Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright(c) 2013 - 2018 Intel Corporation. */
0003 
0004 #include "i40e.h"
0005 #include <linux/ptp_classify.h>
0006 #include <linux/posix-clock.h>
0007 
0008 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
0009  * the fundamental clock design. However, the clock operations are much simpler
0010  * in the XL710 because the device supports a full 64 bits of nanoseconds.
0011  * Because the field is so wide, we can forgo the cycle counter and just
0012  * operate with the nanosecond field directly without fear of overflow.
0013  *
0014  * Much like the 82599, the update period is dependent upon the link speed:
0015  * At 40Gb, 25Gb, or no link, the period is 1.6ns.
0016  * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
0017  * At 1Gb link, the period is multiplied by 20. (32ns)
0018  * 1588 functionality is not supported at 100Mbps.
0019  */
0020 #define I40E_PTP_40GB_INCVAL        0x0199999999ULL
0021 #define I40E_PTP_10GB_INCVAL_MULT   2
0022 #define I40E_PTP_5GB_INCVAL_MULT    2
0023 #define I40E_PTP_1GB_INCVAL_MULT    20
0024 #define I40E_ISGN           0x80000000
0025 
0026 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
0027 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
0028                     I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
0029 #define I40E_SUBDEV_ID_25G_PTP_PIN  0xB
0030 
0031 enum i40e_ptp_pin {
0032     SDP3_2 = 0,
0033     SDP3_3,
0034     GPIO_4
0035 };
0036 
0037 enum i40e_can_set_pins_t {
0038     CANT_DO_PINS = -1,
0039     CAN_SET_PINS,
0040     CAN_DO_PINS
0041 };
0042 
0043 static struct ptp_pin_desc sdp_desc[] = {
0044     /* name     idx      func      chan */
0045     {"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
0046     {"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
0047     {"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
0048 };
0049 
0050 enum i40e_ptp_gpio_pin_state {
0051     end = -2,
0052     invalid,
0053     off,
0054     in_A,
0055     in_B,
0056     out_A,
0057     out_B,
0058 };
0059 
0060 static const char * const i40e_ptp_gpio_pin_state2str[] = {
0061     "off", "in_A", "in_B", "out_A", "out_B"
0062 };
0063 
0064 enum i40e_ptp_led_pin_state {
0065     led_end = -2,
0066     low = 0,
0067     high,
0068 };
0069 
0070 struct i40e_ptp_pins_settings {
0071     enum i40e_ptp_gpio_pin_state sdp3_2;
0072     enum i40e_ptp_gpio_pin_state sdp3_3;
0073     enum i40e_ptp_gpio_pin_state gpio_4;
0074     enum i40e_ptp_led_pin_state led2_0;
0075     enum i40e_ptp_led_pin_state led2_1;
0076     enum i40e_ptp_led_pin_state led3_0;
0077     enum i40e_ptp_led_pin_state led3_1;
0078 };
0079 
0080 static const struct i40e_ptp_pins_settings
0081     i40e_ptp_pin_led_allowed_states[] = {
0082     {off,   off,    off,        high,   high,   high,   high},
0083     {off,   in_A,   off,        high,   high,   high,   low},
0084     {off,   out_A,  off,        high,   low,    high,   high},
0085     {off,   in_B,   off,        high,   high,   high,   low},
0086     {off,   out_B,  off,        high,   low,    high,   high},
0087     {in_A,  off,    off,        high,   high,   high,   low},
0088     {in_A,  in_B,   off,        high,   high,   high,   low},
0089     {in_A,  out_B,  off,        high,   low,    high,   high},
0090     {out_A, off,    off,        high,   low,    high,   high},
0091     {out_A, in_B,   off,        high,   low,    high,   high},
0092     {in_B,  off,    off,        high,   high,   high,   low},
0093     {in_B,  in_A,   off,        high,   high,   high,   low},
0094     {in_B,  out_A,  off,        high,   low,    high,   high},
0095     {out_B, off,    off,        high,   low,    high,   high},
0096     {out_B, in_A,   off,        high,   low,    high,   high},
0097     {off,   off,    in_A,       high,   high,   low,    high},
0098     {off,   out_A,  in_A,       high,   low,    low,    high},
0099     {off,   in_B,   in_A,       high,   high,   low,    low},
0100     {off,   out_B,  in_A,       high,   low,    low,    high},
0101     {out_A, off,    in_A,       high,   low,    low,    high},
0102     {out_A, in_B,   in_A,       high,   low,    low,    high},
0103     {in_B,  off,    in_A,       high,   high,   low,    low},
0104     {in_B,  out_A,  in_A,       high,   low,    low,    high},
0105     {out_B, off,    in_A,       high,   low,    low,    high},
0106     {off,   off,    out_A,      low,    high,   high,   high},
0107     {off,   in_A,   out_A,      low,    high,   high,   low},
0108     {off,   in_B,   out_A,      low,    high,   high,   low},
0109     {off,   out_B,  out_A,      low,    low,    high,   high},
0110     {in_A,  off,    out_A,      low,    high,   high,   low},
0111     {in_A,  in_B,   out_A,      low,    high,   high,   low},
0112     {in_A,  out_B,  out_A,      low,    low,    high,   high},
0113     {in_B,  off,    out_A,      low,    high,   high,   low},
0114     {in_B,  in_A,   out_A,      low,    high,   high,   low},
0115     {out_B, off,    out_A,      low,    low,    high,   high},
0116     {out_B, in_A,   out_A,      low,    low,    high,   high},
0117     {off,   off,    in_B,       high,   high,   low,    high},
0118     {off,   in_A,   in_B,       high,   high,   low,    low},
0119     {off,   out_A,  in_B,       high,   low,    low,    high},
0120     {off,   out_B,  in_B,       high,   low,    low,    high},
0121     {in_A,  off,    in_B,       high,   high,   low,    low},
0122     {in_A,  out_B,  in_B,       high,   low,    low,    high},
0123     {out_A, off,    in_B,       high,   low,    low,    high},
0124     {out_B, off,    in_B,       high,   low,    low,    high},
0125     {out_B, in_A,   in_B,       high,   low,    low,    high},
0126     {off,   off,    out_B,      low,    high,   high,   high},
0127     {off,   in_A,   out_B,      low,    high,   high,   low},
0128     {off,   out_A,  out_B,      low,    low,    high,   high},
0129     {off,   in_B,   out_B,      low,    high,   high,   low},
0130     {in_A,  off,    out_B,      low,    high,   high,   low},
0131     {in_A,  in_B,   out_B,      low,    high,   high,   low},
0132     {out_A, off,    out_B,      low,    low,    high,   high},
0133     {out_A, in_B,   out_B,      low,    low,    high,   high},
0134     {in_B,  off,    out_B,      low,    high,   high,   low},
0135     {in_B,  in_A,   out_B,      low,    high,   high,   low},
0136     {in_B,  out_A,  out_B,      low,    low,    high,   high},
0137     {end,   end,    end,    led_end, led_end, led_end, led_end}
0138 };
0139 
0140 static int i40e_ptp_set_pins(struct i40e_pf *pf,
0141                  struct i40e_ptp_pins_settings *pins);
0142 
0143 /**
0144  * i40e_ptp_extts0_work - workqueue task function
0145  * @work: workqueue task structure
0146  *
0147  * Service for PTP external clock event
0148  **/
0149 static void i40e_ptp_extts0_work(struct work_struct *work)
0150 {
0151     struct i40e_pf *pf = container_of(work, struct i40e_pf,
0152                       ptp_extts0_work);
0153     struct i40e_hw *hw = &pf->hw;
0154     struct ptp_clock_event event;
0155     u32 hi, lo;
0156 
0157     /* Event time is captured by one of the two matched registers
0158      *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
0159      *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
0160      * Event is defined in PRTTSYN_EVNT_0 register
0161      */
0162     lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
0163     hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
0164 
0165     event.timestamp = (((u64)hi) << 32) | lo;
0166 
0167     event.type = PTP_CLOCK_EXTTS;
0168     event.index = hw->pf_id;
0169 
0170     /* fire event */
0171     ptp_clock_event(pf->ptp_clock, &event);
0172 }
0173 
0174 /**
0175  * i40e_is_ptp_pin_dev - check if device supports PTP pins
0176  * @hw: pointer to the hardware structure
0177  *
0178  * Return true if device supports PTP pins, false otherwise.
