Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright (c) 2018, Intel Corporation. */
0003 
0004 #include "ice_common.h"
0005 #include "ice_sched.h"
0006 #include "ice_adminq_cmd.h"
0007 #include "ice_flow.h"
0008 
0009 #define ICE_PF_RESET_WAIT_COUNT 300
0010 
0011 /**
0012  * ice_set_mac_type - Sets MAC type
0013  * @hw: pointer to the HW structure
0014  *
0015  * This function sets the MAC type of the adapter based on the
0016  * vendor ID and device ID stored in the HW structure.
0017  */
0018 static int ice_set_mac_type(struct ice_hw *hw)
0019 {
0020     if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
0021         return -ENODEV;
0022 
0023     switch (hw->device_id) {
0024     case ICE_DEV_ID_E810C_BACKPLANE:
0025     case ICE_DEV_ID_E810C_QSFP:
0026     case ICE_DEV_ID_E810C_SFP:
0027     case ICE_DEV_ID_E810_XXV_BACKPLANE:
0028     case ICE_DEV_ID_E810_XXV_QSFP:
0029     case ICE_DEV_ID_E810_XXV_SFP:
0030         hw->mac_type = ICE_MAC_E810;
0031         break;
0032     case ICE_DEV_ID_E823C_10G_BASE_T:
0033     case ICE_DEV_ID_E823C_BACKPLANE:
0034     case ICE_DEV_ID_E823C_QSFP:
0035     case ICE_DEV_ID_E823C_SFP:
0036     case ICE_DEV_ID_E823C_SGMII:
0037     case ICE_DEV_ID_E822C_10G_BASE_T:
0038     case ICE_DEV_ID_E822C_BACKPLANE:
0039     case ICE_DEV_ID_E822C_QSFP:
0040     case ICE_DEV_ID_E822C_SFP:
0041     case ICE_DEV_ID_E822C_SGMII:
0042     case ICE_DEV_ID_E822L_10G_BASE_T:
0043     case ICE_DEV_ID_E822L_BACKPLANE:
0044     case ICE_DEV_ID_E822L_SFP:
0045     case ICE_DEV_ID_E822L_SGMII:
0046     case ICE_DEV_ID_E823L_10G_BASE_T:
0047     case ICE_DEV_ID_E823L_1GBE:
0048     case ICE_DEV_ID_E823L_BACKPLANE:
0049     case ICE_DEV_ID_E823L_QSFP:
0050     case ICE_DEV_ID_E823L_SFP:
0051         hw->mac_type = ICE_MAC_GENERIC;
0052         break;
0053     default:
0054         hw->mac_type = ICE_MAC_UNKNOWN;
0055         break;
0056     }
0057 
0058     ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
0059     return 0;
0060 }
0061 
0062 /**
0063  * ice_is_e810
0064  * @hw: pointer to the hardware structure
0065  *
0066  * returns true if the device is E810 based, false if not.
0067  */
0068 bool ice_is_e810(struct ice_hw *hw)
0069 {
0070     return hw->mac_type == ICE_MAC_E810;
0071 }
0072 
0073 /**
0074  * ice_is_e810t
0075  * @hw: pointer to the hardware structure
0076  *
0077  * returns true if the device is E810T based, false if not.
0078  */
0079 bool ice_is_e810t(struct ice_hw *hw)
0080 {
0081     switch (hw->device_id) {
0082     case ICE_DEV_ID_E810C_SFP:
0083         if (hw->subsystem_device_id == ICE_SUBDEV_ID_E810T ||
0084             hw->subsystem_device_id == ICE_SUBDEV_ID_E810T2)
0085             return true;
0086         break;
0087     default:
0088         break;
0089     }
0090 
0091     return false;
0092 }
0093 
0094 /**
0095  * ice_clear_pf_cfg - Clear PF configuration
0096  * @hw: pointer to the hardware structure
0097  *
0098  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
0099  * configuration, flow director filters, etc.).
0100  */
0101 int ice_clear_pf_cfg(struct ice_hw *hw)
0102 {
0103     struct ice_aq_desc desc;
0104 
0105     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
0106 
0107     return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
0108 }
0109 
0110 /**
0111  * ice_aq_manage_mac_read - manage MAC address read command
0112  * @hw: pointer to the HW struct
0113  * @buf: a virtual buffer to hold the manage MAC read response
0114  * @buf_size: Size of the virtual buffer
0115  * @cd: pointer to command details structure or NULL
0116  *
0117  * This function is used to return per PF station MAC address (0x0107).
0118  * NOTE: Upon successful completion of this command, MAC address information
0119  * is returned in user specified buffer. Please interpret user specified
0120  * buffer as "manage_mac_read" response.
0121  * Response such as various MAC addresses are stored in HW struct (port.mac)
0122  * ice_discover_dev_caps is expected to be called before this function is
0123  * called.
0124  */
0125 static int
0126 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
0127                struct ice_sq_cd *cd)
0128 {
0129     struct ice_aqc_manage_mac_read_resp *resp;
0130     struct ice_aqc_manage_mac_read *cmd;
0131     struct ice_aq_desc desc;
0132     int status;
0133     u16 flags;
0134     u8 i;
0135 
0136     cmd = &desc.params.mac_read;
0137 
0138     if (buf_size < sizeof(*resp))
0139         return -EINVAL;
0140 
0141     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
0142 
0143     status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
0144     if (status)
0145         return status;
0146 
0147     resp = buf;
0148     flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
0149 
0150     if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
0151         ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
0152         return -EIO;
0153     }
0154 
0155     /* A single port can report up to two (LAN and WoL) addresses */
0156     for (i = 0; i < cmd->num_addr; i++)
0157         if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
0158             ether_addr_copy(hw->port_info->mac.lan_addr,
0159                     resp[i].mac_addr);
0160             ether_addr_copy(hw->port_info->mac.perm_addr,
0161                     resp[i].mac_addr);
0162             break;
0163         }
0164 
0165     return 0;
0166 }
0167 
0168 /**
0169  * ice_aq_get_phy_caps - returns PHY capabilities
0170  * @pi: port information structure
0171  * @qual_mods: report qualified modules
0172  * @report_mode: report mode capabilities
0173  * @pcaps: structure for PHY capabilities to be filled
0174  * @cd: pointer to command details structure or NULL
0175  *
0176  * Returns the various PHY capabilities supported on the Port (0x0600)
0177  */
0178 int
0179 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
0180             struct ice_aqc_get_phy_caps_data *pcaps,
0181             struct ice_sq_cd *cd)
0182 {
0183     struct ice_aqc_get_phy_caps *cmd;
0184     u16 pcaps_size = sizeof(*pcaps);
0185     struct ice_aq_desc desc;
0186     struct ice_hw *hw;
0187     int status;
0188 
0189     cmd = &desc.params.get_phy;
0190 
0191     if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
0192         return -EINVAL;
0193     hw = pi->hw;
0194 
0195     if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
0196         !ice_fw_supports_report_dflt_cfg(hw))
0197         return -EINVAL;
0198 
0199     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
0200 
0201     if (qual_mods)
0202         cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
0203 
0204     cmd->param0 |= cpu_to_le16(report_mode);
0205     status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
0206 
0207     ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
0208           report_mode);
0209     ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
0210           (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
0211     ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
0212           (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
0213     ice_debug(hw, ICE_DBG_LINK, "   caps = 0x%x\n", pcaps->caps);
0214     ice_debug(hw, ICE_DBG_LINK, "   low_power_ctrl_an = 0x%x\n",
0215           pcaps->low_power_ctrl_an);
0216     ice_debug(hw, ICE_DBG_LINK, "   eee_cap = 0x%x\n", pcaps->eee_cap);
0217     ice_debug(hw, ICE_DBG_LINK, "   eeer_value = 0x%x\n",
0218           pcaps->eeer_value);
0219     ice_debug(hw, ICE_DBG_LINK, "   link_fec_options = 0x%x\n",
0220           pcaps->link_fec_options);
0221     ice_debug(hw, ICE_DBG_LINK, "   module_compliance_enforcement = 0x%x\n",
0222           pcaps->module_compliance_enforcement);
0223     ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
0224           pcaps->extended_compliance_code);
0225     ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
0226           pcaps->module_type[0]);
0227     ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
0228           pcaps->module_type[1]);
0229     ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
0230           pcaps->module_type[2]);
0231 
0232     if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
0233         pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
0234         pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
0235         memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
0236                sizeof(pi->phy.link_info.module_type));
0237     }
0238 
0239     return status;
0240 }
0241 
0242 /**
0243  * ice_aq_get_link_topo_handle - get link topology node return status
0244  * @pi: port information structure
0245  * @node_type: requested node type
0246  * @cd: pointer to command details structure or NULL
0247  *
0248  * Get link topology node return status for specified node type (0x06E0)
0249  *
0250  * Node type cage can be used to determine if cage is present. If AQC
0251  * returns error (ENOENT), then no cage present. If no cage present, then
0252  * connection type is backplane or BASE-T.
0253  */
0254 static int
0255 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
0256                 struct ice_sq_cd *cd)
0257 {
0258     struct ice_aqc_get_link_topo *cmd;
0259     struct ice_aq_desc desc;
0260 
0261     cmd = &desc.params.get_link_topo;
0262 
0263     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
0264 
0265     cmd->addr.topo_params.node_type_ctx =
0266         (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
0267          ICE_AQC_LINK_TOPO_NODE_CTX_S);
0268 
0269     /* set node type */
0270     cmd->addr.topo_params.node_type_ctx |=
0271         (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
0272 
0273     return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
0274 }
0275 
0276 /**
0277  * ice_is_media_cage_present
0278  * @pi: port information structure
0279  *
0280  * Returns true if media cage is present, else false. If no cage, then
0281  * media type is backplane or BASE-T.
0282  */
0283 static bool ice_is_media_cage_present(struct ice_port_info *pi)
0284 {
0285     /* Node type cage can be used to determine if cage is present. If AQC
0286      * returns error (ENOENT), then no cage present. If no cage present then
0287      * connection type is backplane or BASE-T.
0288      */
0289     return !ice_aq_get_link_topo_handle(pi,
0290                         ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
0291                         NULL);
0292 }
0293 
0294 /**
0295  * ice_get_media_type - Gets media type
0296  * @pi: port information structure
0297  */
0298 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
0299 {
0300     struct ice_link_status *hw_link_info;
0301 
0302     if (!pi)
0303         return ICE_MEDIA_UNKNOWN;
0304 
0305     hw_link_info = &pi->phy.link_info;
0306     if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
0307         /* If more than one media type is selected, report unknown */
0308         return ICE_MEDIA_UNKNOWN;
0309 
0310     if (hw_link_info->phy_type_low) {
0311         /* 1G SGMII is a special case where some DA cable PHYs
0312          * may show this as an option when it really shouldn't
0313          * be since SGMII is meant to be between a MAC and a PHY
0314          * in a backplane. Try to detect this case and handle it
0315          */
0316         if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
0317             (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
0318             ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
0319             hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
0320             ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
0321             return ICE_MEDIA_DA;
0322 
0323         switch (hw_link_info->phy_type_low) {
0324         case ICE_PHY_TYPE_LOW_1000BASE_SX:
0325         case ICE_PHY_TYPE_LOW_1000BASE_LX:
0326         case ICE_PHY_TYPE_LOW_10GBASE_SR:
0327         case ICE_PHY_TYPE_LOW_10GBASE_LR:
0328         case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
0329         case ICE_PHY_TYPE_LOW_25GBASE_SR:
0330         case ICE_PHY_TYPE_LOW_25GBASE_LR:
0331         case ICE_PHY_TYPE_LOW_40GBASE_SR4:
0332         case ICE_PHY_TYPE_LOW_40GBASE_LR4:
0333         case ICE_PHY_TYPE_LOW_50GBASE_SR2:
0334         case ICE_PHY_TYPE_LOW_50GBASE_LR2:
0335         case ICE_PHY_TYPE_LOW_50GBASE_SR:
0336         case ICE_PHY_TYPE_LOW_50GBASE_FR:
0337         case ICE_PHY_TYPE_LOW_50GBASE_LR:
0338         case ICE_PHY_TYPE_LOW_100GBASE_SR4:
0339         case ICE_PHY_TYPE_LOW_100GBASE_LR4:
0340         case ICE_PHY_TYPE_LOW_100GBASE_SR2:
0341         case ICE_PHY_TYPE_LOW_100GBASE_DR:
0342         case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
0343         case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
0344         case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
0345         case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
0346         case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
0347         case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
0348         case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
0349         case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
0350             return ICE_MEDIA_FIBER;
0351         case ICE_PHY_TYPE_LOW_100BASE_TX:
0352         case ICE_PHY_TYPE_LOW_1000BASE_T:
0353         case ICE_PHY_TYPE_LOW_2500BASE_T:
0354         case ICE_PHY_TYPE_LOW_5GBASE_T:
0355         case ICE_PHY_TYPE_LOW_10GBASE_T:
0356         case ICE_PHY_TYPE_LOW_25GBASE_T:
0357             return ICE_MEDIA_BASET;
0358         case ICE_PHY_TYPE_LOW_10G_SFI_DA:
0359         case ICE_PHY_TYPE_LOW_25GBASE_CR:
0360         case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
0361         case ICE_PHY_TYPE_LOW_25GBASE_CR1:
0362         case ICE_PHY_TYPE_LOW_40GBASE_CR4:
0363         case ICE_PHY_TYPE_LOW_50GBASE_CR2:
0364         case ICE_PHY_TYPE_LOW_50GBASE_CP:
0365         case ICE_PHY_TYPE_LOW_100GBASE_CR4:
0366         case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
0367         case ICE_PHY_TYPE_LOW_100GBASE_CP2:
0368             return ICE_MEDIA_DA;
0369         case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
0370         case ICE_PHY_TYPE_LOW_40G_XLAUI:
0371         case ICE_PHY_TYPE_LOW_50G_LAUI2:
0372         case ICE_PHY_TYPE_LOW_50G_AUI2:
0373         case ICE_PHY_TYPE_LOW_50G_AUI1:
0374         case ICE_PHY_TYPE_LOW_100G_AUI4:
0375         case ICE_PHY_TYPE_LOW_100G_CAUI4:
0376             if (ice_is_media_cage_present(pi))
0377                 return ICE_MEDIA_DA;
0378             fallthrough;
0379         case ICE_PHY_TYPE_LOW_1000BASE_KX:
0380         case ICE_PHY_TYPE_LOW_2500BASE_KX:
0381         case ICE_PHY_TYPE_LOW_2500BASE_X:
0382         case ICE_PHY_TYPE_LOW_5GBASE_KR:
0383         case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
0384         case ICE_PHY_TYPE_LOW_25GBASE_KR:
0385         case ICE_PHY_TYPE_LOW_25GBASE_KR1:
0386         case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
0387         case ICE_PHY_TYPE_LOW_40GBASE_KR4:
0388         case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
0389         case ICE_PHY_TYPE_LOW_50GBASE_KR2:
0390         case ICE_PHY_TYPE_LOW_100GBASE_KR4:
0391         case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
0392             return ICE_MEDIA_BACKPLANE;
0393         }
0394     } else {
0395         switch (hw_link_info->phy_type_high) {
0396         case ICE_PHY_TYPE_HIGH_100G_AUI2:
0397         case ICE_PHY_TYPE_HIGH_100G_CAUI2:
0398             if (ice_is_media_cage_present(pi))
0399                 return ICE_MEDIA_DA;
0400             fallthrough;
0401         case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
0402             return ICE_MEDIA_BACKPLANE;
0403         case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
0404         case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
0405             return ICE_MEDIA_FIBER;
0406         }
0407     }
0408     return ICE_MEDIA_UNKNOWN;
0409 }
0410 
0411 /**
0412  * ice_aq_get_link_info
0413  * @pi: port information structure
0414  * @ena_lse: enable/disable LinkStatusEvent reporting
0415  * @link: pointer to link status structure - optional
0416  * @cd: pointer to command details structure or NULL
0417  *
0418  * Get Link Status (0x607). Returns the link status of the adapter.
