0001
0002
0003
0004
0005
0006 #include "e1000.h"
0007 #include <linux/jiffies.h>
0008 #include <linux/uaccess.h>
0009
0010 enum {NETDEV_STATS, E1000_STATS};
0011
0012 struct e1000_stats {
0013 char stat_string[ETH_GSTRING_LEN];
0014 int type;
0015 int sizeof_stat;
0016 int stat_offset;
0017 };
0018
0019 #define E1000_STAT(m) E1000_STATS, \
0020 sizeof(((struct e1000_adapter *)0)->m), \
0021 offsetof(struct e1000_adapter, m)
0022 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
0023 sizeof(((struct net_device *)0)->m), \
0024 offsetof(struct net_device, m)
0025
0026 static const struct e1000_stats e1000_gstrings_stats[] = {
0027 { "rx_packets", E1000_STAT(stats.gprc) },
0028 { "tx_packets", E1000_STAT(stats.gptc) },
0029 { "rx_bytes", E1000_STAT(stats.gorcl) },
0030 { "tx_bytes", E1000_STAT(stats.gotcl) },
0031 { "rx_broadcast", E1000_STAT(stats.bprc) },
0032 { "tx_broadcast", E1000_STAT(stats.bptc) },
0033 { "rx_multicast", E1000_STAT(stats.mprc) },
0034 { "tx_multicast", E1000_STAT(stats.mptc) },
0035 { "rx_errors", E1000_STAT(stats.rxerrc) },
0036 { "tx_errors", E1000_STAT(stats.txerrc) },
0037 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
0038 { "multicast", E1000_STAT(stats.mprc) },
0039 { "collisions", E1000_STAT(stats.colc) },
0040 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
0041 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
0042 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
0043 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
0044 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
0045 { "rx_missed_errors", E1000_STAT(stats.mpc) },
0046 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
0047 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
0048 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
0049 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
0050 { "tx_window_errors", E1000_STAT(stats.latecol) },
0051 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
0052 { "tx_deferred_ok", E1000_STAT(stats.dc) },
0053 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
0054 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
0055 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
0056 { "tx_restart_queue", E1000_STAT(restart_queue) },
0057 { "rx_long_length_errors", E1000_STAT(stats.roc) },
0058 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
0059 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
0060 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
0061 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
0062 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
0063 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
0064 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
0065 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
0066 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
0067 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
0068 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
0069 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
0070 { "tx_smbus", E1000_STAT(stats.mgptc) },
0071 { "rx_smbus", E1000_STAT(stats.mgprc) },
0072 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
0073 };
0074
0075 #define E1000_QUEUE_STATS_LEN 0
0076 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
0077 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
0078 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
0079 "Register test (offline)", "Eeprom test (offline)",
0080 "Interrupt test (offline)", "Loopback test (offline)",
0081 "Link test (on/offline)"
0082 };
0083
0084 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
0085
0086 static int e1000_get_link_ksettings(struct net_device *netdev,
0087 struct ethtool_link_ksettings *cmd)
0088 {
0089 struct e1000_adapter *adapter = netdev_priv(netdev);
0090 struct e1000_hw *hw = &adapter->hw;
0091 u32 supported, advertising;
0092
0093 if (hw->media_type == e1000_media_type_copper) {
0094 supported = (SUPPORTED_10baseT_Half |
0095 SUPPORTED_10baseT_Full |
0096 SUPPORTED_100baseT_Half |
0097 SUPPORTED_100baseT_Full |
0098 SUPPORTED_1000baseT_Full|
0099 SUPPORTED_Autoneg |
0100 SUPPORTED_TP);
0101 advertising = ADVERTISED_TP;
0102
0103 if (hw->autoneg == 1) {
0104 advertising |= ADVERTISED_Autoneg;
0105
0106 advertising |= hw->autoneg_advertised;
0107 }
0108
0109 cmd->base.port = PORT_TP;
0110 cmd->base.phy_address = hw->phy_addr;
0111 } else {
0112 supported = (SUPPORTED_1000baseT_Full |
0113 SUPPORTED_FIBRE |
0114 SUPPORTED_Autoneg);
0115
0116 advertising = (ADVERTISED_1000baseT_Full |
0117 ADVERTISED_FIBRE |
0118 ADVERTISED_Autoneg);
0119
0120 cmd->base.port = PORT_FIBRE;
0121 }
0122
0123 if (er32(STATUS) & E1000_STATUS_LU) {
0124 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
0125 &adapter->link_duplex);
0126 cmd->base.speed = adapter->link_speed;
0127
0128
0129
0130
0131 if (adapter->link_duplex == FULL_DUPLEX)
0132 cmd->base.duplex = DUPLEX_FULL;
0133 else
0134 cmd->base.duplex = DUPLEX_HALF;
0135 } else {
0136 cmd->base.speed = SPEED_UNKNOWN;
0137 cmd->base.duplex = DUPLEX_UNKNOWN;
0138 }
0139
0140 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
0141 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
0142
0143
0144 if ((hw->media_type == e1000_media_type_copper) &&
0145 netif_carrier_ok(netdev))
0146 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
0147 ETH_TP_MDI_X : ETH_TP_MDI);
0148 else
0149 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
0150
0151 if (hw->mdix == AUTO_ALL_MODES)
0152 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
0153 else
0154 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
0155
0156 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
0157 supported);
0158 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
0159 advertising);
0160
0161 return 0;
0162 }
0163
0164 static int e1000_set_link_ksettings(struct net_device *netdev,
0165 const struct ethtool_link_ksettings *cmd)
0166 {
0167 struct e1000_adapter *adapter = netdev_priv(netdev);
0168 struct e1000_hw *hw = &adapter->hw;
0169 u32 advertising;
0170
0171 ethtool_convert_link_mode_to_legacy_u32(&advertising,
0172 cmd->link_modes.advertising);
0173
0174
0175
0176
0177
0178 if (cmd->base.eth_tp_mdix_ctrl) {
0179 if (hw->media_type != e1000_media_type_copper)
0180 return -EOPNOTSUPP;
0181
0182 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
0183 (cmd->base.autoneg != AUTONEG_ENABLE)) {