0179  **/
0180 static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
0181 {
0182     return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
0183            hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
0184 }
0185 
0186 /**
0187  * i40e_can_set_pins - check possibility of manipulating the pins
0188  * @pf: board private structure
0189  *
0190  * Check if all conditions are satisfied to manipulate PTP pins.
0191  * Return CAN_SET_PINS if pins can be set on a specific PF or
0192  * return CAN_DO_PINS if pins can be manipulated within a NIC or
0193  * return CANT_DO_PINS otherwise.
0194  **/
0195 static enum i40e_can_set_pins_t i40e_can_set_pins(struct i40e_pf *pf)
0196 {
0197     if (!i40e_is_ptp_pin_dev(&pf->hw)) {
0198         dev_warn(&pf->pdev->dev,
0199              "PTP external clock not supported.\n");
0200         return CANT_DO_PINS;
0201     }
0202 
0203     if (!pf->ptp_pins) {
0204         dev_warn(&pf->pdev->dev,
0205              "PTP PIN manipulation not allowed.\n");
0206         return CANT_DO_PINS;
0207     }
0208 
0209     if (pf->hw.pf_id) {
0210         dev_warn(&pf->pdev->dev,
0211              "PTP PINs should be accessed via PF0.\n");
0212         return CAN_DO_PINS;
0213     }
0214 
0215     return CAN_SET_PINS;
0216 }
0217 
0218 /**
0219  * i40_ptp_reset_timing_events - Reset PTP timing events
0220  * @pf: Board private structure
0221  *
0222  * This function resets timing events for pf.
0223  **/
0224 static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
0225 {
0226     u32 i;
0227 
0228     spin_lock_bh(&pf->ptp_rx_lock);
0229     for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
0230         /* reading and automatically clearing timing events registers */
0231         rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
0232         rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
0233         pf->latch_events[i] = 0;
0234     }
0235     /* reading and automatically clearing timing events registers */
0236     rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
0237     rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
0238 
0239     pf->tx_hwtstamp_timeouts = 0;
0240     pf->tx_hwtstamp_skipped = 0;
0241     pf->rx_hwtstamp_cleared = 0;
0242     pf->latch_event_flags = 0;
0243     spin_unlock_bh(&pf->ptp_rx_lock);
0244 }
0245 
0246 /**
0247  * i40e_ptp_verify - check pins
0248  * @ptp: ptp clock
0249  * @pin: pin index
0250  * @func: assigned function
0251  * @chan: channel
0252  *
0253  * Check pins consistency.
0254  * Return 0 on success or error on failure.
0255  **/
0256 static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
0257                enum ptp_pin_function func, unsigned int chan)
0258 {
0259     switch (func) {
0260     case PTP_PF_NONE:
0261     case PTP_PF_EXTTS:
0262     case PTP_PF_PEROUT:
0263         break;
0264     case PTP_PF_PHYSYNC:
0265         return -EOPNOTSUPP;
0266     }
0267     return 0;
0268 }
0269 
0270 /**
0271  * i40e_ptp_read - Read the PHC time from the device
0272  * @pf: Board private structure
0273  * @ts: timespec structure to hold the current time value
0274  * @sts: structure to hold the system time before and after reading the PHC
0275  *
0276  * This function reads the PRTTSYN_TIME registers and stores them in a
0277  * timespec. However, since the registers are 64 bits of nanoseconds, we must
0278  * convert the result to a timespec before we can return.
0279  **/
0280 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
0281               struct ptp_system_timestamp *sts)
0282 {
0283     struct i40e_hw *hw = &pf->hw;
0284     u32 hi, lo;
0285     u64 ns;
0286 
0287     /* The timer latches on the lowest register read. */
0288     ptp_read_system_prets(sts);
0289     lo = rd32(hw, I40E_PRTTSYN_TIME_L);
0290     ptp_read_system_postts(sts);
0291     hi = rd32(hw, I40E_PRTTSYN_TIME_H);
0292 
0293     ns = (((u64)hi) << 32) | lo;
0294 
0295     *ts = ns_to_timespec64(ns);
0296 }
0297 
0298 /**
0299  * i40e_ptp_write - Write the PHC time to the device
0300  * @pf: Board private structure
0301  * @ts: timespec structure that holds the new time value
0302  *
0303  * This function writes the PRTTSYN_TIME registers with the user value. Since
0304  * we receive a timespec from the stack, we must convert that timespec into
0305  * nanoseconds before programming the registers.
0306  **/
0307 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
0308 {
0309     struct i40e_hw *hw = &pf->hw;
0310     u64 ns = timespec64_to_ns(ts);
0311 
0312     /* The timer will not update until the high register is written, so
0313      * write the low register first.
