Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /* Copyright(c) 1999 - 2006 Intel Corporation. */
0003 
0004 /*
0005  *  e100.c: Intel(R) PRO/100 ethernet driver
0006  *
0007  *  (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
0008  *  original e100 driver, but better described as a munging of
0009  *  e100, e1000, eepro100, tg3, 8139cp, and other drivers.
0010  *
0011  *  References:
0012  *      Intel 8255x 10/100 Mbps Ethernet Controller Family,
0013  *      Open Source Software Developers Manual,
0014  *      http://sourceforge.net/projects/e1000
0015  *
0016  *
0017  *                        Theory of Operation
0018  *
0019  *  I.   General
0020  *
0021  *  The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
0022  *  controller family, which includes the 82557, 82558, 82559, 82550,
0023  *  82551, and 82562 devices.  82558 and greater controllers
0024  *  integrate the Intel 82555 PHY.  The controllers are used in
0025  *  server and client network interface cards, as well as in
0026  *  LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
0027  *  configurations.  8255x supports a 32-bit linear addressing
0028  *  mode and operates at 33Mhz PCI clock rate.
0029  *
0030  *  II.  Driver Operation
0031  *
0032  *  Memory-mapped mode is used exclusively to access the device's
0033  *  shared-memory structure, the Control/Status Registers (CSR). All
0034  *  setup, configuration, and control of the device, including queuing
0035  *  of Tx, Rx, and configuration commands is through the CSR.
0036  *  cmd_lock serializes accesses to the CSR command register.  cb_lock
0037  *  protects the shared Command Block List (CBL).
0038  *
0039  *  8255x is highly MII-compliant and all access to the PHY go
0040  *  through the Management Data Interface (MDI).  Consequently, the
0041  *  driver leverages the mii.c library shared with other MII-compliant
0042  *  devices.
0043  *
0044  *  Big- and Little-Endian byte order as well as 32- and 64-bit
0045  *  archs are supported.  Weak-ordered memory and non-cache-coherent
0046  *  archs are supported.
0047  *
0048  *  III. Transmit
0049  *
0050  *  A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
0051  *  together in a fixed-size ring (CBL) thus forming the flexible mode
0052  *  memory structure.  A TCB marked with the suspend-bit indicates
0053  *  the end of the ring.  The last TCB processed suspends the
0054  *  controller, and the controller can be restarted by issue a CU
0055  *  resume command to continue from the suspend point, or a CU start
0056  *  command to start at a given position in the ring.
0057  *
0058  *  Non-Tx commands (config, multicast setup, etc) are linked
0059  *  into the CBL ring along with Tx commands.  The common structure
0060  *  used for both Tx and non-Tx commands is the Command Block (CB).
0061  *
0062  *  cb_to_use is the next CB to use for queuing a command; cb_to_clean
0063  *  is the next CB to check for completion; cb_to_send is the first
0064  *  CB to start on in case of a previous failure to resume.  CB clean
0065  *  up happens in interrupt context in response to a CU interrupt.
0066  *  cbs_avail keeps track of number of free CB resources available.
0067  *
0068  *  Hardware padding of short packets to minimum packet size is
0069  *  enabled.  82557 pads with 7Eh, while the later controllers pad
0070  *  with 00h.
0071  *
0072  *  IV.  Receive
0073  *
0074  *  The Receive Frame Area (RFA) comprises a ring of Receive Frame
0075  *  Descriptors (RFD) + data buffer, thus forming the simplified mode
0076  *  memory structure.  Rx skbs are allocated to contain both the RFD
0077  *  and the data buffer, but the RFD is pulled off before the skb is
0078  *  indicated.  The data buffer is aligned such that encapsulated
0079  *  protocol headers are u32-aligned.  Since the RFD is part of the
0080  *  mapped shared memory, and completion status is contained within
0081  *  the RFD, the RFD must be dma_sync'ed to maintain a consistent
0082  *  view from software and hardware.
0083  *
0084  *  In order to keep updates to the RFD link field from colliding with
0085  *  hardware writes to mark packets complete, we use the feature that
0086  *  hardware will not write to a size 0 descriptor and mark the previous
0087  *  packet as end-of-list (EL).   After updating the link, we remove EL
0088  *  and only then restore the size such that hardware may use the
0089  *  previous-to-end RFD.