0184 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
0185 return -EINVAL;
0186 }
0187 }
0188
0189 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
0190 msleep(1);
0191
0192 if (cmd->base.autoneg == AUTONEG_ENABLE) {
0193 hw->autoneg = 1;
0194 if (hw->media_type == e1000_media_type_fiber)
0195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
0196 ADVERTISED_FIBRE |
0197 ADVERTISED_Autoneg;
0198 else
0199 hw->autoneg_advertised = advertising |
0200 ADVERTISED_TP |
0201 ADVERTISED_Autoneg;
0202 } else {
0203 u32 speed = cmd->base.speed;
0204
0205 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
0206 clear_bit(__E1000_RESETTING, &adapter->flags);
0207 return -EINVAL;
0208 }
0209 }
0210
0211
0212 if (cmd->base.eth_tp_mdix_ctrl) {
0213 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
0214 hw->mdix = AUTO_ALL_MODES;
0215 else
0216 hw->mdix = cmd->base.eth_tp_mdix_ctrl;
0217 }
0218
0219
0220
0221 if (netif_running(adapter->netdev)) {
0222 e1000_down(adapter);
0223 e1000_up(adapter);
0224 } else {
0225 e1000_reset(adapter);
0226 }
0227 clear_bit(__E1000_RESETTING, &adapter->flags);
0228 return 0;
0229 }
0230
0231 static u32 e1000_get_link(struct net_device *netdev)
0232 {
0233 struct e1000_adapter *adapter = netdev_priv(netdev);
0234
0235
0236
0237
0238
0239
0240
0241 if (!netif_carrier_ok(netdev))
0242 adapter->hw.get_link_status = 1;
0243
0244 return e1000_has_link(adapter);
0245 }
0246
0247 static void e1000_get_pauseparam(struct net_device *netdev,
0248 struct ethtool_pauseparam *pause)
0249 {
0250 struct e1000_adapter *adapter = netdev_priv(netdev);
0251 struct e1000_hw *hw = &adapter->hw;
0252
0253 pause->autoneg =
0254 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
0255
0256 if (hw->fc == E1000_FC_RX_PAUSE) {
0257 pause->rx_pause = 1;
0258 } else if (hw->fc == E1000_FC_TX_PAUSE) {
0259 pause->tx_pause = 1;
0260 } else if (hw->fc == E1000_FC_FULL) {
0261 pause->rx_pause = 1;
0262 pause->tx_pause = 1;
0263 }
0264 }
0265
0266 static int e1000_set_pauseparam(struct net_device *netdev,
0267 struct ethtool_pauseparam *pause)
0268 {
0269 struct e1000_adapter *adapter = netdev_priv(netdev);
0270 struct e1000_hw *hw = &adapter->hw;
0271 int retval = 0;
0272
0273 adapter->fc_autoneg = pause->autoneg;
0274
0275 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
0276 msleep(1);
0277
0278 if (pause->rx_pause && pause->tx_pause)
0279 hw->fc = E1000_FC_FULL;
0280 else if (pause->rx_pause && !pause->tx_pause)
0281 hw->fc = E1000_FC_RX_PAUSE;
0282 else if (!pause->rx_pause && pause->tx_pause)
0283 hw->fc = E1000_FC_TX_PAUSE;
0284 else if (!pause->rx_pause && !pause->tx_pause)
0285 hw->fc = E1000_FC_NONE;
0286
0287 hw->original_fc = hw->fc;
0288
0289 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
0290 if (netif_running(adapter->netdev)) {
0291 e1000_down(adapter);
0292 e1000_up(adapter);
0293 } else {
0294 e1000_reset(adapter);
0295 }
0296 } else
0297 retval = ((hw->media_type == e1000_media_type_fiber) ?
0298 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
0299
0300 clear_bit(__E1000_RESETTING, &adapter->flags);
0301 return retval;
0302 }
0303
0304 static u32 e1000_get_msglevel(struct net_device *netdev)
0305 {
0306 struct e1000_adapter *adapter = netdev_priv(netdev);
0307
0308 return adapter->msg_enable;
0309 }
0310
0311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
0312 {
0313 struct e1000_adapter *adapter = netdev_priv(netdev);
0314
0315 adapter->msg_enable = data;
0316 }
0317
0318 static int e1000_get_regs_len(struct net_device *netdev)
0319 {
0320 #define E1000_REGS_LEN 32
0321 return E1000_REGS_LEN * sizeof(u32);
0322 }
0323
0324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
0325 void *p)
0326 {
0327 struct e1000_adapter *adapter = netdev_priv(netdev);
0328 struct e1000_hw *hw = &adapter->hw;
0329 u32 *regs_buff = p;
0330 u16 phy_data;
0331
0332 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
0333
0334 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
0335
0336 regs_buff[0] = er32(CTRL);
0337 regs_buff[1] = er32(STATUS);
0338
0339 regs_buff[2] = er32(RCTL);
0340 regs_buff[3] = er32(RDLEN);
0341 regs_buff[4] = er32(RDH);
0342 regs_buff[5] = er32(RDT);
0343 regs_buff[6] = er32(RDTR);
0344
0345 regs_buff[7] = er32(TCTL);
0346 regs_buff[8] = er32(TDLEN);
0347 regs_buff[9] = er32(TDH);
0348 regs_buff[10] = er32(TDT);
0349 regs_buff[11] = er32(TIDV);
0350
0351 regs_buff[12] = hw->phy_type;
0352 if (hw->phy_type == e1000_phy_igp) {
0353 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
0354 IGP01E1000_PHY_AGC_A);
0355 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
0356 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
0357 regs_buff[13] = (u32)phy_data;
0358 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
0359 IGP01E1000_PHY_AGC_B);
0360 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
0361 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
0362 regs_buff[14] = (u32)phy_data;
0363 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
0364 IGP01E1000_PHY_AGC_C);
0365 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
0366 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
0367 regs_buff[15] = (u32)phy_data;
0368 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
0369 IGP01E1000_PHY_AGC_D);
0370 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
0371 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
0372 regs_buff[16] = (u32)phy_data;
0373 regs_buff[17] = 0;
0374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
0375 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
0376 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
0377 regs_buff[18] = (u32)phy_data;
0378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
0379 IGP01E1000_PHY_PCS_INIT_REG);
0380 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
0381 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
0382 regs_buff[19] = (u32)phy_data;
0383 regs_buff[20] = 0;
0384 regs_buff[22] = 0;
0385 regs_buff[23] = regs_buff[18];
0386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
0387 } else {
0388 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
0389 regs_buff[13] = (u32)phy_data;
0390 regs_buff[14] = 0;
0391 regs_buff[15] = 0;
0392 regs_buff[16] = 0;
0393 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
0394 regs_buff[17] = (u32)phy_data;
0395 regs_buff[18] = regs_buff[13];
0396 regs_buff[19] = 0;
0397 regs_buff[20] = regs_buff[17];
