0825  *             this case, the caller can just skip performing any
0826  *             update of the package.
0827  */
0828 static int
0829 ice_acquire_global_cfg_lock(struct ice_hw *hw,
0830                 enum ice_aq_res_access_type access)
0831 {
0832     int status;
0833 
0834     status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
0835                  ICE_GLOBAL_CFG_LOCK_TIMEOUT);
0836 
0837     if (!status)
0838         mutex_lock(&ice_global_cfg_lock_sw);
0839     else if (status == -EALREADY)
0840         ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
0841 
0842     return status;
0843 }
0844 
0845 /**
0846  * ice_release_global_cfg_lock
0847  * @hw: pointer to the HW structure
0848  *
0849  * This function will release the global config lock.
0850  */
0851 static void ice_release_global_cfg_lock(struct ice_hw *hw)
0852 {
0853     mutex_unlock(&ice_global_cfg_lock_sw);
0854     ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
0855 }
0856 
0857 /**
0858  * ice_acquire_change_lock
0859  * @hw: pointer to the HW structure
0860  * @access: access type (read or write)
0861  *
0862  * This function will request ownership of the change lock.
0863  */
0864 int
0865 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
0866 {
0867     return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
0868                    ICE_CHANGE_LOCK_TIMEOUT);
0869 }
0870 
0871 /**
0872  * ice_release_change_lock
0873  * @hw: pointer to the HW structure
0874  *
0875  * This function will release the change lock using the proper Admin Command.
0876  */
0877 void ice_release_change_lock(struct ice_hw *hw)
0878 {
0879     ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
0880 }
0881 
0882 /**
0883  * ice_aq_download_pkg
0884  * @hw: pointer to the hardware structure
0885  * @pkg_buf: the package buffer to transfer
0886  * @buf_size: the size of the package buffer
0887  * @last_buf: last buffer indicator
0888  * @error_offset: returns error offset
0889  * @error_info: returns error information
0890  * @cd: pointer to command details structure or NULL
0891  *
0892  * Download Package (0x0C40)
0893  */
0894 static int
0895 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
0896             u16 buf_size, bool last_buf, u32 *error_offset,
0897             u32 *error_info, struct ice_sq_cd *cd)
0898 {
0899     struct ice_aqc_download_pkg *cmd;
0900     struct ice_aq_desc desc;
0901     int status;
0902 
0903     if (error_offset)
0904         *error_offset = 0;
0905     if (error_info)
0906         *error_info = 0;
0907 
0908     cmd = &desc.params.download_pkg;
0909     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
0910     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
0911 
0912     if (last_buf)
0913         cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
0914 
0915     status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
0916     if (status == -EIO) {
0917         /* Read error from buffer only when the FW returned an error */
0918         struct ice_aqc_download_pkg_resp *resp;
0919 
0920         resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
0921         if (error_offset)
0922             *error_offset = le32_to_cpu(resp->error_offset);
0923         if (error_info)
0924             *error_info = le32_to_cpu(resp->error_info);
0925     }
0926 
0927     return status;
0928 }
0929 
0930 /**
0931  * ice_aq_upload_section
0932  * @hw: pointer to the hardware structure
0933  * @pkg_buf: the package buffer which will receive the section
0934  * @buf_size: the size of the package buffer
0935  * @cd: pointer to command details structure or NULL
0936  *
0937  * Upload Section (0x0C41)
0938  */
0939 int
0940 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
0941               u16 buf_size, struct ice_sq_cd *cd)
0942 {
0943     struct ice_aq_desc desc;
0944 
0945     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
0946     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
0947 
0948     return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
0949 }
0950 
0951 /**
0952  * ice_aq_update_pkg
0953  * @hw: pointer to the hardware structure
0954  * @pkg_buf: the package cmd buffer
0955  * @buf_size: the size of the package cmd buffer
0956  * @last_buf: last buffer indicator
0957  * @error_offset: returns error offset
0958  * @error_info: returns error information
0959  * @cd: pointer to command details structure or NULL
0960  *
0961  * Update Package (0x0C42)
0962  */
0963 static int
0964 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
0965           bool last_buf, u32 *error_offset, u32 *error_info,
0966           struct ice_sq_cd *cd)
0967 {
0968     struct ice_aqc_download_pkg *cmd;
0969     struct ice_aq_desc desc;
0970     int status;
0971 
0972     if (error_offset)
0973         *error_offset = 0;
0974     if (error_info)
0975         *error_info = 0;
0976 
0977     cmd = &desc.params.download_pkg;
0978     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
0979     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
0980 
0981     if (last_buf)
0982         cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
0983 
0984     status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
0985     if (status == -EIO) {
0986         /* Read error from buffer only when the FW returned an error */
0987         struct ice_aqc_download_pkg_resp *resp;
0988 
0989         resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
0990         if (error_offset)
0991             *error_offset = le32_to_cpu(resp->error_offset);
0992         if (error_info)
0993             *error_info = le32_to_cpu(resp->error_info);
0994     }
0995 
0996     return status;
0997 }
0998 
0999 /**
1000  * ice_find_seg_in_pkg
1001  * @hw: pointer to the hardware structure
1002  * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
1003  * @pkg_hdr: pointer to the package header to be searched
1004  *
1005  * This function searches a package file for a particular segment type. On
1006  * success it returns a pointer to the segment header, otherwise it will
1007  * return NULL.
1008  */
1009 static struct ice_generic_seg_hdr *
1010 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
1011             struct ice_pkg_hdr *pkg_hdr)
1012 {
1013     u32 i;
1014 
1015     ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
1016           pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
1017           pkg_hdr->pkg_format_ver.update,
1018           pkg_hdr->pkg_format_ver.draft);
1019 
1020     /* Search all package segments for the requested segment type */
1021     for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1022         struct ice_generic_seg_hdr *seg;
1023 
1024         seg = (struct ice_generic_seg_hdr *)
1025             ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
1026 
1027         if (le32_to_cpu(seg->seg_type) == seg_type)
1028             return seg;
1029     }
1030 
1031     return NULL;
1032 }
1033 
1034 /**
1035  * ice_update_pkg_no_lock
1036  * @hw: pointer to the hardware structure
1037  * @bufs: pointer to an array of buffers
1038  * @count: the number of buffers in the array
1039  */
1040 static int
1041 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1042 {
1043     int status = 0;
1044     u32 i;
1045 
1046     for (i = 0; i < count; i++) {
1047         struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
1048         bool last = ((i + 1) == count);
1049         u32 offset, info;
1050 
1051         status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
1052                        last, &offset, &info, NULL);
1053 
1054         if (status) {
1055             ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
1056                   status, offset, info);
1057             break;
1058         }
1059     }
1060 
1061     return status;
1062 }
1063 
1064 /**
1065  * ice_update_pkg
1066  * @hw: pointer to the hardware structure
1067  * @bufs: pointer to an array of buffers
1068  * @count: the number of buffers in the array
1069  *
1070  * Obtains change lock and updates package.
1071  */
1072 static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1073 {
1074     int status;
1075 
1076     status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1077     if (status)
1078         return status;
1079 
1080     status = ice_update_pkg_no_lock(hw, bufs, count);
1081 
1082     ice_release_change_lock(hw);
1083 
1084     return status;
1085 }
1086 
1087 static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
1088 {
1089     switch (aq_err) {
1090     case ICE_AQ_RC_ENOSEC:
1091     case ICE_AQ_RC_EBADSIG:
1092         return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
1093     case ICE_AQ_RC_ESVN:
1094         return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
1095     case ICE_AQ_RC_EBADMAN:
1096     case ICE_AQ_RC_EBADBUF:
1097         return ICE_DDP_PKG_LOAD_ERROR;
1098     default:
1099         return ICE_DDP_PKG_ERR;
1100     }
1101 }
1102 
1103 /**
1104  * ice_dwnld_cfg_bufs
1105  * @hw: pointer to the hardware structure
1106  * @bufs: pointer to an array of buffers
1107  * @count: the number of buffers in the array
1108  *
1109  * Obtains global config lock and downloads the package configuration buffers
1110  * to the firmware. Metadata buffers are skipped, and the first metadata buffer
1111  * found indicates that the rest of the buffers are all metadata buffers.
1112  */
1113 static enum ice_ddp_state
1114 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1115 {
1116     enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1117     struct ice_buf_hdr *bh;
1118     enum ice_aq_err err;
1119     u32 offset, info, i;
1120     int status;
1121 
1122     if (!bufs || !count)
1123         return ICE_DDP_PKG_ERR;
1124 
1125     /* If the first buffer's first section has its metadata bit set
1126      * then there are no buffers to be downloaded, and the operation is
1127      * considered a success.
1128      */
1129     bh = (struct ice_buf_hdr *)bufs;
1130     if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1131         return ICE_DDP_PKG_SUCCESS;
1132 
1133     status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1134     if (status) {
1135         if (status == -EALREADY)
1136             return ICE_DDP_PKG_ALREADY_LOADED;
1137         return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
1138     }
1139 
1140     for (i = 0; i < count; i++) {
1141         bool last = ((i + 1) == count);
1142 
1143         if (!last) {
1144             /* check next buffer for metadata flag */
1145             bh = (struct ice_buf_hdr *)(bufs + i + 1);
1146 
1147             /* A set metadata flag in the next buffer will signal
1148              * that the current buffer will be the last buffer
1149              * downloaded
1150              */
1151             if (le16_to_cpu(bh->section_count))
1152                 if (le32_to_cpu(bh->section_entry[0].type) &
1153                     ICE_METADATA_BUF)
1154                     last = true;
1155         }
1156 
1157         bh = (struct ice_buf_hdr *)(bufs + i);
1158 
1159         status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1160                          &offset, &info, NULL);
1161 
1162         /* Save AQ status from download package */
1163         if (status) {
1164             ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1165                   status, offset, info);
1166             err = hw->adminq.sq_last_status;
1167             state = ice_map_aq_err_to_ddp_state(err);
1168             break;
1169         }
1170 
1171         if (last)
1172             break;
1173     }
1174 
1175     if (!status) {
1176         status = ice_set_vlan_mode(hw);
1177         if (status)
1178             ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1179                   status);
1180     }
1181 
1182     ice_release_global_cfg_lock(hw);
1183 
1184     return state;
1185 }
1186 
1187 /**
1188  * ice_aq_get_pkg_info_list
1189  * @hw: pointer to the hardware structure
1190  * @pkg_info: the buffer which will receive the information list
1191  * @buf_size: the size of the pkg_info information buffer
1192  * @cd: pointer to command details structure or NULL
1193  *
1194  * Get Package Info List (0x0C43)
1195  */
1196 static int
1197 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1198              struct ice_aqc_get_pkg_info_resp *pkg_info,
1199              u16 buf_size, struct ice_sq_cd *cd)
1200 {
1201     struct ice_aq_desc desc;
1202 
1203     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1204 
1205     return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1206 }
1207 
1208 /**
1209  * ice_download_pkg
1210  * @hw: pointer to the hardware structure
1211  * @ice_seg: pointer to the segment of the package to be downloaded
1212  *
1213  * Handles the download of a complete package.
1214  */
1215 static enum ice_ddp_state
1216 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1217 {
1218     struct ice_buf_table *ice_buf_tbl;
1219     int status;
1220 
1221     ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1222           ice_seg->hdr.seg_format_ver.major,
1223           ice_seg->hdr.seg_format_ver.minor,
1224           ice_seg->hdr.seg_format_ver.update,
1225           ice_seg->hdr.seg_format_ver.draft);
1226 
1227     ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1228           le32_to_cpu(ice_seg->hdr.seg_type),
1229           le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1230 
1231     ice_buf_tbl = ice_find_buf_table(ice_seg);
1232 
1233     ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1234           le32_to_cpu(ice_buf_tbl->buf_count));
1235 
1236     status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1237                     le32_to_cpu(ice_buf_tbl->buf_count));
1238 
1239     ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1240 
1241     return status;
1242 }
1243 
1244 /**
1245  * ice_init_pkg_info
1246  * @hw: pointer to the hardware structure
1247  * @pkg_hdr: pointer to the driver's package hdr
1248  *
1249  * Saves off the package details into the HW structure.
1250  */
1251 static enum ice_ddp_state
1252 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1253 {
1254     struct ice_generic_seg_hdr *seg_hdr;
1255 
1256     if (!pkg_hdr)
1257         return ICE_DDP_PKG_ERR;
1258 
1259     seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1260     if (seg_hdr) {
1261         struct ice_meta_sect *meta;
1262         struct ice_pkg_enum state;
1263 
1264         memset(&state, 0, sizeof(state));
1265 
1266         /* Get package information from the Metadata Section */
1267         meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1268                         ICE_SID_METADATA);
1269         if (!meta) {
1270             ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1271             return ICE_DDP_PKG_INVALID_FILE;
1272         }
1273 
1274         hw->pkg_ver = meta->ver;
1275         memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1276 
1277         ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1278               meta->ver.major, meta->ver.minor, meta->ver.update,
1279               meta->ver.draft, meta->name);
1280 
1281         hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1282         memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1283                sizeof(hw->ice_seg_id));
1284 
1285         ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1286               seg_hdr->seg_format_ver.major,
1287               seg_hdr->seg_format_ver.minor,
1288               seg_hdr->seg_format_ver.update,
1289               seg_hdr->seg_format_ver.draft,
1290               seg_hdr->seg_id);
1291     } else {
1292         ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1293         return ICE_DDP_PKG_INVALID_FILE;
1294     }
1295 
1296     return ICE_DDP_PKG_SUCCESS;
1297 }
1298 
1299 /**
1300  * ice_get_pkg_info
1301  * @hw: pointer to the hardware structure
1302  *
1303  * Store details of the package currently loaded in HW into the HW structure.
1304  */
1305 static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
1306 {
1307     enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1308     struct ice_aqc_get_pkg_info_resp *pkg_info;
1309     u16 size;
1310     u32 i;
1311 
1312     size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1313     pkg_info = kzalloc(size, GFP_KERNEL);
1314     if (!pkg_info)
1315         return ICE_DDP_PKG_ERR;
1316 
1317     if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
1318         state = ICE_DDP_PKG_ERR;
1319         goto init_pkg_free_alloc;
1320     }
1321 
1322     for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1323 #define ICE_PKG_FLAG_COUNT  4
1324         char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1325         u8 place = 0;
1326 
1327         if (pkg_info->pkg_info[i].is_active) {
1328             flags[place++] = 'A';
1329             hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1330             hw->active_track_id =
1331                 le32_to_cpu(pkg_info->pkg_info[i].track_id);
1332             memcpy(hw->active_pkg_name,
1333                    pkg_info->pkg_info[i].name,
1334                    sizeof(pkg_info->pkg_info[i].name));
1335             hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1336         }
1337         if (pkg_info->pkg_info[i].is_active_at_boot)
1338             flags[place++] = 'B';
1339         if (pkg_info->pkg_info[i].is_modified)
1340             flags[place++] = 'M';
1341         if (pkg_info->pkg_info[i].is_in_nvm)
1342             flags[place++] = 'N';
1343 
1344         ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1345               i, pkg_info->pkg_info[i].ver.major,
1346               pkg_info->pkg_info[i].ver.minor,
1347               pkg_info->pkg_info[i].ver.update,
1348               pkg_info->pkg_info[i].ver.draft,
1349               pkg_info->pkg_info[i].name, flags);
1350     }
1351 
1352 init_pkg_free_alloc:
1353     kfree(pkg_info);
1354 
1355     return state;
1356 }
1357 
1358 /**
1359  * ice_verify_pkg - verify package
1360  * @pkg: pointer to the package buffer
1361  * @len: size of the package buffer
1362  *
1363  * Verifies various attributes of the package file, including length, format
1364  * version, and the requirement of at least one segment.
1365  */
1366 static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1367 {
1368     u32 seg_count;
1369     u32 i;
1370 
1371     if (len < struct_size(pkg, seg_offset, 1))
1372         return ICE_DDP_PKG_INVALID_FILE;
1373 
1374     if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1375         pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1376         pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1377         pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1378         return ICE_DDP_PKG_INVALID_FILE;
1379 
1380     /* pkg must have at least one segment */
1381     seg_count = le32_to_cpu(pkg->seg_count);
1382     if (seg_count < 1)
1383         return ICE_DDP_PKG_INVALID_FILE;
1384 
1385     /* make sure segment array fits in package length */
1386     if (len < struct_size(pkg, seg_offset, seg_count))
1387         return ICE_DDP_PKG_INVALID_FILE;
1388 
1389     /* all segments must fit within length */
1390     for (i = 0; i < seg_count; i++) {
1391         u32 off = le32_to_cpu(pkg->seg_offset[i]);
1392         struct ice_generic_seg_hdr *seg;
1393 
1394         /* segment header must fit */
1395         if (len < off + sizeof(*seg))
1396             return ICE_DDP_PKG_INVALID_FILE;
1397 
1398         seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1399 
1400         /* segment body must fit */
1401         if (len < off + le32_to_cpu(seg->seg_size))
1402             return ICE_DDP_PKG_INVALID_FILE;
1403     }
1404 
1405     return ICE_DDP_PKG_SUCCESS;
1406 }
1407 
1408 /**
1409  * ice_free_seg - free package segment pointer
1410  * @hw: pointer to the hardware structure
1411  *
1412  * Frees the package segment pointer in the proper manner, depending on if the
1413  * segment was allocated or just the passed in pointer was stored.
1414  */
1415 void ice_free_seg(struct ice_hw *hw)
1416 {
1417     if (hw->pkg_copy) {
1418         devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1419         hw->pkg_copy = NULL;
1420         hw->pkg_size = 0;
1421     }
1422     hw->seg = NULL;
1423 }
1424 
1425 /**
1426  * ice_init_pkg_regs - initialize additional package registers
1427  * @hw: pointer to the hardware structure
1428  */
1429 static void ice_init_pkg_regs(struct ice_hw *hw)
1430 {
1431 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1432 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1433 #define ICE_SW_BLK_IDX  0
1434 
1435     /* setup Switch block input mask, which is 48-bits in two parts */
1436     wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1437     wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1438 }
1439 
1440 /**
1441  * ice_chk_pkg_version - check package version for compatibility with driver
1442  * @pkg_ver: pointer to a version structure to check
1443  *
1444  * Check to make sure that the package about to be downloaded is compatible with
1445  * the driver. To be compatible, the major and minor components of the package
1446  * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1447  * definitions.
1448  */
1449 static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1450 {
1451     if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
1452         (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1453          pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
1454         return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
1455     else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
1456          (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1457           pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
1458         return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
1459 
1460     return ICE_DDP_PKG_SUCCESS;
1461 }
1462 
1463 /**
1464  * ice_chk_pkg_compat
1465  * @hw: pointer to the hardware structure
1466  * @ospkg: pointer to the package hdr
1467  * @seg: pointer to the package segment hdr
1468  *
1469  * This function checks the package version compatibility with driver and NVM
1470  */
1471 static enum ice_ddp_state
1472 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1473            struct ice_seg **seg)
1474 {
1475     struct ice_aqc_get_pkg_info_resp *pkg;
1476     enum ice_ddp_state state;
1477     u16 size;
1478     u32 i;
1479 
1480     /* Check package version compatibility */
1481     state = ice_chk_pkg_version(&hw->pkg_ver);
1482     if (state) {
1483         ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1484         return state;
1485     }
1486 
1487     /* find ICE segment in given package */
1488     *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1489                              ospkg);
1490     if (!*seg) {
1491         ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1492         return ICE_DDP_PKG_INVALID_FILE;
1493     }
1494 
1495     /* Check if FW is compatible with the OS package */
1496     size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1497     pkg = kzalloc(size, GFP_KERNEL);
1498     if (!pkg)
1499         return ICE_DDP_PKG_ERR;
1500 
1501     if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
1502         state = ICE_DDP_PKG_LOAD_ERROR;
1503         goto fw_ddp_compat_free_alloc;
1504     }
1505 
1506     for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1507         /* loop till we find the NVM package */
1508         if (!pkg->pkg_info[i].is_in_nvm)
1509             continue;
1510         if ((*seg)->hdr.seg_format_ver.major !=
1511             pkg->pkg_info[i].ver.major ||
1512             (*seg)->hdr.seg_format_ver.minor >
1513             pkg->pkg_info[i].ver.minor) {
1514             state = ICE_DDP_PKG_FW_MISMATCH;
1515             ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1516         }
1517         /* done processing NVM package so break */
1518         break;
1519     }
1520 fw_ddp_compat_free_alloc:
1521     kfree(pkg);
1522     return state;
1523 }
1524 
1525 /**
1526  * ice_sw_fv_handler
1527  * @sect_type: section type
1528  * @section: pointer to section
1529  * @index: index of the field vector entry to be returned
1530  * @offset: ptr to variable that receives the offset in the field vector table
1531  *
1532  * This is a callback function that can be passed to ice_pkg_enum_entry.