0314      */
0315     wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
0316     wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
0317 }
0318 
0319 /**
0320  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
0321  * @hwtstamps: Timestamp structure to update
0322  * @timestamp: Timestamp from the hardware
0323  *
0324  * We need to convert the NIC clock value into a hwtstamp which can be used by
0325  * the upper level timestamping functions. Since the timestamp is simply a 64-
0326  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
0327  **/
0328 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
0329                      u64 timestamp)
0330 {
0331     memset(hwtstamps, 0, sizeof(*hwtstamps));
0332 
0333     hwtstamps->hwtstamp = ns_to_ktime(timestamp);
0334 }
0335 
0336 /**
0337  * i40e_ptp_adjfine - Adjust the PHC frequency
0338  * @ptp: The PTP clock structure
0339  * @scaled_ppm: Scaled parts per million adjustment from base
0340  *
0341  * Adjust the frequency of the PHC by the indicated delta from the base
0342  * frequency.
0343  *
0344  * Scaled parts per million is ppm with a 16 bit binary fractional field.
0345  **/
0346 static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
0347 {
0348     struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
0349     struct i40e_hw *hw = &pf->hw;
0350     u64 adj, freq, diff;
0351     int neg_adj = 0;
0352 
0353     if (scaled_ppm < 0) {
0354         neg_adj = 1;
0355         scaled_ppm = -scaled_ppm;
0356     }
0357 
0358     smp_mb(); /* Force any pending update before accessing. */
0359     freq = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);
0360     diff = mul_u64_u64_div_u64(freq, (u64)scaled_ppm,
0361                    1000000ULL << 16);
0362 
0363     if (neg_adj)
0364         adj = I40E_PTP_40GB_INCVAL - diff;
0365     else
0366         adj = I40E_PTP_40GB_INCVAL + diff;
0367 
0368     wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
0369     wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
0370 
0371     return 0;
0372 }
0373 
0374 /**
0375  * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
0376  * @pf: the PF private data structure
0377  *
0378  * Configure 1PPS signal used for PTP pins
0379  **/
0380 static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
0381 {
0382     struct i40e_hw *hw = &pf->hw;
0383     struct timespec64 now;
0384     u64 ns;
0385 
0386     wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
0387     wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
0388     wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
0389 
0390     i40e_ptp_read(pf, &now, NULL);
0391     now.tv_sec += I40E_PTP_2_SEC_DELAY;
0392     now.tv_nsec = 0;
0393     ns = timespec64_to_ns(&now);
0394 
0395     /* I40E_PRTTSYN_TGT_L(1) */
0396     wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
0397     /* I40E_PRTTSYN_TGT_H(1) */
0398     wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
0399     wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
0400     wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
0401     wr32(hw, I40E_PRTTSYN_AUX_0(1),
0402          I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
0403 }
0404 
0405 /**
0406  * i40e_ptp_adjtime - Adjust the PHC time
0407  * @ptp: The PTP clock structure
0408  * @delta: Offset in nanoseconds to adjust the PHC time by
0409  *
0410  * Adjust the current clock time by a delta specified in nanoseconds.
0411  **/
0412 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
0413 {
0414     struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
0415     struct i40e_hw *hw = &pf->hw;
0416 
0417     mutex_lock(&pf->tmreg_lock);
0418 
0419     if (delta > -999999900LL && delta < 999999900LL) {
0420         int neg_adj = 0;
0421         u32 timadj;
0422         u64 tohw;
0423 
0424         if (delta < 0) {
0425             neg_adj = 1;
0426             tohw = -delta;
0427         } else {
0428             tohw = delta;
0429         }
0430 
0431         timadj = tohw & 0x3FFFFFFF;
0432         if (neg_adj)
0433             timadj |= I40E_ISGN;
0434         wr32(hw, I40E_PRTTSYN_ADJ, timadj);
0435     } else {
0436         struct timespec64 then, now;
0437 
0438         then = ns_to_timespec64(delta);
0439         i40e_ptp_read(pf, &now, NULL);
0440         now = timespec64_add(now, then);
0441         i40e_ptp_write(pf, (const struct timespec64 *)&now);
0442         i40e_ptp_set_1pps_signal_hw(pf);
0443     }
0444 
0445     mutex_unlock(&pf->tmreg_lock);
0446 
0447     return 0;
0448 }
0449 
0450 /**
0451  * i40e_ptp_gettimex - Get the time of the PHC
0452  * @ptp: The PTP clock structure
0453  * @ts: timespec structure to hold the current time value
0454  * @sts: structure to hold the system time before and after reading the PHC
0455  *
0456  * Read the device clock and return the correct value on ns, after converting it
0457  * into a timespec struct.
0458  **/
0459 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
0460                  struct ptp_system_timestamp *sts)
0461 {
0462     struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
0463 
0464     mutex_lock(&pf->tmreg_lock);
0465     i40e_ptp_read(pf, ts, sts);
0466     mutex_unlock(&pf->tmreg_lock);
0467 
0468     return 0;
0469 }
0470 
0471 /**
0472  * i40e_ptp_settime - Set the time of the PHC
0473  * @ptp: The PTP clock structure
0474  * @ts: timespec64 structure that holds the new time value
0475  *
0476  * Set the device clock to the user input value. The conversion from timespec
0477  * to ns happens in the write function.
0478  **/
0479 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
0480                 const struct timespec64 *ts)
0481 {
0482     struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
0483 
0484     mutex_lock(&pf->tmreg_lock);
0485     i40e_ptp_write(pf, ts);
0486     mutex_unlock(&pf->tmreg_lock);
0487 
0488     return 0;
0489 }
0490 
0491 /**
0492  * i40e_pps_configure - configure PPS events
0493  * @ptp: ptp clock
0494  * @rq: clock request
0495  * @on: status
0496  *
0497  * Configure PPS events for external clock source.
0498  * Return 0 on success or error on failure.
0499  **/
0500 static int i40e_pps_configure(struct ptp_clock_info *ptp,
0501                   struct ptp_clock_request *rq,
0502                   int on)
0503 {
0504     struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
0505 
0506     if (!!on)
0507         i40e_ptp_set_1pps_signal_hw(pf);
0508 
0509     return 0;
0510 }
0511 
0512 /**
0513  * i40e_pin_state - determine PIN state
0514  * @index: PIN index
0515  * @func: function assigned to PIN
0516  *
0517  * Determine PIN state based on PIN index and function assigned.
0518  * Return PIN state.
0519  **/
0520 static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
0521 {
0522     enum i40e_ptp_gpio_pin_state state = off;
0523 
0524     if (index == 0 && func == PTP_PF_EXTTS)
0525         state = in_A;
0526     if (index == 1 && func == PTP_PF_EXTTS)
0527         state = in_B;
0528     if (index == 0 && func == PTP_PF_PEROUT)
0529         state = out_A;
0530     if (index == 1 && func == PTP_PF_PEROUT)
0531         state = out_B;
0532 
0533     return state;
0534 }
0535 
0536 /**
0537  * i40e_ptp_enable_pin - enable PINs.
0538  * @pf: private board structure
0539  * @chan: channel
0540  * @func: PIN function
0541  * @on: state
0542  *
0543  * Enable PTP pins for external clock source.
