Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright(c) 1999 - 2018 Intel Corporation. */
0003 
0004 /* 82562G 10/100 Network Connection
0005  * 82562G-2 10/100 Network Connection
0006  * 82562GT 10/100 Network Connection
0007  * 82562GT-2 10/100 Network Connection
0008  * 82562V 10/100 Network Connection
0009  * 82562V-2 10/100 Network Connection
0010  * 82566DC-2 Gigabit Network Connection
0011  * 82566DC Gigabit Network Connection
0012  * 82566DM-2 Gigabit Network Connection
0013  * 82566DM Gigabit Network Connection
0014  * 82566MC Gigabit Network Connection
0015  * 82566MM Gigabit Network Connection
0016  * 82567LM Gigabit Network Connection
0017  * 82567LF Gigabit Network Connection
0018  * 82567V Gigabit Network Connection
0019  * 82567LM-2 Gigabit Network Connection
0020  * 82567LF-2 Gigabit Network Connection
0021  * 82567V-2 Gigabit Network Connection
0022  * 82567LF-3 Gigabit Network Connection
0023  * 82567LM-3 Gigabit Network Connection
0024  * 82567LM-4 Gigabit Network Connection
0025  * 82577LM Gigabit Network Connection
0026  * 82577LC Gigabit Network Connection
0027  * 82578DM Gigabit Network Connection
0028  * 82578DC Gigabit Network Connection
0029  * 82579LM Gigabit Network Connection
0030  * 82579V Gigabit Network Connection
0031  * Ethernet Connection I217-LM
0032  * Ethernet Connection I217-V
0033  * Ethernet Connection I218-V
0034  * Ethernet Connection I218-LM
0035  * Ethernet Connection (2) I218-LM
0036  * Ethernet Connection (2) I218-V
0037  * Ethernet Connection (3) I218-LM
0038  * Ethernet Connection (3) I218-V
0039  */
0040 
0041 #include "e1000.h"
0042 
0043 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
0044 /* Offset 04h HSFSTS */
0045 union ich8_hws_flash_status {
0046     struct ich8_hsfsts {
0047         u16 flcdone:1;  /* bit 0 Flash Cycle Done */
0048         u16 flcerr:1;   /* bit 1 Flash Cycle Error */
0049         u16 dael:1; /* bit 2 Direct Access error Log */
0050         u16 berasesz:2; /* bit 4:3 Sector Erase Size */
0051         u16 flcinprog:1;    /* bit 5 flash cycle in Progress */
0052         u16 reserved1:2;    /* bit 13:6 Reserved */
0053         u16 reserved2:6;    /* bit 13:6 Reserved */
0054         u16 fldesvalid:1;   /* bit 14 Flash Descriptor Valid */
0055         u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
0056     } hsf_status;
0057     u16 regval;
0058 };
0059 
0060 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
0061 /* Offset 06h FLCTL */
0062 union ich8_hws_flash_ctrl {
0063     struct ich8_hsflctl {
0064         u16 flcgo:1;    /* 0 Flash Cycle Go */
0065         u16 flcycle:2;  /* 2:1 Flash Cycle */
0066         u16 reserved:5; /* 7:3 Reserved  */
0067         u16 fldbcount:2;    /* 9:8 Flash Data Byte Count */
0068         u16 flockdn:6;  /* 15:10 Reserved */
0069     } hsf_ctrl;
0070     u16 regval;
0071 };
0072 
0073 /* ICH Flash Region Access Permissions */
0074 union ich8_hws_flash_regacc {
0075     struct ich8_flracc {
0076         u32 grra:8; /* 0:7 GbE region Read Access */
0077         u32 grwa:8; /* 8:15 GbE region Write Access */
0078         u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
0079         u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
0080     } hsf_flregacc;
0081     u16 regval;
0082 };
0083 
0084 /* ICH Flash Protected Region */
0085 union ich8_flash_protected_range {
0086     struct ich8_pr {
0087         u32 base:13;    /* 0:12 Protected Range Base */
0088         u32 reserved1:2;    /* 13:14 Reserved */
0089         u32 rpe:1;  /* 15 Read Protection Enable */
0090         u32 limit:13;   /* 16:28 Protected Range Limit */
0091         u32 reserved2:2;    /* 29:30 Reserved */
0092         u32 wpe:1;  /* 31 Write Protection Enable */
0093     } range;
0094     u32 regval;
0095 };
0096 
0097 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
0098 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
0099 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
0100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
0101                         u32 offset, u8 byte);
0102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
0103                      u8 *data);
0104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
0105                      u16 *data);
0106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
0107                      u8 size, u16 *data);
0108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
0109                        u32 *data);
0110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
0111                       u32 offset, u32 *data);
0112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
0113                         u32 offset, u32 data);
0114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
0115                          u32 offset, u32 dword);
0116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
0117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
0118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
0119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
0120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
0121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
0122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
0123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
0124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
0125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
0126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
0127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
0128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
0129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
0130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
0131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
0132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
0133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
0134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
0135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
0136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
0137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
0138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
0139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
0140 
0141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
0142 {
0143     return readw(hw->flash_address + reg);
0144 }
0145 
0146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
0147 {
0148     return readl(hw->flash_address + reg);
0149 }
0150 
0151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
0152 {
0153     writew(val, hw->flash_address + reg);
0154 }
0155 
0156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
0157 {
0158     writel(val, hw->flash_address + reg);
0159 }
0160 
0161 #define er16flash(reg)      __er16flash(hw, (reg))
0162 #define er32flash(reg)      __er32flash(hw, (reg))
0163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
0164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
0165 
0166 /**
0167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
0168  *  @hw: pointer to the HW structure
0169  *
0170  *  Test access to the PHY registers by reading the PHY ID registers.  If
0171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
0172  *  otherwise assume the read PHY ID is correct if it is valid.
0173  *
0174  *  Assumes the sw/fw/hw semaphore is already acquired.
0175  **/
0176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
0177 {
0178     u16 phy_reg = 0;
0179     u32 phy_id = 0;
0180     s32 ret_val = 0;
0181     u16 retry_count;
0182     u32 mac_reg = 0;
0183 
0184     for (retry_count = 0; retry_count < 2; retry_count++) {
0185         ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
0186         if (ret_val || (phy_reg == 0xFFFF))
0187             continue;
0188         phy_id = (u32)(phy_reg << 16);
0189 
0190         ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
0191         if (ret_val || (phy_reg == 0xFFFF)) {
0192             phy_id = 0;
0193             continue;
0194         }
0195         phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
0196         break;
0197     }
0198 
0199     if (hw->phy.id) {
0200         if (hw->phy.id == phy_id)
0201             goto out;
0202     } else if (phy_id) {
0203         hw->phy.id = phy_id;
0204         hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
0205         goto out;
0206     }
0207 
0208     /* In case the PHY needs to be in mdio slow mode,
0209      * set slow mode and try to get the PHY id again.
0210      */
0211     if (hw->mac.type < e1000_pch_lpt) {
0212         hw->phy.ops.release(hw);
0213         ret_val = e1000_set_mdio_slow_mode_hv(hw);
0214         if (!ret_val)
0215             ret_val = e1000e_get_phy_id(hw);
0216         hw->phy.ops.acquire(hw);
0217     }
0218 
0219     if (ret_val)
0220         return false;
0221 out:
0222     if (hw->mac.type >= e1000_pch_lpt) {
0223         /* Only unforce SMBus if ME is not active */
0224         if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
0225             /* Unforce SMBus mode in PHY */
0226             e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
0227             phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
0228             e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
0229 
0230             /* Unforce SMBus mode in MAC */
0231             mac_reg = er32(CTRL_EXT);
0232             mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
0233             ew32(CTRL_EXT, mac_reg);
0234         }
0235     }
0236 
0237     return true;
0238 }
0239 
0240 /**
0241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
0242  *  @hw: pointer to the HW structure
0243  *
0244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
0245  *  used to reset the PHY to a quiescent state when necessary.
0246  **/
0247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
0248 {
0249     u32 mac_reg;
0250 
0251     /* Set Phy Config Counter to 50msec */
0252     mac_reg = er32(FEXTNVM3);
0253     mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
0254     mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
0255     ew32(FEXTNVM3, mac_reg);
0256 
0257     /* Toggle LANPHYPC Value bit */
0258     mac_reg = er32(CTRL);
0259     mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
0260     mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
0261     ew32(CTRL, mac_reg);
0262     e1e_flush();
0263     usleep_range(10, 20);
0264     mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
0265     ew32(CTRL, mac_reg);
0266     e1e_flush();
0267 
0268     if (hw->mac.type < e1000_pch_lpt) {
0269         msleep(50);
0270     } else {
0271         u16 count = 20;
0272 
0273         do {
0274             usleep_range(5000, 6000);
0275         } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
0276 
0277         msleep(30);
0278     }
0279 }
0280 
0281 /**
0282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
0283  *  @hw: pointer to the HW structure
0284  *
0285  *  Workarounds/flow necessary for PHY initialization during driver load
0286  *  and resume paths.
0287  **/
0288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
0289 {
0290     struct e1000_adapter *adapter = hw->adapter;
0291     u32 mac_reg, fwsm = er32(FWSM);
0292     s32 ret_val;
0293 
0294     /* Gate automatic PHY configuration by hardware on managed and
0295      * non-managed 82579 and newer adapters.
0296      */
0297     e1000_gate_hw_phy_config_ich8lan(hw, true);
0298 
0299     /* It is not possible to be certain of the current state of ULP
0300      * so forcibly disable it.
0301      */
0302     hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
0303     ret_val = e1000_disable_ulp_lpt_lp(hw, true);
0304     if (ret_val)
0305         e_warn("Failed to disable ULP\n");
0306 
0307     ret_val = hw->phy.ops.acquire(hw);
0308     if (ret_val) {
0309         e_dbg("Failed to initialize PHY flow\n");
0310         goto out;
0311     }
0312 
0313     /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
0314      * inaccessible and resetting the PHY is not blocked, toggle the
0315      * LANPHYPC Value bit to force the interconnect to PCIe mode.
0316      */
0317     switch (hw->mac.type) {
0318     case e1000_pch_lpt:
0319     case e1000_pch_spt:
0320     case e1000_pch_cnp:
0321     case e1000_pch_tgp:
0322     case e1000_pch_adp:
0323     case e1000_pch_mtp:
0324     case e1000_pch_lnp:
0325         if (e1000_phy_is_accessible_pchlan(hw))
0326             break;
0327 
0328         /* Before toggling LANPHYPC, see if PHY is accessible by
0329          * forcing MAC to SMBus mode first.
0330          */
0331         mac_reg = er32(CTRL_EXT);
0332         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
0333         ew32(CTRL_EXT, mac_reg);
0334 
0335         /* Wait 50 milliseconds for MAC to finish any retries
0336          * that it might be trying to perform from previous
0337          * attempts to acknowledge any phy read requests.
0338          */
0339         msleep(50);
0340 
0341         fallthrough;
0342     case e1000_pch2lan:
0343         if (e1000_phy_is_accessible_pchlan(hw))
0344             break;
0345 
0346         fallthrough;
0347     case e1000_pchlan:
0348         if ((hw->mac.type == e1000_pchlan) &&
0349             (fwsm & E1000_ICH_FWSM_FW_VALID))
0350             break;
0351 
0352         if (hw->phy.ops.check_reset_block(hw)) {
0353             e_dbg("Required LANPHYPC toggle blocked by ME\n");
0354             ret_val = -E1000_ERR_PHY;
0355             break;
0356         }
0357 
0358         /* Toggle LANPHYPC Value bit */
0359         e1000_toggle_lanphypc_pch_lpt(hw);
0360         if (hw->mac.type >= e1000_pch_lpt) {
0361             if (e1000_phy_is_accessible_pchlan(hw))
0362                 break;
0363 
0364             /* Toggling LANPHYPC brings the PHY out of SMBus mode
0365              * so ensure that the MAC is also out of SMBus mode
0366              */
0367             mac_reg = er32(CTRL_EXT);
0368             mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
0369             ew32(CTRL_EXT, mac_reg);
0370 
0371             if (e1000_phy_is_accessible_pchlan(hw))
0372                 break;
0373 
0374             ret_val = -E1000_ERR_PHY;
0375         }
0376         break;
0377     default:
0378         break;
0379     }
0380 
0381     hw->phy.ops.release(hw);
0382     if (!ret_val) {
0383 
0384         /* Check to see if able to reset PHY.  Print error if not */
0385         if (hw->phy.ops.check_reset_block(hw)) {
0386             e_err("Reset blocked by ME\n");
0387             goto out;
0388         }
0389 
0390         /* Reset the PHY before any access to it.  Doing so, ensures
0391          * that the PHY is in a known good state before we read/write
0392          * PHY registers.  The generic reset is sufficient here,
0393          * because we haven't determined the PHY type yet.
0394          */
0395         ret_val = e1000e_phy_hw_reset_generic(hw);
0396         if (ret_val)
0397             goto out;
0398 
0399         /* On a successful reset, possibly need to wait for the PHY
0400          * to quiesce to an accessible state before returning control
0401          * to the calling function.  If the PHY does not quiesce, then
0402          * return E1000E_BLK_PHY_RESET, as this is the condition that
0403          *  the PHY is in.
0404          */
0405         ret_val = hw->phy.ops.check_reset_block(hw);
0406         if (ret_val)
0407             e_err("ME blocked access to PHY after reset\n");
0408     }
0409 
0410 out:
0411     /* Ungate automatic PHY configuration on non-managed 82579 */
0412     if ((hw->mac.type == e1000_pch2lan) &&
0413         !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
0414         usleep_range(10000, 11000);
0415         e1000_gate_hw_phy_config_ich8lan(hw, false);
0416     }
0417 
0418     return ret_val;
0419 }
0420 
0421 /**
0422  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
0423  *  @hw: pointer to the HW structure
0424  *
0425  *  Initialize family-specific PHY parameters and function pointers.
0426  **/
0427 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
0428 {
0429     struct e1000_phy_info *phy = &hw->phy;
0430     s32 ret_val;
0431 
0432     phy->addr = 1;
0433     phy->reset_delay_us = 100;
0434 
0435     phy->ops.set_page = e1000_set_page_igp;
0436     phy->ops.read_reg = e1000_read_phy_reg_hv;
0437     phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
0438     phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
0439     phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
0440     phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
0441     phy->ops.write_reg = e1000_write_phy_reg_hv;
0442     phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
0443     phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
0444     phy->ops.power_up = e1000_power_up_phy_copper;
0445     phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
0446     phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
0447 
0448     phy->id = e1000_phy_unknown;
0449 
0450     ret_val = e1000_init_phy_workarounds_pchlan(hw);
0451     if (ret_val)
0452         return ret_val;
0453 
0454     if (phy->id == e1000_phy_unknown)
0455         switch (hw->mac.type) {
0456         default:
0457             ret_val = e1000e_get_phy_id(hw);
0458             if (ret_val)
0459                 return ret_val;
0460             if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
0461                 break;
0462             fallthrough;
0463         case e1000_pch2lan:
0464         case e1000_pch_lpt:
0465         case e1000_pch_spt:
0466         case e1000_pch_cnp:
0467         case e1000_pch_tgp:
0468         case e1000_pch_adp:
0469         case e1000_pch_mtp:
0470         case e1000_pch_lnp:
0471             /* In case the PHY needs to be in mdio slow mode,
0472              * set slow mode and try to get the PHY id again.
0473              */
0474             ret_val = e1000_set_mdio_slow_mode_hv(hw);
0475             if (ret_val)
0476                 return ret_val;
0477             ret_val = e1000e_get_phy_id(hw);
0478             if (ret_val)
0479                 return ret_val;
0480             break;
0481         }
0482     phy->type = e1000e_get_phy_type_from_id(phy->id);
0483 
0484     switch (phy->type) {
0485     case e1000_phy_82577:
0486     case e1000_phy_82579:
0487     case e1000_phy_i217:
0488         phy->ops.check_polarity = e1000_check_polarity_82577;
0489         phy->ops.force_speed_duplex =
0490             e1000_phy_force_speed_duplex_82577;
0491         phy->ops.get_cable_length = e1000_get_cable_length_82577;
0492         phy->ops.get_info = e1000_get_phy_info_82577;
0493         phy->ops.commit = e1000e_phy_sw_reset;
0494         break;
0495     case e1000_phy_82578:
0496         phy->ops.check_polarity = e1000_check_polarity_m88;
0497         phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
0498         phy->ops.get_cable_length = e1000e_get_cable_length_m88;
0499         phy->ops.get_info = e1000e_get_phy_info_m88;
0500         break;
0501     default:
0502         ret_val = -E1000_ERR_PHY;
0503         break;
0504     }
0505 
0506     return ret_val;
0507 }
0508 
0509 /**
0510  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
0511  *  @hw: pointer to the HW structure
0512  *
0513  *  Initialize family-specific PHY parameters and function pointers.
0514  **/
0515 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
0516 {
0517     struct e1000_phy_info *phy = &hw->phy;
0518     s32 ret_val;
0519     u16 i = 0;
0520 
0521     phy->addr = 1;
0522     phy->reset_delay_us = 100;
0523 
0524     phy->ops.power_up = e1000_power_up_phy_copper;
0525     phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
0526 
0527     /* We may need to do this twice - once for IGP and if that fails,
0528      * we'll set BM func pointers and try again
0529      */
0530     ret_val = e1000e_determine_phy_address(hw);
0531     if (ret_val) {
0532         phy->ops.write_reg = e1000e_write_phy_reg_bm;
0533         phy->ops.read_reg = e1000e_read_phy_reg_bm;
0534         ret_val = e1000e_determine_phy_address(hw);
0535         if (ret_val) {
0536             e_dbg("Cannot determine PHY addr. Erroring out\n");
0537             return ret_val;
0538         }
0539     }
0540 
0541     phy->id = 0;
0542     while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
0543            (i++ < 100)) {
0544         usleep_range(1000, 1100);
0545         ret_val = e1000e_get_phy_id(hw);
0546         if (ret_val)
0547             return ret_val;
0548     }
0549 
0550     /* Verify phy id */
0551     switch (phy->id) {
0552     case IGP03E1000_E_PHY_ID:
0553         phy->type = e1000_phy_igp_3;
0554         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
0555         phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
0556         phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
0557         phy->ops.get_info = e1000e_get_phy_info_igp;
0558         phy->ops.check_polarity = e1000_check_polarity_igp;
0559         phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
0560         break;
0561     case IFE_E_PHY_ID:
0562     case IFE_PLUS_E_PHY_ID:
0563     case IFE_C_E_PHY_ID:
0564         phy->type = e1000_phy_ife;
0565         phy->autoneg_mask = E1000_ALL_NOT_GIG;
0566         phy->ops.get_info = e1000_get_phy_info_ife;
0567         phy->ops.check_polarity = e1000_check_polarity_ife;
0568         phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
0569         break;
0570     case BME1000_E_PHY_ID:
0571         phy->type = e1000_phy_bm;
0572         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
0573         phy->ops.read_reg = e1000e_read_phy_reg_bm;
0574         phy->ops.write_reg = e1000e_write_phy_reg_bm;
0575         phy->ops.commit = e1000e_phy_sw_reset;
0576         phy->ops.get_info = e1000e_get_phy_info_m88;
0577         phy->ops.check_polarity = e1000_check_polarity_m88;
0578         phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
0579         break;
0580     default:
0581         return -E1000_ERR_PHY;
0582     }
0583 
0584     return 0;
0585 }
0586 
0587 /**
0588  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
0589  *  @hw: pointer to the HW structure
0590  *
0591  *  Initialize family-specific NVM parameters and function
0592  *  pointers.
0593  **/
0594 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
0595 {
0596     struct e1000_nvm_info *nvm = &hw->nvm;
0597     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
0598     u32 gfpreg, sector_base_addr, sector_end_addr;
0599     u16 i;
0600     u32 nvm_size;
0601 
0602     nvm->type = e1000_nvm_flash_sw;
0603 
0604     if (hw->mac.type >= e1000_pch_spt) {
0605         /* in SPT, gfpreg doesn't exist. NVM size is taken from the
0606          * STRAP register. This is because in SPT the GbE Flash region
0607          * is no longer accessed through the flash registers. Instead,
0608          * the mechanism has changed, and the Flash region access
0609          * registers are now implemented in GbE memory space.
0610          */
0611         nvm->flash_base_addr = 0;
0612         nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
0613             * NVM_SIZE_MULTIPLIER;
0614         nvm->flash_bank_size = nvm_size / 2;
0615         /* Adjust to word count */
0616         nvm->flash_bank_size /= sizeof(u16);
0617         /* Set the base address for flash register access */
0618         hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
0619     } else {
0620         /* Can't read flash registers if register set isn't mapped. */
0621         if (!hw->flash_address) {
0622             e_dbg("ERROR: Flash registers not mapped\n");
0623             return -E1000_ERR_CONFIG;
0624         }
0625 
0626         gfpreg = er32flash(ICH_FLASH_GFPREG);
0627 
0628         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
0629          * Add 1 to sector_end_addr since this sector is included in
0630          * the overall size.
0631          */
0632         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
0633         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
0634 
0635         /* flash_base_addr is byte-aligned */
0636         nvm->flash_base_addr = sector_base_addr
0637             << FLASH_SECTOR_ADDR_SHIFT;
0638 
0639         /* find total size of the NVM, then cut in half since the total
0640          * size represents two separate NVM banks.
0641          */
0642         nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
0643                     << FLASH_SECTOR_ADDR_SHIFT);
0644         nvm->flash_bank_size /= 2;
0645         /* Adjust to word count */
0646         nvm->flash_bank_size /= sizeof(u16);
0647     }
0648 
0649     nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
0650 
0651     /* Clear shadow ram */
0652     for (i = 0; i < nvm->word_size; i++) {
0653         dev_spec->shadow_ram[i].modified = false;
0654         dev_spec->shadow_ram[i].value = 0xFFFF;
0655     }
0656 
0657     return 0;
0658 }
0659 
0660 /**
0661  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
0662  *  @hw: pointer to the HW structure
0663  *
0664  *  Initialize family-specific MAC parameters and function
0665  *  pointers.