0090  *
0091  *  Under typical operation, the  receive unit (RU) is start once,
0092  *  and the controller happily fills RFDs as frames arrive.  If
0093  *  replacement RFDs cannot be allocated, or the RU goes non-active,
0094  *  the RU must be restarted.  Frame arrival generates an interrupt,
0095  *  and Rx indication and re-allocation happen in the same context,
0096  *  therefore no locking is required.  A software-generated interrupt
0097  *  is generated from the watchdog to recover from a failed allocation
0098  *  scenario where all Rx resources have been indicated and none re-
0099  *  placed.
0100  *
0101  *  V.   Miscellaneous
0102  *
0103  *  VLAN offloading of tagging, stripping and filtering is not
0104  *  supported, but driver will accommodate the extra 4-byte VLAN tag
0105  *  for processing by upper layers.  Tx/Rx Checksum offloading is not
0106  *  supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
0107  *  not supported (hardware limitation).
0108  *
0109  *  MagicPacket(tm) WoL support is enabled/disabled via ethtool.
0110  *
0111  *  Thanks to JC (jchapman@katalix.com) for helping with
0112  *  testing/troubleshooting the development driver.
0113  *
0114  *  TODO:
0115  *  o several entry points race with dev->close
0116  *  o check for tx-no-resources/stop Q races with tx clean/wake Q
0117  *
0118  *  FIXES:
0119  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
0120  *  - Stratus87247: protect MDI control register manipulations
0121  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
0122  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
0123  */
0124 
0125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0126 
0127 #include <linux/hardirq.h>
0128 #include <linux/interrupt.h>
0129 #include <linux/module.h>
0130 #include <linux/moduleparam.h>
0131 #include <linux/kernel.h>
0132 #include <linux/types.h>
0133 #include <linux/sched.h>
0134 #include <linux/slab.h>
0135 #include <linux/delay.h>
0136 #include <linux/init.h>
0137 #include <linux/pci.h>
0138 #include <linux/dma-mapping.h>
0139 #include <linux/dmapool.h>
0140 #include <linux/netdevice.h>
0141 #include <linux/etherdevice.h>
0142 #include <linux/mii.h>
0143 #include <linux/if_vlan.h>
0144 #include <linux/skbuff.h>
0145 #include <linux/ethtool.h>
0146 #include <linux/string.h>
0147 #include <linux/firmware.h>
0148 #include <linux/rtnetlink.h>
0149 #include <asm/unaligned.h>
0150 
0151 
0152 #define DRV_NAME        "e100"
0153 #define DRV_DESCRIPTION     "Intel(R) PRO/100 Network Driver"
0154 #define DRV_COPYRIGHT       "Copyright(c) 1999-2006 Intel Corporation"
0155 
0156 #define E100_WATCHDOG_PERIOD    (2 * HZ)
0157 #define E100_NAPI_WEIGHT    16
0158 
0159 #define FIRMWARE_D101M      "e100/d101m_ucode.bin"
0160 #define FIRMWARE_D101S      "e100/d101s_ucode.bin"
0161 #define FIRMWARE_D102E      "e100/d102e_ucode.bin"
0162 
0163 MODULE_DESCRIPTION(DRV_DESCRIPTION);
0164 MODULE_AUTHOR(DRV_COPYRIGHT);
0165 MODULE_LICENSE("GPL v2");
0166 MODULE_FIRMWARE(FIRMWARE_D101M);
0167 MODULE_FIRMWARE(FIRMWARE_D101S);
0168 MODULE_FIRMWARE(FIRMWARE_D102E);
0169 
0170 static int debug = 3;
0171 static int eeprom_bad_csum_allow = 0;
0172 static int use_io = 0;
0173 module_param(debug, int, 0);
0174 module_param(eeprom_bad_csum_allow, int, 0);
0175 module_param(use_io, int, 0);
0176 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
0177 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
0178 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
0179 
0180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
0181     PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
0182     PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
0183 static const struct pci_device_id e100_id_table[] = {
0184     INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
0185     INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
0186     INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
0187     INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
0188     INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
0189     INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
