Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright(c) 2013 - 2018 Intel Corporation. */
0003 
0004 #include "iavf.h"
0005 #include "iavf_prototype.h"
0006 #include "iavf_client.h"
0007 /* All iavf tracepoints are defined by the include below, which must
0008  * be included exactly once across the whole kernel with
0009  * CREATE_TRACE_POINTS defined
0010  */
0011 #define CREATE_TRACE_POINTS
0012 #include "iavf_trace.h"
0013 
0014 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
0015 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
0016 static int iavf_close(struct net_device *netdev);
0017 static void iavf_init_get_resources(struct iavf_adapter *adapter);
0018 static int iavf_check_reset_complete(struct iavf_hw *hw);
0019 
0020 char iavf_driver_name[] = "iavf";
0021 static const char iavf_driver_string[] =
0022     "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
0023 
0024 static const char iavf_copyright[] =
0025     "Copyright (c) 2013 - 2018 Intel Corporation.";
0026 
0027 /* iavf_pci_tbl - PCI Device ID Table
0028  *
0029  * Wildcard entries (PCI_ANY_ID) should come last
0030  * Last entry must be all 0s
0031  *
0032  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
0033  *   Class, Class Mask, private data (not used) }
0034  */
0035 static const struct pci_device_id iavf_pci_tbl[] = {
0036     {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
0037     {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
0038     {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
0039     {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
0040     /* required last entry */
0041     {0, }
0042 };
0043 
0044 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
0045 
0046 MODULE_ALIAS("i40evf");
0047 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
0048 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
0049 MODULE_LICENSE("GPL v2");
0050 
0051 static const struct net_device_ops iavf_netdev_ops;
0052 struct workqueue_struct *iavf_wq;
0053 
0054 int iavf_status_to_errno(enum iavf_status status)
0055 {
0056     switch (status) {
0057     case IAVF_SUCCESS:
0058         return 0;
0059     case IAVF_ERR_PARAM:
0060     case IAVF_ERR_MAC_TYPE:
0061     case IAVF_ERR_INVALID_MAC_ADDR:
0062     case IAVF_ERR_INVALID_LINK_SETTINGS:
0063     case IAVF_ERR_INVALID_PD_ID:
0064     case IAVF_ERR_INVALID_QP_ID:
0065     case IAVF_ERR_INVALID_CQ_ID:
0066     case IAVF_ERR_INVALID_CEQ_ID:
0067     case IAVF_ERR_INVALID_AEQ_ID:
0068     case IAVF_ERR_INVALID_SIZE:
0069     case IAVF_ERR_INVALID_ARP_INDEX:
0070     case IAVF_ERR_INVALID_FPM_FUNC_ID:
0071     case IAVF_ERR_QP_INVALID_MSG_SIZE:
0072     case IAVF_ERR_INVALID_FRAG_COUNT:
0073     case IAVF_ERR_INVALID_ALIGNMENT:
0074     case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
0075     case IAVF_ERR_INVALID_IMM_DATA_SIZE:
0076     case IAVF_ERR_INVALID_VF_ID:
0077     case IAVF_ERR_INVALID_HMCFN_ID:
0078     case IAVF_ERR_INVALID_PBLE_INDEX:
0079     case IAVF_ERR_INVALID_SD_INDEX:
0080     case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
0081     case IAVF_ERR_INVALID_SD_TYPE:
0082     case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
0083     case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
0084     case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
0085         return -EINVAL;
0086     case IAVF_ERR_NVM:
0087     case IAVF_ERR_NVM_CHECKSUM:
0088     case IAVF_ERR_PHY:
0089     case IAVF_ERR_CONFIG:
0090     case IAVF_ERR_UNKNOWN_PHY:
0091     case IAVF_ERR_LINK_SETUP:
0092     case IAVF_ERR_ADAPTER_STOPPED:
0093     case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
0094     case IAVF_ERR_AUTONEG_NOT_COMPLETE:
0095     case IAVF_ERR_RESET_FAILED:
0096     case IAVF_ERR_BAD_PTR:
0097     case IAVF_ERR_SWFW_SYNC:
0098     case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
0099     case IAVF_ERR_QUEUE_EMPTY:
0100     case IAVF_ERR_FLUSHED_QUEUE:
0101     case IAVF_ERR_OPCODE_MISMATCH:
0102     case IAVF_ERR_CQP_COMPL_ERROR:
0103     case IAVF_ERR_BACKING_PAGE_ERROR:
0104     case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
0105     case IAVF_ERR_MEMCPY_FAILED:
0106     case IAVF_ERR_SRQ_ENABLED:
0107     case IAVF_ERR_ADMIN_QUEUE_ERROR:
0108     case IAVF_ERR_ADMIN_QUEUE_FULL:
0109     case IAVF_ERR_BAD_IWARP_CQE:
0110     case IAVF_ERR_NVM_BLANK_MODE:
0111     case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
0112     case IAVF_ERR_DIAG_TEST_FAILED:
0113     case IAVF_ERR_FIRMWARE_API_VERSION:
0114     case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
0115         return -EIO;
0116     case IAVF_ERR_DEVICE_NOT_SUPPORTED:
0117         return -ENODEV;
0118     case IAVF_ERR_NO_AVAILABLE_VSI:
0119     case IAVF_ERR_RING_FULL:
0120         return -ENOSPC;
0121     case IAVF_ERR_NO_MEMORY:
0122         return -ENOMEM;
0123     case IAVF_ERR_TIMEOUT:
0124     case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
0125         return -ETIMEDOUT;
0126     case IAVF_ERR_NOT_IMPLEMENTED:
0127     case IAVF_NOT_SUPPORTED:
0128         return -EOPNOTSUPP;
0129     case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
0130         return -EALREADY;
0131     case IAVF_ERR_NOT_READY:
0132         return -EBUSY;
0133     case IAVF_ERR_BUF_TOO_SHORT:
0134         return -EMSGSIZE;
0135     }
0136 
0137     return -EIO;
0138 }
0139 
0140 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
0141 {
0142     switch (v_status) {
0143     case VIRTCHNL_STATUS_SUCCESS:
0144         return 0;
0145     case VIRTCHNL_STATUS_ERR_PARAM:
0146     case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
0147         return -EINVAL;
0148     case VIRTCHNL_STATUS_ERR_NO_MEMORY:
0149         return -ENOMEM;
0150     case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
0151     case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
0152     case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
0153         return -EIO;
0154     case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
0155         return -EOPNOTSUPP;
0156     }
0157 
0158     return -EIO;
0159 }
0160 
0161 /**
0162  * iavf_pdev_to_adapter - go from pci_dev to adapter
0163  * @pdev: pci_dev pointer
0164  */
0165 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
0166 {
0167     return netdev_priv(pci_get_drvdata(pdev));
0168 }
0169 
0170 /**
0171  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
0172  * @hw:   pointer to the HW structure
0173  * @mem:  ptr to mem struct to fill out
0174  * @size: size of memory requested
0175  * @alignment: what to align the allocation to
0176  **/
0177 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
0178                      struct iavf_dma_mem *mem,
0179                      u64 size, u32 alignment)
0180 {
0181     struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
0182 
0183     if (!mem)
0184         return IAVF_ERR_PARAM;
0185 
0186     mem->size = ALIGN(size, alignment);
0187     mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
0188                      (dma_addr_t *)&mem->pa, GFP_KERNEL);
0189     if (mem->va)
0190         return 0;
0191     else
0192         return IAVF_ERR_NO_MEMORY;
0193 }
0194 
0195 /**
0196  * iavf_free_dma_mem_d - OS specific memory free for shared code
0197  * @hw:   pointer to the HW structure
0198  * @mem:  ptr to mem struct to free
0199  **/
0200 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
0201                      struct iavf_dma_mem *mem)
0202 {
0203     struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
0204 
0205     if (!mem || !mem->va)
0206         return IAVF_ERR_PARAM;
0207     dma_free_coherent(&adapter->pdev->dev, mem->size,
0208               mem->va, (dma_addr_t)mem->pa);
0209     return 0;
0210 }
0211 
0212 /**
0213  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
0214  * @hw:   pointer to the HW structure
0215  * @mem:  ptr to mem struct to fill out
0216  * @size: size of memory requested
0217  **/
0218 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
0219                       struct iavf_virt_mem *mem, u32 size)
0220 {
0221     if (!mem)
0222         return IAVF_ERR_PARAM;
0223 
0224     mem->size = size;
0225     mem->va = kzalloc(size, GFP_KERNEL);
0226 
0227     if (mem->va)
0228         return 0;
0229     else
0230         return IAVF_ERR_NO_MEMORY;
0231 }
0232 
0233 /**
0234  * iavf_free_virt_mem_d - OS specific memory free for shared code
0235  * @hw:   pointer to the HW structure
0236  * @mem:  ptr to mem struct to free
0237  **/
0238 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
0239                       struct iavf_virt_mem *mem)
0240 {
0241     if (!mem)
0242         return IAVF_ERR_PARAM;
0243 
0244     /* it's ok to kfree a NULL pointer */
0245     kfree(mem->va);
0246 
0247     return 0;
0248 }
0249 
0250 /**
0251  * iavf_lock_timeout - try to lock mutex but give up after timeout
0252  * @lock: mutex that should be locked
0253  * @msecs: timeout in msecs
0254  *
0255  * Returns 0 on success, negative on failure
0256  **/
0257 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
0258 {
0259     unsigned int wait, delay = 10;
0260 
0261     for (wait = 0; wait < msecs; wait += delay) {
0262         if (mutex_trylock(lock))
0263             return 0;
0264 
0265         msleep(delay);
0266     }
0267 
0268     return -1;
0269 }
0270 
0271 /**
0272  * iavf_schedule_reset - Set the flags and schedule a reset event
0273  * @adapter: board private structure
0274  **/
0275 void iavf_schedule_reset(struct iavf_adapter *adapter)
0276 {
0277     if (!(adapter->flags &
0278           (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
0279         adapter->flags |= IAVF_FLAG_RESET_NEEDED;
0280         queue_work(iavf_wq, &adapter->reset_task);
0281     }
0282 }
0283 
0284 /**
0285  * iavf_schedule_request_stats - Set the flags and schedule statistics request
0286  * @adapter: board private structure
0287  *
0288  * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
0289  * request and refresh ethtool stats
0290  **/
0291 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
0292 {
0293     adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
0294     mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
0295 }
0296 
0297 /**
0298  * iavf_tx_timeout - Respond to a Tx Hang
0299  * @netdev: network interface device structure
0300  * @txqueue: queue number that is timing out
0301  **/
0302 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
0303 {
0304     struct iavf_adapter *adapter = netdev_priv(netdev);
0305 
0306     adapter->tx_timeout_count++;
0307     iavf_schedule_reset(adapter);
0308 }
0309 
0310 /**
0311  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
0312  * @adapter: board private structure
0313  **/
0314 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
0315 {
0316     struct iavf_hw *hw = &adapter->hw;
0317 
0318     if (!adapter->msix_entries)
0319         return;
0320 
0321     wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
0322 
0323     iavf_flush(hw);
0324 
0325     synchronize_irq(adapter->msix_entries[0].vector);
0326 }
0327 
0328 /**
0329  * iavf_misc_irq_enable - Enable default interrupt generation settings
0330  * @adapter: board private structure
0331  **/
0332 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
0333 {
0334     struct iavf_hw *hw = &adapter->hw;
0335 
0336     wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
0337                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
0338     wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
0339 
0340     iavf_flush(hw);
0341 }
0342 
0343 /**
0344  * iavf_irq_disable - Mask off interrupt generation on the NIC
0345  * @adapter: board private structure
0346  **/
0347 static void iavf_irq_disable(struct iavf_adapter *adapter)
0348 {
0349     int i;
0350     struct iavf_hw *hw = &adapter->hw;
0351 
0352     if (!adapter->msix_entries)
0353         return;
0354 
0355     for (i = 1; i < adapter->num_msix_vectors; i++) {
0356         wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
0357         synchronize_irq(adapter->msix_entries[i].vector);
0358     }
0359     iavf_flush(hw);
0360 }
0361 
0362 /**
0363  * iavf_irq_enable_queues - Enable interrupt for specified queues
0364  * @adapter: board private structure
0365  * @mask: bitmap of queues to enable
0366  **/
0367 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
0368 {
0369     struct iavf_hw *hw = &adapter->hw;
0370     int i;
0371 
0372     for (i = 1; i < adapter->num_msix_vectors; i++) {
0373         if (mask & BIT(i - 1)) {
0374             wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
0375                  IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
0376                  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
0377         }
0378     }
0379 }
0380 
0381 /**
0382  * iavf_irq_enable - Enable default interrupt generation settings
0383  * @adapter: board private structure
0384  * @flush: boolean value whether to run rd32()
0385  **/
0386 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
0387 {
0388     struct iavf_hw *hw = &adapter->hw;
0389 
0390     iavf_misc_irq_enable(adapter);
0391     iavf_irq_enable_queues(adapter, ~0);
0392 
0393     if (flush)
0394         iavf_flush(hw);
0395 }
0396 
0397 /**
0398  * iavf_msix_aq - Interrupt handler for vector 0
0399  * @irq: interrupt number
0400  * @data: pointer to netdev
0401  **/
0402 static irqreturn_t iavf_msix_aq(int irq, void *data)
0403 {
0404     struct net_device *netdev = data;
0405     struct iavf_adapter *adapter = netdev_priv(netdev);
0406     struct iavf_hw *hw = &adapter->hw;
0407 
0408     /* handle non-queue interrupts, these reads clear the registers */
0409     rd32(hw, IAVF_VFINT_ICR01);
0410     rd32(hw, IAVF_VFINT_ICR0_ENA1);
0411 
0412     if (adapter->state != __IAVF_REMOVE)
0413         /* schedule work on the private workqueue */
0414         queue_work(iavf_wq, &adapter->adminq_task);
0415 
0416     return IRQ_HANDLED;
0417 }
0418 
0419 /**
0420  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
0421  * @irq: interrupt number
0422  * @data: pointer to a q_vector
0423  **/
0424 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
0425 {
0426     struct iavf_q_vector *q_vector = data;
0427 
0428     if (!q_vector->tx.ring && !q_vector->rx.ring)
0429         return IRQ_HANDLED;
0430 
0431     napi_schedule_irqoff(&q_vector->napi);
0432 
0433     return IRQ_HANDLED;
0434 }
0435 
0436 /**
0437  * iavf_map_vector_to_rxq - associate irqs with rx queues
0438  * @adapter: board private structure
0439  * @v_idx: interrupt number
0440  * @r_idx: queue number
0441  **/
0442 static void
0443 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
0444 {
0445     struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
0446     struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
0447     struct iavf_hw *hw = &adapter->hw;
0448 
0449     rx_ring->q_vector = q_vector;
0450     rx_ring->next = q_vector->rx.ring;
0451     rx_ring->vsi = &adapter->vsi;
0452     q_vector->rx.ring = rx_ring;
0453     q_vector->rx.count++;
0454     q_vector->rx.next_update = jiffies + 1;
0455     q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
0456     q_vector->ring_mask |= BIT(r_idx);
0457     wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
0458          q_vector->rx.current_itr >> 1);
0459     q_vector->rx.current_itr = q_vector->rx.target_itr;
0460 }
0461 
0462 /**
0463  * iavf_map_vector_to_txq - associate irqs with tx queues
0464  * @adapter: board private structure
0465  * @v_idx: interrupt number
0466  * @t_idx: queue number
0467  **/
0468 static void
0469 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
0470 {
0471     struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
0472     struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
0473     struct iavf_hw *hw = &adapter->hw;
0474 
0475     tx_ring->q_vector = q_vector;
0476     tx_ring->next = q_vector->tx.ring;
0477     tx_ring->vsi = &adapter->vsi;
0478     q_vector->tx.ring = tx_ring;
0479     q_vector->tx.count++;
0480     q_vector->tx.next_update = jiffies + 1;
0481     q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
0482     q_vector->num_ringpairs++;
0483     wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
0484          q_vector->tx.target_itr >> 1);
0485     q_vector->tx.current_itr = q_vector->tx.target_itr;
0486 }
0487 
0488 /**
0489  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
0490  * @adapter: board private structure to initialize
0491  *
0492  * This function maps descriptor rings to the queue-specific vectors
0493  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
0494  * one vector per ring/queue, but on a constrained vector budget, we
0495  * group the rings as "efficiently" as possible.  You would add new
0496  * mapping configurations in here.
0497  **/
0498 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
0499 {
0500     int rings_remaining = adapter->num_active_queues;
0501     int ridx = 0, vidx = 0;
0502     int q_vectors;
0503 
0504     q_vectors = adapter->num_msix_vectors - NONQ_VECS;
0505 
0506     for (; ridx < rings_remaining; ridx++) {
0507         iavf_map_vector_to_rxq(adapter, vidx, ridx);
0508         iavf_map_vector_to_txq(adapter, vidx, ridx);
0509 
0510         /* In the case where we have more queues than vectors, continue
0511          * round-robin on vectors until all queues are mapped.
0512          */
0513         if (++vidx >= q_vectors)
0514             vidx = 0;
0515     }
0516 
0517     adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
0518 }
0519 
0520 /**
0521  * iavf_irq_affinity_notify - Callback for affinity changes
0522  * @notify: context as to what irq was changed
0523  * @mask: the new affinity mask
0524  *
0525  * This is a callback function used by the irq_set_affinity_notifier function
0526  * so that we may register to receive changes to the irq affinity masks.
0527  **/
0528 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
0529                      const cpumask_t *mask)
0530 {
0531     struct iavf_q_vector *q_vector =
0532         container_of(notify, struct iavf_q_vector, affinity_notify);
0533 
0534     cpumask_copy(&q_vector->affinity_mask, mask);
0535 }
0536 
0537 /**
0538  * iavf_irq_affinity_release - Callback for affinity notifier release
0539  * @ref: internal core kernel usage
0540  *
0541  * This is a callback function used by the irq_set_affinity_notifier function
0542  * to inform the current notification subscriber that they will no longer
0543  * receive notifications.
0544  **/
0545 static void iavf_irq_affinity_release(struct kref *ref) {}
0546 
0547 /**
0548  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
0549  * @adapter: board private structure
0550  * @basename: device basename
0551  *
0552  * Allocates MSI-X vectors for tx and rx handling, and requests
0553  * interrupts from the kernel.
0554  **/
0555 static int
0556 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
0557 {
0558     unsigned int vector, q_vectors;
0559     unsigned int rx_int_idx = 0, tx_int_idx = 0;
0560     int irq_num, err;
0561     int cpu;
0562 
0563     iavf_irq_disable(adapter);
0564     /* Decrement for Other and TCP Timer vectors */
0565     q_vectors = adapter->num_msix_vectors - NONQ_VECS;
0566 
0567     for (vector = 0; vector < q_vectors; vector++) {
0568         struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
0569 
0570         irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
0571 
0572         if (q_vector->tx.ring && q_vector->rx.ring) {
0573             snprintf(q_vector->name, sizeof(q_vector->name),
0574                  "iavf-%s-TxRx-%u", basename, rx_int_idx++);
0575             tx_int_idx++;
0576         } else if (q_vector->rx.ring) {
0577             snprintf(q_vector->name, sizeof(q_vector->name),
0578                  "iavf-%s-rx-%u", basename, rx_int_idx++);
0579         } else if (q_vector->tx.ring) {
0580             snprintf(q_vector->name, sizeof(q_vector->name),
0581                  "iavf-%s-tx-%u", basename, tx_int_idx++);
0582         } else {
0583             /* skip this unused q_vector */
0584             continue;
0585         }
0586         err = request_irq(irq_num,
0587                   iavf_msix_clean_rings,
0588                   0,
0589                   q_vector->name,
0590                   q_vector);
0591         if (err) {
0592             dev_info(&adapter->pdev->dev,
0593                  "Request_irq failed, error: %d\n", err);
0594             goto free_queue_irqs;
0595         }
0596         /* register for affinity change notifications */
0597         q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
0598         q_vector->affinity_notify.release =
0599                            iavf_irq_affinity_release;
0600         irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
0601         /* Spread the IRQ affinity hints across online CPUs. Note that
0602          * get_cpu_mask returns a mask with a permanent lifetime so
0603          * it's safe to use as a hint for irq_update_affinity_hint.
