0001
0002
0003
0004 #include <linux/types.h>
0005 #include <linux/module.h>
0006 #include <net/ipv6.h>
0007 #include <net/ip.h>
0008 #include <net/tcp.h>
0009 #include <linux/if_macvlan.h>
0010 #include <linux/prefetch.h>
0011
0012 #include "fm10k.h"
0013
0014 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
0015 char fm10k_driver_name[] = "fm10k";
0016 static const char fm10k_driver_string[] = DRV_SUMMARY;
0017 static const char fm10k_copyright[] =
0018 "Copyright(c) 2013 - 2019 Intel Corporation.";
0019
0020 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
0021 MODULE_DESCRIPTION(DRV_SUMMARY);
0022 MODULE_LICENSE("GPL v2");
0023
0024
0025 struct workqueue_struct *fm10k_workqueue;
0026
0027
0028
0029
0030
0031
0032
0033 static int __init fm10k_init_module(void)
0034 {
0035 pr_info("%s\n", fm10k_driver_string);
0036 pr_info("%s\n", fm10k_copyright);
0037
0038
0039 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
0040 fm10k_driver_name);
0041 if (!fm10k_workqueue)
0042 return -ENOMEM;
0043
0044 fm10k_dbg_init();
0045
0046 return fm10k_register_pci_driver();
0047 }
0048 module_init(fm10k_init_module);
0049
0050
0051
0052
0053
0054
0055
0056 static void __exit fm10k_exit_module(void)
0057 {
0058 fm10k_unregister_pci_driver();
0059
0060 fm10k_dbg_exit();
0061
0062
0063 destroy_workqueue(fm10k_workqueue);
0064 }
0065 module_exit(fm10k_exit_module);
0066
0067 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
0068 struct fm10k_rx_buffer *bi)
0069 {
0070 struct page *page = bi->page;
0071 dma_addr_t dma;
0072
0073
0074 if (likely(page))
0075 return true;
0076
0077
0078 page = dev_alloc_page();
0079 if (unlikely(!page)) {
0080 rx_ring->rx_stats.alloc_failed++;
0081 return false;
0082 }
0083
0084
0085 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
0086
0087
0088
0089
0090 if (dma_mapping_error(rx_ring->dev, dma)) {
0091 __free_page(page);
0092
0093 rx_ring->rx_stats.alloc_failed++;
0094 return false;
0095 }
0096
0097 bi->dma = dma;
0098 bi->page = page;
0099 bi->page_offset = 0;
0100
0101 return true;
0102 }
0103
0104
0105
0106
0107
0108
0109 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
0110 {
0111 union fm10k_rx_desc *rx_desc;
0112 struct fm10k_rx_buffer *bi;
0113 u16 i = rx_ring->next_to_use;
0114
0115
0116 if (!cleaned_count)
0117 return;
0118
0119 rx_desc = FM10K_RX_DESC(rx_ring, i);
0120 bi = &rx_ring->rx_buffer[i];
0121 i -= rx_ring->count;
0122
0123 do {
0124 if (!fm10k_alloc_mapped_page(rx_ring, bi))
0125 break;
0126
0127
0128
0129
0130 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
0131
0132 rx_desc++;
0133 bi++;
0134 i++;
0135 if (unlikely(!i)) {
0136 rx_desc = FM10K_RX_DESC(rx_ring, 0);
0137 bi = rx_ring->rx_buffer;
0138 i -= rx_ring->count;
0139 }
0140
0141
0142 rx_desc->d.staterr = 0;
0143
0144 cleaned_count--;
0145 } while (cleaned_count);
0146
0147 i += rx_ring->count;
0148
0149 if (rx_ring->next_to_use != i) {
0150
0151 rx_ring->next_to_use = i;
0152
0153
0154 rx_ring->next_to_alloc = i;
0155
0156
0157
0158
0159
0160
0161 wmb();
0162
0163
0164 writel(i, rx_ring->tail);
0165 }
0166 }
0167
0168
0169
0170
0171
0172
0173
0174
0175 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
0176 struct fm10k_rx_buffer *old_buff)
0177 {
0178 struct fm10k_rx_buffer *new_buff;
0179 u16 nta = rx_ring->next_to_alloc;
0180
0181 new_buff = &rx_ring->rx_buffer[nta];
0182
0183
0184 nta++;
0185 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
0186
0187
0188 *new_buff = *old_buff;
0189
0190
0191 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
0192 old_buff->page_offset,
0193 FM10K_RX_BUFSZ,
0194 DMA_FROM_DEVICE);
0195 }
0196
0197 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
0198 struct page *page,
0199 unsigned int __maybe_unused truesize)
0200 {
0201
0202 if (!dev_page_is_reusable(page))
0203 return false;
0204
0205 #if (PAGE_SIZE < 8192)
0206
0207 if (unlikely(page_count(page) != 1))
0208 return false;
0209
0210
0211 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
0212 #else
0213
0214 rx_buffer->page_offset += truesize;
0215
0216 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
0217 return false;
0218 #endif
0219
0220
0221
0222
0223 page_ref_inc(page);
0224
0225 return true;
0226 }
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
0244 unsigned int size,
0245 union fm10k_rx_desc *rx_desc,
0246 struct sk_buff *skb)
0247 {
0248 struct page *page = rx_buffer->page;
0249 unsigned char *va = page_address(page) + rx_buffer->page_offset;
0250 #if (PAGE_SIZE < 8192)
0251 unsigned int truesize = FM10K_RX_BUFSZ;
0252 #else
0253 unsigned int truesize = ALIGN(size, 512);
0254 #endif
0255 unsigned int pull_len;
0256
0257 if (unlikely(skb_is_nonlinear(skb)))
0258 goto add_tail_frag;
0259
0260 if (likely(size <= FM10K_RX_HDR_LEN)) {
0261 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
0262
0263
0264 if (dev_page_is_reusable(page))
0265 return true;
0266
0267
0268 __free_page(page);
0269 return false;
0270 }
0271
0272
0273
0274
0275 pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
0276
0277
0278 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
0279
0280
0281 va += pull_len;
0282 size -= pull_len;
0283
0284 add_tail_frag:
