Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright(c) 2013 - 2018 Intel Corporation. */
0003 
0004 #include <linux/prefetch.h>
0005 #include <linux/bpf_trace.h>
0006 #include <net/mpls.h>
0007 #include <net/xdp.h>
0008 #include "i40e.h"
0009 #include "i40e_trace.h"
0010 #include "i40e_prototype.h"
0011 #include "i40e_txrx_common.h"
0012 #include "i40e_xsk.h"
0013 
0014 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
0015 /**
0016  * i40e_fdir - Generate a Flow Director descriptor based on fdata
0017  * @tx_ring: Tx ring to send buffer on
0018  * @fdata: Flow director filter data
0019  * @add: Indicate if we are adding a rule or deleting one
0020  *
0021  **/
0022 static void i40e_fdir(struct i40e_ring *tx_ring,
0023               struct i40e_fdir_filter *fdata, bool add)
0024 {
0025     struct i40e_filter_program_desc *fdir_desc;
0026     struct i40e_pf *pf = tx_ring->vsi->back;
0027     u32 flex_ptype, dtype_cmd;
0028     u16 i;
0029 
0030     /* grab the next descriptor */
0031     i = tx_ring->next_to_use;
0032     fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
0033 
0034     i++;
0035     tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
0036 
0037     flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
0038              (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
0039 
0040     flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
0041               (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
0042 
0043     flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
0044               (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
0045 
0046     /* Use LAN VSI Id if not programmed by user */
0047     flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
0048               ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
0049                I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
0050 
0051     dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
0052 
0053     dtype_cmd |= add ?
0054              I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
0055              I40E_TXD_FLTR_QW1_PCMD_SHIFT :
0056              I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
0057              I40E_TXD_FLTR_QW1_PCMD_SHIFT;
0058 
0059     dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
0060              (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
0061 
0062     dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
0063              (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
0064 
0065     if (fdata->cnt_index) {
0066         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
0067         dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
0068                  ((u32)fdata->cnt_index <<
0069                   I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
0070     }
0071 
0072     fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
0073     fdir_desc->rsvd = cpu_to_le32(0);
0074     fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
0075     fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
0076 }
0077 
0078 #define I40E_FD_CLEAN_DELAY 10
0079 /**
0080  * i40e_program_fdir_filter - Program a Flow Director filter
0081  * @fdir_data: Packet data that will be filter parameters
0082  * @raw_packet: the pre-allocated packet buffer for FDir
0083  * @pf: The PF pointer
0084  * @add: True for add/update, False for remove
0085  **/
0086 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
0087                     u8 *raw_packet, struct i40e_pf *pf,
0088                     bool add)
0089 {
0090     struct i40e_tx_buffer *tx_buf, *first;
0091     struct i40e_tx_desc *tx_desc;
0092     struct i40e_ring *tx_ring;
0093     struct i40e_vsi *vsi;
0094     struct device *dev;
0095     dma_addr_t dma;
0096     u32 td_cmd = 0;
0097     u16 i;
0098 
0099     /* find existing FDIR VSI */
0100     vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
0101     if (!vsi)
0102         return -ENOENT;
0103 
0104     tx_ring = vsi->tx_rings[0];
0105     dev = tx_ring->dev;
0106 
0107     /* we need two descriptors to add/del a filter and we can wait */
0108     for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
0109         if (!i)
0110             return -EAGAIN;
0111         msleep_interruptible(1);
0112     }
0113 
0114     dma = dma_map_single(dev, raw_packet,
0115                  I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
0116     if (dma_mapping_error(dev, dma))
0117         goto dma_fail;
0118 
0119     /* grab the next descriptor */
0120     i = tx_ring->next_to_use;
0121     first = &tx_ring->tx_bi[i];
0122     i40e_fdir(tx_ring, fdir_data, add);
0123 
0124     /* Now program a dummy descriptor */
0125     i = tx_ring->next_to_use;
0126     tx_desc = I40E_TX_DESC(tx_ring, i);
0127     tx_buf = &tx_ring->tx_bi[i];
0128 
0129     tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
0130 
0131     memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
0132 
0133     /* record length, and DMA address */
0134     dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
0135     dma_unmap_addr_set(tx_buf, dma, dma);
0136 
0137     tx_desc->buffer_addr = cpu_to_le64(dma);
0138     td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
0139 
0140     tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
0141     tx_buf->raw_buf = (void *)raw_packet;
0142 
0143     tx_desc->cmd_type_offset_bsz =
0144         build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
0145 
0146     /* Force memory writes to complete before letting h/w
0147      * know there are new descriptors to fetch.
0148      */
0149     wmb();
0150 
0151     /* Mark the data descriptor to be watched */
0152     first->next_to_watch = tx_desc;
0153 
0154     writel(tx_ring->next_to_use, tx_ring->tail);
0155     return 0;
0156 
0157 dma_fail:
0158     return -1;
0159 }
0160 
0161 /**
0162  * i40e_create_dummy_packet - Constructs dummy packet for HW
0163  * @dummy_packet: preallocated space for dummy packet
0164  * @ipv4: is layer 3 packet of version 4 or 6
0165  * @l4proto: next level protocol used in data portion of l3
0166  * @data: filter data
0167  *
0168  * Returns address of layer 4 protocol dummy packet.
0169  **/
0170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
0171                       struct i40e_fdir_filter *data)
0172 {
0173     bool is_vlan = !!data->vlan_tag;
0174     struct vlan_hdr vlan;
0175     struct ipv6hdr ipv6;
0176     struct ethhdr eth;
0177     struct iphdr ip;
0178     u8 *tmp;
0179 
0180     if (ipv4) {
0181         eth.h_proto = cpu_to_be16(ETH_P_IP);
0182         ip.protocol = l4proto;
0183         ip.version = 0x4;
0184         ip.ihl = 0x5;
0185 
0186         ip.daddr = data->dst_ip;
0187         ip.saddr = data->src_ip;
0188     } else {
0189         eth.h_proto = cpu_to_be16(ETH_P_IPV6);
0190         ipv6.nexthdr = l4proto;
0191         ipv6.version = 0x6;
0192 
0193         memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
0194                sizeof(__be32) * 4);
0195         memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
0196                sizeof(__be32) * 4);
0197     }
0198 
0199     if (is_vlan) {
0200         vlan.h_vlan_TCI = data->vlan_tag;
0201         vlan.h_vlan_encapsulated_proto = eth.h_proto;
0202         eth.h_proto = data->vlan_etype;
0203     }
0204 
0205     tmp = dummy_packet;
0206     memcpy(tmp, &eth, sizeof(eth));
0207     tmp += sizeof(eth);
0208 
0209     if (is_vlan) {
0210         memcpy(tmp, &vlan, sizeof(vlan));
0211         tmp += sizeof(vlan);
0212     }
0213 
0214     if (ipv4) {
0215         memcpy(tmp, &ip, sizeof(ip));
0216         tmp += sizeof(ip);
0217     } else {
0218         memcpy(tmp, &ipv6, sizeof(ipv6));
0219         tmp += sizeof(ipv6);
0220     }
0221 
0222     return tmp;
0223 }
0224 
0225 /**
0226  * i40e_create_dummy_udp_packet - helper function to create UDP packet
0227  * @raw_packet: preallocated space for dummy packet
0228  * @ipv4: is layer 3 packet of version 4 or 6
0229  * @l4proto: next level protocol used in data portion of l3
0230  * @data: filter data
0231  *
0232  * Helper function to populate udp fields.
0233  **/
0234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
0235                      struct i40e_fdir_filter *data)
0236 {
0237     struct udphdr *udp;
0238     u8 *tmp;
0239 
0240     tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
0241     udp = (struct udphdr *)(tmp);
0242     udp->dest = data->dst_port;
0243     udp->source = data->src_port;
0244 }
0245 
0246 /**
0247  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
0248  * @raw_packet: preallocated space for dummy packet
0249  * @ipv4: is layer 3 packet of version 4 or 6
0250  * @l4proto: next level protocol used in data portion of l3
0251  * @data: filter data
0252  *
0253  * Helper function to populate tcp fields.
0254  **/
0255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
0256                      struct i40e_fdir_filter *data)
0257 {
0258     struct tcphdr *tcp;
0259     u8 *tmp;
0260     /* Dummy tcp packet */
0261     static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0262         0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
0263 
0264     tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
0265 
0266     tcp = (struct tcphdr *)tmp;
0267     memcpy(tcp, tcp_packet, sizeof(tcp_packet));
0268     tcp->dest = data->dst_port;
0269     tcp->source = data->src_port;
0270 }
0271 
0272 /**
0273  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
0274  * @raw_packet: preallocated space for dummy packet
0275  * @ipv4: is layer 3 packet of version 4 or 6
0276  * @l4proto: next level protocol used in data portion of l3
0277  * @data: filter data
0278  *
0279  * Helper function to populate sctp fields.
0280  **/
0281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
0282                       u8 l4proto,
0283                       struct i40e_fdir_filter *data)
0284 {
0285     struct sctphdr *sctp;
0286     u8 *tmp;
0287 
0288     tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
0289 
0290     sctp = (struct sctphdr *)tmp;
0291     sctp->dest = data->dst_port;
0292     sctp->source = data->src_port;
0293 }
0294 
0295 /**
0296  * i40e_prepare_fdir_filter - Prepare and program fdir filter
0297  * @pf: physical function to attach filter to
0298  * @fd_data: filter data
0299  * @add: add or delete filter
0300  * @packet_addr: address of dummy packet, used in filtering
0301  * @payload_offset: offset from dummy packet address to user defined data
0302  * @pctype: Packet type for which filter is used
0303  *
0304  * Helper function to offset data of dummy packet, program it and
0305  * handle errors.
0306  **/
0307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
0308                     struct i40e_fdir_filter *fd_data,
0309                     bool add, char *packet_addr,
0310                     int payload_offset, u8 pctype)
0311 {
0312     int ret;
0313 
0314     if (fd_data->flex_filter) {
0315         u8 *payload;
0316         __be16 pattern = fd_data->flex_word;
0317         u16 off = fd_data->flex_offset;
0318 
0319         payload = packet_addr + payload_offset;
0320 
0321         /* If user provided vlan, offset payload by vlan header length */
0322         if (!!fd_data->vlan_tag)
0323             payload += VLAN_HLEN;
0324 
0325         *((__force __be16 *)(payload + off)) = pattern;
0326     }
0327 
0328     fd_data->pctype = pctype;
0329     ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
0330     if (ret) {
0331         dev_info(&pf->pdev->dev,
0332              "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
0333              fd_data->pctype, fd_data->fd_id, ret);
0334         /* Free the packet buffer since it wasn't added to the ring */
0335         return -EOPNOTSUPP;
0336     } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
0337         if (add)
0338             dev_info(&pf->pdev->dev,
0339                  "Filter OK for PCTYPE %d loc = %d\n",
0340                  fd_data->pctype, fd_data->fd_id);
0341         else
0342             dev_info(&pf->pdev->dev,
0343                  "Filter deleted for PCTYPE %d loc = %d\n",
0344                  fd_data->pctype, fd_data->fd_id);
0345     }
0346 
0347     return ret;
0348 }
0349 
0350 /**
0351  * i40e_change_filter_num - Prepare and program fdir filter
0352  * @ipv4: is layer 3 packet of version 4 or 6
0353  * @add: add or delete filter
0354  * @ipv4_filter_num: field to update
0355  * @ipv6_filter_num: field to update
0356  *
0357  * Update filter number field for pf.