0604          */
0605         cpu = cpumask_local_spread(q_vector->v_idx, -1);
0606         irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
0607     }
0608 
0609     return 0;
0610 
0611 free_queue_irqs:
0612     while (vector) {
0613         vector--;
0614         irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
0615         irq_set_affinity_notifier(irq_num, NULL);
0616         irq_update_affinity_hint(irq_num, NULL);
0617         free_irq(irq_num, &adapter->q_vectors[vector]);
0618     }
0619     return err;
0620 }
0621 
0622 /**
0623  * iavf_request_misc_irq - Initialize MSI-X interrupts
0624  * @adapter: board private structure
0625  *
0626  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
0627  * vector is only for the admin queue, and stays active even when the netdev
0628  * is closed.
0629  **/
0630 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
0631 {
0632     struct net_device *netdev = adapter->netdev;
0633     int err;
0634 
0635     snprintf(adapter->misc_vector_name,
0636          sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
0637          dev_name(&adapter->pdev->dev));
0638     err = request_irq(adapter->msix_entries[0].vector,
0639               &iavf_msix_aq, 0,
0640               adapter->misc_vector_name, netdev);
0641     if (err) {
0642         dev_err(&adapter->pdev->dev,
0643             "request_irq for %s failed: %d\n",
0644             adapter->misc_vector_name, err);
0645         free_irq(adapter->msix_entries[0].vector, netdev);
0646     }
0647     return err;
0648 }
0649 
0650 /**
0651  * iavf_free_traffic_irqs - Free MSI-X interrupts
0652  * @adapter: board private structure
0653  *
0654  * Frees all MSI-X vectors other than 0.
0655  **/
0656 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
0657 {
0658     int vector, irq_num, q_vectors;
0659 
0660     if (!adapter->msix_entries)
0661         return;
0662 
0663     q_vectors = adapter->num_msix_vectors - NONQ_VECS;
0664 
0665     for (vector = 0; vector < q_vectors; vector++) {
0666         irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
0667         irq_set_affinity_notifier(irq_num, NULL);
0668         irq_update_affinity_hint(irq_num, NULL);
0669         free_irq(irq_num, &adapter->q_vectors[vector]);
0670     }
0671 }
0672 
0673 /**
0674  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
0675  * @adapter: board private structure
0676  *
0677  * Frees MSI-X vector 0.
0678  **/
0679 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
0680 {
0681     struct net_device *netdev = adapter->netdev;
0682 
0683     if (!adapter->msix_entries)
0684         return;
0685 
0686     free_irq(adapter->msix_entries[0].vector, netdev);
0687 }
0688 
0689 /**
0690  * iavf_configure_tx - Configure Transmit Unit after Reset
0691  * @adapter: board private structure
0692  *
0693  * Configure the Tx unit of the MAC after a reset.
0694  **/
0695 static void iavf_configure_tx(struct iavf_adapter *adapter)
0696 {
0697     struct iavf_hw *hw = &adapter->hw;
0698     int i;
0699 
0700     for (i = 0; i < adapter->num_active_queues; i++)
0701         adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
0702 }
0703 
0704 /**
0705  * iavf_configure_rx - Configure Receive Unit after Reset
0706  * @adapter: board private structure
0707  *
0708  * Configure the Rx unit of the MAC after a reset.
0709  **/
0710 static void iavf_configure_rx(struct iavf_adapter *adapter)
0711 {
0712     unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
0713     struct iavf_hw *hw = &adapter->hw;
0714     int i;
0715 
0716     /* Legacy Rx will always default to a 2048 buffer size. */
0717 #if (PAGE_SIZE < 8192)
0718     if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
0719         struct net_device *netdev = adapter->netdev;
0720 
0721         /* For jumbo frames on systems with 4K pages we have to use
0722          * an order 1 page, so we might as well increase the size
0723          * of our Rx buffer to make better use of the available space
0724          */
0725         rx_buf_len = IAVF_RXBUFFER_3072;
0726 
0727         /* We use a 1536 buffer size for configurations with
0728          * standard Ethernet mtu.  On x86 this gives us enough room
0729          * for shared info and 192 bytes of padding.
0730          */
0731         if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
0732             (netdev->mtu <= ETH_DATA_LEN))
0733             rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
0734     }
0735 #endif
0736 
0737     for (i = 0; i < adapter->num_active_queues; i++) {
0738         adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
0739         adapter->rx_rings[i].rx_buf_len = rx_buf_len;
0740 
0741         if (adapter->flags & IAVF_FLAG_LEGACY_RX)
0742             clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
0743         else
0744             set_ring_build_skb_enabled(&adapter->rx_rings[i]);
0745     }
0746 }
0747 
0748 /**
0749  * iavf_find_vlan - Search filter list for specific vlan filter
0750  * @adapter: board private structure
0751  * @vlan: vlan tag
0752  *
0753  * Returns ptr to the filter object or NULL. Must be called while holding the
0754  * mac_vlan_list_lock.
0755  **/
0756 static struct
0757 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
0758                  struct iavf_vlan vlan)
0759 {
0760     struct iavf_vlan_filter *f;
0761 
0762     list_for_each_entry(f, &adapter->vlan_filter_list, list) {
0763         if (f->vlan.vid == vlan.vid &&
0764             f->vlan.tpid == vlan.tpid)
0765             return f;
0766     }
0767 
0768     return NULL;
0769 }
0770 
0771 /**
0772  * iavf_add_vlan - Add a vlan filter to the list
0773  * @adapter: board private structure
0774  * @vlan: VLAN tag
0775  *
0776  * Returns ptr to the filter object or NULL when no memory available.
0777  **/
0778 static struct
0779 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
0780                 struct iavf_vlan vlan)
0781 {
0782     struct iavf_vlan_filter *f = NULL;
0783 
0784     spin_lock_bh(&adapter->mac_vlan_list_lock);
0785 
0786     f = iavf_find_vlan(adapter, vlan);
0787     if (!f) {
0788         f = kzalloc(sizeof(*f), GFP_ATOMIC);
0789         if (!f)
0790             goto clearout;
0791 
0792         f->vlan = vlan;
0793 
0794         list_add_tail(&f->list, &adapter->vlan_filter_list);
0795         f->add = true;
0796         adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
0797     }
0798 
0799 clearout:
0800     spin_unlock_bh(&adapter->mac_vlan_list_lock);
0801     return f;
0802 }
0803 
0804 /**
0805  * iavf_del_vlan - Remove a vlan filter from the list
0806  * @adapter: board private structure
0807  * @vlan: VLAN tag
0808  **/
0809 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
0810 {
0811     struct iavf_vlan_filter *f;
0812 
0813     spin_lock_bh(&adapter->mac_vlan_list_lock);
0814 
0815     f = iavf_find_vlan(adapter, vlan);
0816     if (f) {
0817         f->remove = true;
0818         adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
0819     }
0820 
0821     spin_unlock_bh(&adapter->mac_vlan_list_lock);
0822 }
0823 
0824 /**
0825  * iavf_restore_filters
0826  * @adapter: board private structure
0827  *
0828  * Restore existing non MAC filters when VF netdev comes back up
0829  **/
0830 static void iavf_restore_filters(struct iavf_adapter *adapter)
0831 {
0832     u16 vid;
0833 
0834     /* re-add all VLAN filters */
0835     for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
0836         iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
0837 
0838     for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
0839         iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
0840 }
0841 
0842 /**
0843  * iavf_get_num_vlans_added - get number of VLANs added
0844  * @adapter: board private structure
0845  */
0846 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
0847 {
0848     return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
0849         bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
0850 }
0851 
0852 /**
0853  * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
0854  * @adapter: board private structure
0855  *
0856  * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
0857  * do not impose a limit as that maintains current behavior and for
0858  * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
0859  **/
0860 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
0861 {
0862     /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
0863      * never been a limit on the VF driver side
0864      */
0865     if (VLAN_ALLOWED(adapter))
0866         return VLAN_N_VID;
0867     else if (VLAN_V2_ALLOWED(adapter))
0868         return adapter->vlan_v2_caps.filtering.max_filters;
0869 
0870     return 0;
0871 }
0872 
0873 /**
0874  * iavf_max_vlans_added - check if maximum VLANs allowed already exist
0875  * @adapter: board private structure
0876  **/
0877 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
0878 {
0879     if (iavf_get_num_vlans_added(adapter) <
0880         iavf_get_max_vlans_allowed(adapter))
0881         return false;
0882 
0883     return true;
0884 }
0885 
0886 /**
0887  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
0888  * @netdev: network device struct
0889  * @proto: unused protocol data
0890  * @vid: VLAN tag
0891  **/
0892 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
0893                 __always_unused __be16 proto, u16 vid)
0894 {
0895     struct iavf_adapter *adapter = netdev_priv(netdev);
0896 
0897     if (!VLAN_FILTERING_ALLOWED(adapter))
0898         return -EIO;
0899 
0900     if (iavf_max_vlans_added(adapter)) {
0901         netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
0902                iavf_get_max_vlans_allowed(adapter));
0903         return -EIO;
0904     }
0905 
0906     if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
0907         return -ENOMEM;
0908 
0909     return 0;
0910 }
0911 
0912 /**
0913  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
0914  * @netdev: network device struct
0915  * @proto: unused protocol data
0916  * @vid: VLAN tag
0917  **/
0918 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
0919                  __always_unused __be16 proto, u16 vid)
0920 {
0921     struct iavf_adapter *adapter = netdev_priv(netdev);
0922 
0923     iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
0924     if (proto == cpu_to_be16(ETH_P_8021Q))
0925         clear_bit(vid, adapter->vsi.active_cvlans);
0926     else
0927         clear_bit(vid, adapter->vsi.active_svlans);
0928 
0929     return 0;
0930 }
0931 
0932 /**
0933  * iavf_find_filter - Search filter list for specific mac filter
0934  * @adapter: board private structure
0935  * @macaddr: the MAC address
0936  *
0937  * Returns ptr to the filter object or NULL. Must be called while holding the
0938  * mac_vlan_list_lock.
0939  **/
0940 static struct
0941 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
0942                   const u8 *macaddr)
0943 {
0944     struct iavf_mac_filter *f;
0945 
0946     if (!macaddr)
0947         return NULL;
0948 
0949     list_for_each_entry(f, &adapter->mac_filter_list, list) {
0950         if (ether_addr_equal(macaddr, f->macaddr))
0951             return f;
0952     }
0953     return NULL;
0954 }
0955 
0956 /**
0957  * iavf_add_filter - Add a mac filter to the filter list
0958  * @adapter: board private structure
0959  * @macaddr: the MAC address
0960  *
0961  * Returns ptr to the filter object or NULL when no memory available.
0962  **/
0963 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
0964                     const u8 *macaddr)
0965 {
0966     struct iavf_mac_filter *f;
0967 
0968     if (!macaddr)
0969         return NULL;
0970 
0971     f = iavf_find_filter(adapter, macaddr);
0972     if (!f) {
0973         f = kzalloc(sizeof(*f), GFP_ATOMIC);
0974         if (!f)
0975             return f;
0976 
0977         ether_addr_copy(f->macaddr, macaddr);
0978 
0979         list_add_tail(&f->list, &adapter->mac_filter_list);
0980         f->add = true;
0981         f->add_handled = false;
0982         f->is_new_mac = true;
0983         f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
0984         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
0985     } else {
0986         f->remove = false;
0987     }
0988 
0989     return f;
0990 }
0991 
0992 /**
0993  * iavf_replace_primary_mac - Replace current primary address
0994  * @adapter: board private structure
0995  * @new_mac: new MAC address to be applied
0996  *
0997  * Replace current dev_addr and send request to PF for removal of previous
0998  * primary MAC address filter and addition of new primary MAC filter.
0999  * Return 0 for success, -ENOMEM for failure.
1000  *
1001  * Do not call this with mac_vlan_list_lock!
1002  **/
1003 int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1004                  const u8 *new_mac)
1005 {
1006     struct iavf_hw *hw = &adapter->hw;
1007     struct iavf_mac_filter *f;
1008 
1009     spin_lock_bh(&adapter->mac_vlan_list_lock);
1010 
1011     list_for_each_entry(f, &adapter->mac_filter_list, list) {
1012         f->is_primary = false;
1013     }
1014 
1015     f = iavf_find_filter(adapter, hw->mac.addr);
1016     if (f) {
1017         f->remove = true;
1018         adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019     }
1020 
1021     f = iavf_add_filter(adapter, new_mac);
1022 
1023     if (f) {
1024         /* Always send the request to add if changing primary MAC
1025          * even if filter is already present on the list
1026          */
1027         f->is_primary = true;
1028         f->add = true;
1029         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1030         ether_addr_copy(hw->mac.addr, new_mac);
1031     }
1032 
1033     spin_unlock_bh(&adapter->mac_vlan_list_lock);
1034 
1035     /* schedule the watchdog task to immediately process the request */
1036     if (f) {
1037         queue_work(iavf_wq, &adapter->watchdog_task.work);
1038         return 0;
1039     }
1040     return -ENOMEM;
1041 }
1042 
1043 /**
1044  * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1045  * @netdev: network interface device structure
1046  * @macaddr: MAC address to set
1047  *
1048  * Returns true on success, false on failure
1049  */
1050 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1051                     const u8 *macaddr)
1052 {
1053     struct iavf_adapter *adapter = netdev_priv(netdev);
1054     struct iavf_mac_filter *f;
1055     bool ret = false;
1056 
1057     spin_lock_bh(&adapter->mac_vlan_list_lock);
1058 
1059     f = iavf_find_filter(adapter, macaddr);
1060 
1061     if (!f || (!f->add && f->add_handled))
1062         ret = true;
1063 
1064     spin_unlock_bh(&adapter->mac_vlan_list_lock);
1065 
1066     return ret;
1067 }
1068 
1069 /**
1070  * iavf_set_mac - NDO callback to set port MAC address
1071  * @netdev: network interface device structure
1072  * @p: pointer to an address structure
1073  *
1074  * Returns 0 on success, negative on failure
1075  */
1076 static int iavf_set_mac(struct net_device *netdev, void *p)
1077 {
1078     struct iavf_adapter *adapter = netdev_priv(netdev);
1079     struct sockaddr *addr = p;
1080     int ret;
1081 
1082     if (!is_valid_ether_addr(addr->sa_data))
1083         return -EADDRNOTAVAIL;
1084 
1085     ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1086 
1087     if (ret)
1088         return ret;
1089 
1090     /* If this is an initial set MAC during VF spawn do not wait */
1091     if (adapter->flags & IAVF_FLAG_INITIAL_MAC_SET) {
1092         adapter->flags &= ~IAVF_FLAG_INITIAL_MAC_SET;
1093         return 0;
1094     }
1095 
1096     ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1097                            iavf_is_mac_set_handled(netdev, addr->sa_data),
1098                            msecs_to_jiffies(2500));
1099 
1100     /* If ret < 0 then it means wait was interrupted.
1101      * If ret == 0 then it means we got a timeout.
1102      * else it means we got response for set MAC from PF,
1103      * check if netdev MAC was updated to requested MAC,
1104      * if yes then set MAC succeeded otherwise it failed return -EACCES
1105      */
1106     if (ret < 0)
1107         return ret;
1108 
1109     if (!ret)
1110         return -EAGAIN;
1111 
1112     if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1113         return -EACCES;
1114 
1115     return 0;
1116 }
1117 
1118 /**
1119  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1120  * @netdev: the netdevice
1121  * @addr: address to add
1122  *
1123  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1124  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1125  */
1126 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1127 {
1128     struct iavf_adapter *adapter = netdev_priv(netdev);
1129 
1130     if (iavf_add_filter(adapter, addr))
1131         return 0;
1132     else
1133         return -ENOMEM;
1134 }
1135 
1136 /**
1137  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1138  * @netdev: the netdevice
1139  * @addr: address to add
1140  *
1141  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1142  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1143  */
1144 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1145 {
1146     struct iavf_adapter *adapter = netdev_priv(netdev);
1147     struct iavf_mac_filter *f;
1148 
1149     /* Under some circumstances, we might receive a request to delete
1150      * our own device address from our uc list. Because we store the
1151      * device address in the VSI's MAC/VLAN filter list, we need to ignore
1152      * such requests and not delete our device address from this list.
1153      */
1154     if (ether_addr_equal(addr, netdev->dev_addr))
1155         return 0;
1156 
1157     f = iavf_find_filter(adapter, addr);
1158     if (f) {
1159         f->remove = true;
1160         adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1161     }
1162     return 0;
1163 }
1164 
1165 /**
1166  * iavf_set_rx_mode - NDO callback to set the netdev filters
1167  * @netdev: network interface device structure
1168  **/
1169 static void iavf_set_rx_mode(struct net_device *netdev)
1170 {
1171     struct iavf_adapter *adapter = netdev_priv(netdev);
1172 
1173     spin_lock_bh(&adapter->mac_vlan_list_lock);
1174     __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1175     __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1176     spin_unlock_bh(&adapter->mac_vlan_list_lock);
1177 
1178     if (netdev->flags & IFF_PROMISC &&
1179         !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1180         adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1181     else if (!(netdev->flags & IFF_PROMISC) &&
1182          adapter->flags & IAVF_FLAG_PROMISC_ON)
1183         adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1184 
1185     if (netdev->flags & IFF_ALLMULTI &&
1186         !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1187         adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1188     else if (!(netdev->flags & IFF_ALLMULTI) &&
1189          adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1190         adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1191 }
1192 
1193 /**
1194  * iavf_napi_enable_all - enable NAPI on all queue vectors
1195  * @adapter: board private structure
1196  **/
1197 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1198 {
1199     int q_idx;
1200     struct iavf_q_vector *q_vector;
1201     int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1202 
1203     for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1204         struct napi_struct *napi;
1205 
1206         q_vector = &adapter->q_vectors[q_idx];
1207         napi = &q_vector->napi;
1208         napi_enable(napi);
1209     }
1210 }
1211 
1212 /**
1213  * iavf_napi_disable_all - disable NAPI on all queue vectors
1214  * @adapter: board private structure
1215  **/
1216 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1217 {
1218     int q_idx;
1219     struct iavf_q_vector *q_vector;
1220     int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1221 
1222     for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1223         q_vector = &adapter->q_vectors[q_idx];
1224         napi_disable(&q_vector->napi);
1225     }
1226 }
1227 
1228 /**
1229  * iavf_configure - set up transmit and receive data structures
1230  * @adapter: board private structure
1231  **/
1232 static void iavf_configure(struct iavf_adapter *adapter)
1233 {
1234     struct net_device *netdev = adapter->netdev;
1235     int i;
1236 
1237     iavf_set_rx_mode(netdev);
1238 
1239     iavf_configure_tx(adapter);
1240     iavf_configure_rx(adapter);
1241     adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1242 
1243     for (i = 0; i < adapter->num_active_queues; i++) {
1244         struct iavf_ring *ring = &adapter->rx_rings[i];
1245 
1246         iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1247     }
1248 }
1249 
1250 /**
1251  * iavf_up_complete - Finish the last steps of bringing up a connection
1252  * @adapter: board private structure
1253  *
1254  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1255  **/
1256 static void iavf_up_complete(struct iavf_adapter *adapter)
1257 {
1258     iavf_change_state(adapter, __IAVF_RUNNING);
1259     clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1260 
1261     iavf_napi_enable_all(adapter);
1262 
1263     adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1264     if (CLIENT_ENABLED(adapter))
1265         adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1266     mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1267 }
1268 
1269 /**
1270  * iavf_down - Shutdown the connection processing
1271  * @adapter: board private structure
1272  *
1273  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1274  **/
1275 void iavf_down(struct iavf_adapter *adapter)
1276 {
1277     struct net_device *netdev = adapter->netdev;
1278     struct iavf_vlan_filter *vlf;
1279     struct iavf_cloud_filter *cf;
1280     struct iavf_fdir_fltr *fdir;
1281     struct iavf_mac_filter *f;
1282     struct iavf_adv_rss *rss;
1283 
1284     if (adapter->state <= __IAVF_DOWN_PENDING)
1285         return;
1286 
1287     netif_carrier_off(netdev);
1288     netif_tx_disable(netdev);
1289     adapter->link_up = false;
1290     iavf_napi_disable_all(adapter);
1291     iavf_irq_disable(adapter);
1292 
1293     spin_lock_bh(&adapter->mac_vlan_list_lock);
1294 
1295     /* clear the sync flag on all filters */
1296     __dev_uc_unsync(adapter->netdev, NULL);
1297     __dev_mc_unsync(adapter->netdev, NULL);
1298 
1299     /* remove all MAC filters */
1300     list_for_each_entry(f, &adapter->mac_filter_list, list) {
1301         f->remove = true;
1302     }
1303 
1304     /* remove all VLAN filters */
1305     list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1306         vlf->remove = true;
1307     }
1308 
1309     spin_unlock_bh(&adapter->mac_vlan_list_lock);
1310 
1311     /* remove all cloud filters */
1312     spin_lock_bh(&adapter->cloud_filter_list_lock);
1313     list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1314         cf->del = true;
1315     }
1316     spin_unlock_bh(&adapter->cloud_filter_list_lock);
1317 
1318     /* remove all Flow Director filters */
1319     spin_lock_bh(&adapter->fdir_fltr_lock);
1320     list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1321         fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1322     }
1323     spin_unlock_bh(&adapter->fdir_fltr_lock);
1324 
1325     /* remove all advance RSS configuration */
1326     spin_lock_bh(&adapter->adv_rss_lock);
1327     list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
1328         rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1329     spin_unlock_bh(&adapter->adv_rss_lock);
1330 
1331     if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
1332         /* cancel any current operation */
1333         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1334         /* Schedule operations to close down the HW. Don't wait
1335          * here for this to complete. The watchdog is still running
1336          * and it will take care of this.