0666  **/
0667 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
0668 {
0669     struct e1000_mac_info *mac = &hw->mac;
0670 
0671     /* Set media type function pointer */
0672     hw->phy.media_type = e1000_media_type_copper;
0673 
0674     /* Set mta register count */
0675     mac->mta_reg_count = 32;
0676     /* Set rar entry count */
0677     mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
0678     if (mac->type == e1000_ich8lan)
0679         mac->rar_entry_count--;
0680     /* FWSM register */
0681     mac->has_fwsm = true;
0682     /* ARC subsystem not supported */
0683     mac->arc_subsystem_valid = false;
0684     /* Adaptive IFS supported */
0685     mac->adaptive_ifs = true;
0686 
0687     /* LED and other operations */
0688     switch (mac->type) {
0689     case e1000_ich8lan:
0690     case e1000_ich9lan:
0691     case e1000_ich10lan:
0692         /* check management mode */
0693         mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
0694         /* ID LED init */
0695         mac->ops.id_led_init = e1000e_id_led_init_generic;
0696         /* blink LED */
0697         mac->ops.blink_led = e1000e_blink_led_generic;
0698         /* setup LED */
0699         mac->ops.setup_led = e1000e_setup_led_generic;
0700         /* cleanup LED */
0701         mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
0702         /* turn on/off LED */
0703         mac->ops.led_on = e1000_led_on_ich8lan;
0704         mac->ops.led_off = e1000_led_off_ich8lan;
0705         break;
0706     case e1000_pch2lan:
0707         mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
0708         mac->ops.rar_set = e1000_rar_set_pch2lan;
0709         fallthrough;
0710     case e1000_pch_lpt:
0711     case e1000_pch_spt:
0712     case e1000_pch_cnp:
0713     case e1000_pch_tgp:
0714     case e1000_pch_adp:
0715     case e1000_pch_mtp:
0716     case e1000_pch_lnp:
0717     case e1000_pchlan:
0718         /* check management mode */
0719         mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
0720         /* ID LED init */
0721         mac->ops.id_led_init = e1000_id_led_init_pchlan;
0722         /* setup LED */
0723         mac->ops.setup_led = e1000_setup_led_pchlan;
0724         /* cleanup LED */
0725         mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
0726         /* turn on/off LED */
0727         mac->ops.led_on = e1000_led_on_pchlan;
0728         mac->ops.led_off = e1000_led_off_pchlan;
0729         break;
0730     default:
0731         break;
0732     }
0733 
0734     if (mac->type >= e1000_pch_lpt) {
0735         mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
0736         mac->ops.rar_set = e1000_rar_set_pch_lpt;
0737         mac->ops.setup_physical_interface =
0738             e1000_setup_copper_link_pch_lpt;
0739         mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
0740     }
0741 
0742     /* Enable PCS Lock-loss workaround for ICH8 */
0743     if (mac->type == e1000_ich8lan)
0744         e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
0745 
0746     return 0;
0747 }
0748 
0749 /**
0750  *  __e1000_access_emi_reg_locked - Read/write EMI register
0751  *  @hw: pointer to the HW structure
0752  *  @address: EMI address to program
0753  *  @data: pointer to value to read/write from/to the EMI address
0754  *  @read: boolean flag to indicate read or write
0755  *
0756  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
0757  **/
0758 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
0759                      u16 *data, bool read)
0760 {
0761     s32 ret_val;
0762 
0763     ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
0764     if (ret_val)
0765         return ret_val;
0766 
0767     if (read)
0768         ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
0769     else
0770         ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
0771 
0772     return ret_val;
0773 }
0774 
0775 /**
0776  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
0777  *  @hw: pointer to the HW structure
0778  *  @addr: EMI address to program
0779  *  @data: value to be read from the EMI address
0780  *
0781  *  Assumes the SW/FW/HW Semaphore is already acquired.
0782  **/
0783 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
0784 {
0785     return __e1000_access_emi_reg_locked(hw, addr, data, true);
0786 }
0787 
0788 /**
0789  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
0790  *  @hw: pointer to the HW structure
0791  *  @addr: EMI address to program
0792  *  @data: value to be written to the EMI address
0793  *
0794  *  Assumes the SW/FW/HW Semaphore is already acquired.
0795  **/
0796 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
0797 {
0798     return __e1000_access_emi_reg_locked(hw, addr, &data, false);
0799 }
0800 
0801 /**
0802  *  e1000_set_eee_pchlan - Enable/disable EEE support
0803  *  @hw: pointer to the HW structure
0804  *
0805  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
0806  *  the link and the EEE capabilities of the link partner.  The LPI Control
0807  *  register bits will remain set only if/when link is up.
0808  *
0809  *  EEE LPI must not be asserted earlier than one second after link is up.
0810  *  On 82579, EEE LPI should not be enabled until such time otherwise there
0811  *  can be link issues with some switches.  Other devices can have EEE LPI
0812  *  enabled immediately upon link up since they have a timer in hardware which
0813  *  prevents LPI from being asserted too early.
0814  **/
0815 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
0816 {
0817     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
0818     s32 ret_val;
0819     u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
0820 
0821     switch (hw->phy.type) {
0822     case e1000_phy_82579:
0823         lpa = I82579_EEE_LP_ABILITY;
0824         pcs_status = I82579_EEE_PCS_STATUS;
0825         adv_addr = I82579_EEE_ADVERTISEMENT;
0826         break;
0827     case e1000_phy_i217:
0828         lpa = I217_EEE_LP_ABILITY;
0829         pcs_status = I217_EEE_PCS_STATUS;
0830         adv_addr = I217_EEE_ADVERTISEMENT;
0831         break;
0832     default:
0833         return 0;
0834     }
0835 
0836     ret_val = hw->phy.ops.acquire(hw);
0837     if (ret_val)
0838         return ret_val;
0839 
0840     ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
0841     if (ret_val)
0842         goto release;
0843 
0844     /* Clear bits that enable EEE in various speeds */
0845     lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
0846 
0847     /* Enable EEE if not disabled by user */
0848     if (!dev_spec->eee_disable) {
0849         /* Save off link partner's EEE ability */
0850         ret_val = e1000_read_emi_reg_locked(hw, lpa,
0851                             &dev_spec->eee_lp_ability);
0852         if (ret_val)
0853             goto release;
0854 
0855         /* Read EEE advertisement */
0856         ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
0857         if (ret_val)
0858             goto release;
0859 
0860         /* Enable EEE only for speeds in which the link partner is
0861          * EEE capable and for which we advertise EEE.
0862          */
0863         if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
0864             lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
0865 
0866         if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
0867             e1e_rphy_locked(hw, MII_LPA, &data);
0868             if (data & LPA_100FULL)
0869                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
0870             else
0871                 /* EEE is not supported in 100Half, so ignore
0872                  * partner's EEE in 100 ability if full-duplex
0873                  * is not advertised.
0874                  */
0875                 dev_spec->eee_lp_ability &=
0876                     ~I82579_EEE_100_SUPPORTED;
0877         }
0878     }
0879 
0880     if (hw->phy.type == e1000_phy_82579) {
0881         ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
0882                             &data);
0883         if (ret_val)
0884             goto release;
0885 
0886         data &= ~I82579_LPI_100_PLL_SHUT;
0887         ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
0888                              data);
0889     }
0890 
0891     /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
0892     ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
0893     if (ret_val)
0894         goto release;
0895 
0896     ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
0897 release:
0898     hw->phy.ops.release(hw);
0899 
0900     return ret_val;
0901 }
0902 
0903 /**
0904  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
0905  *  @hw:   pointer to the HW structure
0906  *  @link: link up bool flag
0907  *
0908  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
0909  *  preventing further DMA write requests.  Workaround the issue by disabling
0910  *  the de-assertion of the clock request when in 1Gpbs mode.
0911  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
0912  *  speeds in order to avoid Tx hangs.
0913  **/
0914 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
0915 {
0916     u32 fextnvm6 = er32(FEXTNVM6);
0917     u32 status = er32(STATUS);
0918     s32 ret_val = 0;
0919     u16 reg;
0920 
0921     if (link && (status & E1000_STATUS_SPEED_1000)) {
0922         ret_val = hw->phy.ops.acquire(hw);
0923         if (ret_val)
0924             return ret_val;
0925 
0926         ret_val =
0927             e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
0928                         &reg);
0929         if (ret_val)
0930             goto release;
0931 
0932         ret_val =
0933             e1000e_write_kmrn_reg_locked(hw,
0934                          E1000_KMRNCTRLSTA_K1_CONFIG,
0935                          reg &
0936                          ~E1000_KMRNCTRLSTA_K1_ENABLE);
0937         if (ret_val)
0938             goto release;
0939 
0940         usleep_range(10, 20);
0941 
0942         ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
0943 
0944         ret_val =
0945             e1000e_write_kmrn_reg_locked(hw,
0946                          E1000_KMRNCTRLSTA_K1_CONFIG,
0947                          reg);
0948 release:
0949         hw->phy.ops.release(hw);
0950     } else {
0951         /* clear FEXTNVM6 bit 8 on link down or 10/100 */
0952         fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
0953 
0954         if ((hw->phy.revision > 5) || !link ||
0955             ((status & E1000_STATUS_SPEED_100) &&
0956              (status & E1000_STATUS_FD)))
0957             goto update_fextnvm6;
0958 
0959         ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
0960         if (ret_val)
0961             return ret_val;
0962 
0963         /* Clear link status transmit timeout */
0964         reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
0965 
0966         if (status & E1000_STATUS_SPEED_100) {
0967             /* Set inband Tx timeout to 5x10us for 100Half */
0968             reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
0969 
0970             /* Do not extend the K1 entry latency for 100Half */
0971             fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
0972         } else {
0973             /* Set inband Tx timeout to 50x10us for 10Full/Half */
0974             reg |= 50 <<
0975                 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
0976 
0977             /* Extend the K1 entry latency for 10 Mbps */
0978             fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
0979         }
0980 
0981         ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
0982         if (ret_val)
0983             return ret_val;
0984 
0985 update_fextnvm6:
0986         ew32(FEXTNVM6, fextnvm6);
0987     }
0988 
0989     return ret_val;
0990 }
0991 
0992 /**
0993  *  e1000_platform_pm_pch_lpt - Set platform power management values
0994  *  @hw: pointer to the HW structure
0995  *  @link: bool indicating link status
0996  *
0997  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
0998  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
0999  *  when link is up (which must not exceed the maximum latency supported
1000  *  by the platform), otherwise specify there is no LTR requirement.
1001  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1002  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1003  *  Capability register set, on this device LTR is set by writing the
1004  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1005  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1006  *  message to the PMC.
1007  **/
1008 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1009 {
1010     u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1011         link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1012     u32 max_ltr_enc_d = 0;  /* maximum LTR decoded by platform */
1013     u32 lat_enc_d = 0;  /* latency decoded */
1014     u16 lat_enc = 0;    /* latency encoded */
1015 
1016     if (link) {
1017         u16 speed, duplex, scale = 0;
1018         u16 max_snoop, max_nosnoop;
1019         u16 max_ltr_enc;    /* max LTR latency encoded */
1020         u64 value;
1021         u32 rxa;
1022 
1023         if (!hw->adapter->max_frame_size) {
1024             e_dbg("max_frame_size not set.\n");
1025             return -E1000_ERR_CONFIG;
1026         }
1027 
1028         hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1029         if (!speed) {
1030             e_dbg("Speed not set.\n");
1031             return -E1000_ERR_CONFIG;
1032         }
1033 
1034         /* Rx Packet Buffer Allocation size (KB) */
1035         rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1036 
1037         /* Determine the maximum latency tolerated by the device.
1038          *
1039          * Per the PCIe spec, the tolerated latencies are encoded as
1040          * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1041          * a 10-bit value (0-1023) to provide a range from 1 ns to
1042          * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1043          * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1044          */
1045         rxa *= 512;
1046         value = (rxa > hw->adapter->max_frame_size) ?
1047             (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1048             0;
1049 
1050         while (value > PCI_LTR_VALUE_MASK) {
1051             scale++;
1052             value = DIV_ROUND_UP(value, BIT(5));
1053         }
1054         if (scale > E1000_LTRV_SCALE_MAX) {
1055             e_dbg("Invalid LTR latency scale %d\n", scale);
1056             return -E1000_ERR_CONFIG;
1057         }
1058         lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1059 
1060         /* Determine the maximum latency tolerated by the platform */
1061         pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1062                      &max_snoop);
1063         pci_read_config_word(hw->adapter->pdev,
1064                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1065         max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1066 
1067         lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1068                  (1U << (E1000_LTRV_SCALE_FACTOR *
1069                  ((lat_enc & E1000_LTRV_SCALE_MASK)
1070                  >> E1000_LTRV_SCALE_SHIFT)));
1071 
1072         max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1073                  (1U << (E1000_LTRV_SCALE_FACTOR *
1074                  ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1075                  >> E1000_LTRV_SCALE_SHIFT)));
1076 
1077         if (lat_enc_d > max_ltr_enc_d)
1078             lat_enc = max_ltr_enc;
1079     }
1080 
1081     /* Set Snoop and No-Snoop latencies the same */
1082     reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1083     ew32(LTRV, reg);
1084 
1085     return 0;
1086 }
1087 
1088 /**
1089  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1090  *  @hw: pointer to the HW structure
1091  *  @to_sx: boolean indicating a system power state transition to Sx
1092  *
1093  *  When link is down, configure ULP mode to significantly reduce the power
1094  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1095  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1096  *  system, configure the ULP mode by software.
1097  */
1098 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1099 {
1100     u32 mac_reg;
1101     s32 ret_val = 0;
1102     u16 phy_reg;
1103     u16 oem_reg = 0;
1104 
1105     if ((hw->mac.type < e1000_pch_lpt) ||
1106         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1107         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1108         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1109         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1110         (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1111         return 0;
1112 
1113     if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1114         /* Request ME configure ULP mode in the PHY */
1115         mac_reg = er32(H2ME);
1116         mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1117         ew32(H2ME, mac_reg);
1118 
1119         goto out;
1120     }
1121 
1122     if (!to_sx) {
1123         int i = 0;
1124 
1125         /* Poll up to 5 seconds for Cable Disconnected indication */
1126         while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1127             /* Bail if link is re-acquired */
1128             if (er32(STATUS) & E1000_STATUS_LU)
1129                 return -E1000_ERR_PHY;
1130 
1131             if (i++ == 100)
1132                 break;
1133 
1134             msleep(50);
1135         }
1136         e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1137               (er32(FEXT) &
1138                E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1139     }
1140 
1141     ret_val = hw->phy.ops.acquire(hw);
1142     if (ret_val)
1143         goto out;
1144 
1145     /* Force SMBus mode in PHY */
1146     ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1147     if (ret_val)
1148         goto release;
1149     phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1150     e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1151 
1152     /* Force SMBus mode in MAC */
1153     mac_reg = er32(CTRL_EXT);
1154     mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1155     ew32(CTRL_EXT, mac_reg);
1156 
1157     /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1158      * LPLU and disable Gig speed when entering ULP
1159      */
1160     if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1161         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162                                &oem_reg);
1163         if (ret_val)
1164             goto release;
1165 
1166         phy_reg = oem_reg;
1167         phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1168 
1169         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1170                             phy_reg);
1171 
1172         if (ret_val)
1173             goto release;
1174     }
1175 
1176     /* Set Inband ULP Exit, Reset to SMBus mode and
1177      * Disable SMBus Release on PERST# in PHY
1178      */
1179     ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1180     if (ret_val)
1181         goto release;
1182     phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1183             I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1184     if (to_sx) {
1185         if (er32(WUFC) & E1000_WUFC_LNKC)
1186             phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1187         else
1188             phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189 
1190         phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1191         phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1192     } else {
1193         phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1194         phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1195         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1196     }
1197     e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1198 
1199     /* Set Disable SMBus Release on PERST# in MAC */
1200     mac_reg = er32(FEXTNVM7);
1201     mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1202     ew32(FEXTNVM7, mac_reg);
1203 
1204     /* Commit ULP changes in PHY by starting auto ULP configuration */
1205     phy_reg |= I218_ULP_CONFIG1_START;
1206     e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1207 
1208     if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1209         to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1210         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1211                             oem_reg);
1212         if (ret_val)
1213             goto release;
1214     }
1215 
1216 release:
1217     hw->phy.ops.release(hw);
1218 out:
1219     if (ret_val)
1220         e_dbg("Error in ULP enable flow: %d\n", ret_val);
1221     else
1222         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1223 
1224     return ret_val;
1225 }
1226 
1227 /**
1228  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1229  *  @hw: pointer to the HW structure
1230  *  @force: boolean indicating whether or not to force disabling ULP
1231  *
1232  *  Un-configure ULP mode when link is up, the system is transitioned from
1233  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1234  *  system, poll for an indication from ME that ULP has been un-configured.
1235  *  If not on an ME enabled system, un-configure the ULP mode by software.
1236  *
1237  *  During nominal operation, this function is called when link is acquired
1238  *  to disable ULP mode (force=false); otherwise, for example when unloading
1239  *  the driver or during Sx->S0 transitions, this is called with force=true
1240  *  to forcibly disable ULP.
1241  */
1242 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1243 {
1244     s32 ret_val = 0;
1245     u32 mac_reg;
1246     u16 phy_reg;
1247     int i = 0;
1248 
1249     if ((hw->mac.type < e1000_pch_lpt) ||
1250         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1251         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1252         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1253         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1254         (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1255         return 0;
1256 
1257     if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1258         struct e1000_adapter *adapter = hw->adapter;
1259         bool firmware_bug = false;
1260 
1261         if (force) {
1262             /* Request ME un-configure ULP mode in the PHY */
1263             mac_reg = er32(H2ME);
1264             mac_reg &= ~E1000_H2ME_ULP;
1265             mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1266             ew32(H2ME, mac_reg);
1267         }
1268 
1269         /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1270          * If this takes more than 1 second, show a warning indicating a
1271          * firmware bug
1272          */
1273         while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1274             if (i++ == 250) {
1275                 ret_val = -E1000_ERR_PHY;
1276                 goto out;
1277             }
1278             if (i > 100 && !firmware_bug)
1279                 firmware_bug = true;
1280 
1281             usleep_range(10000, 11000);
1282         }
1283         if (firmware_bug)
1284             e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1285                    i * 10);
1286         else
1287             e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1288                   i * 10);
1289 
1290         if (force) {
1291             mac_reg = er32(H2ME);
1292             mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1293             ew32(H2ME, mac_reg);
1294         } else {
1295             /* Clear H2ME.ULP after ME ULP configuration */
1296             mac_reg = er32(H2ME);
1297             mac_reg &= ~E1000_H2ME_ULP;
1298             ew32(H2ME, mac_reg);
1299         }
1300 
1301         goto out;
1302     }
1303 
1304     ret_val = hw->phy.ops.acquire(hw);
1305     if (ret_val)
1306         goto out;
1307 
1308     if (force)
1309         /* Toggle LANPHYPC Value bit */
1310         e1000_toggle_lanphypc_pch_lpt(hw);
1311 
1312     /* Unforce SMBus mode in PHY */
1313     ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1314     if (ret_val) {
1315         /* The MAC might be in PCIe mode, so temporarily force to
1316          * SMBus mode in order to access the PHY.
1317          */
1318         mac_reg = er32(CTRL_EXT);
1319         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1320         ew32(CTRL_EXT, mac_reg);
1321 
1322         msleep(50);
1323 
1324         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1325                                &phy_reg);
1326         if (ret_val)
1327             goto release;
1328     }
1329     phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1330     e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1331 
1332     /* Unforce SMBus mode in MAC */
1333     mac_reg = er32(CTRL_EXT);
1334     mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1335     ew32(CTRL_EXT, mac_reg);
1336 
1337     /* When ULP mode was previously entered, K1 was disabled by the
1338      * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1339      */
1340     ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1341     if (ret_val)
1342         goto release;
1343     phy_reg |= HV_PM_CTRL_K1_ENABLE;
1344     e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1345 
1346     /* Clear ULP enabled configuration */
1347     ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1348     if (ret_val)
1349         goto release;
1350     phy_reg &= ~(I218_ULP_CONFIG1_IND |
1351              I218_ULP_CONFIG1_STICKY_ULP |
1352              I218_ULP_CONFIG1_RESET_TO_SMBUS |
1353              I218_ULP_CONFIG1_WOL_HOST |
1354              I218_ULP_CONFIG1_INBAND_EXIT |
1355              I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1356              I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1357              I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1358     e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1359 
1360     /* Commit ULP changes by starting auto ULP configuration */
1361     phy_reg |= I218_ULP_CONFIG1_START;
1362     e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363 
1364     /* Clear Disable SMBus Release on PERST# in MAC */
1365     mac_reg = er32(FEXTNVM7);
1366     mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1367     ew32(FEXTNVM7, mac_reg);
1368 
1369 release:
1370     hw->phy.ops.release(hw);
1371     if (force) {
1372         e1000_phy_hw_reset(hw);
1373         msleep(50);
1374     }
1375 out:
1376     if (ret_val)
1377         e_dbg("Error in ULP disable flow: %d\n", ret_val);
1378     else
1379         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1380 
1381     return ret_val;
1382 }
1383 
1384 /**
1385  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1386  *  @hw: pointer to the HW structure
1387  *
1388  *  Checks to see of the link status of the hardware has changed.  If a
1389  *  change in link status has been detected, then we read the PHY registers
1390  *  to get the current speed/duplex if link exists.
1391  **/
1392 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1393 {
1394     struct e1000_mac_info *mac = &hw->mac;
1395     s32 ret_val, tipg_reg = 0;
1396     u16 emi_addr, emi_val = 0;
1397     bool link;
1398     u16 phy_reg;
1399 
1400     /* We only want to go out to the PHY registers to see if Auto-Neg
1401      * has completed and/or if our link status has changed.  The
1402      * get_link_status flag is set upon receiving a Link Status
1403      * Change or Rx Sequence Error interrupt.
1404      */
1405     if (!mac->get_link_status)
1406         return 0;
1407     mac->get_link_status = false;
1408 
1409     /* First we want to see if the MII Status Register reports
1410      * link.  If so, then we want to get the current speed/duplex
1411      * of the PHY.
1412      */
1413     ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1414     if (ret_val)
1415         goto out;
1416 
1417     if (hw->mac.type == e1000_pchlan) {
1418         ret_val = e1000_k1_gig_workaround_hv(hw, link);
1419         if (ret_val)
1420             goto out;
1421     }
1422 
1423     /* When connected at 10Mbps half-duplex, some parts are excessively
1424      * aggressive resulting in many collisions. To avoid this, increase
1425      * the IPG and reduce Rx latency in the PHY.
1426      */
1427     if ((hw->mac.type >= e1000_pch2lan) && link) {
1428         u16 speed, duplex;
1429 
1430         e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1431         tipg_reg = er32(TIPG);
1432         tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1433 
1434         if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1435             tipg_reg |= 0xFF;
1436             /* Reduce Rx latency in analog PHY */
1437             emi_val = 0;
1438         } else if (hw->mac.type >= e1000_pch_spt &&
1439                duplex == FULL_DUPLEX && speed != SPEED_1000) {
1440             tipg_reg |= 0xC;
1441             emi_val = 1;
1442         } else {
1443 
1444             /* Roll back the default values */
1445             tipg_reg |= 0x08;
1446             emi_val = 1;
1447         }
1448 
1449         ew32(TIPG, tipg_reg);
1450 
1451         ret_val = hw->phy.ops.acquire(hw);
1452         if (ret_val)
1453             goto out;
1454 
1455         if (hw->mac.type == e1000_pch2lan)
1456             emi_addr = I82579_RX_CONFIG;
1457         else
1458             emi_addr = I217_RX_CONFIG;
1459         ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1460 
1461         if (hw->mac.type >= e1000_pch_lpt) {
1462             u16 phy_reg;
1463 
1464             e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1465             phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1466             if (speed == SPEED_100 || speed == SPEED_10)
1467                 phy_reg |= 0x3E8;
1468             else
1469                 phy_reg |= 0xFA;
1470             e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1471 
1472             if (speed == SPEED_1000) {
1473                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1474                                 &phy_reg);
1475 
1476                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1477 
1478                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1479                                  phy_reg);
1480             }
1481         }
1482         hw->phy.ops.release(hw);
1483 
1484         if (ret_val)
1485             goto out;
1486 
1487         if (hw->mac.type >= e1000_pch_spt) {
1488             u16 data;
1489             u16 ptr_gap;
1490 
1491             if (speed == SPEED_1000) {
1492                 ret_val = hw->phy.ops.acquire(hw);
1493                 if (ret_val)
1494                     goto out;
1495 
1496                 ret_val = e1e_rphy_locked(hw,
1497                               PHY_REG(776, 20),
1498                               &data);
1499                 if (ret_val) {
1500                     hw->phy.ops.release(hw);
1501                     goto out;
1502                 }
1503 
1504                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1505                 if (ptr_gap < 0x18) {
1506                     data &= ~(0x3FF << 2);
1507                     data |= (0x18 << 2);
1508                     ret_val =
1509                         e1e_wphy_locked(hw,
1510                                 PHY_REG(776, 20),
1511                                 data);
1512                 }
1513                 hw->phy.ops.release(hw);
1514                 if (ret_val)
1515                     goto out;
1516             } else {
1517                 ret_val = hw->phy.ops.acquire(hw);
1518                 if (ret_val)
1519                     goto out;
1520 
1521                 ret_val = e1e_wphy_locked(hw,
1522                               PHY_REG(776, 20),
1523                               0xC023);
1524                 hw->phy.ops.release(hw);
1525                 if (ret_val)
1526                     goto out;
1527 
1528             }
1529         }
1530     }
1531 
1532     /* I217 Packet Loss issue:
1533      * ensure that FEXTNVM4 Beacon Duration is set correctly
1534      * on power up.