0544  * Return 0 on success or error code on failure.
0545  **/
0546 static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
0547                    enum ptp_pin_function func, int on)
0548 {
0549     enum i40e_ptp_gpio_pin_state *pin = NULL;
0550     struct i40e_ptp_pins_settings pins;
0551     int pin_index;
0552 
0553     /* Use PF0 to set pins. Return success for user space tools */
0554     if (pf->hw.pf_id)
0555         return 0;
0556 
0557     /* Preserve previous state of pins that we don't touch */
0558     pins.sdp3_2 = pf->ptp_pins->sdp3_2;
0559     pins.sdp3_3 = pf->ptp_pins->sdp3_3;
0560     pins.gpio_4 = pf->ptp_pins->gpio_4;
0561 
0562     /* To turn on the pin - find the corresponding one based on
0563      * the given index. To to turn the function off - find
0564      * which pin had it assigned. Don't use ptp_find_pin here
0565      * because it tries to lock the pincfg_mux which is locked by
0566      * ptp_pin_store() that calls here.
0567      */
0568     if (on) {
0569         pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
0570         if (pin_index < 0)
0571             return -EBUSY;
0572 
0573         switch (pin_index) {
0574         case SDP3_2:
0575             pin = &pins.sdp3_2;
0576             break;
0577         case SDP3_3:
0578             pin = &pins.sdp3_3;
0579             break;
0580         case GPIO_4:
0581             pin = &pins.gpio_4;
0582             break;
0583         default:
0584             return -EINVAL;
0585         }
0586 
0587         *pin = i40e_pin_state(chan, func);
0588     } else {
0589         pins.sdp3_2 = off;
0590         pins.sdp3_3 = off;
0591         pins.gpio_4 = off;
0592     }
0593 
0594     return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
0595 }
0596 
0597 /**
0598  * i40e_ptp_feature_enable - Enable external clock pins
0599  * @ptp: The PTP clock structure
0600  * @rq: The PTP clock request structure
0601  * @on: To turn feature on/off
0602  *
0603  * Setting on/off PTP PPS feature for pin.
0604  **/
0605 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
0606                    struct ptp_clock_request *rq,
0607                    int on)
0608 {
0609     struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
0610 
0611     enum ptp_pin_function func;
0612     unsigned int chan;
0613 
0614     /* TODO: Implement flags handling for EXTTS and PEROUT */
0615     switch (rq->type) {
0616     case PTP_CLK_REQ_EXTTS:
0617         func = PTP_PF_EXTTS;
0618         chan = rq->extts.index;
0619         break;
0620     case PTP_CLK_REQ_PEROUT:
0621         func = PTP_PF_PEROUT;
0622         chan = rq->perout.index;
0623         break;
0624     case PTP_CLK_REQ_PPS:
0625         return i40e_pps_configure(ptp, rq, on);
0626     default:
0627         return -EOPNOTSUPP;
0628     }
0629 
0630     return i40e_ptp_enable_pin(pf, chan, func, on);
0631 }
0632 
0633 /**
0634  * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
0635  * @pf: the PF data structure
0636  *
0637  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
0638  * for noticed latch events. This allows the driver to keep track of the first
0639  * time a latch event was noticed which will be used to help clear out Rx
0640  * timestamps for packets that got dropped or lost.
0641  *
0642  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
0643  * expected to be called only while under the ptp_rx_lock.
0644  **/
0645 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
0646 {
0647     struct i40e_hw *hw = &pf->hw;
0648     u32 prttsyn_stat, new_latch_events;
0649     int  i;
0650 
0651     prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
0652     new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
0653 
0654     /* Update the jiffies time for any newly latched timestamp. This
0655      * ensures that we store the time that we first discovered a timestamp
0656      * was latched by the hardware. The service task will later determine
0657      * if we should free the latch and drop that timestamp should too much
0658      * time pass. This flow ensures that we only update jiffies for new
0659      * events latched since the last time we checked, and not all events
0660      * currently latched, so that the service task accounting remains
0661      * accurate.
0662      */
0663     for (i = 0; i < 4; i++) {
0664         if (new_latch_events & BIT(i))
0665             pf->latch_events[i] = jiffies;
0666     }
0667 
0668     /* Finally, we store the current status of the Rx timestamp latches */
0669     pf->latch_event_flags = prttsyn_stat;
0670 
0671     return prttsyn_stat;
0672 }
0673 
0674 /**
0675  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
0676  * @pf: The PF private data structure
0677  *
0678  * This watchdog task is scheduled to detect error case where hardware has
0679  * dropped an Rx packet that was timestamped when the ring is full. The
0680  * particular error is rare but leaves the device in a state unable to timestamp
0681  * any future packets.
0682  **/
0683 void i40e_ptp_rx_hang(struct i40e_pf *pf)
0684 {
0685     struct i40e_hw *hw = &pf->hw;
0686     unsigned int i, cleared = 0;
0687 
0688     /* Since we cannot turn off the Rx timestamp logic if the device is
0689      * configured for Tx timestamping, we check if Rx timestamping is
0690      * configured. We don't want to spuriously warn about Rx timestamp
0691      * hangs if we don't care about the timestamps.
0692      */
0693     if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
0694         return;
0695 
0696     spin_lock_bh(&pf->ptp_rx_lock);
0697 
0698     /* Update current latch times for Rx events */
0699     i40e_ptp_get_rx_events(pf);
0700 
0701     /* Check all the currently latched Rx events and see whether they have
0702      * been latched for over a second. It is assumed that any timestamp
0703      * should have been cleared within this time, or else it was captured
0704      * for a dropped frame that the driver never received. Thus, we will
0705      * clear any timestamp that has been latched for over 1 second.
0706      */
0707     for (i = 0; i < 4; i++) {
0708         if ((pf->latch_event_flags & BIT(i)) &&
0709             time_is_before_jiffies(pf->latch_events[i] + HZ)) {
0710             rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
0711             pf->latch_event_flags &= ~BIT(i);
0712             cleared++;
0713         }
0714     }
0715 
0716     spin_unlock_bh(&pf->ptp_rx_lock);
0717 
0718     /* Log a warning if more than 2 timestamps got dropped in the same
0719      * check. We don't want to warn about all drops because it can occur
0720      * in normal scenarios such as PTP frames on multicast addresses we
0721      * aren't listening to. However, administrator should know if this is
0722      * the reason packets aren't receiving timestamps.