1337          */
1338         adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1339         adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1340         adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1341         adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1342         adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1343         adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1344     }
1345 
1346     mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1347 }
1348 
1349 /**
1350  * iavf_acquire_msix_vectors - Setup the MSIX capability
1351  * @adapter: board private structure
1352  * @vectors: number of vectors to request
1353  *
1354  * Work with the OS to set up the MSIX vectors needed.
1355  *
1356  * Returns 0 on success, negative on failure
1357  **/
1358 static int
1359 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1360 {
1361     int err, vector_threshold;
1362 
1363     /* We'll want at least 3 (vector_threshold):
1364      * 0) Other (Admin Queue and link, mostly)
1365      * 1) TxQ[0] Cleanup
1366      * 2) RxQ[0] Cleanup
1367      */
1368     vector_threshold = MIN_MSIX_COUNT;
1369 
1370     /* The more we get, the more we will assign to Tx/Rx Cleanup
1371      * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1372      * Right now, we simply care about how many we'll get; we'll
1373      * set them up later while requesting irq's.
1374      */
1375     err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1376                     vector_threshold, vectors);
1377     if (err < 0) {
1378         dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1379         kfree(adapter->msix_entries);
1380         adapter->msix_entries = NULL;
1381         return err;
1382     }
1383 
1384     /* Adjust for only the vectors we'll use, which is minimum
1385      * of max_msix_q_vectors + NONQ_VECS, or the number of
1386      * vectors we were allocated.
1387      */
1388     adapter->num_msix_vectors = err;
1389     return 0;
1390 }
1391 
1392 /**
1393  * iavf_free_queues - Free memory for all rings
1394  * @adapter: board private structure to initialize
1395  *
1396  * Free all of the memory associated with queue pairs.
1397  **/
1398 static void iavf_free_queues(struct iavf_adapter *adapter)
1399 {
1400     if (!adapter->vsi_res)
1401         return;
1402     adapter->num_active_queues = 0;
1403     kfree(adapter->tx_rings);
1404     adapter->tx_rings = NULL;
1405     kfree(adapter->rx_rings);
1406     adapter->rx_rings = NULL;
1407 }
1408 
1409 /**
1410  * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1411  * @adapter: board private structure
1412  *
1413  * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1414  * stripped in certain descriptor fields. Instead of checking the offload
1415  * capability bits in the hot path, cache the location the ring specific
1416  * flags.
1417  */
1418 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1419 {
1420     int i;
1421 
1422     for (i = 0; i < adapter->num_active_queues; i++) {
1423         struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1424         struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1425 
1426         /* prevent multiple L2TAG bits being set after VFR */
1427         tx_ring->flags &=
1428             ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1429               IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1430         rx_ring->flags &=
1431             ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1432               IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1433 
1434         if (VLAN_ALLOWED(adapter)) {
1435             tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1436             rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1437         } else if (VLAN_V2_ALLOWED(adapter)) {
1438             struct virtchnl_vlan_supported_caps *stripping_support;
1439             struct virtchnl_vlan_supported_caps *insertion_support;
1440 
1441             stripping_support =
1442                 &adapter->vlan_v2_caps.offloads.stripping_support;
1443             insertion_support =
1444                 &adapter->vlan_v2_caps.offloads.insertion_support;
1445 
1446             if (stripping_support->outer) {
1447                 if (stripping_support->outer &
1448                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1449                     rx_ring->flags |=
1450                         IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1451                 else if (stripping_support->outer &
1452                      VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1453                     rx_ring->flags |=
1454                         IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1455             } else if (stripping_support->inner) {
1456                 if (stripping_support->inner &
1457                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1458                     rx_ring->flags |=
1459                         IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1460                 else if (stripping_support->inner &
1461                      VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1462                     rx_ring->flags |=
1463                         IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1464             }
1465 
1466             if (insertion_support->outer) {
1467                 if (insertion_support->outer &
1468                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1469                     tx_ring->flags |=
1470                         IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1471                 else if (insertion_support->outer &
1472                      VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1473                     tx_ring->flags |=
1474                         IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1475             } else if (insertion_support->inner) {
1476                 if (insertion_support->inner &
1477                     VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1478                     tx_ring->flags |=
1479                         IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1480                 else if (insertion_support->inner &
1481                      VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1482                     tx_ring->flags |=
1483                         IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1484             }
1485         }
1486     }
1487 }
1488 
1489 /**
1490  * iavf_alloc_queues - Allocate memory for all rings
1491  * @adapter: board private structure to initialize
1492  *
1493  * We allocate one ring per queue at run-time since we don't know the
1494  * number of queues at compile-time.  The polling_netdev array is
1495  * intended for Multiqueue, but should work fine with a single queue.
1496  **/
1497 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1498 {
1499     int i, num_active_queues;
1500 
1501     /* If we're in reset reallocating queues we don't actually know yet for
1502      * certain the PF gave us the number of queues we asked for but we'll
1503      * assume it did.  Once basic reset is finished we'll confirm once we
1504      * start negotiating config with PF.
1505      */
1506     if (adapter->num_req_queues)
1507         num_active_queues = adapter->num_req_queues;
1508     else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1509          adapter->num_tc)
1510         num_active_queues = adapter->ch_config.total_qps;
1511     else
1512         num_active_queues = min_t(int,
1513                       adapter->vsi_res->num_queue_pairs,
1514                       (int)(num_online_cpus()));
1515 
1516 
1517     adapter->tx_rings = kcalloc(num_active_queues,
1518                     sizeof(struct iavf_ring), GFP_KERNEL);
1519     if (!adapter->tx_rings)
1520         goto err_out;
1521     adapter->rx_rings = kcalloc(num_active_queues,
1522                     sizeof(struct iavf_ring), GFP_KERNEL);
1523     if (!adapter->rx_rings)
1524         goto err_out;
1525 
1526     for (i = 0; i < num_active_queues; i++) {
1527         struct iavf_ring *tx_ring;
1528         struct iavf_ring *rx_ring;
1529 
1530         tx_ring = &adapter->tx_rings[i];
1531 
1532         tx_ring->queue_index = i;
1533         tx_ring->netdev = adapter->netdev;
1534         tx_ring->dev = &adapter->pdev->dev;
1535         tx_ring->count = adapter->tx_desc_count;
1536         tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1537         if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1538             tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1539 
1540         rx_ring = &adapter->rx_rings[i];
1541         rx_ring->queue_index = i;
1542         rx_ring->netdev = adapter->netdev;
1543         rx_ring->dev = &adapter->pdev->dev;
1544         rx_ring->count = adapter->rx_desc_count;
1545         rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1546     }
1547 
1548     adapter->num_active_queues = num_active_queues;
1549 
1550     iavf_set_queue_vlan_tag_loc(adapter);
1551 
1552     return 0;
1553 
1554 err_out:
1555     iavf_free_queues(adapter);
1556     return -ENOMEM;
1557 }
1558 
1559 /**
1560  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1561  * @adapter: board private structure to initialize
1562  *
1563  * Attempt to configure the interrupts using the best available
1564  * capabilities of the hardware and the kernel.
1565  **/
1566 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1567 {
1568     int vector, v_budget;
1569     int pairs = 0;
1570     int err = 0;
1571 
1572     if (!adapter->vsi_res) {
1573         err = -EIO;
1574         goto out;
1575     }
1576     pairs = adapter->num_active_queues;
1577 
1578     /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1579      * us much good if we have more vectors than CPUs. However, we already
1580      * limit the total number of queues by the number of CPUs so we do not
1581      * need any further limiting here.
1582      */
1583     v_budget = min_t(int, pairs + NONQ_VECS,
1584              (int)adapter->vf_res->max_vectors);
1585 
1586     adapter->msix_entries = kcalloc(v_budget,
1587                     sizeof(struct msix_entry), GFP_KERNEL);
1588     if (!adapter->msix_entries) {
1589         err = -ENOMEM;
1590         goto out;
1591     }
1592 
1593     for (vector = 0; vector < v_budget; vector++)
1594         adapter->msix_entries[vector].entry = vector;
1595 
1596     err = iavf_acquire_msix_vectors(adapter, v_budget);
1597 
1598 out:
1599     netif_set_real_num_rx_queues(adapter->netdev, pairs);
1600     netif_set_real_num_tx_queues(adapter->netdev, pairs);
1601     return err;
1602 }
1603 
1604 /**
1605  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1606  * @adapter: board private structure
1607  *
1608  * Return 0 on success, negative on failure
1609  **/
1610 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1611 {
1612     struct iavf_aqc_get_set_rss_key_data *rss_key =
1613         (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1614     struct iavf_hw *hw = &adapter->hw;
1615     enum iavf_status status;
1616 
1617     if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1618         /* bail because we already have a command pending */
1619         dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1620             adapter->current_op);
1621         return -EBUSY;
1622     }
1623 
1624     status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1625     if (status) {
1626         dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1627             iavf_stat_str(hw, status),
1628             iavf_aq_str(hw, hw->aq.asq_last_status));
1629         return iavf_status_to_errno(status);
1630 
1631     }
1632 
1633     status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1634                      adapter->rss_lut, adapter->rss_lut_size);
1635     if (status) {
1636         dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1637             iavf_stat_str(hw, status),
1638             iavf_aq_str(hw, hw->aq.asq_last_status));
1639         return iavf_status_to_errno(status);
1640     }
1641 
1642     return 0;
1643 
1644 }
1645 
1646 /**
1647  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1648  * @adapter: board private structure
1649  *
1650  * Returns 0 on success, negative on failure
1651  **/
1652 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1653 {
1654     struct iavf_hw *hw = &adapter->hw;
1655     u32 *dw;
1656     u16 i;
1657 
1658     dw = (u32 *)adapter->rss_key;
1659     for (i = 0; i <= adapter->rss_key_size / 4; i++)
1660         wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1661 
1662     dw = (u32 *)adapter->rss_lut;
1663     for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1664         wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1665 
1666     iavf_flush(hw);
1667 
1668     return 0;
1669 }
1670 
1671 /**
1672  * iavf_config_rss - Configure RSS keys and lut
1673  * @adapter: board private structure
1674  *
1675  * Returns 0 on success, negative on failure
1676  **/
1677 int iavf_config_rss(struct iavf_adapter *adapter)
1678 {
1679 
1680     if (RSS_PF(adapter)) {
1681         adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1682                     IAVF_FLAG_AQ_SET_RSS_KEY;
1683         return 0;
1684     } else if (RSS_AQ(adapter)) {
1685         return iavf_config_rss_aq(adapter);
1686     } else {
1687         return iavf_config_rss_reg(adapter);
1688     }
1689 }
1690 
1691 /**
1692  * iavf_fill_rss_lut - Fill the lut with default values
1693  * @adapter: board private structure
1694  **/
1695 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1696 {
1697     u16 i;
1698 
1699     for (i = 0; i < adapter->rss_lut_size; i++)
1700         adapter->rss_lut[i] = i % adapter->num_active_queues;
1701 }
1702 
1703 /**
1704  * iavf_init_rss - Prepare for RSS
1705  * @adapter: board private structure
1706  *
1707  * Return 0 on success, negative on failure
1708  **/
1709 static int iavf_init_rss(struct iavf_adapter *adapter)
1710 {
1711     struct iavf_hw *hw = &adapter->hw;
1712 
1713     if (!RSS_PF(adapter)) {
1714         /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1715         if (adapter->vf_res->vf_cap_flags &
1716             VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1717             adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1718         else
1719             adapter->hena = IAVF_DEFAULT_RSS_HENA;
1720 
1721         wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1722         wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1723     }
1724 
1725     iavf_fill_rss_lut(adapter);
1726     netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1727 
1728     return iavf_config_rss(adapter);
1729 }
1730 
1731 /**
1732  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1733  * @adapter: board private structure to initialize
1734  *
1735  * We allocate one q_vector per queue interrupt.  If allocation fails we
1736  * return -ENOMEM.
1737  **/
1738 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1739 {
1740     int q_idx = 0, num_q_vectors;
1741     struct iavf_q_vector *q_vector;
1742 
1743     num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1744     adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1745                      GFP_KERNEL);
1746     if (!adapter->q_vectors)
1747         return -ENOMEM;
1748 
1749     for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1750         q_vector = &adapter->q_vectors[q_idx];
1751         q_vector->adapter = adapter;
1752         q_vector->vsi = &adapter->vsi;
1753         q_vector->v_idx = q_idx;
1754         q_vector->reg_idx = q_idx;
1755         cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1756         netif_napi_add(adapter->netdev, &q_vector->napi,
1757                    iavf_napi_poll, NAPI_POLL_WEIGHT);
1758     }
1759 
1760     return 0;
1761 }
1762 
1763 /**
1764  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1765  * @adapter: board private structure to initialize
1766  *
1767  * This function frees the memory allocated to the q_vectors.  In addition if
1768  * NAPI is enabled it will delete any references to the NAPI struct prior
1769  * to freeing the q_vector.
1770  **/
1771 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1772 {
1773     int q_idx, num_q_vectors;
1774     int napi_vectors;
1775 
1776     if (!adapter->q_vectors)
1777         return;
1778 
1779     num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1780     napi_vectors = adapter->num_active_queues;
1781 
1782     for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1783         struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1784 
1785         if (q_idx < napi_vectors)
1786             netif_napi_del(&q_vector->napi);
1787     }
1788     kfree(adapter->q_vectors);
1789     adapter->q_vectors = NULL;
1790 }
1791 
1792 /**
1793  * iavf_reset_interrupt_capability - Reset MSIX setup
1794  * @adapter: board private structure
1795  *
1796  **/
1797 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1798 {
1799     if (!adapter->msix_entries)
1800         return;
1801 
1802     pci_disable_msix(adapter->pdev);
1803     kfree(adapter->msix_entries);
1804     adapter->msix_entries = NULL;
1805 }
1806 
1807 /**
1808  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1809  * @adapter: board private structure to initialize
1810  *
1811  **/
1812 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1813 {
1814     int err;
1815 
1816     err = iavf_alloc_queues(adapter);
1817     if (err) {
1818         dev_err(&adapter->pdev->dev,
1819             "Unable to allocate memory for queues\n");
1820         goto err_alloc_queues;
1821     }
1822 
1823     rtnl_lock();
1824     err = iavf_set_interrupt_capability(adapter);
1825     rtnl_unlock();
1826     if (err) {
1827         dev_err(&adapter->pdev->dev,
1828             "Unable to setup interrupt capabilities\n");
1829         goto err_set_interrupt;
1830     }
1831 
1832     err = iavf_alloc_q_vectors(adapter);
1833     if (err) {
1834         dev_err(&adapter->pdev->dev,
1835             "Unable to allocate memory for queue vectors\n");
1836         goto err_alloc_q_vectors;
1837     }
1838 
1839     /* If we've made it so far while ADq flag being ON, then we haven't
1840      * bailed out anywhere in middle. And ADq isn't just enabled but actual
1841      * resources have been allocated in the reset path.
1842      * Now we can truly claim that ADq is enabled.
1843      */
1844     if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1845         adapter->num_tc)
1846         dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1847              adapter->num_tc);
1848 
1849     dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1850          (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1851          adapter->num_active_queues);
1852 
1853     return 0;
1854 err_alloc_q_vectors:
1855     iavf_reset_interrupt_capability(adapter);
1856 err_set_interrupt:
1857     iavf_free_queues(adapter);
1858 err_alloc_queues:
1859     return err;
1860 }
1861 
1862 /**
1863  * iavf_free_rss - Free memory used by RSS structs
1864  * @adapter: board private structure
1865  **/
1866 static void iavf_free_rss(struct iavf_adapter *adapter)
1867 {
1868     kfree(adapter->rss_key);
1869     adapter->rss_key = NULL;
1870 
1871     kfree(adapter->rss_lut);
1872     adapter->rss_lut = NULL;
1873 }
1874 
1875 /**
1876  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1877  * @adapter: board private structure
1878  *
1879  * Returns 0 on success, negative on failure
1880  **/
1881 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1882 {
1883     struct net_device *netdev = adapter->netdev;
1884     int err;
1885 
1886     if (netif_running(netdev))
1887         iavf_free_traffic_irqs(adapter);
1888     iavf_free_misc_irq(adapter);
1889     iavf_reset_interrupt_capability(adapter);
1890     iavf_free_q_vectors(adapter);
1891     iavf_free_queues(adapter);
1892 
1893     err =  iavf_init_interrupt_scheme(adapter);
1894     if (err)
1895         goto err;
1896 
1897     netif_tx_stop_all_queues(netdev);
1898 
1899     err = iavf_request_misc_irq(adapter);
1900     if (err)
1901         goto err;
1902 
1903     set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1904 
1905     iavf_map_rings_to_vectors(adapter);
1906 err:
1907     return err;
1908 }
1909 
1910 /**
1911  * iavf_process_aq_command - process aq_required flags
1912  * and sends aq command
1913  * @adapter: pointer to iavf adapter structure
1914  *
1915  * Returns 0 on success
1916  * Returns error code if no command was sent
1917  * or error code if the command failed.