1533  * This function treats the given section as of type ice_sw_fv_section and
1534  * enumerates offset field. "offset" is an index into the field vector table.
1535  */
1536 static void *
1537 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1538 {
1539     struct ice_sw_fv_section *fv_section = section;
1540 
1541     if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1542         return NULL;
1543     if (index >= le16_to_cpu(fv_section->count))
1544         return NULL;
1545     if (offset)
1546         /* "index" passed in to this function is relative to a given
1547          * 4k block. To get to the true index into the field vector
1548          * table need to add the relative index to the base_offset
1549          * field of this section
1550          */
1551         *offset = le16_to_cpu(fv_section->base_offset) + index;
1552     return fv_section->fv + index;
1553 }
1554 
1555 /**
1556  * ice_get_prof_index_max - get the max profile index for used profile
1557  * @hw: pointer to the HW struct
1558  *
1559  * Calling this function will get the max profile index for used profile
1560  * and store the index number in struct ice_switch_info *switch_info
1561  * in HW for following use.
1562  */
1563 static int ice_get_prof_index_max(struct ice_hw *hw)
1564 {
1565     u16 prof_index = 0, j, max_prof_index = 0;
1566     struct ice_pkg_enum state;
1567     struct ice_seg *ice_seg;
1568     bool flag = false;
1569     struct ice_fv *fv;
1570     u32 offset;
1571 
1572     memset(&state, 0, sizeof(state));
1573 
1574     if (!hw->seg)
1575         return -EINVAL;
1576 
1577     ice_seg = hw->seg;
1578 
1579     do {
1580         fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1581                     &offset, ice_sw_fv_handler);
1582         if (!fv)
1583             break;
1584         ice_seg = NULL;
1585 
1586         /* in the profile that not be used, the prot_id is set to 0xff
1587          * and the off is set to 0x1ff for all the field vectors.
1588          */
1589         for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1590             if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1591                 fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1592                 flag = true;
1593         if (flag && prof_index > max_prof_index)
1594             max_prof_index = prof_index;
1595 
1596         prof_index++;
1597         flag = false;
1598     } while (fv);
1599 
1600     hw->switch_info->max_used_prof_index = max_prof_index;
1601 
1602     return 0;
1603 }
1604 
1605 /**
1606  * ice_get_ddp_pkg_state - get DDP pkg state after download
1607  * @hw: pointer to the HW struct
1608  * @already_loaded: indicates if pkg was already loaded onto the device
1609  */
1610 static enum ice_ddp_state
1611 ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded)
1612 {
1613     if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
1614         hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
1615         hw->pkg_ver.update == hw->active_pkg_ver.update &&
1616         hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
1617         !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
1618         if (already_loaded)
1619             return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
1620         else
1621             return ICE_DDP_PKG_SUCCESS;
1622     } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
1623            hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
1624         return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
1625     } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
1626            hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
1627         return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
1628     } else {
1629         return ICE_DDP_PKG_ERR;
1630     }
1631 }
1632 
1633 /**
1634  * ice_init_pkg - initialize/download package
1635  * @hw: pointer to the hardware structure
1636  * @buf: pointer to the package buffer
1637  * @len: size of the package buffer
1638  *
1639  * This function initializes a package. The package contains HW tables
1640  * required to do packet processing. First, the function extracts package
1641  * information such as version. Then it finds the ice configuration segment
1642  * within the package; this function then saves a copy of the segment pointer
1643  * within the supplied package buffer. Next, the function will cache any hints
1644  * from the package, followed by downloading the package itself. Note, that if
1645  * a previous PF driver has already downloaded the package successfully, then
1646  * the current driver will not have to download the package again.
1647  *
1648  * The local package contents will be used to query default behavior and to
1649  * update specific sections of the HW's version of the package (e.g. to update
1650  * the parse graph to understand new protocols).
1651  *
1652  * This function stores a pointer to the package buffer memory, and it is
1653  * expected that the supplied buffer will not be freed immediately. If the
1654  * package buffer needs to be freed, such as when read from a file, use
1655  * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1656  * case.
1657  */
1658 enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1659 {
1660     bool already_loaded = false;
1661     enum ice_ddp_state state;
1662     struct ice_pkg_hdr *pkg;
1663     struct ice_seg *seg;
1664 
1665     if (!buf || !len)
1666         return ICE_DDP_PKG_ERR;
1667 
1668     pkg = (struct ice_pkg_hdr *)buf;
1669     state = ice_verify_pkg(pkg, len);
1670     if (state) {
1671         ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1672               state);
1673         return state;
1674     }
1675 
1676     /* initialize package info */
1677     state = ice_init_pkg_info(hw, pkg);
1678     if (state)
1679         return state;
1680 
1681     /* before downloading the package, check package version for
1682      * compatibility with driver
1683      */
1684     state = ice_chk_pkg_compat(hw, pkg, &seg);
1685     if (state)
1686         return state;
1687 
1688     /* initialize package hints and then download package */
1689     ice_init_pkg_hints(hw, seg);
1690     state = ice_download_pkg(hw, seg);
1691     if (state == ICE_DDP_PKG_ALREADY_LOADED) {
1692         ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1693         already_loaded = true;
1694     }
1695 
1696     /* Get information on the package currently loaded in HW, then make sure
1697      * the driver is compatible with this version.
1698      */
1699     if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
1700         state = ice_get_pkg_info(hw);
1701         if (!state)
1702             state = ice_get_ddp_pkg_state(hw, already_loaded);
1703     }
1704 
1705     if (ice_is_init_pkg_successful(state)) {
1706         hw->seg = seg;
1707         /* on successful package download update other required
1708          * registers to support the package and fill HW tables
1709          * with package content.
1710          */
1711         ice_init_pkg_regs(hw);
1712         ice_fill_blk_tbls(hw);
1713         ice_fill_hw_ptype(hw);
1714         ice_get_prof_index_max(hw);
1715     } else {
1716         ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1717               state);
1718     }
1719 
1720     return state;
1721 }
1722 
1723 /**
1724  * ice_copy_and_init_pkg - initialize/download a copy of the package
1725  * @hw: pointer to the hardware structure
1726  * @buf: pointer to the package buffer
1727  * @len: size of the package buffer
1728  *
1729  * This function copies the package buffer, and then calls ice_init_pkg() to
1730  * initialize the copied package contents.
1731  *
1732  * The copying is necessary if the package buffer supplied is constant, or if
1733  * the memory may disappear shortly after calling this function.
1734  *
1735  * If the package buffer resides in the data segment and can be modified, the
1736  * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1737  *
1738  * However, if the package buffer needs to be copied first, such as when being
1739  * read from a file, the caller should use ice_copy_and_init_pkg().
1740  *
1741  * This function will first copy the package buffer, before calling
1742  * ice_init_pkg(). The caller is free to immediately destroy the original
1743  * package buffer, as the new copy will be managed by this function and
1744  * related routines.
1745  */
1746 enum ice_ddp_state
1747 ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1748 {
1749     enum ice_ddp_state state;
1750     u8 *buf_copy;
1751 
1752     if (!buf || !len)
1753         return ICE_DDP_PKG_ERR;
1754 
1755     buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1756 
1757     state = ice_init_pkg(hw, buf_copy, len);
1758     if (!ice_is_init_pkg_successful(state)) {
1759         /* Free the copy, since we failed to initialize the package */
1760         devm_kfree(ice_hw_to_dev(hw), buf_copy);
1761     } else {
1762         /* Track the copied pkg so we can free it later */
1763         hw->pkg_copy = buf_copy;
1764         hw->pkg_size = len;
1765     }
1766 
1767     return state;
1768 }
1769 
1770 /**
1771  * ice_is_init_pkg_successful - check if DDP init was successful
1772  * @state: state of the DDP pkg after download
1773  */
1774 bool ice_is_init_pkg_successful(enum ice_ddp_state state)
1775 {
1776     switch (state) {
1777     case ICE_DDP_PKG_SUCCESS:
1778     case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
1779     case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
1780         return true;
1781     default:
1782         return false;
1783     }
1784 }
1785 
1786 /**
1787  * ice_pkg_buf_alloc
1788  * @hw: pointer to the HW structure
1789  *
1790  * Allocates a package buffer and returns a pointer to the buffer header.
1791  * Note: all package contents must be in Little Endian form.
1792  */
1793 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1794 {
1795     struct ice_buf_build *bld;
1796     struct ice_buf_hdr *buf;
1797 
1798     bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1799     if (!bld)
1800         return NULL;
1801 
1802     buf = (struct ice_buf_hdr *)bld;
1803     buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1804                          section_entry));
1805     return bld;
1806 }
1807 
1808 static bool ice_is_gtp_u_profile(u16 prof_idx)
1809 {
1810     return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
1811         prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
1812            prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
1813 }
1814 
1815 static bool ice_is_gtp_c_profile(u16 prof_idx)
1816 {
1817     switch (prof_idx) {
1818     case ICE_PROFID_IPV4_GTPC_TEID:
1819     case ICE_PROFID_IPV4_GTPC_NO_TEID:
1820     case ICE_PROFID_IPV6_GTPC_TEID:
1821     case ICE_PROFID_IPV6_GTPC_NO_TEID:
1822         return true;
1823     default:
1824         return false;
1825     }
1826 }
1827 
1828 /**
1829  * ice_get_sw_prof_type - determine switch profile type
1830  * @hw: pointer to the HW structure
1831  * @fv: pointer to the switch field vector
1832  * @prof_idx: profile index to check
1833  */
1834 static enum ice_prof_type
1835 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx)
1836 {
1837     u16 i;
1838 
1839     if (ice_is_gtp_c_profile(prof_idx))
1840         return ICE_PROF_TUN_GTPC;
1841 
1842     if (ice_is_gtp_u_profile(prof_idx))
1843         return ICE_PROF_TUN_GTPU;
1844 
1845     for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1846         /* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1847         if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1848             fv->ew[i].off == ICE_VNI_OFFSET)
1849             return ICE_PROF_TUN_UDP;
1850 
1851         /* GRE tunnel will have GRE protocol */
1852         if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1853             return ICE_PROF_TUN_GRE;
1854     }
1855 
1856     return ICE_PROF_NON_TUN;
1857 }
1858 
1859 /**
1860  * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1861  * @hw: pointer to hardware structure
1862  * @req_profs: type of profiles requested
1863  * @bm: pointer to memory for returning the bitmap of field vectors
1864  */
1865 void
1866 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1867              unsigned long *bm)
1868 {
1869     struct ice_pkg_enum state;
1870     struct ice_seg *ice_seg;
1871     struct ice_fv *fv;
1872 
1873     if (req_profs == ICE_PROF_ALL) {
1874         bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1875         return;
1876     }
1877 
1878     memset(&state, 0, sizeof(state));
1879     bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
1880     ice_seg = hw->seg;
1881     do {
1882         enum ice_prof_type prof_type;
1883         u32 offset;
1884 
1885         fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1886                     &offset, ice_sw_fv_handler);
1887         ice_seg = NULL;
1888 
1889         if (fv) {
1890             /* Determine field vector type */
1891             prof_type = ice_get_sw_prof_type(hw, fv, offset);
1892 
1893             if (req_profs & prof_type)
1894                 set_bit((u16)offset, bm);
1895         }
1896     } while (fv);
1897 }
1898 
1899 /**
1900  * ice_get_sw_fv_list
1901  * @hw: pointer to the HW structure
1902  * @lkups: list of protocol types
1903  * @bm: bitmap of field vectors to consider
1904  * @fv_list: Head of a list
1905  *
1906  * Finds all the field vector entries from switch block that contain
1907  * a given protocol ID and offset and returns a list of structures of type
1908  * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1909  * definition and profile ID information
1910  * NOTE: The caller of the function is responsible for freeing the memory
1911  * allocated for every list entry.
1912  */
1913 int
1914 ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
1915            unsigned long *bm, struct list_head *fv_list)
1916 {
1917     struct ice_sw_fv_list_entry *fvl;
1918     struct ice_sw_fv_list_entry *tmp;
1919     struct ice_pkg_enum state;
1920     struct ice_seg *ice_seg;
1921     struct ice_fv *fv;
1922     u32 offset;
1923 
1924     memset(&state, 0, sizeof(state));
1925 
1926     if (!lkups->n_val_words || !hw->seg)
1927         return -EINVAL;
1928 
1929     ice_seg = hw->seg;
1930     do {
1931         u16 i;
1932 
1933         fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1934                     &offset, ice_sw_fv_handler);
1935         if (!fv)
1936             break;
1937         ice_seg = NULL;
1938 
1939         /* If field vector is not in the bitmap list, then skip this
1940          * profile.
1941          */
1942         if (!test_bit((u16)offset, bm))
1943             continue;
1944 
1945         for (i = 0; i < lkups->n_val_words; i++) {
1946             int j;
1947 
1948             for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1949                 if (fv->ew[j].prot_id ==
1950                     lkups->fv_words[i].prot_id &&
1951                     fv->ew[j].off == lkups->fv_words[i].off)
1952                     break;
1953             if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1954                 break;
1955             if (i + 1 == lkups->n_val_words) {
1956                 fvl = devm_kzalloc(ice_hw_to_dev(hw),
1957                            sizeof(*fvl), GFP_KERNEL);
1958                 if (!fvl)
1959                     goto err;
1960                 fvl->fv_ptr = fv;
1961                 fvl->profile_id = offset;
1962                 list_add(&fvl->list_entry, fv_list);
1963                 break;
1964             }
1965         }
1966     } while (fv);
1967     if (list_empty(fv_list)) {
1968         dev_warn(ice_hw_to_dev(hw), "Required profiles not found in currently loaded DDP package");
1969         return -EIO;
1970     }
1971 
1972     return 0;
1973 
1974 err:
1975     list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
1976         list_del(&fvl->list_entry);
1977         devm_kfree(ice_hw_to_dev(hw), fvl);
1978     }
1979 
1980     return -ENOMEM;
1981 }
1982 
1983 /**
1984  * ice_init_prof_result_bm - Initialize the profile result index bitmap
1985  * @hw: pointer to hardware structure
1986  */
1987 void ice_init_prof_result_bm(struct ice_hw *hw)
1988 {
1989     struct ice_pkg_enum state;
1990     struct ice_seg *ice_seg;
1991     struct ice_fv *fv;
1992 
1993     memset(&state, 0, sizeof(state));
1994 
1995     if (!hw->seg)
1996         return;
1997 
1998     ice_seg = hw->seg;
1999     do {
2000         u32 off;
2001         u16 i;
2002 
2003         fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
2004                     &off, ice_sw_fv_handler);
2005         ice_seg = NULL;
2006         if (!fv)
2007             break;
2008 
2009         bitmap_zero(hw->switch_info->prof_res_bm[off],
2010                 ICE_MAX_FV_WORDS);
2011 
2012         /* Determine empty field vector indices, these can be
2013          * used for recipe results. Skip index 0, since it is
2014          * always used for Switch ID.
2015          */
2016         for (i = 1; i < ICE_MAX_FV_WORDS; i++)
2017             if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
2018                 fv->ew[i].off == ICE_FV_OFFSET_INVAL)
2019                 set_bit(i, hw->switch_info->prof_res_bm[off]);
2020     } while (fv);
2021 }
2022 
2023 /**
2024  * ice_pkg_buf_free
2025  * @hw: pointer to the HW structure
2026  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2027  *
2028  * Frees a package buffer
2029  */
2030 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
2031 {
2032     devm_kfree(ice_hw_to_dev(hw), bld);
2033 }
2034 
2035 /**
2036  * ice_pkg_buf_reserve_section
2037  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2038  * @count: the number of sections to reserve
2039  *
2040  * Reserves one or more section table entries in a package buffer. This routine
2041  * can be called multiple times as long as they are made before calling
2042  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2043  * is called once, the number of sections that can be allocated will not be able
2044  * to be increased; not using all reserved sections is fine, but this will
2045  * result in some wasted space in the buffer.
2046  * Note: all package contents must be in Little Endian form.
2047  */
2048 static int
2049 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
2050 {
2051     struct ice_buf_hdr *buf;
2052     u16 section_count;
2053     u16 data_end;
2054 
2055     if (!bld)
2056         return -EINVAL;
2057 
2058     buf = (struct ice_buf_hdr *)&bld->buf;
2059 
2060     /* already an active section, can't increase table size */
2061     section_count = le16_to_cpu(buf->section_count);
2062     if (section_count > 0)
2063         return -EIO;
2064 
2065     if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
2066         return -EIO;
2067     bld->reserved_section_table_entries += count;
2068 
2069     data_end = le16_to_cpu(buf->data_end) +
2070         flex_array_size(buf, section_entry, count);
2071     buf->data_end = cpu_to_le16(data_end);
2072 
2073     return 0;
2074 }
2075 
2076 /**
2077  * ice_pkg_buf_alloc_section
2078  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2079  * @type: the section type value
2080  * @size: the size of the section to reserve (in bytes)
2081  *
2082  * Reserves memory in the buffer for a section's content and updates the
2083  * buffers' status accordingly. This routine returns a pointer to the first
2084  * byte of the section start within the buffer, which is used to fill in the
2085  * section contents.
2086  * Note: all package contents must be in Little Endian form.
2087  */
2088 static void *
2089 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
2090 {
2091     struct ice_buf_hdr *buf;
2092     u16 sect_count;
2093     u16 data_end;
2094 
2095     if (!bld || !type || !size)
2096         return NULL;
2097 
2098     buf = (struct ice_buf_hdr *)&bld->buf;
2099 
2100     /* check for enough space left in buffer */
2101     data_end = le16_to_cpu(buf->data_end);
2102 
2103     /* section start must align on 4 byte boundary */
2104     data_end = ALIGN(data_end, 4);
2105 
2106     if ((data_end + size) > ICE_MAX_S_DATA_END)
2107         return NULL;
2108 
2109     /* check for more available section table entries */
2110     sect_count = le16_to_cpu(buf->section_count);
2111     if (sect_count < bld->reserved_section_table_entries) {
2112         void *section_ptr = ((u8 *)buf) + data_end;
2113 
2114         buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
2115         buf->section_entry[sect_count].size = cpu_to_le16(size);
2116         buf->section_entry[sect_count].type = cpu_to_le32(type);
2117 
2118         data_end += size;
2119         buf->data_end = cpu_to_le16(data_end);
2120 
2121         buf->section_count = cpu_to_le16(sect_count + 1);
2122         return section_ptr;
2123     }
2124 
2125     /* no free section table entries */
2126     return NULL;
2127 }
2128 
2129 /**
2130  * ice_pkg_buf_alloc_single_section
2131  * @hw: pointer to the HW structure
2132  * @type: the section type value
2133  * @size: the size of the section to reserve (in bytes)
2134  * @section: returns pointer to the section
2135  *
2136  * Allocates a package buffer with a single section.
2137  * Note: all package contents must be in Little Endian form.