0723      */
0724     if (cleared > 2)
0725         dev_dbg(&pf->pdev->dev,
0726             "Dropped %d missed RXTIME timestamp events\n",
0727             cleared);
0728 
0729     /* Finally, update the rx_hwtstamp_cleared counter */
0730     pf->rx_hwtstamp_cleared += cleared;
0731 }
0732 
0733 /**
0734  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
0735  * @pf: The PF private data structure
0736  *
0737  * This watchdog task is run periodically to make sure that we clear the Tx
0738  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
0739  * time. It is unexpected in the normal case but if it occurs it results in
0740  * permanently preventing timestamps of future packets.
0741  **/
0742 void i40e_ptp_tx_hang(struct i40e_pf *pf)
0743 {
0744     struct sk_buff *skb;
0745 
0746     if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
0747         return;
0748 
0749     /* Nothing to do if we're not already waiting for a timestamp */
0750     if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
0751         return;
0752 
0753     /* We already have a handler routine which is run when we are notified
0754      * of a Tx timestamp in the hardware. If we don't get an interrupt
0755      * within a second it is reasonable to assume that we never will.
0756      */
0757     if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
0758         skb = pf->ptp_tx_skb;
0759         pf->ptp_tx_skb = NULL;
0760         clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
0761 
0762         /* Free the skb after we clear the bitlock */
0763         dev_kfree_skb_any(skb);
0764         pf->tx_hwtstamp_timeouts++;
0765     }
0766 }
0767 
0768 /**
0769  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
0770  * @pf: Board private structure
0771  *
0772  * Read the value of the Tx timestamp from the registers, convert it into a
0773  * value consumable by the stack, and store that result into the shhwtstamps
0774  * struct before returning it up the stack.
0775  **/
0776 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
0777 {
0778     struct skb_shared_hwtstamps shhwtstamps;
0779     struct sk_buff *skb = pf->ptp_tx_skb;
0780     struct i40e_hw *hw = &pf->hw;
0781     u32 hi, lo;
0782     u64 ns;
0783 
0784     if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
0785         return;
0786 
0787     /* don't attempt to timestamp if we don't have an skb */
0788     if (!pf->ptp_tx_skb)
0789         return;
0790 
0791     lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
0792     hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
0793 
0794     ns = (((u64)hi) << 32) | lo;
0795     i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
0796 
0797     /* Clear the bit lock as soon as possible after reading the register,
0798      * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
0799      * applications might wake up and attempt to request another transmit
0800      * timestamp prior to the bit lock being cleared.
0801      */
0802     pf->ptp_tx_skb = NULL;
0803     clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
0804 
0805     /* Notify the stack and free the skb after we've unlocked */
0806     skb_tstamp_tx(skb, &shhwtstamps);
0807     dev_kfree_skb_any(skb);
0808 }
0809 
0810 /**
0811  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
0812  * @pf: Board private structure
0813  * @skb: Particular skb to send timestamp with
0814  * @index: Index into the receive timestamp registers for the timestamp
0815  *
0816  * The XL710 receives a notification in the receive descriptor with an offset
0817  * into the set of RXTIME registers where the timestamp is for that skb. This
0818  * function goes and fetches the receive timestamp from that offset, if a valid
0819  * one exists. The RXTIME registers are in ns, so we must convert the result
0820  * first.
0821  **/
0822 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
0823 {
0824     u32 prttsyn_stat, hi, lo;
0825     struct i40e_hw *hw;
0826     u64 ns;
0827 
0828     /* Since we cannot turn off the Rx timestamp logic if the device is
0829      * doing Tx timestamping, check if Rx timestamping is configured.
0830      */
0831     if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
0832         return;
0833 
0834     hw = &pf->hw;
0835 
0836     spin_lock_bh(&pf->ptp_rx_lock);
0837 
0838     /* Get current Rx events and update latch times */
0839     prttsyn_stat = i40e_ptp_get_rx_events(pf);
0840 
0841     /* TODO: Should we warn about missing Rx timestamp event? */
0842     if (!(prttsyn_stat & BIT(index))) {
0843         spin_unlock_bh(&pf->ptp_rx_lock);
0844         return;
0845     }
0846 
0847     /* Clear the latched event since we're about to read its register */
0848     pf->latch_event_flags &= ~BIT(index);
0849 
0850     lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
0851     hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
0852 
0853     spin_unlock_bh(&pf->ptp_rx_lock);
0854 
0855     ns = (((u64)hi) << 32) | lo;
0856 
0857     i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
0858 }
0859 
0860 /**
0861  * i40e_ptp_set_increment - Utility function to update clock increment rate
0862  * @pf: Board private structure
0863  *
0864  * During a link change, the DMA frequency that drives the 1588 logic will
0865  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
0866  * we must update the increment value per clock tick.
0867  **/
0868 void i40e_ptp_set_increment(struct i40e_pf *pf)
0869 {
0870     struct i40e_link_status *hw_link_info;
0871     struct i40e_hw *hw = &pf->hw;
0872     u64 incval;
0873     u32 mult;
0874 
0875     hw_link_info = &hw->phy.link_info;
0876 
0877     i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
0878 
0879     switch (hw_link_info->link_speed) {
0880     case I40E_LINK_SPEED_10GB:
0881         mult = I40E_PTP_10GB_INCVAL_MULT;
0882         break;
0883     case I40E_LINK_SPEED_5GB:
0884         mult = I40E_PTP_5GB_INCVAL_MULT;
0885         break;
0886     case I40E_LINK_SPEED_1GB:
0887         mult = I40E_PTP_1GB_INCVAL_MULT;
0888         break;
0889     case I40E_LINK_SPEED_100MB:
0890     {
0891         static int warn_once;
0892 
0893         if (!warn_once) {
0894             dev_warn(&pf->pdev->dev,
0895                  "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
0896             warn_once++;
0897         }
0898         mult = 0;
0899         break;
0900     }
0901     case I40E_LINK_SPEED_40GB:
0902     default:
0903         mult = 1;
0904         break;
0905     }
0906 
0907     /* The increment value is calculated by taking the base 40GbE incvalue
0908      * and multiplying it by a factor based on the link speed.
0909      */
0910     incval = I40E_PTP_40GB_INCVAL * mult;
0911 
0912     /* Write the new increment value into the increment register. The
0913      * hardware will not update the clock until both registers have been
0914      * written.
0915      */
0916     wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
0917     wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
0918 
0919     /* Update the base adjustement value. */
0920     WRITE_ONCE(pf->ptp_adj_mult, mult);
0921     smp_mb(); /* Force the above update. */
0922 }
0923 
0924 /**
0925  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
0926  * @pf: Board private structure
0927  * @ifr: ioctl data
0928  *
0929  * Obtain the current hardware timestamping settigs as requested. To do this,
0930  * keep a shadow copy of the timestamp settings rather than attempting to
0931  * deconstruct it from the registers.