1535      * Set the Beacon Duration for I217 to 8 usec
1536      */
1537     if (hw->mac.type >= e1000_pch_lpt) {
1538         u32 mac_reg;
1539 
1540         mac_reg = er32(FEXTNVM4);
1541         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1542         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1543         ew32(FEXTNVM4, mac_reg);
1544     }
1545 
1546     /* Work-around I218 hang issue */
1547     if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1548         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1549         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1550         (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1551         ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1552         if (ret_val)
1553             goto out;
1554     }
1555     if (hw->mac.type >= e1000_pch_lpt) {
1556         /* Set platform power management values for
1557          * Latency Tolerance Reporting (LTR)
1558          */
1559         ret_val = e1000_platform_pm_pch_lpt(hw, link);
1560         if (ret_val)
1561             goto out;
1562     }
1563 
1564     /* Clear link partner's EEE ability */
1565     hw->dev_spec.ich8lan.eee_lp_ability = 0;
1566 
1567     if (hw->mac.type >= e1000_pch_lpt) {
1568         u32 fextnvm6 = er32(FEXTNVM6);
1569 
1570         if (hw->mac.type == e1000_pch_spt) {
1571             /* FEXTNVM6 K1-off workaround - for SPT only */
1572             u32 pcieanacfg = er32(PCIEANACFG);
1573 
1574             if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1575                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1576             else
1577                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1578         }
1579 
1580         ew32(FEXTNVM6, fextnvm6);
1581     }
1582 
1583     if (!link)
1584         goto out;
1585 
1586     switch (hw->mac.type) {
1587     case e1000_pch2lan:
1588         ret_val = e1000_k1_workaround_lv(hw);
1589         if (ret_val)
1590             return ret_val;
1591         fallthrough;
1592     case e1000_pchlan:
1593         if (hw->phy.type == e1000_phy_82578) {
1594             ret_val = e1000_link_stall_workaround_hv(hw);
1595             if (ret_val)
1596                 return ret_val;
1597         }
1598 
1599         /* Workaround for PCHx parts in half-duplex:
1600          * Set the number of preambles removed from the packet
1601          * when it is passed from the PHY to the MAC to prevent
1602          * the MAC from misinterpreting the packet type.
1603          */
1604         e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1605         phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1606 
1607         if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1608             phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1609 
1610         e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1611         break;
1612     default:
1613         break;
1614     }
1615 
1616     /* Check if there was DownShift, must be checked
1617      * immediately after link-up
1618      */
1619     e1000e_check_downshift(hw);
1620 
1621     /* Enable/Disable EEE after link up */
1622     if (hw->phy.type > e1000_phy_82579) {
1623         ret_val = e1000_set_eee_pchlan(hw);
1624         if (ret_val)
1625             return ret_val;
1626     }
1627 
1628     /* If we are forcing speed/duplex, then we simply return since
1629      * we have already determined whether we have link or not.
1630      */
1631     if (!mac->autoneg)
1632         return -E1000_ERR_CONFIG;
1633 
1634     /* Auto-Neg is enabled.  Auto Speed Detection takes care
1635      * of MAC speed/duplex configuration.  So we only need to
1636      * configure Collision Distance in the MAC.
1637      */
1638     mac->ops.config_collision_dist(hw);
1639 
1640     /* Configure Flow Control now that Auto-Neg has completed.
1641      * First, we need to restore the desired flow control
1642      * settings because we may have had to re-autoneg with a
1643      * different link partner.
1644      */
1645     ret_val = e1000e_config_fc_after_link_up(hw);
1646     if (ret_val)
1647         e_dbg("Error configuring flow control\n");
1648 
1649     return ret_val;
1650 
1651 out:
1652     mac->get_link_status = true;
1653     return ret_val;
1654 }
1655 
1656 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1657 {
1658     struct e1000_hw *hw = &adapter->hw;
1659     s32 rc;
1660 
1661     rc = e1000_init_mac_params_ich8lan(hw);
1662     if (rc)
1663         return rc;
1664 
1665     rc = e1000_init_nvm_params_ich8lan(hw);
1666     if (rc)
1667         return rc;
1668 
1669     switch (hw->mac.type) {
1670     case e1000_ich8lan:
1671     case e1000_ich9lan:
1672     case e1000_ich10lan:
1673         rc = e1000_init_phy_params_ich8lan(hw);
1674         break;
1675     case e1000_pchlan:
1676     case e1000_pch2lan:
1677     case e1000_pch_lpt:
1678     case e1000_pch_spt:
1679     case e1000_pch_cnp:
1680     case e1000_pch_tgp:
1681     case e1000_pch_adp:
1682     case e1000_pch_mtp:
1683     case e1000_pch_lnp:
1684         rc = e1000_init_phy_params_pchlan(hw);
1685         break;
1686     default:
1687         break;
1688     }
1689     if (rc)
1690         return rc;
1691 
1692     /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1693      * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1694      */
1695     if ((adapter->hw.phy.type == e1000_phy_ife) ||
1696         ((adapter->hw.mac.type >= e1000_pch2lan) &&
1697          (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1698         adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1699         adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1700 
1701         hw->mac.ops.blink_led = NULL;
1702     }
1703 
1704     if ((adapter->hw.mac.type == e1000_ich8lan) &&
1705         (adapter->hw.phy.type != e1000_phy_ife))
1706         adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1707 
1708     /* Enable workaround for 82579 w/ ME enabled */
1709     if ((adapter->hw.mac.type == e1000_pch2lan) &&
1710         (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1711         adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1712 
1713     return 0;
1714 }
1715 
1716 static DEFINE_MUTEX(nvm_mutex);
1717 
1718 /**
1719  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1720  *  @hw: pointer to the HW structure
1721  *
1722  *  Acquires the mutex for performing NVM operations.
1723  **/
1724 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1725 {
1726     mutex_lock(&nvm_mutex);
1727 
1728     return 0;
1729 }
1730 
1731 /**
1732  *  e1000_release_nvm_ich8lan - Release NVM mutex
1733  *  @hw: pointer to the HW structure
1734  *
1735  *  Releases the mutex used while performing NVM operations.
1736  **/
1737 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1738 {
1739     mutex_unlock(&nvm_mutex);
1740 }
1741 
1742 /**
1743  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1744  *  @hw: pointer to the HW structure
1745  *
1746  *  Acquires the software control flag for performing PHY and select
1747  *  MAC CSR accesses.
1748  **/
1749 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1750 {
1751     u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1752     s32 ret_val = 0;
1753 
1754     if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1755                  &hw->adapter->state)) {
1756         e_dbg("contention for Phy access\n");
1757         return -E1000_ERR_PHY;
1758     }
1759 
1760     while (timeout) {
1761         extcnf_ctrl = er32(EXTCNF_CTRL);
1762         if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1763             break;
1764 
1765         mdelay(1);
1766         timeout--;
1767     }
1768 
1769     if (!timeout) {
1770         e_dbg("SW has already locked the resource.\n");
1771         ret_val = -E1000_ERR_CONFIG;
1772         goto out;
1773     }
1774 
1775     timeout = SW_FLAG_TIMEOUT;
1776 
1777     extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1778     ew32(EXTCNF_CTRL, extcnf_ctrl);
1779 
1780     while (timeout) {
1781         extcnf_ctrl = er32(EXTCNF_CTRL);
1782         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1783             break;
1784 
1785         mdelay(1);
1786         timeout--;
1787     }
1788 
1789     if (!timeout) {
1790         e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1791               er32(FWSM), extcnf_ctrl);
1792         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1793         ew32(EXTCNF_CTRL, extcnf_ctrl);
1794         ret_val = -E1000_ERR_CONFIG;
1795         goto out;
1796     }
1797 
1798 out:
1799     if (ret_val)
1800         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1801 
1802     return ret_val;
1803 }
1804 
1805 /**
1806  *  e1000_release_swflag_ich8lan - Release software control flag
1807  *  @hw: pointer to the HW structure
1808  *
1809  *  Releases the software control flag for performing PHY and select
1810  *  MAC CSR accesses.
1811  **/
1812 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1813 {
1814     u32 extcnf_ctrl;
1815 
1816     extcnf_ctrl = er32(EXTCNF_CTRL);
1817 
1818     if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1819         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1820         ew32(EXTCNF_CTRL, extcnf_ctrl);
1821     } else {
1822         e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1823     }
1824 
1825     clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1826 }
1827 
1828 /**
1829  *  e1000_check_mng_mode_ich8lan - Checks management mode
1830  *  @hw: pointer to the HW structure
1831  *
1832  *  This checks if the adapter has any manageability enabled.
1833  *  This is a function pointer entry point only called by read/write
1834  *  routines for the PHY and NVM parts.
1835  **/
1836 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1837 {
1838     u32 fwsm;
1839 
1840     fwsm = er32(FWSM);
1841     return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1842         ((fwsm & E1000_FWSM_MODE_MASK) ==
1843          (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1844 }
1845 
1846 /**
1847  *  e1000_check_mng_mode_pchlan - Checks management mode
1848  *  @hw: pointer to the HW structure
1849  *
1850  *  This checks if the adapter has iAMT enabled.
1851  *  This is a function pointer entry point only called by read/write
1852  *  routines for the PHY and NVM parts.
1853  **/
1854 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1855 {
1856     u32 fwsm;
1857 
1858     fwsm = er32(FWSM);
1859     return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1860         (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1861 }
1862 
1863 /**
1864  *  e1000_rar_set_pch2lan - Set receive address register
1865  *  @hw: pointer to the HW structure
1866  *  @addr: pointer to the receive address
1867  *  @index: receive address array register
1868  *
1869  *  Sets the receive address array register at index to the address passed
1870  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1871  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1872  *  Use SHRA[0-3] in place of those reserved for ME.
1873  **/
1874 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1875 {
1876     u32 rar_low, rar_high;
1877 
1878     /* HW expects these in little endian so we reverse the byte order
1879      * from network order (big endian) to little endian
1880      */
1881     rar_low = ((u32)addr[0] |
1882            ((u32)addr[1] << 8) |
1883            ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1884 
1885     rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1886 
1887     /* If MAC address zero, no need to set the AV bit */
1888     if (rar_low || rar_high)
1889         rar_high |= E1000_RAH_AV;
1890 
1891     if (index == 0) {
1892         ew32(RAL(index), rar_low);
1893         e1e_flush();
1894         ew32(RAH(index), rar_high);
1895         e1e_flush();
1896         return 0;
1897     }
1898 
1899     /* RAR[1-6] are owned by manageability.  Skip those and program the
1900      * next address into the SHRA register array.
1901      */
1902     if (index < (u32)(hw->mac.rar_entry_count)) {
1903         s32 ret_val;
1904 
1905         ret_val = e1000_acquire_swflag_ich8lan(hw);
1906         if (ret_val)
1907             goto out;
1908 
1909         ew32(SHRAL(index - 1), rar_low);
1910         e1e_flush();
1911         ew32(SHRAH(index - 1), rar_high);
1912         e1e_flush();
1913 
1914         e1000_release_swflag_ich8lan(hw);
1915 
1916         /* verify the register updates */
1917         if ((er32(SHRAL(index - 1)) == rar_low) &&
1918             (er32(SHRAH(index - 1)) == rar_high))
1919             return 0;
1920 
1921         e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1922               (index - 1), er32(FWSM));
1923     }
1924 
1925 out:
1926     e_dbg("Failed to write receive address at index %d\n", index);
1927     return -E1000_ERR_CONFIG;
1928 }
1929 
1930 /**
1931  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1932  *  @hw: pointer to the HW structure
1933  *
1934  *  Get the number of available receive registers that the Host can
1935  *  program. SHRA[0-10] are the shared receive address registers
1936  *  that are shared between the Host and manageability engine (ME).
1937  *  ME can reserve any number of addresses and the host needs to be
1938  *  able to tell how many available registers it has access to.
1939  **/
1940 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1941 {
1942     u32 wlock_mac;
1943     u32 num_entries;
1944 
1945     wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1946     wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1947 
1948     switch (wlock_mac) {
1949     case 0:
1950         /* All SHRA[0..10] and RAR[0] available */
1951         num_entries = hw->mac.rar_entry_count;
1952         break;
1953     case 1:
1954         /* Only RAR[0] available */
1955         num_entries = 1;
1956         break;
1957     default:
1958         /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1959         num_entries = wlock_mac + 1;
1960         break;
1961     }
1962 
1963     return num_entries;
1964 }
1965 
1966 /**
1967  *  e1000_rar_set_pch_lpt - Set receive address registers
1968  *  @hw: pointer to the HW structure
1969  *  @addr: pointer to the receive address
1970  *  @index: receive address array register
1971  *
1972  *  Sets the receive address register array at index to the address passed
1973  *  in by addr. For LPT, RAR[0] is the base address register that is to
1974  *  contain the MAC address. SHRA[0-10] are the shared receive address
1975  *  registers that are shared between the Host and manageability engine (ME).
1976  **/
1977 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1978 {
1979     u32 rar_low, rar_high;
1980     u32 wlock_mac;
1981 
1982     /* HW expects these in little endian so we reverse the byte order
1983      * from network order (big endian) to little endian
1984      */
1985     rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1986            ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1987 
1988     rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1989 
1990     /* If MAC address zero, no need to set the AV bit */
1991     if (rar_low || rar_high)
1992         rar_high |= E1000_RAH_AV;
1993 
1994     if (index == 0) {
1995         ew32(RAL(index), rar_low);
1996         e1e_flush();
1997         ew32(RAH(index), rar_high);
1998         e1e_flush();
1999         return 0;
2000     }
2001 
2002     /* The manageability engine (ME) can lock certain SHRAR registers that
2003      * it is using - those registers are unavailable for use.
2004      */
2005     if (index < hw->mac.rar_entry_count) {
2006         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2007         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2008 
2009         /* Check if all SHRAR registers are locked */
2010         if (wlock_mac == 1)
2011             goto out;
2012 
2013         if ((wlock_mac == 0) || (index <= wlock_mac)) {
2014             s32 ret_val;
2015 
2016             ret_val = e1000_acquire_swflag_ich8lan(hw);
2017 
2018             if (ret_val)
2019                 goto out;
2020 
2021             ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2022             e1e_flush();
2023             ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2024             e1e_flush();
2025 
2026             e1000_release_swflag_ich8lan(hw);
2027 
2028             /* verify the register updates */
2029             if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2030                 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2031                 return 0;
2032         }
2033     }
2034 
2035 out:
2036     e_dbg("Failed to write receive address at index %d\n", index);
2037     return -E1000_ERR_CONFIG;
2038 }
2039 
2040 /**
2041  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2042  *  @hw: pointer to the HW structure
2043  *
2044  *  Checks if firmware is blocking the reset of the PHY.
2045  *  This is a function pointer entry point only called by
2046  *  reset routines.
2047  **/
2048 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2049 {
2050     bool blocked = false;
2051     int i = 0;
2052 
2053     while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2054            (i++ < 30))
2055         usleep_range(10000, 11000);
2056     return blocked ? E1000_BLK_PHY_RESET : 0;
2057 }
2058 
2059 /**
2060  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2061  *  @hw: pointer to the HW structure
2062  *
2063  *  Assumes semaphore already acquired.
2064  *
2065  **/
2066 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2067 {
2068     u16 phy_data;
2069     u32 strap = er32(STRAP);
2070     u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2071         E1000_STRAP_SMT_FREQ_SHIFT;
2072     s32 ret_val;
2073 
2074     strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2075 
2076     ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2077     if (ret_val)
2078         return ret_val;
2079 
2080     phy_data &= ~HV_SMB_ADDR_MASK;
2081     phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2082     phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2083 
2084     if (hw->phy.type == e1000_phy_i217) {
2085         /* Restore SMBus frequency */
2086         if (freq--) {
2087             phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2088             phy_data |= (freq & BIT(0)) <<
2089                 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2090             phy_data |= (freq & BIT(1)) <<
2091                 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2092         } else {
2093             e_dbg("Unsupported SMB frequency in PHY\n");
2094         }
2095     }
2096 
2097     return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2098 }
2099 
2100 /**
2101  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2102  *  @hw:   pointer to the HW structure
2103  *
2104  *  SW should configure the LCD from the NVM extended configuration region
2105  *  as a workaround for certain parts.
2106  **/
2107 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2108 {
2109     struct e1000_phy_info *phy = &hw->phy;
2110     u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2111     s32 ret_val = 0;
2112     u16 word_addr, reg_data, reg_addr, phy_page = 0;
2113 
2114     /* Initialize the PHY from the NVM on ICH platforms.  This
2115      * is needed due to an issue where the NVM configuration is
2116      * not properly autoloaded after power transitions.
2117      * Therefore, after each PHY reset, we will load the
2118      * configuration data out of the NVM manually.
2119      */
2120     switch (hw->mac.type) {
2121     case e1000_ich8lan:
2122         if (phy->type != e1000_phy_igp_3)
2123             return ret_val;
2124 
2125         if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2126             (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2127             sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2128             break;
2129         }
2130         fallthrough;
2131     case e1000_pchlan:
2132     case e1000_pch2lan:
2133     case e1000_pch_lpt:
2134     case e1000_pch_spt:
2135     case e1000_pch_cnp:
2136     case e1000_pch_tgp:
2137     case e1000_pch_adp:
2138     case e1000_pch_mtp:
2139     case e1000_pch_lnp:
2140         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2141         break;
2142     default:
2143         return ret_val;
2144     }
2145 
2146     ret_val = hw->phy.ops.acquire(hw);
2147     if (ret_val)
2148         return ret_val;
2149 
2150     data = er32(FEXTNVM);
2151     if (!(data & sw_cfg_mask))
2152         goto release;
2153 
2154     /* Make sure HW does not configure LCD from PHY
2155      * extended configuration before SW configuration
2156      */
2157     data = er32(EXTCNF_CTRL);
2158     if ((hw->mac.type < e1000_pch2lan) &&
2159         (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2160         goto release;
2161 
2162     cnf_size = er32(EXTCNF_SIZE);
2163     cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2164     cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2165     if (!cnf_size)
2166         goto release;
2167 
2168     cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2169     cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2170 
2171     if (((hw->mac.type == e1000_pchlan) &&
2172          !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2173         (hw->mac.type > e1000_pchlan)) {
2174         /* HW configures the SMBus address and LEDs when the
2175          * OEM and LCD Write Enable bits are set in the NVM.
2176          * When both NVM bits are cleared, SW will configure
2177          * them instead.
2178          */
2179         ret_val = e1000_write_smbus_addr(hw);
2180         if (ret_val)
2181             goto release;
2182 
2183         data = er32(LEDCTL);
2184         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2185                             (u16)data);
2186         if (ret_val)
2187             goto release;
2188     }
2189 
2190     /* Configure LCD from extended configuration region. */
2191 
2192     /* cnf_base_addr is in DWORD */
2193     word_addr = (u16)(cnf_base_addr << 1);
2194 
2195     for (i = 0; i < cnf_size; i++) {
2196         ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2197         if (ret_val)
2198             goto release;
2199 
2200         ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2201                      1, &reg_addr);
2202         if (ret_val)
2203             goto release;
2204 
2205         /* Save off the PHY page for future writes. */
2206         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2207             phy_page = reg_data;
2208             continue;
2209         }
2210 
2211         reg_addr &= PHY_REG_MASK;
2212         reg_addr |= phy_page;
2213 
2214         ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2215         if (ret_val)
2216             goto release;
2217     }
2218 
2219 release:
2220     hw->phy.ops.release(hw);
2221     return ret_val;
2222 }
2223 
2224 /**
2225  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2226  *  @hw:   pointer to the HW structure
2227  *  @link: link up bool flag
2228  *
2229  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2230  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2231  *  If link is down, the function will restore the default K1 setting located
2232  *  in the NVM.
2233  **/
2234 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2235 {
2236     s32 ret_val = 0;
2237     u16 status_reg = 0;
2238     bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2239 
2240     if (hw->mac.type != e1000_pchlan)
2241         return 0;
2242 
2243     /* Wrap the whole flow with the sw flag */
2244     ret_val = hw->phy.ops.acquire(hw);
2245     if (ret_val)
2246         return ret_val;
2247 
2248     /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2249     if (link) {
2250         if (hw->phy.type == e1000_phy_82578) {
2251             ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2252                           &status_reg);
2253             if (ret_val)
2254                 goto release;
2255 
2256             status_reg &= (BM_CS_STATUS_LINK_UP |
2257                        BM_CS_STATUS_RESOLVED |
2258                        BM_CS_STATUS_SPEED_MASK);
2259 
2260             if (status_reg == (BM_CS_STATUS_LINK_UP |
2261                        BM_CS_STATUS_RESOLVED |
2262                        BM_CS_STATUS_SPEED_1000))
2263                 k1_enable = false;
2264         }
2265 
2266         if (hw->phy.type == e1000_phy_82577) {
2267             ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2268             if (ret_val)
2269                 goto release;
2270 
2271             status_reg &= (HV_M_STATUS_LINK_UP |
2272                        HV_M_STATUS_AUTONEG_COMPLETE |
2273                        HV_M_STATUS_SPEED_MASK);
2274 
2275             if (status_reg == (HV_M_STATUS_LINK_UP |
2276                        HV_M_STATUS_AUTONEG_COMPLETE |
2277                        HV_M_STATUS_SPEED_1000))
2278                 k1_enable = false;
2279         }
2280 
2281         /* Link stall fix for link up */
2282         ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2283         if (ret_val)
2284             goto release;
2285 
2286     } else {
2287         /* Link stall fix for link down */
2288         ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2289         if (ret_val)
2290             goto release;
2291     }
2292 
2293     ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2294 
2295 release:
2296     hw->phy.ops.release(hw);
2297 
2298     return ret_val;
2299 }
2300 
2301 /**
2302  *  e1000_configure_k1_ich8lan - Configure K1 power state
2303  *  @hw: pointer to the HW structure
2304  *  @k1_enable: K1 state to configure
2305  *
2306  *  Configure the K1 power state based on the provided parameter.