0358  **/
0359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
0360                    u16 *ipv6_filter_num)
0361 {
0362     if (add) {
0363         if (ipv4)
0364             (*ipv4_filter_num)++;
0365         else
0366             (*ipv6_filter_num)++;
0367     } else {
0368         if (ipv4)
0369             (*ipv4_filter_num)--;
0370         else
0371             (*ipv6_filter_num)--;
0372     }
0373 }
0374 
0375 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
0376 #define I40E_UDPIP6_DUMMY_PACKET_LEN    62
0377 /**
0378  * i40e_add_del_fdir_udp - Add/Remove UDP filters
0379  * @vsi: pointer to the targeted VSI
0380  * @fd_data: the flow director data required for the FDir descriptor
0381  * @add: true adds a filter, false removes it
0382  * @ipv4: true is v4, false is v6
0383  *
0384  * Returns 0 if the filters were successfully added or removed
0385  **/
0386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
0387                  struct i40e_fdir_filter *fd_data,
0388                  bool add,
0389                  bool ipv4)
0390 {
0391     struct i40e_pf *pf = vsi->back;
0392     u8 *raw_packet;
0393     int ret;
0394 
0395     raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
0396     if (!raw_packet)
0397         return -ENOMEM;
0398 
0399     i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
0400 
0401     if (ipv4)
0402         ret = i40e_prepare_fdir_filter
0403             (pf, fd_data, add, raw_packet,
0404              I40E_UDPIP_DUMMY_PACKET_LEN,
0405              I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
0406     else
0407         ret = i40e_prepare_fdir_filter
0408             (pf, fd_data, add, raw_packet,
0409              I40E_UDPIP6_DUMMY_PACKET_LEN,
0410              I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
0411 
0412     if (ret) {
0413         kfree(raw_packet);
0414         return ret;
0415     }
0416 
0417     i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
0418                    &pf->fd_udp6_filter_cnt);
0419 
0420     return 0;
0421 }
0422 
0423 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
0424 #define I40E_TCPIP6_DUMMY_PACKET_LEN    74
0425 /**
0426  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
0427  * @vsi: pointer to the targeted VSI
0428  * @fd_data: the flow director data required for the FDir descriptor
0429  * @add: true adds a filter, false removes it
0430  * @ipv4: true is v4, false is v6
0431  *
0432  * Returns 0 if the filters were successfully added or removed
0433  **/
0434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
0435                  struct i40e_fdir_filter *fd_data,
0436                  bool add,
0437                  bool ipv4)
0438 {
0439     struct i40e_pf *pf = vsi->back;
0440     u8 *raw_packet;
0441     int ret;
0442 
0443     raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
0444     if (!raw_packet)
0445         return -ENOMEM;
0446 
0447     i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
0448     if (ipv4)
0449         ret = i40e_prepare_fdir_filter
0450             (pf, fd_data, add, raw_packet,
0451              I40E_TCPIP_DUMMY_PACKET_LEN,
0452              I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
0453     else
0454         ret = i40e_prepare_fdir_filter
0455             (pf, fd_data, add, raw_packet,
0456              I40E_TCPIP6_DUMMY_PACKET_LEN,
0457              I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
0458 
0459     if (ret) {
0460         kfree(raw_packet);
0461         return ret;
0462     }
0463 
0464     i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
0465                    &pf->fd_tcp6_filter_cnt);
0466 
0467     if (add) {
0468         if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
0469             I40E_DEBUG_FD & pf->hw.debug_mask)
0470             dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
0471         set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
0472     }
0473     return 0;
0474 }
0475 
0476 #define I40E_SCTPIP_DUMMY_PACKET_LEN    46
0477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN   66
0478 /**
0479  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
0480  * a specific flow spec
0481  * @vsi: pointer to the targeted VSI
0482  * @fd_data: the flow director data required for the FDir descriptor
0483  * @add: true adds a filter, false removes it
0484  * @ipv4: true is v4, false is v6
0485  *
0486  * Returns 0 if the filters were successfully added or removed
0487  **/
0488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
0489                   struct i40e_fdir_filter *fd_data,
0490                   bool add,
0491                   bool ipv4)
0492 {
0493     struct i40e_pf *pf = vsi->back;
0494     u8 *raw_packet;
0495     int ret;
0496 
0497     raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
0498     if (!raw_packet)
0499         return -ENOMEM;
0500 
0501     i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
0502 
0503     if (ipv4)
0504         ret = i40e_prepare_fdir_filter
0505             (pf, fd_data, add, raw_packet,
0506              I40E_SCTPIP_DUMMY_PACKET_LEN,
0507              I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
0508     else
0509         ret = i40e_prepare_fdir_filter
0510             (pf, fd_data, add, raw_packet,
0511              I40E_SCTPIP6_DUMMY_PACKET_LEN,
0512              I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
0513 
0514     if (ret) {
0515         kfree(raw_packet);
0516         return ret;
0517     }
0518 
0519     i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
0520                    &pf->fd_sctp6_filter_cnt);
0521 
0522     return 0;
0523 }
0524 
0525 #define I40E_IP_DUMMY_PACKET_LEN    34
0526 #define I40E_IP6_DUMMY_PACKET_LEN   54
0527 /**
0528  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
0529  * a specific flow spec
0530  * @vsi: pointer to the targeted VSI
0531  * @fd_data: the flow director data required for the FDir descriptor
0532  * @add: true adds a filter, false removes it
0533  * @ipv4: true is v4, false is v6
0534  *
0535  * Returns 0 if the filters were successfully added or removed
0536  **/
0537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
0538                 struct i40e_fdir_filter *fd_data,
0539                 bool add,
0540                 bool ipv4)
0541 {
0542     struct i40e_pf *pf = vsi->back;
0543     int payload_offset;
0544     u8 *raw_packet;
0545     int iter_start;
0546     int iter_end;
0547     int ret;
0548     int i;
0549 
0550     if (ipv4) {
0551         iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
0552         iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
0553     } else {
0554         iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
0555         iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
0556     }
0557 
0558     for (i = iter_start; i <= iter_end; i++) {
0559         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
0560         if (!raw_packet)
0561             return -ENOMEM;
0562 
0563         /* IPv6 no header option differs from IPv4 */
0564         (void)i40e_create_dummy_packet
0565             (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
0566              fd_data);
0567 
0568         payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
0569             I40E_IP6_DUMMY_PACKET_LEN;
0570         ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
0571                            payload_offset, i);
0572         if (ret)
0573             goto err;
0574     }
0575 
0576     i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
0577                    &pf->fd_ip6_filter_cnt);
0578 
0579     return 0;
0580 err:
0581     kfree(raw_packet);
0582     return ret;
0583 }
0584 
0585 /**
0586  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
0587  * @vsi: pointer to the targeted VSI
0588  * @input: filter to add or delete
0589  * @add: true adds a filter, false removes it
0590  *
0591  **/
0592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
0593               struct i40e_fdir_filter *input, bool add)
0594 {
0595     enum ip_ver { ipv6 = 0, ipv4 = 1 };
0596     struct i40e_pf *pf = vsi->back;
0597     int ret;
0598 
0599     switch (input->flow_type & ~FLOW_EXT) {
0600     case TCP_V4_FLOW:
0601         ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
0602         break;
0603     case UDP_V4_FLOW:
0604         ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
0605         break;
0606     case SCTP_V4_FLOW:
0607         ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
0608         break;
0609     case TCP_V6_FLOW:
0610         ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
0611         break;
0612     case UDP_V6_FLOW:
0613         ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
0614         break;
0615     case SCTP_V6_FLOW:
0616         ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
0617         break;
0618     case IP_USER_FLOW:
0619         switch (input->ipl4_proto) {
0620         case IPPROTO_TCP:
0621             ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
0622             break;
0623         case IPPROTO_UDP:
0624             ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
0625             break;
0626         case IPPROTO_SCTP:
0627             ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
0628             break;
0629         case IPPROTO_IP:
0630             ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
0631             break;
0632         default:
0633             /* We cannot support masking based on protocol */
0634             dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
0635                  input->ipl4_proto);
0636             return -EINVAL;
0637         }
0638         break;
0639     case IPV6_USER_FLOW:
0640         switch (input->ipl4_proto) {
0641         case IPPROTO_TCP:
0642             ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
0643             break;
0644         case IPPROTO_UDP:
0645             ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
0646             break;
0647         case IPPROTO_SCTP:
0648             ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
0649             break;
0650         case IPPROTO_IP:
0651             ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
0652             break;
0653         default:
0654             /* We cannot support masking based on protocol */
0655             dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
0656                  input->ipl4_proto);
0657             return -EINVAL;
0658         }
0659         break;
0660     default:
0661         dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
0662              input->flow_type);
0663         return -EINVAL;
0664     }
0665 
0666     /* The buffer allocated here will be normally be freed by
0667      * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
0668      * completion. In the event of an error adding the buffer to the FDIR
0669      * ring, it will immediately be freed. It may also be freed by
0670      * i40e_clean_tx_ring() when closing the VSI.
0671      */
0672     return ret;
0673 }
0674 
0675 /**
0676  * i40e_fd_handle_status - check the Programming Status for FD
0677  * @rx_ring: the Rx ring for this descriptor
0678  * @qword0_raw: qword0
0679  * @qword1: qword1 after le_to_cpu
0680  * @prog_id: the id originally used for programming
0681  *
0682  * This is used to verify if the FD programming or invalidation
0683  * requested by SW to the HW is successful or not and take actions accordingly.
0684  **/
0685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
0686                   u64 qword1, u8 prog_id)
0687 {
0688     struct i40e_pf *pf = rx_ring->vsi->back;
0689     struct pci_dev *pdev = pf->pdev;
0690     struct i40e_16b_rx_wb_qw0 *qw0;
0691     u32 fcnt_prog, fcnt_avail;
0692     u32 error;
0693 
0694     qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
0695     error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
0696         I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
0697 
0698     if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
0699         pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
0700         if (qw0->hi_dword.fd_id != 0 ||
0701             (I40E_DEBUG_FD & pf->hw.debug_mask))
0702             dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
0703                  pf->fd_inv);
0704 
0705         /* Check if the programming error is for ATR.
0706          * If so, auto disable ATR and set a state for
0707          * flush in progress. Next time we come here if flush is in
0708          * progress do nothing, once flush is complete the state will
0709          * be cleared.
0710          */
0711         if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
0712             return;
0713 
0714         pf->fd_add_err++;
0715         /* store the current atr filter count */
0716         pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
0717 
0718         if (qw0->hi_dword.fd_id == 0 &&
0719             test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
0720             /* These set_bit() calls aren't atomic with the
0721              * test_bit() here, but worse case we potentially
0722              * disable ATR and queue a flush right after SB
0723              * support is re-enabled. That shouldn't cause an
0724              * issue in practice
0725              */
0726             set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
0727             set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
0728         }
0729 
0730         /* filter programming failed most likely due to table full */
0731         fcnt_prog = i40e_get_global_fd_count(pf);
0732         fcnt_avail = pf->fdir_pf_filter_count;
0733         /* If ATR is running fcnt_prog can quickly change,
0734          * if we are very close to full, it makes sense to disable
0735          * FD ATR/SB and then re-enable it when there is room.
0736          */
0737         if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
0738             if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
0739                 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
0740                           pf->state))
0741                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
0742                     dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
0743         }
0744     } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
0745         if (I40E_DEBUG_FD & pf->hw.debug_mask)
0746             dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
0747                  qw0->hi_dword.fd_id);
0748     }
0749 }
0750 
0751 /**
0752  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
0753  * @ring:      the ring that owns the buffer
0754  * @tx_buffer: the buffer to free
0755  **/
0756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
0757                         struct i40e_tx_buffer *tx_buffer)
0758 {
0759     if (tx_buffer->skb) {
0760         if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
0761             kfree(tx_buffer->raw_buf);
0762         else if (ring_is_xdp(ring))
0763             xdp_return_frame(tx_buffer->xdpf);
0764         else
0765             dev_kfree_skb_any(tx_buffer->skb);
0766         if (dma_unmap_len(tx_buffer, len))
0767             dma_unmap_single(ring->dev,
0768                      dma_unmap_addr(tx_buffer, dma),
0769                      dma_unmap_len(tx_buffer, len),
0770                      DMA_TO_DEVICE);
0771     } else if (dma_unmap_len(tx_buffer, len)) {
0772         dma_unmap_page(ring->dev,
0773                    dma_unmap_addr(tx_buffer, dma),
0774                    dma_unmap_len(tx_buffer, len),
0775                    DMA_TO_DEVICE);
0776     }
0777 
0778     tx_buffer->next_to_watch = NULL;
0779     tx_buffer->skb = NULL;
0780     dma_unmap_len_set(tx_buffer, len, 0);
0781     /* tx_buffer must be completely set up in the transmit path */
0782 }
0783 
0784 /**
0785  * i40e_clean_tx_ring - Free any empty Tx buffers
0786  * @tx_ring: ring to be cleaned
0787  **/
0788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
0789 {
0790     unsigned long bi_size;
0791     u16 i;
0792 
0793     if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
0794         i40e_xsk_clean_tx_ring(tx_ring);
0795     } else {
0796         /* ring already cleared, nothing to do */
0797         if (!tx_ring->tx_bi)
0798             return;
0799 
0800         /* Free all the Tx ring sk_buffs */
0801         for (i = 0; i < tx_ring->count; i++)
0802             i40e_unmap_and_free_tx_resource(tx_ring,
0803                             &tx_ring->tx_bi[i]);
0804     }
0805 
0806     bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
0807     memset(tx_ring->tx_bi, 0, bi_size);
0808 
0809     /* Zero out the descriptor ring */
0810     memset(tx_ring->desc, 0, tx_ring->size);
0811 
0812     tx_ring->next_to_use = 0;
0813     tx_ring->next_to_clean = 0;
0814 
0815     if (!tx_ring->netdev)
0816         return;
0817 
0818     /* cleanup Tx queue statistics */
0819     netdev_tx_reset_queue(txring_txq(tx_ring));
0820 }
0821 
0822 /**
0823  * i40e_free_tx_resources - Free Tx resources per queue
0824  * @tx_ring: Tx descriptor ring for a specific queue
0825  *
0826  * Free all transmit software resources
0827  **/
0828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
0829 {
0830     i40e_clean_tx_ring(tx_ring);
0831     kfree(tx_ring->tx_bi);
0832     tx_ring->tx_bi = NULL;
0833 
0834     if (tx_ring->desc) {
0835         dma_free_coherent(tx_ring->dev, tx_ring->size,
0836                   tx_ring->desc, tx_ring->dma);
0837         tx_ring->desc = NULL;
0838     }
0839 }
0840 
0841 /**
0842  * i40e_get_tx_pending - how many tx descriptors not processed
0843  * @ring: the ring of descriptors
0844  * @in_sw: use SW variables
0845  *
0846  * Since there is no access to the ring head register
0847  * in XL710, we need to use our local copies
0848  **/
0849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
0850 {
0851     u32 head, tail;
0852 
0853     if (!in_sw) {
0854         head = i40e_get_head(ring);
0855         tail = readl(ring->tail);
0856     } else {
0857         head = ring->next_to_clean;
0858         tail = ring->next_to_use;
0859     }
0860 
0861     if (head != tail)
0862         return (head < tail) ?
0863             tail - head : (tail + ring->count - head);
0864 
0865     return 0;
0866 }
0867 
0868 /**
0869  * i40e_detect_recover_hung - Function to detect and recover hung_queues
0870  * @vsi:  pointer to vsi struct with tx queues
0871  *
0872  * VSI has netdev and netdev has TX queues. This function is to check each of
0873  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
0874  **/
0875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
0876 {
0877     struct i40e_ring *tx_ring = NULL;
0878     struct net_device *netdev;
0879     unsigned int i;
0880     int packets;
0881 
0882     if (!vsi)
0883         return;
0884 
0885     if (test_bit(__I40E_VSI_DOWN, vsi->state))
0886         return;
0887 
0888     netdev = vsi->netdev;
0889     if (!netdev)
0890         return;
0891 
0892     if (!netif_carrier_ok(netdev))
0893         return;
0894 
0895     for (i = 0; i < vsi->num_queue_pairs; i++) {
0896         tx_ring = vsi->tx_rings[i];
0897         if (tx_ring && tx_ring->desc) {
0898             /* If packet counter has not changed the queue is
0899              * likely stalled, so force an interrupt for this
0900              * queue.
0901              *
0902              * prev_pkt_ctr would be negative if there was no
0903              * pending work.
0904              */
0905             packets = tx_ring->stats.packets & INT_MAX;
0906             if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
0907                 i40e_force_wb(vsi, tx_ring->q_vector);
0908                 continue;
0909             }
0910 
0911             /* Memory barrier between read of packet count and call
0912              * to i40e_get_tx_pending()
0913              */
0914             smp_rmb();
0915             tx_ring->tx_stats.prev_pkt_ctr =
0916                 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
0917         }
0918     }
0919 }
0920 
0921 /**
0922  * i40e_clean_tx_irq - Reclaim resources after transmit completes
0923  * @vsi: the VSI we care about
0924  * @tx_ring: Tx ring to clean
0925  * @napi_budget: Used to determine if we are in netpoll
0926  *
0927  * Returns true if there's any budget left (e.g. the clean is finished)
0928  **/
0929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
0930                   struct i40e_ring *tx_ring, int napi_budget)
0931 {
0932     int i = tx_ring->next_to_clean;
0933     struct i40e_tx_buffer *tx_buf;
0934     struct i40e_tx_desc *tx_head;
0935     struct i40e_tx_desc *tx_desc;
0936     unsigned int total_bytes = 0, total_packets = 0;
0937     unsigned int budget = vsi->work_limit;
0938 
0939     tx_buf = &tx_ring->tx_bi[i];
0940     tx_desc = I40E_TX_DESC(tx_ring, i);
0941     i -= tx_ring->count;
0942 
0943     tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
0944 
0945     do {
0946         struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
0947 
0948         /* if next_to_watch is not set then there is no work pending */
0949         if (!eop_desc)
0950             break;
0951 
0952         /* prevent any other reads prior to eop_desc */
0953         smp_rmb();
0954 
0955         i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
0956         /* we have caught up to head, no work left to do */
0957         if (tx_head == tx_desc)
0958             break;
0959 
0960         /* clear next_to_watch to prevent false hangs */
0961         tx_buf->next_to_watch = NULL;
0962 
0963         /* update the statistics for this packet */
0964         total_bytes += tx_buf->bytecount;
0965         total_packets += tx_buf->gso_segs;
0966 
0967         /* free the skb/XDP data */
0968         if (ring_is_xdp(tx_ring))
0969             xdp_return_frame(tx_buf->xdpf);
0970         else
0971             napi_consume_skb(tx_buf->skb, napi_budget);
0972 
0973         /* unmap skb header data */
0974         dma_unmap_single(tx_ring->dev,
0975                  dma_unmap_addr(tx_buf, dma),
0976                  dma_unmap_len(tx_buf, len),
0977                  DMA_TO_DEVICE);
0978 
0979         /* clear tx_buffer data */
0980         tx_buf->skb = NULL;
0981         dma_unmap_len_set(tx_buf, len, 0);
0982 
0983         /* unmap remaining buffers */
0984         while (tx_desc != eop_desc) {
0985             i40e_trace(clean_tx_irq_unmap,
0986                    tx_ring, tx_desc, tx_buf);
0987 
0988             tx_buf++;
0989             tx_desc++;
0990             i++;
0991             if (unlikely(!i)) {
0992                 i -= tx_ring->count;
0993                 tx_buf = tx_ring->tx_bi;
0994                 tx_desc = I40E_TX_DESC(tx_ring, 0);
0995             }
0996 
0997             /* unmap any remaining paged data */
0998             if (dma_unmap_len(tx_buf, len)) {
0999                 dma_unmap_page(tx_ring->dev,
1000                            dma_unmap_addr(tx_buf, dma),
1001                            dma_unmap_len(tx_buf, len),
1002                            DMA_TO_DEVICE);
1003                 dma_unmap_len_set(tx_buf, len, 0);
1004             }
1005         }
1006 
1007         /* move us one more past the eop_desc for start of next pkt */
1008         tx_buf++;
1009         tx_desc++;
1010         i++;
1011         if (unlikely(!i)) {
1012             i -= tx_ring->count;
1013             tx_buf = tx_ring->tx_bi;
1014             tx_desc = I40E_TX_DESC(tx_ring, 0);
1015         }
1016 
1017         prefetch(tx_desc);
1018 
1019         /* update budget accounting */
1020         budget--;
1021     } while (likely(budget));
1022 
1023     i += tx_ring->count;
1024     tx_ring->next_to_clean = i;
1025     i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1026     i40e_arm_wb(tx_ring, vsi, budget);
1027 
1028     if (ring_is_xdp(tx_ring))
1029         return !!budget;
1030 
1031     /* notify netdev of completed buffers */
1032     netdev_tx_completed_queue(txring_txq(tx_ring),
1033                   total_packets, total_bytes);
1034 
1035 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1036     if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1037              (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1038         /* Make sure that anybody stopping the queue after this
1039          * sees the new next_to_clean.