0285 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
0286 (unsigned long)va & ~PAGE_MASK, size, truesize);
0287
0288 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
0289 }
0290
0291 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
0292 union fm10k_rx_desc *rx_desc,
0293 struct sk_buff *skb)
0294 {
0295 unsigned int size = le16_to_cpu(rx_desc->w.length);
0296 struct fm10k_rx_buffer *rx_buffer;
0297 struct page *page;
0298
0299 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
0300 page = rx_buffer->page;
0301 prefetchw(page);
0302
0303 if (likely(!skb)) {
0304 void *page_addr = page_address(page) +
0305 rx_buffer->page_offset;
0306
0307
0308 net_prefetch(page_addr);
0309
0310
0311 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
0312 FM10K_RX_HDR_LEN);
0313 if (unlikely(!skb)) {
0314 rx_ring->rx_stats.alloc_failed++;
0315 return NULL;
0316 }
0317
0318
0319
0320
0321
0322 prefetchw(skb->data);
0323 }
0324
0325
0326 dma_sync_single_range_for_cpu(rx_ring->dev,
0327 rx_buffer->dma,
0328 rx_buffer->page_offset,
0329 size,
0330 DMA_FROM_DEVICE);
0331
0332
0333 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
0334
0335 fm10k_reuse_rx_page(rx_ring, rx_buffer);
0336 } else {
0337
0338 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
0339 PAGE_SIZE, DMA_FROM_DEVICE);
0340 }
0341
0342
0343 rx_buffer->page = NULL;
0344
0345 return skb;
0346 }
0347
0348 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
0349 union fm10k_rx_desc *rx_desc,
0350 struct sk_buff *skb)
0351 {
0352 skb_checksum_none_assert(skb);
0353
0354
0355 if (!(ring->netdev->features & NETIF_F_RXCSUM))
0356 return;
0357
0358
0359 if (fm10k_test_staterr(rx_desc,
0360 FM10K_RXD_STATUS_L4E |
0361 FM10K_RXD_STATUS_L4E2 |
0362 FM10K_RXD_STATUS_IPE |
0363 FM10K_RXD_STATUS_IPE2)) {
0364 ring->rx_stats.csum_err++;
0365 return;
0366 }
0367
0368
0369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
0370 skb->encapsulation = true;
0371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
0372 return;
0373
0374 skb->ip_summed = CHECKSUM_UNNECESSARY;
0375
0376 ring->rx_stats.csum_good++;
0377 }
0378
0379 #define FM10K_RSS_L4_TYPES_MASK \
0380 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
0381 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
0382 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
0383 BIT(FM10K_RSSTYPE_IPV6_UDP))
0384
0385 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
0386 union fm10k_rx_desc *rx_desc,
0387 struct sk_buff *skb)
0388 {
0389 u16 rss_type;
0390
0391 if (!(ring->netdev->features & NETIF_F_RXHASH))
0392 return;
0393
0394 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
0395 if (!rss_type)
0396 return;
0397
0398 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
0399 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
0400 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
0401 }
0402
0403 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
0404 union fm10k_rx_desc __maybe_unused *rx_desc,
0405 struct sk_buff *skb)
0406 {
0407 struct net_device *dev = rx_ring->netdev;
0408 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
0409
0410
0411 if (l2_accel) {
0412 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
0413
0414 idx -= l2_accel->dglort;
0415 if (idx < l2_accel->size && l2_accel->macvlan[idx])
0416 dev = l2_accel->macvlan[idx];
0417 else
0418 l2_accel = NULL;
0419 }
0420
0421
0422 if (!l2_accel)
0423 skb_record_rx_queue(skb, rx_ring->queue_index);
0424 else
0425 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
0426 false);
0427
0428 skb->protocol = eth_type_trans(skb, dev);
0429 }
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
0442 union fm10k_rx_desc *rx_desc,
0443 struct sk_buff *skb)
0444 {
0445 unsigned int len = skb->len;
0446
0447 fm10k_rx_hash(rx_ring, rx_desc, skb);
0448
0449 fm10k_rx_checksum(rx_ring, rx_desc, skb);
0450
0451 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
0452
0453 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
0454
0455 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
0456
0457 if (rx_desc->w.vlan) {
0458 u16 vid = le16_to_cpu(rx_desc->w.vlan);
0459
0460 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
0461 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
0462 else if (vid & VLAN_PRIO_MASK)
0463 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
0464 vid & VLAN_PRIO_MASK);
0465 }
0466
0467 fm10k_type_trans(rx_ring, rx_desc, skb);
0468
0469 return len;
0470 }
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
0483 union fm10k_rx_desc *rx_desc)
0484 {
0485 u32 ntc = rx_ring->next_to_clean + 1;
0486
0487
0488 ntc = (ntc < rx_ring->count) ? ntc : 0;
0489 rx_ring->next_to_clean = ntc;
0490
0491 prefetch(FM10K_RX_DESC(rx_ring, ntc));
0492
0493 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
0494 return false;
0495
0496 return true;
0497 }
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
0514 union fm10k_rx_desc *rx_desc,
0515 struct sk_buff *skb)
0516 {
0517 if (unlikely((fm10k_test_staterr(rx_desc,
0518 FM10K_RXD_STATUS_RXE)))) {
0519 #define FM10K_TEST_RXD_BIT(rxd, bit) \
0520 ((rxd)->w.csum_err & cpu_to_le16(bit))
0521 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