0932  **/
0933 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
0934 {
0935     struct hwtstamp_config *config = &pf->tstamp_config;
0936 
0937     if (!(pf->flags & I40E_FLAG_PTP))
0938         return -EOPNOTSUPP;
0939 
0940     return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
0941         -EFAULT : 0;
0942 }
0943 
0944 /**
0945  * i40e_ptp_free_pins - free memory used by PTP pins
0946  * @pf: Board private structure
0947  *
0948  * Release memory allocated for PTP pins.
0949  **/
0950 static void i40e_ptp_free_pins(struct i40e_pf *pf)
0951 {
0952     if (i40e_is_ptp_pin_dev(&pf->hw)) {
0953         kfree(pf->ptp_pins);
0954         kfree(pf->ptp_caps.pin_config);
0955         pf->ptp_pins = NULL;
0956     }
0957 }
0958 
0959 /**
0960  * i40e_ptp_set_pin_hw - Set HW GPIO pin
0961  * @hw: pointer to the hardware structure
0962  * @pin: pin index
0963  * @state: pin state
0964  *
0965  * Set status of GPIO pin for external clock handling.
0966  **/
0967 static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
0968                 unsigned int pin,
0969                 enum i40e_ptp_gpio_pin_state state)
0970 {
0971     switch (state) {
0972     case off:
0973         wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
0974         break;
0975     case in_A:
0976         wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
0977              I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
0978         break;
0979     case in_B:
0980         wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
0981              I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
0982         break;
0983     case out_A:
0984         wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
0985              I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
0986         break;
0987     case out_B:
0988         wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
0989              I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
0990         break;
0991     default:
0992         break;
0993     }
0994 }
0995 
0996 /**
0997  * i40e_ptp_set_led_hw - Set HW GPIO led
0998  * @hw: pointer to the hardware structure
0999  * @led: led index
1000  * @state: led state
1001  *
1002  * Set status of GPIO led for external clock handling.
1003  **/
1004 static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
1005                 unsigned int led,
1006                 enum i40e_ptp_led_pin_state state)
1007 {
1008     switch (state) {
1009     case low:
1010         wr32(hw, I40E_GLGEN_GPIO_SET,
1011              I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1012         break;
1013     case high:
1014         wr32(hw, I40E_GLGEN_GPIO_SET,
1015              I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1016              I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1017         break;
1018     default:
1019         break;
1020     }
1021 }
1022 
1023 /**
1024  * i40e_ptp_init_leds_hw - init LEDs
1025  * @hw: pointer to a hardware structure
1026  *
1027  * Set initial state of LEDs
1028  **/
1029 static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1030 {
1031     wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1032          I40E_GLGEN_GPIO_CTL_LED_INIT);
1033     wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1034          I40E_GLGEN_GPIO_CTL_LED_INIT);
1035     wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1036          I40E_GLGEN_GPIO_CTL_LED_INIT);
1037     wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1038          I40E_GLGEN_GPIO_CTL_LED_INIT);
1039 }
1040 
1041 /**
1042  * i40e_ptp_set_pins_hw - Set HW GPIO pins
1043  * @pf: Board private structure
1044  *
1045  * This function sets GPIO pins for PTP
1046  **/
1047 static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1048 {
1049     const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1050     struct i40e_hw *hw = &pf->hw;
1051 
1052     /* pin must be disabled before it may be used */
1053     i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1054     i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1055     i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1056 
1057     i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1058     i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1059     i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1060 
1061     i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1062     i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1063     i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1064     i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1065 
1066     dev_info(&pf->pdev->dev,
1067          "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1068          i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1069          i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1070          i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1071 }
1072 
1073 /**
1074  * i40e_ptp_set_pins - set PTP pins in HW
1075  * @pf: Board private structure
1076  * @pins: PTP pins to be applied
1077  *
1078  * Validate and set PTP pins in HW for specific PF.
1079  * Return 0 on success or negative value on error.
1080  **/
1081 static int i40e_ptp_set_pins(struct i40e_pf *pf,
1082                  struct i40e_ptp_pins_settings *pins)
1083 {
1084     enum i40e_can_set_pins_t pin_caps = i40e_can_set_pins(pf);
1085     int i = 0;
1086 
1087     if (pin_caps == CANT_DO_PINS)
1088         return -EOPNOTSUPP;
1089     else if (pin_caps == CAN_DO_PINS)
1090         return 0;
1091 
1092     if (pins->sdp3_2 == invalid)
1093         pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1094     if (pins->sdp3_3 == invalid)
1095         pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1096     if (pins->gpio_4 == invalid)
1097         pins->gpio_4 = pf->ptp_pins->gpio_4;
1098     while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1099         if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1100             pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1101             pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1102             pins->led2_0 =
1103                 i40e_ptp_pin_led_allowed_states[i].led2_0;
1104             pins->led2_1 =
1105                 i40e_ptp_pin_led_allowed_states[i].led2_1;
1106             pins->led3_0 =
1107                 i40e_ptp_pin_led_allowed_states[i].led3_0;
1108             pins->led3_1 =
1109                 i40e_ptp_pin_led_allowed_states[i].led3_1;
1110             break;
1111         }
1112         i++;
1113     }
1114     if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1115         dev_warn(&pf->pdev->dev,
1116              "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1117              i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1118              i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1119              i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1120 
1121         return -EPERM;
1122     }
1123     memcpy(pf->ptp_pins, pins, sizeof(*pins));
1124     i40e_ptp_set_pins_hw(pf);
1125     i40_ptp_reset_timing_events(pf);
1126 
1127     return 0;
1128 }
1129 
1130 /**
1131  * i40e_ptp_alloc_pins - allocate PTP pins structure
1132  * @pf: Board private structure
1133  *
1134  * allocate PTP pins structure
1135  **/
1136 int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1137 {
1138     if (!i40e_is_ptp_pin_dev(&pf->hw))
1139         return 0;
1140 
1141     pf->ptp_pins =
1142         kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1143 
1144     if (!pf->ptp_pins) {
1145         dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1146         return -I40E_ERR_NO_MEMORY;
1147     }
1148 
1149     pf->ptp_pins->sdp3_2 = off;
1150     pf->ptp_pins->sdp3_3 = off;
1151     pf->ptp_pins->gpio_4 = off;
1152     pf->ptp_pins->led2_0 = high;
1153     pf->ptp_pins->led2_1 = high;
1154     pf->ptp_pins->led3_0 = high;
1155     pf->ptp_pins->led3_1 = high;
1156 
1157     /* Use PF0 to set pins in HW. Return success for user space tools */
1158     if (pf->hw.pf_id)
1159         return 0;
1160 
1161     i40e_ptp_init_leds_hw(&pf->hw);
1162     i40e_ptp_set_pins_hw(pf);
1163 
1164     return 0;
1165 }
1166 
1167 /**
1168  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1169  * @pf: Board private structure
1170  * @config: hwtstamp settings requested or saved
1171  *
1172  * Control hardware registers to enter the specific mode requested by the
1173  * user. Also used during reset path to ensure that timestamp settings are
1174  * maintained.