2307  *  Assumes semaphore already acquired.
2308  *
2309  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2310  **/
2311 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2312 {
2313     s32 ret_val;
2314     u32 ctrl_reg = 0;
2315     u32 ctrl_ext = 0;
2316     u32 reg = 0;
2317     u16 kmrn_reg = 0;
2318 
2319     ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2320                           &kmrn_reg);
2321     if (ret_val)
2322         return ret_val;
2323 
2324     if (k1_enable)
2325         kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2326     else
2327         kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2328 
2329     ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2330                            kmrn_reg);
2331     if (ret_val)
2332         return ret_val;
2333 
2334     usleep_range(20, 40);
2335     ctrl_ext = er32(CTRL_EXT);
2336     ctrl_reg = er32(CTRL);
2337 
2338     reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2339     reg |= E1000_CTRL_FRCSPD;
2340     ew32(CTRL, reg);
2341 
2342     ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2343     e1e_flush();
2344     usleep_range(20, 40);
2345     ew32(CTRL, ctrl_reg);
2346     ew32(CTRL_EXT, ctrl_ext);
2347     e1e_flush();
2348     usleep_range(20, 40);
2349 
2350     return 0;
2351 }
2352 
2353 /**
2354  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2355  *  @hw:       pointer to the HW structure
2356  *  @d0_state: boolean if entering d0 or d3 device state
2357  *
2358  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2359  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2360  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2361  **/
2362 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2363 {
2364     s32 ret_val = 0;
2365     u32 mac_reg;
2366     u16 oem_reg;
2367 
2368     if (hw->mac.type < e1000_pchlan)
2369         return ret_val;
2370 
2371     ret_val = hw->phy.ops.acquire(hw);
2372     if (ret_val)
2373         return ret_val;
2374 
2375     if (hw->mac.type == e1000_pchlan) {
2376         mac_reg = er32(EXTCNF_CTRL);
2377         if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2378             goto release;
2379     }
2380 
2381     mac_reg = er32(FEXTNVM);
2382     if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2383         goto release;
2384 
2385     mac_reg = er32(PHY_CTRL);
2386 
2387     ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2388     if (ret_val)
2389         goto release;
2390 
2391     oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2392 
2393     if (d0_state) {
2394         if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2395             oem_reg |= HV_OEM_BITS_GBE_DIS;
2396 
2397         if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2398             oem_reg |= HV_OEM_BITS_LPLU;
2399     } else {
2400         if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2401                    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2402             oem_reg |= HV_OEM_BITS_GBE_DIS;
2403 
2404         if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2405                    E1000_PHY_CTRL_NOND0A_LPLU))
2406             oem_reg |= HV_OEM_BITS_LPLU;
2407     }
2408 
2409     /* Set Restart auto-neg to activate the bits */
2410     if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2411         !hw->phy.ops.check_reset_block(hw))
2412         oem_reg |= HV_OEM_BITS_RESTART_AN;
2413 
2414     ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2415 
2416 release:
2417     hw->phy.ops.release(hw);
2418 
2419     return ret_val;
2420 }
2421 
2422 /**
2423  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2424  *  @hw:   pointer to the HW structure
2425  **/
2426 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2427 {
2428     s32 ret_val;
2429     u16 data;
2430 
2431     ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2432     if (ret_val)
2433         return ret_val;
2434 
2435     data |= HV_KMRN_MDIO_SLOW;
2436 
2437     ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2438 
2439     return ret_val;
2440 }
2441 
2442 /**
2443  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2444  *  @hw: pointer to the HW structure
2445  *
2446  *  A series of PHY workarounds to be done after every PHY reset.
2447  **/
2448 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2449 {
2450     s32 ret_val = 0;
2451     u16 phy_data;
2452 
2453     if (hw->mac.type != e1000_pchlan)
2454         return 0;
2455 
2456     /* Set MDIO slow mode before any other MDIO access */
2457     if (hw->phy.type == e1000_phy_82577) {
2458         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2459         if (ret_val)
2460             return ret_val;
2461     }
2462 
2463     if (((hw->phy.type == e1000_phy_82577) &&
2464          ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2465         ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2466         /* Disable generation of early preamble */
2467         ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2468         if (ret_val)
2469             return ret_val;
2470 
2471         /* Preamble tuning for SSC */
2472         ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2473         if (ret_val)
2474             return ret_val;
2475     }
2476 
2477     if (hw->phy.type == e1000_phy_82578) {
2478         /* Return registers to default by doing a soft reset then
2479          * writing 0x3140 to the control register.
2480          */
2481         if (hw->phy.revision < 2) {
2482             e1000e_phy_sw_reset(hw);
2483             ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2484             if (ret_val)
2485                 return ret_val;
2486         }
2487     }
2488 
2489     /* Select page 0 */
2490     ret_val = hw->phy.ops.acquire(hw);
2491     if (ret_val)
2492         return ret_val;
2493 
2494     hw->phy.addr = 1;
2495     ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2496     hw->phy.ops.release(hw);
2497     if (ret_val)
2498         return ret_val;
2499 
2500     /* Configure the K1 Si workaround during phy reset assuming there is
2501      * link so that it disables K1 if link is in 1Gbps.
2502      */
2503     ret_val = e1000_k1_gig_workaround_hv(hw, true);
2504     if (ret_val)
2505         return ret_val;
2506 
2507     /* Workaround for link disconnects on a busy hub in half duplex */
2508     ret_val = hw->phy.ops.acquire(hw);
2509     if (ret_val)
2510         return ret_val;
2511     ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2512     if (ret_val)
2513         goto release;
2514     ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2515     if (ret_val)
2516         goto release;
2517 
2518     /* set MSE higher to enable link to stay up when noise is high */
2519     ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2520 release:
2521     hw->phy.ops.release(hw);
2522 
2523     return ret_val;
2524 }
2525 
2526 /**
2527  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2528  *  @hw:   pointer to the HW structure
2529  **/
2530 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2531 {
2532     u32 mac_reg;
2533     u16 i, phy_reg = 0;
2534     s32 ret_val;
2535 
2536     ret_val = hw->phy.ops.acquire(hw);
2537     if (ret_val)
2538         return;
2539     ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2540     if (ret_val)
2541         goto release;
2542 
2543     /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2544     for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2545         mac_reg = er32(RAL(i));
2546         hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2547                        (u16)(mac_reg & 0xFFFF));
2548         hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2549                        (u16)((mac_reg >> 16) & 0xFFFF));
2550 
2551         mac_reg = er32(RAH(i));
2552         hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2553                        (u16)(mac_reg & 0xFFFF));
2554         hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2555                        (u16)((mac_reg & E1000_RAH_AV)
2556                          >> 16));
2557     }
2558 
2559     e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2560 
2561 release:
2562     hw->phy.ops.release(hw);
2563 }
2564 
2565 /**
2566  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2567  *  with 82579 PHY
2568  *  @hw: pointer to the HW structure
2569  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2570  **/
2571 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2572 {
2573     s32 ret_val = 0;
2574     u16 phy_reg, data;
2575     u32 mac_reg;
2576     u16 i;
2577 
2578     if (hw->mac.type < e1000_pch2lan)
2579         return 0;
2580 
2581     /* disable Rx path while enabling/disabling workaround */
2582     e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2583     ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2584     if (ret_val)
2585         return ret_val;
2586 
2587     if (enable) {
2588         /* Write Rx addresses (rar_entry_count for RAL/H, and
2589          * SHRAL/H) and initial CRC values to the MAC
2590          */
2591         for (i = 0; i < hw->mac.rar_entry_count; i++) {
2592             u8 mac_addr[ETH_ALEN] = { 0 };
2593             u32 addr_high, addr_low;
2594 
2595             addr_high = er32(RAH(i));
2596             if (!(addr_high & E1000_RAH_AV))
2597                 continue;
2598             addr_low = er32(RAL(i));
2599             mac_addr[0] = (addr_low & 0xFF);
2600             mac_addr[1] = ((addr_low >> 8) & 0xFF);
2601             mac_addr[2] = ((addr_low >> 16) & 0xFF);
2602             mac_addr[3] = ((addr_low >> 24) & 0xFF);
2603             mac_addr[4] = (addr_high & 0xFF);
2604             mac_addr[5] = ((addr_high >> 8) & 0xFF);
2605 
2606             ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2607         }
2608 
2609         /* Write Rx addresses to the PHY */
2610         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2611 
2612         /* Enable jumbo frame workaround in the MAC */
2613         mac_reg = er32(FFLT_DBG);
2614         mac_reg &= ~BIT(14);
2615         mac_reg |= (7 << 15);
2616         ew32(FFLT_DBG, mac_reg);
2617 
2618         mac_reg = er32(RCTL);
2619         mac_reg |= E1000_RCTL_SECRC;
2620         ew32(RCTL, mac_reg);
2621 
2622         ret_val = e1000e_read_kmrn_reg(hw,
2623                            E1000_KMRNCTRLSTA_CTRL_OFFSET,
2624                            &data);
2625         if (ret_val)
2626             return ret_val;
2627         ret_val = e1000e_write_kmrn_reg(hw,
2628                         E1000_KMRNCTRLSTA_CTRL_OFFSET,
2629                         data | BIT(0));
2630         if (ret_val)
2631             return ret_val;
2632         ret_val = e1000e_read_kmrn_reg(hw,
2633                            E1000_KMRNCTRLSTA_HD_CTRL,
2634                            &data);
2635         if (ret_val)
2636             return ret_val;
2637         data &= ~(0xF << 8);
2638         data |= (0xB << 8);
2639         ret_val = e1000e_write_kmrn_reg(hw,
2640                         E1000_KMRNCTRLSTA_HD_CTRL,
2641                         data);
2642         if (ret_val)
2643             return ret_val;
2644 
2645         /* Enable jumbo frame workaround in the PHY */
2646         e1e_rphy(hw, PHY_REG(769, 23), &data);
2647         data &= ~(0x7F << 5);
2648         data |= (0x37 << 5);
2649         ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2650         if (ret_val)
2651             return ret_val;
2652         e1e_rphy(hw, PHY_REG(769, 16), &data);
2653         data &= ~BIT(13);
2654         ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2655         if (ret_val)
2656             return ret_val;
2657         e1e_rphy(hw, PHY_REG(776, 20), &data);
2658         data &= ~(0x3FF << 2);
2659         data |= (E1000_TX_PTR_GAP << 2);
2660         ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2661         if (ret_val)
2662             return ret_val;
2663         ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2664         if (ret_val)
2665             return ret_val;
2666         e1e_rphy(hw, HV_PM_CTRL, &data);
2667         ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2668         if (ret_val)
2669             return ret_val;
2670     } else {
2671         /* Write MAC register values back to h/w defaults */
2672         mac_reg = er32(FFLT_DBG);
2673         mac_reg &= ~(0xF << 14);
2674         ew32(FFLT_DBG, mac_reg);
2675 
2676         mac_reg = er32(RCTL);
2677         mac_reg &= ~E1000_RCTL_SECRC;
2678         ew32(RCTL, mac_reg);
2679 
2680         ret_val = e1000e_read_kmrn_reg(hw,
2681                            E1000_KMRNCTRLSTA_CTRL_OFFSET,
2682                            &data);
2683         if (ret_val)
2684             return ret_val;
2685         ret_val = e1000e_write_kmrn_reg(hw,
2686                         E1000_KMRNCTRLSTA_CTRL_OFFSET,
2687                         data & ~BIT(0));
2688         if (ret_val)
2689             return ret_val;
2690         ret_val = e1000e_read_kmrn_reg(hw,
2691                            E1000_KMRNCTRLSTA_HD_CTRL,
2692                            &data);
2693         if (ret_val)
2694             return ret_val;
2695         data &= ~(0xF << 8);
2696         data |= (0xB << 8);
2697         ret_val = e1000e_write_kmrn_reg(hw,
2698                         E1000_KMRNCTRLSTA_HD_CTRL,
2699                         data);
2700         if (ret_val)
2701             return ret_val;
2702 
2703         /* Write PHY register values back to h/w defaults */
2704         e1e_rphy(hw, PHY_REG(769, 23), &data);
2705         data &= ~(0x7F << 5);
2706         ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2707         if (ret_val)
2708             return ret_val;
2709         e1e_rphy(hw, PHY_REG(769, 16), &data);
2710         data |= BIT(13);
2711         ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2712         if (ret_val)
2713             return ret_val;
2714         e1e_rphy(hw, PHY_REG(776, 20), &data);
2715         data &= ~(0x3FF << 2);
2716         data |= (0x8 << 2);
2717         ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2718         if (ret_val)
2719             return ret_val;
2720         ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2721         if (ret_val)
2722             return ret_val;
2723         e1e_rphy(hw, HV_PM_CTRL, &data);
2724         ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2725         if (ret_val)
2726             return ret_val;
2727     }
2728 
2729     /* re-enable Rx path after enabling/disabling workaround */
2730     return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2731 }
2732 
2733 /**
2734  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2735  *  @hw: pointer to the HW structure
2736  *
2737  *  A series of PHY workarounds to be done after every PHY reset.
2738  **/
2739 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2740 {
2741     s32 ret_val = 0;
2742 
2743     if (hw->mac.type != e1000_pch2lan)
2744         return 0;
2745 
2746     /* Set MDIO slow mode before any other MDIO access */
2747     ret_val = e1000_set_mdio_slow_mode_hv(hw);
2748     if (ret_val)
2749         return ret_val;
2750 
2751     ret_val = hw->phy.ops.acquire(hw);
2752     if (ret_val)
2753         return ret_val;
2754     /* set MSE higher to enable link to stay up when noise is high */
2755     ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2756     if (ret_val)
2757         goto release;
2758     /* drop link after 5 times MSE threshold was reached */
2759     ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2760 release:
2761     hw->phy.ops.release(hw);
2762 
2763     return ret_val;
2764 }
2765 
2766 /**
2767  *  e1000_k1_workaround_lv - K1 Si workaround
2768  *  @hw:   pointer to the HW structure
2769  *
2770  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2771  *  Disable K1 in 1000Mbps and 100Mbps
2772  **/
2773 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2774 {
2775     s32 ret_val = 0;
2776     u16 status_reg = 0;
2777 
2778     if (hw->mac.type != e1000_pch2lan)
2779         return 0;
2780 
2781     /* Set K1 beacon duration based on 10Mbs speed */
2782     ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2783     if (ret_val)
2784         return ret_val;
2785 
2786     if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2787         == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2788         if (status_reg &
2789             (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2790             u16 pm_phy_reg;
2791 
2792             /* LV 1G/100 Packet drop issue wa  */
2793             ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2794             if (ret_val)
2795                 return ret_val;
2796             pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2797             ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2798             if (ret_val)
2799                 return ret_val;
2800         } else {
2801             u32 mac_reg;
2802 
2803             mac_reg = er32(FEXTNVM4);
2804             mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2805             mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2806             ew32(FEXTNVM4, mac_reg);
2807         }
2808     }
2809 
2810     return ret_val;
2811 }
2812 
2813 /**
2814  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2815  *  @hw:   pointer to the HW structure
2816  *  @gate: boolean set to true to gate, false to ungate
2817  *
2818  *  Gate/ungate the automatic PHY configuration via hardware; perform
2819  *  the configuration via software instead.
2820  **/
2821 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2822 {
2823     u32 extcnf_ctrl;
2824 
2825     if (hw->mac.type < e1000_pch2lan)
2826         return;
2827 
2828     extcnf_ctrl = er32(EXTCNF_CTRL);
2829 
2830     if (gate)
2831         extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2832     else
2833         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2834 
2835     ew32(EXTCNF_CTRL, extcnf_ctrl);
2836 }
2837 
2838 /**
2839  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2840  *  @hw: pointer to the HW structure
2841  *
2842  *  Check the appropriate indication the MAC has finished configuring the
2843  *  PHY after a software reset.
2844  **/
2845 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2846 {
2847     u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2848 
2849     /* Wait for basic configuration completes before proceeding */
2850     do {
2851         data = er32(STATUS);
2852         data &= E1000_STATUS_LAN_INIT_DONE;
2853         usleep_range(100, 200);
2854     } while ((!data) && --loop);
2855 
2856     /* If basic configuration is incomplete before the above loop
2857      * count reaches 0, loading the configuration from NVM will
2858      * leave the PHY in a bad state possibly resulting in no link.
2859      */
2860     if (loop == 0)
2861         e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2862 
2863     /* Clear the Init Done bit for the next init event */
2864     data = er32(STATUS);
2865     data &= ~E1000_STATUS_LAN_INIT_DONE;
2866     ew32(STATUS, data);
2867 }
2868 
2869 /**
2870  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2871  *  @hw: pointer to the HW structure
2872  **/
2873 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2874 {
2875     s32 ret_val = 0;
2876     u16 reg;
2877 
2878     if (hw->phy.ops.check_reset_block(hw))
2879         return 0;
2880 
2881     /* Allow time for h/w to get to quiescent state after reset */
2882     usleep_range(10000, 11000);
2883 
2884     /* Perform any necessary post-reset workarounds */
2885     switch (hw->mac.type) {
2886     case e1000_pchlan:
2887         ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2888         if (ret_val)
2889             return ret_val;
2890         break;
2891     case e1000_pch2lan:
2892         ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2893         if (ret_val)
2894             return ret_val;
2895         break;
2896     default:
2897         break;
2898     }
2899 
2900     /* Clear the host wakeup bit after lcd reset */
2901     if (hw->mac.type >= e1000_pchlan) {
2902         e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2903         reg &= ~BM_WUC_HOST_WU_BIT;
2904         e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2905     }
2906 
2907     /* Configure the LCD with the extended configuration region in NVM */
2908     ret_val = e1000_sw_lcd_config_ich8lan(hw);
2909     if (ret_val)
2910         return ret_val;
2911 
2912     /* Configure the LCD with the OEM bits in NVM */
2913     ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2914 
2915     if (hw->mac.type == e1000_pch2lan) {
2916         /* Ungate automatic PHY configuration on non-managed 82579 */
2917         if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2918             usleep_range(10000, 11000);
2919             e1000_gate_hw_phy_config_ich8lan(hw, false);
2920         }
2921 
2922         /* Set EEE LPI Update Timer to 200usec */
2923         ret_val = hw->phy.ops.acquire(hw);
2924         if (ret_val)
2925             return ret_val;
2926         ret_val = e1000_write_emi_reg_locked(hw,
2927                              I82579_LPI_UPDATE_TIMER,
2928                              0x1387);
2929         hw->phy.ops.release(hw);
2930     }
2931 
2932     return ret_val;
2933 }
2934 
2935 /**
2936  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2937  *  @hw: pointer to the HW structure
2938  *
2939  *  Resets the PHY
2940  *  This is a function pointer entry point called by drivers
2941  *  or other shared routines.
2942  **/
2943 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2944 {
2945     s32 ret_val = 0;
2946 
2947     /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2948     if ((hw->mac.type == e1000_pch2lan) &&
2949         !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2950         e1000_gate_hw_phy_config_ich8lan(hw, true);
2951 
2952     ret_val = e1000e_phy_hw_reset_generic(hw);
2953     if (ret_val)
2954         return ret_val;
2955 
2956     return e1000_post_phy_reset_ich8lan(hw);
2957 }
2958 
2959 /**
2960  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2961  *  @hw: pointer to the HW structure
2962  *  @active: true to enable LPLU, false to disable
2963  *
2964  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2965  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2966  *  the phy speed. This function will manually set the LPLU bit and restart
2967  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2968  *  since it configures the same bit.
2969  **/
2970 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2971 {
2972     s32 ret_val;
2973     u16 oem_reg;
2974 
2975     ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2976     if (ret_val)
2977         return ret_val;
2978 
2979     if (active)
2980         oem_reg |= HV_OEM_BITS_LPLU;
2981     else
2982         oem_reg &= ~HV_OEM_BITS_LPLU;
2983 
2984     if (!hw->phy.ops.check_reset_block(hw))
2985         oem_reg |= HV_OEM_BITS_RESTART_AN;
2986 
2987     return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2988 }
2989 
2990 /**
2991  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2992  *  @hw: pointer to the HW structure
2993  *  @active: true to enable LPLU, false to disable
2994  *
2995  *  Sets the LPLU D0 state according to the active flag.  When
2996  *  activating LPLU this function also disables smart speed
2997  *  and vice versa.  LPLU will not be activated unless the
2998  *  device autonegotiation advertisement meets standards of
2999  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3000  *  This is a function pointer entry point only called by
3001  *  PHY setup routines.
3002  **/
3003 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3004 {
3005     struct e1000_phy_info *phy = &hw->phy;
3006     u32 phy_ctrl;
3007     s32 ret_val = 0;
3008     u16 data;
3009 
3010     if (phy->type == e1000_phy_ife)
3011         return 0;
3012 
3013     phy_ctrl = er32(PHY_CTRL);
3014 
3015     if (active) {
3016         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3017         ew32(PHY_CTRL, phy_ctrl);
3018 
3019         if (phy->type != e1000_phy_igp_3)
3020             return 0;
3021 
3022         /* Call gig speed drop workaround on LPLU before accessing
3023          * any PHY registers
3024          */
3025         if (hw->mac.type == e1000_ich8lan)
3026             e1000e_gig_downshift_workaround_ich8lan(hw);
3027 
3028         /* When LPLU is enabled, we should disable SmartSpeed */
3029         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3030         if (ret_val)
3031             return ret_val;
3032         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3033         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3034         if (ret_val)
3035             return ret_val;
3036     } else {
3037         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3038         ew32(PHY_CTRL, phy_ctrl);
3039 
3040         if (phy->type != e1000_phy_igp_3)
3041             return 0;
3042 
3043         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3044          * during Dx states where the power conservation is most
3045          * important.  During driver activity we should enable
3046          * SmartSpeed, so performance is maintained.
3047          */
3048         if (phy->smart_speed == e1000_smart_speed_on) {
3049             ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3050                        &data);
3051             if (ret_val)
3052                 return ret_val;
3053 
3054             data |= IGP01E1000_PSCFR_SMART_SPEED;
3055             ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056                        data);
3057             if (ret_val)
3058                 return ret_val;
3059         } else if (phy->smart_speed == e1000_smart_speed_off) {
3060             ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061                        &data);
3062             if (ret_val)
3063                 return ret_val;
3064 
3065             data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3066             ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067                        data);
3068             if (ret_val)
3069                 return ret_val;
3070         }
3071     }
3072 
3073     return 0;
3074 }
3075 
3076 /**
3077  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3078  *  @hw: pointer to the HW structure
3079  *  @active: true to enable LPLU, false to disable
3080  *
3081  *  Sets the LPLU D3 state according to the active flag.  When
3082  *  activating LPLU this function also disables smart speed
3083  *  and vice versa.  LPLU will not be activated unless the
3084  *  device autonegotiation advertisement meets standards of
3085  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3086  *  This is a function pointer entry point only called by
3087  *  PHY setup routines.
3088  **/
3089 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3090 {
3091     struct e1000_phy_info *phy = &hw->phy;
3092     u32 phy_ctrl;
3093     s32 ret_val = 0;
3094     u16 data;
3095 
3096     phy_ctrl = er32(PHY_CTRL);
3097 
3098     if (!active) {
3099         phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3100         ew32(PHY_CTRL, phy_ctrl);
3101 
3102         if (phy->type != e1000_phy_igp_3)
3103             return 0;
3104 
3105         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3106          * during Dx states where the power conservation is most
3107          * important.  During driver activity we should enable
3108          * SmartSpeed, so performance is maintained.