0419  */
0420 int
0421 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
0422              struct ice_link_status *link, struct ice_sq_cd *cd)
0423 {
0424     struct ice_aqc_get_link_status_data link_data = { 0 };
0425     struct ice_aqc_get_link_status *resp;
0426     struct ice_link_status *li_old, *li;
0427     enum ice_media_type *hw_media_type;
0428     struct ice_fc_info *hw_fc_info;
0429     bool tx_pause, rx_pause;
0430     struct ice_aq_desc desc;
0431     struct ice_hw *hw;
0432     u16 cmd_flags;
0433     int status;
0434 
0435     if (!pi)
0436         return -EINVAL;
0437     hw = pi->hw;
0438     li_old = &pi->phy.link_info_old;
0439     hw_media_type = &pi->phy.media_type;
0440     li = &pi->phy.link_info;
0441     hw_fc_info = &pi->fc;
0442 
0443     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
0444     cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
0445     resp = &desc.params.get_link_status;
0446     resp->cmd_flags = cpu_to_le16(cmd_flags);
0447     resp->lport_num = pi->lport;
0448 
0449     status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
0450 
0451     if (status)
0452         return status;
0453 
0454     /* save off old link status information */
0455     *li_old = *li;
0456 
0457     /* update current link status information */
0458     li->link_speed = le16_to_cpu(link_data.link_speed);
0459     li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
0460     li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
0461     *hw_media_type = ice_get_media_type(pi);
0462     li->link_info = link_data.link_info;
0463     li->link_cfg_err = link_data.link_cfg_err;
0464     li->an_info = link_data.an_info;
0465     li->ext_info = link_data.ext_info;
0466     li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
0467     li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
0468     li->topo_media_conflict = link_data.topo_media_conflict;
0469     li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
0470                       ICE_AQ_CFG_PACING_TYPE_M);
0471 
0472     /* update fc info */
0473     tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
0474     rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
0475     if (tx_pause && rx_pause)
0476         hw_fc_info->current_mode = ICE_FC_FULL;
0477     else if (tx_pause)
0478         hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
0479     else if (rx_pause)
0480         hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
0481     else
0482         hw_fc_info->current_mode = ICE_FC_NONE;
0483 
0484     li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
0485 
0486     ice_debug(hw, ICE_DBG_LINK, "get link info\n");
0487     ice_debug(hw, ICE_DBG_LINK, "   link_speed = 0x%x\n", li->link_speed);
0488     ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
0489           (unsigned long long)li->phy_type_low);
0490     ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
0491           (unsigned long long)li->phy_type_high);
0492     ice_debug(hw, ICE_DBG_LINK, "   media_type = 0x%x\n", *hw_media_type);
0493     ice_debug(hw, ICE_DBG_LINK, "   link_info = 0x%x\n", li->link_info);
0494     ice_debug(hw, ICE_DBG_LINK, "   link_cfg_err = 0x%x\n", li->link_cfg_err);
0495     ice_debug(hw, ICE_DBG_LINK, "   an_info = 0x%x\n", li->an_info);
0496     ice_debug(hw, ICE_DBG_LINK, "   ext_info = 0x%x\n", li->ext_info);
0497     ice_debug(hw, ICE_DBG_LINK, "   fec_info = 0x%x\n", li->fec_info);
0498     ice_debug(hw, ICE_DBG_LINK, "   lse_ena = 0x%x\n", li->lse_ena);
0499     ice_debug(hw, ICE_DBG_LINK, "   max_frame = 0x%x\n",
0500           li->max_frame_size);
0501     ice_debug(hw, ICE_DBG_LINK, "   pacing = 0x%x\n", li->pacing);
0502 
0503     /* save link status information */
0504     if (link)
0505         *link = *li;
0506 
0507     /* flag cleared so calling functions don't call AQ again */
0508     pi->phy.get_link_info = false;
0509 
0510     return 0;
0511 }
0512 
0513 /**
0514  * ice_fill_tx_timer_and_fc_thresh
0515  * @hw: pointer to the HW struct
0516  * @cmd: pointer to MAC cfg structure
0517  *
0518  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
0519  * descriptor
0520  */
0521 static void
0522 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
0523                 struct ice_aqc_set_mac_cfg *cmd)
0524 {
0525     u16 fc_thres_val, tx_timer_val;
0526     u32 val;
0527 
0528     /* We read back the transmit timer and FC threshold value of
0529      * LFC. Thus, we will use index =
0530      * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
0531      *
0532      * Also, because we are operating on transmit timer and FC
0533      * threshold of LFC, we don't turn on any bit in tx_tmr_priority
0534      */
0535 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
0536 
0537     /* Retrieve the transmit timer */
0538     val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
0539     tx_timer_val = val &
0540         PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
0541     cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
0542 
0543     /* Retrieve the FC threshold */
0544     val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
0545     fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
0546 
0547     cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
0548 }
0549 
0550 /**
0551  * ice_aq_set_mac_cfg
0552  * @hw: pointer to the HW struct
0553  * @max_frame_size: Maximum Frame Size to be supported
0554  * @cd: pointer to command details structure or NULL
0555  *
0556  * Set MAC configuration (0x0603)
0557  */
0558 int
0559 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
0560 {
0561     struct ice_aqc_set_mac_cfg *cmd;
0562     struct ice_aq_desc desc;
0563 
0564     cmd = &desc.params.set_mac_cfg;
0565 
0566     if (max_frame_size == 0)
0567         return -EINVAL;
0568 
0569     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
0570 
0571     cmd->max_frame_size = cpu_to_le16(max_frame_size);
0572 
0573     ice_fill_tx_timer_and_fc_thresh(hw, cmd);
0574 
0575     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
0576 }
0577 
0578 /**
0579  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
0580  * @hw: pointer to the HW struct
0581  */
0582 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
0583 {
0584     struct ice_switch_info *sw;
0585     int status;
0586 
0587     hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
0588                        sizeof(*hw->switch_info), GFP_KERNEL);
0589     sw = hw->switch_info;
0590 
0591     if (!sw)
0592         return -ENOMEM;
0593 
0594     INIT_LIST_HEAD(&sw->vsi_list_map_head);
0595     sw->prof_res_bm_init = 0;
0596 
0597     status = ice_init_def_sw_recp(hw);
0598     if (status) {
0599         devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
0600         return status;
0601     }
0602     return 0;
0603 }
0604 
0605 /**
0606  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
0607  * @hw: pointer to the HW struct
0608  */
0609 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
0610 {
0611     struct ice_switch_info *sw = hw->switch_info;
0612     struct ice_vsi_list_map_info *v_pos_map;
0613     struct ice_vsi_list_map_info *v_tmp_map;
0614     struct ice_sw_recipe *recps;
0615     u8 i;
0616 
0617     list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
0618                  list_entry) {
0619         list_del(&v_pos_map->list_entry);
0620         devm_kfree(ice_hw_to_dev(hw), v_pos_map);
0621     }
0622     recps = sw->recp_list;
0623     for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
0624         struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
0625 
0626         recps[i].root_rid = i;
0627         list_for_each_entry_safe(rg_entry, tmprg_entry,
0628                      &recps[i].rg_list, l_entry) {
0629             list_del(&rg_entry->l_entry);
0630             devm_kfree(ice_hw_to_dev(hw), rg_entry);
0631         }
0632 
0633         if (recps[i].adv_rule) {
0634             struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
0635             struct ice_adv_fltr_mgmt_list_entry *lst_itr;
0636 
0637             mutex_destroy(&recps[i].filt_rule_lock);
0638             list_for_each_entry_safe(lst_itr, tmp_entry,
0639                          &recps[i].filt_rules,
0640                          list_entry) {
0641                 list_del(&lst_itr->list_entry);
0642                 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
0643                 devm_kfree(ice_hw_to_dev(hw), lst_itr);
0644             }
0645         } else {
0646             struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
0647 
0648             mutex_destroy(&recps[i].filt_rule_lock);
0649             list_for_each_entry_safe(lst_itr, tmp_entry,
0650                          &recps[i].filt_rules,
0651                          list_entry) {
0652                 list_del(&lst_itr->list_entry);
0653                 devm_kfree(ice_hw_to_dev(hw), lst_itr);
0654             }
0655         }
0656         if (recps[i].root_buf)
0657             devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
0658     }
0659     ice_rm_all_sw_replay_rule_info(hw);
0660     devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
0661     devm_kfree(ice_hw_to_dev(hw), sw);
0662 }
0663 
0664 /**
0665  * ice_get_fw_log_cfg - get FW logging configuration
0666  * @hw: pointer to the HW struct
0667  */
0668 static int ice_get_fw_log_cfg(struct ice_hw *hw)
0669 {
0670     struct ice_aq_desc desc;
0671     __le16 *config;
0672     int status;
0673     u16 size;
0674 
0675     size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
0676     config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
0677     if (!config)
0678         return -ENOMEM;
0679 
0680     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
0681 
0682     status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
0683     if (!status) {
0684         u16 i;
0685 
0686         /* Save FW logging information into the HW structure */
0687         for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
0688             u16 v, m, flgs;
0689 
0690             v = le16_to_cpu(config[i]);
0691             m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
0692             flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
0693 
0694             if (m < ICE_AQC_FW_LOG_ID_MAX)
0695                 hw->fw_log.evnts[m].cur = flgs;
0696         }
0697     }
0698 
0699     devm_kfree(ice_hw_to_dev(hw), config);
0700 
0701     return status;
0702 }
0703 
0704 /**
0705  * ice_cfg_fw_log - configure FW logging
0706  * @hw: pointer to the HW struct
0707  * @enable: enable certain FW logging events if true, disable all if false
0708  *
0709  * This function enables/disables the FW logging via Rx CQ events and a UART
0710  * port based on predetermined configurations. FW logging via the Rx CQ can be
0711  * enabled/disabled for individual PF's. However, FW logging via the UART can
0712  * only be enabled/disabled for all PFs on the same device.
0713  *
0714  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
0715  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
0716  * before initializing the device.
0717  *
0718  * When re/configuring FW logging, callers need to update the "cfg" elements of
0719  * the hw->fw_log.evnts array with the desired logging event configurations for
0720  * modules of interest. When disabling FW logging completely, the callers can
0721  * just pass false in the "enable" parameter. On completion, the function will
0722  * update the "cur" element of the hw->fw_log.evnts array with the resulting
0723  * logging event configurations of the modules that are being re/configured. FW
0724  * logging modules that are not part of a reconfiguration operation retain their
0725  * previous states.
0726  *
0727  * Before resetting the device, it is recommended that the driver disables FW
0728  * logging before shutting down the control queue. When disabling FW logging
0729  * ("enable" = false), the latest configurations of FW logging events stored in
0730  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
0731  * a device reset.
0732  *
0733  * When enabling FW logging to emit log messages via the Rx CQ during the
0734  * device's initialization phase, a mechanism alternative to interrupt handlers
0735  * needs to be used to extract FW log messages from the Rx CQ periodically and
0736  * to prevent the Rx CQ from being full and stalling other types of control
0737  * messages from FW to SW. Interrupts are typically disabled during the device's
0738  * initialization phase.
0739  */
0740 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
0741 {
0742     struct ice_aqc_fw_logging *cmd;
0743     u16 i, chgs = 0, len = 0;
0744     struct ice_aq_desc desc;
0745     __le16 *data = NULL;
0746     u8 actv_evnts = 0;
0747     void *buf = NULL;
0748     int status = 0;
0749 
0750     if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
0751         return 0;
0752 
0753     /* Disable FW logging only when the control queue is still responsive */
0754     if (!enable &&
0755         (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
0756         return 0;
0757 
0758     /* Get current FW log settings */
0759     status = ice_get_fw_log_cfg(hw);
0760     if (status)
0761         return status;
0762 
0763     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
0764     cmd = &desc.params.fw_logging;
0765 
0766     /* Indicate which controls are valid */
0767     if (hw->fw_log.cq_en)
0768         cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
0769 
0770     if (hw->fw_log.uart_en)
0771         cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
0772 
0773     if (enable) {
0774         /* Fill in an array of entries with FW logging modules and
0775          * logging events being reconfigured.
0776          */
0777         for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
0778             u16 val;
0779 
0780             /* Keep track of enabled event types */
0781             actv_evnts |= hw->fw_log.evnts[i].cfg;
0782 
0783             if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
0784                 continue;
0785 
0786             if (!data) {
0787                 data = devm_kcalloc(ice_hw_to_dev(hw),
0788                             ICE_AQC_FW_LOG_ID_MAX,
0789                             sizeof(*data),
0790                             GFP_KERNEL);
0791                 if (!data)
0792                     return -ENOMEM;
0793             }
0794 
0795             val = i << ICE_AQC_FW_LOG_ID_S;
0796             val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
0797             data[chgs++] = cpu_to_le16(val);
0798         }
0799 
0800         /* Only enable FW logging if at least one module is specified.
0801          * If FW logging is currently enabled but all modules are not
0802          * enabled to emit log messages, disable FW logging altogether.
0803          */
0804         if (actv_evnts) {
0805             /* Leave if there is effectively no change */
0806             if (!chgs)
0807                 goto out;
0808 
0809             if (hw->fw_log.cq_en)
0810                 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
0811 
0812             if (hw->fw_log.uart_en)
0813                 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
0814 
0815             buf = data;
0816             len = sizeof(*data) * chgs;
0817             desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
0818         }
0819     }
0820 
0821     status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
0822     if (!status) {
0823         /* Update the current configuration to reflect events enabled.
0824          * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
0825          * logging mode is enabled for the device. They do not reflect
0826          * actual modules being enabled to emit log messages. So, their
0827          * values remain unchanged even when all modules are disabled.
0828          */
0829         u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
0830 
0831         hw->fw_log.actv_evnts = actv_evnts;
0832         for (i = 0; i < cnt; i++) {
0833             u16 v, m;
0834 
0835             if (!enable) {
0836                 /* When disabling all FW logging events as part
0837                  * of device's de-initialization, the original
0838                  * configurations are retained, and can be used
0839                  * to reconfigure FW logging later if the device
0840                  * is re-initialized.
0841                  */
0842                 hw->fw_log.evnts[i].cur = 0;
0843                 continue;
0844             }
0845 
0846             v = le16_to_cpu(data[i]);
0847             m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
0848             hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
0849         }
0850     }
0851 
0852 out:
0853     if (data)
0854         devm_kfree(ice_hw_to_dev(hw), data);
0855 
0856     return status;
0857 }
0858 
0859 /**
0860  * ice_output_fw_log
0861  * @hw: pointer to the HW struct
0862  * @desc: pointer to the AQ message descriptor
0863  * @buf: pointer to the buffer accompanying the AQ message
0864  *
0865  * Formats a FW Log message and outputs it via the standard driver logs.
0866  */
0867 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
0868 {
0869     ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
0870     ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
0871             le16_to_cpu(desc->datalen));
0872     ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
0873 }
0874 
0875 /**
0876  * ice_get_itr_intrl_gran
0877  * @hw: pointer to the HW struct
0878  *
0879  * Determines the ITR/INTRL granularities based on the maximum aggregate
0880  * bandwidth according to the device's configuration during power-on.
0881  */
0882 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
0883 {
0884     u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
0885              GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
0886             GL_PWR_MODE_CTL_CAR_MAX_BW_S;
0887 
0888     switch (max_agg_bw) {
0889     case ICE_MAX_AGG_BW_200G:
0890     case ICE_MAX_AGG_BW_100G:
0891     case ICE_MAX_AGG_BW_50G:
0892         hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
0893         hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
0894         break;
0895     case ICE_MAX_AGG_BW_25G:
0896         hw->itr_gran = ICE_ITR_GRAN_MAX_25;
0897         hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
0898         break;
0899     }
0900 }
0901 
0902 /**
0903  * ice_init_hw - main hardware initialization routine
0904  * @hw: pointer to the hardware structure
0905  */
0906 int ice_init_hw(struct ice_hw *hw)
0907 {
0908     struct ice_aqc_get_phy_caps_data *pcaps;
0909     u16 mac_buf_len;
0910     void *mac_buf;
0911     int status;
0912 
0913     /* Set MAC type based on DeviceID */
0914     status = ice_set_mac_type(hw);
0915     if (status)
0916         return status;
0917 
0918     hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
0919              PF_FUNC_RID_FUNC_NUM_M) >>
0920         PF_FUNC_RID_FUNC_NUM_S;
0921 
0922     status = ice_reset(hw, ICE_RESET_PFR);
0923     if (status)
0924         return status;
0925 
0926     ice_get_itr_intrl_gran(hw);
0927 
0928     status = ice_create_all_ctrlq(hw);
0929     if (status)
0930         goto err_unroll_cqinit;
0931 
0932     /* Enable FW logging. Not fatal if this fails. */
0933     status = ice_cfg_fw_log(hw, true);
0934     if (status)
0935         ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
0936 
0937     status = ice_clear_pf_cfg(hw);
0938     if (status)
0939         goto err_unroll_cqinit;
0940 
0941     /* Set bit to enable Flow Director filters */
0942     wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
0943     INIT_LIST_HEAD(&hw->fdir_list_head);
0944 
0945     ice_clear_pxe_mode(hw);
0946 
0947     status = ice_init_nvm(hw);
0948     if (status)
0949         goto err_unroll_cqinit;
0950 
0951     status = ice_get_caps(hw);
0952     if (status)
0953         goto err_unroll_cqinit;
0954 
0955     hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
0956                      sizeof(*hw->port_info), GFP_KERNEL);
0957     if (!hw->port_info) {
0958         status = -ENOMEM;
0959         goto err_unroll_cqinit;
0960     }
0961 
0962     /* set the back pointer to HW */
0963     hw->port_info->hw = hw;
0964 
0965     /* Initialize port_info struct with switch configuration data */
0966     status = ice_get_initial_sw_cfg(hw);
0967     if (status)
0968         goto err_unroll_alloc;
0969 
0970     hw->evb_veb = true;
0971 
0972     /* Query the allocated resources for Tx scheduler */
0973     status = ice_sched_query_res_alloc(hw);
0974     if (status) {
0975         ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
0976         goto err_unroll_alloc;
0977     }
0978     ice_sched_get_psm_clk_freq(hw);
0979 
0980     /* Initialize port_info struct with scheduler data */
0981     status = ice_sched_init_port(hw->port_info);
0982     if (status)
0983         goto err_unroll_sched;
0984 
0985     pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
0986     if (!pcaps) {
0987         status = -ENOMEM;
0988         goto err_unroll_sched;
0989     }
0990 
0991     /* Initialize port_info struct with PHY capabilities */
0992     status = ice_aq_get_phy_caps(hw->port_info, false,
0993                      ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
0994                      NULL);
0995     devm_kfree(ice_hw_to_dev(hw), pcaps);
0996     if (status)
0997         dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
0998              status);
0999 
1000     /* Initialize port_info struct with link information */
1001     status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1002     if (status)
1003         goto err_unroll_sched;
1004 
1005     /* need a valid SW entry point to build a Tx tree */
1006     if (!hw->sw_entry_point_layer) {
1007         ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1008         status = -EIO;
1009         goto err_unroll_sched;
1010     }
1011     INIT_LIST_HEAD(&hw->agg_list);
1012     /* Initialize max burst size */
1013     if (!hw->max_burst_size)
1014         ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1015 
1016     status = ice_init_fltr_mgmt_struct(hw);
1017     if (status)
1018         goto err_unroll_sched;
1019 
1020     /* Get MAC information */
1021     /* A single port can report up to two (LAN and WoL) addresses */
1022     mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1023                    sizeof(struct ice_aqc_manage_mac_read_resp),
1024                    GFP_KERNEL);
1025     mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1026 
1027     if (!mac_buf) {
1028         status = -ENOMEM;
1029         goto err_unroll_fltr_mgmt_struct;
1030     }
1031 
1032     status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1033     devm_kfree(ice_hw_to_dev(hw), mac_buf);
1034 
1035     if (status)
1036         goto err_unroll_fltr_mgmt_struct;
1037     /* enable jumbo frame support at MAC level */
1038     status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1039     if (status)
1040         goto err_unroll_fltr_mgmt_struct;
1041     /* Obtain counter base index which would be used by flow director */
1042     status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1043     if (status)
1044         goto err_unroll_fltr_mgmt_struct;
1045     status = ice_init_hw_tbls(hw);
1046     if (status)
1047         goto err_unroll_fltr_mgmt_struct;
1048     mutex_init(&hw->tnl_lock);
1049     return 0;
1050 
1051 err_unroll_fltr_mgmt_struct:
1052     ice_cleanup_fltr_mgmt_struct(hw);
1053 err_unroll_sched:
1054     ice_sched_cleanup_all(hw);
1055 err_unroll_alloc:
1056     devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1057 err_unroll_cqinit:
1058     ice_destroy_all_ctrlq(hw);
1059     return status;
1060 }
1061 
1062 /**
1063  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1064  * @hw: pointer to the hardware structure
1065  *
1066  * This should be called only during nominal operation, not as a result of
1067  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1068  * applicable initializations if it fails for any reason.
1069  */
1070 void ice_deinit_hw(struct ice_hw *hw)
1071 {
1072     ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1073     ice_cleanup_fltr_mgmt_struct(hw);
1074 
1075     ice_sched_cleanup_all(hw);
1076     ice_sched_clear_agg(hw);
1077     ice_free_seg(hw);
1078     ice_free_hw_tbls(hw);
1079     mutex_destroy(&hw->tnl_lock);
1080 
1081     if (hw->port_info) {
1082         devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1083         hw->port_info = NULL;
1084     }
1085 
1086     /* Attempt to disable FW logging before shutting down control queues */
1087     ice_cfg_fw_log(hw, false);
1088     ice_destroy_all_ctrlq(hw);
1089 
1090     /* Clear VSI contexts if not already cleared */
1091     ice_clear_all_vsi_ctx(hw);
1092 }
1093 
1094 /**
1095  * ice_check_reset - Check to see if a global reset is complete
1096  * @hw: pointer to the hardware structure
1097  */
1098 int ice_check_reset(struct ice_hw *hw)
1099 {
1100     u32 cnt, reg = 0, grst_timeout, uld_mask;
1101 
1102     /* Poll for Device Active state in case a recent CORER, GLOBR,
1103      * or EMPR has occurred. The grst delay value is in 100ms units.
1104      * Add 1sec for outstanding AQ commands that can take a long time.
1105      */
1106     grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1107             GLGEN_RSTCTL_GRSTDEL_S) + 10;
1108 
1109     for (cnt = 0; cnt < grst_timeout; cnt++) {
1110         mdelay(100);
1111         reg = rd32(hw, GLGEN_RSTAT);
1112         if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1113             break;
1114     }
1115 
1116     if (cnt == grst_timeout) {
1117         ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1118         return -EIO;
1119     }
1120 
1121 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1122                  GLNVM_ULD_PCIER_DONE_1_M |\
1123                  GLNVM_ULD_CORER_DONE_M |\
1124                  GLNVM_ULD_GLOBR_DONE_M |\
1125                  GLNVM_ULD_POR_DONE_M |\
1126                  GLNVM_ULD_POR_DONE_1_M |\
1127                  GLNVM_ULD_PCIER_DONE_2_M)
1128 
1129     uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1130                       GLNVM_ULD_PE_DONE_M : 0);
1131 
1132     /* Device is Active; check Global Reset processes are done */
1133     for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1134         reg = rd32(hw, GLNVM_ULD) & uld_mask;
1135         if (reg == uld_mask) {
1136             ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1137             break;
1138         }
1139         mdelay(10);
1140     }
1141 
1142     if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1143         ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1144               reg);
1145         return -EIO;
1146     }
1147 
1148     return 0;
1149 }
1150 
1151 /**
1152  * ice_pf_reset - Reset the PF
1153  * @hw: pointer to the hardware structure
1154  *
1155  * If a global reset has been triggered, this function checks
1156  * for its completion and then issues the PF reset
1157  */
1158 static int ice_pf_reset(struct ice_hw *hw)
1159 {
1160     u32 cnt, reg;
1161 
1162     /* If at function entry a global reset was already in progress, i.e.