1918  **/
1919 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1920 {
1921     if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1922         return iavf_send_vf_config_msg(adapter);
1923     if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1924         return iavf_send_vf_offload_vlan_v2_msg(adapter);
1925     if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1926         iavf_disable_queues(adapter);
1927         return 0;
1928     }
1929 
1930     if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1931         iavf_map_queues(adapter);
1932         return 0;
1933     }
1934 
1935     if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1936         iavf_add_ether_addrs(adapter);
1937         return 0;
1938     }
1939 
1940     if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1941         iavf_add_vlans(adapter);
1942         return 0;
1943     }
1944 
1945     if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1946         iavf_del_ether_addrs(adapter);
1947         return 0;
1948     }
1949 
1950     if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1951         iavf_del_vlans(adapter);
1952         return 0;
1953     }
1954 
1955     if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1956         iavf_enable_vlan_stripping(adapter);
1957         return 0;
1958     }
1959 
1960     if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1961         iavf_disable_vlan_stripping(adapter);
1962         return 0;
1963     }
1964 
1965     if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1966         iavf_configure_queues(adapter);
1967         return 0;
1968     }
1969 
1970     if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1971         iavf_enable_queues(adapter);
1972         return 0;
1973     }
1974 
1975     if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1976         /* This message goes straight to the firmware, not the
1977          * PF, so we don't have to set current_op as we will
1978          * not get a response through the ARQ.
1979          */
1980         adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1981         return 0;
1982     }
1983     if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1984         iavf_get_hena(adapter);
1985         return 0;
1986     }
1987     if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1988         iavf_set_hena(adapter);
1989         return 0;
1990     }
1991     if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1992         iavf_set_rss_key(adapter);
1993         return 0;
1994     }
1995     if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1996         iavf_set_rss_lut(adapter);
1997         return 0;
1998     }
1999 
2000     if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
2001         iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
2002                        FLAG_VF_MULTICAST_PROMISC);
2003         return 0;
2004     }
2005 
2006     if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
2007         iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
2008         return 0;
2009     }
2010     if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
2011         (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
2012         iavf_set_promiscuous(adapter, 0);
2013         return 0;
2014     }
2015 
2016     if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2017         iavf_enable_channels(adapter);
2018         return 0;
2019     }
2020 
2021     if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2022         iavf_disable_channels(adapter);
2023         return 0;
2024     }
2025     if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2026         iavf_add_cloud_filter(adapter);
2027         return 0;
2028     }
2029 
2030     if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2031         iavf_del_cloud_filter(adapter);
2032         return 0;
2033     }
2034     if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2035         iavf_del_cloud_filter(adapter);
2036         return 0;
2037     }
2038     if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2039         iavf_add_cloud_filter(adapter);
2040         return 0;
2041     }
2042     if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2043         iavf_add_fdir_filter(adapter);
2044         return IAVF_SUCCESS;
2045     }
2046     if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2047         iavf_del_fdir_filter(adapter);
2048         return IAVF_SUCCESS;
2049     }
2050     if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2051         iavf_add_adv_rss_cfg(adapter);
2052         return 0;
2053     }
2054     if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2055         iavf_del_adv_rss_cfg(adapter);
2056         return 0;
2057     }
2058     if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2059         iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2060         return 0;
2061     }
2062     if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2063         iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2064         return 0;
2065     }
2066     if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2067         iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2068         return 0;
2069     }
2070     if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2071         iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2072         return 0;
2073     }
2074     if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2075         iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2076         return 0;
2077     }
2078     if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2079         iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2080         return 0;
2081     }
2082     if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2083         iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2084         return 0;
2085     }
2086     if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2087         iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2088         return 0;
2089     }
2090 
2091     if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2092         iavf_request_stats(adapter);
2093         return 0;
2094     }
2095 
2096     return -EAGAIN;
2097 }
2098 
2099 /**
2100  * iavf_set_vlan_offload_features - set VLAN offload configuration
2101  * @adapter: board private structure
2102  * @prev_features: previous features used for comparison
2103  * @features: updated features used for configuration
2104  *
2105  * Set the aq_required bit(s) based on the requested features passed in to
2106  * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2107  * the watchdog if any changes are requested to expedite the request via
2108  * virtchnl.
2109  **/
2110 void
2111 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2112                    netdev_features_t prev_features,
2113                    netdev_features_t features)
2114 {
2115     bool enable_stripping = true, enable_insertion = true;
2116     u16 vlan_ethertype = 0;
2117     u64 aq_required = 0;
2118 
2119     /* keep cases separate because one ethertype for offloads can be
2120      * disabled at the same time as another is disabled, so check for an
2121      * enabled ethertype first, then check for disabled. Default to
2122      * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2123      * stripping.
2124      */
2125     if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2126         vlan_ethertype = ETH_P_8021AD;
2127     else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2128         vlan_ethertype = ETH_P_8021Q;
2129     else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2130         vlan_ethertype = ETH_P_8021AD;
2131     else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2132         vlan_ethertype = ETH_P_8021Q;
2133     else
2134         vlan_ethertype = ETH_P_8021Q;
2135 
2136     if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2137         enable_stripping = false;
2138     if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2139         enable_insertion = false;
2140 
2141     if (VLAN_ALLOWED(adapter)) {
2142         /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2143          * stripping via virtchnl. VLAN insertion can be toggled on the
2144          * netdev, but it doesn't require a virtchnl message
2145          */
2146         if (enable_stripping)
2147             aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2148         else
2149             aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2150 
2151     } else if (VLAN_V2_ALLOWED(adapter)) {
2152         switch (vlan_ethertype) {
2153         case ETH_P_8021Q:
2154             if (enable_stripping)
2155                 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2156             else
2157                 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2158 
2159             if (enable_insertion)
2160                 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2161             else
2162                 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2163             break;
2164         case ETH_P_8021AD:
2165             if (enable_stripping)
2166                 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2167             else
2168                 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2169 
2170             if (enable_insertion)
2171                 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2172             else
2173                 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2174             break;
2175         }
2176     }
2177 
2178     if (aq_required) {
2179         adapter->aq_required |= aq_required;
2180         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
2181     }
2182 }
2183 
2184 /**
2185  * iavf_startup - first step of driver startup
2186  * @adapter: board private structure
2187  *
2188  * Function process __IAVF_STARTUP driver state.
2189  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2190  * when fails the state is changed to __IAVF_INIT_FAILED
2191  **/
2192 static void iavf_startup(struct iavf_adapter *adapter)
2193 {
2194     struct pci_dev *pdev = adapter->pdev;
2195     struct iavf_hw *hw = &adapter->hw;
2196     enum iavf_status status;
2197     int ret;
2198 
2199     WARN_ON(adapter->state != __IAVF_STARTUP);
2200 
2201     /* driver loaded, probe complete */
2202     adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2203     adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2204     status = iavf_set_mac_type(hw);
2205     if (status) {
2206         dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2207         goto err;
2208     }
2209 
2210     ret = iavf_check_reset_complete(hw);
2211     if (ret) {
2212         dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2213              ret);
2214         goto err;
2215     }
2216     hw->aq.num_arq_entries = IAVF_AQ_LEN;
2217     hw->aq.num_asq_entries = IAVF_AQ_LEN;
2218     hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2219     hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2220 
2221     status = iavf_init_adminq(hw);
2222     if (status) {
2223         dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2224             status);
2225         goto err;
2226     }
2227     ret = iavf_send_api_ver(adapter);
2228     if (ret) {
2229         dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2230         iavf_shutdown_adminq(hw);
2231         goto err;
2232     }
2233     iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2234     return;
2235 err:
2236     iavf_change_state(adapter, __IAVF_INIT_FAILED);
2237 }
2238 
2239 /**
2240  * iavf_init_version_check - second step of driver startup
2241  * @adapter: board private structure
2242  *
2243  * Function process __IAVF_INIT_VERSION_CHECK driver state.
2244  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2245  * when fails the state is changed to __IAVF_INIT_FAILED
2246  **/
2247 static void iavf_init_version_check(struct iavf_adapter *adapter)
2248 {
2249     struct pci_dev *pdev = adapter->pdev;
2250     struct iavf_hw *hw = &adapter->hw;
2251     int err = -EAGAIN;
2252 
2253     WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2254 
2255     if (!iavf_asq_done(hw)) {
2256         dev_err(&pdev->dev, "Admin queue command never completed\n");
2257         iavf_shutdown_adminq(hw);
2258         iavf_change_state(adapter, __IAVF_STARTUP);
2259         goto err;
2260     }
2261 
2262     /* aq msg sent, awaiting reply */
2263     err = iavf_verify_api_ver(adapter);
2264     if (err) {
2265         if (err == -EALREADY)
2266             err = iavf_send_api_ver(adapter);
2267         else
2268             dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2269                 adapter->pf_version.major,
2270                 adapter->pf_version.minor,
2271                 VIRTCHNL_VERSION_MAJOR,
2272                 VIRTCHNL_VERSION_MINOR);
2273         goto err;
2274     }
2275     err = iavf_send_vf_config_msg(adapter);
2276     if (err) {
2277         dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2278             err);
2279         goto err;
2280     }
2281     iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2282     return;
2283 err:
2284     iavf_change_state(adapter, __IAVF_INIT_FAILED);
2285 }
2286 
2287 /**
2288  * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2289  * @adapter: board private structure
2290  */
2291 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2292 {
2293     int i, num_req_queues = adapter->num_req_queues;
2294     struct iavf_vsi *vsi = &adapter->vsi;
2295 
2296     for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2297         if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2298             adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2299     }
2300     if (!adapter->vsi_res) {
2301         dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2302         return -ENODEV;
2303     }
2304 
2305     if (num_req_queues &&
2306         num_req_queues > adapter->vsi_res->num_queue_pairs) {
2307         /* Problem.  The PF gave us fewer queues than what we had
2308          * negotiated in our request.  Need a reset to see if we can't
2309          * get back to a working state.
2310          */
2311         dev_err(&adapter->pdev->dev,
2312             "Requested %d queues, but PF only gave us %d.\n",
2313             num_req_queues,
2314             adapter->vsi_res->num_queue_pairs);
2315         adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2316         adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2317         iavf_schedule_reset(adapter);
2318 
2319         return -EAGAIN;
2320     }
2321     adapter->num_req_queues = 0;
2322     adapter->vsi.id = adapter->vsi_res->vsi_id;
2323 
2324     adapter->vsi.back = adapter;
2325     adapter->vsi.base_vector = 1;
2326     vsi->netdev = adapter->netdev;
2327     vsi->qs_handle = adapter->vsi_res->qset_handle;
2328     if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2329         adapter->rss_key_size = adapter->vf_res->rss_key_size;
2330         adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2331     } else {
2332         adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2333         adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2334     }
2335 
2336     return 0;
2337 }
2338 
2339 /**
2340  * iavf_init_get_resources - third step of driver startup
2341  * @adapter: board private structure
2342  *
2343  * Function process __IAVF_INIT_GET_RESOURCES driver state and
2344  * finishes driver initialization procedure.
2345  * When success the state is changed to __IAVF_DOWN
2346  * when fails the state is changed to __IAVF_INIT_FAILED
2347  **/
2348 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2349 {
2350     struct pci_dev *pdev = adapter->pdev;
2351     struct iavf_hw *hw = &adapter->hw;
2352     int err;
2353 
2354     WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2355     /* aq msg sent, awaiting reply */
2356     if (!adapter->vf_res) {
2357         adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2358                       GFP_KERNEL);
2359         if (!adapter->vf_res) {
2360             err = -ENOMEM;
2361             goto err;
2362         }
2363     }
2364     err = iavf_get_vf_config(adapter);
2365     if (err == -EALREADY) {
2366         err = iavf_send_vf_config_msg(adapter);
2367         goto err;
2368     } else if (err == -EINVAL) {
2369         /* We only get -EINVAL if the device is in a very bad
2370          * state or if we've been disabled for previous bad
2371          * behavior. Either way, we're done now.
2372          */
2373         iavf_shutdown_adminq(hw);
2374         dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2375         return;
2376     }
2377     if (err) {
2378         dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2379         goto err_alloc;
2380     }
2381 
2382     err = iavf_parse_vf_resource_msg(adapter);
2383     if (err) {
2384         dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2385             err);
2386         goto err_alloc;
2387     }
2388     /* Some features require additional messages to negotiate extended
2389      * capabilities. These are processed in sequence by the
2390      * __IAVF_INIT_EXTENDED_CAPS driver state.
2391      */
2392     adapter->extended_caps = IAVF_EXTENDED_CAPS;
2393 
2394     iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2395     return;
2396 
2397 err_alloc:
2398     kfree(adapter->vf_res);
2399     adapter->vf_res = NULL;
2400 err:
2401     iavf_change_state(adapter, __IAVF_INIT_FAILED);
2402 }
2403 
2404 /**
2405  * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2406  * @adapter: board private structure
2407  *
2408  * Function processes send of the extended VLAN V2 capability message to the
2409  * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2410  * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2411  */
2412 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2413 {
2414     int ret;
2415 
2416     WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2417 
2418     ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2419     if (ret && ret == -EOPNOTSUPP) {
2420         /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2421          * we did not send the capability exchange message and do not
2422          * expect a response.
2423          */
2424         adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2425     }
2426 
2427     /* We sent the message, so move on to the next step */
2428     adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2429 }
2430 
2431 /**
2432  * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2433  * @adapter: board private structure
2434  *
2435  * Function processes receipt of the extended VLAN V2 capability message from
2436  * the PF.
2437  **/
2438 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2439 {
2440     int ret;
2441 
2442     WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2443 
2444     memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2445 
2446     ret = iavf_get_vf_vlan_v2_caps(adapter);
2447     if (ret)
2448         goto err;
2449 
2450     /* We've processed receipt of the VLAN V2 caps message */
2451     adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2452     return;
2453 err:
2454     /* We didn't receive a reply. Make sure we try sending again when
2455      * __IAVF_INIT_FAILED attempts to recover.
2456      */
2457     adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2458     iavf_change_state(adapter, __IAVF_INIT_FAILED);
2459 }
2460 
2461 /**
2462  * iavf_init_process_extended_caps - Part of driver startup
2463  * @adapter: board private structure
2464  *
2465  * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2466  * handles negotiating capabilities for features which require an additional
2467  * message.
2468  *
2469  * Once all extended capabilities exchanges are finished, the driver will
2470  * transition into __IAVF_INIT_CONFIG_ADAPTER.
2471  */
2472 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2473 {
2474     WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2475 
2476     /* Process capability exchange for VLAN V2 */
2477     if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2478         iavf_init_send_offload_vlan_v2_caps(adapter);
2479         return;
2480     } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2481         iavf_init_recv_offload_vlan_v2_caps(adapter);
2482         return;
2483     }
2484 
2485     /* When we reach here, no further extended capabilities exchanges are
2486      * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2487      */
2488     iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2489 }
2490 
2491 /**
2492  * iavf_init_config_adapter - last part of driver startup
2493  * @adapter: board private structure
2494  *
2495  * After all the supported capabilities are negotiated, then the
2496  * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2497  */
2498 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2499 {
2500     struct net_device *netdev = adapter->netdev;
2501     struct pci_dev *pdev = adapter->pdev;
2502     int err;
2503 
2504     WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2505 
2506     if (iavf_process_config(adapter))
2507         goto err;
2508 
2509     adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2510 
2511     adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2512 
2513     netdev->netdev_ops = &iavf_netdev_ops;
2514     iavf_set_ethtool_ops(netdev);
2515     netdev->watchdog_timeo = 5 * HZ;
2516 
2517     /* MTU range: 68 - 9710 */
2518     netdev->min_mtu = ETH_MIN_MTU;
2519     netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2520 
2521     if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2522         dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2523              adapter->hw.mac.addr);
2524         eth_hw_addr_random(netdev);
2525         ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2526     } else {
2527         eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2528         ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2529     }
2530 
2531     adapter->flags |= IAVF_FLAG_INITIAL_MAC_SET;
2532 
2533     adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2534     adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2535     err = iavf_init_interrupt_scheme(adapter);
2536     if (err)
2537         goto err_sw_init;
2538     iavf_map_rings_to_vectors(adapter);
2539     if (adapter->vf_res->vf_cap_flags &
2540         VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2541         adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2542 
2543     err = iavf_request_misc_irq(adapter);
2544     if (err)
2545         goto err_sw_init;
2546 
2547     netif_carrier_off(netdev);
2548     adapter->link_up = false;
2549 
2550     /* set the semaphore to prevent any callbacks after device registration
2551      * up to time when state of driver will be set to __IAVF_DOWN
2552      */
2553     rtnl_lock();
2554     if (!adapter->netdev_registered) {
2555         err = register_netdevice(netdev);
2556         if (err) {
2557             rtnl_unlock();
2558             goto err_register;
2559         }
2560     }
2561 
2562     adapter->netdev_registered = true;
2563 
2564     netif_tx_stop_all_queues(netdev);
2565     if (CLIENT_ALLOWED(adapter)) {
2566         err = iavf_lan_add_device(adapter);
2567         if (err)
2568             dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2569                  err);
2570     }
2571     dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2572     if (netdev->features & NETIF_F_GRO)
2573         dev_info(&pdev->dev, "GRO is enabled\n");
2574 
2575     iavf_change_state(adapter, __IAVF_DOWN);
2576     set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2577     rtnl_unlock();
2578 
2579     iavf_misc_irq_enable(adapter);
2580     wake_up(&adapter->down_waitqueue);
2581 
2582     adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2583     adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2584     if (!adapter->rss_key || !adapter->rss_lut) {
2585         err = -ENOMEM;
2586         goto err_mem;
2587     }
2588     if (RSS_AQ(adapter))
2589         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2590     else
2591         iavf_init_rss(adapter);
2592 
2593     if (VLAN_V2_ALLOWED(adapter))
2594         /* request initial VLAN offload settings */
2595         iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2596 
2597     return;
2598 err_mem:
2599     iavf_free_rss(adapter);
2600 err_register:
2601     iavf_free_misc_irq(adapter);
2602 err_sw_init:
2603     iavf_reset_interrupt_capability(adapter);
2604 err:
2605     iavf_change_state(adapter, __IAVF_INIT_FAILED);
2606 }
2607 
2608 /**
2609  * iavf_watchdog_task - Periodic call-back task
2610  * @work: pointer to work_struct
2611  **/
2612 static void iavf_watchdog_task(struct work_struct *work)
2613 {
2614     struct iavf_adapter *adapter = container_of(work,
2615                             struct iavf_adapter,
2616                             watchdog_task.work);
2617     struct iavf_hw *hw = &adapter->hw;
2618     u32 reg_val;
2619 
2620     if (!mutex_trylock(&adapter->crit_lock)) {
2621         if (adapter->state == __IAVF_REMOVE)
2622             return;
2623 
2624         goto restart_watchdog;
2625     }
2626 
2627     if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2628         iavf_change_state(adapter, __IAVF_COMM_FAILED);
2629 
2630     if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2631         adapter->aq_required = 0;
2632         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2633         mutex_unlock(&adapter->crit_lock);
2634         queue_work(iavf_wq, &adapter->reset_task);
2635         return;
2636     }
2637 
2638     switch (adapter->state) {
2639     case __IAVF_STARTUP:
2640         iavf_startup(adapter);
2641         mutex_unlock(&adapter->crit_lock);
2642         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2643                    msecs_to_jiffies(30));
2644         return;
2645     case __IAVF_INIT_VERSION_CHECK:
2646         iavf_init_version_check(adapter);
2647         mutex_unlock(&adapter->crit_lock);
2648         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2649                    msecs_to_jiffies(30));
2650         return;
2651     case __IAVF_INIT_GET_RESOURCES:
2652         iavf_init_get_resources(adapter);
2653         mutex_unlock(&adapter->crit_lock);
2654         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2655                    msecs_to_jiffies(1));
2656         return;
2657     case __IAVF_INIT_EXTENDED_CAPS:
2658         iavf_init_process_extended_caps(adapter);
2659         mutex_unlock(&adapter->crit_lock);
2660         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2661                    msecs_to_jiffies(1));
2662         return;
2663     case __IAVF_INIT_CONFIG_ADAPTER:
2664         iavf_init_config_adapter(adapter);
2665         mutex_unlock(&adapter->crit_lock);
2666         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2667                    msecs_to_jiffies(1));
2668         return;
2669     case __IAVF_INIT_FAILED:
2670         if (test_bit(__IAVF_IN_REMOVE_TASK,
2671                  &adapter->crit_section)) {
2672             /* Do not update the state and do not reschedule
2673              * watchdog task, iavf_remove should handle this state
2674              * as it can loop forever
2675              */
2676             mutex_unlock(&adapter->crit_lock);
2677             return;
2678         }
2679         if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2680             dev_err(&adapter->pdev->dev,
2681                 "Failed to communicate with PF; waiting before retry\n");
2682             adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2683             iavf_shutdown_adminq(hw);
2684             mutex_unlock(&adapter->crit_lock);
2685             queue_delayed_work(iavf_wq,
2686                        &adapter->watchdog_task, (5 * HZ));
2687             return;
2688         }
2689         /* Try again from failed step*/
2690         iavf_change_state(adapter, adapter->last_state);
2691         mutex_unlock(&adapter->crit_lock);
2692         queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2693         return;
2694     case __IAVF_COMM_FAILED:
2695         if (test_bit(__IAVF_IN_REMOVE_TASK,
2696                  &adapter->crit_section)) {
2697             /* Set state to __IAVF_INIT_FAILED and perform remove
2698              * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2699              * doesn't bring the state back to __IAVF_COMM_FAILED.