2138  */
2139 struct ice_buf_build *
2140 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
2141                  void **section)
2142 {
2143     struct ice_buf_build *buf;
2144 
2145     if (!section)
2146         return NULL;
2147 
2148     buf = ice_pkg_buf_alloc(hw);
2149     if (!buf)
2150         return NULL;
2151 
2152     if (ice_pkg_buf_reserve_section(buf, 1))
2153         goto ice_pkg_buf_alloc_single_section_err;
2154 
2155     *section = ice_pkg_buf_alloc_section(buf, type, size);
2156     if (!*section)
2157         goto ice_pkg_buf_alloc_single_section_err;
2158 
2159     return buf;
2160 
2161 ice_pkg_buf_alloc_single_section_err:
2162     ice_pkg_buf_free(hw, buf);
2163     return NULL;
2164 }
2165 
2166 /**
2167  * ice_pkg_buf_get_active_sections
2168  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2169  *
2170  * Returns the number of active sections. Before using the package buffer
2171  * in an update package command, the caller should make sure that there is at
2172  * least one active section - otherwise, the buffer is not legal and should
2173  * not be used.
2174  * Note: all package contents must be in Little Endian form.
2175  */
2176 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2177 {
2178     struct ice_buf_hdr *buf;
2179 
2180     if (!bld)
2181         return 0;
2182 
2183     buf = (struct ice_buf_hdr *)&bld->buf;
2184     return le16_to_cpu(buf->section_count);
2185 }
2186 
2187 /**
2188  * ice_pkg_buf
2189  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2190  *
2191  * Return a pointer to the buffer's header
2192  */
2193 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2194 {
2195     if (!bld)
2196         return NULL;
2197 
2198     return &bld->buf;
2199 }
2200 
2201 /**
2202  * ice_get_open_tunnel_port - retrieve an open tunnel port
2203  * @hw: pointer to the HW structure
2204  * @port: returns open port
2205  * @type: type of tunnel, can be TNL_LAST if it doesn't matter
2206  */
2207 bool
2208 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
2209              enum ice_tunnel_type type)
2210 {
2211     bool res = false;
2212     u16 i;
2213 
2214     mutex_lock(&hw->tnl_lock);
2215 
2216     for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2217         if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
2218             (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
2219             *port = hw->tnl.tbl[i].port;
2220             res = true;
2221             break;
2222         }
2223 
2224     mutex_unlock(&hw->tnl_lock);
2225 
2226     return res;
2227 }
2228 
2229 /**
2230  * ice_upd_dvm_boost_entry
2231  * @hw: pointer to the HW structure
2232  * @entry: pointer to double vlan boost entry info
2233  */
2234 static int
2235 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
2236 {
2237     struct ice_boost_tcam_section *sect_rx, *sect_tx;
2238     int status = -ENOSPC;
2239     struct ice_buf_build *bld;
2240     u8 val, dc, nm;
2241 
2242     bld = ice_pkg_buf_alloc(hw);
2243     if (!bld)
2244         return -ENOMEM;
2245 
2246     /* allocate 2 sections, one for Rx parser, one for Tx parser */
2247     if (ice_pkg_buf_reserve_section(bld, 2))
2248         goto ice_upd_dvm_boost_entry_err;
2249 
2250     sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2251                         struct_size(sect_rx, tcam, 1));
2252     if (!sect_rx)
2253         goto ice_upd_dvm_boost_entry_err;
2254     sect_rx->count = cpu_to_le16(1);
2255 
2256     sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2257                         struct_size(sect_tx, tcam, 1));
2258     if (!sect_tx)
2259         goto ice_upd_dvm_boost_entry_err;
2260     sect_tx->count = cpu_to_le16(1);
2261 
2262     /* copy original boost entry to update package buffer */
2263     memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
2264 
2265     /* re-write the don't care and never match bits accordingly */
2266     if (entry->enable) {
2267         /* all bits are don't care */
2268         val = 0x00;
2269         dc = 0xFF;
2270         nm = 0x00;
2271     } else {
2272         /* disable, one never match bit, the rest are don't care */
2273         val = 0x00;
2274         dc = 0xF7;
2275         nm = 0x08;
2276     }
2277 
2278     ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2279             &val, NULL, &dc, &nm, 0, sizeof(u8));
2280 
2281     /* exact copy of entry to Tx section entry */
2282     memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2283 
2284     status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
2285 
2286 ice_upd_dvm_boost_entry_err:
2287     ice_pkg_buf_free(hw, bld);
2288 
2289     return status;
2290 }
2291 
2292 /**
2293  * ice_set_dvm_boost_entries
2294  * @hw: pointer to the HW structure
2295  *
2296  * Enable double vlan by updating the appropriate boost tcam entries.
2297  */
2298 int ice_set_dvm_boost_entries(struct ice_hw *hw)
2299 {
2300     int status;
2301     u16 i;
2302 
2303     for (i = 0; i < hw->dvm_upd.count; i++) {
2304         status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
2305         if (status)
2306             return status;
2307     }
2308 
2309     return 0;
2310 }
2311 
2312 /**
2313  * ice_tunnel_idx_to_entry - convert linear index to the sparse one
2314  * @hw: pointer to the HW structure
2315  * @type: type of tunnel
2316  * @idx: linear index
2317  *
2318  * Stack assumes we have 2 linear tables with indexes [0, count_valid),
2319  * but really the port table may be sprase, and types are mixed, so convert
2320  * the stack index into the device index.
2321  */
2322 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2323                    u16 idx)
2324 {
2325     u16 i;
2326 
2327     for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2328         if (hw->tnl.tbl[i].valid &&
2329             hw->tnl.tbl[i].type == type &&
2330             idx-- == 0)
2331             return i;
2332 
2333     WARN_ON_ONCE(1);
2334     return 0;
2335 }
2336 
2337 /**
2338  * ice_create_tunnel
2339  * @hw: pointer to the HW structure
2340  * @index: device table entry
2341  * @type: type of tunnel
2342  * @port: port of tunnel to create
2343  *
2344  * Create a tunnel by updating the parse graph in the parser. We do that by
2345  * creating a package buffer with the tunnel info and issuing an update package
2346  * command.
2347  */
2348 static int
2349 ice_create_tunnel(struct ice_hw *hw, u16 index,
2350           enum ice_tunnel_type type, u16 port)
2351 {
2352     struct ice_boost_tcam_section *sect_rx, *sect_tx;
2353     struct ice_buf_build *bld;
2354     int status = -ENOSPC;
2355 
2356     mutex_lock(&hw->tnl_lock);
2357 
2358     bld = ice_pkg_buf_alloc(hw);
2359     if (!bld) {
2360         status = -ENOMEM;
2361         goto ice_create_tunnel_end;
2362     }
2363 
2364     /* allocate 2 sections, one for Rx parser, one for Tx parser */
2365     if (ice_pkg_buf_reserve_section(bld, 2))
2366         goto ice_create_tunnel_err;
2367 
2368     sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2369                         struct_size(sect_rx, tcam, 1));
2370     if (!sect_rx)
2371         goto ice_create_tunnel_err;
2372     sect_rx->count = cpu_to_le16(1);
2373 
2374     sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2375                         struct_size(sect_tx, tcam, 1));
2376     if (!sect_tx)
2377         goto ice_create_tunnel_err;
2378     sect_tx->count = cpu_to_le16(1);
2379 
2380     /* copy original boost entry to update package buffer */
2381     memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2382            sizeof(*sect_rx->tcam));
2383 
2384     /* over-write the never-match dest port key bits with the encoded port
2385      * bits
2386      */
2387     ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2388             (u8 *)&port, NULL, NULL, NULL,
2389             (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2390             sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2391 
2392     /* exact copy of entry to Tx section entry */
2393     memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2394 
2395     status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2396     if (!status)
2397         hw->tnl.tbl[index].port = port;
2398 
2399 ice_create_tunnel_err:
2400     ice_pkg_buf_free(hw, bld);
2401 
2402 ice_create_tunnel_end:
2403     mutex_unlock(&hw->tnl_lock);
2404 
2405     return status;
2406 }
2407 
2408 /**
2409  * ice_destroy_tunnel
2410  * @hw: pointer to the HW structure
2411  * @index: device table entry
2412  * @type: type of tunnel
2413  * @port: port of tunnel to destroy (ignored if the all parameter is true)
2414  *
2415  * Destroys a tunnel or all tunnels by creating an update package buffer
2416  * targeting the specific updates requested and then performing an update
2417  * package.
2418  */
2419 static int
2420 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
2421            u16 port)
2422 {
2423     struct ice_boost_tcam_section *sect_rx, *sect_tx;
2424     struct ice_buf_build *bld;
2425     int status = -ENOSPC;
2426 
2427     mutex_lock(&hw->tnl_lock);
2428 
2429     if (WARN_ON(!hw->tnl.tbl[index].valid ||
2430             hw->tnl.tbl[index].type != type ||
2431             hw->tnl.tbl[index].port != port)) {
2432         status = -EIO;
2433         goto ice_destroy_tunnel_end;
2434     }
2435 
2436     bld = ice_pkg_buf_alloc(hw);
2437     if (!bld) {
2438         status = -ENOMEM;
2439         goto ice_destroy_tunnel_end;
2440     }
2441 
2442     /* allocate 2 sections, one for Rx parser, one for Tx parser */
2443     if (ice_pkg_buf_reserve_section(bld, 2))
2444         goto ice_destroy_tunnel_err;
2445 
2446     sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2447                         struct_size(sect_rx, tcam, 1));
2448     if (!sect_rx)
2449         goto ice_destroy_tunnel_err;
2450     sect_rx->count = cpu_to_le16(1);
2451 
2452     sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2453                         struct_size(sect_tx, tcam, 1));
2454     if (!sect_tx)
2455         goto ice_destroy_tunnel_err;
2456     sect_tx->count = cpu_to_le16(1);
2457 
2458     /* copy original boost entry to update package buffer, one copy to Rx
2459      * section, another copy to the Tx section
2460      */
2461     memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2462            sizeof(*sect_rx->tcam));
2463     memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
2464            sizeof(*sect_tx->tcam));
2465 
2466     status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2467     if (!status)
2468         hw->tnl.tbl[index].port = 0;
2469 
2470 ice_destroy_tunnel_err:
2471     ice_pkg_buf_free(hw, bld);
2472 
2473 ice_destroy_tunnel_end:
2474     mutex_unlock(&hw->tnl_lock);
2475 
2476     return status;
2477 }
2478 
2479 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
2480                 unsigned int idx, struct udp_tunnel_info *ti)
2481 {
2482     struct ice_netdev_priv *np = netdev_priv(netdev);
2483     struct ice_vsi *vsi = np->vsi;
2484     struct ice_pf *pf = vsi->back;
2485     enum ice_tunnel_type tnl_type;
2486     int status;
2487     u16 index;
2488 
2489     tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2490     index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
2491 
2492     status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
2493     if (status) {
2494         netdev_err(netdev, "Error adding UDP tunnel - %d\n",
2495                status);
2496         return -EIO;
2497     }
2498 
2499     udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
2500     return 0;
2501 }
2502 
2503 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
2504                   unsigned int idx, struct udp_tunnel_info *ti)
2505 {
2506     struct ice_netdev_priv *np = netdev_priv(netdev);
2507     struct ice_vsi *vsi = np->vsi;
2508     struct ice_pf *pf = vsi->back;
2509     enum ice_tunnel_type tnl_type;
2510     int status;
2511 
2512     tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2513 
2514     status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
2515                     ntohs(ti->port));
2516     if (status) {
2517         netdev_err(netdev, "Error removing UDP tunnel - %d\n",
2518                status);
2519         return -EIO;
2520     }
2521 
2522     return 0;
2523 }
2524 
2525 /**
2526  * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2527  * @hw: pointer to the hardware structure
2528  * @blk: hardware block
2529  * @prof: profile ID
2530  * @fv_idx: field vector word index
2531  * @prot: variable to receive the protocol ID
2532  * @off: variable to receive the protocol offset
2533  */
2534 int
2535 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2536           u8 *prot, u16 *off)
2537 {
2538     struct ice_fv_word *fv_ext;
2539 
2540     if (prof >= hw->blk[blk].es.count)
2541         return -EINVAL;
2542 
2543     if (fv_idx >= hw->blk[blk].es.fvw)
2544         return -EINVAL;
2545 
2546     fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2547 
2548     *prot = fv_ext[fv_idx].prot_id;
2549     *off = fv_ext[fv_idx].off;
2550 
2551     return 0;
2552 }
2553 
2554 /* PTG Management */
2555 
2556 /**
2557  * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2558  * @hw: pointer to the hardware structure
2559  * @blk: HW block
2560  * @ptype: the ptype to search for
2561  * @ptg: pointer to variable that receives the PTG
2562  *
2563  * This function will search the PTGs for a particular ptype, returning the
2564  * PTG ID that contains it through the PTG parameter, with the value of
2565  * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2566  */
2567 static int
2568 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2569 {
2570     if (ptype >= ICE_XLT1_CNT || !ptg)
2571         return -EINVAL;
2572 
2573     *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2574     return 0;
2575 }
2576 
2577 /**
2578  * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2579  * @hw: pointer to the hardware structure
2580  * @blk: HW block
2581  * @ptg: the PTG to allocate
2582  *
2583  * This function allocates a given packet type group ID specified by the PTG
2584  * parameter.
2585  */
2586 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2587 {
2588     hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2589 }
2590 
2591 /**
2592  * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2593  * @hw: pointer to the hardware structure
2594  * @blk: HW block
2595  * @ptype: the ptype to remove
2596  * @ptg: the PTG to remove the ptype from
2597  *
2598  * This function will remove the ptype from the specific PTG, and move it to
2599  * the default PTG (ICE_DEFAULT_PTG).
2600  */
2601 static int
2602 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2603 {
2604     struct ice_ptg_ptype **ch;
2605     struct ice_ptg_ptype *p;
2606 
2607     if (ptype > ICE_XLT1_CNT - 1)
2608         return -EINVAL;
2609 
2610     if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2611         return -ENOENT;
2612 
2613     /* Should not happen if .in_use is set, bad config */
2614     if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2615         return -EIO;
2616 
2617     /* find the ptype within this PTG, and bypass the link over it */
2618     p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2619     ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2620     while (p) {
2621         if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2622             *ch = p->next_ptype;
2623             break;
2624         }
2625 
2626         ch = &p->next_ptype;
2627         p = p->next_ptype;
2628     }
2629 
2630     hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2631     hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2632 
2633     return 0;
2634 }
2635 
2636 /**
2637  * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2638  * @hw: pointer to the hardware structure
2639  * @blk: HW block
2640  * @ptype: the ptype to add or move
2641  * @ptg: the PTG to add or move the ptype to
2642  *
2643  * This function will either add or move a ptype to a particular PTG depending
2644  * on if the ptype is already part of another group. Note that using a
2645  * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2646  * default PTG.
2647  */
2648 static int
2649 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2650 {
2651     u8 original_ptg;
2652     int status;
2653 
2654     if (ptype > ICE_XLT1_CNT - 1)
2655         return -EINVAL;
2656 
2657     if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2658         return -ENOENT;
2659 
2660     status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2661     if (status)
2662         return status;
2663 
2664     /* Is ptype already in the correct PTG? */
2665     if (original_ptg == ptg)
2666         return 0;
2667 
2668     /* Remove from original PTG and move back to the default PTG */
2669     if (original_ptg != ICE_DEFAULT_PTG)
2670         ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2671 
2672     /* Moving to default PTG? Then we're done with this request */
2673     if (ptg == ICE_DEFAULT_PTG)
2674         return 0;
2675 
2676     /* Add ptype to PTG at beginning of list */
2677     hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2678         hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2679     hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2680         &hw->blk[blk].xlt1.ptypes[ptype];
2681 
2682     hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2683     hw->blk[blk].xlt1.t[ptype] = ptg;
2684 
2685     return 0;
2686 }
2687 
2688 /* Block / table size info */
2689 struct ice_blk_size_details {
2690     u16 xlt1;           /* # XLT1 entries */
2691     u16 xlt2;           /* # XLT2 entries */
2692     u16 prof_tcam;          /* # profile ID TCAM entries */
2693     u16 prof_id;            /* # profile IDs */
2694     u8 prof_cdid_bits;      /* # CDID one-hot bits used in key */
2695     u16 prof_redir;         /* # profile redirection entries */
2696     u16 es;             /* # extraction sequence entries */
2697     u16 fvw;            /* # field vector words */
2698     u8 overwrite;           /* overwrite existing entries allowed */
2699     u8 reverse;         /* reverse FV order */
2700 };
2701 
2702 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2703     /**
2704      * Table Definitions
2705      * XLT1 - Number of entries in XLT1 table
2706      * XLT2 - Number of entries in XLT2 table
2707      * TCAM - Number of entries Profile ID TCAM table
2708      * CDID - Control Domain ID of the hardware block
2709      * PRED - Number of entries in the Profile Redirection Table
2710      * FV   - Number of entries in the Field Vector
2711      * FVW  - Width (in WORDs) of the Field Vector
2712      * OVR  - Overwrite existing table entries
2713      * REV  - Reverse FV
2714      */
2715     /*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2716     /*          Overwrite   , Reverse FV */
2717     /* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2718             false, false },
2719     /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2720             false, false },
2721     /* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2722             false, true  },
2723     /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2724             true,  true  },
2725     /* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2726             false, false },
2727 };
2728 
2729 enum ice_sid_all {
2730     ICE_SID_XLT1_OFF = 0,
2731     ICE_SID_XLT2_OFF,
2732     ICE_SID_PR_OFF,
2733     ICE_SID_PR_REDIR_OFF,
2734     ICE_SID_ES_OFF,
2735     ICE_SID_OFF_COUNT,
2736 };
2737 
2738 /* Characteristic handling */
2739 
2740 /**
2741  * ice_match_prop_lst - determine if properties of two lists match
2742  * @list1: first properties list
2743  * @list2: second properties list
2744  *
2745  * Count, cookies and the order must match in order to be considered equivalent.
2746  */
2747 static bool
2748 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2749 {
2750     struct ice_vsig_prof *tmp1;
2751     struct ice_vsig_prof *tmp2;
2752     u16 chk_count = 0;
2753     u16 count = 0;
2754 
2755     /* compare counts */
2756     list_for_each_entry(tmp1, list1, list)
2757         count++;
2758     list_for_each_entry(tmp2, list2, list)
2759         chk_count++;
2760     /* cppcheck-suppress knownConditionTrueFalse */
2761     if (!count || count != chk_count)
2762         return false;
2763 
2764     tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2765     tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2766 
2767     /* profile cookies must compare, and in the exact same order to take
2768      * into account priority
2769      */
2770     while (count--) {
2771         if (tmp2->profile_cookie != tmp1->profile_cookie)
2772             return false;
2773 
2774         tmp1 = list_next_entry(tmp1, list);
2775         tmp2 = list_next_entry(tmp2, list);
2776     }
2777 
2778     return true;
2779 }
2780 
2781 /* VSIG Management */
2782 
2783 /**
2784  * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2785  * @hw: pointer to the hardware structure
2786  * @blk: HW block
2787  * @vsi: VSI of interest
2788  * @vsig: pointer to receive the VSI group
2789  *
2790  * This function will lookup the VSI entry in the XLT2 list and return
2791  * the VSI group its associated with.
2792  */
2793 static int
2794 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2795 {
2796     if (!vsig || vsi >= ICE_MAX_VSI)
2797         return -EINVAL;
2798 
2799     /* As long as there's a default or valid VSIG associated with the input
2800      * VSI, the functions returns a success. Any handling of VSIG will be
2801      * done by the following add, update or remove functions.
2802      */
2803     *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2804 
2805     return 0;
2806 }
2807 
2808 /**
2809  * ice_vsig_alloc_val - allocate a new VSIG by value
2810  * @hw: pointer to the hardware structure
2811  * @blk: HW block
2812  * @vsig: the VSIG to allocate
2813  *
2814  * This function will allocate a given VSIG specified by the VSIG parameter.
2815  */
2816 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2817 {
2818     u16 idx = vsig & ICE_VSIG_IDX_M;
2819 
2820     if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2821         INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2822         hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2823     }
2824 
2825     return ICE_VSIG_VALUE(idx, hw->pf_id);
2826 }
2827 
2828 /**
2829  * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2830  * @hw: pointer to the hardware structure
2831  * @blk: HW block
2832  *
2833  * This function will iterate through the VSIG list and mark the first
2834  * unused entry for the new VSIG entry as used and return that value.