1163      * state is not 'device active' or any of the reset done bits are not
1164      * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1165      * global reset is done.
1166      */
1167     if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1168         (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1169         /* poll on global reset currently in progress until done */
1170         if (ice_check_reset(hw))
1171             return -EIO;
1172 
1173         return 0;
1174     }
1175 
1176     /* Reset the PF */
1177     reg = rd32(hw, PFGEN_CTRL);
1178 
1179     wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1180 
1181     /* Wait for the PFR to complete. The wait time is the global config lock
1182      * timeout plus the PFR timeout which will account for a possible reset
1183      * that is occurring during a download package operation.
1184      */
1185     for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1186          ICE_PF_RESET_WAIT_COUNT; cnt++) {
1187         reg = rd32(hw, PFGEN_CTRL);
1188         if (!(reg & PFGEN_CTRL_PFSWR_M))
1189             break;
1190 
1191         mdelay(1);
1192     }
1193 
1194     if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1195         ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1196         return -EIO;
1197     }
1198 
1199     return 0;
1200 }
1201 
1202 /**
1203  * ice_reset - Perform different types of reset
1204  * @hw: pointer to the hardware structure
1205  * @req: reset request
1206  *
1207  * This function triggers a reset as specified by the req parameter.
1208  *
1209  * Note:
1210  * If anything other than a PF reset is triggered, PXE mode is restored.
1211  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1212  * interface has been restored in the rebuild flow.
1213  */
1214 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1215 {
1216     u32 val = 0;
1217 
1218     switch (req) {
1219     case ICE_RESET_PFR:
1220         return ice_pf_reset(hw);
1221     case ICE_RESET_CORER:
1222         ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1223         val = GLGEN_RTRIG_CORER_M;
1224         break;
1225     case ICE_RESET_GLOBR:
1226         ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1227         val = GLGEN_RTRIG_GLOBR_M;
1228         break;
1229     default:
1230         return -EINVAL;
1231     }
1232 
1233     val |= rd32(hw, GLGEN_RTRIG);
1234     wr32(hw, GLGEN_RTRIG, val);
1235     ice_flush(hw);
1236 
1237     /* wait for the FW to be ready */
1238     return ice_check_reset(hw);
1239 }
1240 
1241 /**
1242  * ice_copy_rxq_ctx_to_hw
1243  * @hw: pointer to the hardware structure
1244  * @ice_rxq_ctx: pointer to the rxq context
1245  * @rxq_index: the index of the Rx queue
1246  *
1247  * Copies rxq context from dense structure to HW register space
1248  */
1249 static int
1250 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1251 {
1252     u8 i;
1253 
1254     if (!ice_rxq_ctx)
1255         return -EINVAL;
1256 
1257     if (rxq_index > QRX_CTRL_MAX_INDEX)
1258         return -EINVAL;
1259 
1260     /* Copy each dword separately to HW */
1261     for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1262         wr32(hw, QRX_CONTEXT(i, rxq_index),
1263              *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1264 
1265         ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1266               *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1267     }
1268 
1269     return 0;
1270 }
1271 
1272 /* LAN Rx Queue Context */
1273 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1274     /* Field        Width   LSB */
1275     ICE_CTX_STORE(ice_rlan_ctx, head,       13, 0),
1276     ICE_CTX_STORE(ice_rlan_ctx, cpuid,      8,  13),
1277     ICE_CTX_STORE(ice_rlan_ctx, base,       57, 32),
1278     ICE_CTX_STORE(ice_rlan_ctx, qlen,       13, 89),
1279     ICE_CTX_STORE(ice_rlan_ctx, dbuf,       7,  102),
1280     ICE_CTX_STORE(ice_rlan_ctx, hbuf,       5,  109),
1281     ICE_CTX_STORE(ice_rlan_ctx, dtype,      2,  114),
1282     ICE_CTX_STORE(ice_rlan_ctx, dsize,      1,  116),
1283     ICE_CTX_STORE(ice_rlan_ctx, crcstrip,       1,  117),
1284     ICE_CTX_STORE(ice_rlan_ctx, l2tsel,     1,  119),
1285     ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,       4,  120),
1286     ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,       2,  124),
1287     ICE_CTX_STORE(ice_rlan_ctx, showiv,     1,  127),
1288     ICE_CTX_STORE(ice_rlan_ctx, rxmax,      14, 174),
1289     ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,   1,  193),
1290     ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,   1,  194),
1291     ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,    1,  195),
1292     ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,    1,  196),
1293     ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,     3,  198),
1294     ICE_CTX_STORE(ice_rlan_ctx, prefena,        1,  201),
1295     { 0 }
1296 };
1297 
1298 /**
1299  * ice_write_rxq_ctx
1300  * @hw: pointer to the hardware structure
1301  * @rlan_ctx: pointer to the rxq context
1302  * @rxq_index: the index of the Rx queue
1303  *
1304  * Converts rxq context from sparse to dense structure and then writes
1305  * it to HW register space and enables the hardware to prefetch descriptors
1306  * instead of only fetching them on demand
1307  */
1308 int
1309 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1310           u32 rxq_index)
1311 {
1312     u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1313 
1314     if (!rlan_ctx)
1315         return -EINVAL;
1316 
1317     rlan_ctx->prefena = 1;
1318 
1319     ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1320     return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1321 }
1322 
1323 /* LAN Tx Queue Context */
1324 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1325                     /* Field            Width   LSB */
1326     ICE_CTX_STORE(ice_tlan_ctx, base,           57, 0),
1327     ICE_CTX_STORE(ice_tlan_ctx, port_num,           3,  57),
1328     ICE_CTX_STORE(ice_tlan_ctx, cgd_num,            5,  60),
1329     ICE_CTX_STORE(ice_tlan_ctx, pf_num,         3,  65),
1330     ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,           10, 68),
1331     ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,          2,  78),
1332     ICE_CTX_STORE(ice_tlan_ctx, src_vsi,            10, 80),
1333     ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,           1,  90),
1334     ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,    1,  91),
1335     ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,           1,  92),
1336     ICE_CTX_STORE(ice_tlan_ctx, cpuid,          8,  93),
1337     ICE_CTX_STORE(ice_tlan_ctx, wb_mode,            1,  101),
1338     ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,         1,  102),
1339     ICE_CTX_STORE(ice_tlan_ctx, tphrd,          1,  103),
1340     ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,         1,  104),
1341     ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,            9,  105),
1342     ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,       14, 114),
1343     ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,  1,  128),
1344     ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,     6,  129),
1345     ICE_CTX_STORE(ice_tlan_ctx, qlen,           13, 135),
1346     ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,        4,  148),
1347     ICE_CTX_STORE(ice_tlan_ctx, tso_ena,            1,  152),
1348     ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,           11, 153),
1349     ICE_CTX_STORE(ice_tlan_ctx, legacy_int,         1,  164),
1350     ICE_CTX_STORE(ice_tlan_ctx, drop_ena,           1,  165),
1351     ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,     2,  166),
1352     ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,    3,  168),
1353     ICE_CTX_STORE(ice_tlan_ctx, int_q_state,        122,    171),
1354     { 0 }
1355 };
1356 
1357 /* Sideband Queue command wrappers */
1358 
1359 /**
1360  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1361  * @hw: pointer to the HW struct
1362  * @desc: descriptor describing the command
1363  * @buf: buffer to use for indirect commands (NULL for direct commands)
1364  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1365  * @cd: pointer to command details structure
1366  */
1367 static int
1368 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1369          void *buf, u16 buf_size, struct ice_sq_cd *cd)
1370 {
1371     return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1372                    (struct ice_aq_desc *)desc, buf, buf_size, cd);
1373 }
1374 
1375 /**
1376  * ice_sbq_rw_reg - Fill Sideband Queue command
1377  * @hw: pointer to the HW struct
1378  * @in: message info to be filled in descriptor
1379  */
1380 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1381 {
1382     struct ice_sbq_cmd_desc desc = {0};
1383     struct ice_sbq_msg_req msg = {0};
1384     u16 msg_len;
1385     int status;
1386 
1387     msg_len = sizeof(msg);
1388 
1389     msg.dest_dev = in->dest_dev;
1390     msg.opcode = in->opcode;
1391     msg.flags = ICE_SBQ_MSG_FLAGS;
1392     msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1393     msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1394     msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1395 
1396     if (in->opcode)
1397         msg.data = cpu_to_le32(in->data);
1398     else
1399         /* data read comes back in completion, so shorten the struct by
1400          * sizeof(msg.data)
1401          */
1402         msg_len -= sizeof(msg.data);
1403 
1404     desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1405     desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1406     desc.param0.cmd_len = cpu_to_le16(msg_len);
1407     status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1408     if (!status && !in->opcode)
1409         in->data = le32_to_cpu
1410             (((struct ice_sbq_msg_cmpl *)&msg)->data);
1411     return status;
1412 }
1413 
1414 /* FW Admin Queue command wrappers */
1415 
1416 /* Software lock/mutex that is meant to be held while the Global Config Lock
1417  * in firmware is acquired by the software to prevent most (but not all) types
1418  * of AQ commands from being sent to FW
1419  */
1420 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1421 
1422 /**
1423  * ice_should_retry_sq_send_cmd
1424  * @opcode: AQ opcode
1425  *
1426  * Decide if we should retry the send command routine for the ATQ, depending
1427  * on the opcode.
1428  */
1429 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1430 {
1431     switch (opcode) {
1432     case ice_aqc_opc_get_link_topo:
1433     case ice_aqc_opc_lldp_stop:
1434     case ice_aqc_opc_lldp_start:
1435     case ice_aqc_opc_lldp_filter_ctrl:
1436         return true;
1437     }
1438 
1439     return false;
1440 }
1441 
1442 /**
1443  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1444  * @hw: pointer to the HW struct
1445  * @cq: pointer to the specific Control queue
1446  * @desc: prefilled descriptor describing the command
1447  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1448  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1449  * @cd: pointer to command details structure
1450  *
1451  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1452  * Queue if the EBUSY AQ error is returned.
1453  */
1454 static int
1455 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1456               struct ice_aq_desc *desc, void *buf, u16 buf_size,
1457               struct ice_sq_cd *cd)
1458 {
1459     struct ice_aq_desc desc_cpy;
1460     bool is_cmd_for_retry;
1461     u8 *buf_cpy = NULL;
1462     u8 idx = 0;
1463     u16 opcode;
1464     int status;
1465 
1466     opcode = le16_to_cpu(desc->opcode);
1467     is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1468     memset(&desc_cpy, 0, sizeof(desc_cpy));
1469 
1470     if (is_cmd_for_retry) {
1471         if (buf) {
1472             buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1473             if (!buf_cpy)
1474                 return -ENOMEM;
1475         }
1476 
1477         memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1478     }
1479 
1480     do {
1481         status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1482 
1483         if (!is_cmd_for_retry || !status ||
1484             hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1485             break;
1486 
1487         if (buf_cpy)
1488             memcpy(buf, buf_cpy, buf_size);
1489 
1490         memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1491 
1492         mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1493 
1494     } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1495 
1496     kfree(buf_cpy);
1497 
1498     return status;
1499 }
1500 
1501 /**
1502  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1503  * @hw: pointer to the HW struct
1504  * @desc: descriptor describing the command
1505  * @buf: buffer to use for indirect commands (NULL for direct commands)
1506  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1507  * @cd: pointer to command details structure
1508  *
1509  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1510  */
1511 int
1512 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1513         u16 buf_size, struct ice_sq_cd *cd)
1514 {
1515     struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1516     bool lock_acquired = false;
1517     int status;
1518 
1519     /* When a package download is in process (i.e. when the firmware's
1520      * Global Configuration Lock resource is held), only the Download
1521      * Package, Get Version, Get Package Info List, Upload Section,
1522      * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1523      * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1524      * Recipes to Profile Association, and Release Resource (with resource
1525      * ID set to Global Config Lock) AdminQ commands are allowed; all others
1526      * must block until the package download completes and the Global Config
1527      * Lock is released.  See also ice_acquire_global_cfg_lock().
1528      */
1529     switch (le16_to_cpu(desc->opcode)) {
1530     case ice_aqc_opc_download_pkg:
1531     case ice_aqc_opc_get_pkg_info_list:
1532     case ice_aqc_opc_get_ver:
1533     case ice_aqc_opc_upload_section:
1534     case ice_aqc_opc_update_pkg:
1535     case ice_aqc_opc_set_port_params:
1536     case ice_aqc_opc_get_vlan_mode_parameters:
1537     case ice_aqc_opc_set_vlan_mode_parameters:
1538     case ice_aqc_opc_add_recipe:
1539     case ice_aqc_opc_recipe_to_profile:
1540     case ice_aqc_opc_get_recipe:
1541     case ice_aqc_opc_get_recipe_to_profile:
1542         break;
1543     case ice_aqc_opc_release_res:
1544         if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1545             break;
1546         fallthrough;
1547     default:
1548         mutex_lock(&ice_global_cfg_lock_sw);
1549         lock_acquired = true;
1550         break;
1551     }
1552 
1553     status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1554     if (lock_acquired)
1555         mutex_unlock(&ice_global_cfg_lock_sw);
1556 
1557     return status;
1558 }
1559 
1560 /**
1561  * ice_aq_get_fw_ver
1562  * @hw: pointer to the HW struct
1563  * @cd: pointer to command details structure or NULL
1564  *
1565  * Get the firmware version (0x0001) from the admin queue commands
1566  */
1567 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1568 {
1569     struct ice_aqc_get_ver *resp;
1570     struct ice_aq_desc desc;
1571     int status;
1572 
1573     resp = &desc.params.get_ver;
1574 
1575     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1576 
1577     status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1578 
1579     if (!status) {
1580         hw->fw_branch = resp->fw_branch;
1581         hw->fw_maj_ver = resp->fw_major;
1582         hw->fw_min_ver = resp->fw_minor;
1583         hw->fw_patch = resp->fw_patch;
1584         hw->fw_build = le32_to_cpu(resp->fw_build);
1585         hw->api_branch = resp->api_branch;
1586         hw->api_maj_ver = resp->api_major;
1587         hw->api_min_ver = resp->api_minor;
1588         hw->api_patch = resp->api_patch;
1589     }
1590 
1591     return status;
1592 }
1593 
1594 /**
1595  * ice_aq_send_driver_ver
1596  * @hw: pointer to the HW struct
1597  * @dv: driver's major, minor version
1598  * @cd: pointer to command details structure or NULL
1599  *
1600  * Send the driver version (0x0002) to the firmware
1601  */
1602 int
1603 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1604                struct ice_sq_cd *cd)
1605 {
1606     struct ice_aqc_driver_ver *cmd;
1607     struct ice_aq_desc desc;
1608     u16 len;
1609 
1610     cmd = &desc.params.driver_ver;
1611 
1612     if (!dv)
1613         return -EINVAL;
1614 
1615     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1616 
1617     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1618     cmd->major_ver = dv->major_ver;
1619     cmd->minor_ver = dv->minor_ver;
1620     cmd->build_ver = dv->build_ver;
1621     cmd->subbuild_ver = dv->subbuild_ver;
1622 
1623     len = 0;
1624     while (len < sizeof(dv->driver_string) &&
1625            isascii(dv->driver_string[len]) && dv->driver_string[len])
1626         len++;
1627 
1628     return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1629 }
1630 
1631 /**
1632  * ice_aq_q_shutdown
1633  * @hw: pointer to the HW struct
1634  * @unloading: is the driver unloading itself
1635  *
1636  * Tell the Firmware that we're shutting down the AdminQ and whether
1637  * or not the driver is unloading as well (0x0003).
1638  */
1639 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1640 {
1641     struct ice_aqc_q_shutdown *cmd;
1642     struct ice_aq_desc desc;
1643 
1644     cmd = &desc.params.q_shutdown;
1645 
1646     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1647 
1648     if (unloading)
1649         cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1650 
1651     return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1652 }
1653 
1654 /**
1655  * ice_aq_req_res
1656  * @hw: pointer to the HW struct
1657  * @res: resource ID
1658  * @access: access type
1659  * @sdp_number: resource number
1660  * @timeout: the maximum time in ms that the driver may hold the resource
1661  * @cd: pointer to command details structure or NULL
1662  *
1663  * Requests common resource using the admin queue commands (0x0008).
1664  * When attempting to acquire the Global Config Lock, the driver can
1665  * learn of three states:
1666  *  1) 0 -         acquired lock, and can perform download package
1667  *  2) -EIO -      did not get lock, driver should fail to load
1668  *  3) -EALREADY - did not get lock, but another driver has
1669  *                 successfully downloaded the package; the driver does
1670  *                 not have to download the package and can continue
1671  *                 loading
1672  *
1673  * Note that if the caller is in an acquire lock, perform action, release lock
1674  * phase of operation, it is possible that the FW may detect a timeout and issue
1675  * a CORER. In this case, the driver will receive a CORER interrupt and will
1676  * have to determine its cause. The calling thread that is handling this flow
1677  * will likely get an error propagated back to it indicating the Download
1678  * Package, Update Package or the Release Resource AQ commands timed out.
1679  */
1680 static int
1681 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1682            enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1683            struct ice_sq_cd *cd)
1684 {
1685     struct ice_aqc_req_res *cmd_resp;
1686     struct ice_aq_desc desc;
1687     int status;
1688 
1689     cmd_resp = &desc.params.res_owner;
1690 
1691     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1692 
1693     cmd_resp->res_id = cpu_to_le16(res);
1694     cmd_resp->access_type = cpu_to_le16(access);
1695     cmd_resp->res_number = cpu_to_le32(sdp_number);
1696     cmd_resp->timeout = cpu_to_le32(*timeout);
1697     *timeout = 0;
1698 
1699     status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1700 
1701     /* The completion specifies the maximum time in ms that the driver
1702      * may hold the resource in the Timeout field.
1703      */
1704 
1705     /* Global config lock response utilizes an additional status field.
1706      *
1707      * If the Global config lock resource is held by some other driver, the
1708      * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1709      * and the timeout field indicates the maximum time the current owner
1710      * of the resource has to free it.
1711      */
1712     if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1713         if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1714             *timeout = le32_to_cpu(cmd_resp->timeout);
1715             return 0;
1716         } else if (le16_to_cpu(cmd_resp->status) ==
1717                ICE_AQ_RES_GLBL_IN_PROG) {
1718             *timeout = le32_to_cpu(cmd_resp->timeout);
1719             return -EIO;
1720         } else if (le16_to_cpu(cmd_resp->status) ==
1721                ICE_AQ_RES_GLBL_DONE) {
1722             return -EALREADY;
1723         }
1724 
1725         /* invalid FW response, force a timeout immediately */
1726         *timeout = 0;
1727         return -EIO;
1728     }
1729 
1730     /* If the resource is held by some other driver, the command completes
1731      * with a busy return value and the timeout field indicates the maximum
1732      * time the current owner of the resource has to free it.
1733      */
1734     if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1735         *timeout = le32_to_cpu(cmd_resp->timeout);
1736 
1737     return status;
1738 }
1739 
1740 /**
1741  * ice_aq_release_res
1742  * @hw: pointer to the HW struct
1743  * @res: resource ID
1744  * @sdp_number: resource number
1745  * @cd: pointer to command details structure or NULL
1746  *
1747  * release common resource using the admin queue commands (0x0009)
1748  */
1749 static int
1750 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1751            struct ice_sq_cd *cd)
1752 {
1753     struct ice_aqc_req_res *cmd;
1754     struct ice_aq_desc desc;
1755 
1756     cmd = &desc.params.res_owner;
1757 
1758     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1759 
1760     cmd->res_id = cpu_to_le16(res);
1761     cmd->res_number = cpu_to_le32(sdp_number);
1762 
1763     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1764 }
1765 
1766 /**
1767  * ice_acquire_res
1768  * @hw: pointer to the HW structure
1769  * @res: resource ID
1770  * @access: access type (read or write)
1771  * @timeout: timeout in milliseconds
1772  *
1773  * This function will attempt to acquire the ownership of a resource.