0190     INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
0191     INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
0192     INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
0193     INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
0194     INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
0195     INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
0196     INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
0197     INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
0198     INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
0199     INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
0200     INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
0201     INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
0202     INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
0203     INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
0204     INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
0205     INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
0206     INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
0207     INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
0208     INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
0209     INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
0210     INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
0211     INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
0212     INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
0213     INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
0214     INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
0215     INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
0216     INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
0217     INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
0218     INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
0219     INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
0220     INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
0221     INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
0222     INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
0223     INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
0224     INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
0225     INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
0226     { 0, }
0227 };
0228 MODULE_DEVICE_TABLE(pci, e100_id_table);
0229 
0230 enum mac {
0231     mac_82557_D100_A  = 0,
0232     mac_82557_D100_B  = 1,
0233     mac_82557_D100_C  = 2,
0234     mac_82558_D101_A4 = 4,
0235     mac_82558_D101_B0 = 5,
0236     mac_82559_D101M   = 8,
0237     mac_82559_D101S   = 9,
0238     mac_82550_D102    = 12,
0239     mac_82550_D102_C  = 13,
0240     mac_82551_E       = 14,
0241     mac_82551_F       = 15,
0242     mac_82551_10      = 16,
0243     mac_unknown       = 0xFF,
0244 };
0245 
0246 enum phy {
0247     phy_100a     = 0x000003E0,
0248     phy_100c     = 0x035002A8,
0249     phy_82555_tx = 0x015002A8,
0250     phy_nsc_tx   = 0x5C002000,
0251     phy_82562_et = 0x033002A8,
0252     phy_82562_em = 0x032002A8,
0253     phy_82562_ek = 0x031002A8,
0254     phy_82562_eh = 0x017002A8,
0255     phy_82552_v  = 0xd061004d,
0256     phy_unknown  = 0xFFFFFFFF,
0257 };
0258 
0259 /* CSR (Control/Status Registers) */
0260 struct csr {
0261     struct {
0262         u8 status;
0263         u8 stat_ack;
0264         u8 cmd_lo;
0265         u8 cmd_hi;
0266         u32 gen_ptr;
0267     } scb;
0268     u32 port;
0269     u16 flash_ctrl;
0270     u8 eeprom_ctrl_lo;
0271     u8 eeprom_ctrl_hi;
0272     u32 mdi_ctrl;
0273     u32 rx_dma_count;
0274 };
0275 
0276 enum scb_status {
0277     rus_no_res       = 0x08,
0278     rus_ready        = 0x10,
0279     rus_mask         = 0x3C,
0280 };
0281 
0282 enum ru_state  {
0283     RU_SUSPENDED = 0,
0284     RU_RUNNING   = 1,
0285     RU_UNINITIALIZED = -1,
0286 };
0287 
0288 enum scb_stat_ack {
0289     stat_ack_not_ours    = 0x00,
0290     stat_ack_sw_gen      = 0x04,
0291     stat_ack_rnr         = 0x10,
0292     stat_ack_cu_idle     = 0x20,
0293     stat_ack_frame_rx    = 0x40,