3109          */
3110         if (phy->smart_speed == e1000_smart_speed_on) {
3111             ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3112                        &data);
3113             if (ret_val)
3114                 return ret_val;
3115 
3116             data |= IGP01E1000_PSCFR_SMART_SPEED;
3117             ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118                        data);
3119             if (ret_val)
3120                 return ret_val;
3121         } else if (phy->smart_speed == e1000_smart_speed_off) {
3122             ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3123                        &data);
3124             if (ret_val)
3125                 return ret_val;
3126 
3127             data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3128             ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129                        data);
3130             if (ret_val)
3131                 return ret_val;
3132         }
3133     } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3134            (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3135            (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3136         phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3137         ew32(PHY_CTRL, phy_ctrl);
3138 
3139         if (phy->type != e1000_phy_igp_3)
3140             return 0;
3141 
3142         /* Call gig speed drop workaround on LPLU before accessing
3143          * any PHY registers
3144          */
3145         if (hw->mac.type == e1000_ich8lan)
3146             e1000e_gig_downshift_workaround_ich8lan(hw);
3147 
3148         /* When LPLU is enabled, we should disable SmartSpeed */
3149         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3150         if (ret_val)
3151             return ret_val;
3152 
3153         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3154         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3155     }
3156 
3157     return ret_val;
3158 }
3159 
3160 /**
3161  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3162  *  @hw: pointer to the HW structure
3163  *  @bank:  pointer to the variable that returns the active bank
3164  *
3165  *  Reads signature byte from the NVM using the flash access registers.
3166  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3167  **/
3168 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3169 {
3170     u32 eecd;
3171     struct e1000_nvm_info *nvm = &hw->nvm;
3172     u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3173     u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3174     u32 nvm_dword = 0;
3175     u8 sig_byte = 0;
3176     s32 ret_val;
3177 
3178     switch (hw->mac.type) {
3179     case e1000_pch_spt:
3180     case e1000_pch_cnp:
3181     case e1000_pch_tgp:
3182     case e1000_pch_adp:
3183     case e1000_pch_mtp:
3184     case e1000_pch_lnp:
3185         bank1_offset = nvm->flash_bank_size;
3186         act_offset = E1000_ICH_NVM_SIG_WORD;
3187 
3188         /* set bank to 0 in case flash read fails */
3189         *bank = 0;
3190 
3191         /* Check bank 0 */
3192         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3193                              &nvm_dword);
3194         if (ret_val)
3195             return ret_val;
3196         sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3197         if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3198             E1000_ICH_NVM_SIG_VALUE) {
3199             *bank = 0;
3200             return 0;
3201         }
3202 
3203         /* Check bank 1 */
3204         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3205                              bank1_offset,
3206                              &nvm_dword);
3207         if (ret_val)
3208             return ret_val;
3209         sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3210         if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3211             E1000_ICH_NVM_SIG_VALUE) {
3212             *bank = 1;
3213             return 0;
3214         }
3215 
3216         e_dbg("ERROR: No valid NVM bank present\n");
3217         return -E1000_ERR_NVM;
3218     case e1000_ich8lan:
3219     case e1000_ich9lan:
3220         eecd = er32(EECD);
3221         if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3222             E1000_EECD_SEC1VAL_VALID_MASK) {
3223             if (eecd & E1000_EECD_SEC1VAL)
3224                 *bank = 1;
3225             else
3226                 *bank = 0;
3227 
3228             return 0;
3229         }
3230         e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3231         fallthrough;
3232     default:
3233         /* set bank to 0 in case flash read fails */
3234         *bank = 0;
3235 
3236         /* Check bank 0 */
3237         ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3238                             &sig_byte);
3239         if (ret_val)
3240             return ret_val;
3241         if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3242             E1000_ICH_NVM_SIG_VALUE) {
3243             *bank = 0;
3244             return 0;
3245         }
3246 
3247         /* Check bank 1 */
3248         ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3249                             bank1_offset,
3250                             &sig_byte);
3251         if (ret_val)
3252             return ret_val;
3253         if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3254             E1000_ICH_NVM_SIG_VALUE) {
3255             *bank = 1;
3256             return 0;
3257         }
3258 
3259         e_dbg("ERROR: No valid NVM bank present\n");
3260         return -E1000_ERR_NVM;
3261     }
3262 }
3263 
3264 /**
3265  *  e1000_read_nvm_spt - NVM access for SPT
3266  *  @hw: pointer to the HW structure
3267  *  @offset: The offset (in bytes) of the word(s) to read.
3268  *  @words: Size of data to read in words.
3269  *  @data: pointer to the word(s) to read at offset.
3270  *
3271  *  Reads a word(s) from the NVM
3272  **/
3273 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3274                   u16 *data)
3275 {
3276     struct e1000_nvm_info *nvm = &hw->nvm;
3277     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3278     u32 act_offset;
3279     s32 ret_val = 0;
3280     u32 bank = 0;
3281     u32 dword = 0;
3282     u16 offset_to_read;
3283     u16 i;
3284 
3285     if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3286         (words == 0)) {
3287         e_dbg("nvm parameter(s) out of bounds\n");
3288         ret_val = -E1000_ERR_NVM;
3289         goto out;
3290     }
3291 
3292     nvm->ops.acquire(hw);
3293 
3294     ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3295     if (ret_val) {
3296         e_dbg("Could not detect valid bank, assuming bank 0\n");
3297         bank = 0;
3298     }
3299 
3300     act_offset = (bank) ? nvm->flash_bank_size : 0;
3301     act_offset += offset;
3302 
3303     ret_val = 0;
3304 
3305     for (i = 0; i < words; i += 2) {
3306         if (words - i == 1) {
3307             if (dev_spec->shadow_ram[offset + i].modified) {
3308                 data[i] =
3309                     dev_spec->shadow_ram[offset + i].value;
3310             } else {
3311                 offset_to_read = act_offset + i -
3312                     ((act_offset + i) % 2);
3313                 ret_val =
3314                   e1000_read_flash_dword_ich8lan(hw,
3315                                  offset_to_read,
3316                                  &dword);
3317                 if (ret_val)
3318                     break;
3319                 if ((act_offset + i) % 2 == 0)
3320                     data[i] = (u16)(dword & 0xFFFF);
3321                 else
3322                     data[i] = (u16)((dword >> 16) & 0xFFFF);
3323             }
3324         } else {
3325             offset_to_read = act_offset + i;
3326             if (!(dev_spec->shadow_ram[offset + i].modified) ||
3327                 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3328                 ret_val =
3329                   e1000_read_flash_dword_ich8lan(hw,
3330                                  offset_to_read,
3331                                  &dword);
3332                 if (ret_val)
3333                     break;
3334             }
3335             if (dev_spec->shadow_ram[offset + i].modified)
3336                 data[i] =
3337                     dev_spec->shadow_ram[offset + i].value;
3338             else
3339                 data[i] = (u16)(dword & 0xFFFF);
3340             if (dev_spec->shadow_ram[offset + i].modified)
3341                 data[i + 1] =
3342                     dev_spec->shadow_ram[offset + i + 1].value;
3343             else
3344                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3345         }
3346     }
3347 
3348     nvm->ops.release(hw);
3349 
3350 out:
3351     if (ret_val)
3352         e_dbg("NVM read error: %d\n", ret_val);
3353 
3354     return ret_val;
3355 }
3356 
3357 /**
3358  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3359  *  @hw: pointer to the HW structure
3360  *  @offset: The offset (in bytes) of the word(s) to read.
3361  *  @words: Size of data to read in words
3362  *  @data: Pointer to the word(s) to read at offset.
3363  *
3364  *  Reads a word(s) from the NVM using the flash access registers.
3365  **/
3366 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3367                   u16 *data)
3368 {
3369     struct e1000_nvm_info *nvm = &hw->nvm;
3370     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3371     u32 act_offset;
3372     s32 ret_val = 0;
3373     u32 bank = 0;
3374     u16 i, word;
3375 
3376     if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3377         (words == 0)) {
3378         e_dbg("nvm parameter(s) out of bounds\n");
3379         ret_val = -E1000_ERR_NVM;
3380         goto out;
3381     }
3382 
3383     nvm->ops.acquire(hw);
3384 
3385     ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3386     if (ret_val) {
3387         e_dbg("Could not detect valid bank, assuming bank 0\n");
3388         bank = 0;
3389     }
3390 
3391     act_offset = (bank) ? nvm->flash_bank_size : 0;
3392     act_offset += offset;
3393 
3394     ret_val = 0;
3395     for (i = 0; i < words; i++) {
3396         if (dev_spec->shadow_ram[offset + i].modified) {
3397             data[i] = dev_spec->shadow_ram[offset + i].value;
3398         } else {
3399             ret_val = e1000_read_flash_word_ich8lan(hw,
3400                                 act_offset + i,
3401                                 &word);
3402             if (ret_val)
3403                 break;
3404             data[i] = word;
3405         }
3406     }
3407 
3408     nvm->ops.release(hw);
3409 
3410 out:
3411     if (ret_val)
3412         e_dbg("NVM read error: %d\n", ret_val);
3413 
3414     return ret_val;
3415 }
3416 
3417 /**
3418  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3419  *  @hw: pointer to the HW structure
3420  *
3421  *  This function does initial flash setup so that a new read/write/erase cycle
3422  *  can be started.
3423  **/
3424 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3425 {
3426     union ich8_hws_flash_status hsfsts;
3427     s32 ret_val = -E1000_ERR_NVM;
3428 
3429     hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3430 
3431     /* Check if the flash descriptor is valid */
3432     if (!hsfsts.hsf_status.fldesvalid) {
3433         e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3434         return -E1000_ERR_NVM;
3435     }
3436 
3437     /* Clear FCERR and DAEL in hw status by writing 1 */
3438     hsfsts.hsf_status.flcerr = 1;
3439     hsfsts.hsf_status.dael = 1;
3440     if (hw->mac.type >= e1000_pch_spt)
3441         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3442     else
3443         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3444 
3445     /* Either we should have a hardware SPI cycle in progress
3446      * bit to check against, in order to start a new cycle or
3447      * FDONE bit should be changed in the hardware so that it
3448      * is 1 after hardware reset, which can then be used as an
3449      * indication whether a cycle is in progress or has been
3450      * completed.
3451      */
3452 
3453     if (!hsfsts.hsf_status.flcinprog) {
3454         /* There is no cycle running at present,
3455          * so we can start a cycle.
3456          * Begin by setting Flash Cycle Done.
3457          */
3458         hsfsts.hsf_status.flcdone = 1;
3459         if (hw->mac.type >= e1000_pch_spt)
3460             ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3461         else
3462             ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3463         ret_val = 0;
3464     } else {
3465         s32 i;
3466 
3467         /* Otherwise poll for sometime so the current
3468          * cycle has a chance to end before giving up.
3469          */
3470         for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3471             hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3472             if (!hsfsts.hsf_status.flcinprog) {
3473                 ret_val = 0;
3474                 break;
3475             }
3476             udelay(1);
3477         }
3478         if (!ret_val) {
3479             /* Successful in waiting for previous cycle to timeout,
3480              * now set the Flash Cycle Done.
3481              */
3482             hsfsts.hsf_status.flcdone = 1;
3483             if (hw->mac.type >= e1000_pch_spt)
3484                 ew32flash(ICH_FLASH_HSFSTS,
3485                       hsfsts.regval & 0xFFFF);
3486             else
3487                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3488         } else {
3489             e_dbg("Flash controller busy, cannot get access\n");
3490         }
3491     }
3492 
3493     return ret_val;
3494 }
3495 
3496 /**
3497  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3498  *  @hw: pointer to the HW structure
3499  *  @timeout: maximum time to wait for completion
3500  *
3501  *  This function starts a flash cycle and waits for its completion.
3502  **/
3503 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3504 {
3505     union ich8_hws_flash_ctrl hsflctl;
3506     union ich8_hws_flash_status hsfsts;
3507     u32 i = 0;
3508 
3509     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3510     if (hw->mac.type >= e1000_pch_spt)
3511         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3512     else
3513         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3514     hsflctl.hsf_ctrl.flcgo = 1;
3515 
3516     if (hw->mac.type >= e1000_pch_spt)
3517         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3518     else
3519         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3520 
3521     /* wait till FDONE bit is set to 1 */
3522     do {
3523         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3524         if (hsfsts.hsf_status.flcdone)
3525             break;
3526         udelay(1);
3527     } while (i++ < timeout);
3528 
3529     if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3530         return 0;
3531 
3532     return -E1000_ERR_NVM;
3533 }
3534 
3535 /**
3536  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3537  *  @hw: pointer to the HW structure
3538  *  @offset: offset to data location
3539  *  @data: pointer to the location for storing the data
3540  *
3541  *  Reads the flash dword at offset into data.  Offset is converted
3542  *  to bytes before read.
3543  **/
3544 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3545                       u32 *data)
3546 {
3547     /* Must convert word offset into bytes. */
3548     offset <<= 1;
3549     return e1000_read_flash_data32_ich8lan(hw, offset, data);
3550 }
3551 
3552 /**
3553  *  e1000_read_flash_word_ich8lan - Read word from flash
3554  *  @hw: pointer to the HW structure
3555  *  @offset: offset to data location
3556  *  @data: pointer to the location for storing the data
3557  *
3558  *  Reads the flash word at offset into data.  Offset is converted
3559  *  to bytes before read.
3560  **/
3561 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3562                      u16 *data)
3563 {
3564     /* Must convert offset into bytes. */
3565     offset <<= 1;
3566 
3567     return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3568 }
3569 
3570 /**
3571  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3572  *  @hw: pointer to the HW structure
3573  *  @offset: The offset of the byte to read.
3574  *  @data: Pointer to a byte to store the value read.
3575  *
3576  *  Reads a single byte from the NVM using the flash access registers.
3577  **/
3578 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3579                      u8 *data)
3580 {
3581     s32 ret_val;
3582     u16 word = 0;
3583 
3584     /* In SPT, only 32 bits access is supported,
3585      * so this function should not be called.
3586      */
3587     if (hw->mac.type >= e1000_pch_spt)
3588         return -E1000_ERR_NVM;
3589     else
3590         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3591 
3592     if (ret_val)
3593         return ret_val;
3594 
3595     *data = (u8)word;
3596 
3597     return 0;
3598 }
3599 
3600 /**
3601  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3602  *  @hw: pointer to the HW structure
3603  *  @offset: The offset (in bytes) of the byte or word to read.
3604  *  @size: Size of data to read, 1=byte 2=word
3605  *  @data: Pointer to the word to store the value read.
3606  *
3607  *  Reads a byte or word from the NVM using the flash access registers.
3608  **/
3609 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3610                      u8 size, u16 *data)
3611 {
3612     union ich8_hws_flash_status hsfsts;
3613     union ich8_hws_flash_ctrl hsflctl;
3614     u32 flash_linear_addr;
3615     u32 flash_data = 0;
3616     s32 ret_val = -E1000_ERR_NVM;
3617     u8 count = 0;
3618 
3619     if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3620         return -E1000_ERR_NVM;
3621 
3622     flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3623                  hw->nvm.flash_base_addr);
3624 
3625     do {
3626         udelay(1);
3627         /* Steps */
3628         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3629         if (ret_val)
3630             break;
3631 
3632         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3633         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3634         hsflctl.hsf_ctrl.fldbcount = size - 1;
3635         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3636         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3637 
3638         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3639 
3640         ret_val =
3641             e1000_flash_cycle_ich8lan(hw,
3642                           ICH_FLASH_READ_COMMAND_TIMEOUT);
3643 
3644         /* Check if FCERR is set to 1, if set to 1, clear it
3645          * and try the whole sequence a few more times, else
3646          * read in (shift in) the Flash Data0, the order is
3647          * least significant byte first msb to lsb
3648          */
3649         if (!ret_val) {
3650             flash_data = er32flash(ICH_FLASH_FDATA0);
3651             if (size == 1)
3652                 *data = (u8)(flash_data & 0x000000FF);
3653             else if (size == 2)
3654                 *data = (u16)(flash_data & 0x0000FFFF);
3655             break;
3656         } else {
3657             /* If we've gotten here, then things are probably
3658              * completely hosed, but if the error condition is
3659              * detected, it won't hurt to give it another try...
3660              * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3661              */
3662             hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3663             if (hsfsts.hsf_status.flcerr) {
3664                 /* Repeat for some time before giving up. */
3665                 continue;
3666             } else if (!hsfsts.hsf_status.flcdone) {
3667                 e_dbg("Timeout error - flash cycle did not complete.\n");
3668                 break;
3669             }
3670         }
3671     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3672 
3673     return ret_val;
3674 }
3675 
3676 /**
3677  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3678  *  @hw: pointer to the HW structure
3679  *  @offset: The offset (in bytes) of the dword to read.
3680  *  @data: Pointer to the dword to store the value read.
3681  *
3682  *  Reads a byte or word from the NVM using the flash access registers.
3683  **/
3684 
3685 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3686                        u32 *data)
3687 {
3688     union ich8_hws_flash_status hsfsts;
3689     union ich8_hws_flash_ctrl hsflctl;
3690     u32 flash_linear_addr;
3691     s32 ret_val = -E1000_ERR_NVM;
3692     u8 count = 0;
3693 
3694     if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3695         return -E1000_ERR_NVM;
3696     flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3697                  hw->nvm.flash_base_addr);
3698 
3699     do {
3700         udelay(1);
3701         /* Steps */
3702         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3703         if (ret_val)
3704             break;
3705         /* In SPT, This register is in Lan memory space, not flash.
3706          * Therefore, only 32 bit access is supported
3707          */
3708         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3709 
3710         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3711         hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3712         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3713         /* In SPT, This register is in Lan memory space, not flash.
3714          * Therefore, only 32 bit access is supported
3715          */
3716         ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3717         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3718 
3719         ret_val =
3720            e1000_flash_cycle_ich8lan(hw,
3721                          ICH_FLASH_READ_COMMAND_TIMEOUT);
3722 
3723         /* Check if FCERR is set to 1, if set to 1, clear it
3724          * and try the whole sequence a few more times, else
3725          * read in (shift in) the Flash Data0, the order is
3726          * least significant byte first msb to lsb
3727          */
3728         if (!ret_val) {
3729             *data = er32flash(ICH_FLASH_FDATA0);
3730             break;
3731         } else {
3732             /* If we've gotten here, then things are probably
3733              * completely hosed, but if the error condition is
3734              * detected, it won't hurt to give it another try...
3735              * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3736              */
3737             hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3738             if (hsfsts.hsf_status.flcerr) {
3739                 /* Repeat for some time before giving up. */
3740                 continue;
3741             } else if (!hsfsts.hsf_status.flcdone) {
3742                 e_dbg("Timeout error - flash cycle did not complete.\n");
3743                 break;
3744             }
3745         }
3746     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3747 
3748     return ret_val;
3749 }
3750 
3751 /**
3752  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3753  *  @hw: pointer to the HW structure
3754  *  @offset: The offset (in bytes) of the word(s) to write.
3755  *  @words: Size of data to write in words
3756  *  @data: Pointer to the word(s) to write at offset.
3757  *
3758  *  Writes a byte or word to the NVM using the flash access registers.
3759  **/
3760 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3761                    u16 *data)
3762 {
3763     struct e1000_nvm_info *nvm = &hw->nvm;
3764     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3765     u16 i;
3766 
3767     if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3768         (words == 0)) {
3769         e_dbg("nvm parameter(s) out of bounds\n");
3770         return -E1000_ERR_NVM;
3771     }
3772 
3773     nvm->ops.acquire(hw);
3774 
3775     for (i = 0; i < words; i++) {
3776         dev_spec->shadow_ram[offset + i].modified = true;
3777         dev_spec->shadow_ram[offset + i].value = data[i];
3778     }
3779 
3780     nvm->ops.release(hw);
3781 
3782     return 0;
3783 }
3784 
3785 /**
3786  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3787  *  @hw: pointer to the HW structure
3788  *
3789  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3790  *  which writes the checksum to the shadow ram.  The changes in the shadow
3791  *  ram are then committed to the EEPROM by processing each bank at a time
3792  *  checking for the modified bit and writing only the pending changes.
3793  *  After a successful commit, the shadow ram is cleared and is ready for
3794  *  future writes.
3795  **/
3796 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3797 {
3798     struct e1000_nvm_info *nvm = &hw->nvm;
3799     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3800     u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3801     s32 ret_val;
3802     u32 dword = 0;
3803 
3804     ret_val = e1000e_update_nvm_checksum_generic(hw);
3805     if (ret_val)
3806         goto out;
3807 
3808     if (nvm->type != e1000_nvm_flash_sw)
3809         goto out;
3810 
3811     nvm->ops.acquire(hw);
3812 
3813     /* We're writing to the opposite bank so if we're on bank 1,
3814      * write to bank 0 etc.  We also need to erase the segment that
3815      * is going to be written
3816      */
3817     ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3818     if (ret_val) {
3819         e_dbg("Could not detect valid bank, assuming bank 0\n");
3820         bank = 0;
3821     }
3822 
3823     if (bank == 0) {
3824         new_bank_offset = nvm->flash_bank_size;
3825         old_bank_offset = 0;
3826         ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3827         if (ret_val)
3828             goto release;
3829     } else {
3830         old_bank_offset = nvm->flash_bank_size;
3831         new_bank_offset = 0;
3832         ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3833         if (ret_val)
3834             goto release;
3835     }
3836     for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3837         /* Determine whether to write the value stored
3838          * in the other NVM bank or a modified value stored
3839          * in the shadow RAM
3840          */
3841         ret_val = e1000_read_flash_dword_ich8lan(hw,
3842                              i + old_bank_offset,
3843                              &dword);
3844 
3845         if (dev_spec->shadow_ram[i].modified) {
3846             dword &= 0xffff0000;
3847             dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3848         }
3849         if (dev_spec->shadow_ram[i + 1].modified) {
3850             dword &= 0x0000ffff;
3851             dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3852                   << 16);
3853         }
3854         if (ret_val)
3855             break;
3856 
3857         /* If the word is 0x13, then make sure the signature bits
3858          * (15:14) are 11b until the commit has completed.
3859          * This will allow us to write 10b which indicates the
3860          * signature is valid.  We want to do this after the write
3861          * has completed so that we don't mark the segment valid
3862          * while the write is still in progress
3863          */
3864         if (i == E1000_ICH_NVM_SIG_WORD - 1)
3865             dword |= E1000_ICH_NVM_SIG_MASK << 16;
3866 
3867         /* Convert offset to bytes. */
3868         act_offset = (i + new_bank_offset) << 1;
3869 
3870         usleep_range(100, 200);
3871 
3872         /* Write the data to the new bank. Offset in words */
3873         act_offset = i + new_bank_offset;
3874         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3875                                 dword);
3876         if (ret_val)
3877             break;
3878     }
3879 
3880     /* Don't bother writing the segment valid bits if sector
3881      * programming failed.