1774  */
1775 int
1776 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1777         enum ice_aq_res_access_type access, u32 timeout)
1778 {
1779 #define ICE_RES_POLLING_DELAY_MS    10
1780     u32 delay = ICE_RES_POLLING_DELAY_MS;
1781     u32 time_left = timeout;
1782     int status;
1783 
1784     status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1785 
1786     /* A return code of -EALREADY means that another driver has
1787      * previously acquired the resource and performed any necessary updates;
1788      * in this case the caller does not obtain the resource and has no
1789      * further work to do.
1790      */
1791     if (status == -EALREADY)
1792         goto ice_acquire_res_exit;
1793 
1794     if (status)
1795         ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1796 
1797     /* If necessary, poll until the current lock owner timeouts */
1798     timeout = time_left;
1799     while (status && timeout && time_left) {
1800         mdelay(delay);
1801         timeout = (timeout > delay) ? timeout - delay : 0;
1802         status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1803 
1804         if (status == -EALREADY)
1805             /* lock free, but no work to do */
1806             break;
1807 
1808         if (!status)
1809             /* lock acquired */
1810             break;
1811     }
1812     if (status && status != -EALREADY)
1813         ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1814 
1815 ice_acquire_res_exit:
1816     if (status == -EALREADY) {
1817         if (access == ICE_RES_WRITE)
1818             ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1819         else
1820             ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1821     }
1822     return status;
1823 }
1824 
1825 /**
1826  * ice_release_res
1827  * @hw: pointer to the HW structure
1828  * @res: resource ID
1829  *
1830  * This function will release a resource using the proper Admin Command.
1831  */
1832 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1833 {
1834     u32 total_delay = 0;
1835     int status;
1836 
1837     status = ice_aq_release_res(hw, res, 0, NULL);
1838 
1839     /* there are some rare cases when trying to release the resource
1840      * results in an admin queue timeout, so handle them correctly
1841      */
1842     while ((status == -EIO) && (total_delay < hw->adminq.sq_cmd_timeout)) {
1843         mdelay(1);
1844         status = ice_aq_release_res(hw, res, 0, NULL);
1845         total_delay++;
1846     }
1847 }
1848 
1849 /**
1850  * ice_aq_alloc_free_res - command to allocate/free resources
1851  * @hw: pointer to the HW struct
1852  * @num_entries: number of resource entries in buffer
1853  * @buf: Indirect buffer to hold data parameters and response
1854  * @buf_size: size of buffer for indirect commands
1855  * @opc: pass in the command opcode
1856  * @cd: pointer to command details structure or NULL
1857  *
1858  * Helper function to allocate/free resources using the admin queue commands
1859  */
1860 int
1861 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1862               struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1863               enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1864 {
1865     struct ice_aqc_alloc_free_res_cmd *cmd;
1866     struct ice_aq_desc desc;
1867 
1868     cmd = &desc.params.sw_res_ctrl;
1869 
1870     if (!buf)
1871         return -EINVAL;
1872 
1873     if (buf_size < flex_array_size(buf, elem, num_entries))
1874         return -EINVAL;
1875 
1876     ice_fill_dflt_direct_cmd_desc(&desc, opc);
1877 
1878     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1879 
1880     cmd->num_entries = cpu_to_le16(num_entries);
1881 
1882     return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1883 }
1884 
1885 /**
1886  * ice_alloc_hw_res - allocate resource
1887  * @hw: pointer to the HW struct
1888  * @type: type of resource
1889  * @num: number of resources to allocate
1890  * @btm: allocate from bottom
1891  * @res: pointer to array that will receive the resources
1892  */
1893 int
1894 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1895 {
1896     struct ice_aqc_alloc_free_res_elem *buf;
1897     u16 buf_len;
1898     int status;
1899 
1900     buf_len = struct_size(buf, elem, num);
1901     buf = kzalloc(buf_len, GFP_KERNEL);
1902     if (!buf)
1903         return -ENOMEM;
1904 
1905     /* Prepare buffer to allocate resource. */
1906     buf->num_elems = cpu_to_le16(num);
1907     buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1908                     ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1909     if (btm)
1910         buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1911 
1912     status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1913                        ice_aqc_opc_alloc_res, NULL);
1914     if (status)
1915         goto ice_alloc_res_exit;
1916 
1917     memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1918 
1919 ice_alloc_res_exit:
1920     kfree(buf);
1921     return status;
1922 }
1923 
1924 /**
1925  * ice_free_hw_res - free allocated HW resource
1926  * @hw: pointer to the HW struct
1927  * @type: type of resource to free
1928  * @num: number of resources
1929  * @res: pointer to array that contains the resources to free
1930  */
1931 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1932 {
1933     struct ice_aqc_alloc_free_res_elem *buf;
1934     u16 buf_len;
1935     int status;
1936 
1937     buf_len = struct_size(buf, elem, num);
1938     buf = kzalloc(buf_len, GFP_KERNEL);
1939     if (!buf)
1940         return -ENOMEM;
1941 
1942     /* Prepare buffer to free resource. */
1943     buf->num_elems = cpu_to_le16(num);
1944     buf->res_type = cpu_to_le16(type);
1945     memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1946 
1947     status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1948                        ice_aqc_opc_free_res, NULL);
1949     if (status)
1950         ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1951 
1952     kfree(buf);
1953     return status;
1954 }
1955 
1956 /**
1957  * ice_get_num_per_func - determine number of resources per PF
1958  * @hw: pointer to the HW structure
1959  * @max: value to be evenly split between each PF
1960  *
1961  * Determine the number of valid functions by going through the bitmap returned
1962  * from parsing capabilities and use this to calculate the number of resources
1963  * per PF based on the max value passed in.
1964  */
1965 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1966 {
1967     u8 funcs;
1968 
1969 #define ICE_CAPS_VALID_FUNCS_M  0xFF
1970     funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1971              ICE_CAPS_VALID_FUNCS_M);
1972 
1973     if (!funcs)
1974         return 0;
1975 
1976     return max / funcs;
1977 }
1978 
1979 /**
1980  * ice_parse_common_caps - parse common device/function capabilities
1981  * @hw: pointer to the HW struct
1982  * @caps: pointer to common capabilities structure
1983  * @elem: the capability element to parse
1984  * @prefix: message prefix for tracing capabilities
1985  *
1986  * Given a capability element, extract relevant details into the common
1987  * capability structure.
1988  *
1989  * Returns: true if the capability matches one of the common capability ids,
1990  * false otherwise.
1991  */
1992 static bool
1993 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1994               struct ice_aqc_list_caps_elem *elem, const char *prefix)
1995 {
1996     u32 logical_id = le32_to_cpu(elem->logical_id);
1997     u32 phys_id = le32_to_cpu(elem->phys_id);
1998     u32 number = le32_to_cpu(elem->number);
1999     u16 cap = le16_to_cpu(elem->cap);
2000     bool found = true;
2001 
2002     switch (cap) {
2003     case ICE_AQC_CAPS_VALID_FUNCTIONS:
2004         caps->valid_functions = number;
2005         ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2006               caps->valid_functions);
2007         break;
2008     case ICE_AQC_CAPS_SRIOV:
2009         caps->sr_iov_1_1 = (number == 1);
2010         ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2011               caps->sr_iov_1_1);
2012         break;
2013     case ICE_AQC_CAPS_DCB:
2014         caps->dcb = (number == 1);
2015         caps->active_tc_bitmap = logical_id;
2016         caps->maxtc = phys_id;
2017         ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2018         ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2019               caps->active_tc_bitmap);
2020         ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2021         break;
2022     case ICE_AQC_CAPS_RSS:
2023         caps->rss_table_size = number;
2024         caps->rss_table_entry_width = logical_id;
2025         ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2026               caps->rss_table_size);
2027         ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2028               caps->rss_table_entry_width);
2029         break;
2030     case ICE_AQC_CAPS_RXQS:
2031         caps->num_rxq = number;
2032         caps->rxq_first_id = phys_id;
2033         ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2034               caps->num_rxq);
2035         ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2036               caps->rxq_first_id);
2037         break;
2038     case ICE_AQC_CAPS_TXQS:
2039         caps->num_txq = number;
2040         caps->txq_first_id = phys_id;
2041         ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2042               caps->num_txq);
2043         ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2044               caps->txq_first_id);
2045         break;
2046     case ICE_AQC_CAPS_MSIX:
2047         caps->num_msix_vectors = number;
2048         caps->msix_vector_first_id = phys_id;
2049         ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2050               caps->num_msix_vectors);
2051         ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2052               caps->msix_vector_first_id);
2053         break;
2054     case ICE_AQC_CAPS_PENDING_NVM_VER:
2055         caps->nvm_update_pending_nvm = true;
2056         ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2057         break;
2058     case ICE_AQC_CAPS_PENDING_OROM_VER:
2059         caps->nvm_update_pending_orom = true;
2060         ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2061         break;
2062     case ICE_AQC_CAPS_PENDING_NET_VER:
2063         caps->nvm_update_pending_netlist = true;
2064         ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2065         break;
2066     case ICE_AQC_CAPS_NVM_MGMT:
2067         caps->nvm_unified_update =
2068             (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2069             true : false;
2070         ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2071               caps->nvm_unified_update);
2072         break;
2073     case ICE_AQC_CAPS_RDMA:
2074         caps->rdma = (number == 1);
2075         ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2076         break;
2077     case ICE_AQC_CAPS_MAX_MTU:
2078         caps->max_mtu = number;
2079         ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2080               prefix, caps->max_mtu);
2081         break;
2082     case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2083         caps->pcie_reset_avoidance = (number > 0);
2084         ice_debug(hw, ICE_DBG_INIT,
2085               "%s: pcie_reset_avoidance = %d\n", prefix,
2086               caps->pcie_reset_avoidance);
2087         break;
2088     case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2089         caps->reset_restrict_support = (number == 1);
2090         ice_debug(hw, ICE_DBG_INIT,
2091               "%s: reset_restrict_support = %d\n", prefix,
2092               caps->reset_restrict_support);
2093         break;
2094     default:
2095         /* Not one of the recognized common capabilities */
2096         found = false;
2097     }
2098 
2099     return found;
2100 }
2101 
2102 /**
2103  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2104  * @hw: pointer to the HW structure
2105  * @caps: pointer to capabilities structure to fix
2106  *
2107  * Re-calculate the capabilities that are dependent on the number of physical
2108  * ports; i.e. some features are not supported or function differently on
2109  * devices with more than 4 ports.
2110  */
2111 static void
2112 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2113 {
2114     /* This assumes device capabilities are always scanned before function
2115      * capabilities during the initialization flow.
2116      */
2117     if (hw->dev_caps.num_funcs > 4) {
2118         /* Max 4 TCs per port */
2119         caps->maxtc = 4;
2120         ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2121               caps->maxtc);
2122         if (caps->rdma) {
2123             ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2124             caps->rdma = 0;
2125         }
2126 
2127         /* print message only when processing device capabilities
2128          * during initialization.
2129          */
2130         if (caps == &hw->dev_caps.common_cap)
2131             dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2132     }
2133 }
2134 
2135 /**
2136  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2137  * @hw: pointer to the HW struct
2138  * @func_p: pointer to function capabilities structure
2139  * @cap: pointer to the capability element to parse
2140  *
2141  * Extract function capabilities for ICE_AQC_CAPS_VF.
2142  */
2143 static void
2144 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2145                struct ice_aqc_list_caps_elem *cap)
2146 {
2147     u32 logical_id = le32_to_cpu(cap->logical_id);
2148     u32 number = le32_to_cpu(cap->number);
2149 
2150     func_p->num_allocd_vfs = number;
2151     func_p->vf_base_id = logical_id;
2152     ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2153           func_p->num_allocd_vfs);
2154     ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2155           func_p->vf_base_id);
2156 }
2157 
2158 /**
2159  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2160  * @hw: pointer to the HW struct
2161  * @func_p: pointer to function capabilities structure
2162  * @cap: pointer to the capability element to parse
2163  *
2164  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2165  */
2166 static void
2167 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2168             struct ice_aqc_list_caps_elem *cap)
2169 {
2170     func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2171     ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2172           le32_to_cpu(cap->number));
2173     ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2174           func_p->guar_num_vsi);
2175 }
2176 
2177 /**
2178  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2179  * @hw: pointer to the HW struct
2180  * @func_p: pointer to function capabilities structure
2181  * @cap: pointer to the capability element to parse
2182  *
2183  * Extract function capabilities for ICE_AQC_CAPS_1588.
2184  */
2185 static void
2186 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2187              struct ice_aqc_list_caps_elem *cap)
2188 {
2189     struct ice_ts_func_info *info = &func_p->ts_func_info;
2190     u32 number = le32_to_cpu(cap->number);
2191 
2192     info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2193     func_p->common_cap.ieee_1588 = info->ena;
2194 
2195     info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2196     info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2197     info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2198     info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2199 
2200     info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2201     info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2202 
2203     if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2204         info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2205     } else {
2206         /* Unknown clock frequency, so assume a (probably incorrect)
2207          * default to avoid out-of-bounds look ups of frequency
2208          * related information.
2209          */
2210         ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2211               info->clk_freq);
2212         info->time_ref = ICE_TIME_REF_FREQ_25_000;
2213     }
2214 
2215     ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2216           func_p->common_cap.ieee_1588);
2217     ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2218           info->src_tmr_owned);
2219     ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2220           info->tmr_ena);
2221     ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2222           info->tmr_index_owned);
2223     ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2224           info->tmr_index_assoc);
2225     ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2226           info->clk_freq);
2227     ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2228           info->clk_src);
2229 }
2230 
2231 /**
2232  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2233  * @hw: pointer to the HW struct
2234  * @func_p: pointer to function capabilities structure
2235  *
2236  * Extract function capabilities for ICE_AQC_CAPS_FD.
2237  */
2238 static void
2239 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2240 {
2241     u32 reg_val, val;
2242 
2243     reg_val = rd32(hw, GLQF_FD_SIZE);
2244     val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2245         GLQF_FD_SIZE_FD_GSIZE_S;
2246     func_p->fd_fltr_guar =
2247         ice_get_num_per_func(hw, val);
2248     val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2249         GLQF_FD_SIZE_FD_BSIZE_S;
2250     func_p->fd_fltr_best_effort = val;
2251 
2252     ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2253           func_p->fd_fltr_guar);
2254     ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2255           func_p->fd_fltr_best_effort);
2256 }
2257 
2258 /**
2259  * ice_parse_func_caps - Parse function capabilities
2260  * @hw: pointer to the HW struct
2261  * @func_p: pointer to function capabilities structure
2262  * @buf: buffer containing the function capability records
2263  * @cap_count: the number of capabilities
2264  *
2265  * Helper function to parse function (0x000A) capabilities list. For
2266  * capabilities shared between device and function, this relies on
2267  * ice_parse_common_caps.
2268  *
2269  * Loop through the list of provided capabilities and extract the relevant
2270  * data into the function capabilities structured.
2271  */
2272 static void
2273 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2274             void *buf, u32 cap_count)
2275 {
2276     struct ice_aqc_list_caps_elem *cap_resp;
2277     u32 i;
2278 
2279     cap_resp = buf;
2280 
2281     memset(func_p, 0, sizeof(*func_p));
2282 
2283     for (i = 0; i < cap_count; i++) {
2284         u16 cap = le16_to_cpu(cap_resp[i].cap);
2285         bool found;
2286 
2287         found = ice_parse_common_caps(hw, &func_p->common_cap,
2288                           &cap_resp[i], "func caps");
2289 
2290         switch (cap) {
2291         case ICE_AQC_CAPS_VF:
2292             ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2293             break;
2294         case ICE_AQC_CAPS_VSI:
2295             ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2296             break;
2297         case ICE_AQC_CAPS_1588:
2298             ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2299             break;
2300         case ICE_AQC_CAPS_FD:
2301             ice_parse_fdir_func_caps(hw, func_p);
2302             break;
2303         default:
2304             /* Don't list common capabilities as unknown */
2305             if (!found)
2306                 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2307                       i, cap);
2308             break;
2309         }
2310     }
2311 
2312     ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2313 }
2314 
2315 /**
2316  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2317  * @hw: pointer to the HW struct
2318  * @dev_p: pointer to device capabilities structure
2319  * @cap: capability element to parse
2320  *
2321  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2322  */
2323 static void
2324 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2325                   struct ice_aqc_list_caps_elem *cap)
2326 {
2327     u32 number = le32_to_cpu(cap->number);
2328 
2329     dev_p->num_funcs = hweight32(number);
2330     ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2331           dev_p->num_funcs);
2332 }
2333 
2334 /**
2335  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2336  * @hw: pointer to the HW struct
2337  * @dev_p: pointer to device capabilities structure
2338  * @cap: capability element to parse
2339  *
2340  * Parse ICE_AQC_CAPS_VF for device capabilities.
2341  */
2342 static void
2343 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2344               struct ice_aqc_list_caps_elem *cap)
2345 {
2346     u32 number = le32_to_cpu(cap->number);
2347 
2348     dev_p->num_vfs_exposed = number;
2349     ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2350           dev_p->num_vfs_exposed);
2351 }
2352 
2353 /**
2354  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2355  * @hw: pointer to the HW struct
2356  * @dev_p: pointer to device capabilities structure
2357  * @cap: capability element to parse
2358  *
2359  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2360  */
2361 static void
2362 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2363                struct ice_aqc_list_caps_elem *cap)
2364 {
2365     u32 number = le32_to_cpu(cap->number);
2366 
2367     dev_p->num_vsi_allocd_to_host = number;
2368     ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2369           dev_p->num_vsi_allocd_to_host);
2370 }
2371 
2372 /**
2373  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2374  * @hw: pointer to the HW struct
2375  * @dev_p: pointer to device capabilities structure
2376  * @cap: capability element to parse
2377  *
2378  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2379  */
2380 static void
2381 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2382             struct ice_aqc_list_caps_elem *cap)
2383 {
2384     struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2385     u32 logical_id = le32_to_cpu(cap->logical_id);
2386     u32 phys_id = le32_to_cpu(cap->phys_id);
2387     u32 number = le32_to_cpu(cap->number);
2388 
2389     info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2390     dev_p->common_cap.ieee_1588 = info->ena;
2391 
2392     info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2393     info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2394     info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2395 
2396     info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2397     info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2398     info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2399 
2400     info->ena_ports = logical_id;
2401     info->tmr_own_map = phys_id;
2402 
2403     ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2404           dev_p->common_cap.ieee_1588);
2405     ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2406           info->tmr0_owner);
2407     ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2408           info->tmr0_owned);
2409     ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2410           info->tmr0_ena);
2411     ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2412           info->tmr1_owner);
2413     ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2414           info->tmr1_owned);
2415     ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2416           info->tmr1_ena);
2417     ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2418           info->ena_ports);
2419     ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2420           info->tmr_own_map);
2421 }
2422 
2423 /**
2424  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2425  * @hw: pointer to the HW struct
2426  * @dev_p: pointer to device capabilities structure
2427  * @cap: capability element to parse
2428  *
2429  * Parse ICE_AQC_CAPS_FD for device capabilities.
2430  */
2431 static void
2432 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2433             struct ice_aqc_list_caps_elem *cap)
2434 {
2435     u32 number = le32_to_cpu(cap->number);
2436 
2437     dev_p->num_flow_director_fltr = number;
2438     ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2439           dev_p->num_flow_director_fltr);
2440 }
2441 
2442 /**
2443  * ice_parse_dev_caps - Parse device capabilities
2444  * @hw: pointer to the HW struct
2445  * @dev_p: pointer to device capabilities structure
2446  * @buf: buffer containing the device capability records
2447  * @cap_count: the number of capabilities
2448  *
2449  * Helper device to parse device (0x000B) capabilities list. For
2450  * capabilities shared between device and function, this relies on
2451  * ice_parse_common_caps.
2452  *
2453  * Loop through the list of provided capabilities and extract the relevant
2454  * data into the device capabilities structured.