2700              */
2701             iavf_change_state(adapter, __IAVF_INIT_FAILED);
2702             adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2703             mutex_unlock(&adapter->crit_lock);
2704             return;
2705         }
2706         reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2707               IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2708         if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2709             reg_val == VIRTCHNL_VFR_COMPLETED) {
2710             /* A chance for redemption! */
2711             dev_err(&adapter->pdev->dev,
2712                 "Hardware came out of reset. Attempting reinit.\n");
2713             /* When init task contacts the PF and
2714              * gets everything set up again, it'll restart the
2715              * watchdog for us. Down, boy. Sit. Stay. Woof.
2716              */
2717             iavf_change_state(adapter, __IAVF_STARTUP);
2718             adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2719         }
2720         adapter->aq_required = 0;
2721         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2722         mutex_unlock(&adapter->crit_lock);
2723         queue_delayed_work(iavf_wq,
2724                    &adapter->watchdog_task,
2725                    msecs_to_jiffies(10));
2726         return;
2727     case __IAVF_RESETTING:
2728         mutex_unlock(&adapter->crit_lock);
2729         queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2730         return;
2731     case __IAVF_DOWN:
2732     case __IAVF_DOWN_PENDING:
2733     case __IAVF_TESTING:
2734     case __IAVF_RUNNING:
2735         if (adapter->current_op) {
2736             if (!iavf_asq_done(hw)) {
2737                 dev_dbg(&adapter->pdev->dev,
2738                     "Admin queue timeout\n");
2739                 iavf_send_api_ver(adapter);
2740             }
2741         } else {
2742             int ret = iavf_process_aq_command(adapter);
2743 
2744             /* An error will be returned if no commands were
2745              * processed; use this opportunity to update stats
2746              * if the error isn't -ENOTSUPP
2747              */
2748             if (ret && ret != -EOPNOTSUPP &&
2749                 adapter->state == __IAVF_RUNNING)
2750                 iavf_request_stats(adapter);
2751         }
2752         if (adapter->state == __IAVF_RUNNING)
2753             iavf_detect_recover_hung(&adapter->vsi);
2754         break;
2755     case __IAVF_REMOVE:
2756     default:
2757         mutex_unlock(&adapter->crit_lock);
2758         return;
2759     }
2760 
2761     /* check for hw reset */
2762     reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2763     if (!reg_val) {
2764         adapter->flags |= IAVF_FLAG_RESET_PENDING;
2765         adapter->aq_required = 0;
2766         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2767         dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2768         queue_work(iavf_wq, &adapter->reset_task);
2769         mutex_unlock(&adapter->crit_lock);
2770         queue_delayed_work(iavf_wq,
2771                    &adapter->watchdog_task, HZ * 2);
2772         return;
2773     }
2774 
2775     schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2776     mutex_unlock(&adapter->crit_lock);
2777 restart_watchdog:
2778     if (adapter->state >= __IAVF_DOWN)
2779         queue_work(iavf_wq, &adapter->adminq_task);
2780     if (adapter->aq_required)
2781         queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2782                    msecs_to_jiffies(20));
2783     else
2784         queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2785 }
2786 
2787 /**
2788  * iavf_disable_vf - disable VF
2789  * @adapter: board private structure
2790  *
2791  * Set communication failed flag and free all resources.
2792  * NOTE: This function is expected to be called with crit_lock being held.
2793  **/
2794 static void iavf_disable_vf(struct iavf_adapter *adapter)
2795 {
2796     struct iavf_mac_filter *f, *ftmp;
2797     struct iavf_vlan_filter *fv, *fvtmp;
2798     struct iavf_cloud_filter *cf, *cftmp;
2799 
2800     adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2801 
2802     /* We don't use netif_running() because it may be true prior to
2803      * ndo_open() returning, so we can't assume it means all our open
2804      * tasks have finished, since we're not holding the rtnl_lock here.
2805      */
2806     if (adapter->state == __IAVF_RUNNING) {
2807         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2808         netif_carrier_off(adapter->netdev);
2809         netif_tx_disable(adapter->netdev);
2810         adapter->link_up = false;
2811         iavf_napi_disable_all(adapter);
2812         iavf_irq_disable(adapter);
2813         iavf_free_traffic_irqs(adapter);
2814         iavf_free_all_tx_resources(adapter);
2815         iavf_free_all_rx_resources(adapter);
2816     }
2817 
2818     spin_lock_bh(&adapter->mac_vlan_list_lock);
2819 
2820     /* Delete all of the filters */
2821     list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2822         list_del(&f->list);
2823         kfree(f);
2824     }
2825 
2826     list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2827         list_del(&fv->list);
2828         kfree(fv);
2829     }
2830 
2831     spin_unlock_bh(&adapter->mac_vlan_list_lock);
2832 
2833     spin_lock_bh(&adapter->cloud_filter_list_lock);
2834     list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2835         list_del(&cf->list);
2836         kfree(cf);
2837         adapter->num_cloud_filters--;
2838     }
2839     spin_unlock_bh(&adapter->cloud_filter_list_lock);
2840 
2841     iavf_free_misc_irq(adapter);
2842     iavf_reset_interrupt_capability(adapter);
2843     iavf_free_q_vectors(adapter);
2844     iavf_free_queues(adapter);
2845     memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2846     iavf_shutdown_adminq(&adapter->hw);
2847     adapter->netdev->flags &= ~IFF_UP;
2848     adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2849     iavf_change_state(adapter, __IAVF_DOWN);
2850     wake_up(&adapter->down_waitqueue);
2851     dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2852 }
2853 
2854 /**
2855  * iavf_reset_task - Call-back task to handle hardware reset
2856  * @work: pointer to work_struct
2857  *
2858  * During reset we need to shut down and reinitialize the admin queue
2859  * before we can use it to communicate with the PF again. We also clear
2860  * and reinit the rings because that context is lost as well.
2861  **/
2862 static void iavf_reset_task(struct work_struct *work)
2863 {
2864     struct iavf_adapter *adapter = container_of(work,
2865                               struct iavf_adapter,
2866                               reset_task);
2867     struct virtchnl_vf_resource *vfres = adapter->vf_res;
2868     struct net_device *netdev = adapter->netdev;
2869     struct iavf_hw *hw = &adapter->hw;
2870     struct iavf_mac_filter *f, *ftmp;
2871     struct iavf_cloud_filter *cf;
2872     enum iavf_status status;
2873     u32 reg_val;
2874     int i = 0, err;
2875     bool running;
2876 
2877     /* Detach interface to avoid subsequent NDO callbacks */
2878     rtnl_lock();
2879     netif_device_detach(netdev);
2880     rtnl_unlock();
2881 
2882     /* When device is being removed it doesn't make sense to run the reset
2883      * task, just return in such a case.
2884      */
2885     if (!mutex_trylock(&adapter->crit_lock)) {
2886         if (adapter->state != __IAVF_REMOVE)
2887             queue_work(iavf_wq, &adapter->reset_task);
2888 
2889         goto reset_finish;
2890     }
2891 
2892     while (!mutex_trylock(&adapter->client_lock))
2893         usleep_range(500, 1000);
2894     if (CLIENT_ENABLED(adapter)) {
2895         adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2896                     IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2897                     IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2898                     IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2899         cancel_delayed_work_sync(&adapter->client_task);
2900         iavf_notify_client_close(&adapter->vsi, true);
2901     }
2902     iavf_misc_irq_disable(adapter);
2903     if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2904         adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2905         /* Restart the AQ here. If we have been reset but didn't
2906          * detect it, or if the PF had to reinit, our AQ will be hosed.
2907          */
2908         iavf_shutdown_adminq(hw);
2909         iavf_init_adminq(hw);
2910         iavf_request_reset(adapter);
2911     }
2912     adapter->flags |= IAVF_FLAG_RESET_PENDING;
2913 
2914     /* poll until we see the reset actually happen */
2915     for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2916         reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2917               IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2918         if (!reg_val)
2919             break;
2920         usleep_range(5000, 10000);
2921     }
2922     if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2923         dev_info(&adapter->pdev->dev, "Never saw reset\n");
2924         goto continue_reset; /* act like the reset happened */
2925     }
2926 
2927     /* wait until the reset is complete and the PF is responding to us */
2928     for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2929         /* sleep first to make sure a minimum wait time is met */
2930         msleep(IAVF_RESET_WAIT_MS);
2931 
2932         reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2933               IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2934         if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2935             break;
2936     }
2937 
2938     pci_set_master(adapter->pdev);
2939     pci_restore_msi_state(adapter->pdev);
2940 
2941     if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2942         dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2943             reg_val);
2944         iavf_disable_vf(adapter);
2945         mutex_unlock(&adapter->client_lock);
2946         mutex_unlock(&adapter->crit_lock);
2947         return; /* Do not attempt to reinit. It's dead, Jim. */
2948     }
2949 
2950 continue_reset:
2951     /* We don't use netif_running() because it may be true prior to
2952      * ndo_open() returning, so we can't assume it means all our open
2953      * tasks have finished, since we're not holding the rtnl_lock here.
2954      */
2955     running = adapter->state == __IAVF_RUNNING;
2956 
2957     if (running) {
2958         netif_carrier_off(netdev);
2959         adapter->link_up = false;
2960         iavf_napi_disable_all(adapter);
2961     }
2962     iavf_irq_disable(adapter);
2963 
2964     iavf_change_state(adapter, __IAVF_RESETTING);
2965     adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2966 
2967     /* free the Tx/Rx rings and descriptors, might be better to just
2968      * re-use them sometime in the future
2969      */
2970     iavf_free_all_rx_resources(adapter);
2971     iavf_free_all_tx_resources(adapter);
2972 
2973     adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2974     /* kill and reinit the admin queue */
2975     iavf_shutdown_adminq(hw);
2976     adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2977     status = iavf_init_adminq(hw);
2978     if (status) {
2979         dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2980              status);
2981         goto reset_err;
2982     }
2983     adapter->aq_required = 0;
2984 
2985     if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
2986         (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
2987         err = iavf_reinit_interrupt_scheme(adapter);
2988         if (err)
2989             goto reset_err;
2990     }
2991 
2992     if (RSS_AQ(adapter)) {
2993         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2994     } else {
2995         err = iavf_init_rss(adapter);
2996         if (err)
2997             goto reset_err;
2998     }
2999 
3000     adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3001     /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3002      * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3003      * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3004      * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3005      * been successfully sent and negotiated
3006      */
3007     adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3008     adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3009 
3010     spin_lock_bh(&adapter->mac_vlan_list_lock);
3011 
3012     /* Delete filter for the current MAC address, it could have
3013      * been changed by the PF via administratively set MAC.
3014      * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3015      */
3016     list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3017         if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3018             list_del(&f->list);
3019             kfree(f);
3020         }
3021     }
3022     /* re-add all MAC filters */
3023     list_for_each_entry(f, &adapter->mac_filter_list, list) {
3024         f->add = true;
3025     }
3026     spin_unlock_bh(&adapter->mac_vlan_list_lock);
3027 
3028     /* check if TCs are running and re-add all cloud filters */
3029     spin_lock_bh(&adapter->cloud_filter_list_lock);
3030     if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3031         adapter->num_tc) {
3032         list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3033             cf->add = true;
3034         }
3035     }
3036     spin_unlock_bh(&adapter->cloud_filter_list_lock);
3037 
3038     adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3039     adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3040     iavf_misc_irq_enable(adapter);
3041 
3042     bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID);
3043     bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID);
3044 
3045     mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
3046 
3047     /* We were running when the reset started, so we need to restore some
3048      * state here.
3049      */
3050     if (running) {
3051         /* allocate transmit descriptors */
3052         err = iavf_setup_all_tx_resources(adapter);
3053         if (err)
3054             goto reset_err;
3055 
3056         /* allocate receive descriptors */
3057         err = iavf_setup_all_rx_resources(adapter);
3058         if (err)
3059             goto reset_err;
3060 
3061         if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3062             (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3063             err = iavf_request_traffic_irqs(adapter, netdev->name);
3064             if (err)
3065                 goto reset_err;
3066 
3067             adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3068         }
3069 
3070         iavf_configure(adapter);
3071 
3072         /* iavf_up_complete() will switch device back
3073          * to __IAVF_RUNNING
3074          */
3075         iavf_up_complete(adapter);
3076 
3077         iavf_irq_enable(adapter, true);
3078     } else {
3079         iavf_change_state(adapter, __IAVF_DOWN);
3080         wake_up(&adapter->down_waitqueue);
3081     }
3082 
3083     adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3084 
3085     mutex_unlock(&adapter->client_lock);
3086     mutex_unlock(&adapter->crit_lock);
3087 
3088     goto reset_finish;
3089 reset_err:
3090     if (running) {
3091         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3092         iavf_free_traffic_irqs(adapter);
3093     }
3094     iavf_disable_vf(adapter);
3095 
3096     mutex_unlock(&adapter->client_lock);
3097     mutex_unlock(&adapter->crit_lock);
3098     dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3099 reset_finish:
3100     rtnl_lock();
3101     netif_device_attach(netdev);
3102     rtnl_unlock();
3103 }
3104 
3105 /**
3106  * iavf_adminq_task - worker thread to clean the admin queue
3107  * @work: pointer to work_struct containing our data
3108  **/
3109 static void iavf_adminq_task(struct work_struct *work)
3110 {
3111     struct iavf_adapter *adapter =
3112         container_of(work, struct iavf_adapter, adminq_task);
3113     struct iavf_hw *hw = &adapter->hw;
3114     struct iavf_arq_event_info event;
3115     enum virtchnl_ops v_op;
3116     enum iavf_status ret, v_ret;
3117     u32 val, oldval;
3118     u16 pending;
3119 
3120     if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3121         goto out;
3122 
3123     if (!mutex_trylock(&adapter->crit_lock)) {
3124         if (adapter->state == __IAVF_REMOVE)
3125             return;
3126 
3127         queue_work(iavf_wq, &adapter->adminq_task);
3128         goto out;
3129     }
3130 
3131     event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3132     event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3133     if (!event.msg_buf)
3134         goto out;
3135 
3136     do {
3137         ret = iavf_clean_arq_element(hw, &event, &pending);
3138         v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3139         v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3140 
3141         if (ret || !v_op)
3142             break; /* No event to process or error cleaning ARQ */
3143 
3144         iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3145                      event.msg_len);
3146         if (pending != 0)
3147             memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3148     } while (pending);
3149     mutex_unlock(&adapter->crit_lock);
3150 
3151     if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
3152         if (adapter->netdev_registered ||
3153             !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
3154             struct net_device *netdev = adapter->netdev;
3155 
3156             rtnl_lock();
3157             netdev_update_features(netdev);
3158             rtnl_unlock();
3159             /* Request VLAN offload settings */
3160             if (VLAN_V2_ALLOWED(adapter))
3161                 iavf_set_vlan_offload_features
3162                     (adapter, 0, netdev->features);
3163 
3164             iavf_set_queue_vlan_tag_loc(adapter);
3165         }
3166 
3167         adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
3168     }
3169     if ((adapter->flags &
3170          (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3171         adapter->state == __IAVF_RESETTING)
3172         goto freedom;
3173 
3174     /* check for error indications */
3175     val = rd32(hw, hw->aq.arq.len);
3176     if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3177         goto freedom;
3178     oldval = val;
3179     if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3180         dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3181         val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3182     }
3183     if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3184         dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3185         val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3186     }
3187     if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3188         dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3189         val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3190     }
3191     if (oldval != val)
3192         wr32(hw, hw->aq.arq.len, val);
3193 
3194     val = rd32(hw, hw->aq.asq.len);
3195     oldval = val;
3196     if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3197         dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3198         val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3199     }
3200     if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3201         dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3202         val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3203     }
3204     if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3205         dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3206         val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3207     }
3208     if (oldval != val)
3209         wr32(hw, hw->aq.asq.len, val);
3210 
3211 freedom:
3212     kfree(event.msg_buf);
3213 out:
3214     /* re-enable Admin queue interrupt cause */
3215     iavf_misc_irq_enable(adapter);
3216 }
3217 
3218 /**
3219  * iavf_client_task - worker thread to perform client work
3220  * @work: pointer to work_struct containing our data
3221  *
3222  * This task handles client interactions. Because client calls can be
3223  * reentrant, we can't handle them in the watchdog.
3224  **/
3225 static void iavf_client_task(struct work_struct *work)
3226 {
3227     struct iavf_adapter *adapter =
3228         container_of(work, struct iavf_adapter, client_task.work);
3229 
3230     /* If we can't get the client bit, just give up. We'll be rescheduled
3231      * later.
3232      */
3233 
3234     if (!mutex_trylock(&adapter->client_lock))
3235         return;
3236 
3237     if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3238         iavf_client_subtask(adapter);
3239         adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3240         goto out;
3241     }
3242     if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3243         iavf_notify_client_l2_params(&adapter->vsi);
3244         adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3245         goto out;
3246     }
3247     if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3248         iavf_notify_client_close(&adapter->vsi, false);
3249         adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3250         goto out;
3251     }
3252     if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3253         iavf_notify_client_open(&adapter->vsi);
3254         adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3255     }
3256 out:
3257     mutex_unlock(&adapter->client_lock);
3258 }
3259 
3260 /**
3261  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3262  * @adapter: board private structure
3263  *
3264  * Free all transmit software resources
3265  **/
3266 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3267 {
3268     int i;
3269 
3270     if (!adapter->tx_rings)
3271         return;
3272 
3273     for (i = 0; i < adapter->num_active_queues; i++)
3274         if (adapter->tx_rings[i].desc)
3275             iavf_free_tx_resources(&adapter->tx_rings[i]);
3276 }
3277 
3278 /**
3279  * iavf_setup_all_tx_resources - allocate all queues Tx resources
3280  * @adapter: board private structure
3281  *
3282  * If this function returns with an error, then it's possible one or
3283  * more of the rings is populated (while the rest are not).  It is the
3284  * callers duty to clean those orphaned rings.