0294     stat_ack_cu_cmd_done = 0x80,
0295     stat_ack_not_present = 0xFF,
0296     stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
0297     stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
0298 };
0299 
0300 enum scb_cmd_hi {
0301     irq_mask_none = 0x00,
0302     irq_mask_all  = 0x01,
0303     irq_sw_gen    = 0x02,
0304 };
0305 
0306 enum scb_cmd_lo {
0307     cuc_nop        = 0x00,
0308     ruc_start      = 0x01,
0309     ruc_load_base  = 0x06,
0310     cuc_start      = 0x10,
0311     cuc_resume     = 0x20,
0312     cuc_dump_addr  = 0x40,
0313     cuc_dump_stats = 0x50,
0314     cuc_load_base  = 0x60,
0315     cuc_dump_reset = 0x70,
0316 };
0317 
0318 enum cuc_dump {
0319     cuc_dump_complete       = 0x0000A005,
0320     cuc_dump_reset_complete = 0x0000A007,
0321 };
0322 
0323 enum port {
0324     software_reset  = 0x0000,
0325     selftest        = 0x0001,
0326     selective_reset = 0x0002,
0327 };
0328 
0329 enum eeprom_ctrl_lo {
0330     eesk = 0x01,
0331     eecs = 0x02,
0332     eedi = 0x04,
0333     eedo = 0x08,
0334 };
0335 
0336 enum mdi_ctrl {
0337     mdi_write = 0x04000000,
0338     mdi_read  = 0x08000000,
0339     mdi_ready = 0x10000000,
0340 };
0341 
0342 enum eeprom_op {
0343     op_write = 0x05,
0344     op_read  = 0x06,
0345     op_ewds  = 0x10,
0346     op_ewen  = 0x13,
0347 };
0348 
0349 enum eeprom_offsets {
0350     eeprom_cnfg_mdix  = 0x03,
0351     eeprom_phy_iface  = 0x06,
0352     eeprom_id         = 0x0A,
0353     eeprom_config_asf = 0x0D,
0354     eeprom_smbus_addr = 0x90,
0355 };
0356 
0357 enum eeprom_cnfg_mdix {
0358     eeprom_mdix_enabled = 0x0080,
0359 };
0360 
0361 enum eeprom_phy_iface {
0362     NoSuchPhy = 0,
0363     I82553AB,
0364     I82553C,
0365     I82503,
0366     DP83840,
0367     S80C240,
0368     S80C24,
0369     I82555,
0370     DP83840A = 10,
0371 };
0372 
0373 enum eeprom_id {
0374     eeprom_id_wol = 0x0020,
0375 };
0376 
0377 enum eeprom_config_asf {
0378     eeprom_asf = 0x8000,
0379     eeprom_gcl = 0x4000,
0380 };
0381 
0382 enum cb_status {
0383     cb_complete = 0x8000,
0384     cb_ok       = 0x2000,
0385 };
0386 
0387 /*
0388  * cb_command - Command Block flags
0389  * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
0390  */
0391 enum cb_command {
0392     cb_nop    = 0x0000,
0393     cb_iaaddr = 0x0001,
0394     cb_config = 0x0002,
0395     cb_multi  = 0x0003,
0396     cb_tx     = 0x0004,
0397     cb_ucode  = 0x0005,
0398     cb_dump   = 0x0006,
0399     cb_tx_sf  = 0x0008,
0400     cb_tx_nc  = 0x0010,
0401     cb_cid    = 0x1f00,
0402     cb_i      = 0x2000,
0403     cb_s      = 0x4000,
0404     cb_el     = 0x8000,
0405 };
0406 
0407 struct rfd {
0408     __le16 status;
0409     __le16 command;
0410     __le32 link;
0411     __le32 rbd;
0412     __le16 actual_size;
0413     __le16 size;
0414 };
0415 
0416 struct rx {
0417     struct rx *next, *prev;
0418     struct sk_buff *skb;
0419     dma_addr_t dma_addr;
0420 };
0421 
0422 #if defined(__BIG_ENDIAN_BITFIELD)
0423 #define X(a,b)  b,a
0424 #else
0425 #define X(a,b)  a,b
0426 #endif
0427 struct config {
0428 /*0*/   u8 X(byte_count:6, pad0:2);
0429 /*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
0430 /*2*/   u8 adaptive_ifs;
0431 /*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
0432        term_write_cache_line:1), pad3:4);
0433 /*4*/   u8 X(rx_dma_max_count:7, pad4:1);
0434 /*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
0435 /*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
0436        tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
0437        rx_save_overruns : 1), rx_save_bad_frames : 1);
0438 /*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
0439        pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
0440        tx_dynamic_tbd:1);
0441 /*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
0442 /*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
0443        link_status_wake:1), arp_wake:1), mcmatch_wake:1);
0444 /*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
0445        loopback:2);
0446 /*11*/  u8 X(linear_priority:3, pad11:5);