0522 rx_ring->rx_stats.switch_errors++;
0523 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
0524 rx_ring->rx_stats.drops++;
0525 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
0526 rx_ring->rx_stats.pp_errors++;
0527 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
0528 rx_ring->rx_stats.link_errors++;
0529 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
0530 rx_ring->rx_stats.length_errors++;
0531 dev_kfree_skb_any(skb);
0532 rx_ring->rx_stats.errors++;
0533 return true;
0534 }
0535
0536
0537 if (eth_skb_pad(skb))
0538 return true;
0539
0540 return false;
0541 }
0542
0543
0544
0545
0546
0547
0548 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
0549 struct sk_buff *skb)
0550 {
0551 napi_gro_receive(&q_vector->napi, skb);
0552 }
0553
0554 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
0555 struct fm10k_ring *rx_ring,
0556 int budget)
0557 {
0558 struct sk_buff *skb = rx_ring->skb;
0559 unsigned int total_bytes = 0, total_packets = 0;
0560 u16 cleaned_count = fm10k_desc_unused(rx_ring);
0561
0562 while (likely(total_packets < budget)) {
0563 union fm10k_rx_desc *rx_desc;
0564
0565
0566 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
0567 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
0568 cleaned_count = 0;
0569 }
0570
0571 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
0572
0573 if (!rx_desc->d.staterr)
0574 break;
0575
0576
0577
0578
0579
0580 dma_rmb();
0581
0582
0583 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
0584
0585
0586 if (!skb)
0587 break;
0588
0589 cleaned_count++;
0590
0591
0592 if (fm10k_is_non_eop(rx_ring, rx_desc))
0593 continue;
0594
0595
0596 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
0597 skb = NULL;
0598 continue;
0599 }
0600
0601
0602 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
0603
0604 fm10k_receive_skb(q_vector, skb);
0605
0606
0607 skb = NULL;
0608
0609
0610 total_packets++;
0611 }
0612
0613
0614 rx_ring->skb = skb;
0615
0616 u64_stats_update_begin(&rx_ring->syncp);
0617 rx_ring->stats.packets += total_packets;
0618 rx_ring->stats.bytes += total_bytes;
0619 u64_stats_update_end(&rx_ring->syncp);
0620 q_vector->rx.total_packets += total_packets;
0621 q_vector->rx.total_bytes += total_bytes;
0622
0623 return total_packets;
0624 }
0625
0626 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
0627 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
0628 {
0629 struct fm10k_intfc *interface = netdev_priv(skb->dev);
0630
0631 if (interface->vxlan_port != udp_hdr(skb)->dest)
0632 return NULL;
0633
0634
0635 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
0636 }
0637
0638 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
0639 #define NVGRE_TNI htons(0x2000)
0640 struct fm10k_nvgre_hdr {
0641 __be16 flags;
0642 __be16 proto;
0643 __be32 tni;
0644 };
0645
0646 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
0647 {
0648 struct fm10k_nvgre_hdr *nvgre_hdr;
0649 int hlen = ip_hdrlen(skb);
0650
0651
0652 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
0653 return NULL;
0654
0655
0656 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
0657
0658
0659 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
0660 return NULL;
0661
0662
0663 if (nvgre_hdr->flags & NVGRE_TNI)
0664 return (struct ethhdr *)(nvgre_hdr + 1);
0665
0666 return (struct ethhdr *)(&nvgre_hdr->tni);
0667 }
0668
0669 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
0670 {
0671 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
0672 struct ethhdr *eth_hdr;
0673
0674 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
0675 skb->inner_protocol != htons(ETH_P_TEB))
0676 return 0;
0677
0678 switch (vlan_get_protocol(skb)) {
0679 case htons(ETH_P_IP):
0680 l4_hdr = ip_hdr(skb)->protocol;
0681 break;
0682 case htons(ETH_P_IPV6):
0683 l4_hdr = ipv6_hdr(skb)->nexthdr;
0684 break;
0685 default:
0686 return 0;
0687 }
0688
0689 switch (l4_hdr) {
0690 case IPPROTO_UDP:
0691 eth_hdr = fm10k_port_is_vxlan(skb);
0692 break;
0693 case IPPROTO_GRE:
0694 eth_hdr = fm10k_gre_is_nvgre(skb);
0695 break;
0696 default:
0697 return 0;
0698 }
0699
0700 if (!eth_hdr)
0701 return 0;
0702
0703 switch (eth_hdr->h_proto) {
0704 case htons(ETH_P_IP):
0705 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
0706 break;
0707 case htons(ETH_P_IPV6):
0708 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
0709 break;
0710 default:
0711 return 0;
0712 }
0713
0714 switch (inner_l4_hdr) {
0715 case IPPROTO_TCP:
0716 inner_l4_hlen = inner_tcp_hdrlen(skb);
0717 break;
0718 case IPPROTO_UDP:
0719 inner_l4_hlen = 8;
0720 break;
0721 default:
0722 return 0;
0723 }
0724
0725
0726
0727
0728 if (skb_inner_transport_header(skb) + inner_l4_hlen -
0729 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
0730 return 0;
0731
0732 return eth_hdr->h_proto;
0733 }
0734
0735 static int fm10k_tso(struct fm10k_ring *tx_ring,
0736 struct fm10k_tx_buffer *first)
0737 {
0738 struct sk_buff *skb = first->skb;
0739 struct fm10k_tx_desc *tx_desc;
0740 unsigned char *th;
0741 u8 hdrlen;
0742
0743 if (skb->ip_summed != CHECKSUM_PARTIAL)
0744 return 0;
0745
0746 if (!skb_is_gso(skb))
0747 return 0;
0748
0749
0750 if (skb->encapsulation) {