3285  *
3286  * Return 0 on success, negative on failure
3287  **/
3288 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3289 {
3290     int i, err = 0;
3291 
3292     for (i = 0; i < adapter->num_active_queues; i++) {
3293         adapter->tx_rings[i].count = adapter->tx_desc_count;
3294         err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3295         if (!err)
3296             continue;
3297         dev_err(&adapter->pdev->dev,
3298             "Allocation for Tx Queue %u failed\n", i);
3299         break;
3300     }
3301 
3302     return err;
3303 }
3304 
3305 /**
3306  * iavf_setup_all_rx_resources - allocate all queues Rx resources
3307  * @adapter: board private structure
3308  *
3309  * If this function returns with an error, then it's possible one or
3310  * more of the rings is populated (while the rest are not).  It is the
3311  * callers duty to clean those orphaned rings.
3312  *
3313  * Return 0 on success, negative on failure
3314  **/
3315 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3316 {
3317     int i, err = 0;
3318 
3319     for (i = 0; i < adapter->num_active_queues; i++) {
3320         adapter->rx_rings[i].count = adapter->rx_desc_count;
3321         err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3322         if (!err)
3323             continue;
3324         dev_err(&adapter->pdev->dev,
3325             "Allocation for Rx Queue %u failed\n", i);
3326         break;
3327     }
3328     return err;
3329 }
3330 
3331 /**
3332  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3333  * @adapter: board private structure
3334  *
3335  * Free all receive software resources
3336  **/
3337 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3338 {
3339     int i;
3340 
3341     if (!adapter->rx_rings)
3342         return;
3343 
3344     for (i = 0; i < adapter->num_active_queues; i++)
3345         if (adapter->rx_rings[i].desc)
3346             iavf_free_rx_resources(&adapter->rx_rings[i]);
3347 }
3348 
3349 /**
3350  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3351  * @adapter: board private structure
3352  * @max_tx_rate: max Tx bw for a tc
3353  **/
3354 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3355                       u64 max_tx_rate)
3356 {
3357     int speed = 0, ret = 0;
3358 
3359     if (ADV_LINK_SUPPORT(adapter)) {
3360         if (adapter->link_speed_mbps < U32_MAX) {
3361             speed = adapter->link_speed_mbps;
3362             goto validate_bw;
3363         } else {
3364             dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3365             return -EINVAL;
3366         }
3367     }
3368 
3369     switch (adapter->link_speed) {
3370     case VIRTCHNL_LINK_SPEED_40GB:
3371         speed = SPEED_40000;
3372         break;
3373     case VIRTCHNL_LINK_SPEED_25GB:
3374         speed = SPEED_25000;
3375         break;
3376     case VIRTCHNL_LINK_SPEED_20GB:
3377         speed = SPEED_20000;
3378         break;
3379     case VIRTCHNL_LINK_SPEED_10GB:
3380         speed = SPEED_10000;
3381         break;
3382     case VIRTCHNL_LINK_SPEED_5GB:
3383         speed = SPEED_5000;
3384         break;
3385     case VIRTCHNL_LINK_SPEED_2_5GB:
3386         speed = SPEED_2500;
3387         break;
3388     case VIRTCHNL_LINK_SPEED_1GB:
3389         speed = SPEED_1000;
3390         break;
3391     case VIRTCHNL_LINK_SPEED_100MB:
3392         speed = SPEED_100;
3393         break;
3394     default:
3395         break;
3396     }
3397 
3398 validate_bw:
3399     if (max_tx_rate > speed) {
3400         dev_err(&adapter->pdev->dev,
3401             "Invalid tx rate specified\n");
3402         ret = -EINVAL;
3403     }
3404 
3405     return ret;
3406 }
3407 
3408 /**
3409  * iavf_validate_ch_config - validate queue mapping info
3410  * @adapter: board private structure
3411  * @mqprio_qopt: queue parameters
3412  *
3413  * This function validates if the config provided by the user to
3414  * configure queue channels is valid or not. Returns 0 on a valid
3415  * config.
3416  **/
3417 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3418                    struct tc_mqprio_qopt_offload *mqprio_qopt)
3419 {
3420     u64 total_max_rate = 0;
3421     u32 tx_rate_rem = 0;
3422     int i, num_qps = 0;
3423     u64 tx_rate = 0;
3424     int ret = 0;
3425 
3426     if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3427         mqprio_qopt->qopt.num_tc < 1)
3428         return -EINVAL;
3429 
3430     for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3431         if (!mqprio_qopt->qopt.count[i] ||
3432             mqprio_qopt->qopt.offset[i] != num_qps)
3433             return -EINVAL;
3434         if (mqprio_qopt->min_rate[i]) {
3435             dev_err(&adapter->pdev->dev,
3436                 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3437                 i);
3438             return -EINVAL;
3439         }
3440 
3441         /* convert to Mbps */
3442         tx_rate = div_u64(mqprio_qopt->max_rate[i],
3443                   IAVF_MBPS_DIVISOR);
3444 
3445         if (mqprio_qopt->max_rate[i] &&
3446             tx_rate < IAVF_MBPS_QUANTA) {
3447             dev_err(&adapter->pdev->dev,
3448                 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3449                 i, IAVF_MBPS_QUANTA);
3450             return -EINVAL;
3451         }
3452 
3453         (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3454 
3455         if (tx_rate_rem != 0) {
3456             dev_err(&adapter->pdev->dev,
3457                 "Invalid max tx rate for TC%d, not divisible by %d\n",
3458                 i, IAVF_MBPS_QUANTA);
3459             return -EINVAL;
3460         }
3461 
3462         total_max_rate += tx_rate;
3463         num_qps += mqprio_qopt->qopt.count[i];
3464     }
3465     if (num_qps > adapter->num_active_queues) {
3466         dev_err(&adapter->pdev->dev,
3467             "Cannot support requested number of queues\n");
3468         return -EINVAL;
3469     }
3470 
3471     ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3472     return ret;
3473 }
3474 
3475 /**
3476  * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3477  * @adapter: board private structure
3478  **/
3479 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3480 {
3481     struct iavf_cloud_filter *cf, *cftmp;
3482 
3483     spin_lock_bh(&adapter->cloud_filter_list_lock);
3484     list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3485                  list) {
3486         list_del(&cf->list);
3487         kfree(cf);
3488         adapter->num_cloud_filters--;
3489     }
3490     spin_unlock_bh(&adapter->cloud_filter_list_lock);
3491 }
3492 
3493 /**
3494  * __iavf_setup_tc - configure multiple traffic classes
3495  * @netdev: network interface device structure
3496  * @type_data: tc offload data
3497  *
3498  * This function processes the config information provided by the
3499  * user to configure traffic classes/queue channels and packages the
3500  * information to request the PF to setup traffic classes.
3501  *
3502  * Returns 0 on success.
3503  **/
3504 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3505 {
3506     struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3507     struct iavf_adapter *adapter = netdev_priv(netdev);
3508     struct virtchnl_vf_resource *vfres = adapter->vf_res;
3509     u8 num_tc = 0, total_qps = 0;
3510     int ret = 0, netdev_tc = 0;
3511     u64 max_tx_rate;
3512     u16 mode;
3513     int i;
3514 
3515     num_tc = mqprio_qopt->qopt.num_tc;
3516     mode = mqprio_qopt->mode;
3517 
3518     /* delete queue_channel */
3519     if (!mqprio_qopt->qopt.hw) {
3520         if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3521             /* reset the tc configuration */
3522             netdev_reset_tc(netdev);
3523             adapter->num_tc = 0;
3524             netif_tx_stop_all_queues(netdev);
3525             netif_tx_disable(netdev);
3526             iavf_del_all_cloud_filters(adapter);
3527             adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3528             total_qps = adapter->orig_num_active_queues;
3529             goto exit;
3530         } else {
3531             return -EINVAL;
3532         }
3533     }
3534 
3535     /* add queue channel */
3536     if (mode == TC_MQPRIO_MODE_CHANNEL) {
3537         if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3538             dev_err(&adapter->pdev->dev, "ADq not supported\n");
3539             return -EOPNOTSUPP;
3540         }
3541         if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3542             dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3543             return -EINVAL;
3544         }
3545 
3546         ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3547         if (ret)
3548             return ret;
3549         /* Return if same TC config is requested */
3550         if (adapter->num_tc == num_tc)
3551             return 0;
3552         adapter->num_tc = num_tc;
3553 
3554         for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3555             if (i < num_tc) {
3556                 adapter->ch_config.ch_info[i].count =
3557                     mqprio_qopt->qopt.count[i];
3558                 adapter->ch_config.ch_info[i].offset =
3559                     mqprio_qopt->qopt.offset[i];
3560                 total_qps += mqprio_qopt->qopt.count[i];
3561                 max_tx_rate = mqprio_qopt->max_rate[i];
3562                 /* convert to Mbps */
3563                 max_tx_rate = div_u64(max_tx_rate,
3564                               IAVF_MBPS_DIVISOR);
3565                 adapter->ch_config.ch_info[i].max_tx_rate =
3566                     max_tx_rate;
3567             } else {
3568                 adapter->ch_config.ch_info[i].count = 1;
3569                 adapter->ch_config.ch_info[i].offset = 0;
3570             }
3571         }
3572 
3573         /* Take snapshot of original config such as "num_active_queues"
3574          * It is used later when delete ADQ flow is exercised, so that
3575          * once delete ADQ flow completes, VF shall go back to its
3576          * original queue configuration
3577          */
3578 
3579         adapter->orig_num_active_queues = adapter->num_active_queues;
3580 
3581         /* Store queue info based on TC so that VF gets configured
3582          * with correct number of queues when VF completes ADQ config
3583          * flow
3584          */
3585         adapter->ch_config.total_qps = total_qps;
3586 
3587         netif_tx_stop_all_queues(netdev);
3588         netif_tx_disable(netdev);
3589         adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3590         netdev_reset_tc(netdev);
3591         /* Report the tc mapping up the stack */
3592         netdev_set_num_tc(adapter->netdev, num_tc);
3593         for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3594             u16 qcount = mqprio_qopt->qopt.count[i];
3595             u16 qoffset = mqprio_qopt->qopt.offset[i];
3596 
3597             if (i < num_tc)
3598                 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3599                             qoffset);
3600         }
3601     }
3602 exit:
3603     if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3604         return 0;
3605 
3606     netif_set_real_num_rx_queues(netdev, total_qps);
3607     netif_set_real_num_tx_queues(netdev, total_qps);
3608 
3609     return ret;
3610 }
3611 
3612 /**
3613  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3614  * @adapter: board private structure
3615  * @f: pointer to struct flow_cls_offload
3616  * @filter: pointer to cloud filter structure
3617  */
3618 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3619                  struct flow_cls_offload *f,
3620                  struct iavf_cloud_filter *filter)
3621 {
3622     struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3623     struct flow_dissector *dissector = rule->match.dissector;
3624     u16 n_proto_mask = 0;
3625     u16 n_proto_key = 0;
3626     u8 field_flags = 0;
3627     u16 addr_type = 0;
3628     u16 n_proto = 0;
3629     int i = 0;
3630     struct virtchnl_filter *vf = &filter->f;
3631 
3632     if (dissector->used_keys &
3633         ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3634           BIT(FLOW_DISSECTOR_KEY_BASIC) |
3635           BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3636           BIT(FLOW_DISSECTOR_KEY_VLAN) |
3637           BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3638           BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3639           BIT(FLOW_DISSECTOR_KEY_PORTS) |
3640           BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3641         dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3642             dissector->used_keys);
3643         return -EOPNOTSUPP;
3644     }
3645 
3646     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3647         struct flow_match_enc_keyid match;
3648 
3649         flow_rule_match_enc_keyid(rule, &match);
3650         if (match.mask->keyid != 0)
3651             field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3652     }
3653 
3654     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3655         struct flow_match_basic match;
3656 
3657         flow_rule_match_basic(rule, &match);
3658         n_proto_key = ntohs(match.key->n_proto);
3659         n_proto_mask = ntohs(match.mask->n_proto);
3660 
3661         if (n_proto_key == ETH_P_ALL) {
3662             n_proto_key = 0;
3663             n_proto_mask = 0;
3664         }
3665         n_proto = n_proto_key & n_proto_mask;
3666         if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3667             return -EINVAL;
3668         if (n_proto == ETH_P_IPV6) {
3669             /* specify flow type as TCP IPv6 */
3670             vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3671         }
3672 
3673         if (match.key->ip_proto != IPPROTO_TCP) {
3674             dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3675             return -EINVAL;
3676         }
3677     }
3678 
3679     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3680         struct flow_match_eth_addrs match;
3681 
3682         flow_rule_match_eth_addrs(rule, &match);
3683 
3684         /* use is_broadcast and is_zero to check for all 0xf or 0 */
3685         if (!is_zero_ether_addr(match.mask->dst)) {
3686             if (is_broadcast_ether_addr(match.mask->dst)) {
3687                 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3688             } else {
3689                 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3690                     match.mask->dst);
3691                 return -EINVAL;
3692             }
3693         }
3694 
3695         if (!is_zero_ether_addr(match.mask->src)) {
3696             if (is_broadcast_ether_addr(match.mask->src)) {
3697                 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3698             } else {
3699                 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3700                     match.mask->src);
3701                 return -EINVAL;
3702             }
3703         }
3704 
3705         if (!is_zero_ether_addr(match.key->dst))
3706             if (is_valid_ether_addr(match.key->dst) ||
3707                 is_multicast_ether_addr(match.key->dst)) {
3708                 /* set the mask if a valid dst_mac address */
3709                 for (i = 0; i < ETH_ALEN; i++)
3710                     vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3711                 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3712                         match.key->dst);
3713             }
3714 
3715         if (!is_zero_ether_addr(match.key->src))
3716             if (is_valid_ether_addr(match.key->src) ||
3717                 is_multicast_ether_addr(match.key->src)) {
3718                 /* set the mask if a valid dst_mac address */
3719                 for (i = 0; i < ETH_ALEN; i++)
3720                     vf->mask.tcp_spec.src_mac[i] |= 0xff;
3721                 ether_addr_copy(vf->data.tcp_spec.src_mac,
3722                         match.key->src);
3723         }
3724     }
3725 
3726     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3727         struct flow_match_vlan match;
3728 
3729         flow_rule_match_vlan(rule, &match);
3730         if (match.mask->vlan_id) {
3731             if (match.mask->vlan_id == VLAN_VID_MASK) {
3732                 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3733             } else {
3734                 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3735                     match.mask->vlan_id);
3736                 return -EINVAL;
3737             }
3738         }
3739         vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3740         vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3741     }
3742 
3743     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3744         struct flow_match_control match;
3745 
3746         flow_rule_match_control(rule, &match);
3747         addr_type = match.key->addr_type;
3748     }
3749 
3750     if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3751         struct flow_match_ipv4_addrs match;
3752 
3753         flow_rule_match_ipv4_addrs(rule, &match);
3754         if (match.mask->dst) {
3755             if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3756                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3757             } else {
3758                 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3759                     be32_to_cpu(match.mask->dst));
3760                 return -EINVAL;
3761             }
3762         }
3763 
3764         if (match.mask->src) {
3765             if (match.mask->src == cpu_to_be32(0xffffffff)) {
3766                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3767             } else {
3768                 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3769                     be32_to_cpu(match.mask->dst));
3770                 return -EINVAL;
3771             }
3772         }
3773 
3774         if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3775             dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3776             return -EINVAL;
3777         }
3778         if (match.key->dst) {
3779             vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3780             vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3781         }
3782         if (match.key->src) {
3783             vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3784             vf->data.tcp_spec.src_ip[0] = match.key->src;
3785         }
3786     }
3787 
3788     if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3789         struct flow_match_ipv6_addrs match;
3790 
3791         flow_rule_match_ipv6_addrs(rule, &match);
3792 
3793         /* validate mask, make sure it is not IPV6_ADDR_ANY */
3794         if (ipv6_addr_any(&match.mask->dst)) {
3795             dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3796                 IPV6_ADDR_ANY);
3797             return -EINVAL;
3798         }
3799 
3800         /* src and dest IPv6 address should not be LOOPBACK
3801          * (0:0:0:0:0:0:0:1) which can be represented as ::1
3802          */
3803         if (ipv6_addr_loopback(&match.key->dst) ||
3804             ipv6_addr_loopback(&match.key->src)) {
3805             dev_err(&adapter->pdev->dev,
3806                 "ipv6 addr should not be loopback\n");
3807             return -EINVAL;
3808         }
3809         if (!ipv6_addr_any(&match.mask->dst) ||
3810             !ipv6_addr_any(&match.mask->src))
3811             field_flags |= IAVF_CLOUD_FIELD_IIP;
3812 
3813         for (i = 0; i < 4; i++)
3814             vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3815         memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3816                sizeof(vf->data.tcp_spec.dst_ip));
3817         for (i = 0; i < 4; i++)
3818             vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3819         memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3820                sizeof(vf->data.tcp_spec.src_ip));
3821     }
3822     if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3823         struct flow_match_ports match;
3824 
3825         flow_rule_match_ports(rule, &match);
3826         if (match.mask->src) {
3827             if (match.mask->src == cpu_to_be16(0xffff)) {
3828                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3829             } else {
3830                 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3831                     be16_to_cpu(match.mask->src));
3832                 return -EINVAL;
3833             }
3834         }
3835 
3836         if (match.mask->dst) {
3837             if (match.mask->dst == cpu_to_be16(0xffff)) {
3838                 field_flags |= IAVF_CLOUD_FIELD_IIP;
3839             } else {
3840                 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3841                     be16_to_cpu(match.mask->dst));
3842                 return -EINVAL;
3843             }
3844         }
3845         if (match.key->dst) {
3846             vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3847             vf->data.tcp_spec.dst_port = match.key->dst;
3848         }
3849 
3850         if (match.key->src) {
3851             vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3852             vf->data.tcp_spec.src_port = match.key->src;
3853         }
3854     }
3855     vf->field_flags = field_flags;
3856 
3857     return 0;
3858 }
3859 
3860 /**
3861  * iavf_handle_tclass - Forward to a traffic class on the device
3862  * @adapter: board private structure
3863  * @tc: traffic class index on the device
3864  * @filter: pointer to cloud filter structure
3865  */
3866 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3867                   struct iavf_cloud_filter *filter)
3868 {
3869     if (tc == 0)
3870         return 0;
3871     if (tc < adapter->num_tc) {
3872         if (!filter->f.data.tcp_spec.dst_port) {
3873             dev_err(&adapter->pdev->dev,
3874                 "Specify destination port to redirect to traffic class other than TC0\n");
3875             return -EINVAL;
3876         }
3877     }
3878     /* redirect to a traffic class on the same device */
3879     filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3880     filter->f.action_meta = tc;
3881     return 0;
3882 }
3883 
3884 /**
3885  * iavf_find_cf - Find the cloud filter in the list
3886  * @adapter: Board private structure
3887  * @cookie: filter specific cookie
3888  *
3889  * Returns ptr to the filter object or NULL. Must be called while holding the
3890  * cloud_filter_list_lock.