0447 /*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
0448 /*13*/  u8 ip_addr_lo;
0449 /*14*/  u8 ip_addr_hi;
0450 /*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
0451        wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
0452        pad15_2:1), crs_or_cdt:1);
0453 /*16*/  u8 fc_delay_lo;
0454 /*17*/  u8 fc_delay_hi;
0455 /*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
0456        rx_long_ok:1), fc_priority_threshold:3), pad18:1);
0457 /*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
0458        fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
0459        full_duplex_force:1), full_duplex_pin:1);
0460 /*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
0461 /*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
0462 /*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
0463     u8 pad_d102[9];
0464 };
0465 
0466 #define E100_MAX_MULTICAST_ADDRS    64
0467 struct multi {
0468     __le16 count;
0469     u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
0470 };
0471 
0472 /* Important: keep total struct u32-aligned */
0473 #define UCODE_SIZE          134
0474 struct cb {
0475     __le16 status;
0476     __le16 command;
0477     __le32 link;
0478     union {
0479         u8 iaaddr[ETH_ALEN];
0480         __le32 ucode[UCODE_SIZE];
0481         struct config config;
0482         struct multi multi;
0483         struct {
0484             u32 tbd_array;
0485             u16 tcb_byte_count;
0486             u8 threshold;
0487             u8 tbd_count;
0488             struct {
0489                 __le32 buf_addr;
0490                 __le16 size;
0491                 u16 eol;
0492             } tbd;
0493         } tcb;
0494         __le32 dump_buffer_addr;
0495     } u;
0496     struct cb *next, *prev;
0497     dma_addr_t dma_addr;
0498     struct sk_buff *skb;
0499 };
0500 
0501 enum loopback {
0502     lb_none = 0, lb_mac = 1, lb_phy = 3,
0503 };
0504 
0505 struct stats {
0506     __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
0507         tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
0508         tx_multiple_collisions, tx_total_collisions;
0509     __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
0510         rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
0511         rx_short_frame_errors;
0512     __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
0513     __le16 xmt_tco_frames, rcv_tco_frames;
0514     __le32 complete;
0515 };
0516 
0517 struct mem {
0518     struct {
0519         u32 signature;
0520         u32 result;
0521     } selftest;
0522     struct stats stats;
0523     u8 dump_buf[596];
0524 };
0525 
0526 struct param_range {
0527     u32 min;
0528     u32 max;
0529     u32 count;
0530 };
0531 
0532 struct params {
0533     struct param_range rfds;
0534     struct param_range cbs;
0535 };
0536 
0537 struct nic {
0538     /* Begin: frequently used values: keep adjacent for cache effect */
0539     u32 msg_enable              ____cacheline_aligned;
0540     struct net_device *netdev;
0541     struct pci_dev *pdev;
0542     u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
0543 
0544     struct rx *rxs              ____cacheline_aligned;
0545     struct rx *rx_to_use;
0546     struct rx *rx_to_clean;
0547     struct rfd blank_rfd;
0548     enum ru_state ru_running;
0549 
0550     spinlock_t cb_lock          ____cacheline_aligned;
0551     spinlock_t cmd_lock;
0552     struct csr __iomem *csr;
0553     enum scb_cmd_lo cuc_cmd;
0554     unsigned int cbs_avail;
0555     struct napi_struct napi;
0556     struct cb *cbs;
0557     struct cb *cb_to_use;
0558     struct cb *cb_to_send;
0559     struct cb *cb_to_clean;
0560     __le16 tx_command;
0561     /* End: frequently used values: keep adjacent for cache effect */
0562 
0563     enum {
0564         ich                = (1 << 0),
0565         promiscuous        = (1 << 1),
0566         multicast_all      = (1 << 2),
0567         wol_magic          = (1 << 3),
0568         ich_10h_workaround = (1 << 4),
0569     } flags                 ____cacheline_aligned;
0570 
0571     enum mac mac;
0572     enum phy phy;