1040          */
1041         smp_mb();
1042         if (__netif_subqueue_stopped(tx_ring->netdev,
1043                          tx_ring->queue_index) &&
1044            !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1045             netif_wake_subqueue(tx_ring->netdev,
1046                         tx_ring->queue_index);
1047             ++tx_ring->tx_stats.restart_queue;
1048         }
1049     }
1050 
1051     return !!budget;
1052 }
1053 
1054 /**
1055  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1056  * @vsi: the VSI we care about
1057  * @q_vector: the vector on which to enable writeback
1058  *
1059  **/
1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1061                   struct i40e_q_vector *q_vector)
1062 {
1063     u16 flags = q_vector->tx.ring[0].flags;
1064     u32 val;
1065 
1066     if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1067         return;
1068 
1069     if (q_vector->arm_wb_state)
1070         return;
1071 
1072     if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1073         val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1074               I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1075 
1076         wr32(&vsi->back->hw,
1077              I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1078              val);
1079     } else {
1080         val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1081               I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1082 
1083         wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1084     }
1085     q_vector->arm_wb_state = true;
1086 }
1087 
1088 /**
1089  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1090  * @vsi: the VSI we care about
1091  * @q_vector: the vector  on which to force writeback
1092  *
1093  **/
1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1095 {
1096     if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1097         u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1098               I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1099               I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1100               I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1101               /* allow 00 to be written to the index */
1102 
1103         wr32(&vsi->back->hw,
1104              I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1105     } else {
1106         u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1107               I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1108               I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1109               I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1110             /* allow 00 to be written to the index */
1111 
1112         wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1113     }
1114 }
1115 
1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1117                     struct i40e_ring_container *rc)
1118 {
1119     return &q_vector->rx == rc;
1120 }
1121 
1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1123 {
1124     unsigned int divisor;
1125 
1126     switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1127     case I40E_LINK_SPEED_40GB:
1128         divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1129         break;
1130     case I40E_LINK_SPEED_25GB:
1131     case I40E_LINK_SPEED_20GB:
1132         divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1133         break;
1134     default:
1135     case I40E_LINK_SPEED_10GB:
1136         divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1137         break;
1138     case I40E_LINK_SPEED_1GB:
1139     case I40E_LINK_SPEED_100MB:
1140         divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1141         break;
1142     }
1143 
1144     return divisor;
1145 }
1146 
1147 /**
1148  * i40e_update_itr - update the dynamic ITR value based on statistics
1149  * @q_vector: structure containing interrupt and ring information
1150  * @rc: structure containing ring performance data
1151  *
1152  * Stores a new ITR value based on packets and byte
1153  * counts during the last interrupt.  The advantage of per interrupt
1154  * computation is faster updates and more accurate ITR for the current
1155  * traffic pattern.  Constants in this function were computed
1156  * based on theoretical maximum wire speed and thresholds were set based
1157  * on testing data as well as attempting to minimize response time
1158  * while increasing bulk throughput.
1159  **/
1160 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1161                 struct i40e_ring_container *rc)
1162 {
1163     unsigned int avg_wire_size, packets, bytes, itr;
1164     unsigned long next_update = jiffies;
1165 
1166     /* If we don't have any rings just leave ourselves set for maximum
1167      * possible latency so we take ourselves out of the equation.
1168      */
1169     if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1170         return;
1171 
1172     /* For Rx we want to push the delay up and default to low latency.
1173      * for Tx we want to pull the delay down and default to high latency.
1174      */
1175     itr = i40e_container_is_rx(q_vector, rc) ?
1176           I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1177           I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1178 
1179     /* If we didn't update within up to 1 - 2 jiffies we can assume
1180      * that either packets are coming in so slow there hasn't been
1181      * any work, or that there is so much work that NAPI is dealing
1182      * with interrupt moderation and we don't need to do anything.
1183      */
1184     if (time_after(next_update, rc->next_update))
1185         goto clear_counts;
1186 
1187     /* If itr_countdown is set it means we programmed an ITR within
1188      * the last 4 interrupt cycles. This has a side effect of us
1189      * potentially firing an early interrupt. In order to work around
1190      * this we need to throw out any data received for a few
1191      * interrupts following the update.
1192      */
1193     if (q_vector->itr_countdown) {
1194         itr = rc->target_itr;
1195         goto clear_counts;
1196     }
1197 
1198     packets = rc->total_packets;
1199     bytes = rc->total_bytes;
1200 
1201     if (i40e_container_is_rx(q_vector, rc)) {
1202         /* If Rx there are 1 to 4 packets and bytes are less than
1203          * 9000 assume insufficient data to use bulk rate limiting
1204          * approach unless Tx is already in bulk rate limiting. We
1205          * are likely latency driven.
1206          */
1207         if (packets && packets < 4 && bytes < 9000 &&
1208             (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1209             itr = I40E_ITR_ADAPTIVE_LATENCY;
1210             goto adjust_by_size;
1211         }
1212     } else if (packets < 4) {
1213         /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1214          * bulk mode and we are receiving 4 or fewer packets just
1215          * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1216          * that the Rx can relax.
1217          */
1218         if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1219             (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1220              I40E_ITR_ADAPTIVE_MAX_USECS)
1221             goto clear_counts;
1222     } else if (packets > 32) {
1223         /* If we have processed over 32 packets in a single interrupt
1224          * for Tx assume we need to switch over to "bulk" mode.
1225          */
1226         rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1227     }
1228 
1229     /* We have no packets to actually measure against. This means
1230      * either one of the other queues on this vector is active or
1231      * we are a Tx queue doing TSO with too high of an interrupt rate.
1232      *
1233      * Between 4 and 56 we can assume that our current interrupt delay
1234      * is only slightly too low. As such we should increase it by a small
1235      * fixed amount.
1236      */
1237     if (packets < 56) {
1238         itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1239         if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1240             itr &= I40E_ITR_ADAPTIVE_LATENCY;
1241             itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1242         }
1243         goto clear_counts;
1244     }
1245 
1246     if (packets <= 256) {
1247         itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1248         itr &= I40E_ITR_MASK;
1249 
1250         /* Between 56 and 112 is our "goldilocks" zone where we are
1251          * working out "just right". Just report that our current
1252          * ITR is good for us.
1253          */
1254         if (packets <= 112)
1255             goto clear_counts;
1256 
1257         /* If packet count is 128 or greater we are likely looking
1258          * at a slight overrun of the delay we want. Try halving
1259          * our delay to see if that will cut the number of packets
1260          * in half per interrupt.
1261          */
1262         itr /= 2;
1263         itr &= I40E_ITR_MASK;
1264         if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1265             itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1266 
1267         goto clear_counts;
1268     }
1269 
1270     /* The paths below assume we are dealing with a bulk ITR since
1271      * number of packets is greater than 256. We are just going to have
1272      * to compute a value and try to bring the count under control,
1273      * though for smaller packet sizes there isn't much we can do as
1274      * NAPI polling will likely be kicking in sooner rather than later.
1275      */
1276     itr = I40E_ITR_ADAPTIVE_BULK;
1277 
1278 adjust_by_size:
1279     /* If packet counts are 256 or greater we can assume we have a gross
1280      * overestimation of what the rate should be. Instead of trying to fine
1281      * tune it just use the formula below to try and dial in an exact value
1282      * give the current packet size of the frame.
1283      */
1284     avg_wire_size = bytes / packets;
1285 
1286     /* The following is a crude approximation of:
1287      *  wmem_default / (size + overhead) = desired_pkts_per_int
1288      *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1289      *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1290      *
1291      * Assuming wmem_default is 212992 and overhead is 640 bytes per
1292      * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1293      * formula down to
1294      *
1295      *  (170 * (size + 24)) / (size + 640) = ITR
1296      *
1297      * We first do some math on the packet size and then finally bitshift
1298      * by 8 after rounding up. We also have to account for PCIe link speed
1299      * difference as ITR scales based on this.
1300      */
1301     if (avg_wire_size <= 60) {
1302         /* Start at 250k ints/sec */
1303         avg_wire_size = 4096;
1304     } else if (avg_wire_size <= 380) {
1305         /* 250K ints/sec to 60K ints/sec */
1306         avg_wire_size *= 40;
1307         avg_wire_size += 1696;
1308     } else if (avg_wire_size <= 1084) {
1309         /* 60K ints/sec to 36K ints/sec */
1310         avg_wire_size *= 15;
1311         avg_wire_size += 11452;
1312     } else if (avg_wire_size <= 1980) {
1313         /* 36K ints/sec to 30K ints/sec */
1314         avg_wire_size *= 5;
1315         avg_wire_size += 22420;
1316     } else {
1317         /* plateau at a limit of 30K ints/sec */
1318         avg_wire_size = 32256;
1319     }
1320 
1321     /* If we are in low latency mode halve our delay which doubles the
1322      * rate to somewhere between 100K to 16K ints/sec
1323      */
1324     if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1325         avg_wire_size /= 2;
1326 
1327     /* Resultant value is 256 times larger than it needs to be. This
1328      * gives us room to adjust the value as needed to either increase
1329      * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1330      *
1331      * Use addition as we have already recorded the new latency flag
1332      * for the ITR value.
1333      */
1334     itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1335            I40E_ITR_ADAPTIVE_MIN_INC;
1336 
1337     if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1338         itr &= I40E_ITR_ADAPTIVE_LATENCY;
1339         itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1340     }
1341 
1342 clear_counts:
1343     /* write back value */
1344     rc->target_itr = itr;
1345 
1346     /* next update should occur within next jiffy */
1347     rc->next_update = next_update + 1;
1348 
1349     rc->total_bytes = 0;
1350     rc->total_packets = 0;
1351 }
1352 
1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1354 {
1355     return &rx_ring->rx_bi[idx];
1356 }
1357 
1358 /**
1359  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1360  * @rx_ring: rx descriptor ring to store buffers on
1361  * @old_buff: donor buffer to have page reused
1362  *
1363  * Synchronizes page for reuse by the adapter
1364  **/
1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1366                    struct i40e_rx_buffer *old_buff)
1367 {
1368     struct i40e_rx_buffer *new_buff;
1369     u16 nta = rx_ring->next_to_alloc;
1370 
1371     new_buff = i40e_rx_bi(rx_ring, nta);
1372 
1373     /* update, and store next to alloc */
1374     nta++;
1375     rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1376 
1377     /* transfer page from old buffer to new buffer */
1378     new_buff->dma       = old_buff->dma;
1379     new_buff->page      = old_buff->page;
1380     new_buff->page_offset   = old_buff->page_offset;
1381     new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1382 
1383     /* clear contents of buffer_info */
1384     old_buff->page = NULL;
1385 }
1386 
1387 /**
1388  * i40e_clean_programming_status - clean the programming status descriptor
1389  * @rx_ring: the rx ring that has this descriptor
1390  * @qword0_raw: qword0
1391  * @qword1: qword1 representing status_error_len in CPU ordering
1392  *
1393  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1394  * status being successful or not and take actions accordingly. FCoE should
1395  * handle its context/filter programming/invalidation status and take actions.
1396  *
1397  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1398  **/
1399 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1400                    u64 qword1)
1401 {
1402     u8 id;
1403 
1404     id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1405           I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1406 
1407     if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1408         i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1409 }
1410 
1411 /**
1412  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1413  * @tx_ring: the tx ring to set up
1414  *
1415  * Return 0 on success, negative on error
1416  **/
1417 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1418 {
1419     struct device *dev = tx_ring->dev;
1420     int bi_size;
1421 
1422     if (!dev)
1423         return -ENOMEM;
1424 
1425     /* warn if we are about to overwrite the pointer */
1426     WARN_ON(tx_ring->tx_bi);
1427     bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1428     tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1429     if (!tx_ring->tx_bi)
1430         goto err;
1431 
1432     u64_stats_init(&tx_ring->syncp);
1433 
1434     /* round up to nearest 4K */
1435     tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1436     /* add u32 for head writeback, align after this takes care of
1437      * guaranteeing this is at least one cache line in size
1438      */
1439     tx_ring->size += sizeof(u32);
1440     tx_ring->size = ALIGN(tx_ring->size, 4096);
1441     tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1442                        &tx_ring->dma, GFP_KERNEL);
1443     if (!tx_ring->desc) {
1444         dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1445              tx_ring->size);
1446         goto err;
1447     }
1448 
1449     tx_ring->next_to_use = 0;
1450     tx_ring->next_to_clean = 0;
1451     tx_ring->tx_stats.prev_pkt_ctr = -1;
1452     return 0;
1453 
1454 err:
1455     kfree(tx_ring->tx_bi);
1456     tx_ring->tx_bi = NULL;
1457     return -ENOMEM;
1458 }
1459 
1460 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1461 {
1462     unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1463 
1464     rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1465     return rx_ring->rx_bi ? 0 : -ENOMEM;
1466 }
1467 
1468 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1469 {
1470     memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1471 }
1472 
1473 /**
1474  * i40e_clean_rx_ring - Free Rx buffers
1475  * @rx_ring: ring to be cleaned
1476  **/
1477 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1478 {
1479     u16 i;
1480 
1481     /* ring already cleared, nothing to do */
1482     if (!rx_ring->rx_bi)
1483         return;
1484 
1485     dev_kfree_skb(rx_ring->skb);
1486     rx_ring->skb = NULL;
1487 
1488     if (rx_ring->xsk_pool) {
1489         i40e_xsk_clean_rx_ring(rx_ring);
1490         goto skip_free;
1491     }
1492 
1493     /* Free all the Rx ring sk_buffs */
1494     for (i = 0; i < rx_ring->count; i++) {
1495         struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1496 
1497         if (!rx_bi->page)
1498             continue;
1499 
1500         /* Invalidate cache lines that may have been written to by
1501          * device so that we avoid corrupting memory.