2455  */
2456 static void
2457 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2458            void *buf, u32 cap_count)
2459 {
2460     struct ice_aqc_list_caps_elem *cap_resp;
2461     u32 i;
2462 
2463     cap_resp = buf;
2464 
2465     memset(dev_p, 0, sizeof(*dev_p));
2466 
2467     for (i = 0; i < cap_count; i++) {
2468         u16 cap = le16_to_cpu(cap_resp[i].cap);
2469         bool found;
2470 
2471         found = ice_parse_common_caps(hw, &dev_p->common_cap,
2472                           &cap_resp[i], "dev caps");
2473 
2474         switch (cap) {
2475         case ICE_AQC_CAPS_VALID_FUNCTIONS:
2476             ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2477             break;
2478         case ICE_AQC_CAPS_VF:
2479             ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2480             break;
2481         case ICE_AQC_CAPS_VSI:
2482             ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2483             break;
2484         case ICE_AQC_CAPS_1588:
2485             ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2486             break;
2487         case  ICE_AQC_CAPS_FD:
2488             ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2489             break;
2490         default:
2491             /* Don't list common capabilities as unknown */
2492             if (!found)
2493                 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2494                       i, cap);
2495             break;
2496         }
2497     }
2498 
2499     ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2500 }
2501 
2502 /**
2503  * ice_aq_list_caps - query function/device capabilities
2504  * @hw: pointer to the HW struct
2505  * @buf: a buffer to hold the capabilities
2506  * @buf_size: size of the buffer
2507  * @cap_count: if not NULL, set to the number of capabilities reported
2508  * @opc: capabilities type to discover, device or function
2509  * @cd: pointer to command details structure or NULL
2510  *
2511  * Get the function (0x000A) or device (0x000B) capabilities description from
2512  * firmware and store it in the buffer.
2513  *
2514  * If the cap_count pointer is not NULL, then it is set to the number of
2515  * capabilities firmware will report. Note that if the buffer size is too
2516  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2517  * cap_count will still be updated in this case. It is recommended that the
2518  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2519  * firmware could return) to avoid this.
2520  */
2521 int
2522 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2523          enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2524 {
2525     struct ice_aqc_list_caps *cmd;
2526     struct ice_aq_desc desc;
2527     int status;
2528 
2529     cmd = &desc.params.get_cap;
2530 
2531     if (opc != ice_aqc_opc_list_func_caps &&
2532         opc != ice_aqc_opc_list_dev_caps)
2533         return -EINVAL;
2534 
2535     ice_fill_dflt_direct_cmd_desc(&desc, opc);
2536     status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2537 
2538     if (cap_count)
2539         *cap_count = le32_to_cpu(cmd->count);
2540 
2541     return status;
2542 }
2543 
2544 /**
2545  * ice_discover_dev_caps - Read and extract device capabilities
2546  * @hw: pointer to the hardware structure
2547  * @dev_caps: pointer to device capabilities structure
2548  *
2549  * Read the device capabilities and extract them into the dev_caps structure
2550  * for later use.
2551  */
2552 int
2553 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2554 {
2555     u32 cap_count = 0;
2556     void *cbuf;
2557     int status;
2558 
2559     cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2560     if (!cbuf)
2561         return -ENOMEM;
2562 
2563     /* Although the driver doesn't know the number of capabilities the
2564      * device will return, we can simply send a 4KB buffer, the maximum
2565      * possible size that firmware can return.
2566      */
2567     cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2568 
2569     status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2570                   ice_aqc_opc_list_dev_caps, NULL);
2571     if (!status)
2572         ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2573     kfree(cbuf);
2574 
2575     return status;
2576 }
2577 
2578 /**
2579  * ice_discover_func_caps - Read and extract function capabilities
2580  * @hw: pointer to the hardware structure
2581  * @func_caps: pointer to function capabilities structure
2582  *
2583  * Read the function capabilities and extract them into the func_caps structure
2584  * for later use.
2585  */
2586 static int
2587 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2588 {
2589     u32 cap_count = 0;
2590     void *cbuf;
2591     int status;
2592 
2593     cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2594     if (!cbuf)
2595         return -ENOMEM;
2596 
2597     /* Although the driver doesn't know the number of capabilities the
2598      * device will return, we can simply send a 4KB buffer, the maximum
2599      * possible size that firmware can return.
2600      */
2601     cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2602 
2603     status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2604                   ice_aqc_opc_list_func_caps, NULL);
2605     if (!status)
2606         ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2607     kfree(cbuf);
2608 
2609     return status;
2610 }
2611 
2612 /**
2613  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2614  * @hw: pointer to the hardware structure
2615  */
2616 void ice_set_safe_mode_caps(struct ice_hw *hw)
2617 {
2618     struct ice_hw_func_caps *func_caps = &hw->func_caps;
2619     struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2620     struct ice_hw_common_caps cached_caps;
2621     u32 num_funcs;
2622 
2623     /* cache some func_caps values that should be restored after memset */
2624     cached_caps = func_caps->common_cap;
2625 
2626     /* unset func capabilities */
2627     memset(func_caps, 0, sizeof(*func_caps));
2628 
2629 #define ICE_RESTORE_FUNC_CAP(name) \
2630     func_caps->common_cap.name = cached_caps.name
2631 
2632     /* restore cached values */
2633     ICE_RESTORE_FUNC_CAP(valid_functions);
2634     ICE_RESTORE_FUNC_CAP(txq_first_id);
2635     ICE_RESTORE_FUNC_CAP(rxq_first_id);
2636     ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2637     ICE_RESTORE_FUNC_CAP(max_mtu);
2638     ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2639     ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2640     ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2641     ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2642 
2643     /* one Tx and one Rx queue in safe mode */
2644     func_caps->common_cap.num_rxq = 1;
2645     func_caps->common_cap.num_txq = 1;
2646 
2647     /* two MSIX vectors, one for traffic and one for misc causes */
2648     func_caps->common_cap.num_msix_vectors = 2;
2649     func_caps->guar_num_vsi = 1;
2650 
2651     /* cache some dev_caps values that should be restored after memset */
2652     cached_caps = dev_caps->common_cap;
2653     num_funcs = dev_caps->num_funcs;
2654 
2655     /* unset dev capabilities */
2656     memset(dev_caps, 0, sizeof(*dev_caps));
2657 
2658 #define ICE_RESTORE_DEV_CAP(name) \
2659     dev_caps->common_cap.name = cached_caps.name
2660 
2661     /* restore cached values */
2662     ICE_RESTORE_DEV_CAP(valid_functions);
2663     ICE_RESTORE_DEV_CAP(txq_first_id);
2664     ICE_RESTORE_DEV_CAP(rxq_first_id);
2665     ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2666     ICE_RESTORE_DEV_CAP(max_mtu);
2667     ICE_RESTORE_DEV_CAP(nvm_unified_update);
2668     ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2669     ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2670     ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2671     dev_caps->num_funcs = num_funcs;
2672 
2673     /* one Tx and one Rx queue per function in safe mode */
2674     dev_caps->common_cap.num_rxq = num_funcs;
2675     dev_caps->common_cap.num_txq = num_funcs;
2676 
2677     /* two MSIX vectors per function */
2678     dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2679 }
2680 
2681 /**
2682  * ice_get_caps - get info about the HW
2683  * @hw: pointer to the hardware structure
2684  */
2685 int ice_get_caps(struct ice_hw *hw)
2686 {
2687     int status;
2688 
2689     status = ice_discover_dev_caps(hw, &hw->dev_caps);
2690     if (status)
2691         return status;
2692 
2693     return ice_discover_func_caps(hw, &hw->func_caps);
2694 }
2695 
2696 /**
2697  * ice_aq_manage_mac_write - manage MAC address write command
2698  * @hw: pointer to the HW struct
2699  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2700  * @flags: flags to control write behavior
2701  * @cd: pointer to command details structure or NULL
2702  *
2703  * This function is used to write MAC address to the NVM (0x0108).
2704  */
2705 int
2706 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2707             struct ice_sq_cd *cd)
2708 {
2709     struct ice_aqc_manage_mac_write *cmd;
2710     struct ice_aq_desc desc;
2711 
2712     cmd = &desc.params.mac_write;
2713     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2714 
2715     cmd->flags = flags;
2716     ether_addr_copy(cmd->mac_addr, mac_addr);
2717 
2718     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2719 }
2720 
2721 /**
2722  * ice_aq_clear_pxe_mode
2723  * @hw: pointer to the HW struct
2724  *
2725  * Tell the firmware that the driver is taking over from PXE (0x0110).
2726  */
2727 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2728 {
2729     struct ice_aq_desc desc;
2730 
2731     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2732     desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2733 
2734     return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2735 }
2736 
2737 /**
2738  * ice_clear_pxe_mode - clear pxe operations mode
2739  * @hw: pointer to the HW struct
2740  *
2741  * Make sure all PXE mode settings are cleared, including things
2742  * like descriptor fetch/write-back mode.
2743  */
2744 void ice_clear_pxe_mode(struct ice_hw *hw)
2745 {
2746     if (ice_check_sq_alive(hw, &hw->adminq))
2747         ice_aq_clear_pxe_mode(hw);
2748 }
2749 
2750 /**
2751  * ice_aq_set_port_params - set physical port parameters.
2752  * @pi: pointer to the port info struct
2753  * @double_vlan: if set double VLAN is enabled
2754  * @cd: pointer to command details structure or NULL
2755  *
2756  * Set Physical port parameters (0x0203)
2757  */
2758 int
2759 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2760                struct ice_sq_cd *cd)
2761 
2762 {
2763     struct ice_aqc_set_port_params *cmd;
2764     struct ice_hw *hw = pi->hw;
2765     struct ice_aq_desc desc;
2766     u16 cmd_flags = 0;
2767 
2768     cmd = &desc.params.set_port_params;
2769 
2770     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2771     if (double_vlan)
2772         cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2773     cmd->cmd_flags = cpu_to_le16(cmd_flags);
2774 
2775     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2776 }
2777 
2778 /**
2779  * ice_get_link_speed_based_on_phy_type - returns link speed
2780  * @phy_type_low: lower part of phy_type
2781  * @phy_type_high: higher part of phy_type
2782  *
2783  * This helper function will convert an entry in PHY type structure
2784  * [phy_type_low, phy_type_high] to its corresponding link speed.
2785  * Note: In the structure of [phy_type_low, phy_type_high], there should
2786  * be one bit set, as this function will convert one PHY type to its
2787  * speed.
2788  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2789  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2790  */
2791 static u16
2792 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2793 {
2794     u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2795     u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2796 
2797     switch (phy_type_low) {
2798     case ICE_PHY_TYPE_LOW_100BASE_TX:
2799     case ICE_PHY_TYPE_LOW_100M_SGMII:
2800         speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2801         break;
2802     case ICE_PHY_TYPE_LOW_1000BASE_T:
2803     case ICE_PHY_TYPE_LOW_1000BASE_SX:
2804     case ICE_PHY_TYPE_LOW_1000BASE_LX:
2805     case ICE_PHY_TYPE_LOW_1000BASE_KX:
2806     case ICE_PHY_TYPE_LOW_1G_SGMII:
2807         speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2808         break;
2809     case ICE_PHY_TYPE_LOW_2500BASE_T:
2810     case ICE_PHY_TYPE_LOW_2500BASE_X:
2811     case ICE_PHY_TYPE_LOW_2500BASE_KX:
2812         speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2813         break;
2814     case ICE_PHY_TYPE_LOW_5GBASE_T:
2815     case ICE_PHY_TYPE_LOW_5GBASE_KR:
2816         speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2817         break;
2818     case ICE_PHY_TYPE_LOW_10GBASE_T:
2819     case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2820     case ICE_PHY_TYPE_LOW_10GBASE_SR:
2821     case ICE_PHY_TYPE_LOW_10GBASE_LR:
2822     case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2823     case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2824     case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2825         speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2826         break;
2827     case ICE_PHY_TYPE_LOW_25GBASE_T:
2828     case ICE_PHY_TYPE_LOW_25GBASE_CR:
2829     case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2830     case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2831     case ICE_PHY_TYPE_LOW_25GBASE_SR:
2832     case ICE_PHY_TYPE_LOW_25GBASE_LR:
2833     case ICE_PHY_TYPE_LOW_25GBASE_KR:
2834     case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2835     case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2836     case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2837     case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2838         speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2839         break;
2840     case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2841     case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2842     case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2843     case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2844     case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2845     case ICE_PHY_TYPE_LOW_40G_XLAUI:
2846         speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2847         break;
2848     case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2849     case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2850     case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2851     case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2852     case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2853     case ICE_PHY_TYPE_LOW_50G_LAUI2:
2854     case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2855     case ICE_PHY_TYPE_LOW_50G_AUI2:
2856     case ICE_PHY_TYPE_LOW_50GBASE_CP:
2857     case ICE_PHY_TYPE_LOW_50GBASE_SR:
2858     case ICE_PHY_TYPE_LOW_50GBASE_FR:
2859     case ICE_PHY_TYPE_LOW_50GBASE_LR:
2860     case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2861     case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2862     case ICE_PHY_TYPE_LOW_50G_AUI1:
2863         speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2864         break;
2865     case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2866     case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2867     case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2868     case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2869     case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2870     case ICE_PHY_TYPE_LOW_100G_CAUI4:
2871     case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2872     case ICE_PHY_TYPE_LOW_100G_AUI4:
2873     case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2874     case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2875     case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2876     case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2877     case ICE_PHY_TYPE_LOW_100GBASE_DR:
2878         speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2879         break;
2880     default:
2881         speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2882         break;
2883     }
2884 
2885     switch (phy_type_high) {
2886     case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2887     case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2888     case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2889     case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2890     case ICE_PHY_TYPE_HIGH_100G_AUI2:
2891         speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2892         break;
2893     default:
2894         speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2895         break;
2896     }
2897 
2898     if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2899         speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2900         return ICE_AQ_LINK_SPEED_UNKNOWN;
2901     else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2902          speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2903         return ICE_AQ_LINK_SPEED_UNKNOWN;
2904     else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2905          speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2906         return speed_phy_type_low;
2907     else
2908         return speed_phy_type_high;
2909 }
2910 
2911 /**
2912  * ice_update_phy_type
2913  * @phy_type_low: pointer to the lower part of phy_type
2914  * @phy_type_high: pointer to the higher part of phy_type
2915  * @link_speeds_bitmap: targeted link speeds bitmap
2916  *
2917  * Note: For the link_speeds_bitmap structure, you can check it at
2918  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2919  * link_speeds_bitmap include multiple speeds.
2920  *
2921  * Each entry in this [phy_type_low, phy_type_high] structure will
2922  * present a certain link speed. This helper function will turn on bits
2923  * in [phy_type_low, phy_type_high] structure based on the value of
2924  * link_speeds_bitmap input parameter.
2925  */
2926 void
2927 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2928             u16 link_speeds_bitmap)
2929 {
2930     u64 pt_high;
2931     u64 pt_low;
2932     int index;
2933     u16 speed;
2934 
2935     /* We first check with low part of phy_type */
2936     for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2937         pt_low = BIT_ULL(index);
2938         speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2939 
2940         if (link_speeds_bitmap & speed)
2941             *phy_type_low |= BIT_ULL(index);
2942     }
2943 
2944     /* We then check with high part of phy_type */
2945     for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2946         pt_high = BIT_ULL(index);
2947         speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2948 
2949         if (link_speeds_bitmap & speed)
2950             *phy_type_high |= BIT_ULL(index);
2951     }
2952 }
2953 
2954 /**
2955  * ice_aq_set_phy_cfg
2956  * @hw: pointer to the HW struct
2957  * @pi: port info structure of the interested logical port
2958  * @cfg: structure with PHY configuration data to be set
2959  * @cd: pointer to command details structure or NULL
2960  *
2961  * Set the various PHY configuration parameters supported on the Port.
2962  * One or more of the Set PHY config parameters may be ignored in an MFP
2963  * mode as the PF may not have the privilege to set some of the PHY Config
2964  * parameters. This status will be indicated by the command response (0x0601).
2965  */
2966 int
2967 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2968            struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2969 {
2970     struct ice_aq_desc desc;
2971     int status;
2972 
2973     if (!cfg)
2974         return -EINVAL;
2975 
2976     /* Ensure that only valid bits of cfg->caps can be turned on. */
2977     if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2978         ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2979               cfg->caps);
2980 
2981         cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2982     }
2983 
2984     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2985     desc.params.set_phy.lport_num = pi->lport;
2986     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2987 
2988     ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2989     ice_debug(hw, ICE_DBG_LINK, "   phy_type_low = 0x%llx\n",
2990           (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2991     ice_debug(hw, ICE_DBG_LINK, "   phy_type_high = 0x%llx\n",
2992           (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2993     ice_debug(hw, ICE_DBG_LINK, "   caps = 0x%x\n", cfg->caps);
2994     ice_debug(hw, ICE_DBG_LINK, "   low_power_ctrl_an = 0x%x\n",
2995           cfg->low_power_ctrl_an);
2996     ice_debug(hw, ICE_DBG_LINK, "   eee_cap = 0x%x\n", cfg->eee_cap);
2997     ice_debug(hw, ICE_DBG_LINK, "   eeer_value = 0x%x\n", cfg->eeer_value);
2998     ice_debug(hw, ICE_DBG_LINK, "   link_fec_opt = 0x%x\n",
2999           cfg->link_fec_opt);
3000 
3001     status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3002     if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3003         status = 0;
3004 
3005     if (!status)
3006         pi->phy.curr_user_phy_cfg = *cfg;
3007 
3008     return status;
3009 }
3010 
3011 /**
3012  * ice_update_link_info - update status of the HW network link
3013  * @pi: port info structure of the interested logical port
3014  */
3015 int ice_update_link_info(struct ice_port_info *pi)
3016 {
3017     struct ice_link_status *li;
3018     int status;
3019 
3020     if (!pi)
3021         return -EINVAL;
3022 
3023     li = &pi->phy.link_info;
3024 
3025     status = ice_aq_get_link_info(pi, true, NULL, NULL);
3026     if (status)
3027         return status;
3028 
3029     if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3030         struct ice_aqc_get_phy_caps_data *pcaps;
3031         struct ice_hw *hw;
3032 
3033         hw = pi->hw;
3034         pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3035                      GFP_KERNEL);
3036         if (!pcaps)
3037             return -ENOMEM;
3038 
3039         status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3040                          pcaps, NULL);
3041 
3042         devm_kfree(ice_hw_to_dev(hw), pcaps);
3043     }
3044 
3045     return status;
3046 }
3047 
3048 /**
3049  * ice_cache_phy_user_req
3050  * @pi: port information structure
3051  * @cache_data: PHY logging data
3052  * @cache_mode: PHY logging mode
3053  *
3054  * Log the user request on (FC, FEC, SPEED) for later use.
3055  */
3056 static void
3057 ice_cache_phy_user_req(struct ice_port_info *pi,
3058                struct ice_phy_cache_mode_data cache_data,
3059                enum ice_phy_cache_mode cache_mode)
3060 {
3061     if (!pi)
3062         return;
3063 
3064     switch (cache_mode) {
3065     case ICE_FC_MODE:
3066         pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3067         break;
3068     case ICE_SPEED_MODE:
3069         pi->phy.curr_user_speed_req =
3070             cache_data.data.curr_user_speed_req;
3071         break;
3072     case ICE_FEC_MODE:
3073         pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3074         break;
3075     default:
3076         break;
3077     }
3078 }
3079 
3080 /**
3081  * ice_caps_to_fc_mode
3082  * @caps: PHY capabilities
3083  *
3084  * Convert PHY FC capabilities to ice FC mode
3085  */
3086 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3087 {
3088     if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3089         caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3090         return ICE_FC_FULL;
3091 
3092     if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3093         return ICE_FC_TX_PAUSE;
3094 
3095     if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3096         return ICE_FC_RX_PAUSE;
3097 
3098     return ICE_FC_NONE;
3099 }
3100 
3101 /**
3102  * ice_caps_to_fec_mode
3103  * @caps: PHY capabilities
3104  * @fec_options: Link FEC options
3105  *
3106  * Convert PHY FEC capabilities to ice FEC mode
3107  */
3108 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3109 {
3110     if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3111         return ICE_FEC_AUTO;
3112 
3113     if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3114                ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3115                ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3116                ICE_AQC_PHY_FEC_25G_KR_REQ))
3117         return ICE_FEC_BASER;
3118 
3119     if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3120                ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3121                ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3122         return ICE_FEC_RS;
3123 
3124     return ICE_FEC_NONE;
3125 }
3126 
3127 /**
3128  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3129  * @pi: port information structure
3130  * @cfg: PHY configuration data to set FC mode
3131  * @req_mode: FC mode to configure
3132  */
3133 int
3134 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3135            enum ice_fc_mode req_mode)
3136 {
3137     struct ice_phy_cache_mode_data cache_data;
3138     u8 pause_mask = 0x0;
3139 
3140     if (!pi || !cfg)
3141         return -EINVAL;
3142 
3143     switch (req_mode) {
3144     case ICE_FC_FULL:
3145         pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3146         pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3147         break;
3148     case ICE_FC_RX_PAUSE:
3149         pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3150         break;
3151     case ICE_FC_TX_PAUSE:
3152         pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3153         break;
3154     default:
3155         break;
3156     }
3157 
3158     /* clear the old pause settings */
3159     cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3160         ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3161 
3162     /* set the new capabilities */
3163     cfg->caps |= pause_mask;
3164 
3165     /* Cache user FC request */
3166     cache_data.data.curr_user_fc_req = req_mode;
3167     ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3168 
3169     return 0;
3170 }
3171 
3172 /**
3173  * ice_set_fc
3174  * @pi: port information structure
3175  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3176  * @ena_auto_link_update: enable automatic link update
3177  *
3178  * Set the requested flow control mode.