2835  */
2836 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2837 {
2838     u16 i;
2839 
2840     for (i = 1; i < ICE_MAX_VSIGS; i++)
2841         if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2842             return ice_vsig_alloc_val(hw, blk, i);
2843 
2844     return ICE_DEFAULT_VSIG;
2845 }
2846 
2847 /**
2848  * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2849  * @hw: pointer to the hardware structure
2850  * @blk: HW block
2851  * @chs: characteristic list
2852  * @vsig: returns the VSIG with the matching profiles, if found
2853  *
2854  * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2855  * a group have the same characteristic set. To check if there exists a VSIG
2856  * which has the same characteristics as the input characteristics; this
2857  * function will iterate through the XLT2 list and return the VSIG that has a
2858  * matching configuration. In order to make sure that priorities are accounted
2859  * for, the list must match exactly, including the order in which the
2860  * characteristics are listed.
2861  */
2862 static int
2863 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2864             struct list_head *chs, u16 *vsig)
2865 {
2866     struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2867     u16 i;
2868 
2869     for (i = 0; i < xlt2->count; i++)
2870         if (xlt2->vsig_tbl[i].in_use &&
2871             ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2872             *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2873             return 0;
2874         }
2875 
2876     return -ENOENT;
2877 }
2878 
2879 /**
2880  * ice_vsig_free - free VSI group
2881  * @hw: pointer to the hardware structure
2882  * @blk: HW block
2883  * @vsig: VSIG to remove
2884  *
2885  * The function will remove all VSIs associated with the input VSIG and move
2886  * them to the DEFAULT_VSIG and mark the VSIG available.
2887  */
2888 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2889 {
2890     struct ice_vsig_prof *dtmp, *del;
2891     struct ice_vsig_vsi *vsi_cur;
2892     u16 idx;
2893 
2894     idx = vsig & ICE_VSIG_IDX_M;
2895     if (idx >= ICE_MAX_VSIGS)
2896         return -EINVAL;
2897 
2898     if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2899         return -ENOENT;
2900 
2901     hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2902 
2903     vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2904     /* If the VSIG has at least 1 VSI then iterate through the
2905      * list and remove the VSIs before deleting the group.
2906      */
2907     if (vsi_cur) {
2908         /* remove all vsis associated with this VSIG XLT2 entry */
2909         do {
2910             struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2911 
2912             vsi_cur->vsig = ICE_DEFAULT_VSIG;
2913             vsi_cur->changed = 1;
2914             vsi_cur->next_vsi = NULL;
2915             vsi_cur = tmp;
2916         } while (vsi_cur);
2917 
2918         /* NULL terminate head of VSI list */
2919         hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2920     }
2921 
2922     /* free characteristic list */
2923     list_for_each_entry_safe(del, dtmp,
2924                  &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2925                  list) {
2926         list_del(&del->list);
2927         devm_kfree(ice_hw_to_dev(hw), del);
2928     }
2929 
2930     /* if VSIG characteristic list was cleared for reset
2931      * re-initialize the list head
2932      */
2933     INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2934 
2935     return 0;
2936 }
2937 
2938 /**
2939  * ice_vsig_remove_vsi - remove VSI from VSIG
2940  * @hw: pointer to the hardware structure
2941  * @blk: HW block
2942  * @vsi: VSI to remove
2943  * @vsig: VSI group to remove from
2944  *
2945  * The function will remove the input VSI from its VSI group and move it
2946  * to the DEFAULT_VSIG.
2947  */
2948 static int
2949 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2950 {
2951     struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2952     u16 idx;
2953 
2954     idx = vsig & ICE_VSIG_IDX_M;
2955 
2956     if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2957         return -EINVAL;
2958 
2959     if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2960         return -ENOENT;
2961 
2962     /* entry already in default VSIG, don't have to remove */
2963     if (idx == ICE_DEFAULT_VSIG)
2964         return 0;
2965 
2966     vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2967     if (!(*vsi_head))
2968         return -EIO;
2969 
2970     vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2971     vsi_cur = (*vsi_head);
2972 
2973     /* iterate the VSI list, skip over the entry to be removed */
2974     while (vsi_cur) {
2975         if (vsi_tgt == vsi_cur) {
2976             (*vsi_head) = vsi_cur->next_vsi;
2977             break;
2978         }
2979         vsi_head = &vsi_cur->next_vsi;
2980         vsi_cur = vsi_cur->next_vsi;
2981     }
2982 
2983     /* verify if VSI was removed from group list */
2984     if (!vsi_cur)
2985         return -ENOENT;
2986 
2987     vsi_cur->vsig = ICE_DEFAULT_VSIG;
2988     vsi_cur->changed = 1;
2989     vsi_cur->next_vsi = NULL;
2990 
2991     return 0;
2992 }
2993 
2994 /**
2995  * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2996  * @hw: pointer to the hardware structure
2997  * @blk: HW block
2998  * @vsi: VSI to move
2999  * @vsig: destination VSI group
3000  *
3001  * This function will move or add the input VSI to the target VSIG.
3002  * The function will find the original VSIG the VSI belongs to and
3003  * move the entry to the DEFAULT_VSIG, update the original VSIG and
3004  * then move entry to the new VSIG.
3005  */
3006 static int
3007 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3008 {
3009     struct ice_vsig_vsi *tmp;
3010     u16 orig_vsig, idx;
3011     int status;
3012 
3013     idx = vsig & ICE_VSIG_IDX_M;
3014 
3015     if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3016         return -EINVAL;
3017 
3018     /* if VSIG not in use and VSIG is not default type this VSIG
3019      * doesn't exist.
3020      */
3021     if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3022         vsig != ICE_DEFAULT_VSIG)
3023         return -ENOENT;
3024 
3025     status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3026     if (status)
3027         return status;
3028 
3029     /* no update required if vsigs match */
3030     if (orig_vsig == vsig)
3031         return 0;
3032 
3033     if (orig_vsig != ICE_DEFAULT_VSIG) {
3034         /* remove entry from orig_vsig and add to default VSIG */
3035         status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3036         if (status)
3037             return status;
3038     }
3039 
3040     if (idx == ICE_DEFAULT_VSIG)
3041         return 0;
3042 
3043     /* Create VSI entry and add VSIG and prop_mask values */
3044     hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3045     hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3046 
3047     /* Add new entry to the head of the VSIG list */
3048     tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3049     hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3050         &hw->blk[blk].xlt2.vsis[vsi];
3051     hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3052     hw->blk[blk].xlt2.t[vsi] = vsig;
3053 
3054     return 0;
3055 }
3056 
3057 /**
3058  * ice_prof_has_mask_idx - determine if profile index masking is identical
3059  * @hw: pointer to the hardware structure
3060  * @blk: HW block
3061  * @prof: profile to check
3062  * @idx: profile index to check
3063  * @mask: mask to match
3064  */
3065 static bool
3066 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
3067               u16 mask)
3068 {
3069     bool expect_no_mask = false;
3070     bool found = false;
3071     bool match = false;
3072     u16 i;
3073 
3074     /* If mask is 0x0000 or 0xffff, then there is no masking */
3075     if (mask == 0 || mask == 0xffff)
3076         expect_no_mask = true;
3077 
3078     /* Scan the enabled masks on this profile, for the specified idx */
3079     for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
3080          hw->blk[blk].masks.count; i++)
3081         if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
3082             if (hw->blk[blk].masks.masks[i].in_use &&
3083                 hw->blk[blk].masks.masks[i].idx == idx) {
3084                 found = true;
3085                 if (hw->blk[blk].masks.masks[i].mask == mask)
3086                     match = true;
3087                 break;
3088             }
3089 
3090     if (expect_no_mask) {
3091         if (found)
3092             return false;
3093     } else {
3094         if (!match)
3095             return false;
3096     }
3097 
3098     return true;
3099 }
3100 
3101 /**
3102  * ice_prof_has_mask - determine if profile masking is identical
3103  * @hw: pointer to the hardware structure
3104  * @blk: HW block
3105  * @prof: profile to check
3106  * @masks: masks to match
3107  */
3108 static bool
3109 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
3110 {
3111     u16 i;
3112 
3113     /* es->mask_ena[prof] will have the mask */
3114     for (i = 0; i < hw->blk[blk].es.fvw; i++)
3115         if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
3116             return false;
3117 
3118     return true;
3119 }
3120 
3121 /**
3122  * ice_find_prof_id_with_mask - find profile ID for a given field vector
3123  * @hw: pointer to the hardware structure
3124  * @blk: HW block
3125  * @fv: field vector to search for
3126  * @masks: masks for FV
3127  * @prof_id: receives the profile ID
3128  */
3129 static int
3130 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
3131                struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
3132 {
3133     struct ice_es *es = &hw->blk[blk].es;
3134     u8 i;
3135 
3136     /* For FD, we don't want to re-use a existed profile with the same
3137      * field vector and mask. This will cause rule interference.
3138      */
3139     if (blk == ICE_BLK_FD)
3140         return -ENOENT;
3141 
3142     for (i = 0; i < (u8)es->count; i++) {
3143         u16 off = i * es->fvw;
3144 
3145         if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3146             continue;
3147 
3148         /* check if masks settings are the same for this profile */
3149         if (masks && !ice_prof_has_mask(hw, blk, i, masks))
3150             continue;
3151 
3152         *prof_id = i;
3153         return 0;
3154     }
3155 
3156     return -ENOENT;
3157 }
3158 
3159 /**
3160  * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3161  * @blk: the block type
3162  * @rsrc_type: pointer to variable to receive the resource type
3163  */
3164 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3165 {
3166     switch (blk) {
3167     case ICE_BLK_FD:
3168         *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
3169         break;
3170     case ICE_BLK_RSS:
3171         *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3172         break;
3173     default:
3174         return false;
3175     }
3176     return true;
3177 }
3178 
3179 /**
3180  * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3181  * @blk: the block type
3182  * @rsrc_type: pointer to variable to receive the resource type
3183  */
3184 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3185 {
3186     switch (blk) {
3187     case ICE_BLK_FD:
3188         *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
3189         break;
3190     case ICE_BLK_RSS:
3191         *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3192         break;
3193     default:
3194         return false;
3195     }
3196     return true;
3197 }
3198 
3199 /**
3200  * ice_alloc_tcam_ent - allocate hardware TCAM entry
3201  * @hw: pointer to the HW struct
3202  * @blk: the block to allocate the TCAM for
3203  * @btm: true to allocate from bottom of table, false to allocate from top
3204  * @tcam_idx: pointer to variable to receive the TCAM entry
3205  *
3206  * This function allocates a new entry in a Profile ID TCAM for a specific
3207  * block.
3208  */
3209 static int
3210 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3211            u16 *tcam_idx)
3212 {
3213     u16 res_type;
3214 
3215     if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3216         return -EINVAL;
3217 
3218     return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3219 }
3220 
3221 /**
3222  * ice_free_tcam_ent - free hardware TCAM entry
3223  * @hw: pointer to the HW struct
3224  * @blk: the block from which to free the TCAM entry
3225  * @tcam_idx: the TCAM entry to free
3226  *
3227  * This function frees an entry in a Profile ID TCAM for a specific block.
3228  */
3229 static int
3230 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3231 {
3232     u16 res_type;
3233 
3234     if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3235         return -EINVAL;
3236 
3237     return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3238 }
3239 
3240 /**
3241  * ice_alloc_prof_id - allocate profile ID
3242  * @hw: pointer to the HW struct
3243  * @blk: the block to allocate the profile ID for
3244  * @prof_id: pointer to variable to receive the profile ID
3245  *
3246  * This function allocates a new profile ID, which also corresponds to a Field
3247  * Vector (Extraction Sequence) entry.
3248  */
3249 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3250 {
3251     u16 res_type;
3252     u16 get_prof;
3253     int status;
3254 
3255     if (!ice_prof_id_rsrc_type(blk, &res_type))
3256         return -EINVAL;
3257 
3258     status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3259     if (!status)
3260         *prof_id = (u8)get_prof;
3261 
3262     return status;
3263 }
3264 
3265 /**
3266  * ice_free_prof_id - free profile ID
3267  * @hw: pointer to the HW struct
3268  * @blk: the block from which to free the profile ID
3269  * @prof_id: the profile ID to free
3270  *
3271  * This function frees a profile ID, which also corresponds to a Field Vector.
3272  */
3273 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3274 {
3275     u16 tmp_prof_id = (u16)prof_id;
3276     u16 res_type;
3277 
3278     if (!ice_prof_id_rsrc_type(blk, &res_type))
3279         return -EINVAL;
3280 
3281     return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3282 }
3283 
3284 /**
3285  * ice_prof_inc_ref - increment reference count for profile
3286  * @hw: pointer to the HW struct
3287  * @blk: the block from which to free the profile ID
3288  * @prof_id: the profile ID for which to increment the reference count
3289  */
3290 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3291 {
3292     if (prof_id > hw->blk[blk].es.count)
3293         return -EINVAL;
3294 
3295     hw->blk[blk].es.ref_count[prof_id]++;
3296 
3297     return 0;
3298 }
3299 
3300 /**
3301  * ice_write_prof_mask_reg - write profile mask register
3302  * @hw: pointer to the HW struct
3303  * @blk: hardware block
3304  * @mask_idx: mask index
3305  * @idx: index of the FV which will use the mask
3306  * @mask: the 16-bit mask
3307  */
3308 static void
3309 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
3310             u16 idx, u16 mask)
3311 {
3312     u32 offset;
3313     u32 val;
3314 
3315     switch (blk) {
3316     case ICE_BLK_RSS:
3317         offset = GLQF_HMASK(mask_idx);
3318         val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
3319         val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
3320         break;
3321     case ICE_BLK_FD:
3322         offset = GLQF_FDMASK(mask_idx);
3323         val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
3324         val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
3325         break;
3326     default:
3327         ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3328               blk);
3329         return;
3330     }
3331 
3332     wr32(hw, offset, val);
3333     ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
3334           blk, idx, offset, val);
3335 }
3336 
3337 /**
3338  * ice_write_prof_mask_enable_res - write profile mask enable register
3339  * @hw: pointer to the HW struct
3340  * @blk: hardware block
3341  * @prof_id: profile ID
3342  * @enable_mask: enable mask
3343  */
3344 static void
3345 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
3346                    u16 prof_id, u32 enable_mask)
3347 {
3348     u32 offset;
3349 
3350     switch (blk) {
3351     case ICE_BLK_RSS:
3352         offset = GLQF_HMASK_SEL(prof_id);
3353         break;
3354     case ICE_BLK_FD:
3355         offset = GLQF_FDMASK_SEL(prof_id);
3356         break;
3357     default:
3358         ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3359               blk);
3360         return;
3361     }
3362 
3363     wr32(hw, offset, enable_mask);
3364     ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
3365           blk, prof_id, offset, enable_mask);
3366 }
3367 
3368 /**
3369  * ice_init_prof_masks - initial prof masks
3370  * @hw: pointer to the HW struct
3371  * @blk: hardware block
3372  */
3373 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
3374 {
3375     u16 per_pf;
3376     u16 i;
3377 
3378     mutex_init(&hw->blk[blk].masks.lock);
3379 
3380     per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
3381 
3382     hw->blk[blk].masks.count = per_pf;
3383     hw->blk[blk].masks.first = hw->pf_id * per_pf;
3384 
3385     memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
3386 
3387     for (i = hw->blk[blk].masks.first;
3388          i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3389         ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3390 }
3391 
3392 /**
3393  * ice_init_all_prof_masks - initialize all prof masks
3394  * @hw: pointer to the HW struct
3395  */
3396 static void ice_init_all_prof_masks(struct ice_hw *hw)
3397 {
3398     ice_init_prof_masks(hw, ICE_BLK_RSS);
3399     ice_init_prof_masks(hw, ICE_BLK_FD);
3400 }
3401 
3402 /**
3403  * ice_alloc_prof_mask - allocate profile mask
3404  * @hw: pointer to the HW struct
3405  * @blk: hardware block
3406  * @idx: index of FV which will use the mask
3407  * @mask: the 16-bit mask
3408  * @mask_idx: variable to receive the mask index
3409  */
3410 static int
3411 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
3412             u16 *mask_idx)
3413 {
3414     bool found_unused = false, found_copy = false;
3415     u16 unused_idx = 0, copy_idx = 0;
3416     int status = -ENOSPC;
3417     u16 i;
3418 
3419     if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3420         return -EINVAL;
3421 
3422     mutex_lock(&hw->blk[blk].masks.lock);
3423 
3424     for (i = hw->blk[blk].masks.first;
3425          i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3426         if (hw->blk[blk].masks.masks[i].in_use) {
3427             /* if mask is in use and it exactly duplicates the
3428              * desired mask and index, then in can be reused
3429              */
3430             if (hw->blk[blk].masks.masks[i].mask == mask &&
3431                 hw->blk[blk].masks.masks[i].idx == idx) {
3432                 found_copy = true;
3433                 copy_idx = i;
3434                 break;
3435             }
3436         } else {
3437             /* save off unused index, but keep searching in case
3438              * there is an exact match later on
3439              */
3440             if (!found_unused) {
3441                 found_unused = true;
3442                 unused_idx = i;
3443             }
3444         }
3445 
3446     if (found_copy)
3447         i = copy_idx;
3448     else if (found_unused)
3449         i = unused_idx;
3450     else
3451         goto err_ice_alloc_prof_mask;
3452 
3453     /* update mask for a new entry */
3454     if (found_unused) {
3455         hw->blk[blk].masks.masks[i].in_use = true;
3456         hw->blk[blk].masks.masks[i].mask = mask;
3457         hw->blk[blk].masks.masks[i].idx = idx;
3458         hw->blk[blk].masks.masks[i].ref = 0;
3459         ice_write_prof_mask_reg(hw, blk, i, idx, mask);
3460     }
3461 
3462     hw->blk[blk].masks.masks[i].ref++;
3463     *mask_idx = i;
3464     status = 0;
3465 
3466 err_ice_alloc_prof_mask:
3467     mutex_unlock(&hw->blk[blk].masks.lock);
3468 
3469     return status;
3470 }
3471 
3472 /**
3473  * ice_free_prof_mask - free profile mask
3474  * @hw: pointer to the HW struct
3475  * @blk: hardware block
3476  * @mask_idx: index of mask
3477  */
3478 static int
3479 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
3480 {
3481     if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3482         return -EINVAL;
3483 
3484     if (!(mask_idx >= hw->blk[blk].masks.first &&
3485           mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
3486         return -ENOENT;
3487 
3488     mutex_lock(&hw->blk[blk].masks.lock);
3489 
3490     if (!hw->blk[blk].masks.masks[mask_idx].in_use)
3491         goto exit_ice_free_prof_mask;
3492 
3493     if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
3494         hw->blk[blk].masks.masks[mask_idx].ref--;
3495         goto exit_ice_free_prof_mask;
3496     }
3497 
3498     /* remove mask */
3499     hw->blk[blk].masks.masks[mask_idx].in_use = false;
3500     hw->blk[blk].masks.masks[mask_idx].mask = 0;
3501     hw->blk[blk].masks.masks[mask_idx].idx = 0;
3502 
3503     /* update mask as unused entry */
3504     ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
3505           mask_idx);
3506     ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
3507 
3508 exit_ice_free_prof_mask:
3509     mutex_unlock(&hw->blk[blk].masks.lock);
3510 
3511     return 0;
3512 }
3513 
3514 /**
3515  * ice_free_prof_masks - free all profile masks for a profile
3516  * @hw: pointer to the HW struct
3517  * @blk: hardware block
3518  * @prof_id: profile ID
3519  */
3520 static int
3521 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
3522 {
3523     u32 mask_bm;
3524     u16 i;
3525 
3526     if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3527         return -EINVAL;
3528 
3529     mask_bm = hw->blk[blk].es.mask_ena[prof_id];
3530     for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
3531         if (mask_bm & BIT(i))
3532             ice_free_prof_mask(hw, blk, i);
3533 
3534     return 0;
3535 }
3536 
3537 /**
3538  * ice_shutdown_prof_masks - releases lock for masking
3539  * @hw: pointer to the HW struct
3540  * @blk: hardware block
3541  *
3542  * This should be called before unloading the driver
3543  */
3544 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
3545 {
3546     u16 i;
3547 
3548     mutex_lock(&hw->blk[blk].masks.lock);
3549 
3550     for (i = hw->blk[blk].masks.first;
3551          i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