3891  */
3892 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3893                           unsigned long *cookie)
3894 {
3895     struct iavf_cloud_filter *filter = NULL;
3896 
3897     if (!cookie)
3898         return NULL;
3899 
3900     list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3901         if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3902             return filter;
3903     }
3904     return NULL;
3905 }
3906 
3907 /**
3908  * iavf_configure_clsflower - Add tc flower filters
3909  * @adapter: board private structure
3910  * @cls_flower: Pointer to struct flow_cls_offload
3911  */
3912 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3913                     struct flow_cls_offload *cls_flower)
3914 {
3915     int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3916     struct iavf_cloud_filter *filter = NULL;
3917     int err = -EINVAL, count = 50;
3918 
3919     if (tc < 0) {
3920         dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3921         return -EINVAL;
3922     }
3923 
3924     filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3925     if (!filter)
3926         return -ENOMEM;
3927 
3928     while (!mutex_trylock(&adapter->crit_lock)) {
3929         if (--count == 0) {
3930             kfree(filter);
3931             return err;
3932         }
3933         udelay(1);
3934     }
3935 
3936     filter->cookie = cls_flower->cookie;
3937 
3938     /* bail out here if filter already exists */
3939     spin_lock_bh(&adapter->cloud_filter_list_lock);
3940     if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3941         dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3942         err = -EEXIST;
3943         goto spin_unlock;
3944     }
3945     spin_unlock_bh(&adapter->cloud_filter_list_lock);
3946 
3947     /* set the mask to all zeroes to begin with */
3948     memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3949     /* start out with flow type and eth type IPv4 to begin with */
3950     filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3951     err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3952     if (err)
3953         goto err;
3954 
3955     err = iavf_handle_tclass(adapter, tc, filter);
3956     if (err)
3957         goto err;
3958 
3959     /* add filter to the list */
3960     spin_lock_bh(&adapter->cloud_filter_list_lock);
3961     list_add_tail(&filter->list, &adapter->cloud_filter_list);
3962     adapter->num_cloud_filters++;
3963     filter->add = true;
3964     adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3965 spin_unlock:
3966     spin_unlock_bh(&adapter->cloud_filter_list_lock);
3967 err:
3968     if (err)
3969         kfree(filter);
3970 
3971     mutex_unlock(&adapter->crit_lock);
3972     return err;
3973 }
3974 
3975 /**
3976  * iavf_delete_clsflower - Remove tc flower filters
3977  * @adapter: board private structure
3978  * @cls_flower: Pointer to struct flow_cls_offload
3979  */
3980 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3981                  struct flow_cls_offload *cls_flower)
3982 {
3983     struct iavf_cloud_filter *filter = NULL;
3984     int err = 0;
3985 
3986     spin_lock_bh(&adapter->cloud_filter_list_lock);
3987     filter = iavf_find_cf(adapter, &cls_flower->cookie);
3988     if (filter) {
3989         filter->del = true;
3990         adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3991     } else {
3992         err = -EINVAL;
3993     }
3994     spin_unlock_bh(&adapter->cloud_filter_list_lock);
3995 
3996     return err;
3997 }
3998 
3999 /**
4000  * iavf_setup_tc_cls_flower - flower classifier offloads
4001  * @adapter: board private structure
4002  * @cls_flower: pointer to flow_cls_offload struct with flow info
4003  */
4004 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4005                     struct flow_cls_offload *cls_flower)
4006 {
4007     switch (cls_flower->command) {
4008     case FLOW_CLS_REPLACE:
4009         return iavf_configure_clsflower(adapter, cls_flower);
4010     case FLOW_CLS_DESTROY:
4011         return iavf_delete_clsflower(adapter, cls_flower);
4012     case FLOW_CLS_STATS:
4013         return -EOPNOTSUPP;
4014     default:
4015         return -EOPNOTSUPP;
4016     }
4017 }
4018 
4019 /**
4020  * iavf_setup_tc_block_cb - block callback for tc
4021  * @type: type of offload
4022  * @type_data: offload data
4023  * @cb_priv:
4024  *
4025  * This function is the block callback for traffic classes
4026  **/
4027 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4028                   void *cb_priv)
4029 {
4030     struct iavf_adapter *adapter = cb_priv;
4031 
4032     if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4033         return -EOPNOTSUPP;
4034 
4035     switch (type) {
4036     case TC_SETUP_CLSFLOWER:
4037         return iavf_setup_tc_cls_flower(cb_priv, type_data);
4038     default:
4039         return -EOPNOTSUPP;
4040     }
4041 }
4042 
4043 static LIST_HEAD(iavf_block_cb_list);
4044 
4045 /**
4046  * iavf_setup_tc - configure multiple traffic classes
4047  * @netdev: network interface device structure
4048  * @type: type of offload
4049  * @type_data: tc offload data
4050  *
4051  * This function is the callback to ndo_setup_tc in the
4052  * netdev_ops.
4053  *
4054  * Returns 0 on success
4055  **/
4056 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4057              void *type_data)
4058 {
4059     struct iavf_adapter *adapter = netdev_priv(netdev);
4060 
4061     switch (type) {
4062     case TC_SETUP_QDISC_MQPRIO:
4063         return __iavf_setup_tc(netdev, type_data);
4064     case TC_SETUP_BLOCK:
4065         return flow_block_cb_setup_simple(type_data,
4066                           &iavf_block_cb_list,
4067                           iavf_setup_tc_block_cb,
4068                           adapter, adapter, true);
4069     default:
4070         return -EOPNOTSUPP;
4071     }
4072 }
4073 
4074 /**
4075  * iavf_open - Called when a network interface is made active
4076  * @netdev: network interface device structure
4077  *
4078  * Returns 0 on success, negative value on failure
4079  *
4080  * The open entry point is called when a network interface is made
4081  * active by the system (IFF_UP).  At this point all resources needed
4082  * for transmit and receive operations are allocated, the interrupt
4083  * handler is registered with the OS, the watchdog is started,
4084  * and the stack is notified that the interface is ready.
4085  **/
4086 static int iavf_open(struct net_device *netdev)
4087 {
4088     struct iavf_adapter *adapter = netdev_priv(netdev);
4089     int err;
4090 
4091     if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4092         dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4093         return -EIO;
4094     }
4095 
4096     while (!mutex_trylock(&adapter->crit_lock)) {
4097         /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4098          * is already taken and iavf_open is called from an upper
4099          * device's notifier reacting on NETDEV_REGISTER event.
4100          * We have to leave here to avoid dead lock.
4101          */
4102         if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4103             return -EBUSY;
4104 
4105         usleep_range(500, 1000);
4106     }
4107 
4108     if (adapter->state != __IAVF_DOWN) {
4109         err = -EBUSY;
4110         goto err_unlock;
4111     }
4112 
4113     if (adapter->state == __IAVF_RUNNING &&
4114         !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4115         dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4116         err = 0;
4117         goto err_unlock;
4118     }
4119 
4120     /* allocate transmit descriptors */
4121     err = iavf_setup_all_tx_resources(adapter);
4122     if (err)
4123         goto err_setup_tx;
4124 
4125     /* allocate receive descriptors */
4126     err = iavf_setup_all_rx_resources(adapter);
4127     if (err)
4128         goto err_setup_rx;
4129 
4130     /* clear any pending interrupts, may auto mask */
4131     err = iavf_request_traffic_irqs(adapter, netdev->name);
4132     if (err)
4133         goto err_req_irq;
4134 
4135     spin_lock_bh(&adapter->mac_vlan_list_lock);
4136 
4137     iavf_add_filter(adapter, adapter->hw.mac.addr);
4138 
4139     spin_unlock_bh(&adapter->mac_vlan_list_lock);
4140 
4141     /* Restore VLAN filters that were removed with IFF_DOWN */
4142     iavf_restore_filters(adapter);
4143 
4144     iavf_configure(adapter);
4145 
4146     iavf_up_complete(adapter);
4147 
4148     iavf_irq_enable(adapter, true);
4149 
4150     mutex_unlock(&adapter->crit_lock);
4151 
4152     return 0;
4153 
4154 err_req_irq:
4155     iavf_down(adapter);
4156     iavf_free_traffic_irqs(adapter);
4157 err_setup_rx:
4158     iavf_free_all_rx_resources(adapter);
4159 err_setup_tx:
4160     iavf_free_all_tx_resources(adapter);
4161 err_unlock:
4162     mutex_unlock(&adapter->crit_lock);
4163 
4164     return err;
4165 }
4166 
4167 /**
4168  * iavf_close - Disables a network interface
4169  * @netdev: network interface device structure
4170  *
4171  * Returns 0, this is not allowed to fail
4172  *
4173  * The close entry point is called when an interface is de-activated
4174  * by the OS.  The hardware is still under the drivers control, but
4175  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4176  * are freed, along with all transmit and receive resources.
4177  **/
4178 static int iavf_close(struct net_device *netdev)
4179 {
4180     struct iavf_adapter *adapter = netdev_priv(netdev);
4181     int status;
4182 
4183     mutex_lock(&adapter->crit_lock);
4184 
4185     if (adapter->state <= __IAVF_DOWN_PENDING) {
4186         mutex_unlock(&adapter->crit_lock);
4187         return 0;
4188     }
4189 
4190     set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4191     if (CLIENT_ENABLED(adapter))
4192         adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4193 
4194     iavf_down(adapter);
4195     iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4196     iavf_free_traffic_irqs(adapter);
4197 
4198     mutex_unlock(&adapter->crit_lock);
4199 
4200     /* We explicitly don't free resources here because the hardware is
4201      * still active and can DMA into memory. Resources are cleared in
4202      * iavf_virtchnl_completion() after we get confirmation from the PF
4203      * driver that the rings have been stopped.
4204      *
4205      * Also, we wait for state to transition to __IAVF_DOWN before
4206      * returning. State change occurs in iavf_virtchnl_completion() after
4207      * VF resources are released (which occurs after PF driver processes and
4208      * responds to admin queue commands).
4209      */
4210 
4211     status = wait_event_timeout(adapter->down_waitqueue,
4212                     adapter->state == __IAVF_DOWN,
4213                     msecs_to_jiffies(500));
4214     if (!status)
4215         netdev_warn(netdev, "Device resources not yet released\n");
4216     return 0;
4217 }
4218 
4219 /**
4220  * iavf_change_mtu - Change the Maximum Transfer Unit
4221  * @netdev: network interface device structure
4222  * @new_mtu: new value for maximum frame size
4223  *
4224  * Returns 0 on success, negative on failure
4225  **/
4226 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4227 {
4228     struct iavf_adapter *adapter = netdev_priv(netdev);
4229 
4230     netdev_dbg(netdev, "changing MTU from %d to %d\n",
4231            netdev->mtu, new_mtu);
4232     netdev->mtu = new_mtu;
4233     if (CLIENT_ENABLED(adapter)) {
4234         iavf_notify_client_l2_params(&adapter->vsi);
4235         adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4236     }
4237 
4238     if (netif_running(netdev)) {
4239         adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4240         queue_work(iavf_wq, &adapter->reset_task);
4241     }
4242 
4243     return 0;
4244 }
4245 
4246 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4247                      NETIF_F_HW_VLAN_CTAG_TX | \
4248                      NETIF_F_HW_VLAN_STAG_RX | \
4249                      NETIF_F_HW_VLAN_STAG_TX)
4250 
4251 /**
4252  * iavf_set_features - set the netdev feature flags
4253  * @netdev: ptr to the netdev being adjusted
4254  * @features: the feature set that the stack is suggesting
4255  * Note: expects to be called while under rtnl_lock()
4256  **/
4257 static int iavf_set_features(struct net_device *netdev,
4258                  netdev_features_t features)
4259 {
4260     struct iavf_adapter *adapter = netdev_priv(netdev);
4261 
4262     /* trigger update on any VLAN feature change */
4263     if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4264         (features & NETIF_VLAN_OFFLOAD_FEATURES))
4265         iavf_set_vlan_offload_features(adapter, netdev->features,
4266                            features);
4267 
4268     return 0;
4269 }
4270 
4271 /**
4272  * iavf_features_check - Validate encapsulated packet conforms to limits
4273  * @skb: skb buff
4274  * @dev: This physical port's netdev
4275  * @features: Offload features that the stack believes apply
4276  **/
4277 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4278                          struct net_device *dev,
4279                          netdev_features_t features)
4280 {
4281     size_t len;
4282 
4283     /* No point in doing any of this if neither checksum nor GSO are
4284      * being requested for this frame.  We can rule out both by just
4285      * checking for CHECKSUM_PARTIAL
4286      */
4287     if (skb->ip_summed != CHECKSUM_PARTIAL)
4288         return features;
4289 
4290     /* We cannot support GSO if the MSS is going to be less than
4291      * 64 bytes.  If it is then we need to drop support for GSO.
4292      */
4293     if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4294         features &= ~NETIF_F_GSO_MASK;
4295 
4296     /* MACLEN can support at most 63 words */
4297     len = skb_network_header(skb) - skb->data;
4298     if (len & ~(63 * 2))
4299         goto out_err;
4300 
4301     /* IPLEN and EIPLEN can support at most 127 dwords */
4302     len = skb_transport_header(skb) - skb_network_header(skb);
4303     if (len & ~(127 * 4))
4304         goto out_err;
4305 
4306     if (skb->encapsulation) {
4307         /* L4TUNLEN can support 127 words */
4308         len = skb_inner_network_header(skb) - skb_transport_header(skb);
4309         if (len & ~(127 * 2))
4310             goto out_err;
4311 
4312         /* IPLEN can support at most 127 dwords */
4313         len = skb_inner_transport_header(skb) -
4314               skb_inner_network_header(skb);
4315         if (len & ~(127 * 4))
4316             goto out_err;
4317     }
4318 
4319     /* No need to validate L4LEN as TCP is the only protocol with a
4320      * flexible value and we support all possible values supported
4321      * by TCP, which is at most 15 dwords
4322      */
4323 
4324     return features;
4325 out_err:
4326     return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4327 }
4328 
4329 /**
4330  * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4331  * @adapter: board private structure
4332  *
4333  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4334  * were negotiated determine the VLAN features that can be toggled on and off.
4335  **/
4336 static netdev_features_t
4337 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4338 {
4339     netdev_features_t hw_features = 0;
4340 
4341     if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4342         return hw_features;
4343 
4344     /* Enable VLAN features if supported */
4345     if (VLAN_ALLOWED(adapter)) {
4346         hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4347                 NETIF_F_HW_VLAN_CTAG_RX);
4348     } else if (VLAN_V2_ALLOWED(adapter)) {
4349         struct virtchnl_vlan_caps *vlan_v2_caps =
4350             &adapter->vlan_v2_caps;
4351         struct virtchnl_vlan_supported_caps *stripping_support =
4352             &vlan_v2_caps->offloads.stripping_support;
4353         struct virtchnl_vlan_supported_caps *insertion_support =
4354             &vlan_v2_caps->offloads.insertion_support;
4355 
4356         if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4357             stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4358             if (stripping_support->outer &
4359                 VIRTCHNL_VLAN_ETHERTYPE_8100)
4360                 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4361             if (stripping_support->outer &
4362                 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4363                 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4364         } else if (stripping_support->inner !=
4365                VIRTCHNL_VLAN_UNSUPPORTED &&
4366                stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4367             if (stripping_support->inner &
4368                 VIRTCHNL_VLAN_ETHERTYPE_8100)
4369                 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4370         }
4371 
4372         if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4373             insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4374             if (insertion_support->outer &
4375                 VIRTCHNL_VLAN_ETHERTYPE_8100)
4376                 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4377             if (insertion_support->outer &
4378                 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4379                 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4380         } else if (insertion_support->inner &&
4381                insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4382             if (insertion_support->inner &
4383                 VIRTCHNL_VLAN_ETHERTYPE_8100)
4384                 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4385         }
4386     }
4387 
4388     return hw_features;
4389 }
4390 
4391 /**
4392  * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4393  * @adapter: board private structure
4394  *
4395  * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4396  * were negotiated determine the VLAN features that are enabled by default.
4397  **/
4398 static netdev_features_t
4399 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4400 {
4401     netdev_features_t features = 0;
4402 
4403     if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4404         return features;
4405 
4406     if (VLAN_ALLOWED(adapter)) {
4407         features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4408             NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4409     } else if (VLAN_V2_ALLOWED(adapter)) {
4410         struct virtchnl_vlan_caps *vlan_v2_caps =
4411             &adapter->vlan_v2_caps;
4412         struct virtchnl_vlan_supported_caps *filtering_support =
4413             &vlan_v2_caps->filtering.filtering_support;
4414         struct virtchnl_vlan_supported_caps *stripping_support =
4415             &vlan_v2_caps->offloads.stripping_support;
4416         struct virtchnl_vlan_supported_caps *insertion_support =
4417             &vlan_v2_caps->offloads.insertion_support;
4418         u32 ethertype_init;
4419 
4420         /* give priority to outer stripping and don't support both outer
4421          * and inner stripping
4422          */
4423         ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4424         if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4425             if (stripping_support->outer &
4426                 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4427                 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4428                 features |= NETIF_F_HW_VLAN_CTAG_RX;
4429             else if (stripping_support->outer &
4430                  VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4431                  ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4432                 features |= NETIF_F_HW_VLAN_STAG_RX;
4433         } else if (stripping_support->inner !=
4434                VIRTCHNL_VLAN_UNSUPPORTED) {
4435             if (stripping_support->inner &
4436                 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4437                 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4438                 features |= NETIF_F_HW_VLAN_CTAG_RX;
4439         }
4440 
4441         /* give priority to outer insertion and don't support both outer
4442          * and inner insertion
4443          */
4444         if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4445             if (insertion_support->outer &
4446                 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4447                 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4448                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4449             else if (insertion_support->outer &
4450                  VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4451                  ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4452                 features |= NETIF_F_HW_VLAN_STAG_TX;
4453         } else if (insertion_support->inner !=
4454                VIRTCHNL_VLAN_UNSUPPORTED) {
4455             if (insertion_support->inner &
4456                 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4457                 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4458                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4459         }
4460 
4461         /* give priority to outer filtering and don't bother if both
4462          * outer and inner filtering are enabled
4463          */
4464         ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4465         if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4466             if (filtering_support->outer &
4467                 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4468                 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4469                 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4470             if (filtering_support->outer &
4471                 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4472                 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4473                 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4474         } else if (filtering_support->inner !=
4475                VIRTCHNL_VLAN_UNSUPPORTED) {
4476             if (filtering_support->inner &
4477                 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4478                 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4479                 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4480             if (filtering_support->inner &
4481                 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4482                 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4483                 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4484         }
4485     }
4486 
4487     return features;
4488 }
4489 
4490 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4491     (!(((requested) & (feature_bit)) && \
4492        !((allowed) & (feature_bit))))
4493 
4494 /**
4495  * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4496  * @adapter: board private structure
4497  * @requested_features: stack requested NETDEV features
4498  **/
4499 static netdev_features_t
4500 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4501                   netdev_features_t requested_features)
4502 {
4503     netdev_features_t allowed_features;
4504 
4505     allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4506         iavf_get_netdev_vlan_features(adapter);
4507 
4508     if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4509                           allowed_features,
4510                           NETIF_F_HW_VLAN_CTAG_TX))
4511         requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4512 
4513     if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4514                           allowed_features,
4515                           NETIF_F_HW_VLAN_CTAG_RX))
4516         requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4517 
4518     if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4519                           allowed_features,
4520                           NETIF_F_HW_VLAN_STAG_TX))
4521         requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4522     if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4523                           allowed_features,
4524                           NETIF_F_HW_VLAN_STAG_RX))
4525         requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4526 
4527     if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4528                           allowed_features,
4529                           NETIF_F_HW_VLAN_CTAG_FILTER))
4530         requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4531 
4532     if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4533                           allowed_features,
4534                           NETIF_F_HW_VLAN_STAG_FILTER))
4535         requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4536 
4537     if ((requested_features &
4538          (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4539         (requested_features &
4540          (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4541         adapter->vlan_v2_caps.offloads.ethertype_match ==
4542         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4543         netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4544         requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4545                     NETIF_F_HW_VLAN_STAG_TX);
4546     }
4547 
4548     return requested_features;
4549 }
4550 
4551 /**
4552  * iavf_fix_features - fix up the netdev feature bits
4553  * @netdev: our net device
4554  * @features: desired feature bits
4555  *
4556  * Returns fixed-up features bits
4557  **/
4558 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4559                        netdev_features_t features)
4560 {
4561     struct iavf_adapter *adapter = netdev_priv(netdev);
4562 
4563     return iavf_fix_netdev_vlan_features(adapter, features);
4564 }
4565 
4566 static const struct net_device_ops iavf_netdev_ops = {
4567     .ndo_open       = iavf_open,
4568     .ndo_stop       = iavf_close,
4569     .ndo_start_xmit     = iavf_xmit_frame,
4570     .ndo_set_rx_mode    = iavf_set_rx_mode,
4571     .ndo_validate_addr  = eth_validate_addr,
4572     .ndo_set_mac_address    = iavf_set_mac,
4573     .ndo_change_mtu     = iavf_change_mtu,
4574     .ndo_tx_timeout     = iavf_tx_timeout,
4575     .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
4576     .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
4577     .ndo_features_check = iavf_features_check,
4578     .ndo_fix_features   = iavf_fix_features,
4579     .ndo_set_features   = iavf_set_features,
4580     .ndo_setup_tc       = iavf_setup_tc,
4581 };
4582 
4583 /**
4584  * iavf_check_reset_complete - check that VF reset is complete
4585  * @hw: pointer to hw struct
4586  *
4587  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4588  **/
4589 static int iavf_check_reset_complete(struct iavf_hw *hw)
4590 {
4591     u32 rstat;
4592     int i;
4593 
4594     for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4595         rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4596                  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4597         if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4598             (rstat == VIRTCHNL_VFR_COMPLETED))
4599             return 0;
4600         usleep_range(10, 20);
4601     }
4602     return -EBUSY;
4603 }
4604 
4605 /**
4606  * iavf_process_config - Process the config information we got from the PF
4607  * @adapter: board private structure
4608  *
4609  * Verify that we have a valid config struct, and set up our netdev features
4610  * and our VSI struct.