3179  */
3180 int
3181 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3182 {
3183     struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3184     struct ice_aqc_get_phy_caps_data *pcaps;
3185     struct ice_hw *hw;
3186     int status;
3187 
3188     if (!pi || !aq_failures)
3189         return -EINVAL;
3190 
3191     *aq_failures = 0;
3192     hw = pi->hw;
3193 
3194     pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3195     if (!pcaps)
3196         return -ENOMEM;
3197 
3198     /* Get the current PHY config */
3199     status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3200                      pcaps, NULL);
3201     if (status) {
3202         *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3203         goto out;
3204     }
3205 
3206     ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3207 
3208     /* Configure the set PHY data */
3209     status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3210     if (status)
3211         goto out;
3212 
3213     /* If the capabilities have changed, then set the new config */
3214     if (cfg.caps != pcaps->caps) {
3215         int retry_count, retry_max = 10;
3216 
3217         /* Auto restart link so settings take effect */
3218         if (ena_auto_link_update)
3219             cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3220 
3221         status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3222         if (status) {
3223             *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3224             goto out;
3225         }
3226 
3227         /* Update the link info
3228          * It sometimes takes a really long time for link to
3229          * come back from the atomic reset. Thus, we wait a
3230          * little bit.
3231          */
3232         for (retry_count = 0; retry_count < retry_max; retry_count++) {
3233             status = ice_update_link_info(pi);
3234 
3235             if (!status)
3236                 break;
3237 
3238             mdelay(100);
3239         }
3240 
3241         if (status)
3242             *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3243     }
3244 
3245 out:
3246     devm_kfree(ice_hw_to_dev(hw), pcaps);
3247     return status;
3248 }
3249 
3250 /**
3251  * ice_phy_caps_equals_cfg
3252  * @phy_caps: PHY capabilities
3253  * @phy_cfg: PHY configuration
3254  *
3255  * Helper function to determine if PHY capabilities matches PHY
3256  * configuration
3257  */
3258 bool
3259 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3260             struct ice_aqc_set_phy_cfg_data *phy_cfg)
3261 {
3262     u8 caps_mask, cfg_mask;
3263 
3264     if (!phy_caps || !phy_cfg)
3265         return false;
3266 
3267     /* These bits are not common between capabilities and configuration.
3268      * Do not use them to determine equality.
3269      */
3270     caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3271                           ICE_AQC_GET_PHY_EN_MOD_QUAL);
3272     cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3273 
3274     if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3275         phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3276         ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3277         phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3278         phy_caps->eee_cap != phy_cfg->eee_cap ||
3279         phy_caps->eeer_value != phy_cfg->eeer_value ||
3280         phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3281         return false;
3282 
3283     return true;
3284 }
3285 
3286 /**
3287  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3288  * @pi: port information structure
3289  * @caps: PHY ability structure to copy date from
3290  * @cfg: PHY configuration structure to copy data to
3291  *
3292  * Helper function to copy AQC PHY get ability data to PHY set configuration
3293  * data structure
3294  */
3295 void
3296 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3297              struct ice_aqc_get_phy_caps_data *caps,
3298              struct ice_aqc_set_phy_cfg_data *cfg)
3299 {
3300     if (!pi || !caps || !cfg)
3301         return;
3302 
3303     memset(cfg, 0, sizeof(*cfg));
3304     cfg->phy_type_low = caps->phy_type_low;
3305     cfg->phy_type_high = caps->phy_type_high;
3306     cfg->caps = caps->caps;
3307     cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3308     cfg->eee_cap = caps->eee_cap;
3309     cfg->eeer_value = caps->eeer_value;
3310     cfg->link_fec_opt = caps->link_fec_options;
3311     cfg->module_compliance_enforcement =
3312         caps->module_compliance_enforcement;
3313 }
3314 
3315 /**
3316  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3317  * @pi: port information structure
3318  * @cfg: PHY configuration data to set FEC mode
3319  * @fec: FEC mode to configure
3320  */
3321 int
3322 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3323         enum ice_fec_mode fec)
3324 {
3325     struct ice_aqc_get_phy_caps_data *pcaps;
3326     struct ice_hw *hw;
3327     int status;
3328 
3329     if (!pi || !cfg)
3330         return -EINVAL;
3331 
3332     hw = pi->hw;
3333 
3334     pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3335     if (!pcaps)
3336         return -ENOMEM;
3337 
3338     status = ice_aq_get_phy_caps(pi, false,
3339                      (ice_fw_supports_report_dflt_cfg(hw) ?
3340                       ICE_AQC_REPORT_DFLT_CFG :
3341                       ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3342     if (status)
3343         goto out;
3344 
3345     cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3346     cfg->link_fec_opt = pcaps->link_fec_options;
3347 
3348     switch (fec) {
3349     case ICE_FEC_BASER:
3350         /* Clear RS bits, and AND BASE-R ability
3351          * bits and OR request bits.
3352          */
3353         cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3354             ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3355         cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3356             ICE_AQC_PHY_FEC_25G_KR_REQ;
3357         break;
3358     case ICE_FEC_RS:
3359         /* Clear BASE-R bits, and AND RS ability
3360          * bits and OR request bits.
3361          */
3362         cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3363         cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3364             ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3365         break;
3366     case ICE_FEC_NONE:
3367         /* Clear all FEC option bits. */
3368         cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3369         break;
3370     case ICE_FEC_AUTO:
3371         /* AND auto FEC bit, and all caps bits. */
3372         cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3373         cfg->link_fec_opt |= pcaps->link_fec_options;
3374         break;
3375     default:
3376         status = -EINVAL;
3377         break;
3378     }
3379 
3380     if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3381         !ice_fw_supports_report_dflt_cfg(hw)) {
3382         struct ice_link_default_override_tlv tlv = { 0 };
3383 
3384         status = ice_get_link_default_override(&tlv, pi);
3385         if (status)
3386             goto out;
3387 
3388         if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3389             (tlv.options & ICE_LINK_OVERRIDE_EN))
3390             cfg->link_fec_opt = tlv.fec_options;
3391     }
3392 
3393 out:
3394     kfree(pcaps);
3395 
3396     return status;
3397 }
3398 
3399 /**
3400  * ice_get_link_status - get status of the HW network link
3401  * @pi: port information structure
3402  * @link_up: pointer to bool (true/false = linkup/linkdown)
3403  *
3404  * Variable link_up is true if link is up, false if link is down.
3405  * The variable link_up is invalid if status is non zero. As a
3406  * result of this call, link status reporting becomes enabled
3407  */
3408 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3409 {
3410     struct ice_phy_info *phy_info;
3411     int status = 0;
3412 
3413     if (!pi || !link_up)
3414         return -EINVAL;
3415 
3416     phy_info = &pi->phy;
3417 
3418     if (phy_info->get_link_info) {
3419         status = ice_update_link_info(pi);
3420 
3421         if (status)
3422             ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3423                   status);
3424     }
3425 
3426     *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3427 
3428     return status;
3429 }
3430 
3431 /**
3432  * ice_aq_set_link_restart_an
3433  * @pi: pointer to the port information structure
3434  * @ena_link: if true: enable link, if false: disable link
3435  * @cd: pointer to command details structure or NULL
3436  *
3437  * Sets up the link and restarts the Auto-Negotiation over the link.
3438  */
3439 int
3440 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3441                struct ice_sq_cd *cd)
3442 {
3443     struct ice_aqc_restart_an *cmd;
3444     struct ice_aq_desc desc;
3445 
3446     cmd = &desc.params.restart_an;
3447 
3448     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3449 
3450     cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3451     cmd->lport_num = pi->lport;
3452     if (ena_link)
3453         cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3454     else
3455         cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3456 
3457     return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3458 }
3459 
3460 /**
3461  * ice_aq_set_event_mask
3462  * @hw: pointer to the HW struct
3463  * @port_num: port number of the physical function
3464  * @mask: event mask to be set
3465  * @cd: pointer to command details structure or NULL
3466  *
3467  * Set event mask (0x0613)
3468  */
3469 int
3470 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3471               struct ice_sq_cd *cd)
3472 {
3473     struct ice_aqc_set_event_mask *cmd;
3474     struct ice_aq_desc desc;
3475 
3476     cmd = &desc.params.set_event_mask;
3477 
3478     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3479 
3480     cmd->lport_num = port_num;
3481 
3482     cmd->event_mask = cpu_to_le16(mask);
3483     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3484 }
3485 
3486 /**
3487  * ice_aq_set_mac_loopback
3488  * @hw: pointer to the HW struct
3489  * @ena_lpbk: Enable or Disable loopback
3490  * @cd: pointer to command details structure or NULL
3491  *
3492  * Enable/disable loopback on a given port
3493  */
3494 int
3495 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3496 {
3497     struct ice_aqc_set_mac_lb *cmd;
3498     struct ice_aq_desc desc;
3499 
3500     cmd = &desc.params.set_mac_lb;
3501 
3502     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3503     if (ena_lpbk)
3504         cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3505 
3506     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3507 }
3508 
3509 /**
3510  * ice_aq_set_port_id_led
3511  * @pi: pointer to the port information
3512  * @is_orig_mode: is this LED set to original mode (by the net-list)
3513  * @cd: pointer to command details structure or NULL
3514  *
3515  * Set LED value for the given port (0x06e9)
3516  */
3517 int
3518 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3519                struct ice_sq_cd *cd)
3520 {
3521     struct ice_aqc_set_port_id_led *cmd;
3522     struct ice_hw *hw = pi->hw;
3523     struct ice_aq_desc desc;
3524 
3525     cmd = &desc.params.set_port_id_led;
3526 
3527     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3528 
3529     if (is_orig_mode)
3530         cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3531     else
3532         cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3533 
3534     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3535 }
3536 
3537 /**
3538  * ice_aq_sff_eeprom
3539  * @hw: pointer to the HW struct
3540  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3541  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3542  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3543  * @page: QSFP page
3544  * @set_page: set or ignore the page
3545  * @data: pointer to data buffer to be read/written to the I2C device.
3546  * @length: 1-16 for read, 1 for write.
3547  * @write: 0 read, 1 for write.
3548  * @cd: pointer to command details structure or NULL
3549  *
3550  * Read/Write SFF EEPROM (0x06EE)
3551  */
3552 int
3553 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3554           u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3555           bool write, struct ice_sq_cd *cd)
3556 {
3557     struct ice_aqc_sff_eeprom *cmd;
3558     struct ice_aq_desc desc;
3559     int status;
3560 
3561     if (!data || (mem_addr & 0xff00))
3562         return -EINVAL;
3563 
3564     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3565     cmd = &desc.params.read_write_sff_param;
3566     desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3567     cmd->lport_num = (u8)(lport & 0xff);
3568     cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3569     cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3570                      ICE_AQC_SFF_I2CBUS_7BIT_M) |
3571                     ((set_page <<
3572                       ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3573                      ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3574     cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3575     cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3576     if (write)
3577         cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3578 
3579     status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3580     return status;
3581 }
3582 
3583 /**
3584  * __ice_aq_get_set_rss_lut
3585  * @hw: pointer to the hardware structure
3586  * @params: RSS LUT parameters
3587  * @set: set true to set the table, false to get the table
3588  *
3589  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3590  */
3591 static int
3592 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3593 {
3594     u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3595     struct ice_aqc_get_set_rss_lut *cmd_resp;
3596     struct ice_aq_desc desc;
3597     int status;
3598     u8 *lut;
3599 
3600     if (!params)
3601         return -EINVAL;
3602 
3603     vsi_handle = params->vsi_handle;
3604     lut = params->lut;
3605 
3606     if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3607         return -EINVAL;
3608 
3609     lut_size = params->lut_size;
3610     lut_type = params->lut_type;
3611     glob_lut_idx = params->global_lut_id;
3612     vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3613 
3614     cmd_resp = &desc.params.get_set_rss_lut;
3615 
3616     if (set) {
3617         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3618         desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3619     } else {
3620         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3621     }
3622 
3623     cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3624                      ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3625                     ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3626                        ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3627 
3628     switch (lut_type) {
3629     case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3630     case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3631     case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3632         flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3633               ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3634         break;
3635     default:
3636         status = -EINVAL;
3637         goto ice_aq_get_set_rss_lut_exit;
3638     }
3639 
3640     if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3641         flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3642               ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3643 
3644         if (!set)
3645             goto ice_aq_get_set_rss_lut_send;
3646     } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3647         if (!set)
3648             goto ice_aq_get_set_rss_lut_send;
3649     } else {
3650         goto ice_aq_get_set_rss_lut_send;
3651     }
3652 
3653     /* LUT size is only valid for Global and PF table types */
3654     switch (lut_size) {
3655     case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3656         break;
3657     case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3658         flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3659               ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3660              ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3661         break;
3662     case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3663         if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3664             flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3665                   ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3666                  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3667             break;
3668         }
3669         fallthrough;
3670     default:
3671         status = -EINVAL;
3672         goto ice_aq_get_set_rss_lut_exit;
3673     }
3674 
3675 ice_aq_get_set_rss_lut_send:
3676     cmd_resp->flags = cpu_to_le16(flags);
3677     status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3678 
3679 ice_aq_get_set_rss_lut_exit:
3680     return status;
3681 }
3682 
3683 /**
3684  * ice_aq_get_rss_lut
3685  * @hw: pointer to the hardware structure
3686  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3687  *
3688  * get the RSS lookup table, PF or VSI type
3689  */
3690 int
3691 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3692 {
3693     return __ice_aq_get_set_rss_lut(hw, get_params, false);
3694 }
3695 
3696 /**
3697  * ice_aq_set_rss_lut
3698  * @hw: pointer to the hardware structure
3699  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3700  *
3701  * set the RSS lookup table, PF or VSI type
3702  */
3703 int
3704 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3705 {
3706     return __ice_aq_get_set_rss_lut(hw, set_params, true);
3707 }
3708 
3709 /**
3710  * __ice_aq_get_set_rss_key
3711  * @hw: pointer to the HW struct
3712  * @vsi_id: VSI FW index
3713  * @key: pointer to key info struct
3714  * @set: set true to set the key, false to get the key
3715  *
3716  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3717  */
3718 static int
3719 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3720              struct ice_aqc_get_set_rss_keys *key, bool set)
3721 {
3722     struct ice_aqc_get_set_rss_key *cmd_resp;
3723     u16 key_size = sizeof(*key);
3724     struct ice_aq_desc desc;
3725 
3726     cmd_resp = &desc.params.get_set_rss_key;
3727 
3728     if (set) {
3729         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3730         desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3731     } else {
3732         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3733     }
3734 
3735     cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3736                      ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3737                     ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3738                        ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3739 
3740     return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3741 }
3742 
3743 /**
3744  * ice_aq_get_rss_key
3745  * @hw: pointer to the HW struct
3746  * @vsi_handle: software VSI handle
3747  * @key: pointer to key info struct
3748  *
3749  * get the RSS key per VSI
3750  */
3751 int
3752 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3753            struct ice_aqc_get_set_rss_keys *key)
3754 {
3755     if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3756         return -EINVAL;
3757 
3758     return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3759                     key, false);
3760 }
3761 
3762 /**
3763  * ice_aq_set_rss_key
3764  * @hw: pointer to the HW struct
3765  * @vsi_handle: software VSI handle
3766  * @keys: pointer to key info struct
3767  *
3768  * set the RSS key per VSI
3769  */
3770 int
3771 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3772            struct ice_aqc_get_set_rss_keys *keys)
3773 {
3774     if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3775         return -EINVAL;
3776 
3777     return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3778                     keys, true);
3779 }
3780 
3781 /**
3782  * ice_aq_add_lan_txq
3783  * @hw: pointer to the hardware structure
3784  * @num_qgrps: Number of added queue groups
3785  * @qg_list: list of queue groups to be added
3786  * @buf_size: size of buffer for indirect command
3787  * @cd: pointer to command details structure or NULL
3788  *
3789  * Add Tx LAN queue (0x0C30)
3790  *
3791  * NOTE:
3792  * Prior to calling add Tx LAN queue:
3793  * Initialize the following as part of the Tx queue context:
3794  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3795  * Cache profile and Packet shaper profile.
3796  *
3797  * After add Tx LAN queue AQ command is completed:
3798  * Interrupts should be associated with specific queues,
3799  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3800  * flow.