1175  *
1176  * Note: modifies config in place, and may update the requested mode to be
1177  * more broad if the specific filter is not directly supported.
1178  **/
1179 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1180                        struct hwtstamp_config *config)
1181 {
1182     struct i40e_hw *hw = &pf->hw;
1183     u32 tsyntype, regval;
1184 
1185     /* Selects external trigger to cause event */
1186     regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1187     /* Bit 17:16 is EVNTLVL, 01B rising edge */
1188     regval &= 0;
1189     regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1190     /* regval: 0001 0000 0000 0000 0000 */
1191     wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1192 
1193     /* Enabel interrupts */
1194     regval = rd32(hw, I40E_PRTTSYN_CTL0);
1195     regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1196     wr32(hw, I40E_PRTTSYN_CTL0, regval);
1197 
1198     INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1199 
1200     switch (config->tx_type) {
1201     case HWTSTAMP_TX_OFF:
1202         pf->ptp_tx = false;
1203         break;
1204     case HWTSTAMP_TX_ON:
1205         pf->ptp_tx = true;
1206         break;
1207     default:
1208         return -ERANGE;
1209     }
1210 
1211     switch (config->rx_filter) {
1212     case HWTSTAMP_FILTER_NONE:
1213         pf->ptp_rx = false;
1214         /* We set the type to V1, but do not enable UDP packet
1215          * recognition. In this way, we should be as close to
1216          * disabling PTP Rx timestamps as possible since V1 packets
1217          * are always UDP, since L2 packets are a V2 feature.
1218          */
1219         tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1220         break;
1221     case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1222     case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1223     case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1224         if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1225             return -ERANGE;
1226         pf->ptp_rx = true;
1227         tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1228                I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1229                I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1230         config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1231         break;
1232     case HWTSTAMP_FILTER_PTP_V2_EVENT:
1233     case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1234     case HWTSTAMP_FILTER_PTP_V2_SYNC:
1235     case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1236     case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1237     case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1238         if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
1239             return -ERANGE;
1240         fallthrough;
1241     case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1242     case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1243     case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1244         pf->ptp_rx = true;
1245         tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1246                I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1247         if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
1248             tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1249             config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1250         } else {
1251             config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1252         }
1253         break;
1254     case HWTSTAMP_FILTER_NTP_ALL:
1255     case HWTSTAMP_FILTER_ALL:
1256     default:
1257         return -ERANGE;
1258     }
1259 
1260     /* Clear out all 1588-related registers to clear and unlatch them. */
1261     spin_lock_bh(&pf->ptp_rx_lock);
1262     rd32(hw, I40E_PRTTSYN_STAT_0);
1263     rd32(hw, I40E_PRTTSYN_TXTIME_H);
1264     rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1265     rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1266     rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1267     rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1268     pf->latch_event_flags = 0;
1269     spin_unlock_bh(&pf->ptp_rx_lock);
1270 
1271     /* Enable/disable the Tx timestamp interrupt based on user input. */
1272     regval = rd32(hw, I40E_PRTTSYN_CTL0);
1273     if (pf->ptp_tx)
1274         regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1275     else
1276         regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1277     wr32(hw, I40E_PRTTSYN_CTL0, regval);
1278 
1279     regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1280     if (pf->ptp_tx)
1281         regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1282     else
1283         regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1284     wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1285 
1286     /* Although there is no simple on/off switch for Rx, we "disable" Rx
1287      * timestamps by setting to V1 only mode and clear the UDP
1288      * recognition. This ought to disable all PTP Rx timestamps as V1
1289      * packets are always over UDP. Note that software is configured to
1290      * ignore Rx timestamps via the pf->ptp_rx flag.
1291      */
1292     regval = rd32(hw, I40E_PRTTSYN_CTL1);
1293     /* clear everything but the enable bit */
1294     regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1295     /* now enable bits for desired Rx timestamps */
1296     regval |= tsyntype;
1297     wr32(hw, I40E_PRTTSYN_CTL1, regval);
1298 
1299     return 0;
1300 }
1301 
1302 /**
1303  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1304  * @pf: Board private structure
1305  * @ifr: ioctl data
1306  *
1307  * Respond to the user filter requests and make the appropriate hardware
1308  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1309  * logic, so keep track in software of whether to indicate these timestamps
1310  * or not.
1311  *
1312  * It is permissible to "upgrade" the user request to a broader filter, as long
1313  * as the user receives the timestamps they care about and the user is notified
1314  * the filter has been broadened.
1315  **/
1316 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1317 {
1318     struct hwtstamp_config config;
1319     int err;
1320 
1321     if (!(pf->flags & I40E_FLAG_PTP))
1322         return -EOPNOTSUPP;
1323 
1324     if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1325         return -EFAULT;
1326 
1327     err = i40e_ptp_set_timestamp_mode(pf, &config);
1328     if (err)
1329         return err;
1330 
1331     /* save these settings for future reference */
1332     pf->tstamp_config = config;
1333 
1334     return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1335         -EFAULT : 0;
1336 }
1337 
1338 /**
1339  * i40e_init_pin_config - initialize pins.
1340  * @pf: private board structure
1341  *
1342  * Initialize pins for external clock source.
1343  * Return 0 on success or error code on failure.
1344  **/
1345 static int i40e_init_pin_config(struct i40e_pf *pf)
1346 {
1347     int i;
1348 
1349     pf->ptp_caps.n_pins = 3;
1350     pf->ptp_caps.n_ext_ts = 2;
1351     pf->ptp_caps.pps = 1;
1352     pf->ptp_caps.n_per_out = 2;
1353 
1354     pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1355                       sizeof(*pf->ptp_caps.pin_config),
1356                       GFP_KERNEL);
1357     if (!pf->ptp_caps.pin_config)
1358         return -ENOMEM;
1359 
1360     for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1361         snprintf(pf->ptp_caps.pin_config[i].name,
1362              sizeof(pf->ptp_caps.pin_config[i].name),
1363              "%s", sdp_desc[i].name);
1364         pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1365         pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1366         pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1367     }
1368 
1369     pf->ptp_caps.verify = i40e_ptp_verify;
1370     pf->ptp_caps.enable = i40e_ptp_feature_enable;
1371 
1372     pf->ptp_caps.pps = 1;
1373 
1374     return 0;
1375 }
1376 
1377 /**
1378  * i40e_ptp_create_clock - Create PTP clock device for userspace
1379  * @pf: Board private structure
1380  *
1381  * This function creates a new PTP clock device. It only creates one if we
1382  * don't already have one, so it is safe to call. Will return error if it
1383  * can't create one, but success if we already have a device. Should be used
1384  * by i40e_ptp_init to create clock initially, and prevent global resets from
1385  * creating new clock devices.