3552         ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3553 
3554         hw->blk[blk].masks.masks[i].in_use = false;
3555         hw->blk[blk].masks.masks[i].idx = 0;
3556         hw->blk[blk].masks.masks[i].mask = 0;
3557     }
3558 
3559     mutex_unlock(&hw->blk[blk].masks.lock);
3560     mutex_destroy(&hw->blk[blk].masks.lock);
3561 }
3562 
3563 /**
3564  * ice_shutdown_all_prof_masks - releases all locks for masking
3565  * @hw: pointer to the HW struct
3566  *
3567  * This should be called before unloading the driver
3568  */
3569 static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
3570 {
3571     ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
3572     ice_shutdown_prof_masks(hw, ICE_BLK_FD);
3573 }
3574 
3575 /**
3576  * ice_update_prof_masking - set registers according to masking
3577  * @hw: pointer to the HW struct
3578  * @blk: hardware block
3579  * @prof_id: profile ID
3580  * @masks: masks
3581  */
3582 static int
3583 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
3584             u16 *masks)
3585 {
3586     bool err = false;
3587     u32 ena_mask = 0;
3588     u16 idx;
3589     u16 i;
3590 
3591     /* Only support FD and RSS masking, otherwise nothing to be done */
3592     if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3593         return 0;
3594 
3595     for (i = 0; i < hw->blk[blk].es.fvw; i++)
3596         if (masks[i] && masks[i] != 0xFFFF) {
3597             if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
3598                 ena_mask |= BIT(idx);
3599             } else {
3600                 /* not enough bitmaps */
3601                 err = true;
3602                 break;
3603             }
3604         }
3605 
3606     if (err) {
3607         /* free any bitmaps we have allocated */
3608         for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
3609             if (ena_mask & BIT(i))
3610                 ice_free_prof_mask(hw, blk, i);
3611 
3612         return -EIO;
3613     }
3614 
3615     /* enable the masks for this profile */
3616     ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
3617 
3618     /* store enabled masks with profile so that they can be freed later */
3619     hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
3620 
3621     return 0;
3622 }
3623 
3624 /**
3625  * ice_write_es - write an extraction sequence to hardware
3626  * @hw: pointer to the HW struct
3627  * @blk: the block in which to write the extraction sequence
3628  * @prof_id: the profile ID to write
3629  * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3630  */
3631 static void
3632 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3633          struct ice_fv_word *fv)
3634 {
3635     u16 off;
3636 
3637     off = prof_id * hw->blk[blk].es.fvw;
3638     if (!fv) {
3639         memset(&hw->blk[blk].es.t[off], 0,
3640                hw->blk[blk].es.fvw * sizeof(*fv));
3641         hw->blk[blk].es.written[prof_id] = false;
3642     } else {
3643         memcpy(&hw->blk[blk].es.t[off], fv,
3644                hw->blk[blk].es.fvw * sizeof(*fv));
3645     }
3646 }
3647 
3648 /**
3649  * ice_prof_dec_ref - decrement reference count for profile
3650  * @hw: pointer to the HW struct
3651  * @blk: the block from which to free the profile ID
3652  * @prof_id: the profile ID for which to decrement the reference count
3653  */
3654 static int
3655 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3656 {
3657     if (prof_id > hw->blk[blk].es.count)
3658         return -EINVAL;
3659 
3660     if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3661         if (!--hw->blk[blk].es.ref_count[prof_id]) {
3662             ice_write_es(hw, blk, prof_id, NULL);
3663             ice_free_prof_masks(hw, blk, prof_id);
3664             return ice_free_prof_id(hw, blk, prof_id);
3665         }
3666     }
3667 
3668     return 0;
3669 }
3670 
3671 /* Block / table section IDs */
3672 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3673     /* SWITCH */
3674     {   ICE_SID_XLT1_SW,
3675         ICE_SID_XLT2_SW,
3676         ICE_SID_PROFID_TCAM_SW,
3677         ICE_SID_PROFID_REDIR_SW,
3678         ICE_SID_FLD_VEC_SW
3679     },
3680 
3681     /* ACL */
3682     {   ICE_SID_XLT1_ACL,
3683         ICE_SID_XLT2_ACL,
3684         ICE_SID_PROFID_TCAM_ACL,
3685         ICE_SID_PROFID_REDIR_ACL,
3686         ICE_SID_FLD_VEC_ACL
3687     },
3688 
3689     /* FD */
3690     {   ICE_SID_XLT1_FD,
3691         ICE_SID_XLT2_FD,
3692         ICE_SID_PROFID_TCAM_FD,
3693         ICE_SID_PROFID_REDIR_FD,
3694         ICE_SID_FLD_VEC_FD
3695     },
3696 
3697     /* RSS */
3698     {   ICE_SID_XLT1_RSS,
3699         ICE_SID_XLT2_RSS,
3700         ICE_SID_PROFID_TCAM_RSS,
3701         ICE_SID_PROFID_REDIR_RSS,
3702         ICE_SID_FLD_VEC_RSS
3703     },
3704 
3705     /* PE */
3706     {   ICE_SID_XLT1_PE,
3707         ICE_SID_XLT2_PE,
3708         ICE_SID_PROFID_TCAM_PE,
3709         ICE_SID_PROFID_REDIR_PE,
3710         ICE_SID_FLD_VEC_PE
3711     }
3712 };
3713 
3714 /**
3715  * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3716  * @hw: pointer to the hardware structure
3717  * @blk: the HW block to initialize
3718  */
3719 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3720 {
3721     u16 pt;
3722 
3723     for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3724         u8 ptg;
3725 
3726         ptg = hw->blk[blk].xlt1.t[pt];
3727         if (ptg != ICE_DEFAULT_PTG) {
3728             ice_ptg_alloc_val(hw, blk, ptg);
3729             ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3730         }
3731     }
3732 }
3733 
3734 /**
3735  * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3736  * @hw: pointer to the hardware structure
3737  * @blk: the HW block to initialize
3738  */
3739 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3740 {
3741     u16 vsi;
3742 
3743     for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3744         u16 vsig;
3745 
3746         vsig = hw->blk[blk].xlt2.t[vsi];
3747         if (vsig) {
3748             ice_vsig_alloc_val(hw, blk, vsig);
3749             ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3750             /* no changes at this time, since this has been
3751              * initialized from the original package
3752              */
3753             hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3754         }
3755     }
3756 }
3757 
3758 /**
3759  * ice_init_sw_db - init software database from HW tables
3760  * @hw: pointer to the hardware structure
3761  */
3762 static void ice_init_sw_db(struct ice_hw *hw)
3763 {
3764     u16 i;
3765 
3766     for (i = 0; i < ICE_BLK_COUNT; i++) {
3767         ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3768         ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3769     }
3770 }
3771 
3772 /**
3773  * ice_fill_tbl - Reads content of a single table type into database
3774  * @hw: pointer to the hardware structure
3775  * @block_id: Block ID of the table to copy
3776  * @sid: Section ID of the table to copy
3777  *
3778  * Will attempt to read the entire content of a given table of a single block
3779  * into the driver database. We assume that the buffer will always
3780  * be as large or larger than the data contained in the package. If
3781  * this condition is not met, there is most likely an error in the package
3782  * contents.
3783  */
3784 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3785 {
3786     u32 dst_len, sect_len, offset = 0;
3787     struct ice_prof_redir_section *pr;
3788     struct ice_prof_id_section *pid;
3789     struct ice_xlt1_section *xlt1;
3790     struct ice_xlt2_section *xlt2;
3791     struct ice_sw_fv_section *es;
3792     struct ice_pkg_enum state;
3793     u8 *src, *dst;
3794     void *sect;
3795 
3796     /* if the HW segment pointer is null then the first iteration of
3797      * ice_pkg_enum_section() will fail. In this case the HW tables will
3798      * not be filled and return success.
3799      */
3800     if (!hw->seg) {
3801         ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3802         return;
3803     }
3804 
3805     memset(&state, 0, sizeof(state));
3806 
3807     sect = ice_pkg_enum_section(hw->seg, &state, sid);
3808 
3809     while (sect) {
3810         switch (sid) {
3811         case ICE_SID_XLT1_SW:
3812         case ICE_SID_XLT1_FD:
3813         case ICE_SID_XLT1_RSS:
3814         case ICE_SID_XLT1_ACL:
3815         case ICE_SID_XLT1_PE:
3816             xlt1 = sect;
3817             src = xlt1->value;
3818             sect_len = le16_to_cpu(xlt1->count) *
3819                 sizeof(*hw->blk[block_id].xlt1.t);
3820             dst = hw->blk[block_id].xlt1.t;
3821             dst_len = hw->blk[block_id].xlt1.count *
3822                 sizeof(*hw->blk[block_id].xlt1.t);
3823             break;
3824         case ICE_SID_XLT2_SW:
3825         case ICE_SID_XLT2_FD:
3826         case ICE_SID_XLT2_RSS:
3827         case ICE_SID_XLT2_ACL:
3828         case ICE_SID_XLT2_PE:
3829             xlt2 = sect;
3830             src = (__force u8 *)xlt2->value;
3831             sect_len = le16_to_cpu(xlt2->count) *
3832                 sizeof(*hw->blk[block_id].xlt2.t);
3833             dst = (u8 *)hw->blk[block_id].xlt2.t;
3834             dst_len = hw->blk[block_id].xlt2.count *
3835                 sizeof(*hw->blk[block_id].xlt2.t);
3836             break;
3837         case ICE_SID_PROFID_TCAM_SW:
3838         case ICE_SID_PROFID_TCAM_FD:
3839         case ICE_SID_PROFID_TCAM_RSS:
3840         case ICE_SID_PROFID_TCAM_ACL:
3841         case ICE_SID_PROFID_TCAM_PE:
3842             pid = sect;
3843             src = (u8 *)pid->entry;
3844             sect_len = le16_to_cpu(pid->count) *
3845                 sizeof(*hw->blk[block_id].prof.t);
3846             dst = (u8 *)hw->blk[block_id].prof.t;
3847             dst_len = hw->blk[block_id].prof.count *
3848                 sizeof(*hw->blk[block_id].prof.t);
3849             break;
3850         case ICE_SID_PROFID_REDIR_SW:
3851         case ICE_SID_PROFID_REDIR_FD:
3852         case ICE_SID_PROFID_REDIR_RSS:
3853         case ICE_SID_PROFID_REDIR_ACL:
3854         case ICE_SID_PROFID_REDIR_PE:
3855             pr = sect;
3856             src = pr->redir_value;
3857             sect_len = le16_to_cpu(pr->count) *
3858                 sizeof(*hw->blk[block_id].prof_redir.t);
3859             dst = hw->blk[block_id].prof_redir.t;
3860             dst_len = hw->blk[block_id].prof_redir.count *
3861                 sizeof(*hw->blk[block_id].prof_redir.t);
3862             break;
3863         case ICE_SID_FLD_VEC_SW:
3864         case ICE_SID_FLD_VEC_FD:
3865         case ICE_SID_FLD_VEC_RSS:
3866         case ICE_SID_FLD_VEC_ACL:
3867         case ICE_SID_FLD_VEC_PE:
3868             es = sect;
3869             src = (u8 *)es->fv;
3870             sect_len = (u32)(le16_to_cpu(es->count) *
3871                      hw->blk[block_id].es.fvw) *
3872                 sizeof(*hw->blk[block_id].es.t);
3873             dst = (u8 *)hw->blk[block_id].es.t;
3874             dst_len = (u32)(hw->blk[block_id].es.count *
3875                     hw->blk[block_id].es.fvw) *
3876                 sizeof(*hw->blk[block_id].es.t);
3877             break;
3878         default:
3879             return;
3880         }
3881 
3882         /* if the section offset exceeds destination length, terminate
3883          * table fill.
3884          */
3885         if (offset > dst_len)
3886             return;
3887 
3888         /* if the sum of section size and offset exceed destination size
3889          * then we are out of bounds of the HW table size for that PF.
3890          * Changing section length to fill the remaining table space
3891          * of that PF.
3892          */
3893         if ((offset + sect_len) > dst_len)
3894             sect_len = dst_len - offset;
3895 
3896         memcpy(dst + offset, src, sect_len);
3897         offset += sect_len;
3898         sect = ice_pkg_enum_section(NULL, &state, sid);
3899     }
3900 }
3901 
3902 /**
3903  * ice_fill_blk_tbls - Read package context for tables
3904  * @hw: pointer to the hardware structure
3905  *
3906  * Reads the current package contents and populates the driver
3907  * database with the data iteratively for all advanced feature
3908  * blocks. Assume that the HW tables have been allocated.
3909  */
3910 void ice_fill_blk_tbls(struct ice_hw *hw)
3911 {
3912     u8 i;
3913 
3914     for (i = 0; i < ICE_BLK_COUNT; i++) {
3915         enum ice_block blk_id = (enum ice_block)i;
3916 
3917         ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3918         ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3919         ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3920         ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3921         ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3922     }
3923 
3924     ice_init_sw_db(hw);
3925 }
3926 
3927 /**
3928  * ice_free_prof_map - free profile map
3929  * @hw: pointer to the hardware structure
3930  * @blk_idx: HW block index
3931  */
3932 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3933 {
3934     struct ice_es *es = &hw->blk[blk_idx].es;
3935     struct ice_prof_map *del, *tmp;
3936 
3937     mutex_lock(&es->prof_map_lock);
3938     list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
3939         list_del(&del->list);
3940         devm_kfree(ice_hw_to_dev(hw), del);
3941     }
3942     INIT_LIST_HEAD(&es->prof_map);
3943     mutex_unlock(&es->prof_map_lock);
3944 }
3945 
3946 /**
3947  * ice_free_flow_profs - free flow profile entries
3948  * @hw: pointer to the hardware structure
3949  * @blk_idx: HW block index
3950  */
3951 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3952 {
3953     struct ice_flow_prof *p, *tmp;
3954 
3955     mutex_lock(&hw->fl_profs_locks[blk_idx]);
3956     list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
3957         struct ice_flow_entry *e, *t;
3958 
3959         list_for_each_entry_safe(e, t, &p->entries, l_entry)
3960             ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
3961                        ICE_FLOW_ENTRY_HNDL(e));
3962 
3963         list_del(&p->l_entry);
3964 
3965         mutex_destroy(&p->entries_lock);
3966         devm_kfree(ice_hw_to_dev(hw), p);
3967     }
3968     mutex_unlock(&hw->fl_profs_locks[blk_idx]);
3969 
3970     /* if driver is in reset and tables are being cleared
3971      * re-initialize the flow profile list heads
3972      */
3973     INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3974 }
3975 
3976 /**
3977  * ice_free_vsig_tbl - free complete VSIG table entries
3978  * @hw: pointer to the hardware structure
3979  * @blk: the HW block on which to free the VSIG table entries
3980  */
3981 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3982 {
3983     u16 i;
3984 
3985     if (!hw->blk[blk].xlt2.vsig_tbl)
3986         return;
3987 
3988     for (i = 1; i < ICE_MAX_VSIGS; i++)
3989         if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3990             ice_vsig_free(hw, blk, i);
3991 }
3992 
3993 /**
3994  * ice_free_hw_tbls - free hardware table memory
3995  * @hw: pointer to the hardware structure
3996  */
3997 void ice_free_hw_tbls(struct ice_hw *hw)
3998 {
3999     struct ice_rss_cfg *r, *rt;
4000     u8 i;
4001 
4002     for (i = 0; i < ICE_BLK_COUNT; i++) {
4003         if (hw->blk[i].is_list_init) {
4004             struct ice_es *es = &hw->blk[i].es;
4005 
4006             ice_free_prof_map(hw, i);
4007             mutex_destroy(&es->prof_map_lock);
4008 
4009             ice_free_flow_profs(hw, i);
4010             mutex_destroy(&hw->fl_profs_locks[i]);
4011 
4012             hw->blk[i].is_list_init = false;
4013         }
4014         ice_free_vsig_tbl(hw, (enum ice_block)i);
4015         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
4016         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
4017         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
4018         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
4019         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
4020         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
4021         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
4022         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
4023         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
4024         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
4025         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
4026         devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
4027     }
4028 
4029     list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
4030         list_del(&r->l_entry);
4031         devm_kfree(ice_hw_to_dev(hw), r);
4032     }
4033     mutex_destroy(&hw->rss_locks);
4034     ice_shutdown_all_prof_masks(hw);
4035     memset(hw->blk, 0, sizeof(hw->blk));
4036 }
4037 
4038 /**
4039  * ice_init_flow_profs - init flow profile locks and list heads
4040  * @hw: pointer to the hardware structure
4041  * @blk_idx: HW block index
4042  */
4043 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
4044 {
4045     mutex_init(&hw->fl_profs_locks[blk_idx]);
4046     INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
4047 }
4048 
4049 /**
4050  * ice_clear_hw_tbls - clear HW tables and flow profiles
4051  * @hw: pointer to the hardware structure
4052  */
4053 void ice_clear_hw_tbls(struct ice_hw *hw)
4054 {
4055     u8 i;
4056 
4057     for (i = 0; i < ICE_BLK_COUNT; i++) {
4058         struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4059         struct ice_prof_tcam *prof = &hw->blk[i].prof;
4060         struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4061         struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4062         struct ice_es *es = &hw->blk[i].es;
4063 
4064         if (hw->blk[i].is_list_init) {
4065             ice_free_prof_map(hw, i);
4066             ice_free_flow_profs(hw, i);
4067         }
4068 
4069         ice_free_vsig_tbl(hw, (enum ice_block)i);
4070 
4071         memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
4072         memset(xlt1->ptg_tbl, 0,
4073                ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
4074         memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
4075 
4076         memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
4077         memset(xlt2->vsig_tbl, 0,
4078                xlt2->count * sizeof(*xlt2->vsig_tbl));
4079         memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
4080 
4081         memset(prof->t, 0, prof->count * sizeof(*prof->t));
4082         memset(prof_redir->t, 0,
4083                prof_redir->count * sizeof(*prof_redir->t));
4084 
4085         memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
4086         memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
4087         memset(es->written, 0, es->count * sizeof(*es->written));
4088         memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
4089     }
4090 }
4091 
4092 /**
4093  * ice_init_hw_tbls - init hardware table memory
4094  * @hw: pointer to the hardware structure
4095  */
4096 int ice_init_hw_tbls(struct ice_hw *hw)
4097 {
4098     u8 i;
4099 
4100     mutex_init(&hw->rss_locks);
4101     INIT_LIST_HEAD(&hw->rss_list_head);
4102     ice_init_all_prof_masks(hw);
4103     for (i = 0; i < ICE_BLK_COUNT; i++) {
4104         struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4105         struct ice_prof_tcam *prof = &hw->blk[i].prof;
4106         struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4107         struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4108         struct ice_es *es = &hw->blk[i].es;
4109         u16 j;
4110 
4111         if (hw->blk[i].is_list_init)
4112             continue;
4113 
4114         ice_init_flow_profs(hw, i);
4115         mutex_init(&es->prof_map_lock);
4116         INIT_LIST_HEAD(&es->prof_map);
4117         hw->blk[i].is_list_init = true;
4118 
4119         hw->blk[i].overwrite = blk_sizes[i].overwrite;
4120         es->reverse = blk_sizes[i].reverse;
4121 
4122         xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
4123         xlt1->count = blk_sizes[i].xlt1;
4124 
4125         xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4126                         sizeof(*xlt1->ptypes), GFP_KERNEL);
4127 
4128         if (!xlt1->ptypes)
4129             goto err;
4130 
4131         xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
4132                          sizeof(*xlt1->ptg_tbl),
4133                          GFP_KERNEL);
4134 
4135         if (!xlt1->ptg_tbl)
4136             goto err;
4137 
4138         xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4139                        sizeof(*xlt1->t), GFP_KERNEL);
4140         if (!xlt1->t)
4141             goto err;
4142 
4143         xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
4144         xlt2->count = blk_sizes[i].xlt2;
4145 
4146         xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4147                       sizeof(*xlt2->vsis), GFP_KERNEL);
4148 
4149         if (!xlt2->vsis)
4150             goto err;
4151 
4152         xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4153                           sizeof(*xlt2->vsig_tbl),
4154                           GFP_KERNEL);
4155         if (!xlt2->vsig_tbl)
4156             goto err;
4157 
4158         for (j = 0; j < xlt2->count; j++)
4159             INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
4160 
4161         xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4162                        sizeof(*xlt2->t), GFP_KERNEL);
4163         if (!xlt2->t)
4164             goto err;
4165 
4166         prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
4167         prof->count = blk_sizes[i].prof_tcam;
4168         prof->max_prof_id = blk_sizes[i].prof_id;
4169         prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
4170         prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
4171                        sizeof(*prof->t), GFP_KERNEL);
4172 
4173         if (!prof->t)
4174             goto err;
4175 
4176         prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
4177         prof_redir->count = blk_sizes[i].prof_redir;
4178         prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
4179                          prof_redir->count,
4180                          sizeof(*prof_redir->t),
4181                          GFP_KERNEL);
4182 
4183         if (!prof_redir->t)
4184             goto err;
4185 
4186         es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
4187         es->count = blk_sizes[i].es;
4188         es->fvw = blk_sizes[i].fvw;
4189         es->t = devm_kcalloc(ice_hw_to_dev(hw),
4190                      (u32)(es->count * es->fvw),