1502          */
1503         dma_sync_single_range_for_cpu(rx_ring->dev,
1504                           rx_bi->dma,
1505                           rx_bi->page_offset,
1506                           rx_ring->rx_buf_len,
1507                           DMA_FROM_DEVICE);
1508 
1509         /* free resources associated with mapping */
1510         dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1511                      i40e_rx_pg_size(rx_ring),
1512                      DMA_FROM_DEVICE,
1513                      I40E_RX_DMA_ATTR);
1514 
1515         __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1516 
1517         rx_bi->page = NULL;
1518         rx_bi->page_offset = 0;
1519     }
1520 
1521 skip_free:
1522     if (rx_ring->xsk_pool)
1523         i40e_clear_rx_bi_zc(rx_ring);
1524     else
1525         i40e_clear_rx_bi(rx_ring);
1526 
1527     /* Zero out the descriptor ring */
1528     memset(rx_ring->desc, 0, rx_ring->size);
1529 
1530     rx_ring->next_to_alloc = 0;
1531     rx_ring->next_to_clean = 0;
1532     rx_ring->next_to_use = 0;
1533 }
1534 
1535 /**
1536  * i40e_free_rx_resources - Free Rx resources
1537  * @rx_ring: ring to clean the resources from
1538  *
1539  * Free all receive software resources
1540  **/
1541 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1542 {
1543     i40e_clean_rx_ring(rx_ring);
1544     if (rx_ring->vsi->type == I40E_VSI_MAIN)
1545         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1546     rx_ring->xdp_prog = NULL;
1547     kfree(rx_ring->rx_bi);
1548     rx_ring->rx_bi = NULL;
1549 
1550     if (rx_ring->desc) {
1551         dma_free_coherent(rx_ring->dev, rx_ring->size,
1552                   rx_ring->desc, rx_ring->dma);
1553         rx_ring->desc = NULL;
1554     }
1555 }
1556 
1557 /**
1558  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1559  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1560  *
1561  * Returns 0 on success, negative on failure
1562  **/
1563 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1564 {
1565     struct device *dev = rx_ring->dev;
1566     int err;
1567 
1568     u64_stats_init(&rx_ring->syncp);
1569 
1570     /* Round up to nearest 4K */
1571     rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1572     rx_ring->size = ALIGN(rx_ring->size, 4096);
1573     rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1574                        &rx_ring->dma, GFP_KERNEL);
1575 
1576     if (!rx_ring->desc) {
1577         dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1578              rx_ring->size);
1579         return -ENOMEM;
1580     }
1581 
1582     rx_ring->next_to_alloc = 0;
1583     rx_ring->next_to_clean = 0;
1584     rx_ring->next_to_use = 0;
1585 
1586     /* XDP RX-queue info only needed for RX rings exposed to XDP */
1587     if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1588         err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1589                        rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1590         if (err < 0)
1591             return err;
1592     }
1593 
1594     rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1595 
1596     return 0;
1597 }
1598 
1599 /**
1600  * i40e_release_rx_desc - Store the new tail and head values
1601  * @rx_ring: ring to bump
1602  * @val: new head index
1603  **/
1604 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1605 {
1606     rx_ring->next_to_use = val;
1607 
1608     /* update next to alloc since we have filled the ring */
1609     rx_ring->next_to_alloc = val;
1610 
1611     /* Force memory writes to complete before letting h/w
1612      * know there are new descriptors to fetch.  (Only
1613      * applicable for weak-ordered memory model archs,
1614      * such as IA-64).
1615      */
1616     wmb();
1617     writel(val, rx_ring->tail);
1618 }
1619 
1620 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1621                        unsigned int size)
1622 {
1623     unsigned int truesize;
1624 
1625 #if (PAGE_SIZE < 8192)
1626     truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1627 #else
1628     truesize = rx_ring->rx_offset ?
1629         SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1630         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1631         SKB_DATA_ALIGN(size);
1632 #endif
1633     return truesize;
1634 }
1635 
1636 /**
1637  * i40e_alloc_mapped_page - recycle or make a new page
1638  * @rx_ring: ring to use
1639  * @bi: rx_buffer struct to modify
1640  *
1641  * Returns true if the page was successfully allocated or
1642  * reused.
1643  **/
1644 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1645                    struct i40e_rx_buffer *bi)
1646 {
1647     struct page *page = bi->page;
1648     dma_addr_t dma;
1649 
1650     /* since we are recycling buffers we should seldom need to alloc */
1651     if (likely(page)) {
1652         rx_ring->rx_stats.page_reuse_count++;
1653         return true;
1654     }
1655 
1656     /* alloc new page for storage */
1657     page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1658     if (unlikely(!page)) {
1659         rx_ring->rx_stats.alloc_page_failed++;
1660         return false;
1661     }
1662 
1663     rx_ring->rx_stats.page_alloc_count++;
1664 
1665     /* map page for use */
1666     dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1667                  i40e_rx_pg_size(rx_ring),
1668                  DMA_FROM_DEVICE,
1669                  I40E_RX_DMA_ATTR);
1670 
1671     /* if mapping failed free memory back to system since
1672      * there isn't much point in holding memory we can't use
1673      */
1674     if (dma_mapping_error(rx_ring->dev, dma)) {
1675         __free_pages(page, i40e_rx_pg_order(rx_ring));
1676         rx_ring->rx_stats.alloc_page_failed++;
1677         return false;
1678     }
1679 
1680     bi->dma = dma;
1681     bi->page = page;
1682     bi->page_offset = rx_ring->rx_offset;
1683     page_ref_add(page, USHRT_MAX - 1);
1684     bi->pagecnt_bias = USHRT_MAX;
1685 
1686     return true;
1687 }
1688 
1689 /**
1690  * i40e_alloc_rx_buffers - Replace used receive buffers
1691  * @rx_ring: ring to place buffers on
1692  * @cleaned_count: number of buffers to replace
1693  *
1694  * Returns false if all allocations were successful, true if any fail
1695  **/
1696 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1697 {
1698     u16 ntu = rx_ring->next_to_use;
1699     union i40e_rx_desc *rx_desc;
1700     struct i40e_rx_buffer *bi;
1701 
1702     /* do nothing if no valid netdev defined */
1703     if (!rx_ring->netdev || !cleaned_count)
1704         return false;
1705 
1706     rx_desc = I40E_RX_DESC(rx_ring, ntu);
1707     bi = i40e_rx_bi(rx_ring, ntu);
1708 
1709     do {
1710         if (!i40e_alloc_mapped_page(rx_ring, bi))
1711             goto no_buffers;
1712 
1713         /* sync the buffer for use by the device */
1714         dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1715                          bi->page_offset,
1716                          rx_ring->rx_buf_len,
1717                          DMA_FROM_DEVICE);
1718 
1719         /* Refresh the desc even if buffer_addrs didn't change
1720          * because each write-back erases this info.
1721          */
1722         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1723 
1724         rx_desc++;
1725         bi++;
1726         ntu++;
1727         if (unlikely(ntu == rx_ring->count)) {
1728             rx_desc = I40E_RX_DESC(rx_ring, 0);
1729             bi = i40e_rx_bi(rx_ring, 0);
1730             ntu = 0;
1731         }
1732 
1733         /* clear the status bits for the next_to_use descriptor */
1734         rx_desc->wb.qword1.status_error_len = 0;
1735 
1736         cleaned_count--;
1737     } while (cleaned_count);
1738 
1739     if (rx_ring->next_to_use != ntu)
1740         i40e_release_rx_desc(rx_ring, ntu);
1741 
1742     return false;
1743 
1744 no_buffers:
1745     if (rx_ring->next_to_use != ntu)
1746         i40e_release_rx_desc(rx_ring, ntu);
1747 
1748     /* make sure to come back via polling to try again after
1749      * allocation failure
1750      */
1751     return true;
1752 }
1753 
1754 /**
1755  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1756  * @vsi: the VSI we care about
1757  * @skb: skb currently being received and modified
1758  * @rx_desc: the receive descriptor
1759  **/
1760 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1761                     struct sk_buff *skb,
1762                     union i40e_rx_desc *rx_desc)
1763 {
1764     struct i40e_rx_ptype_decoded decoded;
1765     u32 rx_error, rx_status;
1766     bool ipv4, ipv6;
1767     u8 ptype;
1768     u64 qword;
1769 
1770     qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1771     ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1772     rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1773            I40E_RXD_QW1_ERROR_SHIFT;
1774     rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1775             I40E_RXD_QW1_STATUS_SHIFT;
1776     decoded = decode_rx_desc_ptype(ptype);
1777 
1778     skb->ip_summed = CHECKSUM_NONE;
1779 
1780     skb_checksum_none_assert(skb);
1781 
1782     /* Rx csum enabled and ip headers found? */
1783     if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1784         return;
1785 
1786     /* did the hardware decode the packet and checksum? */
1787     if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1788         return;
1789 
1790     /* both known and outer_ip must be set for the below code to work */
1791     if (!(decoded.known && decoded.outer_ip))
1792         return;
1793 
1794     ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1795            (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1796     ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1797            (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1798 
1799     if (ipv4 &&
1800         (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1801              BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1802         goto checksum_fail;
1803 
1804     /* likely incorrect csum if alternate IP extension headers found */
1805     if (ipv6 &&
1806         rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1807         /* don't increment checksum err here, non-fatal err */
1808         return;
1809 
1810     /* there was some L4 error, count error and punt packet to the stack */
1811     if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1812         goto checksum_fail;
1813 
1814     /* handle packets that were not able to be checksummed due
1815      * to arrival speed, in this case the stack can compute
1816      * the csum.
1817      */
1818     if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1819         return;
1820 
1821     /* If there is an outer header present that might contain a checksum
1822      * we need to bump the checksum level by 1 to reflect the fact that
1823      * we are indicating we validated the inner checksum.
1824      */
1825     if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1826         skb->csum_level = 1;
1827 
1828     /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1829     switch (decoded.inner_prot) {
1830     case I40E_RX_PTYPE_INNER_PROT_TCP:
1831     case I40E_RX_PTYPE_INNER_PROT_UDP:
1832     case I40E_RX_PTYPE_INNER_PROT_SCTP:
1833         skb->ip_summed = CHECKSUM_UNNECESSARY;
1834         fallthrough;
1835     default:
1836         break;
1837     }
1838 
1839     return;
1840 
1841 checksum_fail:
1842     vsi->back->hw_csum_rx_error++;
1843 }
1844 
1845 /**
1846  * i40e_ptype_to_htype - get a hash type
1847  * @ptype: the ptype value from the descriptor
1848  *
1849  * Returns a hash type to be used by skb_set_hash
1850  **/
1851 static inline int i40e_ptype_to_htype(u8 ptype)
1852 {
1853     struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1854 
1855     if (!decoded.known)
1856         return PKT_HASH_TYPE_NONE;
1857 
1858     if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1859         decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1860         return PKT_HASH_TYPE_L4;
1861     else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1862          decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1863         return PKT_HASH_TYPE_L3;
1864     else
1865         return PKT_HASH_TYPE_L2;
1866 }
1867 
1868 /**
1869  * i40e_rx_hash - set the hash value in the skb
1870  * @ring: descriptor ring
1871  * @rx_desc: specific descriptor
1872  * @skb: skb currently being received and modified
1873  * @rx_ptype: Rx packet type
1874  **/
1875 static inline void i40e_rx_hash(struct i40e_ring *ring,
1876                 union i40e_rx_desc *rx_desc,
1877                 struct sk_buff *skb,
1878                 u8 rx_ptype)
1879 {
1880     u32 hash;
1881     const __le64 rss_mask =
1882         cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1883                 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1884 
1885     if (!(ring->netdev->features & NETIF_F_RXHASH))
1886         return;
1887 
1888     if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1889         hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1890         skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1891     }
1892 }
1893 
1894 /**
1895  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1896  * @rx_ring: rx descriptor ring packet is being transacted on
1897  * @rx_desc: pointer to the EOP Rx descriptor
1898  * @skb: pointer to current skb being populated
1899  *
1900  * This function checks the ring, descriptor, and packet information in
1901  * order to populate the hash, checksum, VLAN, protocol, and
1902  * other fields within the skb.
1903  **/
1904 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1905                  union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1906 {
1907     u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1908     u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1909             I40E_RXD_QW1_STATUS_SHIFT;
1910     u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1911     u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1912            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1913     u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1914               I40E_RXD_QW1_PTYPE_SHIFT;
1915 
1916     if (unlikely(tsynvalid))
1917         i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1918 
1919     i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1920 
1921     i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1922 
1923     skb_record_rx_queue(skb, rx_ring->queue_index);
1924 
1925     if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1926         __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1927 
1928         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1929                        le16_to_cpu(vlan_tag));
1930     }
1931 
1932     /* modifies the skb - consumes the enet header */
1933     skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1934 }
1935 
1936 /**
1937  * i40e_cleanup_headers - Correct empty headers
1938  * @rx_ring: rx descriptor ring packet is being transacted on
1939  * @skb: pointer to current skb being fixed
1940  * @rx_desc: pointer to the EOP Rx descriptor
1941  *
1942  * In addition if skb is not at least 60 bytes we need to pad it so that
1943  * it is large enough to qualify as a valid Ethernet frame.
1944  *
1945  * Returns true if an error was encountered and skb was freed.
1946  **/
1947 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1948                  union i40e_rx_desc *rx_desc)
1949 
1950 {
1951     /* ERR_MASK will only have valid bits if EOP set, and
1952      * what we are doing here is actually checking
1953      * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1954      * the error field
1955      */
1956     if (unlikely(i40e_test_staterr(rx_desc,
1957                        BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1958         dev_kfree_skb_any(skb);
1959         return true;
1960     }
1961 
1962     /* if eth_skb_pad returns an error the skb was freed */
1963     if (eth_skb_pad(skb))
1964         return true;
1965 
1966     return false;
1967 }
1968 
1969 /**
1970  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1971  * @rx_buffer: buffer containing the page
1972  * @rx_stats: rx stats structure for the rx ring
1973  * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1974  *
1975  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1976  * which will assign the current buffer to the buffer that next_to_alloc is
1977  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1978  * page freed.
1979  *
1980  * rx_stats will be updated to indicate whether the page was waived
1981  * or busy if it could not be reused.
1982  */
1983 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1984                    struct i40e_rx_queue_stats *rx_stats,
1985                    int rx_buffer_pgcnt)
1986 {
1987     unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1988     struct page *page = rx_buffer->page;
1989 
1990     /* Is any reuse possible? */
1991     if (!dev_page_is_reusable(page)) {
1992         rx_stats->page_waive_count++;
1993         return false;
1994     }
1995 
1996 #if (PAGE_SIZE < 8192)
1997     /* if we are only owner of page we can reuse it */
1998     if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) {
1999         rx_stats->page_busy_count++;
2000         return false;
2001     }
2002 #else
2003 #define I40E_LAST_OFFSET \
2004     (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2005     if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2006         rx_stats->page_busy_count++;
2007         return false;
2008     }
2009 #endif
2010 
2011     /* If we have drained the page fragment pool we need to update
2012      * the pagecnt_bias and page count so that we fully restock the
2013      * number of references the driver holds.
2014      */
2015     if (unlikely(pagecnt_bias == 1)) {
2016         page_ref_add(page, USHRT_MAX - 1);
2017         rx_buffer->pagecnt_bias = USHRT_MAX;
2018     }
2019 
2020     return true;
2021 }
2022 
2023 /**
2024  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2025  * @rx_ring: rx descriptor ring to transact packets on
2026  * @rx_buffer: buffer containing page to add
2027  * @skb: sk_buff to place the data into
2028  * @size: packet length from rx_desc
2029  *
2030  * This function will add the data contained in rx_buffer->page to the skb.