0398
0399 regs_buff[22] = adapter->phy_stats.receive_errors;
0400 regs_buff[23] = regs_buff[13];
0401 }
0402 regs_buff[21] = adapter->phy_stats.idle_errors;
0403 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
0404 regs_buff[24] = (u32)phy_data;
0405 regs_buff[25] = regs_buff[24];
0406 if (hw->mac_type >= e1000_82540 &&
0407 hw->media_type == e1000_media_type_copper) {
0408 regs_buff[26] = er32(MANC);
0409 }
0410 }
0411
0412 static int e1000_get_eeprom_len(struct net_device *netdev)
0413 {
0414 struct e1000_adapter *adapter = netdev_priv(netdev);
0415 struct e1000_hw *hw = &adapter->hw;
0416
0417 return hw->eeprom.word_size * 2;
0418 }
0419
0420 static int e1000_get_eeprom(struct net_device *netdev,
0421 struct ethtool_eeprom *eeprom, u8 *bytes)
0422 {
0423 struct e1000_adapter *adapter = netdev_priv(netdev);
0424 struct e1000_hw *hw = &adapter->hw;
0425 u16 *eeprom_buff;
0426 int first_word, last_word;
0427 int ret_val = 0;
0428 u16 i;
0429
0430 if (eeprom->len == 0)
0431 return -EINVAL;
0432
0433 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
0434
0435 first_word = eeprom->offset >> 1;
0436 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
0437
0438 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
0439 GFP_KERNEL);
0440 if (!eeprom_buff)
0441 return -ENOMEM;
0442
0443 if (hw->eeprom.type == e1000_eeprom_spi)
0444 ret_val = e1000_read_eeprom(hw, first_word,
0445 last_word - first_word + 1,
0446 eeprom_buff);
0447 else {
0448 for (i = 0; i < last_word - first_word + 1; i++) {
0449 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
0450 &eeprom_buff[i]);
0451 if (ret_val)
0452 break;
0453 }
0454 }
0455
0456
0457 for (i = 0; i < last_word - first_word + 1; i++)
0458 le16_to_cpus(&eeprom_buff[i]);
0459
0460 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
0461 eeprom->len);
0462 kfree(eeprom_buff);
0463
0464 return ret_val;
0465 }
0466
0467 static int e1000_set_eeprom(struct net_device *netdev,
0468 struct ethtool_eeprom *eeprom, u8 *bytes)
0469 {
0470 struct e1000_adapter *adapter = netdev_priv(netdev);
0471 struct e1000_hw *hw = &adapter->hw;
0472 u16 *eeprom_buff;
0473 void *ptr;
0474 int max_len, first_word, last_word, ret_val = 0;
0475 u16 i;
0476
0477 if (eeprom->len == 0)
0478 return -EOPNOTSUPP;
0479
0480 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
0481 return -EFAULT;
0482
0483 max_len = hw->eeprom.word_size * 2;
0484
0485 first_word = eeprom->offset >> 1;
0486 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
0487 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
0488 if (!eeprom_buff)
0489 return -ENOMEM;
0490
0491 ptr = (void *)eeprom_buff;
0492
0493 if (eeprom->offset & 1) {
0494
0495
0496
0497 ret_val = e1000_read_eeprom(hw, first_word, 1,
0498 &eeprom_buff[0]);
0499 ptr++;
0500 }
0501 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
0502
0503
0504
0505 ret_val = e1000_read_eeprom(hw, last_word, 1,
0506 &eeprom_buff[last_word - first_word]);
0507 }
0508
0509
0510 for (i = 0; i < last_word - first_word + 1; i++)
0511 le16_to_cpus(&eeprom_buff[i]);
0512
0513 memcpy(ptr, bytes, eeprom->len);
0514
0515 for (i = 0; i < last_word - first_word + 1; i++)
0516 cpu_to_le16s(&eeprom_buff[i]);
0517
0518 ret_val = e1000_write_eeprom(hw, first_word,
0519 last_word - first_word + 1, eeprom_buff);
0520
0521
0522 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
0523 e1000_update_eeprom_checksum(hw);
0524
0525 kfree(eeprom_buff);
0526 return ret_val;
0527 }
0528
0529 static void e1000_get_drvinfo(struct net_device *netdev,
0530 struct ethtool_drvinfo *drvinfo)
0531 {
0532 struct e1000_adapter *adapter = netdev_priv(netdev);
0533
0534 strlcpy(drvinfo->driver, e1000_driver_name,
0535 sizeof(drvinfo->driver));
0536
0537 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
0538 sizeof(drvinfo->bus_info));
0539 }
0540
0541 static void e1000_get_ringparam(struct net_device *netdev,
0542 struct ethtool_ringparam *ring,
0543 struct kernel_ethtool_ringparam *kernel_ring,
0544 struct netlink_ext_ack *extack)
0545 {
0546 struct e1000_adapter *adapter = netdev_priv(netdev);
0547 struct e1000_hw *hw = &adapter->hw;
0548 e1000_mac_type mac_type = hw->mac_type;
0549 struct e1000_tx_ring *txdr = adapter->tx_ring;
0550 struct e1000_rx_ring *rxdr = adapter->rx_ring;
0551
0552 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
0553 E1000_MAX_82544_RXD;
0554 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
0555 E1000_MAX_82544_TXD;
0556 ring->rx_pending = rxdr->count;
0557 ring->tx_pending = txdr->count;
0558 }
0559
0560 static int e1000_set_ringparam(struct net_device *netdev,
0561 struct ethtool_ringparam *ring,
0562 struct kernel_ethtool_ringparam *kernel_ring,
0563 struct netlink_ext_ack *extack)
0564 {
0565 struct e1000_adapter *adapter = netdev_priv(netdev);
0566 struct e1000_hw *hw = &adapter->hw;
0567 e1000_mac_type mac_type = hw->mac_type;
0568 struct e1000_tx_ring *txdr, *tx_old;
0569 struct e1000_rx_ring *rxdr, *rx_old;
0570 int i, err;
0571
0572 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
0573 return -EINVAL;
0574
0575 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
0576 msleep(1);
0577
0578 if (netif_running(adapter->netdev))
0579 e1000_down(adapter);
0580
0581 tx_old = adapter->tx_ring;
0582 rx_old = adapter->rx_ring;
0583
0584 err = -ENOMEM;
0585 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
0586 GFP_KERNEL);
0587 if (!txdr)
0588 goto err_alloc_tx;
0589
0590 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
0591 GFP_KERNEL);
0592 if (!rxdr)
0593 goto err_alloc_rx;
0594
0595 adapter->tx_ring = txdr;
0596 adapter->rx_ring = rxdr;
0597
0598 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
0599 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
0600 E1000_MAX_RXD : E1000_MAX_82544_RXD));
0601 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
0602 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
0603 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
0604 E1000_MAX_TXD : E1000_MAX_82544_TXD));
0605 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
0606
0607 for (i = 0; i < adapter->num_tx_queues; i++)
0608 txdr[i].count = txdr->count;
0609 for (i = 0; i < adapter->num_rx_queues; i++)
0610 rxdr[i].count = rxdr->count;
0611
0612 err = 0;
0613 if (netif_running(adapter->netdev)) {
0614
0615 err = e1000_setup_all_rx_resources(adapter);
0616 if (err)
0617 goto err_setup_rx;