1386  **/
1387 static long i40e_ptp_create_clock(struct i40e_pf *pf)
1388 {
1389     /* no need to create a clock device if we already have one */
1390     if (!IS_ERR_OR_NULL(pf->ptp_clock))
1391         return 0;
1392 
1393     strlcpy(pf->ptp_caps.name, i40e_driver_name,
1394         sizeof(pf->ptp_caps.name) - 1);
1395     pf->ptp_caps.owner = THIS_MODULE;
1396     pf->ptp_caps.max_adj = 999999999;
1397     pf->ptp_caps.adjfine = i40e_ptp_adjfine;
1398     pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1399     pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1400     pf->ptp_caps.settime64 = i40e_ptp_settime;
1401     if (i40e_is_ptp_pin_dev(&pf->hw)) {
1402         int err = i40e_init_pin_config(pf);
1403 
1404         if (err)
1405             return err;
1406     }
1407 
1408     /* Attempt to register the clock before enabling the hardware. */
1409     pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1410     if (IS_ERR(pf->ptp_clock))
1411         return PTR_ERR(pf->ptp_clock);
1412 
1413     /* clear the hwtstamp settings here during clock create, instead of
1414      * during regular init, so that we can maintain settings across a
1415      * reset or suspend.
1416      */
1417     pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1418     pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1419 
1420     /* Set the previous "reset" time to the current Kernel clock time */
1421     ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1422     pf->ptp_reset_start = ktime_get();
1423 
1424     return 0;
1425 }
1426 
1427 /**
1428  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1429  * @pf: Board private structure
1430  *
1431  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1432  * be called at the end of preparing to reset, just before hardware reset
1433  * occurs, in order to preserve the PTP time as close as possible across
1434  * resets.
1435  */
1436 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1437 {
1438     /* don't try to access the PTP clock if it's not enabled */
1439     if (!(pf->flags & I40E_FLAG_PTP))
1440         return;
1441 
1442     i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1443     /* Get a monotonic starting time for this reset */
1444     pf->ptp_reset_start = ktime_get();
1445 }
1446 
1447 /**
1448  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1449  * @pf: Board private structure
1450  *
1451  * Restore the PTP hardware clock registers. We previously cached the PTP
1452  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1453  * update this value based on the time delta since the time was saved, using
1454  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1455  *
1456  * This ensures that the hardware clock is restored to nearly what it should
1457  * have been if a reset had not occurred.
1458  */
1459 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1460 {
1461     ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1462 
1463     /* Update the previous HW time with the ktime delta */
1464     timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1465 
1466     /* Restore the hardware clock registers */
1467     i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1468 }
1469 
1470 /**
1471  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1472  * @pf: Board private structure
1473  *
1474  * This function sets device up for 1588 support. The first time it is run, it
1475  * will create a PHC clock device. It does not create a clock device if one
1476  * already exists. It also reconfigures the device after a reset.
1477  *
1478  * The first time a clock is created, i40e_ptp_create_clock will set
1479  * pf->ptp_prev_hw_time to the current system time. During resets, it is
1480  * expected that this timespec will be set to the last known PTP clock time,
1481  * in order to preserve the clock time as close as possible across a reset.
1482  **/
1483 void i40e_ptp_init(struct i40e_pf *pf)
1484 {
1485     struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
1486     struct i40e_hw *hw = &pf->hw;
1487     u32 pf_id;
1488     long err;
1489 
1490     /* Only one PF is assigned to control 1588 logic per port. Do not
1491      * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1492      */
1493     pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
1494         I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
1495     if (hw->pf_id != pf_id) {
1496         pf->flags &= ~I40E_FLAG_PTP;
1497         dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1498              __func__,
1499              netdev->name);
1500         return;
1501     }
1502 
1503     mutex_init(&pf->tmreg_lock);
1504     spin_lock_init(&pf->ptp_rx_lock);
1505 
1506     /* ensure we have a clock device */
1507     err = i40e_ptp_create_clock(pf);
1508     if (err) {
1509         pf->ptp_clock = NULL;
1510         dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1511             __func__);
1512     } else if (pf->ptp_clock) {
1513         u32 regval;
1514 
1515         if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1516             dev_info(&pf->pdev->dev, "PHC enabled\n");
1517         pf->flags |= I40E_FLAG_PTP;
1518 
1519         /* Ensure the clocks are running. */
1520         regval = rd32(hw, I40E_PRTTSYN_CTL0);
1521         regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1522         wr32(hw, I40E_PRTTSYN_CTL0, regval);
1523         regval = rd32(hw, I40E_PRTTSYN_CTL1);
1524         regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1525         wr32(hw, I40E_PRTTSYN_CTL1, regval);
1526 
1527         /* Set the increment value per clock tick. */
1528         i40e_ptp_set_increment(pf);
1529 
1530         /* reset timestamping mode */
1531         i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1532 
1533         /* Restore the clock time based on last known value */
1534         i40e_ptp_restore_hw_time(pf);
1535     }
1536 
1537     i40e_ptp_set_1pps_signal_hw(pf);
1538 }
1539 
1540 /**
1541  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1542  * @pf: Board private structure
1543  *
1544  * This function handles the cleanup work required from the initialization by
1545  * clearing out the important information and unregistering the PHC.
1546  **/
1547 void i40e_ptp_stop(struct i40e_pf *pf)
1548 {
1549     struct i40e_hw *hw = &pf->hw;
1550     u32 regval;
1551 
1552     pf->flags &= ~I40E_FLAG_PTP;
1553     pf->ptp_tx = false;
1554     pf->ptp_rx = false;
1555 
1556     if (pf->ptp_tx_skb) {
1557         struct sk_buff *skb = pf->ptp_tx_skb;
1558 
1559         pf->ptp_tx_skb = NULL;
1560         clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1561         dev_kfree_skb_any(skb);
1562     }
1563 
1564     if (pf->ptp_clock) {
1565         ptp_clock_unregister(pf->ptp_clock);
1566         pf->ptp_clock = NULL;
1567         dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1568              pf->vsi[pf->lan_vsi]->netdev->name);
1569     }
1570 
1571     if (i40e_is_ptp_pin_dev(&pf->hw)) {
1572         i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1573         i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1574         i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1575     }
1576 
1577     regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1578     regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1579     wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1580 
1581     /* Disable interrupts */
1582     regval = rd32(hw, I40E_PRTTSYN_CTL0);
1583     regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1584     wr32(hw, I40E_PRTTSYN_CTL0, regval);
1585 
1586     i40e_ptp_free_pins(pf);
1587 }