2031  * It will just attach the page as a frag to the skb.
2032  *
2033  * The function will then update the page offset.
2034  **/
2035 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2036                  struct i40e_rx_buffer *rx_buffer,
2037                  struct sk_buff *skb,
2038                  unsigned int size)
2039 {
2040 #if (PAGE_SIZE < 8192)
2041     unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2042 #else
2043     unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2044 #endif
2045 
2046     skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2047             rx_buffer->page_offset, size, truesize);
2048 
2049     /* page is being used so we must update the page offset */
2050 #if (PAGE_SIZE < 8192)
2051     rx_buffer->page_offset ^= truesize;
2052 #else
2053     rx_buffer->page_offset += truesize;
2054 #endif
2055 }
2056 
2057 /**
2058  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2059  * @rx_ring: rx descriptor ring to transact packets on
2060  * @size: size of buffer to add to skb
2061  * @rx_buffer_pgcnt: buffer page refcount
2062  *
2063  * This function will pull an Rx buffer from the ring and synchronize it
2064  * for use by the CPU.
2065  */
2066 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2067                          const unsigned int size,
2068                          int *rx_buffer_pgcnt)
2069 {
2070     struct i40e_rx_buffer *rx_buffer;
2071 
2072     rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2073     *rx_buffer_pgcnt =
2074 #if (PAGE_SIZE < 8192)
2075         page_count(rx_buffer->page);
2076 #else
2077         0;
2078 #endif
2079     prefetch_page_address(rx_buffer->page);
2080 
2081     /* we are reusing so sync this buffer for CPU use */
2082     dma_sync_single_range_for_cpu(rx_ring->dev,
2083                       rx_buffer->dma,
2084                       rx_buffer->page_offset,
2085                       size,
2086                       DMA_FROM_DEVICE);
2087 
2088     /* We have pulled a buffer for use, so decrement pagecnt_bias */
2089     rx_buffer->pagecnt_bias--;
2090 
2091     return rx_buffer;
2092 }
2093 
2094 /**
2095  * i40e_construct_skb - Allocate skb and populate it
2096  * @rx_ring: rx descriptor ring to transact packets on
2097  * @rx_buffer: rx buffer to pull data from
2098  * @xdp: xdp_buff pointing to the data
2099  *
2100  * This function allocates an skb.  It then populates it with the page
2101  * data from the current receive descriptor, taking care to set up the
2102  * skb correctly.
2103  */
2104 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2105                       struct i40e_rx_buffer *rx_buffer,
2106                       struct xdp_buff *xdp)
2107 {
2108     unsigned int size = xdp->data_end - xdp->data;
2109 #if (PAGE_SIZE < 8192)
2110     unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2111 #else
2112     unsigned int truesize = SKB_DATA_ALIGN(size);
2113 #endif
2114     unsigned int headlen;
2115     struct sk_buff *skb;
2116 
2117     /* prefetch first cache line of first page */
2118     net_prefetch(xdp->data);
2119 
2120     /* Note, we get here by enabling legacy-rx via:
2121      *
2122      *    ethtool --set-priv-flags <dev> legacy-rx on
2123      *
2124      * In this mode, we currently get 0 extra XDP headroom as
2125      * opposed to having legacy-rx off, where we process XDP
2126      * packets going to stack via i40e_build_skb(). The latter
2127      * provides us currently with 192 bytes of headroom.
2128      *
2129      * For i40e_construct_skb() mode it means that the
2130      * xdp->data_meta will always point to xdp->data, since
2131      * the helper cannot expand the head. Should this ever
2132      * change in future for legacy-rx mode on, then lets also
2133      * add xdp->data_meta handling here.
2134      */
2135 
2136     /* allocate a skb to store the frags */
2137     skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2138                    I40E_RX_HDR_SIZE,
2139                    GFP_ATOMIC | __GFP_NOWARN);
2140     if (unlikely(!skb))
2141         return NULL;
2142 
2143     /* Determine available headroom for copy */
2144     headlen = size;
2145     if (headlen > I40E_RX_HDR_SIZE)
2146         headlen = eth_get_headlen(skb->dev, xdp->data,
2147                       I40E_RX_HDR_SIZE);
2148 
2149     /* align pull length to size of long to optimize memcpy performance */
2150     memcpy(__skb_put(skb, headlen), xdp->data,
2151            ALIGN(headlen, sizeof(long)));
2152 
2153     /* update all of the pointers */
2154     size -= headlen;
2155     if (size) {
2156         skb_add_rx_frag(skb, 0, rx_buffer->page,
2157                 rx_buffer->page_offset + headlen,
2158                 size, truesize);
2159 
2160         /* buffer is used by skb, update page_offset */
2161 #if (PAGE_SIZE < 8192)
2162         rx_buffer->page_offset ^= truesize;
2163 #else
2164         rx_buffer->page_offset += truesize;
2165 #endif
2166     } else {
2167         /* buffer is unused, reset bias back to rx_buffer */
2168         rx_buffer->pagecnt_bias++;
2169     }
2170 
2171     return skb;
2172 }
2173 
2174 /**
2175  * i40e_build_skb - Build skb around an existing buffer
2176  * @rx_ring: Rx descriptor ring to transact packets on
2177  * @rx_buffer: Rx buffer to pull data from
2178  * @xdp: xdp_buff pointing to the data
2179  *
2180  * This function builds an skb around an existing Rx buffer, taking care
2181  * to set up the skb correctly and avoid any memcpy overhead.
2182  */
2183 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2184                       struct i40e_rx_buffer *rx_buffer,
2185                       struct xdp_buff *xdp)
2186 {
2187     unsigned int metasize = xdp->data - xdp->data_meta;
2188 #if (PAGE_SIZE < 8192)
2189     unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2190 #else
2191     unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2192                 SKB_DATA_ALIGN(xdp->data_end -
2193                            xdp->data_hard_start);
2194 #endif
2195     struct sk_buff *skb;
2196 
2197     /* Prefetch first cache line of first page. If xdp->data_meta
2198      * is unused, this points exactly as xdp->data, otherwise we
2199      * likely have a consumer accessing first few bytes of meta
2200      * data, and then actual data.
2201      */
2202     net_prefetch(xdp->data_meta);
2203 
2204     /* build an skb around the page buffer */
2205     skb = napi_build_skb(xdp->data_hard_start, truesize);
2206     if (unlikely(!skb))
2207         return NULL;
2208 
2209     /* update pointers within the skb to store the data */
2210     skb_reserve(skb, xdp->data - xdp->data_hard_start);
2211     __skb_put(skb, xdp->data_end - xdp->data);
2212     if (metasize)
2213         skb_metadata_set(skb, metasize);
2214 
2215     /* buffer is used by skb, update page_offset */
2216 #if (PAGE_SIZE < 8192)
2217     rx_buffer->page_offset ^= truesize;
2218 #else
2219     rx_buffer->page_offset += truesize;
2220 #endif
2221 
2222     return skb;
2223 }
2224 
2225 /**
2226  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2227  * @rx_ring: rx descriptor ring to transact packets on
2228  * @rx_buffer: rx buffer to pull data from
2229  * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2230  *
2231  * This function will clean up the contents of the rx_buffer.  It will
2232  * either recycle the buffer or unmap it and free the associated resources.
2233  */
2234 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2235                    struct i40e_rx_buffer *rx_buffer,
2236                    int rx_buffer_pgcnt)
2237 {
2238     if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats, rx_buffer_pgcnt)) {
2239         /* hand second half of page back to the ring */
2240         i40e_reuse_rx_page(rx_ring, rx_buffer);
2241     } else {
2242         /* we are not reusing the buffer so unmap it */
2243         dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2244                      i40e_rx_pg_size(rx_ring),
2245                      DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2246         __page_frag_cache_drain(rx_buffer->page,
2247                     rx_buffer->pagecnt_bias);
2248         /* clear contents of buffer_info */
2249         rx_buffer->page = NULL;
2250     }
2251 }
2252 
2253 /**
2254  * i40e_is_non_eop - process handling of non-EOP buffers
2255  * @rx_ring: Rx ring being processed
2256  * @rx_desc: Rx descriptor for current buffer
2257  *
2258  * If the buffer is an EOP buffer, this function exits returning false,
2259  * otherwise return true indicating that this is in fact a non-EOP buffer.
2260  */
2261 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2262                 union i40e_rx_desc *rx_desc)
2263 {
2264     /* if we are the last buffer then there is nothing else to do */
2265 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2266     if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2267         return false;
2268 
2269     rx_ring->rx_stats.non_eop_descs++;
2270 
2271     return true;
2272 }
2273 
2274 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2275                   struct i40e_ring *xdp_ring);
2276 
2277 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2278 {
2279     struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2280 
2281     if (unlikely(!xdpf))
2282         return I40E_XDP_CONSUMED;
2283 
2284     return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2285 }
2286 
2287 /**
2288  * i40e_run_xdp - run an XDP program
2289  * @rx_ring: Rx ring being processed
2290  * @xdp: XDP buffer containing the frame
2291  * @xdp_prog: XDP program to run
2292  **/
2293 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2294 {
2295     int err, result = I40E_XDP_PASS;
2296     struct i40e_ring *xdp_ring;
2297     u32 act;
2298 
2299     if (!xdp_prog)
2300         goto xdp_out;
2301 
2302     prefetchw(xdp->data_hard_start); /* xdp_frame write */
2303 
2304     act = bpf_prog_run_xdp(xdp_prog, xdp);
2305     switch (act) {
2306     case XDP_PASS:
2307         break;
2308     case XDP_TX:
2309         xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2310         result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2311         if (result == I40E_XDP_CONSUMED)
2312             goto out_failure;
2313         break;
2314     case XDP_REDIRECT:
2315         err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2316         if (err)
2317             goto out_failure;
2318         result = I40E_XDP_REDIR;
2319         break;
2320     default:
2321         bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2322         fallthrough;
2323     case XDP_ABORTED:
2324 out_failure:
2325         trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2326         fallthrough; /* handle aborts by dropping packet */
2327     case XDP_DROP:
2328         result = I40E_XDP_CONSUMED;
2329         break;
2330     }
2331 xdp_out:
2332     return result;
2333 }
2334 
2335 /**
2336  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2337  * @rx_ring: Rx ring
2338  * @rx_buffer: Rx buffer to adjust
2339  * @size: Size of adjustment
2340  **/
2341 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2342                 struct i40e_rx_buffer *rx_buffer,
2343                 unsigned int size)
2344 {
2345     unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2346 
2347 #if (PAGE_SIZE < 8192)
2348     rx_buffer->page_offset ^= truesize;
2349 #else
2350     rx_buffer->page_offset += truesize;
2351 #endif
2352 }
2353 
2354 /**
2355  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2356  * @xdp_ring: XDP Tx ring
2357  *
2358  * This function updates the XDP Tx ring tail register.
2359  **/
2360 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2361 {
2362     /* Force memory writes to complete before letting h/w
2363      * know there are new descriptors to fetch.
2364      */
2365     wmb();
2366     writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2367 }
2368 
2369 /**
2370  * i40e_update_rx_stats - Update Rx ring statistics
2371  * @rx_ring: rx descriptor ring
2372  * @total_rx_bytes: number of bytes received
2373  * @total_rx_packets: number of packets received
2374  *
2375  * This function updates the Rx ring statistics.
2376  **/
2377 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2378               unsigned int total_rx_bytes,
2379               unsigned int total_rx_packets)
2380 {
2381     u64_stats_update_begin(&rx_ring->syncp);
2382     rx_ring->stats.packets += total_rx_packets;
2383     rx_ring->stats.bytes += total_rx_bytes;
2384     u64_stats_update_end(&rx_ring->syncp);
2385     rx_ring->q_vector->rx.total_packets += total_rx_packets;
2386     rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2387 }
2388 
2389 /**
2390  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2391  * @rx_ring: Rx ring
2392  * @xdp_res: Result of the receive batch
2393  *
2394  * This function bumps XDP Tx tail and/or flush redirect map, and
2395  * should be called when a batch of packets has been processed in the
2396  * napi loop.
2397  **/
2398 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2399 {
2400     if (xdp_res & I40E_XDP_REDIR)
2401         xdp_do_flush_map();
2402 
2403     if (xdp_res & I40E_XDP_TX) {
2404         struct i40e_ring *xdp_ring =
2405             rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2406 
2407         i40e_xdp_ring_update_tail(xdp_ring);
2408     }
2409 }
2410 
2411 /**
2412  * i40e_inc_ntc: Advance the next_to_clean index
2413  * @rx_ring: Rx ring
2414  **/
2415 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2416 {
2417     u32 ntc = rx_ring->next_to_clean + 1;
2418 
2419     ntc = (ntc < rx_ring->count) ? ntc : 0;
2420     rx_ring->next_to_clean = ntc;
2421     prefetch(I40E_RX_DESC(rx_ring, ntc));
2422 }
2423 
2424 /**
2425  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2426  * @rx_ring: rx descriptor ring to transact packets on
2427  * @budget: Total limit on number of packets to process
2428  *
2429  * This function provides a "bounce buffer" approach to Rx interrupt
2430  * processing.  The advantage to this is that on systems that have
2431  * expensive overhead for IOMMU access this provides a means of avoiding
2432  * it by maintaining the mapping of the page to the system.
2433  *
2434  * Returns amount of work completed
2435  **/
2436 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2437 {
2438     unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2439     u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2440     unsigned int offset = rx_ring->rx_offset;
2441     struct sk_buff *skb = rx_ring->skb;
2442     unsigned int xdp_xmit = 0;
2443     struct bpf_prog *xdp_prog;
2444     bool failure = false;
2445     struct xdp_buff xdp;
2446     int xdp_res = 0;
2447 
2448 #if (PAGE_SIZE < 8192)
2449     frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2450 #endif
2451     xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2452 
2453     xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2454 
2455     while (likely(total_rx_packets < (unsigned int)budget)) {
2456         struct i40e_rx_buffer *rx_buffer;
2457         union i40e_rx_desc *rx_desc;
2458         int rx_buffer_pgcnt;
2459         unsigned int size;
2460         u64 qword;
2461 
2462         /* return some buffers to hardware, one at a time is too slow */
2463         if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2464             failure = failure ||
2465                   i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2466             cleaned_count = 0;
2467         }
2468 
2469         rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2470 
2471         /* status_error_len will always be zero for unused descriptors
2472          * because it's cleared in cleanup, and overlaps with hdr_addr
2473          * which is always zero because packet split isn't used, if the
2474          * hardware wrote DD then the length will be non-zero
2475          */
2476         qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2477 
2478         /* This memory barrier is needed to keep us from reading
2479          * any other fields out of the rx_desc until we have
2480          * verified the descriptor has been written back.