3882      */
3883     if (ret_val) {
3884         /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3885         e_dbg("Flash commit failed.\n");
3886         goto release;
3887     }
3888 
3889     /* Finally validate the new segment by setting bit 15:14
3890      * to 10b in word 0x13 , this can be done without an
3891      * erase as well since these bits are 11 to start with
3892      * and we need to change bit 14 to 0b
3893      */
3894     act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3895 
3896     /*offset in words but we read dword */
3897     --act_offset;
3898     ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3899 
3900     if (ret_val)
3901         goto release;
3902 
3903     dword &= 0xBFFFFFFF;
3904     ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3905 
3906     if (ret_val)
3907         goto release;
3908 
3909     /* offset in words but we read dword */
3910     act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3911     ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3912 
3913     if (ret_val)
3914         goto release;
3915 
3916     dword &= 0x00FFFFFF;
3917     ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3918 
3919     if (ret_val)
3920         goto release;
3921 
3922     /* Great!  Everything worked, we can now clear the cached entries. */
3923     for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3924         dev_spec->shadow_ram[i].modified = false;
3925         dev_spec->shadow_ram[i].value = 0xFFFF;
3926     }
3927 
3928 release:
3929     nvm->ops.release(hw);
3930 
3931     /* Reload the EEPROM, or else modifications will not appear
3932      * until after the next adapter reset.
3933      */
3934     if (!ret_val) {
3935         nvm->ops.reload(hw);
3936         usleep_range(10000, 11000);
3937     }
3938 
3939 out:
3940     if (ret_val)
3941         e_dbg("NVM update error: %d\n", ret_val);
3942 
3943     return ret_val;
3944 }
3945 
3946 /**
3947  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3948  *  @hw: pointer to the HW structure
3949  *
3950  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3951  *  which writes the checksum to the shadow ram.  The changes in the shadow
3952  *  ram are then committed to the EEPROM by processing each bank at a time
3953  *  checking for the modified bit and writing only the pending changes.
3954  *  After a successful commit, the shadow ram is cleared and is ready for
3955  *  future writes.
3956  **/
3957 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3958 {
3959     struct e1000_nvm_info *nvm = &hw->nvm;
3960     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3961     u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3962     s32 ret_val;
3963     u16 data = 0;
3964 
3965     ret_val = e1000e_update_nvm_checksum_generic(hw);
3966     if (ret_val)
3967         goto out;
3968 
3969     if (nvm->type != e1000_nvm_flash_sw)
3970         goto out;
3971 
3972     nvm->ops.acquire(hw);
3973 
3974     /* We're writing to the opposite bank so if we're on bank 1,
3975      * write to bank 0 etc.  We also need to erase the segment that
3976      * is going to be written
3977      */
3978     ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3979     if (ret_val) {
3980         e_dbg("Could not detect valid bank, assuming bank 0\n");
3981         bank = 0;
3982     }
3983 
3984     if (bank == 0) {
3985         new_bank_offset = nvm->flash_bank_size;
3986         old_bank_offset = 0;
3987         ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3988         if (ret_val)
3989             goto release;
3990     } else {
3991         old_bank_offset = nvm->flash_bank_size;
3992         new_bank_offset = 0;
3993         ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3994         if (ret_val)
3995             goto release;
3996     }
3997     for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3998         if (dev_spec->shadow_ram[i].modified) {
3999             data = dev_spec->shadow_ram[i].value;
4000         } else {
4001             ret_val = e1000_read_flash_word_ich8lan(hw, i +
4002                                 old_bank_offset,
4003                                 &data);
4004             if (ret_val)
4005                 break;
4006         }
4007 
4008         /* If the word is 0x13, then make sure the signature bits
4009          * (15:14) are 11b until the commit has completed.
4010          * This will allow us to write 10b which indicates the
4011          * signature is valid.  We want to do this after the write
4012          * has completed so that we don't mark the segment valid
4013          * while the write is still in progress
4014          */
4015         if (i == E1000_ICH_NVM_SIG_WORD)
4016             data |= E1000_ICH_NVM_SIG_MASK;
4017 
4018         /* Convert offset to bytes. */
4019         act_offset = (i + new_bank_offset) << 1;
4020 
4021         usleep_range(100, 200);
4022         /* Write the bytes to the new bank. */
4023         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4024                                    act_offset,
4025                                    (u8)data);
4026         if (ret_val)
4027             break;
4028 
4029         usleep_range(100, 200);
4030         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4031                                    act_offset + 1,
4032                                    (u8)(data >> 8));
4033         if (ret_val)
4034             break;
4035     }
4036 
4037     /* Don't bother writing the segment valid bits if sector
4038      * programming failed.
4039      */
4040     if (ret_val) {
4041         /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4042         e_dbg("Flash commit failed.\n");
4043         goto release;
4044     }
4045 
4046     /* Finally validate the new segment by setting bit 15:14
4047      * to 10b in word 0x13 , this can be done without an
4048      * erase as well since these bits are 11 to start with
4049      * and we need to change bit 14 to 0b
4050      */
4051     act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4052     ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4053     if (ret_val)
4054         goto release;
4055 
4056     data &= 0xBFFF;
4057     ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4058                                act_offset * 2 + 1,
4059                                (u8)(data >> 8));
4060     if (ret_val)
4061         goto release;
4062 
4063     /* And invalidate the previously valid segment by setting
4064      * its signature word (0x13) high_byte to 0b. This can be
4065      * done without an erase because flash erase sets all bits
4066      * to 1's. We can write 1's to 0's without an erase
4067      */
4068     act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4069     ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4070     if (ret_val)
4071         goto release;
4072 
4073     /* Great!  Everything worked, we can now clear the cached entries. */
4074     for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4075         dev_spec->shadow_ram[i].modified = false;
4076         dev_spec->shadow_ram[i].value = 0xFFFF;
4077     }
4078 
4079 release:
4080     nvm->ops.release(hw);
4081 
4082     /* Reload the EEPROM, or else modifications will not appear
4083      * until after the next adapter reset.
4084      */
4085     if (!ret_val) {
4086         nvm->ops.reload(hw);
4087         usleep_range(10000, 11000);
4088     }
4089 
4090 out:
4091     if (ret_val)
4092         e_dbg("NVM update error: %d\n", ret_val);
4093 
4094     return ret_val;
4095 }
4096 
4097 /**
4098  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4099  *  @hw: pointer to the HW structure
4100  *
4101  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4102  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4103  *  calculated, in which case we need to calculate the checksum and set bit 6.
4104  **/
4105 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4106 {
4107     s32 ret_val;
4108     u16 data;
4109     u16 word;
4110     u16 valid_csum_mask;
4111 
4112     /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4113      * the checksum needs to be fixed.  This bit is an indication that
4114      * the NVM was prepared by OEM software and did not calculate
4115      * the checksum...a likely scenario.
4116      */
4117     switch (hw->mac.type) {
4118     case e1000_pch_lpt:
4119     case e1000_pch_spt:
4120     case e1000_pch_cnp:
4121     case e1000_pch_tgp:
4122     case e1000_pch_adp:
4123     case e1000_pch_mtp:
4124     case e1000_pch_lnp:
4125         word = NVM_COMPAT;
4126         valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4127         break;
4128     default:
4129         word = NVM_FUTURE_INIT_WORD1;
4130         valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4131         break;
4132     }
4133 
4134     ret_val = e1000_read_nvm(hw, word, 1, &data);
4135     if (ret_val)
4136         return ret_val;
4137 
4138     if (!(data & valid_csum_mask)) {
4139         e_dbg("NVM Checksum valid bit not set\n");
4140 
4141         if (hw->mac.type < e1000_pch_tgp) {
4142             data |= valid_csum_mask;
4143             ret_val = e1000_write_nvm(hw, word, 1, &data);
4144             if (ret_val)
4145                 return ret_val;
4146             ret_val = e1000e_update_nvm_checksum(hw);
4147             if (ret_val)
4148                 return ret_val;
4149         }
4150     }
4151 
4152     return e1000e_validate_nvm_checksum_generic(hw);
4153 }
4154 
4155 /**
4156  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4157  *  @hw: pointer to the HW structure
4158  *
4159  *  To prevent malicious write/erase of the NVM, set it to be read-only
4160  *  so that the hardware ignores all write/erase cycles of the NVM via
4161  *  the flash control registers.  The shadow-ram copy of the NVM will
4162  *  still be updated, however any updates to this copy will not stick
4163  *  across driver reloads.
4164  **/
4165 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4166 {
4167     struct e1000_nvm_info *nvm = &hw->nvm;
4168     union ich8_flash_protected_range pr0;
4169     union ich8_hws_flash_status hsfsts;
4170     u32 gfpreg;
4171 
4172     nvm->ops.acquire(hw);
4173 
4174     gfpreg = er32flash(ICH_FLASH_GFPREG);
4175 
4176     /* Write-protect GbE Sector of NVM */
4177     pr0.regval = er32flash(ICH_FLASH_PR0);
4178     pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4179     pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4180     pr0.range.wpe = true;
4181     ew32flash(ICH_FLASH_PR0, pr0.regval);
4182 
4183     /* Lock down a subset of GbE Flash Control Registers, e.g.
4184      * PR0 to prevent the write-protection from being lifted.
4185      * Once FLOCKDN is set, the registers protected by it cannot
4186      * be written until FLOCKDN is cleared by a hardware reset.
4187      */
4188     hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4189     hsfsts.hsf_status.flockdn = true;
4190     ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4191 
4192     nvm->ops.release(hw);
4193 }
4194 
4195 /**
4196  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4197  *  @hw: pointer to the HW structure
4198  *  @offset: The offset (in bytes) of the byte/word to read.
4199  *  @size: Size of data to read, 1=byte 2=word
4200  *  @data: The byte(s) to write to the NVM.
4201  *
4202  *  Writes one/two bytes to the NVM using the flash access registers.
4203  **/
4204 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4205                       u8 size, u16 data)
4206 {
4207     union ich8_hws_flash_status hsfsts;
4208     union ich8_hws_flash_ctrl hsflctl;
4209     u32 flash_linear_addr;
4210     u32 flash_data = 0;
4211     s32 ret_val;
4212     u8 count = 0;
4213 
4214     if (hw->mac.type >= e1000_pch_spt) {
4215         if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4216             return -E1000_ERR_NVM;
4217     } else {
4218         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4219             return -E1000_ERR_NVM;
4220     }
4221 
4222     flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4223                  hw->nvm.flash_base_addr);
4224 
4225     do {
4226         udelay(1);
4227         /* Steps */
4228         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4229         if (ret_val)
4230             break;
4231         /* In SPT, This register is in Lan memory space, not
4232          * flash.  Therefore, only 32 bit access is supported
4233          */
4234         if (hw->mac.type >= e1000_pch_spt)
4235             hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4236         else
4237             hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4238 
4239         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4240         hsflctl.hsf_ctrl.fldbcount = size - 1;
4241         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4242         /* In SPT, This register is in Lan memory space,
4243          * not flash.  Therefore, only 32 bit access is
4244          * supported
4245          */
4246         if (hw->mac.type >= e1000_pch_spt)
4247             ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4248         else
4249             ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4250 
4251         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4252 
4253         if (size == 1)
4254             flash_data = (u32)data & 0x00FF;
4255         else
4256             flash_data = (u32)data;
4257 
4258         ew32flash(ICH_FLASH_FDATA0, flash_data);
4259 
4260         /* check if FCERR is set to 1 , if set to 1, clear it
4261          * and try the whole sequence a few more times else done
4262          */
4263         ret_val =
4264             e1000_flash_cycle_ich8lan(hw,
4265                           ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4266         if (!ret_val)
4267             break;
4268 
4269         /* If we're here, then things are most likely
4270          * completely hosed, but if the error condition
4271          * is detected, it won't hurt to give it another
4272          * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4273          */
4274         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4275         if (hsfsts.hsf_status.flcerr)
4276             /* Repeat for some time before giving up. */
4277             continue;
4278         if (!hsfsts.hsf_status.flcdone) {
4279             e_dbg("Timeout error - flash cycle did not complete.\n");
4280             break;
4281         }
4282     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4283 
4284     return ret_val;
4285 }
4286 
4287 /**
4288 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4289 *  @hw: pointer to the HW structure
4290 *  @offset: The offset (in bytes) of the dwords to read.
4291 *  @data: The 4 bytes to write to the NVM.
4292 *
4293 *  Writes one/two/four bytes to the NVM using the flash access registers.
4294 **/
4295 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4296                         u32 data)
4297 {
4298     union ich8_hws_flash_status hsfsts;
4299     union ich8_hws_flash_ctrl hsflctl;
4300     u32 flash_linear_addr;
4301     s32 ret_val;
4302     u8 count = 0;
4303 
4304     if (hw->mac.type >= e1000_pch_spt) {
4305         if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4306             return -E1000_ERR_NVM;
4307     }
4308     flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4309                  hw->nvm.flash_base_addr);
4310     do {
4311         udelay(1);
4312         /* Steps */
4313         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4314         if (ret_val)
4315             break;
4316 
4317         /* In SPT, This register is in Lan memory space, not
4318          * flash.  Therefore, only 32 bit access is supported
4319          */
4320         if (hw->mac.type >= e1000_pch_spt)
4321             hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4322                 >> 16;
4323         else
4324             hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4325 
4326         hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4327         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4328 
4329         /* In SPT, This register is in Lan memory space,
4330          * not flash.  Therefore, only 32 bit access is
4331          * supported
4332          */
4333         if (hw->mac.type >= e1000_pch_spt)
4334             ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4335         else
4336             ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4337 
4338         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4339 
4340         ew32flash(ICH_FLASH_FDATA0, data);
4341 
4342         /* check if FCERR is set to 1 , if set to 1, clear it
4343          * and try the whole sequence a few more times else done
4344          */
4345         ret_val =
4346            e1000_flash_cycle_ich8lan(hw,
4347                          ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4348 
4349         if (!ret_val)
4350             break;
4351 
4352         /* If we're here, then things are most likely
4353          * completely hosed, but if the error condition
4354          * is detected, it won't hurt to give it another
4355          * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4356          */
4357         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4358 
4359         if (hsfsts.hsf_status.flcerr)
4360             /* Repeat for some time before giving up. */
4361             continue;
4362         if (!hsfsts.hsf_status.flcdone) {
4363             e_dbg("Timeout error - flash cycle did not complete.\n");
4364             break;
4365         }
4366     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4367 
4368     return ret_val;
4369 }
4370 
4371 /**
4372  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4373  *  @hw: pointer to the HW structure
4374  *  @offset: The index of the byte to read.
4375  *  @data: The byte to write to the NVM.
4376  *
4377  *  Writes a single byte to the NVM using the flash access registers.
4378  **/
4379 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4380                       u8 data)
4381 {
4382     u16 word = (u16)data;
4383 
4384     return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4385 }
4386 
4387 /**
4388 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4389 *  @hw: pointer to the HW structure
4390 *  @offset: The offset of the word to write.
4391 *  @dword: The dword to write to the NVM.
4392 *
4393 *  Writes a single dword to the NVM using the flash access registers.
4394 *  Goes through a retry algorithm before giving up.
4395 **/
4396 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4397                          u32 offset, u32 dword)
4398 {
4399     s32 ret_val;
4400     u16 program_retries;
4401 
4402     /* Must convert word offset into bytes. */
4403     offset <<= 1;
4404     ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4405 
4406     if (!ret_val)
4407         return ret_val;
4408     for (program_retries = 0; program_retries < 100; program_retries++) {
4409         e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4410         usleep_range(100, 200);
4411         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4412         if (!ret_val)
4413             break;
4414     }
4415     if (program_retries == 100)
4416         return -E1000_ERR_NVM;
4417 
4418     return 0;
4419 }
4420 
4421 /**
4422  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4423  *  @hw: pointer to the HW structure
4424  *  @offset: The offset of the byte to write.
4425  *  @byte: The byte to write to the NVM.
4426  *
4427  *  Writes a single byte to the NVM using the flash access registers.
4428  *  Goes through a retry algorithm before giving up.
4429  **/
4430 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4431                         u32 offset, u8 byte)
4432 {
4433     s32 ret_val;
4434     u16 program_retries;
4435 
4436     ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4437     if (!ret_val)
4438         return ret_val;
4439 
4440     for (program_retries = 0; program_retries < 100; program_retries++) {
4441         e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4442         usleep_range(100, 200);
4443         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4444         if (!ret_val)
4445             break;
4446     }
4447     if (program_retries == 100)
4448         return -E1000_ERR_NVM;
4449 
4450     return 0;
4451 }
4452 
4453 /**
4454  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4455  *  @hw: pointer to the HW structure
4456  *  @bank: 0 for first bank, 1 for second bank, etc.
4457  *
4458  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4459  *  bank N is 4096 * N + flash_reg_addr.
4460  **/
4461 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4462 {
4463     struct e1000_nvm_info *nvm = &hw->nvm;
4464     union ich8_hws_flash_status hsfsts;
4465     union ich8_hws_flash_ctrl hsflctl;
4466     u32 flash_linear_addr;
4467     /* bank size is in 16bit words - adjust to bytes */
4468     u32 flash_bank_size = nvm->flash_bank_size * 2;
4469     s32 ret_val;
4470     s32 count = 0;
4471     s32 j, iteration, sector_size;
4472 
4473     hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4474 
4475     /* Determine HW Sector size: Read BERASE bits of hw flash status
4476      * register
4477      * 00: The Hw sector is 256 bytes, hence we need to erase 16
4478      *     consecutive sectors.  The start index for the nth Hw sector
4479      *     can be calculated as = bank * 4096 + n * 256
4480      * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4481      *     The start index for the nth Hw sector can be calculated
4482      *     as = bank * 4096
4483      * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4484      *     (ich9 only, otherwise error condition)
4485      * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4486      */
4487     switch (hsfsts.hsf_status.berasesz) {
4488     case 0:
4489         /* Hw sector size 256 */
4490         sector_size = ICH_FLASH_SEG_SIZE_256;
4491         iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4492         break;
4493     case 1:
4494         sector_size = ICH_FLASH_SEG_SIZE_4K;
4495         iteration = 1;
4496         break;
4497     case 2:
4498         sector_size = ICH_FLASH_SEG_SIZE_8K;
4499         iteration = 1;
4500         break;
4501     case 3:
4502         sector_size = ICH_FLASH_SEG_SIZE_64K;
4503         iteration = 1;
4504         break;
4505     default:
4506         return -E1000_ERR_NVM;
4507     }
4508 
4509     /* Start with the base address, then add the sector offset. */
4510     flash_linear_addr = hw->nvm.flash_base_addr;
4511     flash_linear_addr += (bank) ? flash_bank_size : 0;
4512 
4513     for (j = 0; j < iteration; j++) {
4514         do {
4515             u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4516 
4517             /* Steps */
4518             ret_val = e1000_flash_cycle_init_ich8lan(hw);
4519             if (ret_val)
4520                 return ret_val;
4521 
4522             /* Write a value 11 (block Erase) in Flash
4523              * Cycle field in hw flash control
4524              */
4525             if (hw->mac.type >= e1000_pch_spt)
4526                 hsflctl.regval =
4527                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4528             else
4529                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4530 
4531             hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4532             if (hw->mac.type >= e1000_pch_spt)
4533                 ew32flash(ICH_FLASH_HSFSTS,
4534                       hsflctl.regval << 16);
4535             else
4536                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4537 
4538             /* Write the last 24 bits of an index within the
4539              * block into Flash Linear address field in Flash
4540              * Address.
4541              */
4542             flash_linear_addr += (j * sector_size);
4543             ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4544 
4545             ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4546             if (!ret_val)
4547                 break;
4548 
4549             /* Check if FCERR is set to 1.  If 1,
4550              * clear it and try the whole sequence
4551              * a few more times else Done
4552              */
4553             hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4554             if (hsfsts.hsf_status.flcerr)
4555                 /* repeat for some time before giving up */
4556                 continue;
4557             else if (!hsfsts.hsf_status.flcdone)
4558                 return ret_val;
4559         } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4560     }
4561 
4562     return 0;
4563 }
4564 
4565 /**
4566  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4567  *  @hw: pointer to the HW structure
4568  *  @data: Pointer to the LED settings
4569  *
4570  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4571  *  settings is all 0's or F's, set the LED default to a valid LED default
4572  *  setting.
4573  **/
4574 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4575 {
4576     s32 ret_val;
4577 
4578     ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4579     if (ret_val) {
4580         e_dbg("NVM Read Error\n");
4581         return ret_val;
4582     }
4583 
4584     if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4585         *data = ID_LED_DEFAULT_ICH8LAN;
4586 
4587     return 0;
4588 }
4589 
4590 /**
4591  *  e1000_id_led_init_pchlan - store LED configurations
4592  *  @hw: pointer to the HW structure
4593  *
4594  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4595  *  the PHY LED configuration register.
4596  *
4597  *  PCH also does not have an "always on" or "always off" mode which
4598  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4599  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4600  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4601  *  link based on logic in e1000_led_[on|off]_pchlan().
4602  **/
4603 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4604 {
4605     struct e1000_mac_info *mac = &hw->mac;
4606     s32 ret_val;
4607     const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4608     const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4609     u16 data, i, temp, shift;
4610 
4611     /* Get default ID LED modes */
4612     ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4613     if (ret_val)
4614         return ret_val;
4615 
4616     mac->ledctl_default = er32(LEDCTL);
4617     mac->ledctl_mode1 = mac->ledctl_default;
4618     mac->ledctl_mode2 = mac->ledctl_default;
4619 
4620     for (i = 0; i < 4; i++) {
4621         temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4622         shift = (i * 5);
4623         switch (temp) {
4624         case ID_LED_ON1_DEF2:
4625         case ID_LED_ON1_ON2:
4626         case ID_LED_ON1_OFF2:
4627             mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4628             mac->ledctl_mode1 |= (ledctl_on << shift);
4629             break;
4630         case ID_LED_OFF1_DEF2:
4631         case ID_LED_OFF1_ON2:
4632         case ID_LED_OFF1_OFF2:
4633             mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4634             mac->ledctl_mode1 |= (ledctl_off << shift);
4635             break;
4636         default:
4637             /* Do nothing */
4638             break;
4639         }
4640         switch (temp) {
4641         case ID_LED_DEF1_ON2:
4642         case ID_LED_ON1_ON2:
4643         case ID_LED_OFF1_ON2:
4644             mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4645             mac->ledctl_mode2 |= (ledctl_on << shift);
4646             break;
4647         case ID_LED_DEF1_OFF2:
4648         case ID_LED_ON1_OFF2:
4649         case ID_LED_OFF1_OFF2:
4650             mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4651             mac->ledctl_mode2 |= (ledctl_off << shift);
4652             break;
4653         default:
4654             /* Do nothing */
4655             break;
4656         }
4657     }
4658 
4659     return 0;
4660 }
4661 
4662 /**
4663  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4664  *  @hw: pointer to the HW structure
4665  *
4666  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4667  *  register, so the bus width is hard coded.
4668  **/
4669 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4670 {
4671     struct e1000_bus_info *bus = &hw->bus;
4672     s32 ret_val;
4673 
4674     ret_val = e1000e_get_bus_info_pcie(hw);
4675 
4676     /* ICH devices are "PCI Express"-ish.  They have
4677      * a configuration space, but do not contain
4678      * PCI Express Capability registers, so bus width
4679      * must be hardcoded.
4680      */
4681     if (bus->width == e1000_bus_width_unknown)
4682         bus->width = e1000_bus_width_pcie_x1;
4683 
4684     return ret_val;
4685 }
4686 
4687 /**
4688  *  e1000_reset_hw_ich8lan - Reset the hardware
4689  *  @hw: pointer to the HW structure
4690  *
4691  *  Does a full reset of the hardware which includes a reset of the PHY and
4692  *  MAC.