3801  */
3802 static int
3803 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3804            struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3805            struct ice_sq_cd *cd)
3806 {
3807     struct ice_aqc_add_tx_qgrp *list;
3808     struct ice_aqc_add_txqs *cmd;
3809     struct ice_aq_desc desc;
3810     u16 i, sum_size = 0;
3811 
3812     cmd = &desc.params.add_txqs;
3813 
3814     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3815 
3816     if (!qg_list)
3817         return -EINVAL;
3818 
3819     if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3820         return -EINVAL;
3821 
3822     for (i = 0, list = qg_list; i < num_qgrps; i++) {
3823         sum_size += struct_size(list, txqs, list->num_txqs);
3824         list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3825                               list->num_txqs);
3826     }
3827 
3828     if (buf_size != sum_size)
3829         return -EINVAL;
3830 
3831     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3832 
3833     cmd->num_qgrps = num_qgrps;
3834 
3835     return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3836 }
3837 
3838 /**
3839  * ice_aq_dis_lan_txq
3840  * @hw: pointer to the hardware structure
3841  * @num_qgrps: number of groups in the list
3842  * @qg_list: the list of groups to disable
3843  * @buf_size: the total size of the qg_list buffer in bytes
3844  * @rst_src: if called due to reset, specifies the reset source
3845  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3846  * @cd: pointer to command details structure or NULL
3847  *
3848  * Disable LAN Tx queue (0x0C31)
3849  */
3850 static int
3851 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3852            struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3853            enum ice_disq_rst_src rst_src, u16 vmvf_num,
3854            struct ice_sq_cd *cd)
3855 {
3856     struct ice_aqc_dis_txq_item *item;
3857     struct ice_aqc_dis_txqs *cmd;
3858     struct ice_aq_desc desc;
3859     u16 i, sz = 0;
3860     int status;
3861 
3862     cmd = &desc.params.dis_txqs;
3863     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3864 
3865     /* qg_list can be NULL only in VM/VF reset flow */
3866     if (!qg_list && !rst_src)
3867         return -EINVAL;
3868 
3869     if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3870         return -EINVAL;
3871 
3872     cmd->num_entries = num_qgrps;
3873 
3874     cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3875                         ICE_AQC_Q_DIS_TIMEOUT_M);
3876 
3877     switch (rst_src) {
3878     case ICE_VM_RESET:
3879         cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3880         cmd->vmvf_and_timeout |=
3881             cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3882         break;
3883     case ICE_VF_RESET:
3884         cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3885         /* In this case, FW expects vmvf_num to be absolute VF ID */
3886         cmd->vmvf_and_timeout |=
3887             cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3888                     ICE_AQC_Q_DIS_VMVF_NUM_M);
3889         break;
3890     case ICE_NO_RESET:
3891     default:
3892         break;
3893     }
3894 
3895     /* flush pipe on time out */
3896     cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3897     /* If no queue group info, we are in a reset flow. Issue the AQ */
3898     if (!qg_list)
3899         goto do_aq;
3900 
3901     /* set RD bit to indicate that command buffer is provided by the driver
3902      * and it needs to be read by the firmware
3903      */
3904     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3905 
3906     for (i = 0, item = qg_list; i < num_qgrps; i++) {
3907         u16 item_size = struct_size(item, q_id, item->num_qs);
3908 
3909         /* If the num of queues is even, add 2 bytes of padding */
3910         if ((item->num_qs % 2) == 0)
3911             item_size += 2;
3912 
3913         sz += item_size;
3914 
3915         item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3916     }
3917 
3918     if (buf_size != sz)
3919         return -EINVAL;
3920 
3921 do_aq:
3922     status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3923     if (status) {
3924         if (!qg_list)
3925             ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3926                   vmvf_num, hw->adminq.sq_last_status);
3927         else
3928             ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3929                   le16_to_cpu(qg_list[0].q_id[0]),
3930                   hw->adminq.sq_last_status);
3931     }
3932     return status;
3933 }
3934 
3935 /**
3936  * ice_aq_add_rdma_qsets
3937  * @hw: pointer to the hardware structure
3938  * @num_qset_grps: Number of RDMA Qset groups
3939  * @qset_list: list of Qset groups to be added
3940  * @buf_size: size of buffer for indirect command
3941  * @cd: pointer to command details structure or NULL
3942  *
3943  * Add Tx RDMA Qsets (0x0C33)
3944  */
3945 static int
3946 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
3947               struct ice_aqc_add_rdma_qset_data *qset_list,
3948               u16 buf_size, struct ice_sq_cd *cd)
3949 {
3950     struct ice_aqc_add_rdma_qset_data *list;
3951     struct ice_aqc_add_rdma_qset *cmd;
3952     struct ice_aq_desc desc;
3953     u16 i, sum_size = 0;
3954 
3955     cmd = &desc.params.add_rdma_qset;
3956 
3957     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
3958 
3959     if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
3960         return -EINVAL;
3961 
3962     for (i = 0, list = qset_list; i < num_qset_grps; i++) {
3963         u16 num_qsets = le16_to_cpu(list->num_qsets);
3964 
3965         sum_size += struct_size(list, rdma_qsets, num_qsets);
3966         list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
3967                                  num_qsets);
3968     }
3969 
3970     if (buf_size != sum_size)
3971         return -EINVAL;
3972 
3973     desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3974 
3975     cmd->num_qset_grps = num_qset_grps;
3976 
3977     return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
3978 }
3979 
3980 /* End of FW Admin Queue command wrappers */
3981 
3982 /**
3983  * ice_write_byte - write a byte to a packed context structure
3984  * @src_ctx:  the context structure to read from
3985  * @dest_ctx: the context to be written to
3986  * @ce_info:  a description of the struct to be filled
3987  */
3988 static void
3989 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3990 {
3991     u8 src_byte, dest_byte, mask;
3992     u8 *from, *dest;
3993     u16 shift_width;
3994 
3995     /* copy from the next struct field */
3996     from = src_ctx + ce_info->offset;
3997 
3998     /* prepare the bits and mask */
3999     shift_width = ce_info->lsb % 8;
4000     mask = (u8)(BIT(ce_info->width) - 1);
4001 
4002     src_byte = *from;
4003     src_byte &= mask;
4004 
4005     /* shift to correct alignment */
4006     mask <<= shift_width;
4007     src_byte <<= shift_width;
4008 
4009     /* get the current bits from the target bit string */
4010     dest = dest_ctx + (ce_info->lsb / 8);
4011 
4012     memcpy(&dest_byte, dest, sizeof(dest_byte));
4013 
4014     dest_byte &= ~mask; /* get the bits not changing */
4015     dest_byte |= src_byte;  /* add in the new bits */
4016 
4017     /* put it all back */
4018     memcpy(dest, &dest_byte, sizeof(dest_byte));
4019 }
4020 
4021 /**
4022  * ice_write_word - write a word to a packed context structure
4023  * @src_ctx:  the context structure to read from
4024  * @dest_ctx: the context to be written to
4025  * @ce_info:  a description of the struct to be filled
4026  */
4027 static void
4028 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4029 {
4030     u16 src_word, mask;
4031     __le16 dest_word;
4032     u8 *from, *dest;
4033     u16 shift_width;
4034 
4035     /* copy from the next struct field */
4036     from = src_ctx + ce_info->offset;
4037 
4038     /* prepare the bits and mask */
4039     shift_width = ce_info->lsb % 8;
4040     mask = BIT(ce_info->width) - 1;
4041 
4042     /* don't swizzle the bits until after the mask because the mask bits
4043      * will be in a different bit position on big endian machines
4044      */
4045     src_word = *(u16 *)from;
4046     src_word &= mask;
4047 
4048     /* shift to correct alignment */
4049     mask <<= shift_width;
4050     src_word <<= shift_width;
4051 
4052     /* get the current bits from the target bit string */
4053     dest = dest_ctx + (ce_info->lsb / 8);
4054 
4055     memcpy(&dest_word, dest, sizeof(dest_word));
4056 
4057     dest_word &= ~(cpu_to_le16(mask));  /* get the bits not changing */
4058     dest_word |= cpu_to_le16(src_word); /* add in the new bits */
4059 
4060     /* put it all back */
4061     memcpy(dest, &dest_word, sizeof(dest_word));
4062 }
4063 
4064 /**
4065  * ice_write_dword - write a dword to a packed context structure
4066  * @src_ctx:  the context structure to read from
4067  * @dest_ctx: the context to be written to
4068  * @ce_info:  a description of the struct to be filled
4069  */
4070 static void
4071 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4072 {
4073     u32 src_dword, mask;
4074     __le32 dest_dword;
4075     u8 *from, *dest;
4076     u16 shift_width;
4077 
4078     /* copy from the next struct field */
4079     from = src_ctx + ce_info->offset;
4080 
4081     /* prepare the bits and mask */
4082     shift_width = ce_info->lsb % 8;
4083 
4084     /* if the field width is exactly 32 on an x86 machine, then the shift
4085      * operation will not work because the SHL instructions count is masked
4086      * to 5 bits so the shift will do nothing
4087      */
4088     if (ce_info->width < 32)
4089         mask = BIT(ce_info->width) - 1;
4090     else
4091         mask = (u32)~0;
4092 
4093     /* don't swizzle the bits until after the mask because the mask bits
4094      * will be in a different bit position on big endian machines
4095      */
4096     src_dword = *(u32 *)from;
4097     src_dword &= mask;
4098 
4099     /* shift to correct alignment */
4100     mask <<= shift_width;
4101     src_dword <<= shift_width;
4102 
4103     /* get the current bits from the target bit string */
4104     dest = dest_ctx + (ce_info->lsb / 8);
4105 
4106     memcpy(&dest_dword, dest, sizeof(dest_dword));
4107 
4108     dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
4109     dest_dword |= cpu_to_le32(src_dword);   /* add in the new bits */
4110 
4111     /* put it all back */
4112     memcpy(dest, &dest_dword, sizeof(dest_dword));
4113 }
4114 
4115 /**
4116  * ice_write_qword - write a qword to a packed context structure
4117  * @src_ctx:  the context structure to read from
4118  * @dest_ctx: the context to be written to
4119  * @ce_info:  a description of the struct to be filled
4120  */
4121 static void
4122 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4123 {
4124     u64 src_qword, mask;
4125     __le64 dest_qword;
4126     u8 *from, *dest;
4127     u16 shift_width;
4128 
4129     /* copy from the next struct field */
4130     from = src_ctx + ce_info->offset;
4131 
4132     /* prepare the bits and mask */
4133     shift_width = ce_info->lsb % 8;
4134 
4135     /* if the field width is exactly 64 on an x86 machine, then the shift
4136      * operation will not work because the SHL instructions count is masked
4137      * to 6 bits so the shift will do nothing
4138      */
4139     if (ce_info->width < 64)
4140         mask = BIT_ULL(ce_info->width) - 1;
4141     else
4142         mask = (u64)~0;
4143 
4144     /* don't swizzle the bits until after the mask because the mask bits
4145      * will be in a different bit position on big endian machines
4146      */
4147     src_qword = *(u64 *)from;
4148     src_qword &= mask;
4149 
4150     /* shift to correct alignment */
4151     mask <<= shift_width;
4152     src_qword <<= shift_width;
4153 
4154     /* get the current bits from the target bit string */
4155     dest = dest_ctx + (ce_info->lsb / 8);
4156 
4157     memcpy(&dest_qword, dest, sizeof(dest_qword));
4158 
4159     dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
4160     dest_qword |= cpu_to_le64(src_qword);   /* add in the new bits */
4161 
4162     /* put it all back */
4163     memcpy(dest, &dest_qword, sizeof(dest_qword));
4164 }
4165 
4166 /**
4167  * ice_set_ctx - set context bits in packed structure
4168  * @hw: pointer to the hardware structure
4169  * @src_ctx:  pointer to a generic non-packed context structure
4170  * @dest_ctx: pointer to memory for the packed structure
4171  * @ce_info:  a description of the structure to be transformed
4172  */
4173 int
4174 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4175         const struct ice_ctx_ele *ce_info)
4176 {
4177     int f;
4178 
4179     for (f = 0; ce_info[f].width; f++) {
4180         /* We have to deal with each element of the FW response
4181          * using the correct size so that we are correct regardless
4182          * of the endianness of the machine.
4183          */
4184         if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4185             ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4186                   f, ce_info[f].width, ce_info[f].size_of);
4187             continue;
4188         }
4189         switch (ce_info[f].size_of) {
4190         case sizeof(u8):
4191             ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4192             break;
4193         case sizeof(u16):
4194             ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4195             break;
4196         case sizeof(u32):
4197             ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4198             break;
4199         case sizeof(u64):
4200             ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4201             break;
4202         default:
4203             return -EINVAL;
4204         }
4205     }
4206 
4207     return 0;
4208 }
4209 
4210 /**
4211  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4212  * @hw: pointer to the HW struct
4213  * @vsi_handle: software VSI handle
4214  * @tc: TC number
4215  * @q_handle: software queue handle
4216  */
4217 struct ice_q_ctx *
4218 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4219 {
4220     struct ice_vsi_ctx *vsi;
4221     struct ice_q_ctx *q_ctx;
4222 
4223     vsi = ice_get_vsi_ctx(hw, vsi_handle);
4224     if (!vsi)
4225         return NULL;
4226     if (q_handle >= vsi->num_lan_q_entries[tc])
4227         return NULL;
4228     if (!vsi->lan_q_ctx[tc])
4229         return NULL;
4230     q_ctx = vsi->lan_q_ctx[tc];
4231     return &q_ctx[q_handle];
4232 }
4233 
4234 /**
4235  * ice_ena_vsi_txq
4236  * @pi: port information structure
4237  * @vsi_handle: software VSI handle
4238  * @tc: TC number
4239  * @q_handle: software queue handle
4240  * @num_qgrps: Number of added queue groups
4241  * @buf: list of queue groups to be added
4242  * @buf_size: size of buffer for indirect command
4243  * @cd: pointer to command details structure or NULL
4244  *
4245  * This function adds one LAN queue
4246  */
4247 int
4248 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4249         u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4250         struct ice_sq_cd *cd)
4251 {
4252     struct ice_aqc_txsched_elem_data node = { 0 };
4253     struct ice_sched_node *parent;
4254     struct ice_q_ctx *q_ctx;
4255     struct ice_hw *hw;
4256     int status;
4257 
4258     if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4259         return -EIO;
4260 
4261     if (num_qgrps > 1 || buf->num_txqs > 1)
4262         return -ENOSPC;
4263 
4264     hw = pi->hw;
4265 
4266     if (!ice_is_vsi_valid(hw, vsi_handle))
4267         return -EINVAL;
4268 
4269     mutex_lock(&pi->sched_lock);
4270 
4271     q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4272     if (!q_ctx) {
4273         ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4274               q_handle);
4275         status = -EINVAL;
4276         goto ena_txq_exit;
4277     }
4278 
4279     /* find a parent node */
4280     parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4281                         ICE_SCHED_NODE_OWNER_LAN);
4282     if (!parent) {
4283         status = -EINVAL;
4284         goto ena_txq_exit;
4285     }
4286 
4287     buf->parent_teid = parent->info.node_teid;
4288     node.parent_teid = parent->info.node_teid;
4289     /* Mark that the values in the "generic" section as valid. The default
4290      * value in the "generic" section is zero. This means that :
4291      * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4292      * - 0 priority among siblings, indicated by Bit 1-3.
4293      * - WFQ, indicated by Bit 4.
4294      * - 0 Adjustment value is used in PSM credit update flow, indicated by
4295      * Bit 5-6.
4296      * - Bit 7 is reserved.
4297      * Without setting the generic section as valid in valid_sections, the
4298      * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4299      */
4300     buf->txqs[0].info.valid_sections =
4301         ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4302         ICE_AQC_ELEM_VALID_EIR;
4303     buf->txqs[0].info.generic = 0;
4304     buf->txqs[0].info.cir_bw.bw_profile_idx =
4305         cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4306     buf->txqs[0].info.cir_bw.bw_alloc =
4307         cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4308     buf->txqs[0].info.eir_bw.bw_profile_idx =
4309         cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4310     buf->txqs[0].info.eir_bw.bw_alloc =
4311         cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4312 
4313     /* add the LAN queue */
4314     status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4315     if (status) {
4316         ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4317               le16_to_cpu(buf->txqs[0].txq_id),
4318               hw->adminq.sq_last_status);
4319         goto ena_txq_exit;
4320     }
4321 
4322     node.node_teid = buf->txqs[0].q_teid;
4323     node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4324     q_ctx->q_handle = q_handle;
4325     q_ctx->q_teid = le32_to_cpu(node.node_teid);
4326 
4327     /* add a leaf node into scheduler tree queue layer */
4328     status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4329     if (!status)
4330         status = ice_sched_replay_q_bw(pi, q_ctx);
4331 
4332 ena_txq_exit:
4333     mutex_unlock(&pi->sched_lock);
4334     return status;
4335 }
4336 
4337 /**
4338  * ice_dis_vsi_txq
4339  * @pi: port information structure
4340  * @vsi_handle: software VSI handle
4341  * @tc: TC number
4342  * @num_queues: number of queues
4343  * @q_handles: pointer to software queue handle array
4344  * @q_ids: pointer to the q_id array
4345  * @q_teids: pointer to queue node teids
4346  * @rst_src: if called due to reset, specifies the reset source
4347  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4348  * @cd: pointer to command details structure or NULL
4349  *
4350  * This function removes queues and their corresponding nodes in SW DB
4351  */
4352 int
4353 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4354         u16 *q_handles, u16 *q_ids, u32 *q_teids,
4355         enum ice_disq_rst_src rst_src, u16 vmvf_num,
4356         struct ice_sq_cd *cd)
4357 {
4358     struct ice_aqc_dis_txq_item *qg_list;
4359     struct ice_q_ctx *q_ctx;
4360     int status = -ENOENT;
4361     struct ice_hw *hw;
4362     u16 i, buf_size;
4363 
4364     if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4365         return -EIO;
4366 
4367     hw = pi->hw;
4368 
4369     if (!num_queues) {
4370         /* if queue is disabled already yet the disable queue command
4371          * has to be sent to complete the VF reset, then call
4372          * ice_aq_dis_lan_txq without any queue information
4373          */
4374         if (rst_src)
4375             return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4376                           vmvf_num, NULL);
4377         return -EIO;
4378     }
4379 
4380     buf_size = struct_size(qg_list, q_id, 1);
4381     qg_list = kzalloc(buf_size, GFP_KERNEL);
4382     if (!qg_list)
4383         return -ENOMEM;
4384 
4385     mutex_lock(&pi->sched_lock);
4386 
4387     for (i = 0; i < num_queues; i++) {
4388         struct ice_sched_node *node;
4389 
4390         node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4391         if (!node)
4392             continue;
4393         q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4394         if (!q_ctx) {
4395             ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4396                   q_handles[i]);
4397             continue;
4398         }
4399         if (q_ctx->q_handle != q_handles[i]) {
4400             ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4401                   q_ctx->q_handle, q_handles[i]);
4402             continue;
4403         }
4404         qg_list->parent_teid = node->info.parent_teid;
4405         qg_list->num_qs = 1;
4406         qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4407         status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4408                         vmvf_num, cd);
4409 
4410         if (status)
4411             break;
4412         ice_free_sched_node(pi, node);
4413         q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4414     }
4415     mutex_unlock(&pi->sched_lock);
4416     kfree(qg_list);
4417     return status;
4418 }
4419 
4420 /**
4421  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4422  * @pi: port information structure
4423  * @vsi_handle: software VSI handle
4424  * @tc_bitmap: TC bitmap
4425  * @maxqs: max queues array per TC
4426  * @owner: LAN or RDMA
4427  *
4428  * This function adds/updates the VSI queues per TC.
4429  */
4430 static int
4431 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4432            u16 *maxqs, u8 owner)
4433 {
4434     int status = 0;
4435     u8 i;
4436 
4437     if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4438         return -EIO;
4439 
4440     if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4441         return -EINVAL;
4442 
4443     mutex_lock(&pi->sched_lock);
4444 
4445     ice_for_each_traffic_class(i) {
4446         /* configuration is possible only if TC node is present */
4447         if (!ice_sched_get_tc_node(pi, i))
4448             continue;
4449 
4450         status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4451                        ice_is_tc_ena(tc_bitmap, i));
4452         if (status)
4453             break;
4454     }
4455 
4456     mutex_unlock(&pi->sched_lock);
4457     return status;
4458 }
4459 
4460 /**
4461  * ice_cfg_vsi_lan - configure VSI LAN queues
4462  * @pi: port information structure
4463  * @vsi_handle: software VSI handle
4464  * @tc_bitmap: TC bitmap
4465  * @max_lanqs: max LAN queues array per TC
4466  *
4467  * This function adds/updates the VSI LAN queues per TC.
4468  */
4469 int
4470 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4471         u16 *max_lanqs)
4472 {
4473     return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4474                   ICE_SCHED_NODE_OWNER_LAN);
4475 }
4476 
4477 /**
4478  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4479  * @pi: port information structure
4480  * @vsi_handle: software VSI handle
4481  * @tc_bitmap: TC bitmap
4482  * @max_rdmaqs: max RDMA queues array per TC
4483  *
4484  * This function adds/updates the VSI RDMA queues per TC.