0751 if (!fm10k_tx_encap_offload(skb))
0752 goto err_vxlan;
0753 th = skb_inner_transport_header(skb);
0754 } else {
0755 th = skb_transport_header(skb);
0756 }
0757
0758
0759 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
0760
0761 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
0762
0763
0764 first->gso_segs = skb_shinfo(skb)->gso_segs;
0765 first->bytecount += (first->gso_segs - 1) * hdrlen;
0766
0767
0768 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
0769 tx_desc->hdrlen = hdrlen;
0770 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
0771
0772 return 1;
0773
0774 err_vxlan:
0775 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
0776 if (net_ratelimit())
0777 netdev_err(tx_ring->netdev,
0778 "TSO requested for unsupported tunnel, disabling offload\n");
0779 return -1;
0780 }
0781
0782 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
0783 struct fm10k_tx_buffer *first)
0784 {
0785 struct sk_buff *skb = first->skb;
0786 struct fm10k_tx_desc *tx_desc;
0787 union {
0788 struct iphdr *ipv4;
0789 struct ipv6hdr *ipv6;
0790 u8 *raw;
0791 } network_hdr;
0792 u8 *transport_hdr;
0793 __be16 frag_off;
0794 __be16 protocol;
0795 u8 l4_hdr = 0;
0796
0797 if (skb->ip_summed != CHECKSUM_PARTIAL)
0798 goto no_csum;
0799
0800 if (skb->encapsulation) {
0801 protocol = fm10k_tx_encap_offload(skb);
0802 if (!protocol) {
0803 if (skb_checksum_help(skb)) {
0804 dev_warn(tx_ring->dev,
0805 "failed to offload encap csum!\n");
0806 tx_ring->tx_stats.csum_err++;
0807 }
0808 goto no_csum;
0809 }
0810 network_hdr.raw = skb_inner_network_header(skb);
0811 transport_hdr = skb_inner_transport_header(skb);
0812 } else {
0813 protocol = vlan_get_protocol(skb);
0814 network_hdr.raw = skb_network_header(skb);
0815 transport_hdr = skb_transport_header(skb);
0816 }
0817
0818 switch (protocol) {
0819 case htons(ETH_P_IP):
0820 l4_hdr = network_hdr.ipv4->protocol;
0821 break;
0822 case htons(ETH_P_IPV6):
0823 l4_hdr = network_hdr.ipv6->nexthdr;
0824 if (likely((transport_hdr - network_hdr.raw) ==
0825 sizeof(struct ipv6hdr)))
0826 break;
0827 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
0828 sizeof(struct ipv6hdr),
0829 &l4_hdr, &frag_off);
0830 if (unlikely(frag_off))
0831 l4_hdr = NEXTHDR_FRAGMENT;
0832 break;
0833 default:
0834 break;
0835 }
0836
0837 switch (l4_hdr) {
0838 case IPPROTO_TCP:
0839 case IPPROTO_UDP:
0840 break;
0841 case IPPROTO_GRE:
0842 if (skb->encapsulation)
0843 break;
0844 fallthrough;
0845 default:
0846 if (unlikely(net_ratelimit())) {
0847 dev_warn(tx_ring->dev,
0848 "partial checksum, version=%d l4 proto=%x\n",
0849 protocol, l4_hdr);
0850 }
0851 skb_checksum_help(skb);
0852 tx_ring->tx_stats.csum_err++;
0853 goto no_csum;
0854 }
0855
0856
0857 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
0858 tx_ring->tx_stats.csum_good++;
0859
0860 no_csum:
0861
0862 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
0863 tx_desc->hdrlen = 0;
0864 tx_desc->mss = 0;
0865 }
0866
0867 #define FM10K_SET_FLAG(_input, _flag, _result) \
0868 ((_flag <= _result) ? \
0869 ((u32)(_input & _flag) * (_result / _flag)) : \
0870 ((u32)(_input & _flag) / (_flag / _result)))
0871
0872 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
0873 {
0874
0875 u32 desc_flags = 0;
0876
0877
0878 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
0879 FM10K_TXD_FLAG_CSUM);
0880
0881 return desc_flags;
0882 }
0883
0884 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
0885 struct fm10k_tx_desc *tx_desc, u16 i,
0886 dma_addr_t dma, unsigned int size, u8 desc_flags)
0887 {
0888
0889 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
0890 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
0891
0892
0893 tx_desc->buffer_addr = cpu_to_le64(dma);
0894 tx_desc->flags = desc_flags;
0895 tx_desc->buflen = cpu_to_le16(size);
0896
0897
0898 return i == tx_ring->count;
0899 }
0900
0901 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
0902 {
0903 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
0904
0905
0906 smp_mb();
0907
0908
0909 if (likely(fm10k_desc_unused(tx_ring) < size))
0910 return -EBUSY;
0911
0912
0913 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
0914 ++tx_ring->tx_stats.restart_queue;
0915 return 0;
0916 }
0917
0918 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
0919 {
0920 if (likely(fm10k_desc_unused(tx_ring) >= size))
0921 return 0;
0922 return __fm10k_maybe_stop_tx(tx_ring, size);
0923 }
0924
0925 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
0926 struct fm10k_tx_buffer *first)
0927 {
0928 struct sk_buff *skb = first->skb;
0929 struct fm10k_tx_buffer *tx_buffer;
0930 struct fm10k_tx_desc *tx_desc;
0931 skb_frag_t *frag;
0932 unsigned char *data;
0933 dma_addr_t dma;
0934 unsigned int data_len, size;
0935 u32 tx_flags = first->tx_flags;
0936 u16 i = tx_ring->next_to_use;
0937 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
0938
0939 tx_desc = FM10K_TX_DESC(tx_ring, i);
0940
0941
0942 if (skb_vlan_tag_present(skb))
0943 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
0944 else
0945 tx_desc->vlan = 0;
0946
0947 size = skb_headlen(skb);
0948 data = skb->data;
0949
0950 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
0951
0952 data_len = skb->data_len;