4693  **/
4694 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4695 {
4696     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4697     u16 kum_cfg;
4698     u32 ctrl, reg;
4699     s32 ret_val;
4700 
4701     /* Prevent the PCI-E bus from sticking if there is no TLP connection
4702      * on the last TLP read/write transaction when MAC is reset.
4703      */
4704     ret_val = e1000e_disable_pcie_master(hw);
4705     if (ret_val)
4706         e_dbg("PCI-E Master disable polling has failed.\n");
4707 
4708     e_dbg("Masking off all interrupts\n");
4709     ew32(IMC, 0xffffffff);
4710 
4711     /* Disable the Transmit and Receive units.  Then delay to allow
4712      * any pending transactions to complete before we hit the MAC
4713      * with the global reset.
4714      */
4715     ew32(RCTL, 0);
4716     ew32(TCTL, E1000_TCTL_PSP);
4717     e1e_flush();
4718 
4719     usleep_range(10000, 11000);
4720 
4721     /* Workaround for ICH8 bit corruption issue in FIFO memory */
4722     if (hw->mac.type == e1000_ich8lan) {
4723         /* Set Tx and Rx buffer allocation to 8k apiece. */
4724         ew32(PBA, E1000_PBA_8K);
4725         /* Set Packet Buffer Size to 16k. */
4726         ew32(PBS, E1000_PBS_16K);
4727     }
4728 
4729     if (hw->mac.type == e1000_pchlan) {
4730         /* Save the NVM K1 bit setting */
4731         ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4732         if (ret_val)
4733             return ret_val;
4734 
4735         if (kum_cfg & E1000_NVM_K1_ENABLE)
4736             dev_spec->nvm_k1_enabled = true;
4737         else
4738             dev_spec->nvm_k1_enabled = false;
4739     }
4740 
4741     ctrl = er32(CTRL);
4742 
4743     if (!hw->phy.ops.check_reset_block(hw)) {
4744         /* Full-chip reset requires MAC and PHY reset at the same
4745          * time to make sure the interface between MAC and the
4746          * external PHY is reset.
4747          */
4748         ctrl |= E1000_CTRL_PHY_RST;
4749 
4750         /* Gate automatic PHY configuration by hardware on
4751          * non-managed 82579
4752          */
4753         if ((hw->mac.type == e1000_pch2lan) &&
4754             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4755             e1000_gate_hw_phy_config_ich8lan(hw, true);
4756     }
4757     ret_val = e1000_acquire_swflag_ich8lan(hw);
4758     e_dbg("Issuing a global reset to ich8lan\n");
4759     ew32(CTRL, (ctrl | E1000_CTRL_RST));
4760     /* cannot issue a flush here because it hangs the hardware */
4761     msleep(20);
4762 
4763     /* Set Phy Config Counter to 50msec */
4764     if (hw->mac.type == e1000_pch2lan) {
4765         reg = er32(FEXTNVM3);
4766         reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4767         reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4768         ew32(FEXTNVM3, reg);
4769     }
4770 
4771     if (!ret_val)
4772         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4773 
4774     if (ctrl & E1000_CTRL_PHY_RST) {
4775         ret_val = hw->phy.ops.get_cfg_done(hw);
4776         if (ret_val)
4777             return ret_val;
4778 
4779         ret_val = e1000_post_phy_reset_ich8lan(hw);
4780         if (ret_val)
4781             return ret_val;
4782     }
4783 
4784     /* For PCH, this write will make sure that any noise
4785      * will be detected as a CRC error and be dropped rather than show up
4786      * as a bad packet to the DMA engine.
4787      */
4788     if (hw->mac.type == e1000_pchlan)
4789         ew32(CRC_OFFSET, 0x65656565);
4790 
4791     ew32(IMC, 0xffffffff);
4792     er32(ICR);
4793 
4794     reg = er32(KABGTXD);
4795     reg |= E1000_KABGTXD_BGSQLBIAS;
4796     ew32(KABGTXD, reg);
4797 
4798     return 0;
4799 }
4800 
4801 /**
4802  *  e1000_init_hw_ich8lan - Initialize the hardware
4803  *  @hw: pointer to the HW structure
4804  *
4805  *  Prepares the hardware for transmit and receive by doing the following:
4806  *   - initialize hardware bits
4807  *   - initialize LED identification
4808  *   - setup receive address registers
4809  *   - setup flow control
4810  *   - setup transmit descriptors
4811  *   - clear statistics
4812  **/
4813 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4814 {
4815     struct e1000_mac_info *mac = &hw->mac;
4816     u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4817     s32 ret_val;
4818     u16 i;
4819 
4820     e1000_initialize_hw_bits_ich8lan(hw);
4821 
4822     /* Initialize identification LED */
4823     ret_val = mac->ops.id_led_init(hw);
4824     /* An error is not fatal and we should not stop init due to this */
4825     if (ret_val)
4826         e_dbg("Error initializing identification LED\n");
4827 
4828     /* Setup the receive address. */
4829     e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4830 
4831     /* Zero out the Multicast HASH table */
4832     e_dbg("Zeroing the MTA\n");
4833     for (i = 0; i < mac->mta_reg_count; i++)
4834         E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4835 
4836     /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4837      * the ME.  Disable wakeup by clearing the host wakeup bit.
4838      * Reset the phy after disabling host wakeup to reset the Rx buffer.
4839      */
4840     if (hw->phy.type == e1000_phy_82578) {
4841         e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4842         i &= ~BM_WUC_HOST_WU_BIT;
4843         e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4844         ret_val = e1000_phy_hw_reset_ich8lan(hw);
4845         if (ret_val)
4846             return ret_val;
4847     }
4848 
4849     /* Setup link and flow control */
4850     ret_val = mac->ops.setup_link(hw);
4851 
4852     /* Set the transmit descriptor write-back policy for both queues */
4853     txdctl = er32(TXDCTL(0));
4854     txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4855           E1000_TXDCTL_FULL_TX_DESC_WB);
4856     txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4857           E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4858     ew32(TXDCTL(0), txdctl);
4859     txdctl = er32(TXDCTL(1));
4860     txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4861           E1000_TXDCTL_FULL_TX_DESC_WB);
4862     txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4863           E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4864     ew32(TXDCTL(1), txdctl);
4865 
4866     /* ICH8 has opposite polarity of no_snoop bits.
4867      * By default, we should use snoop behavior.
4868      */
4869     if (mac->type == e1000_ich8lan)
4870         snoop = PCIE_ICH8_SNOOP_ALL;
4871     else
4872         snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4873     e1000e_set_pcie_no_snoop(hw, snoop);
4874 
4875     /* Enable workaround for packet loss issue on TGP PCH
4876      * Do not gate DMA clock from the modPHY block
4877      */
4878     if (mac->type >= e1000_pch_tgp) {
4879         fflt_dbg = er32(FFLT_DBG);
4880         fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4881         ew32(FFLT_DBG, fflt_dbg);
4882     }
4883 
4884     ctrl_ext = er32(CTRL_EXT);
4885     ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4886     ew32(CTRL_EXT, ctrl_ext);
4887 
4888     /* Clear all of the statistics registers (clear on read).  It is
4889      * important that we do this after we have tried to establish link
4890      * because the symbol error count will increment wildly if there
4891      * is no link.
4892      */
4893     e1000_clear_hw_cntrs_ich8lan(hw);
4894 
4895     return ret_val;
4896 }
4897 
4898 /**
4899  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4900  *  @hw: pointer to the HW structure
4901  *
4902  *  Sets/Clears required hardware bits necessary for correctly setting up the
4903  *  hardware for transmit and receive.
4904  **/
4905 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4906 {
4907     u32 reg;
4908 
4909     /* Extended Device Control */
4910     reg = er32(CTRL_EXT);
4911     reg |= BIT(22);
4912     /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4913     if (hw->mac.type >= e1000_pchlan)
4914         reg |= E1000_CTRL_EXT_PHYPDEN;
4915     ew32(CTRL_EXT, reg);
4916 
4917     /* Transmit Descriptor Control 0 */
4918     reg = er32(TXDCTL(0));
4919     reg |= BIT(22);
4920     ew32(TXDCTL(0), reg);
4921 
4922     /* Transmit Descriptor Control 1 */
4923     reg = er32(TXDCTL(1));
4924     reg |= BIT(22);
4925     ew32(TXDCTL(1), reg);
4926 
4927     /* Transmit Arbitration Control 0 */
4928     reg = er32(TARC(0));
4929     if (hw->mac.type == e1000_ich8lan)
4930         reg |= BIT(28) | BIT(29);
4931     reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4932     ew32(TARC(0), reg);
4933 
4934     /* Transmit Arbitration Control 1 */
4935     reg = er32(TARC(1));
4936     if (er32(TCTL) & E1000_TCTL_MULR)
4937         reg &= ~BIT(28);
4938     else
4939         reg |= BIT(28);
4940     reg |= BIT(24) | BIT(26) | BIT(30);
4941     ew32(TARC(1), reg);
4942 
4943     /* Device Status */
4944     if (hw->mac.type == e1000_ich8lan) {
4945         reg = er32(STATUS);
4946         reg &= ~BIT(31);
4947         ew32(STATUS, reg);
4948     }
4949 
4950     /* work-around descriptor data corruption issue during nfs v2 udp
4951      * traffic, just disable the nfs filtering capability
4952      */
4953     reg = er32(RFCTL);
4954     reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4955 
4956     /* Disable IPv6 extension header parsing because some malformed
4957      * IPv6 headers can hang the Rx.
4958      */
4959     if (hw->mac.type == e1000_ich8lan)
4960         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4961     ew32(RFCTL, reg);
4962 
4963     /* Enable ECC on Lynxpoint */
4964     if (hw->mac.type >= e1000_pch_lpt) {
4965         reg = er32(PBECCSTS);
4966         reg |= E1000_PBECCSTS_ECC_ENABLE;
4967         ew32(PBECCSTS, reg);
4968 
4969         reg = er32(CTRL);
4970         reg |= E1000_CTRL_MEHE;
4971         ew32(CTRL, reg);
4972     }
4973 }
4974 
4975 /**
4976  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4977  *  @hw: pointer to the HW structure
4978  *
4979  *  Determines which flow control settings to use, then configures flow
4980  *  control.  Calls the appropriate media-specific link configuration
4981  *  function.  Assuming the adapter has a valid link partner, a valid link
4982  *  should be established.  Assumes the hardware has previously been reset
4983  *  and the transmitter and receiver are not enabled.
4984  **/
4985 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4986 {
4987     s32 ret_val;
4988 
4989     if (hw->phy.ops.check_reset_block(hw))
4990         return 0;
4991 
4992     /* ICH parts do not have a word in the NVM to determine
4993      * the default flow control setting, so we explicitly
4994      * set it to full.
4995      */
4996     if (hw->fc.requested_mode == e1000_fc_default) {
4997         /* Workaround h/w hang when Tx flow control enabled */
4998         if (hw->mac.type == e1000_pchlan)
4999             hw->fc.requested_mode = e1000_fc_rx_pause;
5000         else
5001             hw->fc.requested_mode = e1000_fc_full;
5002     }
5003 
5004     /* Save off the requested flow control mode for use later.  Depending
5005      * on the link partner's capabilities, we may or may not use this mode.
5006      */
5007     hw->fc.current_mode = hw->fc.requested_mode;
5008 
5009     e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5010 
5011     /* Continue to configure the copper link. */
5012     ret_val = hw->mac.ops.setup_physical_interface(hw);
5013     if (ret_val)
5014         return ret_val;
5015 
5016     ew32(FCTTV, hw->fc.pause_time);
5017     if ((hw->phy.type == e1000_phy_82578) ||
5018         (hw->phy.type == e1000_phy_82579) ||
5019         (hw->phy.type == e1000_phy_i217) ||
5020         (hw->phy.type == e1000_phy_82577)) {
5021         ew32(FCRTV_PCH, hw->fc.refresh_time);
5022 
5023         ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5024                    hw->fc.pause_time);
5025         if (ret_val)
5026             return ret_val;
5027     }
5028 
5029     return e1000e_set_fc_watermarks(hw);
5030 }
5031 
5032 /**
5033  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5034  *  @hw: pointer to the HW structure
5035  *
5036  *  Configures the kumeran interface to the PHY to wait the appropriate time
5037  *  when polling the PHY, then call the generic setup_copper_link to finish
5038  *  configuring the copper link.
5039  **/
5040 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5041 {
5042     u32 ctrl;
5043     s32 ret_val;
5044     u16 reg_data;
5045 
5046     ctrl = er32(CTRL);
5047     ctrl |= E1000_CTRL_SLU;
5048     ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5049     ew32(CTRL, ctrl);
5050 
5051     /* Set the mac to wait the maximum time between each iteration
5052      * and increase the max iterations when polling the phy;
5053      * this fixes erroneous timeouts at 10Mbps.
5054      */
5055     ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5056     if (ret_val)
5057         return ret_val;
5058     ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5059                        &reg_data);
5060     if (ret_val)
5061         return ret_val;
5062     reg_data |= 0x3F;
5063     ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5064                     reg_data);
5065     if (ret_val)
5066         return ret_val;
5067 
5068     switch (hw->phy.type) {
5069     case e1000_phy_igp_3:
5070         ret_val = e1000e_copper_link_setup_igp(hw);
5071         if (ret_val)
5072             return ret_val;
5073         break;
5074     case e1000_phy_bm:
5075     case e1000_phy_82578:
5076         ret_val = e1000e_copper_link_setup_m88(hw);
5077         if (ret_val)
5078             return ret_val;
5079         break;
5080     case e1000_phy_82577:
5081     case e1000_phy_82579:
5082         ret_val = e1000_copper_link_setup_82577(hw);
5083         if (ret_val)
5084             return ret_val;
5085         break;
5086     case e1000_phy_ife:
5087         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5088         if (ret_val)
5089             return ret_val;
5090 
5091         reg_data &= ~IFE_PMC_AUTO_MDIX;
5092 
5093         switch (hw->phy.mdix) {
5094         case 1:
5095             reg_data &= ~IFE_PMC_FORCE_MDIX;
5096             break;
5097         case 2:
5098             reg_data |= IFE_PMC_FORCE_MDIX;
5099             break;
5100         case 0:
5101         default:
5102             reg_data |= IFE_PMC_AUTO_MDIX;
5103             break;
5104         }
5105         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5106         if (ret_val)
5107             return ret_val;
5108         break;
5109     default:
5110         break;
5111     }
5112 
5113     return e1000e_setup_copper_link(hw);
5114 }
5115 
5116 /**
5117  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5118  *  @hw: pointer to the HW structure
5119  *
5120  *  Calls the PHY specific link setup function and then calls the
5121  *  generic setup_copper_link to finish configuring the link for
5122  *  Lynxpoint PCH devices
5123  **/
5124 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5125 {
5126     u32 ctrl;
5127     s32 ret_val;
5128 
5129     ctrl = er32(CTRL);
5130     ctrl |= E1000_CTRL_SLU;
5131     ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5132     ew32(CTRL, ctrl);
5133 
5134     ret_val = e1000_copper_link_setup_82577(hw);
5135     if (ret_val)
5136         return ret_val;
5137 
5138     return e1000e_setup_copper_link(hw);
5139 }
5140 
5141 /**
5142  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5143  *  @hw: pointer to the HW structure
5144  *  @speed: pointer to store current link speed
5145  *  @duplex: pointer to store the current link duplex
5146  *
5147  *  Calls the generic get_speed_and_duplex to retrieve the current link
5148  *  information and then calls the Kumeran lock loss workaround for links at
5149  *  gigabit speeds.
5150  **/
5151 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5152                       u16 *duplex)
5153 {
5154     s32 ret_val;
5155 
5156     ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5157     if (ret_val)
5158         return ret_val;
5159 
5160     if ((hw->mac.type == e1000_ich8lan) &&
5161         (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5162         ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5163     }
5164 
5165     return ret_val;
5166 }
5167 
5168 /**
5169  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5170  *  @hw: pointer to the HW structure
5171  *
5172  *  Work-around for 82566 Kumeran PCS lock loss:
5173  *  On link status change (i.e. PCI reset, speed change) and link is up and
5174  *  speed is gigabit-
5175  *    0) if workaround is optionally disabled do nothing
5176  *    1) wait 1ms for Kumeran link to come up
5177  *    2) check Kumeran Diagnostic register PCS lock loss bit
5178  *    3) if not set the link is locked (all is good), otherwise...
5179  *    4) reset the PHY
5180  *    5) repeat up to 10 times
5181  *  Note: this is only called for IGP3 copper when speed is 1gb.
5182  **/
5183 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5184 {
5185     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5186     u32 phy_ctrl;
5187     s32 ret_val;
5188     u16 i, data;
5189     bool link;
5190 
5191     if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5192         return 0;
5193 
5194     /* Make sure link is up before proceeding.  If not just return.
5195      * Attempting this while link is negotiating fouled up link
5196      * stability
5197      */
5198     ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5199     if (!link)
5200         return 0;
5201 
5202     for (i = 0; i < 10; i++) {
5203         /* read once to clear */
5204         ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5205         if (ret_val)
5206             return ret_val;
5207         /* and again to get new status */
5208         ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5209         if (ret_val)
5210             return ret_val;
5211 
5212         /* check for PCS lock */
5213         if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5214             return 0;
5215 
5216         /* Issue PHY reset */
5217         e1000_phy_hw_reset(hw);
5218         mdelay(5);
5219     }
5220     /* Disable GigE link negotiation */
5221     phy_ctrl = er32(PHY_CTRL);
5222     phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5223              E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5224     ew32(PHY_CTRL, phy_ctrl);
5225 
5226     /* Call gig speed drop workaround on Gig disable before accessing
5227      * any PHY registers
5228      */
5229     e1000e_gig_downshift_workaround_ich8lan(hw);
5230 
5231     /* unable to acquire PCS lock */
5232     return -E1000_ERR_PHY;
5233 }
5234 
5235 /**
5236  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5237  *  @hw: pointer to the HW structure
5238  *  @state: boolean value used to set the current Kumeran workaround state
5239  *
5240  *  If ICH8, set the current Kumeran workaround state (enabled - true
5241  *  /disabled - false).
5242  **/
5243 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5244                           bool state)
5245 {
5246     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5247 
5248     if (hw->mac.type != e1000_ich8lan) {
5249         e_dbg("Workaround applies to ICH8 only.\n");
5250         return;
5251     }
5252 
5253     dev_spec->kmrn_lock_loss_workaround_enabled = state;
5254 }
5255 
5256 /**
5257  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5258  *  @hw: pointer to the HW structure
5259  *
5260  *  Workaround for 82566 power-down on D3 entry:
5261  *    1) disable gigabit link
5262  *    2) write VR power-down enable
5263  *    3) read it back
5264  *  Continue if successful, else issue LCD reset and repeat
5265  **/
5266 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5267 {
5268     u32 reg;
5269     u16 data;
5270     u8 retry = 0;
5271 
5272     if (hw->phy.type != e1000_phy_igp_3)
5273         return;
5274 
5275     /* Try the workaround twice (if needed) */
5276     do {
5277         /* Disable link */
5278         reg = er32(PHY_CTRL);
5279         reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5280             E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5281         ew32(PHY_CTRL, reg);
5282 
5283         /* Call gig speed drop workaround on Gig disable before
5284          * accessing any PHY registers
5285          */
5286         if (hw->mac.type == e1000_ich8lan)
5287             e1000e_gig_downshift_workaround_ich8lan(hw);
5288 
5289         /* Write VR power-down enable */
5290         e1e_rphy(hw, IGP3_VR_CTRL, &data);
5291         data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5292         e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5293 
5294         /* Read it back and test */
5295         e1e_rphy(hw, IGP3_VR_CTRL, &data);
5296         data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5297         if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5298             break;
5299 
5300         /* Issue PHY reset and repeat at most one more time */
5301         reg = er32(CTRL);
5302         ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5303         retry++;
5304     } while (retry);
5305 }
5306 
5307 /**
5308  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5309  *  @hw: pointer to the HW structure
5310  *
5311  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5312  *  LPLU, Gig disable, MDIC PHY reset):
5313  *    1) Set Kumeran Near-end loopback
5314  *    2) Clear Kumeran Near-end loopback
5315  *  Should only be called for ICH8[m] devices with any 1G Phy.
5316  **/
5317 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5318 {
5319     s32 ret_val;
5320     u16 reg_data;
5321 
5322     if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5323         return;
5324 
5325     ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5326                        &reg_data);
5327     if (ret_val)
5328         return;
5329     reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5330     ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5331                     reg_data);
5332     if (ret_val)
5333         return;
5334     reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5335     e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5336 }
5337 
5338 /**
5339  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5340  *  @hw: pointer to the HW structure
5341  *
5342  *  During S0 to Sx transition, it is possible the link remains at gig
5343  *  instead of negotiating to a lower speed.  Before going to Sx, set
5344  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5345  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5346  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5347  *  needs to be written.
5348  *  Parts that support (and are linked to a partner which support) EEE in
5349  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5350  *  than 10Mbps w/o EEE.
5351  **/
5352 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5353 {
5354     struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5355     u32 phy_ctrl;
5356     s32 ret_val;
5357 
5358     phy_ctrl = er32(PHY_CTRL);
5359     phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5360 
5361     if (hw->phy.type == e1000_phy_i217) {
5362         u16 phy_reg, device_id = hw->adapter->pdev->device;
5363 
5364         if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5365             (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5366             (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5367             (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5368             (hw->mac.type >= e1000_pch_spt)) {
5369             u32 fextnvm6 = er32(FEXTNVM6);
5370 
5371             ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5372         }
5373 
5374         ret_val = hw->phy.ops.acquire(hw);
5375         if (ret_val)
5376             goto out;
5377 
5378         if (!dev_spec->eee_disable) {
5379             u16 eee_advert;
5380 
5381             ret_val =
5382                 e1000_read_emi_reg_locked(hw,
5383                               I217_EEE_ADVERTISEMENT,
5384                               &eee_advert);
5385             if (ret_val)
5386                 goto release;
5387 
5388             /* Disable LPLU if both link partners support 100BaseT
5389              * EEE and 100Full is advertised on both ends of the
5390              * link, and enable Auto Enable LPI since there will
5391              * be no driver to enable LPI while in Sx.
5392              */
5393             if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5394                 (dev_spec->eee_lp_ability &
5395                  I82579_EEE_100_SUPPORTED) &&
5396                 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5397                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5398                           E1000_PHY_CTRL_NOND0A_LPLU);
5399 
5400                 /* Set Auto Enable LPI after link up */
5401                 e1e_rphy_locked(hw,
5402                         I217_LPI_GPIO_CTRL, &phy_reg);
5403                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5404                 e1e_wphy_locked(hw,
5405                         I217_LPI_GPIO_CTRL, phy_reg);
5406             }
5407         }
5408 
5409         /* For i217 Intel Rapid Start Technology support,
5410          * when the system is going into Sx and no manageability engine
5411          * is present, the driver must configure proxy to reset only on
5412          * power good.  LPI (Low Power Idle) state must also reset only
5413          * on power good, as well as the MTA (Multicast table array).
5414          * The SMBus release must also be disabled on LCD reset.
5415          */
5416         if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5417             /* Enable proxy to reset only on power good. */
5418             e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5419             phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5420             e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5421 
5422             /* Set bit enable LPI (EEE) to reset only on
5423              * power good.