0618 err = e1000_setup_all_tx_resources(adapter);
0619 if (err)
0620 goto err_setup_tx;
0621
0622
0623
0624
0625
0626 adapter->rx_ring = rx_old;
0627 adapter->tx_ring = tx_old;
0628 e1000_free_all_rx_resources(adapter);
0629 e1000_free_all_tx_resources(adapter);
0630 adapter->rx_ring = rxdr;
0631 adapter->tx_ring = txdr;
0632 err = e1000_up(adapter);
0633 }
0634 kfree(tx_old);
0635 kfree(rx_old);
0636
0637 clear_bit(__E1000_RESETTING, &adapter->flags);
0638 return err;
0639
0640 err_setup_tx:
0641 e1000_free_all_rx_resources(adapter);
0642 err_setup_rx:
0643 adapter->rx_ring = rx_old;
0644 adapter->tx_ring = tx_old;
0645 kfree(rxdr);
0646 err_alloc_rx:
0647 kfree(txdr);
0648 err_alloc_tx:
0649 if (netif_running(adapter->netdev))
0650 e1000_up(adapter);
0651 clear_bit(__E1000_RESETTING, &adapter->flags);
0652 return err;
0653 }
0654
0655 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
0656 u32 mask, u32 write)
0657 {
0658 struct e1000_hw *hw = &adapter->hw;
0659 static const u32 test[] = {
0660 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
0661 };
0662 u8 __iomem *address = hw->hw_addr + reg;
0663 u32 read;
0664 int i;
0665
0666 for (i = 0; i < ARRAY_SIZE(test); i++) {
0667 writel(write & test[i], address);
0668 read = readl(address);
0669 if (read != (write & test[i] & mask)) {
0670 e_err(drv, "pattern test reg %04X failed: "
0671 "got 0x%08X expected 0x%08X\n",
0672 reg, read, (write & test[i] & mask));
0673 *data = reg;
0674 return true;
0675 }
0676 }
0677 return false;
0678 }
0679
0680 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
0681 u32 mask, u32 write)
0682 {
0683 struct e1000_hw *hw = &adapter->hw;
0684 u8 __iomem *address = hw->hw_addr + reg;
0685 u32 read;
0686
0687 writel(write & mask, address);
0688 read = readl(address);
0689 if ((read & mask) != (write & mask)) {
0690 e_err(drv, "set/check reg %04X test failed: "
0691 "got 0x%08X expected 0x%08X\n",
0692 reg, (read & mask), (write & mask));
0693 *data = reg;
0694 return true;
0695 }
0696 return false;
0697 }
0698
0699 #define REG_PATTERN_TEST(reg, mask, write) \
0700 do { \
0701 if (reg_pattern_test(adapter, data, \
0702 (hw->mac_type >= e1000_82543) \
0703 ? E1000_##reg : E1000_82542_##reg, \
0704 mask, write)) \
0705 return 1; \
0706 } while (0)
0707
0708 #define REG_SET_AND_CHECK(reg, mask, write) \
0709 do { \
0710 if (reg_set_and_check(adapter, data, \
0711 (hw->mac_type >= e1000_82543) \
0712 ? E1000_##reg : E1000_82542_##reg, \
0713 mask, write)) \
0714 return 1; \
0715 } while (0)
0716
0717 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
0718 {
0719 u32 value, before, after;
0720 u32 i, toggle;
0721 struct e1000_hw *hw = &adapter->hw;
0722
0723
0724
0725
0726
0727
0728 toggle = 0xFFFFF833;
0729
0730 before = er32(STATUS);
0731 value = (er32(STATUS) & toggle);
0732 ew32(STATUS, toggle);
0733 after = er32(STATUS) & toggle;
0734 if (value != after) {
0735 e_err(drv, "failed STATUS register test got: "
0736 "0x%08X expected: 0x%08X\n", after, value);
0737 *data = 1;
0738 return 1;
0739 }
0740
0741 ew32(STATUS, before);
0742
0743 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
0744 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
0745 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
0746 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
0747
0748 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
0749 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
0750 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
0751 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
0752 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
0753 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
0754 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
0755 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
0756 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
0757 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
0758
0759 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
0760
0761 before = 0x06DFB3FE;
0762 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
0763 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
0764
0765 if (hw->mac_type >= e1000_82543) {
0766 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
0767 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
0768 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
0769 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
0770 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
0771 value = E1000_RAR_ENTRIES;
0772 for (i = 0; i < value; i++) {
0773 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
0774 0x8003FFFF, 0xFFFFFFFF);
0775 }
0776 } else {
0777 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
0778 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
0779 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
0780 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
0781 }
0782
0783 value = E1000_MC_TBL_SIZE;
0784 for (i = 0; i < value; i++)
0785 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
0786
0787 *data = 0;
0788 return 0;
0789 }
0790
0791 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
0792 {
0793 struct e1000_hw *hw = &adapter->hw;
0794 u16 temp;
0795 u16 checksum = 0;
0796 u16 i;
0797
0798 *data = 0;
0799
0800 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
0801 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
0802 *data = 1;
0803 break;
0804 }
0805 checksum += temp;
0806 }
0807
0808
0809 if ((checksum != (u16)EEPROM_SUM) && !(*data))
0810 *data = 2;
0811
0812 return *data;
0813 }
0814
0815 static irqreturn_t e1000_test_intr(int irq, void *data)
0816 {
0817 struct net_device *netdev = (struct net_device *)data;
0818 struct e1000_adapter *adapter = netdev_priv(netdev);
0819 struct e1000_hw *hw = &adapter->hw;
0820
0821 adapter->test_icr |= er32(ICR);
0822
0823 return IRQ_HANDLED;
0824 }
0825
0826 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
0827 {
0828 struct net_device *netdev = adapter->netdev;
0829 u32 mask, i = 0;
0830 bool shared_int = true;
0831 u32 irq = adapter->pdev->irq;
0832 struct e1000_hw *hw = &adapter->hw;
0833
0834 *data = 0;
0835
0836
0837
0838
0839 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
0840 netdev))
0841 shared_int = false;
0842 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
0843 netdev->name, netdev)) {
0844 *data = 1;
0845 return -1;
0846 }
0847 e_info(hw, "testing %s interrupt\n", (shared_int ?