2481          */
2482         dma_rmb();
2483 
2484         if (i40e_rx_is_programming_status(qword)) {
2485             i40e_clean_programming_status(rx_ring,
2486                               rx_desc->raw.qword[0],
2487                               qword);
2488             rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2489             i40e_inc_ntc(rx_ring);
2490             i40e_reuse_rx_page(rx_ring, rx_buffer);
2491             cleaned_count++;
2492             continue;
2493         }
2494 
2495         size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2496                I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2497         if (!size)
2498             break;
2499 
2500         i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2501         rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2502 
2503         /* retrieve a buffer from the ring */
2504         if (!skb) {
2505             unsigned char *hard_start;
2506 
2507             hard_start = page_address(rx_buffer->page) +
2508                      rx_buffer->page_offset - offset;
2509             xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2510             xdp_buff_clear_frags_flag(&xdp);
2511 #if (PAGE_SIZE > 4096)
2512             /* At larger PAGE_SIZE, frame_sz depend on len size */
2513             xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2514 #endif
2515             xdp_res = i40e_run_xdp(rx_ring, &xdp, xdp_prog);
2516         }
2517 
2518         if (xdp_res) {
2519             if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2520                 xdp_xmit |= xdp_res;
2521                 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2522             } else {
2523                 rx_buffer->pagecnt_bias++;
2524             }
2525             total_rx_bytes += size;
2526             total_rx_packets++;
2527         } else if (skb) {
2528             i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2529         } else if (ring_uses_build_skb(rx_ring)) {
2530             skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2531         } else {
2532             skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2533         }
2534 
2535         /* exit if we failed to retrieve a buffer */
2536         if (!xdp_res && !skb) {
2537             rx_ring->rx_stats.alloc_buff_failed++;
2538             rx_buffer->pagecnt_bias++;
2539             break;
2540         }
2541 
2542         i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2543         cleaned_count++;
2544 
2545         i40e_inc_ntc(rx_ring);
2546         if (i40e_is_non_eop(rx_ring, rx_desc))
2547             continue;
2548 
2549         if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2550             skb = NULL;
2551             continue;
2552         }
2553 
2554         /* probably a little skewed due to removing CRC */
2555         total_rx_bytes += skb->len;
2556 
2557         /* populate checksum, VLAN, and protocol */
2558         i40e_process_skb_fields(rx_ring, rx_desc, skb);
2559 
2560         i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2561         napi_gro_receive(&rx_ring->q_vector->napi, skb);
2562         skb = NULL;
2563 
2564         /* update budget accounting */
2565         total_rx_packets++;
2566     }
2567 
2568     i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2569     rx_ring->skb = skb;
2570 
2571     i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2572 
2573     /* guarantee a trip back through this routine if there was a failure */
2574     return failure ? budget : (int)total_rx_packets;
2575 }
2576 
2577 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2578 {
2579     u32 val;
2580 
2581     /* We don't bother with setting the CLEARPBA bit as the data sheet
2582      * points out doing so is "meaningless since it was already
2583      * auto-cleared". The auto-clearing happens when the interrupt is
2584      * asserted.
2585      *
2586      * Hardware errata 28 for also indicates that writing to a
2587      * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2588      * an event in the PBA anyway so we need to rely on the automask
2589      * to hold pending events for us until the interrupt is re-enabled
2590      *
2591      * The itr value is reported in microseconds, and the register
2592      * value is recorded in 2 microsecond units. For this reason we
2593      * only need to shift by the interval shift - 1 instead of the
2594      * full value.
2595      */
2596     itr &= I40E_ITR_MASK;
2597 
2598     val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2599           (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2600           (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2601 
2602     return val;
2603 }
2604 
2605 /* a small macro to shorten up some long lines */
2606 #define INTREG I40E_PFINT_DYN_CTLN
2607 
2608 /* The act of updating the ITR will cause it to immediately trigger. In order
2609  * to prevent this from throwing off adaptive update statistics we defer the
2610  * update so that it can only happen so often. So after either Tx or Rx are
2611  * updated we make the adaptive scheme wait until either the ITR completely
2612  * expires via the next_update expiration or we have been through at least
2613  * 3 interrupts.
2614  */
2615 #define ITR_COUNTDOWN_START 3
2616 
2617 /**
2618  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2619  * @vsi: the VSI we care about
2620  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2621  *
2622  **/
2623 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2624                       struct i40e_q_vector *q_vector)
2625 {
2626     struct i40e_hw *hw = &vsi->back->hw;
2627     u32 intval;
2628 
2629     /* If we don't have MSIX, then we only need to re-enable icr0 */
2630     if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2631         i40e_irq_dynamic_enable_icr0(vsi->back);
2632         return;
2633     }
2634 
2635     /* These will do nothing if dynamic updates are not enabled */
2636     i40e_update_itr(q_vector, &q_vector->tx);
2637     i40e_update_itr(q_vector, &q_vector->rx);
2638 
2639     /* This block of logic allows us to get away with only updating
2640      * one ITR value with each interrupt. The idea is to perform a
2641      * pseudo-lazy update with the following criteria.
2642      *
2643      * 1. Rx is given higher priority than Tx if both are in same state
2644      * 2. If we must reduce an ITR that is given highest priority.
2645      * 3. We then give priority to increasing ITR based on amount.
2646      */
2647     if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2648         /* Rx ITR needs to be reduced, this is highest priority */
2649         intval = i40e_buildreg_itr(I40E_RX_ITR,
2650                        q_vector->rx.target_itr);
2651         q_vector->rx.current_itr = q_vector->rx.target_itr;
2652         q_vector->itr_countdown = ITR_COUNTDOWN_START;
2653     } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2654            ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2655             (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2656         /* Tx ITR needs to be reduced, this is second priority
2657          * Tx ITR needs to be increased more than Rx, fourth priority
2658          */
2659         intval = i40e_buildreg_itr(I40E_TX_ITR,
2660                        q_vector->tx.target_itr);
2661         q_vector->tx.current_itr = q_vector->tx.target_itr;
2662         q_vector->itr_countdown = ITR_COUNTDOWN_START;
2663     } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2664         /* Rx ITR needs to be increased, third priority */
2665         intval = i40e_buildreg_itr(I40E_RX_ITR,
2666                        q_vector->rx.target_itr);
2667         q_vector->rx.current_itr = q_vector->rx.target_itr;
2668         q_vector->itr_countdown = ITR_COUNTDOWN_START;
2669     } else {
2670         /* No ITR update, lowest priority */
2671         intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2672         if (q_vector->itr_countdown)
2673             q_vector->itr_countdown--;
2674     }
2675 
2676     if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2677         wr32(hw, INTREG(q_vector->reg_idx), intval);
2678 }
2679 
2680 /**
2681  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2682  * @napi: napi struct with our devices info in it
2683  * @budget: amount of work driver is allowed to do this pass, in packets
2684  *
2685  * This function will clean all queues associated with a q_vector.
2686  *
2687  * Returns the amount of work done
2688  **/
2689 int i40e_napi_poll(struct napi_struct *napi, int budget)
2690 {
2691     struct i40e_q_vector *q_vector =
2692                    container_of(napi, struct i40e_q_vector, napi);
2693     struct i40e_vsi *vsi = q_vector->vsi;
2694     struct i40e_ring *ring;
2695     bool clean_complete = true;
2696     bool arm_wb = false;
2697     int budget_per_ring;
2698     int work_done = 0;
2699 
2700     if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2701         napi_complete(napi);
2702         return 0;
2703     }
2704 
2705     /* Since the actual Tx work is minimal, we can give the Tx a larger
2706      * budget and be more aggressive about cleaning up the Tx descriptors.
2707      */
2708     i40e_for_each_ring(ring, q_vector->tx) {
2709         bool wd = ring->xsk_pool ?
2710               i40e_clean_xdp_tx_irq(vsi, ring) :
2711               i40e_clean_tx_irq(vsi, ring, budget);
2712 
2713         if (!wd) {
2714             clean_complete = false;
2715             continue;
2716         }
2717         arm_wb |= ring->arm_wb;
2718         ring->arm_wb = false;
2719     }
2720 
2721     /* Handle case where we are called by netpoll with a budget of 0 */
2722     if (budget <= 0)
2723         goto tx_only;
2724 
2725     /* normally we have 1 Rx ring per q_vector */
2726     if (unlikely(q_vector->num_ringpairs > 1))
2727         /* We attempt to distribute budget to each Rx queue fairly, but
2728          * don't allow the budget to go below 1 because that would exit
2729          * polling early.
2730          */
2731         budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2732     else
2733         /* Max of 1 Rx ring in this q_vector so give it the budget */
2734         budget_per_ring = budget;
2735 
2736     i40e_for_each_ring(ring, q_vector->rx) {
2737         int cleaned = ring->xsk_pool ?
2738                   i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2739                   i40e_clean_rx_irq(ring, budget_per_ring);
2740 
2741         work_done += cleaned;
2742         /* if we clean as many as budgeted, we must not be done */
2743         if (cleaned >= budget_per_ring)
2744             clean_complete = false;
2745     }
2746 
2747     /* If work not completed, return budget and polling will return */
2748     if (!clean_complete) {
2749         int cpu_id = smp_processor_id();
2750 
2751         /* It is possible that the interrupt affinity has changed but,
2752          * if the cpu is pegged at 100%, polling will never exit while
2753          * traffic continues and the interrupt will be stuck on this
2754          * cpu.  We check to make sure affinity is correct before we
2755          * continue to poll, otherwise we must stop polling so the
2756          * interrupt can move to the correct cpu.
2757          */
2758         if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2759             /* Tell napi that we are done polling */
2760             napi_complete_done(napi, work_done);
2761 
2762             /* Force an interrupt */
2763             i40e_force_wb(vsi, q_vector);
2764 
2765             /* Return budget-1 so that polling stops */
2766             return budget - 1;
2767         }
2768 tx_only:
2769         if (arm_wb) {
2770             q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2771             i40e_enable_wb_on_itr(vsi, q_vector);
2772         }
2773         return budget;
2774     }
2775 
2776     if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2777         q_vector->arm_wb_state = false;
2778 
2779     /* Exit the polling mode, but don't re-enable interrupts if stack might
2780      * poll us due to busy-polling
2781      */
2782     if (likely(napi_complete_done(napi, work_done)))
2783         i40e_update_enable_itr(vsi, q_vector);
2784 
2785     return min(work_done, budget - 1);
2786 }
2787 
2788 /**
2789  * i40e_atr - Add a Flow Director ATR filter
2790  * @tx_ring:  ring to add programming descriptor to
2791  * @skb:      send buffer
2792  * @tx_flags: send tx flags
2793  **/
2794 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2795              u32 tx_flags)
2796 {
2797     struct i40e_filter_program_desc *fdir_desc;
2798     struct i40e_pf *pf = tx_ring->vsi->back;
2799     union {
2800         unsigned char *network;
2801         struct iphdr *ipv4;
2802         struct ipv6hdr *ipv6;
2803     } hdr;
2804     struct tcphdr *th;
2805     unsigned int hlen;
2806     u32 flex_ptype, dtype_cmd;
2807     int l4_proto;
2808     u16 i;
2809 
2810     /* make sure ATR is enabled */
2811     if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2812         return;
2813 
2814     if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2815         return;
2816 
2817     /* if sampling is disabled do nothing */
2818     if (!tx_ring->atr_sample_rate)
2819         return;
2820 
2821     /* Currently only IPv4/IPv6 with TCP is supported */
2822     if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2823         return;
2824 
2825     /* snag network header to get L4 type and address */
2826     hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2827               skb_inner_network_header(skb) : skb_network_header(skb);
2828 
2829     /* Note: tx_flags gets modified to reflect inner protocols in
2830      * tx_enable_csum function if encap is enabled.
2831      */
2832     if (tx_flags & I40E_TX_FLAGS_IPV4) {
2833         /* access ihl as u8 to avoid unaligned access on ia64 */
2834         hlen = (hdr.network[0] & 0x0F) << 2;
2835         l4_proto = hdr.ipv4->protocol;
2836     } else {
2837         /* find the start of the innermost ipv6 header */
2838         unsigned int inner_hlen = hdr.network - skb->data;
2839         unsigned int h_offset = inner_hlen;
2840 
2841         /* this function updates h_offset to the end of the header */
2842         l4_proto =
2843           ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2844         /* hlen will contain our best estimate of the tcp header */
2845         hlen = h_offset - inner_hlen;
2846     }
2847 
2848     if (l4_proto != IPPROTO_TCP)
2849         return;
2850 
2851     th = (struct tcphdr *)(hdr.network + hlen);
2852 
2853     /* Due to lack of space, no more new filters can be programmed */
2854     if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2855         return;
2856     if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2857         /* HW ATR eviction will take care of removing filters on FIN
2858          * and RST packets.
2859          */
2860         if (th->fin || th->rst)
2861             return;
2862     }
2863 
2864     tx_ring->atr_count++;
2865 
2866     /* sample on all syn/fin/rst packets or once every atr sample rate */
2867     if (!th->fin &&
2868         !th->syn &&
2869         !th->rst &&
2870         (tx_ring->atr_count < tx_ring->atr_sample_rate))
2871         return;
2872 
2873     tx_ring->atr_count = 0;
2874 
2875     /* grab the next descriptor */
2876     i = tx_ring->next_to_use;
2877     fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2878 
2879     i++;
2880     tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2881 
2882     flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2883               I40E_TXD_FLTR_QW0_QINDEX_MASK;
2884     flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2885               (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2886                I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2887               (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2888                I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2889 
2890     flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2891 
2892     dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2893 
2894     dtype_cmd |= (th->fin || th->rst) ?
2895              (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2896               I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2897              (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2898               I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2899 
2900     dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2901              I40E_TXD_FLTR_QW1_DEST_SHIFT;
2902 
2903     dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2904              I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2905 
2906     dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2907     if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2908         dtype_cmd |=
2909             ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2910             I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2911             I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2912     else
2913         dtype_cmd |=
2914             ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2915             I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2916             I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2917 
2918     if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2919         dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2920 
2921     fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2922     fdir_desc->rsvd = cpu_to_le32(0);
2923     fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2924     fdir_desc->fd_id = cpu_to_le32(0);
2925 }
2926 
2927 /**
2928  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2929  * @skb:     send buffer
2930  * @tx_ring: ring to send buffer on
2931  * @flags:   the tx flags to be set
2932  *
2933  * Checks the skb and set up correspondingly several generic transmit flags
2934  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2935  *
2936  * Returns error code indicate the frame should be dropped upon error and the
2937  * otherwise  returns 0 to indicate the flags has been set properly.
2938  **/
2939 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2940                          struct i40e_ring *tx_ring,
2941                          u32 *flags)
2942 {
2943     __be16 protocol = skb->protocol;
2944     u32  tx_flags = 0;
2945 
2946     if (protocol == htons(ETH_P_8021Q) &&
2947         !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2948         /* When HW VLAN acceleration is turned off by the user the
2949          * stack sets the protocol to 8021q so that the driver
2950          * can take any steps required to support the SW only
2951          * VLAN handling.  In our case the driver doesn't need
2952          * to take any further steps so just set the protocol
2953          * to the encapsulated ethertype.