0953 tx_buffer = first;
0954
0955 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
0956 if (dma_mapping_error(tx_ring->dev, dma))
0957 goto dma_error;
0958
0959
0960 dma_unmap_len_set(tx_buffer, len, size);
0961 dma_unmap_addr_set(tx_buffer, dma, dma);
0962
0963 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
0964 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
0965 FM10K_MAX_DATA_PER_TXD, flags)) {
0966 tx_desc = FM10K_TX_DESC(tx_ring, 0);
0967 i = 0;
0968 }
0969
0970 dma += FM10K_MAX_DATA_PER_TXD;
0971 size -= FM10K_MAX_DATA_PER_TXD;
0972 }
0973
0974 if (likely(!data_len))
0975 break;
0976
0977 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
0978 dma, size, flags)) {
0979 tx_desc = FM10K_TX_DESC(tx_ring, 0);
0980 i = 0;
0981 }
0982
0983 size = skb_frag_size(frag);
0984 data_len -= size;
0985
0986 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
0987 DMA_TO_DEVICE);
0988
0989 tx_buffer = &tx_ring->tx_buffer[i];
0990 }
0991
0992
0993 flags |= FM10K_TXD_FLAG_LAST;
0994
0995 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
0996 i = 0;
0997
0998
0999 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1000
1001
1002 skb_tx_timestamp(first->skb);
1003
1004
1005
1006
1007
1008
1009
1010
1011 wmb();
1012
1013
1014 first->next_to_watch = tx_desc;
1015
1016 tx_ring->next_to_use = i;
1017
1018
1019 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1020
1021
1022 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1023 writel(i, tx_ring->tail);
1024 }
1025
1026 return;
1027 dma_error:
1028 dev_err(tx_ring->dev, "TX DMA map failed\n");
1029
1030
1031 for (;;) {
1032 tx_buffer = &tx_ring->tx_buffer[i];
1033 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1034 if (tx_buffer == first)
1035 break;
1036 if (i == 0)
1037 i = tx_ring->count;
1038 i--;
1039 }
1040
1041 tx_ring->next_to_use = i;
1042 }
1043
1044 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1045 struct fm10k_ring *tx_ring)
1046 {
1047 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1048 struct fm10k_tx_buffer *first;
1049 unsigned short f;
1050 u32 tx_flags = 0;
1051 int tso;
1052
1053
1054
1055
1056
1057
1058 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1059 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1060
1061 count += TXD_USE_COUNT(skb_frag_size(frag));
1062 }
1063
1064 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1065 tx_ring->tx_stats.tx_busy++;
1066 return NETDEV_TX_BUSY;
1067 }
1068
1069
1070 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1071 first->skb = skb;
1072 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1073 first->gso_segs = 1;
1074
1075
1076 first->tx_flags = tx_flags;
1077
1078 tso = fm10k_tso(tx_ring, first);
1079 if (tso < 0)
1080 goto out_drop;
1081 else if (!tso)
1082 fm10k_tx_csum(tx_ring, first);
1083
1084 fm10k_tx_map(tx_ring, first);
1085
1086 return NETDEV_TX_OK;
1087
1088 out_drop:
1089 dev_kfree_skb_any(first->skb);
1090 first->skb = NULL;
1091
1092 return NETDEV_TX_OK;
1093 }
1094
1095 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1096 {
1097 return ring->stats.packets;
1098 }
1099
1100
1101
1102
1103
1104
1105 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1106 {
1107 struct fm10k_intfc *interface = ring->q_vector->interface;
1108 struct fm10k_hw *hw = &interface->hw;
1109 u32 head, tail;
1110
1111 if (likely(in_sw)) {
1112 head = ring->next_to_clean;
1113 tail = ring->next_to_use;
1114 } else {
1115 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1116 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1117 }
1118
1119 return ((head <= tail) ? tail : tail + ring->count) - head;
1120 }
1121
1122 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1123 {
1124 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1125 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1126 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1127
1128 clear_check_for_tx_hang(tx_ring);
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138 if (!tx_pending || (tx_done_old != tx_done)) {
1139
1140 tx_ring->tx_stats.tx_done_old = tx_done;
1141
1142 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1143
1144 return false;
1145 }
1146
1147
1148 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1149 }
1150
1151
1152
1153
1154
1155 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1156 {
1157
1158 if (!test_bit(__FM10K_DOWN, interface->state)) {
1159 interface->tx_timeout_count++;
1160 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1161 fm10k_service_event_schedule(interface);
1162 }
1163 }
1164
1165
1166
1167
1168
1169
1170
1171 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1172 struct fm10k_ring *tx_ring, int napi_budget)
1173 {
1174 struct fm10k_intfc *interface = q_vector->interface;
1175 struct fm10k_tx_buffer *tx_buffer;
1176 struct fm10k_tx_desc *tx_desc;
1177 unsigned int total_bytes = 0, total_packets = 0;
1178 unsigned int budget = q_vector->tx.work_limit;
1179 unsigned int i = tx_ring->next_to_clean;
1180
1181 if (test_bit(__FM10K_DOWN, interface->state))
1182 return true;
1183
1184 tx_buffer = &tx_ring->tx_buffer[i];
1185 tx_desc = FM10K_TX_DESC(tx_ring, i);
1186 i -= tx_ring->count;