0848 "shared" : "unshared"));
0849
0850
0851 ew32(IMC, 0xFFFFFFFF);
0852 E1000_WRITE_FLUSH();
0853 msleep(10);
0854
0855
0856 for (; i < 10; i++) {
0857
0858 mask = 1 << i;
0859
0860 if (!shared_int) {
0861
0862
0863
0864
0865
0866
0867 adapter->test_icr = 0;
0868 ew32(IMC, mask);
0869 ew32(ICS, mask);
0870 E1000_WRITE_FLUSH();
0871 msleep(10);
0872
0873 if (adapter->test_icr & mask) {
0874 *data = 3;
0875 break;
0876 }
0877 }
0878
0879
0880
0881
0882
0883
0884
0885 adapter->test_icr = 0;
0886 ew32(IMS, mask);
0887 ew32(ICS, mask);
0888 E1000_WRITE_FLUSH();
0889 msleep(10);
0890
0891 if (!(adapter->test_icr & mask)) {
0892 *data = 4;
0893 break;
0894 }
0895
0896 if (!shared_int) {
0897
0898
0899
0900
0901
0902
0903 adapter->test_icr = 0;
0904 ew32(IMC, ~mask & 0x00007FFF);
0905 ew32(ICS, ~mask & 0x00007FFF);
0906 E1000_WRITE_FLUSH();
0907 msleep(10);
0908
0909 if (adapter->test_icr) {
0910 *data = 5;
0911 break;
0912 }
0913 }
0914 }
0915
0916
0917 ew32(IMC, 0xFFFFFFFF);
0918 E1000_WRITE_FLUSH();
0919 msleep(10);
0920
0921
0922 free_irq(irq, netdev);
0923
0924 return *data;
0925 }
0926
0927 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
0928 {
0929 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
0930 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
0931 struct pci_dev *pdev = adapter->pdev;
0932 int i;
0933
0934 if (txdr->desc && txdr->buffer_info) {
0935 for (i = 0; i < txdr->count; i++) {
0936 if (txdr->buffer_info[i].dma)
0937 dma_unmap_single(&pdev->dev,
0938 txdr->buffer_info[i].dma,
0939 txdr->buffer_info[i].length,
0940 DMA_TO_DEVICE);
0941 dev_kfree_skb(txdr->buffer_info[i].skb);
0942 }
0943 }
0944
0945 if (rxdr->desc && rxdr->buffer_info) {
0946 for (i = 0; i < rxdr->count; i++) {
0947 if (rxdr->buffer_info[i].dma)
0948 dma_unmap_single(&pdev->dev,
0949 rxdr->buffer_info[i].dma,
0950 E1000_RXBUFFER_2048,
0951 DMA_FROM_DEVICE);
0952 kfree(rxdr->buffer_info[i].rxbuf.data);
0953 }
0954 }
0955
0956 if (txdr->desc) {
0957 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
0958 txdr->dma);
0959 txdr->desc = NULL;
0960 }
0961 if (rxdr->desc) {
0962 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
0963 rxdr->dma);
0964 rxdr->desc = NULL;
0965 }
0966
0967 kfree(txdr->buffer_info);
0968 txdr->buffer_info = NULL;
0969 kfree(rxdr->buffer_info);
0970 rxdr->buffer_info = NULL;
0971 }
0972
0973 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
0974 {
0975 struct e1000_hw *hw = &adapter->hw;
0976 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
0977 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
0978 struct pci_dev *pdev = adapter->pdev;
0979 u32 rctl;
0980 int i, ret_val;
0981
0982
0983
0984 if (!txdr->count)
0985 txdr->count = E1000_DEFAULT_TXD;
0986
0987 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
0988 GFP_KERNEL);
0989 if (!txdr->buffer_info) {
0990 ret_val = 1;
0991 goto err_nomem;
0992 }
0993
0994 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
0995 txdr->size = ALIGN(txdr->size, 4096);
0996 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
0997 GFP_KERNEL);
0998 if (!txdr->desc) {
0999 ret_val = 2;
1000 goto err_nomem;
1001 }
1002 txdr->next_to_use = txdr->next_to_clean = 0;
1003
1004 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1005 ew32(TDBAH, ((u64)txdr->dma >> 32));
1006 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1007 ew32(TDH, 0);
1008 ew32(TDT, 0);
1009 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1010 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1011 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1012
1013 for (i = 0; i < txdr->count; i++) {
1014 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1015 struct sk_buff *skb;
1016 unsigned int size = 1024;
1017
1018 skb = alloc_skb(size, GFP_KERNEL);
1019 if (!skb) {
1020 ret_val = 3;
1021 goto err_nomem;
1022 }
1023 skb_put(skb, size);
1024 txdr->buffer_info[i].skb = skb;
1025 txdr->buffer_info[i].length = skb->len;
1026 txdr->buffer_info[i].dma =
1027 dma_map_single(&pdev->dev, skb->data, skb->len,
1028 DMA_TO_DEVICE);
1029 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1030 ret_val = 4;
1031 goto err_nomem;
1032 }
1033 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1034 tx_desc->lower.data = cpu_to_le32(skb->len);
1035 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1036 E1000_TXD_CMD_IFCS |
1037 E1000_TXD_CMD_RPS);
1038 tx_desc->upper.data = 0;
1039 }
1040
1041
1042
1043 if (!rxdr->count)
1044 rxdr->count = E1000_DEFAULT_RXD;
1045
1046 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1047 GFP_KERNEL);
1048 if (!rxdr->buffer_info) {
1049 ret_val = 5;
1050 goto err_nomem;
1051 }
1052
1053 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1054 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1055 GFP_KERNEL);
1056 if (!rxdr->desc) {
1057 ret_val = 6;
1058 goto err_nomem;
1059 }
1060 rxdr->next_to_use = rxdr->next_to_clean = 0;
1061
1062 rctl = er32(RCTL);
1063 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1064 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1065 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1066 ew32(RDLEN, rxdr->size);
1067 ew32(RDH, 0);
1068 ew32(RDT, 0);
1069 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1070 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1071 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1072 ew32(RCTL, rctl);
1073
1074 for (i = 0; i < rxdr->count; i++) {
1075 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1076 u8 *buf;
1077
1078 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1079 GFP_KERNEL);
1080 if (!buf) {
1081 ret_val = 7;
1082 goto err_nomem;
1083 }
1084 rxdr->buffer_info[i].rxbuf.data = buf;
1085
1086 rxdr->buffer_info[i].dma =
1087 dma_map_single(&pdev->dev,
1088 buf + NET_SKB_PAD + NET_IP_ALIGN,
1089 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1090 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1091 ret_val = 8;
1092 goto err_nomem;
1093 }
1094 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1095 }
1096
1097 return 0;
1098
1099 err_nomem:
1100 e1000_free_desc_rings(adapter);
1101 return ret_val;
1102 }
1103
1104 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1105 {
1106 struct e1000_hw *hw = &adapter->hw;
1107
1108
1109 e1000_write_phy_reg(hw, 29, 0x001F);
1110 e1000_write_phy_reg(hw, 30, 0x8FFC);
1111 e1000_write_phy_reg(hw, 29, 0x001A);
1112 e1000_write_phy_reg(hw, 30, 0x8FF0);