4485  */
4486 int
4487 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4488          u16 *max_rdmaqs)
4489 {
4490     return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4491                   ICE_SCHED_NODE_OWNER_RDMA);
4492 }
4493 
4494 /**
4495  * ice_ena_vsi_rdma_qset
4496  * @pi: port information structure
4497  * @vsi_handle: software VSI handle
4498  * @tc: TC number
4499  * @rdma_qset: pointer to RDMA Qset
4500  * @num_qsets: number of RDMA Qsets
4501  * @qset_teid: pointer to Qset node TEIDs
4502  *
4503  * This function adds RDMA Qset
4504  */
4505 int
4506 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4507               u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4508 {
4509     struct ice_aqc_txsched_elem_data node = { 0 };
4510     struct ice_aqc_add_rdma_qset_data *buf;
4511     struct ice_sched_node *parent;
4512     struct ice_hw *hw;
4513     u16 i, buf_size;
4514     int ret;
4515 
4516     if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4517         return -EIO;
4518     hw = pi->hw;
4519 
4520     if (!ice_is_vsi_valid(hw, vsi_handle))
4521         return -EINVAL;
4522 
4523     buf_size = struct_size(buf, rdma_qsets, num_qsets);
4524     buf = kzalloc(buf_size, GFP_KERNEL);
4525     if (!buf)
4526         return -ENOMEM;
4527     mutex_lock(&pi->sched_lock);
4528 
4529     parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4530                         ICE_SCHED_NODE_OWNER_RDMA);
4531     if (!parent) {
4532         ret = -EINVAL;
4533         goto rdma_error_exit;
4534     }
4535     buf->parent_teid = parent->info.node_teid;
4536     node.parent_teid = parent->info.node_teid;
4537 
4538     buf->num_qsets = cpu_to_le16(num_qsets);
4539     for (i = 0; i < num_qsets; i++) {
4540         buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4541         buf->rdma_qsets[i].info.valid_sections =
4542             ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4543             ICE_AQC_ELEM_VALID_EIR;
4544         buf->rdma_qsets[i].info.generic = 0;
4545         buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4546             cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4547         buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4548             cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4549         buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4550             cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4551         buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4552             cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4553     }
4554     ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4555     if (ret) {
4556         ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4557         goto rdma_error_exit;
4558     }
4559     node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4560     for (i = 0; i < num_qsets; i++) {
4561         node.node_teid = buf->rdma_qsets[i].qset_teid;
4562         ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4563                      &node);
4564         if (ret)
4565             break;
4566         qset_teid[i] = le32_to_cpu(node.node_teid);
4567     }
4568 rdma_error_exit:
4569     mutex_unlock(&pi->sched_lock);
4570     kfree(buf);
4571     return ret;
4572 }
4573 
4574 /**
4575  * ice_dis_vsi_rdma_qset - free RDMA resources
4576  * @pi: port_info struct
4577  * @count: number of RDMA Qsets to free
4578  * @qset_teid: TEID of Qset node
4579  * @q_id: list of queue IDs being disabled
4580  */
4581 int
4582 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4583               u16 *q_id)
4584 {
4585     struct ice_aqc_dis_txq_item *qg_list;
4586     struct ice_hw *hw;
4587     int status = 0;
4588     u16 qg_size;
4589     int i;
4590 
4591     if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4592         return -EIO;
4593 
4594     hw = pi->hw;
4595 
4596     qg_size = struct_size(qg_list, q_id, 1);
4597     qg_list = kzalloc(qg_size, GFP_KERNEL);
4598     if (!qg_list)
4599         return -ENOMEM;
4600 
4601     mutex_lock(&pi->sched_lock);
4602 
4603     for (i = 0; i < count; i++) {
4604         struct ice_sched_node *node;
4605 
4606         node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4607         if (!node)
4608             continue;
4609 
4610         qg_list->parent_teid = node->info.parent_teid;
4611         qg_list->num_qs = 1;
4612         qg_list->q_id[0] =
4613             cpu_to_le16(q_id[i] |
4614                     ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4615 
4616         status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4617                         ICE_NO_RESET, 0, NULL);
4618         if (status)
4619             break;
4620 
4621         ice_free_sched_node(pi, node);
4622     }
4623 
4624     mutex_unlock(&pi->sched_lock);
4625     kfree(qg_list);
4626     return status;
4627 }
4628 
4629 /**
4630  * ice_replay_pre_init - replay pre initialization
4631  * @hw: pointer to the HW struct
4632  *
4633  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4634  */
4635 static int ice_replay_pre_init(struct ice_hw *hw)
4636 {
4637     struct ice_switch_info *sw = hw->switch_info;
4638     u8 i;
4639 
4640     /* Delete old entries from replay filter list head if there is any */
4641     ice_rm_all_sw_replay_rule_info(hw);
4642     /* In start of replay, move entries into replay_rules list, it
4643      * will allow adding rules entries back to filt_rules list,
4644      * which is operational list.
4645      */
4646     for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4647         list_replace_init(&sw->recp_list[i].filt_rules,
4648                   &sw->recp_list[i].filt_replay_rules);
4649     ice_sched_replay_agg_vsi_preinit(hw);
4650 
4651     return 0;
4652 }
4653 
4654 /**
4655  * ice_replay_vsi - replay VSI configuration
4656  * @hw: pointer to the HW struct
4657  * @vsi_handle: driver VSI handle
4658  *
4659  * Restore all VSI configuration after reset. It is required to call this
4660  * function with main VSI first.
4661  */
4662 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4663 {
4664     int status;
4665 
4666     if (!ice_is_vsi_valid(hw, vsi_handle))
4667         return -EINVAL;
4668 
4669     /* Replay pre-initialization if there is any */
4670     if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4671         status = ice_replay_pre_init(hw);
4672         if (status)
4673             return status;
4674     }
4675     /* Replay per VSI all RSS configurations */
4676     status = ice_replay_rss_cfg(hw, vsi_handle);
4677     if (status)
4678         return status;
4679     /* Replay per VSI all filters */
4680     status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4681     if (!status)
4682         status = ice_replay_vsi_agg(hw, vsi_handle);
4683     return status;
4684 }
4685 
4686 /**
4687  * ice_replay_post - post replay configuration cleanup
4688  * @hw: pointer to the HW struct
4689  *
4690  * Post replay cleanup.
4691  */
4692 void ice_replay_post(struct ice_hw *hw)
4693 {
4694     /* Delete old entries from replay filter list head */
4695     ice_rm_all_sw_replay_rule_info(hw);
4696     ice_sched_replay_agg(hw);
4697 }
4698 
4699 /**
4700  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4701  * @hw: ptr to the hardware info
4702  * @reg: offset of 64 bit HW register to read from
4703  * @prev_stat_loaded: bool to specify if previous stats are loaded
4704  * @prev_stat: ptr to previous loaded stat value
4705  * @cur_stat: ptr to current stat value
4706  */
4707 void
4708 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4709           u64 *prev_stat, u64 *cur_stat)
4710 {
4711     u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4712 
4713     /* device stats are not reset at PFR, they likely will not be zeroed
4714      * when the driver starts. Thus, save the value from the first read
4715      * without adding to the statistic value so that we report stats which
4716      * count up from zero.
4717      */
4718     if (!prev_stat_loaded) {
4719         *prev_stat = new_data;
4720         return;
4721     }
4722 
4723     /* Calculate the difference between the new and old values, and then
4724      * add it to the software stat value.
4725      */
4726     if (new_data >= *prev_stat)
4727         *cur_stat += new_data - *prev_stat;
4728     else
4729         /* to manage the potential roll-over */
4730         *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4731 
4732     /* Update the previously stored value to prepare for next read */
4733     *prev_stat = new_data;
4734 }
4735 
4736 /**
4737  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4738  * @hw: ptr to the hardware info
4739  * @reg: offset of HW register to read from
4740  * @prev_stat_loaded: bool to specify if previous stats are loaded
4741  * @prev_stat: ptr to previous loaded stat value
4742  * @cur_stat: ptr to current stat value
4743  */
4744 void
4745 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4746           u64 *prev_stat, u64 *cur_stat)
4747 {
4748     u32 new_data;
4749 
4750     new_data = rd32(hw, reg);
4751 
4752     /* device stats are not reset at PFR, they likely will not be zeroed
4753      * when the driver starts. Thus, save the value from the first read
4754      * without adding to the statistic value so that we report stats which
4755      * count up from zero.
4756      */
4757     if (!prev_stat_loaded) {
4758         *prev_stat = new_data;
4759         return;
4760     }
4761 
4762     /* Calculate the difference between the new and old values, and then
4763      * add it to the software stat value.
4764      */
4765     if (new_data >= *prev_stat)
4766         *cur_stat += new_data - *prev_stat;
4767     else
4768         /* to manage the potential roll-over */
4769         *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4770 
4771     /* Update the previously stored value to prepare for next read */
4772     *prev_stat = new_data;
4773 }
4774 
4775 /**
4776  * ice_sched_query_elem - query element information from HW
4777  * @hw: pointer to the HW struct
4778  * @node_teid: node TEID to be queried
4779  * @buf: buffer to element information
4780  *
4781  * This function queries HW element information
4782  */
4783 int
4784 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4785              struct ice_aqc_txsched_elem_data *buf)
4786 {
4787     u16 buf_size, num_elem_ret = 0;
4788     int status;
4789 
4790     buf_size = sizeof(*buf);
4791     memset(buf, 0, buf_size);
4792     buf->node_teid = cpu_to_le32(node_teid);
4793     status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4794                       NULL);
4795     if (status || num_elem_ret != 1)
4796         ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4797     return status;
4798 }
4799 
4800 /**
4801  * ice_aq_read_i2c
4802  * @hw: pointer to the hw struct
4803  * @topo_addr: topology address for a device to communicate with
4804  * @bus_addr: 7-bit I2C bus address
4805  * @addr: I2C memory address (I2C offset) with up to 16 bits
4806  * @params: I2C parameters: bit [7] - Repeated start,
4807  *              bits [6:5] data offset size,
4808  *              bit [4] - I2C address type,
4809  *              bits [3:0] - data size to read (0-16 bytes)
4810  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
4811  * @cd: pointer to command details structure or NULL
4812  *
4813  * Read I2C (0x06E2)
4814  */
4815 int
4816 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
4817         u16 bus_addr, __le16 addr, u8 params, u8 *data,
4818         struct ice_sq_cd *cd)
4819 {
4820     struct ice_aq_desc desc = { 0 };
4821     struct ice_aqc_i2c *cmd;
4822     u8 data_size;
4823     int status;
4824 
4825     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
4826     cmd = &desc.params.read_write_i2c;
4827 
4828     if (!data)
4829         return -EINVAL;
4830 
4831     data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
4832 
4833     cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
4834     cmd->topo_addr = topo_addr;
4835     cmd->i2c_params = params;
4836     cmd->i2c_addr = addr;
4837 
4838     status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4839     if (!status) {
4840         struct ice_aqc_read_i2c_resp *resp;
4841         u8 i;
4842 
4843         resp = &desc.params.read_i2c_resp;
4844         for (i = 0; i < data_size; i++) {
4845             *data = resp->i2c_data[i];
4846             data++;
4847         }
4848     }
4849 
4850     return status;
4851 }
4852 
4853 /**
4854  * ice_aq_write_i2c
4855  * @hw: pointer to the hw struct
4856  * @topo_addr: topology address for a device to communicate with
4857  * @bus_addr: 7-bit I2C bus address
4858  * @addr: I2C memory address (I2C offset) with up to 16 bits
4859  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
4860  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
4861  * @cd: pointer to command details structure or NULL
4862  *
4863  * Write I2C (0x06E3)
4864  *
4865  * * Return:
4866  * * 0             - Successful write to the i2c device
4867  * * -EINVAL       - Data size greater than 4 bytes
4868  * * -EIO          - FW error
4869  */
4870 int
4871 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
4872          u16 bus_addr, __le16 addr, u8 params, u8 *data,
4873          struct ice_sq_cd *cd)
4874 {
4875     struct ice_aq_desc desc = { 0 };
4876     struct ice_aqc_i2c *cmd;
4877     u8 data_size;
4878 
4879     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
4880     cmd = &desc.params.read_write_i2c;
4881 
4882     data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
4883 
4884     /* data_size limited to 4 */
4885     if (data_size > 4)
4886         return -EINVAL;
4887 
4888     cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
4889     cmd->topo_addr = topo_addr;
4890     cmd->i2c_params = params;
4891     cmd->i2c_addr = addr;
4892 
4893     memcpy(cmd->i2c_data, data, data_size);
4894 
4895     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4896 }
4897 
4898 /**
4899  * ice_aq_set_driver_param - Set driver parameter to share via firmware
4900  * @hw: pointer to the HW struct
4901  * @idx: parameter index to set
4902  * @value: the value to set the parameter to
4903  * @cd: pointer to command details structure or NULL
4904  *
4905  * Set the value of one of the software defined parameters. All PFs connected
4906  * to this device can read the value using ice_aq_get_driver_param.
4907  *
4908  * Note that firmware provides no synchronization or locking, and will not
4909  * save the parameter value during a device reset. It is expected that
4910  * a single PF will write the parameter value, while all other PFs will only
4911  * read it.
4912  */
4913 int
4914 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4915             u32 value, struct ice_sq_cd *cd)
4916 {
4917     struct ice_aqc_driver_shared_params *cmd;
4918     struct ice_aq_desc desc;
4919 
4920     if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4921         return -EIO;
4922 
4923     cmd = &desc.params.drv_shared_params;
4924 
4925     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4926 
4927     cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
4928     cmd->param_indx = idx;
4929     cmd->param_val = cpu_to_le32(value);
4930 
4931     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4932 }
4933 
4934 /**
4935  * ice_aq_get_driver_param - Get driver parameter shared via firmware
4936  * @hw: pointer to the HW struct
4937  * @idx: parameter index to set
4938  * @value: storage to return the shared parameter
4939  * @cd: pointer to command details structure or NULL
4940  *
4941  * Get the value of one of the software defined parameters.
4942  *
4943  * Note that firmware provides no synchronization or locking. It is expected
4944  * that only a single PF will write a given parameter.
4945  */
4946 int
4947 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4948             u32 *value, struct ice_sq_cd *cd)
4949 {
4950     struct ice_aqc_driver_shared_params *cmd;
4951     struct ice_aq_desc desc;
4952     int status;
4953 
4954     if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4955         return -EIO;
4956 
4957     cmd = &desc.params.drv_shared_params;
4958 
4959     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4960 
4961     cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
4962     cmd->param_indx = idx;
4963 
4964     status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4965     if (status)
4966         return status;
4967 
4968     *value = le32_to_cpu(cmd->param_val);
4969 
4970     return 0;
4971 }
4972 
4973 /**
4974  * ice_aq_set_gpio
4975  * @hw: pointer to the hw struct
4976  * @gpio_ctrl_handle: GPIO controller node handle
4977  * @pin_idx: IO Number of the GPIO that needs to be set
4978  * @value: SW provide IO value to set in the LSB
4979  * @cd: pointer to command details structure or NULL
4980  *
4981  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
4982  */
4983 int
4984 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
4985         struct ice_sq_cd *cd)
4986 {
4987     struct ice_aqc_gpio *cmd;
4988     struct ice_aq_desc desc;
4989 
4990     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
4991     cmd = &desc.params.read_write_gpio;
4992     cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
4993     cmd->gpio_num = pin_idx;
4994     cmd->gpio_val = value ? 1 : 0;
4995 
4996     return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4997 }
4998 
4999 /**
5000  * ice_aq_get_gpio
5001  * @hw: pointer to the hw struct
5002  * @gpio_ctrl_handle: GPIO controller node handle
5003  * @pin_idx: IO Number of the GPIO that needs to be set
5004  * @value: IO value read
5005  * @cd: pointer to command details structure or NULL
5006  *
5007  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5008  * the topology
5009  */
5010 int
5011 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5012         bool *value, struct ice_sq_cd *cd)
5013 {
5014     struct ice_aqc_gpio *cmd;
5015     struct ice_aq_desc desc;
5016     int status;
5017 
5018     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5019     cmd = &desc.params.read_write_gpio;
5020     cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5021     cmd->gpio_num = pin_idx;
5022 
5023     status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5024     if (status)
5025         return status;
5026 
5027     *value = !!cmd->gpio_val;
5028     return 0;
5029 }
5030 
5031 /**
5032  * ice_fw_supports_link_override
5033  * @hw: pointer to the hardware structure
5034  *
5035  * Checks if the firmware supports link override
5036  */
5037 bool ice_fw_supports_link_override(struct ice_hw *hw)
5038 {
5039     if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
5040         if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
5041             return true;
5042         if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
5043             hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
5044             return true;
5045     } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
5046         return true;
5047     }
5048 
5049     return false;
5050 }
5051 
5052 /**
5053  * ice_get_link_default_override
5054  * @ldo: pointer to the link default override struct
5055  * @pi: pointer to the port info struct
5056  *
5057  * Gets the link default override for a port
5058  */
5059 int
5060 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5061                   struct ice_port_info *pi)
5062 {
5063     u16 i, tlv, tlv_len, tlv_start, buf, offset;
5064     struct ice_hw *hw = pi->hw;
5065     int status;
5066 
5067     status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5068                     ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5069     if (status) {
5070         ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5071         return status;
5072     }
5073 
5074     /* Each port has its own config; calculate for our port */
5075     tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5076         ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5077 
5078     /* link options first */
5079     status = ice_read_sr_word(hw, tlv_start, &buf);
5080     if (status) {
5081         ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5082         return status;
5083     }
5084     ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5085     ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5086         ICE_LINK_OVERRIDE_PHY_CFG_S;
5087 
5088     /* link PHY config */
5089     offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5090     status = ice_read_sr_word(hw, offset, &buf);
5091     if (status) {
5092         ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5093         return status;
5094     }
5095     ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5096 
5097     /* PHY types low */
5098     offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5099     for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5100         status = ice_read_sr_word(hw, (offset + i), &buf);
5101         if (status) {
5102             ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5103             return status;
5104         }
5105         /* shift 16 bits at a time to fill 64 bits */
5106         ldo->phy_type_low |= ((u64)buf << (i * 16));
5107     }
5108 
5109     /* PHY types high */
5110     offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5111         ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5112     for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5113         status = ice_read_sr_word(hw, (offset + i), &buf);
5114         if (status) {
5115             ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5116             return status;
5117         }
5118         /* shift 16 bits at a time to fill 64 bits */
5119         ldo->phy_type_high |= ((u64)buf << (i * 16));
5120     }
5121 
5122     return status;
5123 }
5124 
5125 /**
5126  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5127  * @caps: get PHY capability data
5128  */
5129 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5130 {
5131     if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5132         caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5133                        ICE_AQC_PHY_AN_EN_CLAUSE73 |
5134                        ICE_AQC_PHY_AN_EN_CLAUSE37))
5135         return true;
5136 
5137     return false;
5138 }
5139 
5140 /**
5141  * ice_aq_set_lldp_mib - Set the LLDP MIB
5142  * @hw: pointer to the HW struct
5143  * @mib_type: Local, Remote or both Local and Remote MIBs
5144  * @buf: pointer to the caller-supplied buffer to store the MIB block
5145  * @buf_size: size of the buffer (in bytes)
5146  * @cd: pointer to command details structure or NULL
5147  *
5148  * Set the LLDP MIB. (0x0A08)
5149  */
5150 int
5151 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5152             struct ice_sq_cd *cd)
5153 {
5154     struct ice_aqc_lldp_set_local_mib *cmd;
5155     struct ice_aq_desc desc;
5156 
5157     cmd = &desc.params.lldp_set_mib;
5158 
5159     if (buf_size == 0 || !buf)
5160         return -EINVAL;
5161 
5162     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5163 
5164     desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5165     desc.datalen = cpu_to_le16(buf_size);
5166 
5167     cmd->type = mib_type;
5168     cmd->length = cpu_to_le16(buf_size);
5169 
5170     return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5171 }
5172 
5173 /**
5174  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5175  * @hw: pointer to HW struct
5176  */
5177 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5178 {
5179     if (hw->mac_type != ICE_MAC_E810)
5180         return false;
5181 
5182     if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
5183         if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
5184             return true;
5185         if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
5186             hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
5187             return true;
5188     } else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
5189         return true;
5190     }
5191     return false;
5192 }
5193 
5194 /**
5195  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5196  * @hw: pointer to HW struct
5197  * @vsi_num: absolute HW index for VSI
5198  * @add: boolean for if adding or removing a filter
5199  */
5200 int
5201 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5202 {
5203     struct ice_aqc_lldp_filter_ctrl *cmd;
5204     struct ice_aq_desc desc;
5205 
5206     cmd = &desc.params.lldp_filter_ctrl;
5207 
5208     ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5209 
5210     if (add)
5211         cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5212     else
5213         cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5214 
5215     cmd->vsi_num = cpu_to_le16(vsi_num);
5216 
5217     return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5218 }
5219 
5220 /**
5221  * ice_fw_supports_report_dflt_cfg
5222  * @hw: pointer to the hardware structure
5223  *
5224  * Checks if the firmware supports report default configuration
5225  */
5226 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5227 {
5228     if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5229         if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
5230             return true;
5231         if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
5232             hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
5233             return true;
5234     } else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5235         return true;
5236     }
5237     return false;
5238 }