1187
1188 do {
1189 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1190
1191
1192 if (!eop_desc)
1193 break;
1194
1195
1196 smp_rmb();
1197
1198
1199 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1200 break;
1201
1202
1203 tx_buffer->next_to_watch = NULL;
1204
1205
1206 total_bytes += tx_buffer->bytecount;
1207 total_packets += tx_buffer->gso_segs;
1208
1209
1210 napi_consume_skb(tx_buffer->skb, napi_budget);
1211
1212
1213 dma_unmap_single(tx_ring->dev,
1214 dma_unmap_addr(tx_buffer, dma),
1215 dma_unmap_len(tx_buffer, len),
1216 DMA_TO_DEVICE);
1217
1218
1219 tx_buffer->skb = NULL;
1220 dma_unmap_len_set(tx_buffer, len, 0);
1221
1222
1223 while (tx_desc != eop_desc) {
1224 tx_buffer++;
1225 tx_desc++;
1226 i++;
1227 if (unlikely(!i)) {
1228 i -= tx_ring->count;
1229 tx_buffer = tx_ring->tx_buffer;
1230 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1231 }
1232
1233
1234 if (dma_unmap_len(tx_buffer, len)) {
1235 dma_unmap_page(tx_ring->dev,
1236 dma_unmap_addr(tx_buffer, dma),
1237 dma_unmap_len(tx_buffer, len),
1238 DMA_TO_DEVICE);
1239 dma_unmap_len_set(tx_buffer, len, 0);
1240 }
1241 }
1242
1243
1244 tx_buffer++;
1245 tx_desc++;
1246 i++;
1247 if (unlikely(!i)) {
1248 i -= tx_ring->count;
1249 tx_buffer = tx_ring->tx_buffer;
1250 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1251 }
1252
1253
1254 prefetch(tx_desc);
1255
1256
1257 budget--;
1258 } while (likely(budget));
1259
1260 i += tx_ring->count;
1261 tx_ring->next_to_clean = i;
1262 u64_stats_update_begin(&tx_ring->syncp);
1263 tx_ring->stats.bytes += total_bytes;
1264 tx_ring->stats.packets += total_packets;
1265 u64_stats_update_end(&tx_ring->syncp);
1266 q_vector->tx.total_bytes += total_bytes;
1267 q_vector->tx.total_packets += total_packets;
1268
1269 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1270
1271 struct fm10k_hw *hw = &interface->hw;
1272
1273 netif_err(interface, drv, tx_ring->netdev,
1274 "Detected Tx Unit Hang\n"
1275 " Tx Queue <%d>\n"
1276 " TDH, TDT <%x>, <%x>\n"
1277 " next_to_use <%x>\n"
1278 " next_to_clean <%x>\n",
1279 tx_ring->queue_index,
1280 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1281 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1282 tx_ring->next_to_use, i);
1283
1284 netif_stop_subqueue(tx_ring->netdev,
1285 tx_ring->queue_index);
1286
1287 netif_info(interface, probe, tx_ring->netdev,
1288 "tx hang %d detected on queue %d, resetting interface\n",
1289 interface->tx_timeout_count + 1,
1290 tx_ring->queue_index);
1291
1292 fm10k_tx_timeout_reset(interface);
1293
1294
1295 return true;
1296 }
1297
1298
1299 netdev_tx_completed_queue(txring_txq(tx_ring),
1300 total_packets, total_bytes);
1301
1302 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1303 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1304 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1305
1306
1307
1308 smp_mb();
1309 if (__netif_subqueue_stopped(tx_ring->netdev,
1310 tx_ring->queue_index) &&
1311 !test_bit(__FM10K_DOWN, interface->state)) {
1312 netif_wake_subqueue(tx_ring->netdev,
1313 tx_ring->queue_index);
1314 ++tx_ring->tx_stats.restart_queue;
1315 }
1316 }
1317
1318 return !!budget;
1319 }
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1332 {
1333 unsigned int avg_wire_size, packets, itr_round;
1334
1335
1336 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1337 goto clear_counts;
1338
1339 packets = ring_container->total_packets;
1340 if (!packets)
1341 goto clear_counts;
1342
1343 avg_wire_size = ring_container->total_bytes / packets;
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360 if (avg_wire_size <= 360) {
1361
1362 avg_wire_size *= 8;
1363 avg_wire_size += 376;
1364 } else if (avg_wire_size <= 1152) {
1365
1366 avg_wire_size *= 3;
1367 avg_wire_size += 2176;
1368 } else if (avg_wire_size <= 1920) {
1369
1370 avg_wire_size += 4480;
1371 } else {
1372
1373 avg_wire_size = 6656;
1374 }
1375
1376
1377
1378
1379
1380 itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1381 avg_wire_size += BIT(itr_round) - 1;
1382 avg_wire_size >>= itr_round;
1383
1384
1385 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1386
1387 clear_counts:
1388 ring_container->total_bytes = 0;
1389 ring_container->total_packets = 0;
1390 }
1391
1392 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1393 {
1394
1395 u32 itr = FM10K_ITR_ENABLE;
1396
1397
1398 fm10k_update_itr(&q_vector->tx);
1399
1400
1401 fm10k_update_itr(&q_vector->rx);
1402
1403
1404 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1405
1406
1407 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1408
1409
1410 writel(itr, q_vector->itr);
1411 }
1412
1413 static int fm10k_poll(struct napi_struct *napi, int budget)
1414 {
1415 struct fm10k_q_vector *q_vector =
1416 container_of(napi, struct fm10k_q_vector, napi);
1417 struct fm10k_ring *ring;
1418 int per_ring_budget, work_done = 0;
1419 bool clean_complete = true;
1420
1421 fm10k_for_each_ring(ring, q_vector->tx) {
1422 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1423 clean_complete = false;
1424 }
1425
1426
1427 if (budget <= 0)
1428 return budget;
1429
1430
1431
1432
1433 if (q_vector->rx.count > 1)
1434 per_ring_budget = max(budget / q_vector->rx.count, 1);