0573     struct params params;
0574     struct timer_list watchdog;
0575     struct mii_if_info mii;
0576     struct work_struct tx_timeout_task;
0577     enum loopback loopback;
0578 
0579     struct mem *mem;
0580     dma_addr_t dma_addr;
0581 
0582     struct dma_pool *cbs_pool;
0583     dma_addr_t cbs_dma_addr;
0584     u8 adaptive_ifs;
0585     u8 tx_threshold;
0586     u32 tx_frames;
0587     u32 tx_collisions;
0588     u32 tx_deferred;
0589     u32 tx_single_collisions;
0590     u32 tx_multiple_collisions;
0591     u32 tx_fc_pause;
0592     u32 tx_tco_frames;
0593 
0594     u32 rx_fc_pause;
0595     u32 rx_fc_unsupported;
0596     u32 rx_tco_frames;
0597     u32 rx_short_frame_errors;
0598     u32 rx_over_length_errors;
0599 
0600     u16 eeprom_wc;
0601     __le16 eeprom[256];
0602     spinlock_t mdio_lock;
0603     const struct firmware *fw;
0604 };
0605 
0606 static inline void e100_write_flush(struct nic *nic)
0607 {
0608     /* Flush previous PCI writes through intermediate bridges
0609      * by doing a benign read */
0610     (void)ioread8(&nic->csr->scb.status);
0611 }
0612 
0613 static void e100_enable_irq(struct nic *nic)
0614 {
0615     unsigned long flags;
0616 
0617     spin_lock_irqsave(&nic->cmd_lock, flags);
0618     iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
0619     e100_write_flush(nic);
0620     spin_unlock_irqrestore(&nic->cmd_lock, flags);
0621 }
0622 
0623 static void e100_disable_irq(struct nic *nic)
0624 {
0625     unsigned long flags;
0626 
0627     spin_lock_irqsave(&nic->cmd_lock, flags);
0628     iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
0629     e100_write_flush(nic);
0630     spin_unlock_irqrestore(&nic->cmd_lock, flags);
0631 }
0632 
0633 static void e100_hw_reset(struct nic *nic)
0634 {
0635     /* Put CU and RU into idle with a selective reset to get
0636      * device off of PCI bus */
0637     iowrite32(selective_reset, &nic->csr->port);
0638     e100_write_flush(nic); udelay(20);
0639 
0640     /* Now fully reset device */
0641     iowrite32(software_reset, &nic->csr->port);
0642     e100_write_flush(nic); udelay(20);
0643 
0644     /* Mask off our interrupt line - it's unmasked after reset */
0645     e100_disable_irq(nic);
0646 }
0647 
0648 static int e100_self_test(struct nic *nic)
0649 {
0650     u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
0651 
0652     /* Passing the self-test is a pretty good indication
0653      * that the device can DMA to/from host memory */
0654 
0655     nic->mem->selftest.signature = 0;
0656     nic->mem->selftest.result = 0xFFFFFFFF;
0657 
0658     iowrite32(selftest | dma_addr, &nic->csr->port);
0659     e100_write_flush(nic);
0660     /* Wait 10 msec for self-test to complete */
0661     msleep(10);
0662 
0663     /* Interrupts are enabled after self-test */
0664     e100_disable_irq(nic);
0665 
0666     /* Check results of self-test */
0667     if (nic->mem->selftest.result != 0) {
0668         netif_err(nic, hw, nic->netdev,
0669               "Self-test failed: result=0x%08X\n",
0670               nic->mem->selftest.result);
0671         return -ETIMEDOUT;
0672     }
0673     if (nic->mem->selftest.signature == 0) {
0674         netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
0675         return -ETIMEDOUT;
0676     }
0677 
0678     return 0;
0679 }
0680 
0681 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
0682 {
0683     u32 cmd_addr_data[3];
0684     u8 ctrl;
0685     int i, j;
0686 
0687     /* Three cmds: write/erase enable, write data, write/erase disable */
0688     cmd_addr_data[0] = op_ewen << (addr_len - 2);
0689     cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
0690         le16_to_cpu(data);
0691     cmd_addr_data[2] = op_ewds << (addr_len - 2);
0692 
0693     /* Bit-bang cmds to write word to eeprom */
0694     for (j = 0; j < 3; j++) {
0695 
0696         /* Chip select */
0697         iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
0698         e100_write_flush(nic); udelay(4);
0699 
0700         for (i = 31; i >= 0; i--) {
0701             ctrl = (cmd_addr_data[j] & (1 << i)) ?