1113 }
1114
1115 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1116 {
1117 struct e1000_hw *hw = &adapter->hw;
1118 u16 phy_reg;
1119
1120
1121
1122
1123
1124 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1125 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1126 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1127
1128
1129
1130
1131
1132 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1133 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1134 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1135 }
1136
1137 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1138 {
1139 struct e1000_hw *hw = &adapter->hw;
1140 u32 ctrl_reg;
1141 u16 phy_reg;
1142
1143
1144
1145 ctrl_reg = er32(CTRL);
1146 ctrl_reg |= (E1000_CTRL_ILOS |
1147 E1000_CTRL_FRCSPD |
1148 E1000_CTRL_FRCDPX |
1149 E1000_CTRL_SPD_1000 |
1150 E1000_CTRL_FD);
1151
1152 ew32(CTRL, ctrl_reg);
1153
1154
1155 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1156
1157
1158
1159
1160 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1161 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1162
1163
1164 e1000_phy_reset(hw);
1165
1166
1167 e1000_phy_reset_clk_and_crs(adapter);
1168
1169 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1170
1171
1172 udelay(500);
1173
1174
1175 e1000_phy_reset_clk_and_crs(adapter);
1176
1177
1178 e1000_phy_disable_receiver(adapter);
1179
1180
1181 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1182 phy_reg |= MII_CR_LOOPBACK;
1183 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1184
1185
1186 e1000_phy_reset_clk_and_crs(adapter);
1187
1188
1189 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1190 if (phy_reg != 0x4100)
1191 return 9;
1192
1193 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1194 if (phy_reg != 0x0070)
1195 return 10;
1196
1197 e1000_read_phy_reg(hw, 29, &phy_reg);
1198 if (phy_reg != 0x001A)
1199 return 11;
1200
1201 return 0;
1202 }
1203
1204 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1205 {
1206 struct e1000_hw *hw = &adapter->hw;
1207 u32 ctrl_reg = 0;
1208 u32 stat_reg = 0;
1209
1210 hw->autoneg = false;
1211
1212 if (hw->phy_type == e1000_phy_m88) {
1213
1214 e1000_write_phy_reg(hw,
1215 M88E1000_PHY_SPEC_CTRL, 0x0808);
1216
1217 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1218
1219 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1220 }
1221
1222 ctrl_reg = er32(CTRL);
1223
1224
1225 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1226
1227
1228 ctrl_reg = er32(CTRL);
1229 ctrl_reg &= ~E1000_CTRL_SPD_SEL;
1230 ctrl_reg |= (E1000_CTRL_FRCSPD |
1231 E1000_CTRL_FRCDPX |
1232 E1000_CTRL_SPD_1000 |
1233 E1000_CTRL_FD);
1234
1235 if (hw->media_type == e1000_media_type_copper &&
1236 hw->phy_type == e1000_phy_m88)
1237 ctrl_reg |= E1000_CTRL_ILOS;
1238 else {
1239
1240
1241
1242 stat_reg = er32(STATUS);
1243 if ((stat_reg & E1000_STATUS_FD) == 0)
1244 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1245 }
1246
1247 ew32(CTRL, ctrl_reg);
1248
1249
1250
1251
1252 if (hw->phy_type == e1000_phy_m88)
1253 e1000_phy_disable_receiver(adapter);
1254
1255 udelay(500);
1256
1257 return 0;
1258 }
1259
1260 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1261 {
1262 struct e1000_hw *hw = &adapter->hw;
1263 u16 phy_reg = 0;
1264 u16 count = 0;
1265
1266 switch (hw->mac_type) {
1267 case e1000_82543:
1268 if (hw->media_type == e1000_media_type_copper) {
1269
1270
1271
1272
1273 while (e1000_nonintegrated_phy_loopback(adapter) &&
1274 count++ < 10);
1275 if (count < 11)
1276 return 0;
1277 }
1278 break;
1279
1280 case e1000_82544:
1281 case e1000_82540:
1282 case e1000_82545:
1283 case e1000_82545_rev_3:
1284 case e1000_82546:
1285 case e1000_82546_rev_3:
1286 case e1000_82541:
1287 case e1000_82541_rev_2:
1288 case e1000_82547:
1289 case e1000_82547_rev_2:
1290 return e1000_integrated_phy_loopback(adapter);
1291 default:
1292
1293
1294
1295 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1296 phy_reg |= MII_CR_LOOPBACK;
1297 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1298 return 0;
1299 }
1300
1301 return 8;
1302 }
1303
1304 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1305 {
1306 struct e1000_hw *hw = &adapter->hw;
1307 u32 rctl;
1308
1309 if (hw->media_type == e1000_media_type_fiber ||
1310 hw->media_type == e1000_media_type_internal_serdes) {
1311 switch (hw->mac_type) {
1312 case e1000_82545:
1313 case e1000_82546:
1314 case e1000_82545_rev_3:
1315 case e1000_82546_rev_3:
1316 return e1000_set_phy_loopback(adapter);
1317 default:
1318 rctl = er32(RCTL);
1319 rctl |= E1000_RCTL_LBM_TCVR;
1320 ew32(RCTL, rctl);
1321 return 0;
1322 }
1323 } else if (hw->media_type == e1000_media_type_copper) {
1324 return e1000_set_phy_loopback(adapter);
1325 }
1326
1327 return 7;
1328 }
1329
1330 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1331 {
1332 struct e1000_hw *hw = &adapter->hw;
1333 u32 rctl;
1334 u16 phy_reg;
1335
1336 rctl = er32(RCTL);
1337 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1338 ew32(RCTL, rctl);
1339
1340 switch (hw->mac_type) {
1341 case e1000_82545:
1342 case e1000_82546:
1343 case e1000_82545_rev_3:
1344 case e1000_82546_rev_3:
1345 default:
1346 hw->autoneg = true;
1347 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1348 if (phy_reg & MII_CR_LOOPBACK) {
1349 phy_reg &= ~MII_CR_LOOPBACK;
1350 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1351 e1000_phy_reset(hw);
1352 }
1353 break;
1354 }
1355 }
1356
1357 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1358 unsigned int frame_size)
1359 {
1360 memset(skb->data, 0xFF, frame_size);
1361 frame_size &= ~1;
1362 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1363 skb->data[frame_size / 2 + 10] = 0xBE;
1364 skb->data[frame_size / 2 + 12] = 0xAF;
1365 }
1366
1367 static int e1000_check_lbtest_frame(const unsigned char *data,
1368 unsigned int frame_size)
1369 {
1370 frame_size &= ~1;
1371 if (*(data + 3) == 0xFF) {
1372 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1373 (*(data + frame_size / 2 + 12) == 0xAF)) {
1374 return 0;
1375 }
1376 }
1377 return 13;
1378 }
1379
1380 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1381 {
1382 struct e1000_hw *hw = &adapter->hw;
1383 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1384 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1385 struct pci_dev *pdev = adapter->pdev;
1386 int i, j, k, l, lc, good_cnt, ret_val = 0;