1435 else
1436 per_ring_budget = budget;
1437
1438 fm10k_for_each_ring(ring, q_vector->rx) {
1439 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1440
1441 work_done += work;
1442 if (work >= per_ring_budget)
1443 clean_complete = false;
1444 }
1445
1446
1447 if (!clean_complete)
1448 return budget;
1449
1450
1451
1452
1453 if (likely(napi_complete_done(napi, work_done)))
1454 fm10k_qv_enable(q_vector);
1455
1456 return min(work_done, budget - 1);
1457 }
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1471 {
1472 struct net_device *dev = interface->netdev;
1473 struct fm10k_ring_feature *f;
1474 int rss_i, i;
1475 int pcs;
1476
1477
1478 pcs = netdev_get_num_tc(dev);
1479
1480 if (pcs <= 1)
1481 return false;
1482
1483
1484 f = &interface->ring_feature[RING_F_QOS];
1485 f->indices = pcs;
1486 f->mask = BIT(fls(pcs - 1)) - 1;
1487
1488
1489 rss_i = interface->hw.mac.max_queues / pcs;
1490 rss_i = BIT(fls(rss_i) - 1);
1491
1492
1493 f = &interface->ring_feature[RING_F_RSS];
1494 rss_i = min_t(u16, rss_i, f->limit);
1495 f->indices = rss_i;
1496 f->mask = BIT(fls(rss_i - 1)) - 1;
1497
1498
1499 for (i = 0; i < pcs; i++)
1500 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1501
1502 interface->num_rx_queues = rss_i * pcs;
1503 interface->num_tx_queues = rss_i * pcs;
1504
1505 return true;
1506 }
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1517 {
1518 struct fm10k_ring_feature *f;
1519 u16 rss_i;
1520
1521 f = &interface->ring_feature[RING_F_RSS];
1522 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1523
1524
1525 f->indices = rss_i;
1526 f->mask = BIT(fls(rss_i - 1)) - 1;
1527
1528 interface->num_rx_queues = rss_i;
1529 interface->num_tx_queues = rss_i;
1530
1531 return true;
1532 }
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1546 {
1547
1548 if (fm10k_set_qos_queues(interface))
1549 return;
1550
1551
1552 fm10k_set_rss_queues(interface);
1553 }
1554
1555
1556
1557
1558
1559
1560
1561
1562 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1563 {
1564 interface->num_tx_queues = 0;
1565 interface->num_rx_queues = 0;
1566 interface->num_q_vectors = 0;
1567 }
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1582 unsigned int v_count, unsigned int v_idx,
1583 unsigned int txr_count, unsigned int txr_idx,
1584 unsigned int rxr_count, unsigned int rxr_idx)
1585 {
1586 struct fm10k_q_vector *q_vector;
1587 struct fm10k_ring *ring;
1588 int ring_count;
1589
1590 ring_count = txr_count + rxr_count;
1591
1592
1593 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1594 if (!q_vector)
1595 return -ENOMEM;
1596
1597
1598 netif_napi_add(interface->netdev, &q_vector->napi,
1599 fm10k_poll, NAPI_POLL_WEIGHT);
1600
1601
1602 interface->q_vector[v_idx] = q_vector;
1603 q_vector->interface = interface;
1604 q_vector->v_idx = v_idx;
1605
1606
1607 ring = q_vector->ring;
1608
1609
1610 q_vector->tx.ring = ring;
1611 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1612 q_vector->tx.itr = interface->tx_itr;
1613 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1614 q_vector->tx.count = txr_count;
1615
1616 while (txr_count) {
1617
1618 ring->dev = &interface->pdev->dev;
1619 ring->netdev = interface->netdev;
1620
1621
1622 ring->q_vector = q_vector;
1623
1624
1625 ring->count = interface->tx_ring_count;
1626 ring->queue_index = txr_idx;
1627
1628
1629 interface->tx_ring[txr_idx] = ring;
1630
1631
1632 txr_count--;
1633 txr_idx += v_count;
1634
1635
1636 ring++;
1637 }
1638
1639
1640 q_vector->rx.ring = ring;
1641 q_vector->rx.itr = interface->rx_itr;
1642 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1643 q_vector->rx.count = rxr_count;
1644
1645 while (rxr_count) {
1646
1647 ring->dev = &interface->pdev->dev;
1648 ring->netdev = interface->netdev;
1649 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1650
1651
1652 ring->q_vector = q_vector;
1653
1654
1655 ring->count = interface->rx_ring_count;
1656 ring->queue_index = rxr_idx;
1657
1658
1659 interface->rx_ring[rxr_idx] = ring;
1660
1661
1662 rxr_count--;
1663 rxr_idx += v_count;
1664
1665
1666 ring++;
1667 }
1668
1669 fm10k_dbg_q_vector_init(q_vector);
1670
1671 return 0;
1672 }
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1684 {
1685 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1686 struct fm10k_ring *ring;
1687
1688 fm10k_dbg_q_vector_exit(q_vector);
1689
1690 fm10k_for_each_ring(ring, q_vector->tx)
1691 interface->tx_ring[ring->queue_index] = NULL;
1692
1693 fm10k_for_each_ring(ring, q_vector->rx)
1694 interface->rx_ring[ring->queue_index] = NULL;
1695
1696 interface->q_vector[v_idx] = NULL;
1697 netif_napi_del(&q_vector->napi);
1698 kfree_rcu(q_vector, rcu);
1699 }
1700
1701
1702
1703
1704
1705
1706
1707
1708 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1709 {
1710 unsigned int q_vectors = interface->num_q_vectors;
1711 unsigned int rxr_remaining = interface->num_rx_queues;
1712 unsigned int txr_remaining = interface->num_tx_queues;
1713 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1714 int err;
1715
1716 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1717 for (; rxr_remaining; v_idx++) {
1718 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1719 0, 0, 1, rxr_idx);