0702                 eecs | eedi : eecs;
0703             iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
0704             e100_write_flush(nic); udelay(4);
0705 
0706             iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
0707             e100_write_flush(nic); udelay(4);
0708         }
0709         /* Wait 10 msec for cmd to complete */
0710         msleep(10);
0711 
0712         /* Chip deselect */
0713         iowrite8(0, &nic->csr->eeprom_ctrl_lo);
0714         e100_write_flush(nic); udelay(4);
0715     }
0716 };
0717 
0718 /* General technique stolen from the eepro100 driver - very clever */
0719 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
0720 {
0721     u32 cmd_addr_data;
0722     u16 data = 0;
0723     u8 ctrl;
0724     int i;
0725 
0726     cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
0727 
0728     /* Chip select */
0729     iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
0730     e100_write_flush(nic); udelay(4);
0731 
0732     /* Bit-bang to read word from eeprom */
0733     for (i = 31; i >= 0; i--) {
0734         ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
0735         iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
0736         e100_write_flush(nic); udelay(4);
0737 
0738         iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
0739         e100_write_flush(nic); udelay(4);
0740 
0741         /* Eeprom drives a dummy zero to EEDO after receiving
0742          * complete address.  Use this to adjust addr_len. */
0743         ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
0744         if (!(ctrl & eedo) && i > 16) {
0745             *addr_len -= (i - 16);
0746             i = 17;
0747         }
0748 
0749         data = (data << 1) | (ctrl & eedo ? 1 : 0);
0750     }
0751 
0752     /* Chip deselect */
0753     iowrite8(0, &nic->csr->eeprom_ctrl_lo);
0754     e100_write_flush(nic); udelay(4);
0755 
0756     return cpu_to_le16(data);
0757 };
0758 
0759 /* Load entire EEPROM image into driver cache and validate checksum */
0760 static int e100_eeprom_load(struct nic *nic)
0761 {
0762     u16 addr, addr_len = 8, checksum = 0;
0763 
0764     /* Try reading with an 8-bit addr len to discover actual addr len */
0765     e100_eeprom_read(nic, &addr_len, 0);
0766     nic->eeprom_wc = 1 << addr_len;
0767 
0768     for (addr = 0; addr < nic->eeprom_wc; addr++) {
0769         nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
0770         if (addr < nic->eeprom_wc - 1)
0771             checksum += le16_to_cpu(nic->eeprom[addr]);
0772     }
0773 
0774     /* The checksum, stored in the last word, is calculated such that
0775      * the sum of words should be 0xBABA */
0776     if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
0777         netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
0778         if (!eeprom_bad_csum_allow)
0779             return -EAGAIN;
0780     }
0781 
0782     return 0;
0783 }
0784 
0785 /* Save (portion of) driver EEPROM cache to device and update checksum */
0786 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
0787 {
0788     u16 addr, addr_len = 8, checksum = 0;
0789 
0790     /* Try reading with an 8-bit addr len to discover actual addr len */
0791     e100_eeprom_read(nic, &addr_len, 0);
0792     nic->eeprom_wc = 1 << addr_len;
0793 
0794     if (start + count >= nic->eeprom_wc)
0795         return -EINVAL;
0796 
0797     for (addr = start; addr < start + count; addr++)
0798         e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
0799 
0800     /* The checksum, stored in the last word, is calculated such that
0801      * the sum of words should be 0xBABA */
0802     for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
0803         checksum += le16_to_cpu(nic->eeprom[addr]);
0804     nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
0805     e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
0806         nic->eeprom[nic->eeprom_wc - 1]);
0807 
0808     return 0;
0809 }
0810 
0811 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
0812 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
0813 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
0814 {
0815     unsigned long flags;
0816     unsigned int i;
0817     int err = 0;
0818 
0819     spin_lock_irqsave(&nic->cmd_lock, flags);
0820 
0821     /* Previous command is accepted when SCB clears */
0822     for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
0823         if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
0824             break;
0825         cpu_relax();
0826         if (unlikely(i > E100_WAIT_SCB_FAST))
0827             udelay(5);
0828     }
0829     if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
0830         err = -EAGAIN;
0831         goto err_unlock;
0832     }
0833 
0834     if (unlikely(cmd != cuc_resume))
0835         iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
0836     iowrite8(cmd, &nic->csr->scb.cmd_lo);
0837 
0838 err_unlock:
0839     spin_unlock_irqrestore(&nic->cmd_lock, flags);
0840 
0841     return err;
0842 }
0843 
0844 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
0845     int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
0846 {
0847     struct cb *cb;
0848     unsigned long flags;
0849     int err;
0850 
0851     spin_lock_irqsave(&nic->cb_lock, flags);
0852 
0853     if (unlikely(!nic->cbs_avail)) {
0854         err = -ENOMEM;
0855         goto err_unlock;
0856     }
0857 
0858     cb = nic->cb_to_use;
0859     nic->cb_to_use = cb->next;