4191                      sizeof(*es->t), GFP_KERNEL);
4192         if (!es->t)
4193             goto err;
4194 
4195         es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4196                          sizeof(*es->ref_count),
4197                          GFP_KERNEL);
4198         if (!es->ref_count)
4199             goto err;
4200 
4201         es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4202                        sizeof(*es->written), GFP_KERNEL);
4203         if (!es->written)
4204             goto err;
4205 
4206         es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4207                         sizeof(*es->mask_ena), GFP_KERNEL);
4208         if (!es->mask_ena)
4209             goto err;
4210     }
4211     return 0;
4212 
4213 err:
4214     ice_free_hw_tbls(hw);
4215     return -ENOMEM;
4216 }
4217 
4218 /**
4219  * ice_prof_gen_key - generate profile ID key
4220  * @hw: pointer to the HW struct
4221  * @blk: the block in which to write profile ID to
4222  * @ptg: packet type group (PTG) portion of key
4223  * @vsig: VSIG portion of key
4224  * @cdid: CDID portion of key
4225  * @flags: flag portion of key
4226  * @vl_msk: valid mask
4227  * @dc_msk: don't care mask
4228  * @nm_msk: never match mask
4229  * @key: output of profile ID key
4230  */
4231 static int
4232 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
4233          u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4234          u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
4235          u8 key[ICE_TCAM_KEY_SZ])
4236 {
4237     struct ice_prof_id_key inkey;
4238 
4239     inkey.xlt1 = ptg;
4240     inkey.xlt2_cdid = cpu_to_le16(vsig);
4241     inkey.flags = cpu_to_le16(flags);
4242 
4243     switch (hw->blk[blk].prof.cdid_bits) {
4244     case 0:
4245         break;
4246     case 2:
4247 #define ICE_CD_2_M 0xC000U
4248 #define ICE_CD_2_S 14
4249         inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
4250         inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
4251         break;
4252     case 4:
4253 #define ICE_CD_4_M 0xF000U
4254 #define ICE_CD_4_S 12
4255         inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
4256         inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
4257         break;
4258     case 8:
4259 #define ICE_CD_8_M 0xFF00U
4260 #define ICE_CD_8_S 16
4261         inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
4262         inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
4263         break;
4264     default:
4265         ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
4266         break;
4267     }
4268 
4269     return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
4270                nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
4271 }
4272 
4273 /**
4274  * ice_tcam_write_entry - write TCAM entry
4275  * @hw: pointer to the HW struct
4276  * @blk: the block in which to write profile ID to
4277  * @idx: the entry index to write to
4278  * @prof_id: profile ID
4279  * @ptg: packet type group (PTG) portion of key
4280  * @vsig: VSIG portion of key
4281  * @cdid: CDID portion of key
4282  * @flags: flag portion of key
4283  * @vl_msk: valid mask
4284  * @dc_msk: don't care mask
4285  * @nm_msk: never match mask
4286  */
4287 static int
4288 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
4289              u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
4290              u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4291              u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
4292              u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
4293 {
4294     struct ice_prof_tcam_entry;
4295     int status;
4296 
4297     status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
4298                   dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
4299     if (!status) {
4300         hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
4301         hw->blk[blk].prof.t[idx].prof_id = prof_id;
4302     }
4303 
4304     return status;
4305 }
4306 
4307 /**
4308  * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
4309  * @hw: pointer to the hardware structure
4310  * @blk: HW block
4311  * @vsig: VSIG to query
4312  * @refs: pointer to variable to receive the reference count
4313  */
4314 static int
4315 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
4316 {
4317     u16 idx = vsig & ICE_VSIG_IDX_M;
4318     struct ice_vsig_vsi *ptr;
4319 
4320     *refs = 0;
4321 
4322     if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
4323         return -ENOENT;
4324 
4325     ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4326     while (ptr) {
4327         (*refs)++;
4328         ptr = ptr->next_vsi;
4329     }
4330 
4331     return 0;
4332 }
4333 
4334 /**
4335  * ice_has_prof_vsig - check to see if VSIG has a specific profile
4336  * @hw: pointer to the hardware structure
4337  * @blk: HW block
4338  * @vsig: VSIG to check against
4339  * @hdl: profile handle
4340  */
4341 static bool
4342 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4343 {
4344     u16 idx = vsig & ICE_VSIG_IDX_M;
4345     struct ice_vsig_prof *ent;
4346 
4347     list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4348                 list)
4349         if (ent->profile_cookie == hdl)
4350             return true;
4351 
4352     ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4353           vsig);
4354     return false;
4355 }
4356 
4357 /**
4358  * ice_prof_bld_es - build profile ID extraction sequence changes
4359  * @hw: pointer to the HW struct
4360  * @blk: hardware block
4361  * @bld: the update package buffer build to add to
4362  * @chgs: the list of changes to make in hardware
4363  */
4364 static int
4365 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4366         struct ice_buf_build *bld, struct list_head *chgs)
4367 {
4368     u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4369     struct ice_chs_chg *tmp;
4370 
4371     list_for_each_entry(tmp, chgs, list_entry)
4372         if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4373             u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4374             struct ice_pkg_es *p;
4375             u32 id;
4376 
4377             id = ice_sect_id(blk, ICE_VEC_TBL);
4378             p = ice_pkg_buf_alloc_section(bld, id,
4379                               struct_size(p, es, 1) +
4380                               vec_size -
4381                               sizeof(p->es[0]));
4382 
4383             if (!p)
4384                 return -ENOSPC;
4385 
4386             p->count = cpu_to_le16(1);
4387             p->offset = cpu_to_le16(tmp->prof_id);
4388 
4389             memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
4390         }
4391 
4392     return 0;
4393 }
4394 
4395 /**
4396  * ice_prof_bld_tcam - build profile ID TCAM changes
4397  * @hw: pointer to the HW struct
4398  * @blk: hardware block
4399  * @bld: the update package buffer build to add to
4400  * @chgs: the list of changes to make in hardware
4401  */
4402 static int
4403 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4404           struct ice_buf_build *bld, struct list_head *chgs)
4405 {
4406     struct ice_chs_chg *tmp;
4407 
4408     list_for_each_entry(tmp, chgs, list_entry)
4409         if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4410             struct ice_prof_id_section *p;
4411             u32 id;
4412 
4413             id = ice_sect_id(blk, ICE_PROF_TCAM);
4414             p = ice_pkg_buf_alloc_section(bld, id,
4415                               struct_size(p, entry, 1));
4416 
4417             if (!p)
4418                 return -ENOSPC;
4419 
4420             p->count = cpu_to_le16(1);
4421             p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
4422             p->entry[0].prof_id = tmp->prof_id;
4423 
4424             memcpy(p->entry[0].key,
4425                    &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4426                    sizeof(hw->blk[blk].prof.t->key));
4427         }
4428 
4429     return 0;
4430 }
4431 
4432 /**
4433  * ice_prof_bld_xlt1 - build XLT1 changes
4434  * @blk: hardware block
4435  * @bld: the update package buffer build to add to
4436  * @chgs: the list of changes to make in hardware
4437  */
4438 static int
4439 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4440           struct list_head *chgs)
4441 {
4442     struct ice_chs_chg *tmp;
4443 
4444     list_for_each_entry(tmp, chgs, list_entry)
4445         if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4446             struct ice_xlt1_section *p;
4447             u32 id;
4448 
4449             id = ice_sect_id(blk, ICE_XLT1);
4450             p = ice_pkg_buf_alloc_section(bld, id,
4451                               struct_size(p, value, 1));
4452 
4453             if (!p)
4454                 return -ENOSPC;
4455 
4456             p->count = cpu_to_le16(1);
4457             p->offset = cpu_to_le16(tmp->ptype);
4458             p->value[0] = tmp->ptg;
4459         }
4460 
4461     return 0;
4462 }
4463 
4464 /**
4465  * ice_prof_bld_xlt2 - build XLT2 changes
4466  * @blk: hardware block
4467  * @bld: the update package buffer build to add to
4468  * @chgs: the list of changes to make in hardware
4469  */
4470 static int
4471 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4472           struct list_head *chgs)
4473 {
4474     struct ice_chs_chg *tmp;
4475 
4476     list_for_each_entry(tmp, chgs, list_entry) {
4477         struct ice_xlt2_section *p;
4478         u32 id;
4479 
4480         switch (tmp->type) {
4481         case ICE_VSIG_ADD:
4482         case ICE_VSI_MOVE:
4483         case ICE_VSIG_REM:
4484             id = ice_sect_id(blk, ICE_XLT2);
4485             p = ice_pkg_buf_alloc_section(bld, id,
4486                               struct_size(p, value, 1));
4487 
4488             if (!p)
4489                 return -ENOSPC;
4490 
4491             p->count = cpu_to_le16(1);
4492             p->offset = cpu_to_le16(tmp->vsi);
4493             p->value[0] = cpu_to_le16(tmp->vsig);
4494             break;
4495         default:
4496             break;
4497         }
4498     }
4499 
4500     return 0;
4501 }
4502 
4503 /**
4504  * ice_upd_prof_hw - update hardware using the change list
4505  * @hw: pointer to the HW struct
4506  * @blk: hardware block
4507  * @chgs: the list of changes to make in hardware
4508  */
4509 static int
4510 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4511         struct list_head *chgs)
4512 {
4513     struct ice_buf_build *b;
4514     struct ice_chs_chg *tmp;
4515     u16 pkg_sects;
4516     u16 xlt1 = 0;
4517     u16 xlt2 = 0;
4518     u16 tcam = 0;
4519     u16 es = 0;
4520     int status;
4521     u16 sects;
4522 
4523     /* count number of sections we need */
4524     list_for_each_entry(tmp, chgs, list_entry) {
4525         switch (tmp->type) {
4526         case ICE_PTG_ES_ADD:
4527             if (tmp->add_ptg)
4528                 xlt1++;
4529             if (tmp->add_prof)
4530                 es++;
4531             break;
4532         case ICE_TCAM_ADD:
4533             tcam++;
4534             break;
4535         case ICE_VSIG_ADD:
4536         case ICE_VSI_MOVE:
4537         case ICE_VSIG_REM:
4538             xlt2++;
4539             break;
4540         default:
4541             break;
4542         }
4543     }
4544     sects = xlt1 + xlt2 + tcam + es;
4545 
4546     if (!sects)
4547         return 0;
4548 
4549     /* Build update package buffer */
4550     b = ice_pkg_buf_alloc(hw);
4551     if (!b)
4552         return -ENOMEM;
4553 
4554     status = ice_pkg_buf_reserve_section(b, sects);
4555     if (status)
4556         goto error_tmp;
4557 
4558     /* Preserve order of table update: ES, TCAM, PTG, VSIG */
4559     if (es) {
4560         status = ice_prof_bld_es(hw, blk, b, chgs);
4561         if (status)
4562             goto error_tmp;
4563     }
4564 
4565     if (tcam) {
4566         status = ice_prof_bld_tcam(hw, blk, b, chgs);
4567         if (status)
4568             goto error_tmp;
4569     }
4570 
4571     if (xlt1) {
4572         status = ice_prof_bld_xlt1(blk, b, chgs);
4573         if (status)
4574             goto error_tmp;
4575     }
4576 
4577     if (xlt2) {
4578         status = ice_prof_bld_xlt2(blk, b, chgs);
4579         if (status)
4580             goto error_tmp;
4581     }
4582 
4583     /* After package buffer build check if the section count in buffer is
4584      * non-zero and matches the number of sections detected for package
4585      * update.
4586      */
4587     pkg_sects = ice_pkg_buf_get_active_sections(b);
4588     if (!pkg_sects || pkg_sects != sects) {
4589         status = -EINVAL;
4590         goto error_tmp;
4591     }
4592 
4593     /* update package */
4594     status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4595     if (status == -EIO)
4596         ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4597 
4598 error_tmp:
4599     ice_pkg_buf_free(hw, b);
4600     return status;
4601 }
4602 
4603 /**
4604  * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
4605  * @hw: pointer to the HW struct
4606  * @prof_id: profile ID
4607  * @mask_sel: mask select
4608  *
4609  * This function enable any of the masks selected by the mask select parameter
4610  * for the profile specified.
4611  */
4612 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
4613 {
4614     wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
4615 
4616     ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
4617           GLQF_FDMASK_SEL(prof_id), mask_sel);
4618 }
4619 
4620 struct ice_fd_src_dst_pair {
4621     u8 prot_id;
4622     u8 count;
4623     u16 off;
4624 };
4625 
4626 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
4627     /* These are defined in pairs */
4628     { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
4629     { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
4630 
4631     { ICE_PROT_IPV4_IL, 2, 12 },
4632     { ICE_PROT_IPV4_IL, 2, 16 },
4633 
4634     { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
4635     { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
4636 
4637     { ICE_PROT_IPV6_IL, 8, 8 },
4638     { ICE_PROT_IPV6_IL, 8, 24 },
4639 
4640     { ICE_PROT_TCP_IL, 1, 0 },
4641     { ICE_PROT_TCP_IL, 1, 2 },
4642 
4643     { ICE_PROT_UDP_OF, 1, 0 },
4644     { ICE_PROT_UDP_OF, 1, 2 },
4645 
4646     { ICE_PROT_UDP_IL_OR_S, 1, 0 },
4647     { ICE_PROT_UDP_IL_OR_S, 1, 2 },
4648 
4649     { ICE_PROT_SCTP_IL, 1, 0 },
4650     { ICE_PROT_SCTP_IL, 1, 2 }
4651 };
4652 
4653 #define ICE_FD_SRC_DST_PAIR_COUNT   ARRAY_SIZE(ice_fd_pairs)
4654 
4655 /**
4656  * ice_update_fd_swap - set register appropriately for a FD FV extraction
4657  * @hw: pointer to the HW struct
4658  * @prof_id: profile ID
4659  * @es: extraction sequence (length of array is determined by the block)
4660  */
4661 static int
4662 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
4663 {
4664     DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4665     u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
4666 #define ICE_FD_FV_NOT_FOUND (-2)
4667     s8 first_free = ICE_FD_FV_NOT_FOUND;
4668     u8 used[ICE_MAX_FV_WORDS] = { 0 };
4669     s8 orig_free, si;
4670     u32 mask_sel = 0;
4671     u8 i, j, k;
4672 
4673     bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4674 
4675     /* This code assumes that the Flow Director field vectors are assigned
4676      * from the end of the FV indexes working towards the zero index, that
4677      * only complete fields will be included and will be consecutive, and
4678      * that there are no gaps between valid indexes.
4679      */
4680 
4681     /* Determine swap fields present */
4682     for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
4683         /* Find the first free entry, assuming right to left population.
4684          * This is where we can start adding additional pairs if needed.
4685          */
4686         if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4687             ICE_PROT_INVALID)
4688             first_free = i - 1;
4689 
4690         for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4691             if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4692                 es[i].off == ice_fd_pairs[j].off) {
4693                 __set_bit(j, pair_list);
4694                 pair_start[j] = i;
4695             }
4696     }
4697 
4698     orig_free = first_free;
4699 
4700     /* determine missing swap fields that need to be added */
4701     for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4702         u8 bit1 = test_bit(i + 1, pair_list);
4703         u8 bit0 = test_bit(i, pair_list);
4704 
4705         if (bit0 ^ bit1) {
4706             u8 index;
4707 
4708             /* add the appropriate 'paired' entry */
4709             if (!bit0)
4710                 index = i;
4711             else
4712                 index = i + 1;
4713 
4714             /* check for room */
4715             if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4716                 return -ENOSPC;
4717 
4718             /* place in extraction sequence */
4719             for (k = 0; k < ice_fd_pairs[index].count; k++) {
4720                 es[first_free - k].prot_id =
4721                     ice_fd_pairs[index].prot_id;
4722                 es[first_free - k].off =
4723                     ice_fd_pairs[index].off + (k * 2);
4724 
4725                 if (k > first_free)
4726                     return -EIO;
4727 
4728                 /* keep track of non-relevant fields */
4729                 mask_sel |= BIT(first_free - k);
4730             }
4731 
4732             pair_start[index] = first_free;
4733             first_free -= ice_fd_pairs[index].count;
4734         }
4735     }
4736 
4737     /* fill in the swap array */
4738     si = hw->blk[ICE_BLK_FD].es.fvw - 1;
4739     while (si >= 0) {
4740         u8 indexes_used = 1;
4741 
4742         /* assume flat at this index */
4743 #define ICE_SWAP_VALID  0x80
4744         used[si] = si | ICE_SWAP_VALID;
4745 
4746         if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
4747             si -= indexes_used;
4748             continue;
4749         }
4750 
4751         /* check for a swap location */
4752         for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4753             if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
4754                 es[si].off == ice_fd_pairs[j].off) {
4755                 u8 idx;
4756 
4757                 /* determine the appropriate matching field */
4758                 idx = j + ((j % 2) ? -1 : 1);
4759 
4760                 indexes_used = ice_fd_pairs[idx].count;
4761                 for (k = 0; k < indexes_used; k++) {
4762                     used[si - k] = (pair_start[idx] - k) |
4763                         ICE_SWAP_VALID;
4764                 }
4765 
4766                 break;
4767             }
4768 
4769         si -= indexes_used;
4770     }
4771 
4772     /* for each set of 4 swap and 4 inset indexes, write the appropriate
4773      * register
4774      */
4775     for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
4776         u32 raw_swap = 0;
4777         u32 raw_in = 0;
4778 
4779         for (k = 0; k < 4; k++) {
4780             u8 idx;
4781 
4782             idx = (j * 4) + k;
4783             if (used[idx] && !(mask_sel & BIT(idx))) {
4784                 raw_swap |= used[idx] << (k * BITS_PER_BYTE);
4785 #define ICE_INSET_DFLT 0x9f
4786                 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
4787             }
4788         }
4789 
4790         /* write the appropriate swap register set */
4791         wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
4792 
4793         ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4794               prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
4795 
4796         /* write the appropriate inset register set */
4797         wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
4798 
4799         ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4800               prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
4801     }
4802 
4803     /* initially clear the mask select for this profile */
4804     ice_update_fd_mask(hw, prof_id, 0);
4805 
4806     return 0;
4807 }
4808 
4809 /* The entries here needs to match the order of enum ice_ptype_attrib */
4810 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
4811     { ICE_GTP_PDU_EH,   ICE_GTP_PDU_FLAG_MASK },
4812     { ICE_GTP_SESSION,  ICE_GTP_FLAGS_MASK },
4813     { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
4814     { ICE_GTP_UPLINK,   ICE_GTP_FLAGS_MASK },
4815 };
4816 
4817 /**
4818  * ice_get_ptype_attrib_info - get PTYPE attribute information
4819  * @type: attribute type
4820  * @info: pointer to variable to the attribute information
4821  */
4822 static void
4823 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
4824               struct ice_ptype_attrib_info *info)
4825 {
4826     *info = ice_ptype_attributes[type];
4827 }
4828 
4829 /**
4830  * ice_add_prof_attrib - add any PTG with attributes to profile
4831  * @prof: pointer to the profile to which PTG entries will be added
4832  * @ptg: PTG to be added
4833  * @ptype: PTYPE that needs to be looked up
4834  * @attr: array of attributes that will be considered
4835  * @attr_cnt: number of elements in the attribute array
4836  */
4837 static int
4838 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
4839             const struct ice_ptype_attributes *attr, u16 attr_cnt)
4840 {
4841     bool found = false;
4842     u16 i;
4843 
4844     for (i = 0; i < attr_cnt; i++)
4845         if (attr[i].ptype == ptype) {
4846             found = true;
4847 
4848             prof->ptg[prof->ptg_cnt] = ptg;
4849             ice_get_ptype_attrib_info(attr[i].attrib,
4850                           &prof->attr[prof->ptg_cnt]);
4851 
4852             if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4853                 return -ENOSPC;
4854         }
4855 
4856     if (!found)
4857         return -ENOENT;
4858 
4859     return 0;
4860 }
4861 
4862 /**
4863  * ice_add_prof - add profile
4864  * @hw: pointer to the HW struct
4865  * @blk: hardware block
4866  * @id: profile tracking ID
4867  * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4868  * @attr: array of attributes
4869  * @attr_cnt: number of elements in attr array
4870  * @es: extraction sequence (length of array is determined by the block)
4871  * @masks: mask for extraction sequence
4872  *
4873  * This function registers a profile, which matches a set of PTYPES with a
4874  * particular extraction sequence. While the hardware profile is allocated
4875  * it will not be written until the first call to ice_add_flow that specifies
4876  * the ID value used here.