1387 unsigned long time;
1388
1389 ew32(RDT, rxdr->count - 1);
1390
1391
1392
1393
1394
1395
1396 if (rxdr->count <= txdr->count)
1397 lc = ((txdr->count / 64) * 2) + 1;
1398 else
1399 lc = ((rxdr->count / 64) * 2) + 1;
1400
1401 k = l = 0;
1402 for (j = 0; j <= lc; j++) {
1403 for (i = 0; i < 64; i++) {
1404 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1405 1024);
1406 dma_sync_single_for_device(&pdev->dev,
1407 txdr->buffer_info[k].dma,
1408 txdr->buffer_info[k].length,
1409 DMA_TO_DEVICE);
1410 if (unlikely(++k == txdr->count))
1411 k = 0;
1412 }
1413 ew32(TDT, k);
1414 E1000_WRITE_FLUSH();
1415 msleep(200);
1416 time = jiffies;
1417 good_cnt = 0;
1418 do {
1419 dma_sync_single_for_cpu(&pdev->dev,
1420 rxdr->buffer_info[l].dma,
1421 E1000_RXBUFFER_2048,
1422 DMA_FROM_DEVICE);
1423
1424 ret_val = e1000_check_lbtest_frame(
1425 rxdr->buffer_info[l].rxbuf.data +
1426 NET_SKB_PAD + NET_IP_ALIGN,
1427 1024);
1428 if (!ret_val)
1429 good_cnt++;
1430 if (unlikely(++l == rxdr->count))
1431 l = 0;
1432
1433
1434
1435
1436 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1437
1438 if (good_cnt != 64) {
1439 ret_val = 13;
1440 break;
1441 }
1442 if (time_after_eq(jiffies, time + 2)) {
1443 ret_val = 14;
1444 break;
1445 }
1446 }
1447 return ret_val;
1448 }
1449
1450 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1451 {
1452 *data = e1000_setup_desc_rings(adapter);
1453 if (*data)
1454 goto out;
1455 *data = e1000_setup_loopback_test(adapter);
1456 if (*data)
1457 goto err_loopback;
1458 *data = e1000_run_loopback_test(adapter);
1459 e1000_loopback_cleanup(adapter);
1460
1461 err_loopback:
1462 e1000_free_desc_rings(adapter);
1463 out:
1464 return *data;
1465 }
1466
1467 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1468 {
1469 struct e1000_hw *hw = &adapter->hw;
1470 *data = 0;
1471 if (hw->media_type == e1000_media_type_internal_serdes) {
1472 int i = 0;
1473
1474 hw->serdes_has_link = false;
1475
1476
1477
1478
1479 do {
1480 e1000_check_for_link(hw);
1481 if (hw->serdes_has_link)
1482 return *data;
1483 msleep(20);
1484 } while (i++ < 3750);
1485
1486 *data = 1;
1487 } else {
1488 e1000_check_for_link(hw);
1489 if (hw->autoneg)
1490 msleep(4000);
1491
1492 if (!(er32(STATUS) & E1000_STATUS_LU))
1493 *data = 1;
1494 }
1495 return *data;
1496 }
1497
1498 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1499 {
1500 switch (sset) {
1501 case ETH_SS_TEST:
1502 return E1000_TEST_LEN;
1503 case ETH_SS_STATS:
1504 return E1000_STATS_LEN;
1505 default:
1506 return -EOPNOTSUPP;
1507 }
1508 }
1509
1510 static void e1000_diag_test(struct net_device *netdev,
1511 struct ethtool_test *eth_test, u64 *data)
1512 {
1513 struct e1000_adapter *adapter = netdev_priv(netdev);
1514 struct e1000_hw *hw = &adapter->hw;
1515 bool if_running = netif_running(netdev);
1516
1517 set_bit(__E1000_TESTING, &adapter->flags);
1518 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1519
1520
1521
1522 u16 autoneg_advertised = hw->autoneg_advertised;
1523 u8 forced_speed_duplex = hw->forced_speed_duplex;
1524 u8 autoneg = hw->autoneg;
1525
1526 e_info(hw, "offline testing starting\n");
1527
1528
1529
1530
1531 if (e1000_link_test(adapter, &data[4]))
1532 eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534 if (if_running)
1535
1536 e1000_close(netdev);
1537 else
1538 e1000_reset(adapter);
1539
1540 if (e1000_reg_test(adapter, &data[0]))
1541 eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543 e1000_reset(adapter);
1544 if (e1000_eeprom_test(adapter, &data[1]))
1545 eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547 e1000_reset(adapter);
1548 if (e1000_intr_test(adapter, &data[2]))
1549 eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551 e1000_reset(adapter);
1552
1553 e1000_power_up_phy(adapter);
1554 if (e1000_loopback_test(adapter, &data[3]))
1555 eth_test->flags |= ETH_TEST_FL_FAILED;
1556
1557
1558 hw->autoneg_advertised = autoneg_advertised;
1559 hw->forced_speed_duplex = forced_speed_duplex;
1560 hw->autoneg = autoneg;
1561
1562 e1000_reset(adapter);
1563 clear_bit(__E1000_TESTING, &adapter->flags);
1564 if (if_running)
1565 e1000_open(netdev);
1566 } else {
1567 e_info(hw, "online testing starting\n");
1568
1569 if (e1000_link_test(adapter, &data[4]))
1570 eth_test->flags |= ETH_TEST_FL_FAILED;
1571
1572
1573 data[0] = 0;
1574 data[1] = 0;
1575 data[2] = 0;
1576 data[3] = 0;
1577
1578 clear_bit(__E1000_TESTING, &adapter->flags);
1579 }
1580 msleep_interruptible(4 * 1000);
1581 }
1582
1583 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1584 struct ethtool_wolinfo *wol)
1585 {
1586 struct e1000_hw *hw = &adapter->hw;
1587 int retval = 1;
1588
1589 switch (hw->device_id) {
1590 case E1000_DEV_ID_82542:
1591 case E1000_DEV_ID_82543GC_FIBER:
1592 case E1000_DEV_ID_82543GC_COPPER:
1593 case E1000_DEV_ID_82544EI_FIBER:
1594 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1595 case E1000_DEV_ID_82545EM_FIBER:
1596 case E1000_DEV_ID_82545EM_COPPER:
1597 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1598 case E1000_DEV_ID_82546GB_PCIE:
1599
1600 wol->supported = 0;
1601 break;
1602 case E1000_DEV_ID_82546EB_FIBER:
1603 case E1000_DEV_ID_82546GB_FIBER:
1604
1605 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1606 wol->supported = 0;
1607 break;
1608 }
1609
1610 retval = 0;
1611 break;
1612 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1613
1614 if (!adapter->quad_port_a) {
1615 wol->supported = 0;
1616 break;
1617 }
1618
1619 retval = 0;
1620 break;
1621 default:
1622
1623
1624
1625
1626 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1627 !adapter->eeprom_wol) {
1628 wol->supported = 0;
1629 break;
1630 }
1631
1632 retval = 0;
1633 }
1634
1635 return retval;
1636 }
1637
1638 static void e1000_get_wol(struct net_device *netdev,
1639 struct ethtool_wolinfo *wol)
1640 {
1641 struct e1000_adapter *adapter = netdev_priv(netdev);
1642 struct e1000_hw *hw = &adapter->hw;
1643
1644 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1645 wol->wolopts = 0;
1646
1647
1648
1649
1650 if (e1000_wol_exclusion(adapter, wol) ||
1651 !device_can_wakeup(&adapter->pdev->dev))
1652 return;
1653
1654
1655 switch (hw->device_id) {
1656 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1657
1658 wol->supported &= ~WAKE_UCAST;
1659
1660 if (adapter->wol & E1000_WUFC_EX)
1661 e_err(drv, "Interface does not support directed "
1662 "(unicast) frame wake-up packets\n");