4611  **/
4612 int iavf_process_config(struct iavf_adapter *adapter)
4613 {
4614     struct virtchnl_vf_resource *vfres = adapter->vf_res;
4615     netdev_features_t hw_vlan_features, vlan_features;
4616     struct net_device *netdev = adapter->netdev;
4617     netdev_features_t hw_enc_features;
4618     netdev_features_t hw_features;
4619 
4620     hw_enc_features = NETIF_F_SG            |
4621               NETIF_F_IP_CSUM       |
4622               NETIF_F_IPV6_CSUM     |
4623               NETIF_F_HIGHDMA       |
4624               NETIF_F_SOFT_FEATURES |
4625               NETIF_F_TSO           |
4626               NETIF_F_TSO_ECN       |
4627               NETIF_F_TSO6          |
4628               NETIF_F_SCTP_CRC      |
4629               NETIF_F_RXHASH        |
4630               NETIF_F_RXCSUM        |
4631               0;
4632 
4633     /* advertise to stack only if offloads for encapsulated packets is
4634      * supported
4635      */
4636     if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4637         hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL   |
4638                    NETIF_F_GSO_GRE      |
4639                    NETIF_F_GSO_GRE_CSUM     |
4640                    NETIF_F_GSO_IPXIP4       |
4641                    NETIF_F_GSO_IPXIP6       |
4642                    NETIF_F_GSO_UDP_TUNNEL_CSUM  |
4643                    NETIF_F_GSO_PARTIAL      |
4644                    0;
4645 
4646         if (!(vfres->vf_cap_flags &
4647               VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4648             netdev->gso_partial_features |=
4649                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4650 
4651         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4652         netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4653         netdev->hw_enc_features |= hw_enc_features;
4654     }
4655     /* record features VLANs can make use of */
4656     netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4657 
4658     /* Write features and hw_features separately to avoid polluting
4659      * with, or dropping, features that are set when we registered.
4660      */
4661     hw_features = hw_enc_features;
4662 
4663     /* get HW VLAN features that can be toggled */
4664     hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4665 
4666     /* Enable cloud filter if ADQ is supported */
4667     if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4668         hw_features |= NETIF_F_HW_TC;
4669     if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4670         hw_features |= NETIF_F_GSO_UDP_L4;
4671 
4672     netdev->hw_features |= hw_features | hw_vlan_features;
4673     vlan_features = iavf_get_netdev_vlan_features(adapter);
4674 
4675     netdev->features |= hw_features | vlan_features;
4676 
4677     if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4678         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4679 
4680     netdev->priv_flags |= IFF_UNICAST_FLT;
4681 
4682     /* Do not turn on offloads when they are requested to be turned off.
4683      * TSO needs minimum 576 bytes to work correctly.
4684      */
4685     if (netdev->wanted_features) {
4686         if (!(netdev->wanted_features & NETIF_F_TSO) ||
4687             netdev->mtu < 576)
4688             netdev->features &= ~NETIF_F_TSO;
4689         if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4690             netdev->mtu < 576)
4691             netdev->features &= ~NETIF_F_TSO6;
4692         if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4693             netdev->features &= ~NETIF_F_TSO_ECN;
4694         if (!(netdev->wanted_features & NETIF_F_GRO))
4695             netdev->features &= ~NETIF_F_GRO;
4696         if (!(netdev->wanted_features & NETIF_F_GSO))
4697             netdev->features &= ~NETIF_F_GSO;
4698     }
4699 
4700     return 0;
4701 }
4702 
4703 /**
4704  * iavf_shutdown - Shutdown the device in preparation for a reboot
4705  * @pdev: pci device structure
4706  **/
4707 static void iavf_shutdown(struct pci_dev *pdev)
4708 {
4709     struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4710     struct net_device *netdev = adapter->netdev;
4711 
4712     netif_device_detach(netdev);
4713 
4714     if (netif_running(netdev))
4715         iavf_close(netdev);
4716 
4717     if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4718         dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
4719     /* Prevent the watchdog from running. */
4720     iavf_change_state(adapter, __IAVF_REMOVE);
4721     adapter->aq_required = 0;
4722     mutex_unlock(&adapter->crit_lock);
4723 
4724 #ifdef CONFIG_PM
4725     pci_save_state(pdev);
4726 
4727 #endif
4728     pci_disable_device(pdev);
4729 }
4730 
4731 /**
4732  * iavf_probe - Device Initialization Routine
4733  * @pdev: PCI device information struct
4734  * @ent: entry in iavf_pci_tbl
4735  *
4736  * Returns 0 on success, negative on failure
4737  *
4738  * iavf_probe initializes an adapter identified by a pci_dev structure.
4739  * The OS initialization, configuring of the adapter private structure,
4740  * and a hardware reset occur.
4741  **/
4742 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4743 {
4744     struct net_device *netdev;
4745     struct iavf_adapter *adapter = NULL;
4746     struct iavf_hw *hw = NULL;
4747     int err;
4748 
4749     err = pci_enable_device(pdev);
4750     if (err)
4751         return err;
4752 
4753     err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4754     if (err) {
4755         dev_err(&pdev->dev,
4756             "DMA configuration failed: 0x%x\n", err);
4757         goto err_dma;
4758     }
4759 
4760     err = pci_request_regions(pdev, iavf_driver_name);
4761     if (err) {
4762         dev_err(&pdev->dev,
4763             "pci_request_regions failed 0x%x\n", err);
4764         goto err_pci_reg;
4765     }
4766 
4767     pci_enable_pcie_error_reporting(pdev);
4768 
4769     pci_set_master(pdev);
4770 
4771     netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4772                    IAVF_MAX_REQ_QUEUES);
4773     if (!netdev) {
4774         err = -ENOMEM;
4775         goto err_alloc_etherdev;
4776     }
4777 
4778     SET_NETDEV_DEV(netdev, &pdev->dev);
4779 
4780     pci_set_drvdata(pdev, netdev);
4781     adapter = netdev_priv(netdev);
4782 
4783     adapter->netdev = netdev;
4784     adapter->pdev = pdev;
4785 
4786     hw = &adapter->hw;
4787     hw->back = adapter;
4788 
4789     adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4790     iavf_change_state(adapter, __IAVF_STARTUP);
4791 
4792     /* Call save state here because it relies on the adapter struct. */
4793     pci_save_state(pdev);
4794 
4795     hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4796                   pci_resource_len(pdev, 0));
4797     if (!hw->hw_addr) {
4798         err = -EIO;
4799         goto err_ioremap;
4800     }
4801     hw->vendor_id = pdev->vendor;
4802     hw->device_id = pdev->device;
4803     pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4804     hw->subsystem_vendor_id = pdev->subsystem_vendor;
4805     hw->subsystem_device_id = pdev->subsystem_device;
4806     hw->bus.device = PCI_SLOT(pdev->devfn);
4807     hw->bus.func = PCI_FUNC(pdev->devfn);
4808     hw->bus.bus_id = pdev->bus->number;
4809 
4810     /* set up the locks for the AQ, do this only once in probe
4811      * and destroy them only once in remove
4812      */
4813     mutex_init(&adapter->crit_lock);
4814     mutex_init(&adapter->client_lock);
4815     mutex_init(&hw->aq.asq_mutex);
4816     mutex_init(&hw->aq.arq_mutex);
4817 
4818     spin_lock_init(&adapter->mac_vlan_list_lock);
4819     spin_lock_init(&adapter->cloud_filter_list_lock);
4820     spin_lock_init(&adapter->fdir_fltr_lock);
4821     spin_lock_init(&adapter->adv_rss_lock);
4822 
4823     INIT_LIST_HEAD(&adapter->mac_filter_list);
4824     INIT_LIST_HEAD(&adapter->vlan_filter_list);
4825     INIT_LIST_HEAD(&adapter->cloud_filter_list);
4826     INIT_LIST_HEAD(&adapter->fdir_list_head);
4827     INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4828 
4829     INIT_WORK(&adapter->reset_task, iavf_reset_task);
4830     INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4831     INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4832     INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4833     queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4834                msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4835 
4836     /* Setup the wait queue for indicating transition to down status */
4837     init_waitqueue_head(&adapter->down_waitqueue);
4838 
4839     /* Setup the wait queue for indicating virtchannel events */
4840     init_waitqueue_head(&adapter->vc_waitqueue);
4841 
4842     return 0;
4843 
4844 err_ioremap:
4845     free_netdev(netdev);
4846 err_alloc_etherdev:
4847     pci_disable_pcie_error_reporting(pdev);
4848     pci_release_regions(pdev);
4849 err_pci_reg:
4850 err_dma:
4851     pci_disable_device(pdev);
4852     return err;
4853 }
4854 
4855 /**
4856  * iavf_suspend - Power management suspend routine
4857  * @dev_d: device info pointer
4858  *
4859  * Called when the system (VM) is entering sleep/suspend.
4860  **/
4861 static int __maybe_unused iavf_suspend(struct device *dev_d)
4862 {
4863     struct net_device *netdev = dev_get_drvdata(dev_d);
4864     struct iavf_adapter *adapter = netdev_priv(netdev);
4865 
4866     netif_device_detach(netdev);
4867 
4868     while (!mutex_trylock(&adapter->crit_lock))
4869         usleep_range(500, 1000);
4870 
4871     if (netif_running(netdev)) {
4872         rtnl_lock();
4873         iavf_down(adapter);
4874         rtnl_unlock();
4875     }
4876     iavf_free_misc_irq(adapter);
4877     iavf_reset_interrupt_capability(adapter);
4878 
4879     mutex_unlock(&adapter->crit_lock);
4880 
4881     return 0;
4882 }
4883 
4884 /**
4885  * iavf_resume - Power management resume routine
4886  * @dev_d: device info pointer
4887  *
4888  * Called when the system (VM) is resumed from sleep/suspend.
4889  **/
4890 static int __maybe_unused iavf_resume(struct device *dev_d)
4891 {
4892     struct pci_dev *pdev = to_pci_dev(dev_d);
4893     struct iavf_adapter *adapter;
4894     u32 err;
4895 
4896     adapter = iavf_pdev_to_adapter(pdev);
4897 
4898     pci_set_master(pdev);
4899 
4900     rtnl_lock();
4901     err = iavf_set_interrupt_capability(adapter);
4902     if (err) {
4903         rtnl_unlock();
4904         dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4905         return err;
4906     }
4907     err = iavf_request_misc_irq(adapter);
4908     rtnl_unlock();
4909     if (err) {
4910         dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4911         return err;
4912     }
4913 
4914     queue_work(iavf_wq, &adapter->reset_task);
4915 
4916     netif_device_attach(adapter->netdev);
4917 
4918     return err;
4919 }
4920 
4921 /**
4922  * iavf_remove - Device Removal Routine
4923  * @pdev: PCI device information struct
4924  *
4925  * iavf_remove is called by the PCI subsystem to alert the driver
4926  * that it should release a PCI device.  The could be caused by a
4927  * Hot-Plug event, or because the driver is going to be removed from
4928  * memory.
4929  **/
4930 static void iavf_remove(struct pci_dev *pdev)
4931 {
4932     struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4933     struct net_device *netdev = adapter->netdev;
4934     struct iavf_fdir_fltr *fdir, *fdirtmp;
4935     struct iavf_vlan_filter *vlf, *vlftmp;
4936     struct iavf_adv_rss *rss, *rsstmp;
4937     struct iavf_mac_filter *f, *ftmp;
4938     struct iavf_cloud_filter *cf, *cftmp;
4939     struct iavf_hw *hw = &adapter->hw;
4940     int err;
4941 
4942     /* When reboot/shutdown is in progress no need to do anything
4943      * as the adapter is already REMOVE state that was set during
4944      * iavf_shutdown() callback.
4945      */
4946     if (adapter->state == __IAVF_REMOVE)
4947         return;
4948 
4949     set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
4950     /* Wait until port initialization is complete.
4951      * There are flows where register/unregister netdev may race.
4952      */
4953     while (1) {
4954         mutex_lock(&adapter->crit_lock);
4955         if (adapter->state == __IAVF_RUNNING ||
4956             adapter->state == __IAVF_DOWN ||
4957             adapter->state == __IAVF_INIT_FAILED) {
4958             mutex_unlock(&adapter->crit_lock);
4959             break;
4960         }
4961 
4962         mutex_unlock(&adapter->crit_lock);
4963         usleep_range(500, 1000);
4964     }
4965     cancel_delayed_work_sync(&adapter->watchdog_task);
4966 
4967     if (adapter->netdev_registered) {
4968         rtnl_lock();
4969         unregister_netdevice(netdev);
4970         adapter->netdev_registered = false;
4971         rtnl_unlock();
4972     }
4973     if (CLIENT_ALLOWED(adapter)) {
4974         err = iavf_lan_del_device(adapter);
4975         if (err)
4976             dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4977                  err);
4978     }
4979 
4980     mutex_lock(&adapter->crit_lock);
4981     dev_info(&adapter->pdev->dev, "Remove device\n");
4982     iavf_change_state(adapter, __IAVF_REMOVE);
4983 
4984     iavf_request_reset(adapter);
4985     msleep(50);
4986     /* If the FW isn't responding, kick it once, but only once. */
4987     if (!iavf_asq_done(hw)) {
4988         iavf_request_reset(adapter);
4989         msleep(50);
4990     }
4991 
4992     iavf_misc_irq_disable(adapter);
4993     /* Shut down all the garbage mashers on the detention level */
4994     cancel_work_sync(&adapter->reset_task);
4995     cancel_delayed_work_sync(&adapter->watchdog_task);
4996     cancel_work_sync(&adapter->adminq_task);
4997     cancel_delayed_work_sync(&adapter->client_task);
4998 
4999     adapter->aq_required = 0;
5000     adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5001 
5002     iavf_free_all_tx_resources(adapter);
5003     iavf_free_all_rx_resources(adapter);
5004     iavf_free_misc_irq(adapter);
5005 
5006     iavf_reset_interrupt_capability(adapter);
5007     iavf_free_q_vectors(adapter);
5008 
5009     iavf_free_rss(adapter);
5010 
5011     if (hw->aq.asq.count)
5012         iavf_shutdown_adminq(hw);
5013 
5014     /* destroy the locks only once, here */
5015     mutex_destroy(&hw->aq.arq_mutex);
5016     mutex_destroy(&hw->aq.asq_mutex);
5017     mutex_destroy(&adapter->client_lock);
5018     mutex_unlock(&adapter->crit_lock);
5019     mutex_destroy(&adapter->crit_lock);
5020 
5021     iounmap(hw->hw_addr);
5022     pci_release_regions(pdev);
5023     iavf_free_queues(adapter);
5024     kfree(adapter->vf_res);
5025     spin_lock_bh(&adapter->mac_vlan_list_lock);
5026     /* If we got removed before an up/down sequence, we've got a filter
5027      * hanging out there that we need to get rid of.
5028      */
5029     list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5030         list_del(&f->list);
5031         kfree(f);
5032     }
5033     list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5034                  list) {
5035         list_del(&vlf->list);
5036         kfree(vlf);
5037     }
5038 
5039     spin_unlock_bh(&adapter->mac_vlan_list_lock);
5040 
5041     spin_lock_bh(&adapter->cloud_filter_list_lock);
5042     list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5043         list_del(&cf->list);
5044         kfree(cf);
5045     }
5046     spin_unlock_bh(&adapter->cloud_filter_list_lock);
5047 
5048     spin_lock_bh(&adapter->fdir_fltr_lock);
5049     list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5050         list_del(&fdir->list);
5051         kfree(fdir);
5052     }
5053     spin_unlock_bh(&adapter->fdir_fltr_lock);
5054 
5055     spin_lock_bh(&adapter->adv_rss_lock);
5056     list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5057                  list) {
5058         list_del(&rss->list);
5059         kfree(rss);
5060     }
5061     spin_unlock_bh(&adapter->adv_rss_lock);
5062 
5063     free_netdev(netdev);
5064 
5065     pci_disable_pcie_error_reporting(pdev);
5066 
5067     pci_disable_device(pdev);
5068 }
5069 
5070 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5071 
5072 static struct pci_driver iavf_driver = {
5073     .name      = iavf_driver_name,
5074     .id_table  = iavf_pci_tbl,
5075     .probe     = iavf_probe,
5076     .remove    = iavf_remove,
5077     .driver.pm = &iavf_pm_ops,
5078     .shutdown  = iavf_shutdown,
5079 };
5080 
5081 /**
5082  * iavf_init_module - Driver Registration Routine
5083  *
5084  * iavf_init_module is the first routine called when the driver is
5085  * loaded. All it does is register with the PCI subsystem.
5086  **/
5087 static int __init iavf_init_module(void)
5088 {
5089     pr_info("iavf: %s\n", iavf_driver_string);
5090 
5091     pr_info("%s\n", iavf_copyright);
5092 
5093     iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
5094                   iavf_driver_name);
5095     if (!iavf_wq) {
5096         pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
5097         return -ENOMEM;
5098     }
5099     return pci_register_driver(&iavf_driver);
5100 }
5101 
5102 module_init(iavf_init_module);
5103 
5104 /**
5105  * iavf_exit_module - Driver Exit Cleanup Routine
5106  *
5107  * iavf_exit_module is called just before the driver is removed
5108  * from memory.
5109  **/
5110 static void __exit iavf_exit_module(void)
5111 {
5112     pci_unregister_driver(&iavf_driver);
5113     destroy_workqueue(iavf_wq);
5114 }
5115 
5116 module_exit(iavf_exit_module);
5117 
5118 /* iavf_main.c */