2954          */
2955         skb->protocol = vlan_get_protocol(skb);
2956         goto out;
2957     }
2958 
2959     /* if we have a HW VLAN tag being added, default to the HW one */
2960     if (skb_vlan_tag_present(skb)) {
2961         tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2962         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2963     /* else if it is a SW VLAN, check the next protocol and store the tag */
2964     } else if (protocol == htons(ETH_P_8021Q)) {
2965         struct vlan_hdr *vhdr, _vhdr;
2966 
2967         vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2968         if (!vhdr)
2969             return -EINVAL;
2970 
2971         protocol = vhdr->h_vlan_encapsulated_proto;
2972         tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2973         tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2974     }
2975 
2976     if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2977         goto out;
2978 
2979     /* Insert 802.1p priority into VLAN header */
2980     if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2981         (skb->priority != TC_PRIO_CONTROL)) {
2982         tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2983         tx_flags |= (skb->priority & 0x7) <<
2984                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2985         if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2986             struct vlan_ethhdr *vhdr;
2987             int rc;
2988 
2989             rc = skb_cow_head(skb, 0);
2990             if (rc < 0)
2991                 return rc;
2992             vhdr = (struct vlan_ethhdr *)skb->data;
2993             vhdr->h_vlan_TCI = htons(tx_flags >>
2994                          I40E_TX_FLAGS_VLAN_SHIFT);
2995         } else {
2996             tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2997         }
2998     }
2999 
3000 out:
3001     *flags = tx_flags;
3002     return 0;
3003 }
3004 
3005 /**
3006  * i40e_tso - set up the tso context descriptor
3007  * @first:    pointer to first Tx buffer for xmit
3008  * @hdr_len:  ptr to the size of the packet header
3009  * @cd_type_cmd_tso_mss: Quad Word 1
3010  *
3011  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3012  **/
3013 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3014             u64 *cd_type_cmd_tso_mss)
3015 {
3016     struct sk_buff *skb = first->skb;
3017     u64 cd_cmd, cd_tso_len, cd_mss;
3018     __be16 protocol;
3019     union {
3020         struct iphdr *v4;
3021         struct ipv6hdr *v6;
3022         unsigned char *hdr;
3023     } ip;
3024     union {
3025         struct tcphdr *tcp;
3026         struct udphdr *udp;
3027         unsigned char *hdr;
3028     } l4;
3029     u32 paylen, l4_offset;
3030     u16 gso_size;
3031     int err;
3032 
3033     if (skb->ip_summed != CHECKSUM_PARTIAL)
3034         return 0;
3035 
3036     if (!skb_is_gso(skb))
3037         return 0;
3038 
3039     err = skb_cow_head(skb, 0);
3040     if (err < 0)
3041         return err;
3042 
3043     protocol = vlan_get_protocol(skb);
3044 
3045     if (eth_p_mpls(protocol))
3046         ip.hdr = skb_inner_network_header(skb);
3047     else
3048         ip.hdr = skb_network_header(skb);
3049     l4.hdr = skb_checksum_start(skb);
3050 
3051     /* initialize outer IP header fields */
3052     if (ip.v4->version == 4) {
3053         ip.v4->tot_len = 0;
3054         ip.v4->check = 0;
3055 
3056         first->tx_flags |= I40E_TX_FLAGS_TSO;
3057     } else {
3058         ip.v6->payload_len = 0;
3059         first->tx_flags |= I40E_TX_FLAGS_TSO;
3060     }
3061 
3062     if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3063                      SKB_GSO_GRE_CSUM |
3064                      SKB_GSO_IPXIP4 |
3065                      SKB_GSO_IPXIP6 |
3066                      SKB_GSO_UDP_TUNNEL |
3067                      SKB_GSO_UDP_TUNNEL_CSUM)) {
3068         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3069             (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3070             l4.udp->len = 0;
3071 
3072             /* determine offset of outer transport header */
3073             l4_offset = l4.hdr - skb->data;
3074 
3075             /* remove payload length from outer checksum */
3076             paylen = skb->len - l4_offset;
3077             csum_replace_by_diff(&l4.udp->check,
3078                          (__force __wsum)htonl(paylen));
3079         }
3080 
3081         /* reset pointers to inner headers */
3082         ip.hdr = skb_inner_network_header(skb);
3083         l4.hdr = skb_inner_transport_header(skb);
3084 
3085         /* initialize inner IP header fields */
3086         if (ip.v4->version == 4) {
3087             ip.v4->tot_len = 0;
3088             ip.v4->check = 0;
3089         } else {
3090             ip.v6->payload_len = 0;
3091         }
3092     }
3093 
3094     /* determine offset of inner transport header */
3095     l4_offset = l4.hdr - skb->data;
3096 
3097     /* remove payload length from inner checksum */
3098     paylen = skb->len - l4_offset;
3099 
3100     if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3101         csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3102         /* compute length of segmentation header */
3103         *hdr_len = sizeof(*l4.udp) + l4_offset;
3104     } else {
3105         csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3106         /* compute length of segmentation header */
3107         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3108     }
3109 
3110     /* pull values out of skb_shinfo */
3111     gso_size = skb_shinfo(skb)->gso_size;
3112 
3113     /* update GSO size and bytecount with header size */
3114     first->gso_segs = skb_shinfo(skb)->gso_segs;
3115     first->bytecount += (first->gso_segs - 1) * *hdr_len;
3116 
3117     /* find the field values */
3118     cd_cmd = I40E_TX_CTX_DESC_TSO;
3119     cd_tso_len = skb->len - *hdr_len;
3120     cd_mss = gso_size;
3121     *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3122                 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3123                 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3124     return 1;
3125 }
3126 
3127 /**
3128  * i40e_tsyn - set up the tsyn context descriptor
3129  * @tx_ring:  ptr to the ring to send
3130  * @skb:      ptr to the skb we're sending
3131  * @tx_flags: the collected send information
3132  * @cd_type_cmd_tso_mss: Quad Word 1
3133  *
3134  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3135  **/
3136 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3137              u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3138 {
3139     struct i40e_pf *pf;
3140 
3141     if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3142         return 0;
3143 
3144     /* Tx timestamps cannot be sampled when doing TSO */
3145     if (tx_flags & I40E_TX_FLAGS_TSO)
3146         return 0;
3147 
3148     /* only timestamp the outbound packet if the user has requested it and
3149      * we are not already transmitting a packet to be timestamped
3150      */
3151     pf = i40e_netdev_to_pf(tx_ring->netdev);
3152     if (!(pf->flags & I40E_FLAG_PTP))
3153         return 0;
3154 
3155     if (pf->ptp_tx &&
3156         !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3157         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3158         pf->ptp_tx_start = jiffies;
3159         pf->ptp_tx_skb = skb_get(skb);
3160     } else {
3161         pf->tx_hwtstamp_skipped++;
3162         return 0;
3163     }
3164 
3165     *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3166                 I40E_TXD_CTX_QW1_CMD_SHIFT;
3167 
3168     return 1;
3169 }
3170 
3171 /**
3172  * i40e_tx_enable_csum - Enable Tx checksum offloads
3173  * @skb: send buffer
3174  * @tx_flags: pointer to Tx flags currently set
3175  * @td_cmd: Tx descriptor command bits to set
3176  * @td_offset: Tx descriptor header offsets to set
3177  * @tx_ring: Tx descriptor ring
3178  * @cd_tunneling: ptr to context desc bits
3179  **/
3180 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3181                    u32 *td_cmd, u32 *td_offset,
3182                    struct i40e_ring *tx_ring,
3183                    u32 *cd_tunneling)
3184 {
3185     union {
3186         struct iphdr *v4;
3187         struct ipv6hdr *v6;
3188         unsigned char *hdr;
3189     } ip;
3190     union {
3191         struct tcphdr *tcp;
3192         struct udphdr *udp;
3193         unsigned char *hdr;
3194     } l4;
3195     unsigned char *exthdr;
3196     u32 offset, cmd = 0;
3197     __be16 frag_off;
3198     __be16 protocol;
3199     u8 l4_proto = 0;
3200 
3201     if (skb->ip_summed != CHECKSUM_PARTIAL)
3202         return 0;
3203 
3204     protocol = vlan_get_protocol(skb);
3205 
3206     if (eth_p_mpls(protocol)) {
3207         ip.hdr = skb_inner_network_header(skb);
3208         l4.hdr = skb_checksum_start(skb);
3209     } else {
3210         ip.hdr = skb_network_header(skb);
3211         l4.hdr = skb_transport_header(skb);
3212     }
3213 
3214     /* set the tx_flags to indicate the IP protocol type. this is
3215      * required so that checksum header computation below is accurate.
3216      */
3217     if (ip.v4->version == 4)
3218         *tx_flags |= I40E_TX_FLAGS_IPV4;
3219     else
3220         *tx_flags |= I40E_TX_FLAGS_IPV6;
3221 
3222     /* compute outer L2 header size */
3223     offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3224 
3225     if (skb->encapsulation) {
3226         u32 tunnel = 0;
3227         /* define outer network header type */
3228         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3229             tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3230                   I40E_TX_CTX_EXT_IP_IPV4 :
3231                   I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3232 
3233             l4_proto = ip.v4->protocol;
3234         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3235             int ret;
3236 
3237             tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3238 
3239             exthdr = ip.hdr + sizeof(*ip.v6);
3240             l4_proto = ip.v6->nexthdr;
3241             ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3242                            &l4_proto, &frag_off);
3243             if (ret < 0)
3244                 return -1;
3245         }
3246 
3247         /* define outer transport */
3248         switch (l4_proto) {
3249         case IPPROTO_UDP:
3250             tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3251             *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3252             break;
3253         case IPPROTO_GRE:
3254             tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3255             *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3256             break;
3257         case IPPROTO_IPIP:
3258         case IPPROTO_IPV6:
3259             *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3260             l4.hdr = skb_inner_network_header(skb);
3261             break;
3262         default:
3263             if (*tx_flags & I40E_TX_FLAGS_TSO)
3264                 return -1;
3265 
3266             skb_checksum_help(skb);
3267             return 0;
3268         }
3269 
3270         /* compute outer L3 header size */
3271         tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3272               I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3273 
3274         /* switch IP header pointer from outer to inner header */
3275         ip.hdr = skb_inner_network_header(skb);
3276 
3277         /* compute tunnel header size */
3278         tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3279               I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3280 
3281         /* indicate if we need to offload outer UDP header */
3282         if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3283             !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3284             (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3285             tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3286 
3287         /* record tunnel offload values */
3288         *cd_tunneling |= tunnel;
3289 
3290         /* switch L4 header pointer from outer to inner */
3291         l4.hdr = skb_inner_transport_header(skb);
3292         l4_proto = 0;
3293 
3294         /* reset type as we transition from outer to inner headers */
3295         *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3296         if (ip.v4->version == 4)
3297             *tx_flags |= I40E_TX_FLAGS_IPV4;
3298         if (ip.v6->version == 6)
3299             *tx_flags |= I40E_TX_FLAGS_IPV6;
3300     }
3301 
3302     /* Enable IP checksum offloads */
3303     if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3304         l4_proto = ip.v4->protocol;
3305         /* the stack computes the IP header already, the only time we
3306          * need the hardware to recompute it is in the case of TSO.
3307          */
3308         cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3309                I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3310                I40E_TX_DESC_CMD_IIPT_IPV4;
3311     } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3312         cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3313 
3314         exthdr = ip.hdr + sizeof(*ip.v6);
3315         l4_proto = ip.v6->nexthdr;
3316         if (l4.hdr != exthdr)
3317             ipv6_skip_exthdr(skb, exthdr - skb->data,
3318                      &l4_proto, &frag_off);
3319     }
3320 
3321     /* compute inner L3 header size */
3322     offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3323 
3324     /* Enable L4 checksum offloads */
3325     switch (l4_proto) {
3326     case IPPROTO_TCP:
3327         /* enable checksum offloads */
3328         cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3329         offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3330         break;
3331     case IPPROTO_SCTP:
3332         /* enable SCTP checksum offload */
3333         cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3334         offset |= (sizeof(struct sctphdr) >> 2) <<
3335               I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3336         break;
3337     case IPPROTO_UDP:
3338         /* enable UDP checksum offload */
3339         cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3340         offset |= (sizeof(struct udphdr) >> 2) <<
3341               I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3342         break;
3343     default:
3344         if (*tx_flags & I40E_TX_FLAGS_TSO)
3345             return -1;
3346         skb_checksum_help(skb);
3347         return 0;
3348     }
3349 
3350     *td_cmd |= cmd;
3351     *td_offset |= offset;
3352 
3353     return 1;
3354 }
3355 
3356 /**
3357  * i40e_create_tx_ctx - Build the Tx context descriptor
3358  * @tx_ring:  ring to create the descriptor on
3359  * @cd_type_cmd_tso_mss: Quad Word 1
3360  * @cd_tunneling: Quad Word 0 - bits 0-31
3361  * @cd_l2tag2: Quad Word 0 - bits 32-63
3362  **/
3363 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3364                    const u64 cd_type_cmd_tso_mss,
3365                    const u32 cd_tunneling, const u32 cd_l2tag2)
3366 {
3367     struct i40e_tx_context_desc *context_desc;
3368     int i = tx_ring->next_to_use;
3369 
3370     if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3371         !cd_tunneling && !cd_l2tag2)
3372         return;
3373 
3374     /* grab the next descriptor */
3375     context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3376 
3377     i++;
3378     tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3379 
3380     /* cpu_to_le32 and assign to struct fields */
3381     context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3382     context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3383     context_desc->rsvd = cpu_to_le16(0);
3384     context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3385 }
3386 
3387 /**
3388  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3389  * @tx_ring: the ring to be checked
3390  * @size:    the size buffer we want to assure is available
3391  *
3392  * Returns -EBUSY if a stop is needed, else 0
3393  **/
3394 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3395 {
3396     netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3397     /* Memory barrier before checking head and tail */
3398     smp_mb();
3399 
3400     ++tx_ring->tx_stats.tx_stopped;
3401 
3402     /* Check again in a case another CPU has just made room available. */
3403     if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3404         return -EBUSY;
3405 
3406     /* A reprieve! - use start_queue because it doesn't call schedule */
3407     netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3408     ++tx_ring->tx_stats.restart_queue;
3409     return 0;
3410 }
3411 
3412 /**
3413  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3414  * @skb:      send buffer
3415  *
3416  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3417  * and so we need to figure out the cases where we need to linearize the skb.
3418  *
3419  * For TSO we need to count the TSO header and segment payload separately.
3420  * As such we need to check cases where we have 7 fragments or more as we
3421  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3422  * the segment payload in the first descriptor, and another 7 for the
3423  * fragments.
3424  **/
3425 bool __i40e_chk_linearize(struct sk_buff *skb)
3426 {
3427     const skb_frag_t *frag, *stale;
3428     int nr_frags, sum;
3429 
3430     /* no need to check if number of frags is less than 7 */
3431     nr_frags = skb_shinfo(skb)->nr_frags;
3432     if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3433         return false;
3434 
3435     /* We need to walk through the list and validate that each group
3436      * of 6 fragments totals at least gso_size.
3437      */
3438     nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3439     frag = &skb_shinfo(skb)->frags[0];
3440 
3441     /* Initialize size to the negative value of gso_size minus 1.  We
3442      * use this as the worst case scenerio in which the frag ahead
3443      * of us only provides one byte which is why we are limited to 6
3444      * descriptors for a single transmit as the header and previous
3445      * fragment are already consuming 2 descriptors.
3446      */
3447     sum = 1 - skb_shinfo(skb)->gso_size;
3448 
3449     /* Add size of frags 0 through 4 to create our initial sum */
3450     sum += skb_frag_size(frag++);
3451     sum += skb_frag_size(frag++);
3452     sum += skb_frag_size(frag++);
3453     sum += skb_frag_size(frag++);
3454     sum += skb_frag_size(frag++);
3455 
3456     /* Walk through fragments adding latest fragment, testing it, and
3457      * then removing stale fragments from the sum.
3458      */
3459     for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3460         int stale_size = skb_frag_size(stale);
3461 
3462         sum += skb_frag_size(frag++);
3463 
3464         /* The stale fragment may present us with a smaller
3465          * descriptor than the actual fragment size. To account
3466          * for that we need to remove all the data on the front and
3467          * figure out what the remainder would be in the last
3468          * descriptor associated with the fragment.