1720 if (err)
1721 goto err_out;
1722
1723
1724 rxr_remaining--;
1725 rxr_idx++;
1726 }
1727 }
1728
1729 for (; v_idx < q_vectors; v_idx++) {
1730 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1731 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1732
1733 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1734 tqpv, txr_idx,
1735 rqpv, rxr_idx);
1736
1737 if (err)
1738 goto err_out;
1739
1740
1741 rxr_remaining -= rqpv;
1742 txr_remaining -= tqpv;
1743 rxr_idx++;
1744 txr_idx++;
1745 }
1746
1747 return 0;
1748
1749 err_out:
1750 fm10k_reset_num_queues(interface);
1751
1752 while (v_idx--)
1753 fm10k_free_q_vector(interface, v_idx);
1754
1755 return -ENOMEM;
1756 }
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1767 {
1768 int v_idx = interface->num_q_vectors;
1769
1770 fm10k_reset_num_queues(interface);
1771
1772 while (v_idx--)
1773 fm10k_free_q_vector(interface, v_idx);
1774 }
1775
1776
1777
1778
1779
1780
1781
1782 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1783 {
1784 pci_disable_msix(interface->pdev);
1785 kfree(interface->msix_entries);
1786 interface->msix_entries = NULL;
1787 }
1788
1789
1790
1791
1792
1793
1794
1795
1796 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1797 {
1798 struct fm10k_hw *hw = &interface->hw;
1799 int v_budget, vector;
1800
1801
1802
1803
1804
1805
1806
1807 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1808 v_budget = min_t(u16, v_budget, num_online_cpus());
1809
1810
1811 v_budget += NON_Q_VECTORS;
1812
1813
1814
1815
1816
1817
1818
1819 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1820
1821
1822 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1823 GFP_KERNEL);
1824 if (!interface->msix_entries)
1825 return -ENOMEM;
1826
1827
1828 for (vector = 0; vector < v_budget; vector++)
1829 interface->msix_entries[vector].entry = vector;
1830
1831
1832 v_budget = pci_enable_msix_range(interface->pdev,
1833 interface->msix_entries,
1834 MIN_MSIX_COUNT(hw),
1835 v_budget);
1836 if (v_budget < 0) {
1837 kfree(interface->msix_entries);
1838 interface->msix_entries = NULL;
1839 return v_budget;
1840 }
1841
1842
1843 interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1844
1845 return 0;
1846 }
1847
1848
1849
1850
1851
1852
1853
1854 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1855 {
1856 struct net_device *dev = interface->netdev;
1857 int pc, offset, rss_i, i;
1858 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1859 u8 num_pcs = netdev_get_num_tc(dev);
1860
1861 if (num_pcs <= 1)
1862 return false;
1863
1864 rss_i = interface->ring_feature[RING_F_RSS].indices;
1865
1866 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1867 int q_idx = pc;
1868
1869 for (i = 0; i < rss_i; i++) {
1870 interface->tx_ring[offset + i]->reg_idx = q_idx;
1871 interface->tx_ring[offset + i]->qos_pc = pc;
1872 interface->rx_ring[offset + i]->reg_idx = q_idx;
1873 interface->rx_ring[offset + i]->qos_pc = pc;
1874 q_idx += pc_stride;
1875 }
1876 }
1877
1878 return true;
1879 }
1880
1881
1882
1883
1884
1885
1886
1887 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1888 {
1889 int i;
1890
1891 for (i = 0; i < interface->num_rx_queues; i++)
1892 interface->rx_ring[i]->reg_idx = i;
1893
1894 for (i = 0; i < interface->num_tx_queues; i++)
1895 interface->tx_ring[i]->reg_idx = i;
1896 }
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1907 {
1908 if (fm10k_cache_ring_qos(interface))
1909 return;
1910
1911 fm10k_cache_ring_rss(interface);
1912 }
1913
1914 static void fm10k_init_reta(struct fm10k_intfc *interface)
1915 {
1916 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1917 u32 reta;
1918
1919
1920
1921
1922 if (netif_is_rxfh_configured(interface->netdev)) {
1923 for (i = FM10K_RETA_SIZE; i--;) {
1924 reta = interface->reta[i];
1925 if ((((reta << 24) >> 24) < rss_i) &&
1926 (((reta << 16) >> 24) < rss_i) &&
1927 (((reta << 8) >> 24) < rss_i) &&
1928 (((reta) >> 24) < rss_i))
1929 continue;
1930
1931
1932 dev_err(&interface->pdev->dev,
1933 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1934 goto repopulate_reta;
1935 }
1936
1937
1938 return;
1939 }
1940
1941 repopulate_reta:
1942 fm10k_write_reta(interface, NULL);
1943 }
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1954 {
1955 int err;
1956
1957
1958 fm10k_set_num_queues(interface);
1959
1960
1961 err = fm10k_init_msix_capability(interface);
1962 if (err) {
1963 dev_err(&interface->pdev->dev,
1964 "Unable to initialize MSI-X capability\n");
1965 goto err_init_msix;
1966 }
1967
1968
1969 err = fm10k_alloc_q_vectors(interface);
1970 if (err) {
1971 dev_err(&interface->pdev->dev,
1972 "Unable to allocate queue vectors\n");
1973 goto err_alloc_q_vectors;
1974 }
1975
1976
1977 fm10k_assign_rings(interface);
1978
1979
1980 fm10k_init_reta(interface);
1981
1982 return 0;
1983
1984 err_alloc_q_vectors:
1985 fm10k_reset_msix_capability(interface);
1986 err_init_msix:
1987 fm10k_reset_num_queues(interface);
1988 return err;
1989 }
1990
1991
1992
1993
1994
1995
1996
1997
1998 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1999 {
2000 fm10k_free_q_vectors(interface);
2001 fm10k_reset_msix_capability(interface);
2002 }