4877  */
4878 int
4879 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4880          const struct ice_ptype_attributes *attr, u16 attr_cnt,
4881          struct ice_fv_word *es, u16 *masks)
4882 {
4883     u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4884     DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4885     struct ice_prof_map *prof;
4886     u8 byte = 0;
4887     u8 prof_id;
4888     int status;
4889 
4890     bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4891 
4892     mutex_lock(&hw->blk[blk].es.prof_map_lock);
4893 
4894     /* search for existing profile */
4895     status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
4896     if (status) {
4897         /* allocate profile ID */
4898         status = ice_alloc_prof_id(hw, blk, &prof_id);
4899         if (status)
4900             goto err_ice_add_prof;
4901         if (blk == ICE_BLK_FD) {
4902             /* For Flow Director block, the extraction sequence may
4903              * need to be altered in the case where there are paired
4904              * fields that have no match. This is necessary because
4905              * for Flow Director, src and dest fields need to paired
4906              * for filter programming and these values are swapped
4907              * during Tx.
4908              */
4909             status = ice_update_fd_swap(hw, prof_id, es);
4910             if (status)
4911                 goto err_ice_add_prof;
4912         }
4913         status = ice_update_prof_masking(hw, blk, prof_id, masks);
4914         if (status)
4915             goto err_ice_add_prof;
4916 
4917         /* and write new es */
4918         ice_write_es(hw, blk, prof_id, es);
4919     }
4920 
4921     ice_prof_inc_ref(hw, blk, prof_id);
4922 
4923     /* add profile info */
4924     prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
4925     if (!prof) {
4926         status = -ENOMEM;
4927         goto err_ice_add_prof;
4928     }
4929 
4930     prof->profile_cookie = id;
4931     prof->prof_id = prof_id;
4932     prof->ptg_cnt = 0;
4933     prof->context = 0;
4934 
4935     /* build list of ptgs */
4936     while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4937         u8 bit;
4938 
4939         if (!ptypes[byte]) {
4940             bytes--;
4941             byte++;
4942             continue;
4943         }
4944 
4945         /* Examine 8 bits per byte */
4946         for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
4947                  BITS_PER_BYTE) {
4948             u16 ptype;
4949             u8 ptg;
4950 
4951             ptype = byte * BITS_PER_BYTE + bit;
4952 
4953             /* The package should place all ptypes in a non-zero
4954              * PTG, so the following call should never fail.
4955              */
4956             if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4957                 continue;
4958 
4959             /* If PTG is already added, skip and continue */
4960             if (test_bit(ptg, ptgs_used))
4961                 continue;
4962 
4963             __set_bit(ptg, ptgs_used);
4964             /* Check to see there are any attributes for
4965              * this PTYPE, and add them if found.
4966              */
4967             status = ice_add_prof_attrib(prof, ptg, ptype,
4968                              attr, attr_cnt);
4969             if (status == -ENOSPC)
4970                 break;
4971             if (status) {
4972                 /* This is simple a PTYPE/PTG with no
4973                  * attribute
4974                  */
4975                 prof->ptg[prof->ptg_cnt] = ptg;
4976                 prof->attr[prof->ptg_cnt].flags = 0;
4977                 prof->attr[prof->ptg_cnt].mask = 0;
4978 
4979                 if (++prof->ptg_cnt >=
4980                     ICE_MAX_PTG_PER_PROFILE)
4981                     break;
4982             }
4983         }
4984 
4985         bytes--;
4986         byte++;
4987     }
4988 
4989     list_add(&prof->list, &hw->blk[blk].es.prof_map);
4990     status = 0;
4991 
4992 err_ice_add_prof:
4993     mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4994     return status;
4995 }
4996 
4997 /**
4998  * ice_search_prof_id - Search for a profile tracking ID
4999  * @hw: pointer to the HW struct
5000  * @blk: hardware block
5001  * @id: profile tracking ID
5002  *
5003  * This will search for a profile tracking ID which was previously added.
5004  * The profile map lock should be held before calling this function.
5005  */
5006 static struct ice_prof_map *
5007 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
5008 {
5009     struct ice_prof_map *entry = NULL;
5010     struct ice_prof_map *map;
5011 
5012     list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
5013         if (map->profile_cookie == id) {
5014             entry = map;
5015             break;
5016         }
5017 
5018     return entry;
5019 }
5020 
5021 /**
5022  * ice_vsig_prof_id_count - count profiles in a VSIG
5023  * @hw: pointer to the HW struct
5024  * @blk: hardware block
5025  * @vsig: VSIG to remove the profile from
5026  */
5027 static u16
5028 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
5029 {
5030     u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
5031     struct ice_vsig_prof *p;
5032 
5033     list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5034                 list)
5035         count++;
5036 
5037     return count;
5038 }
5039 
5040 /**
5041  * ice_rel_tcam_idx - release a TCAM index
5042  * @hw: pointer to the HW struct
5043  * @blk: hardware block
5044  * @idx: the index to release
5045  */
5046 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
5047 {
5048     /* Masks to invoke a never match entry */
5049     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5050     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
5051     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
5052     int status;
5053 
5054     /* write the TCAM entry */
5055     status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
5056                       dc_msk, nm_msk);
5057     if (status)
5058         return status;
5059 
5060     /* release the TCAM entry */
5061     status = ice_free_tcam_ent(hw, blk, idx);
5062 
5063     return status;
5064 }
5065 
5066 /**
5067  * ice_rem_prof_id - remove one profile from a VSIG
5068  * @hw: pointer to the HW struct
5069  * @blk: hardware block
5070  * @prof: pointer to profile structure to remove
5071  */
5072 static int
5073 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
5074         struct ice_vsig_prof *prof)
5075 {
5076     int status;
5077     u16 i;
5078 
5079     for (i = 0; i < prof->tcam_count; i++)
5080         if (prof->tcam[i].in_use) {
5081             prof->tcam[i].in_use = false;
5082             status = ice_rel_tcam_idx(hw, blk,
5083                           prof->tcam[i].tcam_idx);
5084             if (status)
5085                 return -EIO;
5086         }
5087 
5088     return 0;
5089 }
5090 
5091 /**
5092  * ice_rem_vsig - remove VSIG
5093  * @hw: pointer to the HW struct
5094  * @blk: hardware block
5095  * @vsig: the VSIG to remove
5096  * @chg: the change list
5097  */
5098 static int
5099 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5100          struct list_head *chg)
5101 {
5102     u16 idx = vsig & ICE_VSIG_IDX_M;
5103     struct ice_vsig_vsi *vsi_cur;
5104     struct ice_vsig_prof *d, *t;
5105     int status;
5106 
5107     /* remove TCAM entries */
5108     list_for_each_entry_safe(d, t,
5109                  &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5110                  list) {
5111         status = ice_rem_prof_id(hw, blk, d);
5112         if (status)
5113             return status;
5114 
5115         list_del(&d->list);
5116         devm_kfree(ice_hw_to_dev(hw), d);
5117     }
5118 
5119     /* Move all VSIS associated with this VSIG to the default VSIG */
5120     vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
5121     /* If the VSIG has at least 1 VSI then iterate through the list
5122      * and remove the VSIs before deleting the group.
5123      */
5124     if (vsi_cur)
5125         do {
5126             struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
5127             struct ice_chs_chg *p;
5128 
5129             p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5130                      GFP_KERNEL);
5131             if (!p)
5132                 return -ENOMEM;
5133 
5134             p->type = ICE_VSIG_REM;
5135             p->orig_vsig = vsig;
5136             p->vsig = ICE_DEFAULT_VSIG;
5137             p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
5138 
5139             list_add(&p->list_entry, chg);
5140 
5141             vsi_cur = tmp;
5142         } while (vsi_cur);
5143 
5144     return ice_vsig_free(hw, blk, vsig);
5145 }
5146 
5147 /**
5148  * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
5149  * @hw: pointer to the HW struct
5150  * @blk: hardware block
5151  * @vsig: VSIG to remove the profile from
5152  * @hdl: profile handle indicating which profile to remove
5153  * @chg: list to receive a record of changes
5154  */
5155 static int
5156 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5157              struct list_head *chg)
5158 {
5159     u16 idx = vsig & ICE_VSIG_IDX_M;
5160     struct ice_vsig_prof *p, *t;
5161     int status;
5162 
5163     list_for_each_entry_safe(p, t,
5164                  &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5165                  list)
5166         if (p->profile_cookie == hdl) {
5167             if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
5168                 /* this is the last profile, remove the VSIG */
5169                 return ice_rem_vsig(hw, blk, vsig, chg);
5170 
5171             status = ice_rem_prof_id(hw, blk, p);
5172             if (!status) {
5173                 list_del(&p->list);
5174                 devm_kfree(ice_hw_to_dev(hw), p);
5175             }
5176             return status;
5177         }
5178 
5179     return -ENOENT;
5180 }
5181 
5182 /**
5183  * ice_rem_flow_all - remove all flows with a particular profile
5184  * @hw: pointer to the HW struct
5185  * @blk: hardware block
5186  * @id: profile tracking ID
5187  */
5188 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
5189 {
5190     struct ice_chs_chg *del, *tmp;
5191     struct list_head chg;
5192     int status;
5193     u16 i;
5194 
5195     INIT_LIST_HEAD(&chg);
5196 
5197     for (i = 1; i < ICE_MAX_VSIGS; i++)
5198         if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
5199             if (ice_has_prof_vsig(hw, blk, i, id)) {
5200                 status = ice_rem_prof_id_vsig(hw, blk, i, id,
5201                                   &chg);
5202                 if (status)
5203                     goto err_ice_rem_flow_all;
5204             }
5205         }
5206 
5207     status = ice_upd_prof_hw(hw, blk, &chg);
5208 
5209 err_ice_rem_flow_all:
5210     list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5211         list_del(&del->list_entry);
5212         devm_kfree(ice_hw_to_dev(hw), del);
5213     }
5214 
5215     return status;
5216 }
5217 
5218 /**
5219  * ice_rem_prof - remove profile
5220  * @hw: pointer to the HW struct
5221  * @blk: hardware block
5222  * @id: profile tracking ID
5223  *
5224  * This will remove the profile specified by the ID parameter, which was
5225  * previously created through ice_add_prof. If any existing entries
5226  * are associated with this profile, they will be removed as well.
5227  */
5228 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
5229 {
5230     struct ice_prof_map *pmap;
5231     int status;
5232 
5233     mutex_lock(&hw->blk[blk].es.prof_map_lock);
5234 
5235     pmap = ice_search_prof_id(hw, blk, id);
5236     if (!pmap) {
5237         status = -ENOENT;
5238         goto err_ice_rem_prof;
5239     }
5240 
5241     /* remove all flows with this profile */
5242     status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
5243     if (status)
5244         goto err_ice_rem_prof;
5245 
5246     /* dereference profile, and possibly remove */
5247     ice_prof_dec_ref(hw, blk, pmap->prof_id);
5248 
5249     list_del(&pmap->list);
5250     devm_kfree(ice_hw_to_dev(hw), pmap);
5251 
5252 err_ice_rem_prof:
5253     mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5254     return status;
5255 }
5256 
5257 /**
5258  * ice_get_prof - get profile
5259  * @hw: pointer to the HW struct
5260  * @blk: hardware block
5261  * @hdl: profile handle
5262  * @chg: change list
5263  */
5264 static int
5265 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
5266          struct list_head *chg)
5267 {
5268     struct ice_prof_map *map;
5269     struct ice_chs_chg *p;
5270     int status = 0;
5271     u16 i;
5272 
5273     mutex_lock(&hw->blk[blk].es.prof_map_lock);
5274     /* Get the details on the profile specified by the handle ID */
5275     map = ice_search_prof_id(hw, blk, hdl);
5276     if (!map) {
5277         status = -ENOENT;
5278         goto err_ice_get_prof;
5279     }
5280 
5281     for (i = 0; i < map->ptg_cnt; i++)
5282         if (!hw->blk[blk].es.written[map->prof_id]) {
5283             /* add ES to change list */
5284             p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5285                      GFP_KERNEL);
5286             if (!p) {
5287                 status = -ENOMEM;
5288                 goto err_ice_get_prof;
5289             }
5290 
5291             p->type = ICE_PTG_ES_ADD;
5292             p->ptype = 0;
5293             p->ptg = map->ptg[i];
5294             p->add_ptg = 0;
5295 
5296             p->add_prof = 1;
5297             p->prof_id = map->prof_id;
5298 
5299             hw->blk[blk].es.written[map->prof_id] = true;
5300 
5301             list_add(&p->list_entry, chg);
5302         }
5303 
5304 err_ice_get_prof:
5305     mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5306     /* let caller clean up the change list */
5307     return status;
5308 }
5309 
5310 /**
5311  * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
5312  * @hw: pointer to the HW struct
5313  * @blk: hardware block
5314  * @vsig: VSIG from which to copy the list
5315  * @lst: output list
5316  *
5317  * This routine makes a copy of the list of profiles in the specified VSIG.
5318  */
5319 static int
5320 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5321            struct list_head *lst)
5322 {
5323     struct ice_vsig_prof *ent1, *ent2;
5324     u16 idx = vsig & ICE_VSIG_IDX_M;
5325 
5326     list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5327                 list) {
5328         struct ice_vsig_prof *p;
5329 
5330         /* copy to the input list */
5331         p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
5332                  GFP_KERNEL);
5333         if (!p)
5334             goto err_ice_get_profs_vsig;
5335 
5336         list_add_tail(&p->list, lst);
5337     }
5338 
5339     return 0;
5340 
5341 err_ice_get_profs_vsig:
5342     list_for_each_entry_safe(ent1, ent2, lst, list) {
5343         list_del(&ent1->list);
5344         devm_kfree(ice_hw_to_dev(hw), ent1);
5345     }
5346 
5347     return -ENOMEM;
5348 }
5349 
5350 /**
5351  * ice_add_prof_to_lst - add profile entry to a list
5352  * @hw: pointer to the HW struct
5353  * @blk: hardware block
5354  * @lst: the list to be added to
5355  * @hdl: profile handle of entry to add
5356  */
5357 static int
5358 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
5359             struct list_head *lst, u64 hdl)
5360 {
5361     struct ice_prof_map *map;
5362     struct ice_vsig_prof *p;
5363     int status = 0;
5364     u16 i;
5365 
5366     mutex_lock(&hw->blk[blk].es.prof_map_lock);
5367     map = ice_search_prof_id(hw, blk, hdl);
5368     if (!map) {
5369         status = -ENOENT;
5370         goto err_ice_add_prof_to_lst;
5371     }
5372 
5373     p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5374     if (!p) {
5375         status = -ENOMEM;
5376         goto err_ice_add_prof_to_lst;
5377     }
5378 
5379     p->profile_cookie = map->profile_cookie;
5380     p->prof_id = map->prof_id;
5381     p->tcam_count = map->ptg_cnt;
5382 
5383     for (i = 0; i < map->ptg_cnt; i++) {
5384         p->tcam[i].prof_id = map->prof_id;
5385         p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
5386         p->tcam[i].ptg = map->ptg[i];
5387     }
5388 
5389     list_add(&p->list, lst);
5390 
5391 err_ice_add_prof_to_lst:
5392     mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5393     return status;
5394 }
5395 
5396 /**
5397  * ice_move_vsi - move VSI to another VSIG
5398  * @hw: pointer to the HW struct
5399  * @blk: hardware block
5400  * @vsi: the VSI to move
5401  * @vsig: the VSIG to move the VSI to
5402  * @chg: the change list
5403  */
5404 static int
5405 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
5406          struct list_head *chg)
5407 {
5408     struct ice_chs_chg *p;
5409     u16 orig_vsig;
5410     int status;
5411 
5412     p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5413     if (!p)
5414         return -ENOMEM;
5415 
5416     status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
5417     if (!status)
5418         status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
5419 
5420     if (status) {
5421         devm_kfree(ice_hw_to_dev(hw), p);
5422         return status;
5423     }
5424 
5425     p->type = ICE_VSI_MOVE;
5426     p->vsi = vsi;
5427     p->orig_vsig = orig_vsig;
5428     p->vsig = vsig;
5429 
5430     list_add(&p->list_entry, chg);
5431 
5432     return 0;
5433 }
5434 
5435 /**
5436  * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
5437  * @hw: pointer to the HW struct
5438  * @idx: the index of the TCAM entry to remove
5439  * @chg: the list of change structures to search
5440  */
5441 static void
5442 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
5443 {
5444     struct ice_chs_chg *pos, *tmp;
5445 
5446     list_for_each_entry_safe(tmp, pos, chg, list_entry)
5447         if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
5448             list_del(&tmp->list_entry);
5449             devm_kfree(ice_hw_to_dev(hw), tmp);
5450         }
5451 }
5452 
5453 /**
5454  * ice_prof_tcam_ena_dis - add enable or disable TCAM change
5455  * @hw: pointer to the HW struct
5456  * @blk: hardware block
5457  * @enable: true to enable, false to disable
5458  * @vsig: the VSIG of the TCAM entry
5459  * @tcam: pointer the TCAM info structure of the TCAM to disable
5460  * @chg: the change list
5461  *
5462  * This function appends an enable or disable TCAM entry in the change log
5463  */
5464 static int
5465 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
5466               u16 vsig, struct ice_tcam_inf *tcam,
5467               struct list_head *chg)
5468 {
5469     struct ice_chs_chg *p;
5470     int status;
5471 
5472     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5473     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5474     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5475 
5476     /* if disabling, free the TCAM */
5477     if (!enable) {
5478         status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
5479 
5480         /* if we have already created a change for this TCAM entry, then
5481          * we need to remove that entry, in order to prevent writing to
5482          * a TCAM entry we no longer will have ownership of.