1663 break;
1664 default:
1665 break;
1666 }
1667
1668 if (adapter->wol & E1000_WUFC_EX)
1669 wol->wolopts |= WAKE_UCAST;
1670 if (adapter->wol & E1000_WUFC_MC)
1671 wol->wolopts |= WAKE_MCAST;
1672 if (adapter->wol & E1000_WUFC_BC)
1673 wol->wolopts |= WAKE_BCAST;
1674 if (adapter->wol & E1000_WUFC_MAG)
1675 wol->wolopts |= WAKE_MAGIC;
1676 }
1677
1678 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1679 {
1680 struct e1000_adapter *adapter = netdev_priv(netdev);
1681 struct e1000_hw *hw = &adapter->hw;
1682
1683 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1684 return -EOPNOTSUPP;
1685
1686 if (e1000_wol_exclusion(adapter, wol) ||
1687 !device_can_wakeup(&adapter->pdev->dev))
1688 return wol->wolopts ? -EOPNOTSUPP : 0;
1689
1690 switch (hw->device_id) {
1691 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1692 if (wol->wolopts & WAKE_UCAST) {
1693 e_err(drv, "Interface does not support directed "
1694 "(unicast) frame wake-up packets\n");
1695 return -EOPNOTSUPP;
1696 }
1697 break;
1698 default:
1699 break;
1700 }
1701
1702
1703 adapter->wol = 0;
1704
1705 if (wol->wolopts & WAKE_UCAST)
1706 adapter->wol |= E1000_WUFC_EX;
1707 if (wol->wolopts & WAKE_MCAST)
1708 adapter->wol |= E1000_WUFC_MC;
1709 if (wol->wolopts & WAKE_BCAST)
1710 adapter->wol |= E1000_WUFC_BC;
1711 if (wol->wolopts & WAKE_MAGIC)
1712 adapter->wol |= E1000_WUFC_MAG;
1713
1714 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1715
1716 return 0;
1717 }
1718
1719 static int e1000_set_phys_id(struct net_device *netdev,
1720 enum ethtool_phys_id_state state)
1721 {
1722 struct e1000_adapter *adapter = netdev_priv(netdev);
1723 struct e1000_hw *hw = &adapter->hw;
1724
1725 switch (state) {
1726 case ETHTOOL_ID_ACTIVE:
1727 e1000_setup_led(hw);
1728 return 2;
1729
1730 case ETHTOOL_ID_ON:
1731 e1000_led_on(hw);
1732 break;
1733
1734 case ETHTOOL_ID_OFF:
1735 e1000_led_off(hw);
1736 break;
1737
1738 case ETHTOOL_ID_INACTIVE:
1739 e1000_cleanup_led(hw);
1740 }
1741
1742 return 0;
1743 }
1744
1745 static int e1000_get_coalesce(struct net_device *netdev,
1746 struct ethtool_coalesce *ec,
1747 struct kernel_ethtool_coalesce *kernel_coal,
1748 struct netlink_ext_ack *extack)
1749 {
1750 struct e1000_adapter *adapter = netdev_priv(netdev);
1751
1752 if (adapter->hw.mac_type < e1000_82545)
1753 return -EOPNOTSUPP;
1754
1755 if (adapter->itr_setting <= 4)
1756 ec->rx_coalesce_usecs = adapter->itr_setting;
1757 else
1758 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1759
1760 return 0;
1761 }
1762
1763 static int e1000_set_coalesce(struct net_device *netdev,
1764 struct ethtool_coalesce *ec,
1765 struct kernel_ethtool_coalesce *kernel_coal,
1766 struct netlink_ext_ack *extack)
1767 {
1768 struct e1000_adapter *adapter = netdev_priv(netdev);
1769 struct e1000_hw *hw = &adapter->hw;
1770
1771 if (hw->mac_type < e1000_82545)
1772 return -EOPNOTSUPP;
1773
1774 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1775 ((ec->rx_coalesce_usecs > 4) &&
1776 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1777 (ec->rx_coalesce_usecs == 2))
1778 return -EINVAL;
1779
1780 if (ec->rx_coalesce_usecs == 4) {
1781 adapter->itr = adapter->itr_setting = 4;
1782 } else if (ec->rx_coalesce_usecs <= 3) {
1783 adapter->itr = 20000;
1784 adapter->itr_setting = ec->rx_coalesce_usecs;
1785 } else {
1786 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1787 adapter->itr_setting = adapter->itr & ~3;
1788 }
1789
1790 if (adapter->itr_setting != 0)
1791 ew32(ITR, 1000000000 / (adapter->itr * 256));
1792 else
1793 ew32(ITR, 0);
1794
1795 return 0;
1796 }
1797
1798 static int e1000_nway_reset(struct net_device *netdev)
1799 {
1800 struct e1000_adapter *adapter = netdev_priv(netdev);
1801
1802 if (netif_running(netdev))
1803 e1000_reinit_locked(adapter);
1804 return 0;
1805 }
1806
1807 static void e1000_get_ethtool_stats(struct net_device *netdev,
1808 struct ethtool_stats *stats, u64 *data)
1809 {
1810 struct e1000_adapter *adapter = netdev_priv(netdev);
1811 int i;
1812 const struct e1000_stats *stat = e1000_gstrings_stats;
1813
1814 e1000_update_stats(adapter);
1815 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1816 char *p;
1817
1818 switch (stat->type) {
1819 case NETDEV_STATS:
1820 p = (char *)netdev + stat->stat_offset;
1821 break;
1822 case E1000_STATS:
1823 p = (char *)adapter + stat->stat_offset;
1824 break;
1825 default:
1826 netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1827 stat->type, i);
1828 continue;
1829 }
1830
1831 if (stat->sizeof_stat == sizeof(u64))
1832 data[i] = *(u64 *)p;
1833 else
1834 data[i] = *(u32 *)p;
1835 }
1836
1837 }
1838
1839 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1840 u8 *data)
1841 {
1842 u8 *p = data;
1843 int i;
1844
1845 switch (stringset) {
1846 case ETH_SS_TEST:
1847 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1848 break;
1849 case ETH_SS_STATS:
1850 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1851 memcpy(p, e1000_gstrings_stats[i].stat_string,
1852 ETH_GSTRING_LEN);
1853 p += ETH_GSTRING_LEN;
1854 }
1855
1856 break;
1857 }
1858 }
1859
1860 static const struct ethtool_ops e1000_ethtool_ops = {
1861 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1862 .get_drvinfo = e1000_get_drvinfo,
1863 .get_regs_len = e1000_get_regs_len,
1864 .get_regs = e1000_get_regs,
1865 .get_wol = e1000_get_wol,
1866 .set_wol = e1000_set_wol,
1867 .get_msglevel = e1000_get_msglevel,
1868 .set_msglevel = e1000_set_msglevel,
1869 .nway_reset = e1000_nway_reset,
1870 .get_link = e1000_get_link,
1871 .get_eeprom_len = e1000_get_eeprom_len,
1872 .get_eeprom = e1000_get_eeprom,
1873 .set_eeprom = e1000_set_eeprom,
1874 .get_ringparam = e1000_get_ringparam,
1875 .set_ringparam = e1000_set_ringparam,
1876 .get_pauseparam = e1000_get_pauseparam,
1877 .set_pauseparam = e1000_set_pauseparam,
1878 .self_test = e1000_diag_test,
1879 .get_strings = e1000_get_strings,
1880 .set_phys_id = e1000_set_phys_id,
1881 .get_ethtool_stats = e1000_get_ethtool_stats,
1882 .get_sset_count = e1000_get_sset_count,
1883 .get_coalesce = e1000_get_coalesce,
1884 .set_coalesce = e1000_set_coalesce,
1885 .get_ts_info = ethtool_op_get_ts_info,
1886 .get_link_ksettings = e1000_get_link_ksettings,
1887 .set_link_ksettings = e1000_set_link_ksettings,
1888 };
1889
1890 void e1000_set_ethtool_ops(struct net_device *netdev)
1891 {
1892 netdev->ethtool_ops = &e1000_ethtool_ops;
1893 }