3469          */
3470         if (stale_size > I40E_MAX_DATA_PER_TXD) {
3471             int align_pad = -(skb_frag_off(stale)) &
3472                     (I40E_MAX_READ_REQ_SIZE - 1);
3473 
3474             sum -= align_pad;
3475             stale_size -= align_pad;
3476 
3477             do {
3478                 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3479                 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3480             } while (stale_size > I40E_MAX_DATA_PER_TXD);
3481         }
3482 
3483         /* if sum is negative we failed to make sufficient progress */
3484         if (sum < 0)
3485             return true;
3486 
3487         if (!nr_frags--)
3488             break;
3489 
3490         sum -= stale_size;
3491     }
3492 
3493     return false;
3494 }
3495 
3496 /**
3497  * i40e_tx_map - Build the Tx descriptor
3498  * @tx_ring:  ring to send buffer on
3499  * @skb:      send buffer
3500  * @first:    first buffer info buffer to use
3501  * @tx_flags: collected send information
3502  * @hdr_len:  size of the packet header
3503  * @td_cmd:   the command field in the descriptor
3504  * @td_offset: offset for checksum or crc
3505  *
3506  * Returns 0 on success, -1 on failure to DMA
3507  **/
3508 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3509                   struct i40e_tx_buffer *first, u32 tx_flags,
3510                   const u8 hdr_len, u32 td_cmd, u32 td_offset)
3511 {
3512     unsigned int data_len = skb->data_len;
3513     unsigned int size = skb_headlen(skb);
3514     skb_frag_t *frag;
3515     struct i40e_tx_buffer *tx_bi;
3516     struct i40e_tx_desc *tx_desc;
3517     u16 i = tx_ring->next_to_use;
3518     u32 td_tag = 0;
3519     dma_addr_t dma;
3520     u16 desc_count = 1;
3521 
3522     if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3523         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3524         td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3525              I40E_TX_FLAGS_VLAN_SHIFT;
3526     }
3527 
3528     first->tx_flags = tx_flags;
3529 
3530     dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3531 
3532     tx_desc = I40E_TX_DESC(tx_ring, i);
3533     tx_bi = first;
3534 
3535     for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3536         unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3537 
3538         if (dma_mapping_error(tx_ring->dev, dma))
3539             goto dma_error;
3540 
3541         /* record length, and DMA address */
3542         dma_unmap_len_set(tx_bi, len, size);
3543         dma_unmap_addr_set(tx_bi, dma, dma);
3544 
3545         /* align size to end of page */
3546         max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3547         tx_desc->buffer_addr = cpu_to_le64(dma);
3548 
3549         while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3550             tx_desc->cmd_type_offset_bsz =
3551                 build_ctob(td_cmd, td_offset,
3552                        max_data, td_tag);
3553 
3554             tx_desc++;
3555             i++;
3556             desc_count++;
3557 
3558             if (i == tx_ring->count) {
3559                 tx_desc = I40E_TX_DESC(tx_ring, 0);
3560                 i = 0;
3561             }
3562 
3563             dma += max_data;
3564             size -= max_data;
3565 
3566             max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3567             tx_desc->buffer_addr = cpu_to_le64(dma);
3568         }
3569 
3570         if (likely(!data_len))
3571             break;
3572 
3573         tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3574                               size, td_tag);
3575 
3576         tx_desc++;
3577         i++;
3578         desc_count++;
3579 
3580         if (i == tx_ring->count) {
3581             tx_desc = I40E_TX_DESC(tx_ring, 0);
3582             i = 0;
3583         }
3584 
3585         size = skb_frag_size(frag);
3586         data_len -= size;
3587 
3588         dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3589                        DMA_TO_DEVICE);
3590 
3591         tx_bi = &tx_ring->tx_bi[i];
3592     }
3593 
3594     netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3595 
3596     i++;
3597     if (i == tx_ring->count)
3598         i = 0;
3599 
3600     tx_ring->next_to_use = i;
3601 
3602     i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3603 
3604     /* write last descriptor with EOP bit */
3605     td_cmd |= I40E_TX_DESC_CMD_EOP;
3606 
3607     /* We OR these values together to check both against 4 (WB_STRIDE)
3608      * below. This is safe since we don't re-use desc_count afterwards.
3609      */
3610     desc_count |= ++tx_ring->packet_stride;
3611 
3612     if (desc_count >= WB_STRIDE) {
3613         /* write last descriptor with RS bit set */
3614         td_cmd |= I40E_TX_DESC_CMD_RS;
3615         tx_ring->packet_stride = 0;
3616     }
3617 
3618     tx_desc->cmd_type_offset_bsz =
3619             build_ctob(td_cmd, td_offset, size, td_tag);
3620 
3621     skb_tx_timestamp(skb);
3622 
3623     /* Force memory writes to complete before letting h/w know there
3624      * are new descriptors to fetch.
3625      *
3626      * We also use this memory barrier to make certain all of the
3627      * status bits have been updated before next_to_watch is written.
3628      */
3629     wmb();
3630 
3631     /* set next_to_watch value indicating a packet is present */
3632     first->next_to_watch = tx_desc;
3633 
3634     /* notify HW of packet */
3635     if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3636         writel(i, tx_ring->tail);
3637     }
3638 
3639     return 0;
3640 
3641 dma_error:
3642     dev_info(tx_ring->dev, "TX DMA map failed\n");
3643 
3644     /* clear dma mappings for failed tx_bi map */
3645     for (;;) {
3646         tx_bi = &tx_ring->tx_bi[i];
3647         i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3648         if (tx_bi == first)
3649             break;
3650         if (i == 0)
3651             i = tx_ring->count;
3652         i--;
3653     }
3654 
3655     tx_ring->next_to_use = i;
3656 
3657     return -1;
3658 }
3659 
3660 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3661                   const struct sk_buff *skb,
3662                   u16 num_tx_queues)
3663 {
3664     u32 jhash_initval_salt = 0xd631614b;
3665     u32 hash;
3666 
3667     if (skb->sk && skb->sk->sk_hash)
3668         hash = skb->sk->sk_hash;
3669     else
3670         hash = (__force u16)skb->protocol ^ skb->hash;
3671 
3672     hash = jhash_1word(hash, jhash_initval_salt);
3673 
3674     return (u16)(((u64)hash * num_tx_queues) >> 32);
3675 }
3676 
3677 u16 i40e_lan_select_queue(struct net_device *netdev,
3678               struct sk_buff *skb,
3679               struct net_device __always_unused *sb_dev)
3680 {
3681     struct i40e_netdev_priv *np = netdev_priv(netdev);
3682     struct i40e_vsi *vsi = np->vsi;
3683     struct i40e_hw *hw;
3684     u16 qoffset;
3685     u16 qcount;
3686     u8 tclass;
3687     u16 hash;
3688     u8 prio;
3689 
3690     /* is DCB enabled at all? */
3691     if (vsi->tc_config.numtc == 1 ||
3692         i40e_is_tc_mqprio_enabled(vsi->back))
3693         return netdev_pick_tx(netdev, skb, sb_dev);
3694 
3695     prio = skb->priority;
3696     hw = &vsi->back->hw;
3697     tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3698     /* sanity check */
3699     if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3700         tclass = 0;
3701 
3702     /* select a queue assigned for the given TC */
3703     qcount = vsi->tc_config.tc_info[tclass].qcount;
3704     hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3705 
3706     qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3707     return qoffset + hash;
3708 }
3709 
3710 /**
3711  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3712  * @xdpf: data to transmit
3713  * @xdp_ring: XDP Tx ring
3714  **/
3715 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3716                   struct i40e_ring *xdp_ring)
3717 {
3718     struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3719     u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3720     u16 i = 0, index = xdp_ring->next_to_use;
3721     struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3722     struct i40e_tx_buffer *tx_bi = tx_head;
3723     struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3724     void *data = xdpf->data;
3725     u32 size = xdpf->len;
3726 
3727     if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3728         xdp_ring->tx_stats.tx_busy++;
3729         return I40E_XDP_CONSUMED;
3730     }
3731 
3732     tx_head->bytecount = xdp_get_frame_len(xdpf);
3733     tx_head->gso_segs = 1;
3734     tx_head->xdpf = xdpf;
3735 
3736     for (;;) {
3737         dma_addr_t dma;
3738 
3739         dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3740         if (dma_mapping_error(xdp_ring->dev, dma))
3741             goto unmap;
3742 
3743         /* record length, and DMA address */
3744         dma_unmap_len_set(tx_bi, len, size);
3745         dma_unmap_addr_set(tx_bi, dma, dma);
3746 
3747         tx_desc->buffer_addr = cpu_to_le64(dma);
3748         tx_desc->cmd_type_offset_bsz =
3749             build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3750 
3751         if (++index == xdp_ring->count)
3752             index = 0;
3753 
3754         if (i == nr_frags)
3755             break;
3756 
3757         tx_bi = &xdp_ring->tx_bi[index];
3758         tx_desc = I40E_TX_DESC(xdp_ring, index);
3759 
3760         data = skb_frag_address(&sinfo->frags[i]);
3761         size = skb_frag_size(&sinfo->frags[i]);
3762         i++;
3763     }
3764 
3765     tx_desc->cmd_type_offset_bsz |=
3766         cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3767 
3768     /* Make certain all of the status bits have been updated
3769      * before next_to_watch is written.
3770      */
3771     smp_wmb();
3772 
3773     xdp_ring->xdp_tx_active++;
3774 
3775     tx_head->next_to_watch = tx_desc;
3776     xdp_ring->next_to_use = index;
3777 
3778     return I40E_XDP_TX;
3779 
3780 unmap:
3781     for (;;) {
3782         tx_bi = &xdp_ring->tx_bi[index];
3783         if (dma_unmap_len(tx_bi, len))
3784             dma_unmap_page(xdp_ring->dev,
3785                        dma_unmap_addr(tx_bi, dma),
3786                        dma_unmap_len(tx_bi, len),
3787                        DMA_TO_DEVICE);
3788         dma_unmap_len_set(tx_bi, len, 0);
3789         if (tx_bi == tx_head)
3790             break;
3791 
3792         if (!index)
3793             index += xdp_ring->count;
3794         index--;
3795     }
3796 
3797     return I40E_XDP_CONSUMED;
3798 }
3799 
3800 /**
3801  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3802  * @skb:     send buffer
3803  * @tx_ring: ring to send buffer on
3804  *
3805  * Returns NETDEV_TX_OK if sent, else an error code
3806  **/
3807 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3808                     struct i40e_ring *tx_ring)
3809 {
3810     u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3811     u32 cd_tunneling = 0, cd_l2tag2 = 0;
3812     struct i40e_tx_buffer *first;
3813     u32 td_offset = 0;
3814     u32 tx_flags = 0;
3815     u32 td_cmd = 0;
3816     u8 hdr_len = 0;
3817     int tso, count;
3818     int tsyn;
3819 
3820     /* prefetch the data, we'll need it later */
3821     prefetch(skb->data);
3822 
3823     i40e_trace(xmit_frame_ring, skb, tx_ring);
3824 
3825     count = i40e_xmit_descriptor_count(skb);
3826     if (i40e_chk_linearize(skb, count)) {
3827         if (__skb_linearize(skb)) {
3828             dev_kfree_skb_any(skb);
3829             return NETDEV_TX_OK;
3830         }
3831         count = i40e_txd_use_count(skb->len);
3832         tx_ring->tx_stats.tx_linearize++;
3833     }
3834 
3835     /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3836      *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3837      *       + 4 desc gap to avoid the cache line where head is,
3838      *       + 1 desc for context descriptor,
3839      * otherwise try next time
3840      */
3841     if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3842         tx_ring->tx_stats.tx_busy++;
3843         return NETDEV_TX_BUSY;
3844     }
3845 
3846     /* record the location of the first descriptor for this packet */
3847     first = &tx_ring->tx_bi[tx_ring->next_to_use];
3848     first->skb = skb;
3849     first->bytecount = skb->len;
3850     first->gso_segs = 1;
3851 
3852     /* prepare the xmit flags */
3853     if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3854         goto out_drop;
3855 
3856     tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3857 
3858     if (tso < 0)
3859         goto out_drop;
3860     else if (tso)
3861         tx_flags |= I40E_TX_FLAGS_TSO;
3862 
3863     /* Always offload the checksum, since it's in the data descriptor */
3864     tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3865                   tx_ring, &cd_tunneling);
3866     if (tso < 0)
3867         goto out_drop;
3868 
3869     tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3870 
3871     if (tsyn)
3872         tx_flags |= I40E_TX_FLAGS_TSYN;
3873 
3874     /* always enable CRC insertion offload */
3875     td_cmd |= I40E_TX_DESC_CMD_ICRC;
3876 
3877     i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3878                cd_tunneling, cd_l2tag2);
3879 
3880     /* Add Flow Director ATR if it's enabled.
3881      *
3882      * NOTE: this must always be directly before the data descriptor.
3883      */
3884     i40e_atr(tx_ring, skb, tx_flags);
3885 
3886     if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3887             td_cmd, td_offset))
3888         goto cleanup_tx_tstamp;
3889 
3890     return NETDEV_TX_OK;
3891 
3892 out_drop:
3893     i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3894     dev_kfree_skb_any(first->skb);
3895     first->skb = NULL;
3896 cleanup_tx_tstamp:
3897     if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3898         struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3899 
3900         dev_kfree_skb_any(pf->ptp_tx_skb);
3901         pf->ptp_tx_skb = NULL;
3902         clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3903     }
3904 
3905     return NETDEV_TX_OK;
3906 }
3907 
3908 /**
3909  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3910  * @skb:    send buffer
3911  * @netdev: network interface device structure
3912  *
3913  * Returns NETDEV_TX_OK if sent, else an error code
3914  **/
3915 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3916 {
3917     struct i40e_netdev_priv *np = netdev_priv(netdev);
3918     struct i40e_vsi *vsi = np->vsi;
3919     struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3920 
3921     /* hardware can't handle really short frames, hardware padding works
3922      * beyond this point
3923      */
3924     if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3925         return NETDEV_TX_OK;
3926 
3927     return i40e_xmit_frame_ring(skb, tx_ring);
3928 }
3929 
3930 /**
3931  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3932  * @dev: netdev
3933  * @n: number of frames
3934  * @frames: array of XDP buffer pointers
3935  * @flags: XDP extra info
3936  *
3937  * Returns number of frames successfully sent. Failed frames
3938  * will be free'ed by XDP core.
3939  *
3940  * For error cases, a negative errno code is returned and no-frames
3941  * are transmitted (caller must handle freeing frames).
3942  **/
3943 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3944           u32 flags)
3945 {
3946     struct i40e_netdev_priv *np = netdev_priv(dev);
3947     unsigned int queue_index = smp_processor_id();
3948     struct i40e_vsi *vsi = np->vsi;
3949     struct i40e_pf *pf = vsi->back;
3950     struct i40e_ring *xdp_ring;
3951     int nxmit = 0;
3952     int i;
3953 
3954     if (test_bit(__I40E_VSI_DOWN, vsi->state))
3955         return -ENETDOWN;
3956 
3957     if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3958         test_bit(__I40E_CONFIG_BUSY, pf->state))
3959         return -ENXIO;
3960 
3961     if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3962         return -EINVAL;
3963 
3964     xdp_ring = vsi->xdp_rings[queue_index];
3965 
3966     for (i = 0; i < n; i++) {
3967         struct xdp_frame *xdpf = frames[i];
3968         int err;
3969 
3970         err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3971         if (err != I40E_XDP_TX)
3972             break;
3973         nxmit++;
3974     }
3975 
3976     if (unlikely(flags & XDP_XMIT_FLUSH))
3977         i40e_xdp_ring_update_tail(xdp_ring);
3978 
3979     return nxmit;
3980 }