5483          */
5484         ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
5485         tcam->tcam_idx = 0;
5486         tcam->in_use = 0;
5487         return status;
5488     }
5489 
5490     /* for re-enabling, reallocate a TCAM */
5491     /* for entries with empty attribute masks, allocate entry from
5492      * the bottom of the TCAM table; otherwise, allocate from the
5493      * top of the table in order to give it higher priority
5494      */
5495     status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
5496                     &tcam->tcam_idx);
5497     if (status)
5498         return status;
5499 
5500     /* add TCAM to change list */
5501     p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5502     if (!p)
5503         return -ENOMEM;
5504 
5505     status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
5506                       tcam->ptg, vsig, 0, tcam->attr.flags,
5507                       vl_msk, dc_msk, nm_msk);
5508     if (status)
5509         goto err_ice_prof_tcam_ena_dis;
5510 
5511     tcam->in_use = 1;
5512 
5513     p->type = ICE_TCAM_ADD;
5514     p->add_tcam_idx = true;
5515     p->prof_id = tcam->prof_id;
5516     p->ptg = tcam->ptg;
5517     p->vsig = 0;
5518     p->tcam_idx = tcam->tcam_idx;
5519 
5520     /* log change */
5521     list_add(&p->list_entry, chg);
5522 
5523     return 0;
5524 
5525 err_ice_prof_tcam_ena_dis:
5526     devm_kfree(ice_hw_to_dev(hw), p);
5527     return status;
5528 }
5529 
5530 /**
5531  * ice_adj_prof_priorities - adjust profile based on priorities
5532  * @hw: pointer to the HW struct
5533  * @blk: hardware block
5534  * @vsig: the VSIG for which to adjust profile priorities
5535  * @chg: the change list
5536  */
5537 static int
5538 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5539             struct list_head *chg)
5540 {
5541     DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
5542     struct ice_vsig_prof *t;
5543     int status;
5544     u16 idx;
5545 
5546     bitmap_zero(ptgs_used, ICE_XLT1_CNT);
5547     idx = vsig & ICE_VSIG_IDX_M;
5548 
5549     /* Priority is based on the order in which the profiles are added. The
5550      * newest added profile has highest priority and the oldest added
5551      * profile has the lowest priority. Since the profile property list for
5552      * a VSIG is sorted from newest to oldest, this code traverses the list
5553      * in order and enables the first of each PTG that it finds (that is not
5554      * already enabled); it also disables any duplicate PTGs that it finds
5555      * in the older profiles (that are currently enabled).
5556      */
5557 
5558     list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5559                 list) {
5560         u16 i;
5561 
5562         for (i = 0; i < t->tcam_count; i++) {
5563             /* Scan the priorities from newest to oldest.
5564              * Make sure that the newest profiles take priority.
5565              */
5566             if (test_bit(t->tcam[i].ptg, ptgs_used) &&
5567                 t->tcam[i].in_use) {
5568                 /* need to mark this PTG as never match, as it
5569                  * was already in use and therefore duplicate
5570                  * (and lower priority)
5571                  */
5572                 status = ice_prof_tcam_ena_dis(hw, blk, false,
5573                                    vsig,
5574                                    &t->tcam[i],
5575                                    chg);
5576                 if (status)
5577                     return status;
5578             } else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
5579                    !t->tcam[i].in_use) {
5580                 /* need to enable this PTG, as it in not in use
5581                  * and not enabled (highest priority)
5582                  */
5583                 status = ice_prof_tcam_ena_dis(hw, blk, true,
5584                                    vsig,
5585                                    &t->tcam[i],
5586                                    chg);
5587                 if (status)
5588                     return status;
5589             }
5590 
5591             /* keep track of used ptgs */
5592             __set_bit(t->tcam[i].ptg, ptgs_used);
5593         }
5594     }
5595 
5596     return 0;
5597 }
5598 
5599 /**
5600  * ice_add_prof_id_vsig - add profile to VSIG
5601  * @hw: pointer to the HW struct
5602  * @blk: hardware block
5603  * @vsig: the VSIG to which this profile is to be added
5604  * @hdl: the profile handle indicating the profile to add
5605  * @rev: true to add entries to the end of the list
5606  * @chg: the change list
5607  */
5608 static int
5609 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5610              bool rev, struct list_head *chg)
5611 {
5612     /* Masks that ignore flags */
5613     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5614     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5615     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5616     struct ice_prof_map *map;
5617     struct ice_vsig_prof *t;
5618     struct ice_chs_chg *p;
5619     u16 vsig_idx, i;
5620     int status = 0;
5621 
5622     /* Error, if this VSIG already has this profile */
5623     if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5624         return -EEXIST;
5625 
5626     /* new VSIG profile structure */
5627     t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
5628     if (!t)
5629         return -ENOMEM;
5630 
5631     mutex_lock(&hw->blk[blk].es.prof_map_lock);
5632     /* Get the details on the profile specified by the handle ID */
5633     map = ice_search_prof_id(hw, blk, hdl);
5634     if (!map) {
5635         status = -ENOENT;
5636         goto err_ice_add_prof_id_vsig;
5637     }
5638 
5639     t->profile_cookie = map->profile_cookie;
5640     t->prof_id = map->prof_id;
5641     t->tcam_count = map->ptg_cnt;
5642 
5643     /* create TCAM entries */
5644     for (i = 0; i < map->ptg_cnt; i++) {
5645         u16 tcam_idx;
5646 
5647         /* add TCAM to change list */
5648         p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5649         if (!p) {
5650             status = -ENOMEM;
5651             goto err_ice_add_prof_id_vsig;
5652         }
5653 
5654         /* allocate the TCAM entry index */
5655         /* for entries with empty attribute masks, allocate entry from
5656          * the bottom of the TCAM table; otherwise, allocate from the
5657          * top of the table in order to give it higher priority
5658          */
5659         status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
5660                         &tcam_idx);
5661         if (status) {
5662             devm_kfree(ice_hw_to_dev(hw), p);
5663             goto err_ice_add_prof_id_vsig;
5664         }
5665 
5666         t->tcam[i].ptg = map->ptg[i];
5667         t->tcam[i].prof_id = map->prof_id;
5668         t->tcam[i].tcam_idx = tcam_idx;
5669         t->tcam[i].attr = map->attr[i];
5670         t->tcam[i].in_use = true;
5671 
5672         p->type = ICE_TCAM_ADD;
5673         p->add_tcam_idx = true;
5674         p->prof_id = t->tcam[i].prof_id;
5675         p->ptg = t->tcam[i].ptg;
5676         p->vsig = vsig;
5677         p->tcam_idx = t->tcam[i].tcam_idx;
5678 
5679         /* write the TCAM entry */
5680         status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5681                           t->tcam[i].prof_id,
5682                           t->tcam[i].ptg, vsig, 0, 0,
5683                           vl_msk, dc_msk, nm_msk);
5684         if (status) {
5685             devm_kfree(ice_hw_to_dev(hw), p);
5686             goto err_ice_add_prof_id_vsig;
5687         }
5688 
5689         /* log change */
5690         list_add(&p->list_entry, chg);
5691     }
5692 
5693     /* add profile to VSIG */
5694     vsig_idx = vsig & ICE_VSIG_IDX_M;
5695     if (rev)
5696         list_add_tail(&t->list,
5697                   &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5698     else
5699         list_add(&t->list,
5700              &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5701 
5702     mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5703     return status;
5704 
5705 err_ice_add_prof_id_vsig:
5706     mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5707     /* let caller clean up the change list */
5708     devm_kfree(ice_hw_to_dev(hw), t);
5709     return status;
5710 }
5711 
5712 /**
5713  * ice_create_prof_id_vsig - add a new VSIG with a single profile
5714  * @hw: pointer to the HW struct
5715  * @blk: hardware block
5716  * @vsi: the initial VSI that will be in VSIG
5717  * @hdl: the profile handle of the profile that will be added to the VSIG
5718  * @chg: the change list
5719  */
5720 static int
5721 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5722             struct list_head *chg)
5723 {
5724     struct ice_chs_chg *p;
5725     u16 new_vsig;
5726     int status;
5727 
5728     p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5729     if (!p)
5730         return -ENOMEM;
5731 
5732     new_vsig = ice_vsig_alloc(hw, blk);
5733     if (!new_vsig) {
5734         status = -EIO;
5735         goto err_ice_create_prof_id_vsig;
5736     }
5737 
5738     status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5739     if (status)
5740         goto err_ice_create_prof_id_vsig;
5741 
5742     status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5743     if (status)
5744         goto err_ice_create_prof_id_vsig;
5745 
5746     p->type = ICE_VSIG_ADD;
5747     p->vsi = vsi;
5748     p->orig_vsig = ICE_DEFAULT_VSIG;
5749     p->vsig = new_vsig;
5750 
5751     list_add(&p->list_entry, chg);
5752 
5753     return 0;
5754 
5755 err_ice_create_prof_id_vsig:
5756     /* let caller clean up the change list */
5757     devm_kfree(ice_hw_to_dev(hw), p);
5758     return status;
5759 }
5760 
5761 /**
5762  * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5763  * @hw: pointer to the HW struct
5764  * @blk: hardware block
5765  * @vsi: the initial VSI that will be in VSIG
5766  * @lst: the list of profile that will be added to the VSIG
5767  * @new_vsig: return of new VSIG
5768  * @chg: the change list
5769  */
5770 static int
5771 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5772              struct list_head *lst, u16 *new_vsig,
5773              struct list_head *chg)
5774 {
5775     struct ice_vsig_prof *t;
5776     int status;
5777     u16 vsig;
5778 
5779     vsig = ice_vsig_alloc(hw, blk);
5780     if (!vsig)
5781         return -EIO;
5782 
5783     status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5784     if (status)
5785         return status;
5786 
5787     list_for_each_entry(t, lst, list) {
5788         /* Reverse the order here since we are copying the list */
5789         status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5790                           true, chg);
5791         if (status)
5792             return status;
5793     }
5794 
5795     *new_vsig = vsig;
5796 
5797     return 0;
5798 }
5799 
5800 /**
5801  * ice_find_prof_vsig - find a VSIG with a specific profile handle
5802  * @hw: pointer to the HW struct
5803  * @blk: hardware block
5804  * @hdl: the profile handle of the profile to search for
5805  * @vsig: returns the VSIG with the matching profile
5806  */
5807 static bool
5808 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5809 {
5810     struct ice_vsig_prof *t;
5811     struct list_head lst;
5812     int status;
5813 
5814     INIT_LIST_HEAD(&lst);
5815 
5816     t = kzalloc(sizeof(*t), GFP_KERNEL);
5817     if (!t)
5818         return false;
5819 
5820     t->profile_cookie = hdl;
5821     list_add(&t->list, &lst);
5822 
5823     status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5824 
5825     list_del(&t->list);
5826     kfree(t);
5827 
5828     return !status;
5829 }
5830 
5831 /**
5832  * ice_add_prof_id_flow - add profile flow
5833  * @hw: pointer to the HW struct
5834  * @blk: hardware block
5835  * @vsi: the VSI to enable with the profile specified by ID
5836  * @hdl: profile handle
5837  *
5838  * Calling this function will update the hardware tables to enable the
5839  * profile indicated by the ID parameter for the VSIs specified in the VSI
5840  * array. Once successfully called, the flow will be enabled.
5841  */
5842 int
5843 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5844 {
5845     struct ice_vsig_prof *tmp1, *del1;
5846     struct ice_chs_chg *tmp, *del;
5847     struct list_head union_lst;
5848     struct list_head chg;
5849     int status;
5850     u16 vsig;
5851 
5852     INIT_LIST_HEAD(&union_lst);
5853     INIT_LIST_HEAD(&chg);
5854 
5855     /* Get profile */
5856     status = ice_get_prof(hw, blk, hdl, &chg);
5857     if (status)
5858         return status;
5859 
5860     /* determine if VSI is already part of a VSIG */
5861     status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5862     if (!status && vsig) {
5863         bool only_vsi;
5864         u16 or_vsig;
5865         u16 ref;
5866 
5867         /* found in VSIG */
5868         or_vsig = vsig;
5869 
5870         /* make sure that there is no overlap/conflict between the new
5871          * characteristics and the existing ones; we don't support that
5872          * scenario
5873          */
5874         if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5875             status = -EEXIST;
5876             goto err_ice_add_prof_id_flow;
5877         }
5878 
5879         /* last VSI in the VSIG? */
5880         status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5881         if (status)
5882             goto err_ice_add_prof_id_flow;
5883         only_vsi = (ref == 1);
5884 
5885         /* create a union of the current profiles and the one being
5886          * added
5887          */
5888         status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5889         if (status)
5890             goto err_ice_add_prof_id_flow;
5891 
5892         status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5893         if (status)
5894             goto err_ice_add_prof_id_flow;
5895 
5896         /* search for an existing VSIG with an exact charc match */
5897         status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5898         if (!status) {
5899             /* move VSI to the VSIG that matches */
5900             status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5901             if (status)
5902                 goto err_ice_add_prof_id_flow;
5903 
5904             /* VSI has been moved out of or_vsig. If the or_vsig had
5905              * only that VSI it is now empty and can be removed.
5906              */
5907             if (only_vsi) {
5908                 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5909                 if (status)
5910                     goto err_ice_add_prof_id_flow;
5911             }
5912         } else if (only_vsi) {
5913             /* If the original VSIG only contains one VSI, then it
5914              * will be the requesting VSI. In this case the VSI is
5915              * not sharing entries and we can simply add the new
5916              * profile to the VSIG.
5917              */
5918             status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5919                               &chg);
5920             if (status)
5921                 goto err_ice_add_prof_id_flow;
5922 
5923             /* Adjust priorities */
5924             status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5925             if (status)
5926                 goto err_ice_add_prof_id_flow;
5927         } else {
5928             /* No match, so we need a new VSIG */
5929             status = ice_create_vsig_from_lst(hw, blk, vsi,
5930                               &union_lst, &vsig,
5931                               &chg);
5932             if (status)
5933                 goto err_ice_add_prof_id_flow;
5934 
5935             /* Adjust priorities */
5936             status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5937             if (status)
5938                 goto err_ice_add_prof_id_flow;
5939         }
5940     } else {
5941         /* need to find or add a VSIG */
5942         /* search for an existing VSIG with an exact charc match */
5943         if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5944             /* found an exact match */
5945             /* add or move VSI to the VSIG that matches */
5946             status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5947             if (status)
5948                 goto err_ice_add_prof_id_flow;
5949         } else {
5950             /* we did not find an exact match */
5951             /* we need to add a VSIG */
5952             status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5953                              &chg);
5954             if (status)
5955                 goto err_ice_add_prof_id_flow;
5956         }
5957     }
5958 
5959     /* update hardware */
5960     if (!status)
5961         status = ice_upd_prof_hw(hw, blk, &chg);
5962 
5963 err_ice_add_prof_id_flow:
5964     list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5965         list_del(&del->list_entry);
5966         devm_kfree(ice_hw_to_dev(hw), del);
5967     }
5968 
5969     list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
5970         list_del(&del1->list);
5971         devm_kfree(ice_hw_to_dev(hw), del1);
5972     }
5973 
5974     return status;
5975 }
5976 
5977 /**
5978  * ice_rem_prof_from_list - remove a profile from list
5979  * @hw: pointer to the HW struct
5980  * @lst: list to remove the profile from
5981  * @hdl: the profile handle indicating the profile to remove
5982  */
5983 static int
5984 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
5985 {
5986     struct ice_vsig_prof *ent, *tmp;
5987 
5988     list_for_each_entry_safe(ent, tmp, lst, list)
5989         if (ent->profile_cookie == hdl) {
5990             list_del(&ent->list);
5991             devm_kfree(ice_hw_to_dev(hw), ent);
5992             return 0;
5993         }
5994 
5995     return -ENOENT;
5996 }
5997 
5998 /**
5999  * ice_rem_prof_id_flow - remove flow
6000  * @hw: pointer to the HW struct
6001  * @blk: hardware block
6002  * @vsi: the VSI from which to remove the profile specified by ID
6003  * @hdl: profile tracking handle
6004  *
6005  * Calling this function will update the hardware tables to remove the
6006  * profile indicated by the ID parameter for the VSIs specified in the VSI
6007  * array. Once successfully called, the flow will be disabled.
6008  */
6009 int
6010 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
6011 {
6012     struct ice_vsig_prof *tmp1, *del1;
6013     struct ice_chs_chg *tmp, *del;
6014     struct list_head chg, copy;
6015     int status;
6016     u16 vsig;
6017 
6018     INIT_LIST_HEAD(&copy);
6019     INIT_LIST_HEAD(&chg);
6020 
6021     /* determine if VSI is already part of a VSIG */
6022     status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
6023     if (!status && vsig) {
6024         bool last_profile;
6025         bool only_vsi;
6026         u16 ref;
6027 
6028         /* found in VSIG */
6029         last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
6030         status = ice_vsig_get_ref(hw, blk, vsig, &ref);
6031         if (status)
6032             goto err_ice_rem_prof_id_flow;
6033         only_vsi = (ref == 1);
6034 
6035         if (only_vsi) {
6036             /* If the original VSIG only contains one reference,
6037              * which will be the requesting VSI, then the VSI is not
6038              * sharing entries and we can simply remove the specific
6039              * characteristics from the VSIG.
6040              */
6041 
6042             if (last_profile) {
6043                 /* If there are no profiles left for this VSIG,
6044                  * then simply remove the VSIG.
6045                  */
6046                 status = ice_rem_vsig(hw, blk, vsig, &chg);
6047                 if (status)
6048                     goto err_ice_rem_prof_id_flow;
6049             } else {
6050                 status = ice_rem_prof_id_vsig(hw, blk, vsig,
6051                                   hdl, &chg);
6052                 if (status)
6053                     goto err_ice_rem_prof_id_flow;
6054 
6055                 /* Adjust priorities */
6056                 status = ice_adj_prof_priorities(hw, blk, vsig,
6057                                  &chg);
6058                 if (status)
6059                     goto err_ice_rem_prof_id_flow;
6060             }
6061 
6062         } else {
6063             /* Make a copy of the VSIG's list of Profiles */
6064             status = ice_get_profs_vsig(hw, blk, vsig, &copy);
6065             if (status)
6066                 goto err_ice_rem_prof_id_flow;
6067 
6068             /* Remove specified profile entry from the list */
6069             status = ice_rem_prof_from_list(hw, &copy, hdl);
6070             if (status)
6071                 goto err_ice_rem_prof_id_flow;
6072 
6073             if (list_empty(&copy)) {
6074                 status = ice_move_vsi(hw, blk, vsi,
6075                               ICE_DEFAULT_VSIG, &chg);
6076                 if (status)
6077                     goto err_ice_rem_prof_id_flow;
6078 
6079             } else if (!ice_find_dup_props_vsig(hw, blk, &copy,
6080                                 &vsig)) {
6081                 /* found an exact match */
6082                 /* add or move VSI to the VSIG that matches */
6083                 /* Search for a VSIG with a matching profile
6084                  * list
6085                  */
6086 
6087                 /* Found match, move VSI to the matching VSIG */
6088                 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6089                 if (status)
6090                     goto err_ice_rem_prof_id_flow;
6091             } else {
6092                 /* since no existing VSIG supports this
6093                  * characteristic pattern, we need to create a
6094                  * new VSIG and TCAM entries
6095                  */
6096                 status = ice_create_vsig_from_lst(hw, blk, vsi,
6097                                   &copy, &vsig,
6098                                   &chg);
6099                 if (status)
6100                     goto err_ice_rem_prof_id_flow;
6101 
6102                 /* Adjust priorities */
6103                 status = ice_adj_prof_priorities(hw, blk, vsig,
6104                                  &chg);
6105                 if (status)
6106                     goto err_ice_rem_prof_id_flow;
6107             }
6108         }
6109     } else {
6110         status = -ENOENT;
6111     }
6112 
6113     /* update hardware tables */
6114     if (!status)
6115         status = ice_upd_prof_hw(hw, blk, &chg);
6116 
6117 err_ice_rem_prof_id_flow:
6118     list_for_each_entry_safe(del, tmp, &chg, list_entry) {
6119         list_del(&del->list_entry);
6120         devm_kfree(ice_hw_to_dev(hw), del);
6121     }
6122 
6123     list_for_each_entry_safe(del1, tmp1, &copy, list) {
6124         list_del(&del1->list);
6125         devm_kfree(ice_hw_to_dev(hw), del1);
6126     }
6127 
6128     return status;
6129 }