5424              */
5425             e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5426             phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5427             e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5428 
5429             /* Disable the SMB release on LCD reset. */
5430             e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5431             phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5432             e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5433         }
5434 
5435         /* Enable MTA to reset for Intel Rapid Start Technology
5436          * Support
5437          */
5438         e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5439         phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5440         e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5441 
5442 release:
5443         hw->phy.ops.release(hw);
5444     }
5445 out:
5446     ew32(PHY_CTRL, phy_ctrl);
5447 
5448     if (hw->mac.type == e1000_ich8lan)
5449         e1000e_gig_downshift_workaround_ich8lan(hw);
5450 
5451     if (hw->mac.type >= e1000_pchlan) {
5452         e1000_oem_bits_config_ich8lan(hw, false);
5453 
5454         /* Reset PHY to activate OEM bits on 82577/8 */
5455         if (hw->mac.type == e1000_pchlan)
5456             e1000e_phy_hw_reset_generic(hw);
5457 
5458         ret_val = hw->phy.ops.acquire(hw);
5459         if (ret_val)
5460             return;
5461         e1000_write_smbus_addr(hw);
5462         hw->phy.ops.release(hw);
5463     }
5464 }
5465 
5466 /**
5467  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5468  *  @hw: pointer to the HW structure
5469  *
5470  *  During Sx to S0 transitions on non-managed devices or managed devices
5471  *  on which PHY resets are not blocked, if the PHY registers cannot be
5472  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5473  *  the PHY.
5474  *  On i217, setup Intel Rapid Start Technology.
5475  **/
5476 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5477 {
5478     s32 ret_val;
5479 
5480     if (hw->mac.type < e1000_pch2lan)
5481         return;
5482 
5483     ret_val = e1000_init_phy_workarounds_pchlan(hw);
5484     if (ret_val) {
5485         e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5486         return;
5487     }
5488 
5489     /* For i217 Intel Rapid Start Technology support when the system
5490      * is transitioning from Sx and no manageability engine is present
5491      * configure SMBus to restore on reset, disable proxy, and enable
5492      * the reset on MTA (Multicast table array).
5493      */
5494     if (hw->phy.type == e1000_phy_i217) {
5495         u16 phy_reg;
5496 
5497         ret_val = hw->phy.ops.acquire(hw);
5498         if (ret_val) {
5499             e_dbg("Failed to setup iRST\n");
5500             return;
5501         }
5502 
5503         /* Clear Auto Enable LPI after link up */
5504         e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5505         phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5506         e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5507 
5508         if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5509             /* Restore clear on SMB if no manageability engine
5510              * is present
5511              */
5512             ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5513             if (ret_val)
5514                 goto release;
5515             phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5516             e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5517 
5518             /* Disable Proxy */
5519             e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5520         }
5521         /* Enable reset on MTA */
5522         ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5523         if (ret_val)
5524             goto release;
5525         phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5526         e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5527 release:
5528         if (ret_val)
5529             e_dbg("Error %d in resume workarounds\n", ret_val);
5530         hw->phy.ops.release(hw);
5531     }
5532 }
5533 
5534 /**
5535  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5536  *  @hw: pointer to the HW structure
5537  *
5538  *  Return the LED back to the default configuration.
5539  **/
5540 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5541 {
5542     if (hw->phy.type == e1000_phy_ife)
5543         return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5544 
5545     ew32(LEDCTL, hw->mac.ledctl_default);
5546     return 0;
5547 }
5548 
5549 /**
5550  *  e1000_led_on_ich8lan - Turn LEDs on
5551  *  @hw: pointer to the HW structure
5552  *
5553  *  Turn on the LEDs.
5554  **/
5555 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5556 {
5557     if (hw->phy.type == e1000_phy_ife)
5558         return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5559                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5560 
5561     ew32(LEDCTL, hw->mac.ledctl_mode2);
5562     return 0;
5563 }
5564 
5565 /**
5566  *  e1000_led_off_ich8lan - Turn LEDs off
5567  *  @hw: pointer to the HW structure
5568  *
5569  *  Turn off the LEDs.
5570  **/
5571 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5572 {
5573     if (hw->phy.type == e1000_phy_ife)
5574         return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5575                 (IFE_PSCL_PROBE_MODE |
5576                  IFE_PSCL_PROBE_LEDS_OFF));
5577 
5578     ew32(LEDCTL, hw->mac.ledctl_mode1);
5579     return 0;
5580 }
5581 
5582 /**
5583  *  e1000_setup_led_pchlan - Configures SW controllable LED
5584  *  @hw: pointer to the HW structure
5585  *
5586  *  This prepares the SW controllable LED for use.
5587  **/
5588 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5589 {
5590     return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5591 }
5592 
5593 /**
5594  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5595  *  @hw: pointer to the HW structure
5596  *
5597  *  Return the LED back to the default configuration.
5598  **/
5599 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5600 {
5601     return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5602 }
5603 
5604 /**
5605  *  e1000_led_on_pchlan - Turn LEDs on
5606  *  @hw: pointer to the HW structure
5607  *
5608  *  Turn on the LEDs.
5609  **/
5610 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5611 {
5612     u16 data = (u16)hw->mac.ledctl_mode2;
5613     u32 i, led;
5614 
5615     /* If no link, then turn LED on by setting the invert bit
5616      * for each LED that's mode is "link_up" in ledctl_mode2.
5617      */
5618     if (!(er32(STATUS) & E1000_STATUS_LU)) {
5619         for (i = 0; i < 3; i++) {
5620             led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5621             if ((led & E1000_PHY_LED0_MODE_MASK) !=
5622                 E1000_LEDCTL_MODE_LINK_UP)
5623                 continue;
5624             if (led & E1000_PHY_LED0_IVRT)
5625                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5626             else
5627                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5628         }
5629     }
5630 
5631     return e1e_wphy(hw, HV_LED_CONFIG, data);
5632 }
5633 
5634 /**
5635  *  e1000_led_off_pchlan - Turn LEDs off
5636  *  @hw: pointer to the HW structure
5637  *
5638  *  Turn off the LEDs.
5639  **/
5640 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5641 {
5642     u16 data = (u16)hw->mac.ledctl_mode1;
5643     u32 i, led;
5644 
5645     /* If no link, then turn LED off by clearing the invert bit
5646      * for each LED that's mode is "link_up" in ledctl_mode1.
5647      */
5648     if (!(er32(STATUS) & E1000_STATUS_LU)) {
5649         for (i = 0; i < 3; i++) {
5650             led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5651             if ((led & E1000_PHY_LED0_MODE_MASK) !=
5652                 E1000_LEDCTL_MODE_LINK_UP)
5653                 continue;
5654             if (led & E1000_PHY_LED0_IVRT)
5655                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5656             else
5657                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5658         }
5659     }
5660 
5661     return e1e_wphy(hw, HV_LED_CONFIG, data);
5662 }
5663 
5664 /**
5665  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5666  *  @hw: pointer to the HW structure
5667  *
5668  *  Read appropriate register for the config done bit for completion status
5669  *  and configure the PHY through s/w for EEPROM-less parts.
5670  *
5671  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5672  *  config done bit, so only an error is logged and continues.  If we were
5673  *  to return with error, EEPROM-less silicon would not be able to be reset
5674  *  or change link.
5675  **/
5676 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5677 {
5678     s32 ret_val = 0;
5679     u32 bank = 0;
5680     u32 status;
5681 
5682     e1000e_get_cfg_done_generic(hw);
5683 
5684     /* Wait for indication from h/w that it has completed basic config */
5685     if (hw->mac.type >= e1000_ich10lan) {
5686         e1000_lan_init_done_ich8lan(hw);
5687     } else {
5688         ret_val = e1000e_get_auto_rd_done(hw);
5689         if (ret_val) {
5690             /* When auto config read does not complete, do not
5691              * return with an error. This can happen in situations
5692              * where there is no eeprom and prevents getting link.
5693              */
5694             e_dbg("Auto Read Done did not complete\n");
5695             ret_val = 0;
5696         }
5697     }
5698 
5699     /* Clear PHY Reset Asserted bit */
5700     status = er32(STATUS);
5701     if (status & E1000_STATUS_PHYRA)
5702         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5703     else
5704         e_dbg("PHY Reset Asserted not set - needs delay\n");
5705 
5706     /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5707     if (hw->mac.type <= e1000_ich9lan) {
5708         if (!(er32(EECD) & E1000_EECD_PRES) &&
5709             (hw->phy.type == e1000_phy_igp_3)) {
5710             e1000e_phy_init_script_igp3(hw);
5711         }
5712     } else {
5713         if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5714             /* Maybe we should do a basic PHY config */
5715             e_dbg("EEPROM not present\n");
5716             ret_val = -E1000_ERR_CONFIG;
5717         }
5718     }
5719 
5720     return ret_val;
5721 }
5722 
5723 /**
5724  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5725  * @hw: pointer to the HW structure
5726  *
5727  * In the case of a PHY power down to save power, or to turn off link during a
5728  * driver unload, or wake on lan is not enabled, remove the link.
5729  **/
5730 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5731 {
5732     /* If the management interface is not enabled, then power down */
5733     if (!(hw->mac.ops.check_mng_mode(hw) ||
5734           hw->phy.ops.check_reset_block(hw)))
5735         e1000_power_down_phy_copper(hw);
5736 }
5737 
5738 /**
5739  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5740  *  @hw: pointer to the HW structure
5741  *
5742  *  Clears hardware counters specific to the silicon family and calls
5743  *  clear_hw_cntrs_generic to clear all general purpose counters.
5744  **/
5745 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5746 {
5747     u16 phy_data;
5748     s32 ret_val;
5749 
5750     e1000e_clear_hw_cntrs_base(hw);
5751 
5752     er32(ALGNERRC);
5753     er32(RXERRC);
5754     er32(TNCRS);
5755     er32(CEXTERR);
5756     er32(TSCTC);
5757     er32(TSCTFC);
5758 
5759     er32(MGTPRC);
5760     er32(MGTPDC);
5761     er32(MGTPTC);
5762 
5763     er32(IAC);
5764     er32(ICRXOC);
5765 
5766     /* Clear PHY statistics registers */
5767     if ((hw->phy.type == e1000_phy_82578) ||
5768         (hw->phy.type == e1000_phy_82579) ||
5769         (hw->phy.type == e1000_phy_i217) ||
5770         (hw->phy.type == e1000_phy_82577)) {
5771         ret_val = hw->phy.ops.acquire(hw);
5772         if (ret_val)
5773             return;
5774         ret_val = hw->phy.ops.set_page(hw,
5775                            HV_STATS_PAGE << IGP_PAGE_SHIFT);
5776         if (ret_val)
5777             goto release;
5778         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5779         hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5780         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5781         hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5782         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5783         hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5784         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5785         hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5786         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5787         hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5788         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5789         hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5790         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5791         hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5792 release:
5793         hw->phy.ops.release(hw);
5794     }
5795 }
5796 
5797 static const struct e1000_mac_operations ich8_mac_ops = {
5798     /* check_mng_mode dependent on mac type */
5799     .check_for_link     = e1000_check_for_copper_link_ich8lan,
5800     /* cleanup_led dependent on mac type */
5801     .clear_hw_cntrs     = e1000_clear_hw_cntrs_ich8lan,
5802     .get_bus_info       = e1000_get_bus_info_ich8lan,
5803     .set_lan_id     = e1000_set_lan_id_single_port,
5804     .get_link_up_info   = e1000_get_link_up_info_ich8lan,
5805     /* led_on dependent on mac type */
5806     /* led_off dependent on mac type */
5807     .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5808     .reset_hw       = e1000_reset_hw_ich8lan,
5809     .init_hw        = e1000_init_hw_ich8lan,
5810     .setup_link     = e1000_setup_link_ich8lan,
5811     .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5812     /* id_led_init dependent on mac type */
5813     .config_collision_dist  = e1000e_config_collision_dist_generic,
5814     .rar_set        = e1000e_rar_set_generic,
5815     .rar_get_count      = e1000e_rar_get_count_generic,
5816 };
5817 
5818 static const struct e1000_phy_operations ich8_phy_ops = {
5819     .acquire        = e1000_acquire_swflag_ich8lan,
5820     .check_reset_block  = e1000_check_reset_block_ich8lan,
5821     .commit         = NULL,
5822     .get_cfg_done       = e1000_get_cfg_done_ich8lan,
5823     .get_cable_length   = e1000e_get_cable_length_igp_2,
5824     .read_reg       = e1000e_read_phy_reg_igp,
5825     .release        = e1000_release_swflag_ich8lan,
5826     .reset          = e1000_phy_hw_reset_ich8lan,
5827     .set_d0_lplu_state  = e1000_set_d0_lplu_state_ich8lan,
5828     .set_d3_lplu_state  = e1000_set_d3_lplu_state_ich8lan,
5829     .write_reg      = e1000e_write_phy_reg_igp,
5830 };
5831 
5832 static const struct e1000_nvm_operations ich8_nvm_ops = {
5833     .acquire        = e1000_acquire_nvm_ich8lan,
5834     .read           = e1000_read_nvm_ich8lan,
5835     .release        = e1000_release_nvm_ich8lan,
5836     .reload         = e1000e_reload_nvm_generic,
5837     .update         = e1000_update_nvm_checksum_ich8lan,
5838     .valid_led_default  = e1000_valid_led_default_ich8lan,
5839     .validate       = e1000_validate_nvm_checksum_ich8lan,
5840     .write          = e1000_write_nvm_ich8lan,
5841 };
5842 
5843 static const struct e1000_nvm_operations spt_nvm_ops = {
5844     .acquire        = e1000_acquire_nvm_ich8lan,
5845     .release        = e1000_release_nvm_ich8lan,
5846     .read           = e1000_read_nvm_spt,
5847     .update         = e1000_update_nvm_checksum_spt,
5848     .reload         = e1000e_reload_nvm_generic,
5849     .valid_led_default  = e1000_valid_led_default_ich8lan,
5850     .validate       = e1000_validate_nvm_checksum_ich8lan,
5851     .write          = e1000_write_nvm_ich8lan,
5852 };
5853 
5854 const struct e1000_info e1000_ich8_info = {
5855     .mac            = e1000_ich8lan,
5856     .flags          = FLAG_HAS_WOL
5857                   | FLAG_IS_ICH
5858                   | FLAG_HAS_CTRLEXT_ON_LOAD
5859                   | FLAG_HAS_AMT
5860                   | FLAG_HAS_FLASH
5861                   | FLAG_APME_IN_WUC,
5862     .pba            = 8,
5863     .max_hw_frame_size  = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5864     .get_variants       = e1000_get_variants_ich8lan,
5865     .mac_ops        = &ich8_mac_ops,
5866     .phy_ops        = &ich8_phy_ops,
5867     .nvm_ops        = &ich8_nvm_ops,
5868 };
5869 
5870 const struct e1000_info e1000_ich9_info = {
5871     .mac            = e1000_ich9lan,
5872     .flags          = FLAG_HAS_JUMBO_FRAMES
5873                   | FLAG_IS_ICH
5874                   | FLAG_HAS_WOL
5875                   | FLAG_HAS_CTRLEXT_ON_LOAD
5876                   | FLAG_HAS_AMT
5877                   | FLAG_HAS_FLASH
5878                   | FLAG_APME_IN_WUC,
5879     .pba            = 18,
5880     .max_hw_frame_size  = DEFAULT_JUMBO,
5881     .get_variants       = e1000_get_variants_ich8lan,
5882     .mac_ops        = &ich8_mac_ops,
5883     .phy_ops        = &ich8_phy_ops,
5884     .nvm_ops        = &ich8_nvm_ops,
5885 };
5886 
5887 const struct e1000_info e1000_ich10_info = {
5888     .mac            = e1000_ich10lan,
5889     .flags          = FLAG_HAS_JUMBO_FRAMES
5890                   | FLAG_IS_ICH
5891                   | FLAG_HAS_WOL
5892                   | FLAG_HAS_CTRLEXT_ON_LOAD
5893                   | FLAG_HAS_AMT
5894                   | FLAG_HAS_FLASH
5895                   | FLAG_APME_IN_WUC,
5896     .pba            = 18,
5897     .max_hw_frame_size  = DEFAULT_JUMBO,
5898     .get_variants       = e1000_get_variants_ich8lan,
5899     .mac_ops        = &ich8_mac_ops,
5900     .phy_ops        = &ich8_phy_ops,
5901     .nvm_ops        = &ich8_nvm_ops,
5902 };
5903 
5904 const struct e1000_info e1000_pch_info = {
5905     .mac            = e1000_pchlan,
5906     .flags          = FLAG_IS_ICH
5907                   | FLAG_HAS_WOL
5908                   | FLAG_HAS_CTRLEXT_ON_LOAD
5909                   | FLAG_HAS_AMT
5910                   | FLAG_HAS_FLASH
5911                   | FLAG_HAS_JUMBO_FRAMES
5912                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5913                   | FLAG_APME_IN_WUC,
5914     .flags2         = FLAG2_HAS_PHY_STATS,
5915     .pba            = 26,
5916     .max_hw_frame_size  = 4096,
5917     .get_variants       = e1000_get_variants_ich8lan,
5918     .mac_ops        = &ich8_mac_ops,
5919     .phy_ops        = &ich8_phy_ops,
5920     .nvm_ops        = &ich8_nvm_ops,
5921 };
5922 
5923 const struct e1000_info e1000_pch2_info = {
5924     .mac            = e1000_pch2lan,
5925     .flags          = FLAG_IS_ICH
5926                   | FLAG_HAS_WOL
5927                   | FLAG_HAS_HW_TIMESTAMP
5928                   | FLAG_HAS_CTRLEXT_ON_LOAD
5929                   | FLAG_HAS_AMT
5930                   | FLAG_HAS_FLASH
5931                   | FLAG_HAS_JUMBO_FRAMES
5932                   | FLAG_APME_IN_WUC,
5933     .flags2         = FLAG2_HAS_PHY_STATS
5934                   | FLAG2_HAS_EEE
5935                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5936     .pba            = 26,
5937     .max_hw_frame_size  = 9022,
5938     .get_variants       = e1000_get_variants_ich8lan,
5939     .mac_ops        = &ich8_mac_ops,
5940     .phy_ops        = &ich8_phy_ops,
5941     .nvm_ops        = &ich8_nvm_ops,
5942 };
5943 
5944 const struct e1000_info e1000_pch_lpt_info = {
5945     .mac            = e1000_pch_lpt,
5946     .flags          = FLAG_IS_ICH
5947                   | FLAG_HAS_WOL
5948                   | FLAG_HAS_HW_TIMESTAMP
5949                   | FLAG_HAS_CTRLEXT_ON_LOAD
5950                   | FLAG_HAS_AMT
5951                   | FLAG_HAS_FLASH
5952                   | FLAG_HAS_JUMBO_FRAMES
5953                   | FLAG_APME_IN_WUC,
5954     .flags2         = FLAG2_HAS_PHY_STATS
5955                   | FLAG2_HAS_EEE
5956                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5957     .pba            = 26,
5958     .max_hw_frame_size  = 9022,
5959     .get_variants       = e1000_get_variants_ich8lan,
5960     .mac_ops        = &ich8_mac_ops,
5961     .phy_ops        = &ich8_phy_ops,
5962     .nvm_ops        = &ich8_nvm_ops,
5963 };
5964 
5965 const struct e1000_info e1000_pch_spt_info = {
5966     .mac            = e1000_pch_spt,
5967     .flags          = FLAG_IS_ICH
5968                   | FLAG_HAS_WOL
5969                   | FLAG_HAS_HW_TIMESTAMP
5970                   | FLAG_HAS_CTRLEXT_ON_LOAD
5971                   | FLAG_HAS_AMT
5972                   | FLAG_HAS_FLASH
5973                   | FLAG_HAS_JUMBO_FRAMES
5974                   | FLAG_APME_IN_WUC,
5975     .flags2         = FLAG2_HAS_PHY_STATS
5976                   | FLAG2_HAS_EEE,
5977     .pba            = 26,
5978     .max_hw_frame_size  = 9022,
5979     .get_variants       = e1000_get_variants_ich8lan,
5980     .mac_ops        = &ich8_mac_ops,
5981     .phy_ops        = &ich8_phy_ops,
5982     .nvm_ops        = &spt_nvm_ops,
5983 };
5984 
5985 const struct e1000_info e1000_pch_cnp_info = {
5986     .mac            = e1000_pch_cnp,
5987     .flags          = FLAG_IS_ICH
5988                   | FLAG_HAS_WOL
5989                   | FLAG_HAS_HW_TIMESTAMP
5990                   | FLAG_HAS_CTRLEXT_ON_LOAD
5991                   | FLAG_HAS_AMT
5992                   | FLAG_HAS_FLASH
5993                   | FLAG_HAS_JUMBO_FRAMES
5994                   | FLAG_APME_IN_WUC,
5995     .flags2         = FLAG2_HAS_PHY_STATS
5996                   | FLAG2_HAS_EEE,
5997     .pba            = 26,
5998     .max_hw_frame_size  = 9022,
5999     .get_variants       = e1000_get_variants_ich8lan,
6000     .mac_ops        = &ich8_mac_ops,
6001     .phy_ops        = &ich8_phy_ops,
6002     .nvm_ops        = &spt_nvm_ops,
6003 };
6004 
6005 const struct e1000_info e1000_pch_tgp_info = {
6006     .mac            = e1000_pch_tgp,
6007     .flags          = FLAG_IS_ICH
6008                   | FLAG_HAS_WOL
6009                   | FLAG_HAS_HW_TIMESTAMP
6010                   | FLAG_HAS_CTRLEXT_ON_LOAD
6011                   | FLAG_HAS_AMT
6012                   | FLAG_HAS_FLASH
6013                   | FLAG_HAS_JUMBO_FRAMES
6014                   | FLAG_APME_IN_WUC,
6015     .flags2         = FLAG2_HAS_PHY_STATS
6016                   | FLAG2_HAS_EEE,
6017     .pba            = 26,
6018     .max_hw_frame_size  = 9022,
6019     .get_variants       = e1000_get_variants_ich8lan,
6020     .mac_ops        = &ich8_mac_ops,
6021     .phy_ops        = &ich8_phy_ops,
6022     .nvm_ops        = &spt_nvm_ops,
6023 };
6024 
6025 const struct e1000_info e1000_pch_adp_info = {
6026     .mac            = e1000_pch_adp,
6027     .flags          = FLAG_IS_ICH
6028                   | FLAG_HAS_WOL
6029                   | FLAG_HAS_HW_TIMESTAMP
6030                   | FLAG_HAS_CTRLEXT_ON_LOAD
6031                   | FLAG_HAS_AMT
6032                   | FLAG_HAS_FLASH
6033                   | FLAG_HAS_JUMBO_FRAMES
6034                   | FLAG_APME_IN_WUC,
6035     .flags2         = FLAG2_HAS_PHY_STATS
6036                   | FLAG2_HAS_EEE,
6037     .pba            = 26,
6038     .max_hw_frame_size  = 9022,
6039     .get_variants       = e1000_get_variants_ich8lan,
6040     .mac_ops        = &ich8_mac_ops,
6041     .phy_ops        = &ich8_phy_ops,
6042     .nvm_ops        = &spt_nvm_ops,
6043 };