0860     nic->cbs_avail--;
0861     cb->skb = skb;
0862 
0863     err = cb_prepare(nic, cb, skb);
0864     if (err)
0865         goto err_unlock;
0866 
0867     if (unlikely(!nic->cbs_avail))
0868         err = -ENOSPC;
0869 
0870 
0871     /* Order is important otherwise we'll be in a race with h/w:
0872      * set S-bit in current first, then clear S-bit in previous. */
0873     cb->command |= cpu_to_le16(cb_s);
0874     dma_wmb();
0875     cb->prev->command &= cpu_to_le16(~cb_s);
0876 
0877     while (nic->cb_to_send != nic->cb_to_use) {
0878         if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
0879             nic->cb_to_send->dma_addr))) {
0880             /* Ok, here's where things get sticky.  It's
0881              * possible that we can't schedule the command
0882              * because the controller is too busy, so
0883              * let's just queue the command and try again
0884              * when another command is scheduled. */
0885             if (err == -ENOSPC) {
0886                 //request a reset
0887                 schedule_work(&nic->tx_timeout_task);
0888             }
0889             break;
0890         } else {
0891             nic->cuc_cmd = cuc_resume;
0892             nic->cb_to_send = nic->cb_to_send->next;
0893         }
0894     }
0895 
0896 err_unlock:
0897     spin_unlock_irqrestore(&nic->cb_lock, flags);
0898 
0899     return err;
0900 }
0901 
0902 static int mdio_read(struct net_device *netdev, int addr, int reg)
0903 {
0904     struct nic *nic = netdev_priv(netdev);
0905     return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
0906 }
0907 
0908 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
0909 {
0910     struct nic *nic = netdev_priv(netdev);
0911 
0912     nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
0913 }
0914 
0915 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
0916 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
0917 {
0918     u32 data_out = 0;
0919     unsigned int i;
0920     unsigned long flags;
0921 
0922 
0923     /*
0924      * Stratus87247: we shouldn't be writing the MDI control
0925      * register until the Ready bit shows True.  Also, since
0926      * manipulation of the MDI control registers is a multi-step
0927      * procedure it should be done under lock.
0928      */
0929     spin_lock_irqsave(&nic->mdio_lock, flags);
0930     for (i = 100; i; --i) {
0931         if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
0932             break;
0933         udelay(20);
0934     }
0935     if (unlikely(!i)) {
0936         netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
0937         spin_unlock_irqrestore(&nic->mdio_lock, flags);
0938         return 0;       /* No way to indicate timeout error */
0939     }
0940     iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
0941 
0942     for (i = 0; i < 100; i++) {
0943         udelay(20);
0944         if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
0945             break;
0946     }
0947     spin_unlock_irqrestore(&nic->mdio_lock, flags);
0948     netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
0949              "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
0950              dir == mdi_read ? "READ" : "WRITE",
0951              addr, reg, data, data_out);
0952     return (u16)data_out;
0953 }
0954 
0955 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
0956 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
0957                  u32 addr,
0958                  u32 dir,
0959                  u32 reg,
0960                  u16 data)
0961 {
0962     if ((reg == MII_BMCR) && (dir == mdi_write)) {
0963         if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
0964             u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
0965                             MII_ADVERTISE);
0966 
0967             /*
0968              * Workaround Si issue where sometimes the part will not
0969              * autoneg to 100Mbps even when advertised.
0970              */
0971             if (advert & ADVERTISE_100FULL)
0972                 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
0973             else if (advert & ADVERTISE_100HALF)
0974                 data |= BMCR_SPEED100;
0975         }
0976     }
0977     return mdio_ctrl_hw(nic, addr, dir, reg, data);
0978 }
0979 
0980 /* Fully software-emulated mdio_ctrl() function for cards without
0981  * MII-compliant PHYs.
0982  * For now, this is mainly geared towards 80c24 support; in case of further
0983  * requirements for other types (i82503, ...?) either extend this mechanism
0984  * or split it, whichever is cleaner.
0985  */
0986 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
0987                       u32 addr,
0988                       u32 dir,
0989                       u32 reg,
0990                       u16 data)
0991 {
0992     /* might need to allocate a netdev_priv'ed register array eventually
0993      * to be able to record state changes, but for now
0994      * some fully hardcoded register handling ought to be ok I guess. */
0995 
0996     if (dir == mdi_read) {
0997         switch (reg) {
0998         case MII_BMCR:
0999             /* Auto-negotiation, right? */
1000             return  BMCR_ANENABLE |
1001                 BMCR_FULLDPLX;
1002         case MII_BMSR:
1003             return  BMSR_LSTATUS /* for mii_link_ok() */ |
1004                 BMSR_ANEGCAPABLE |
1005                 BMSR_10FULL;
1006         case MII_ADVERTISE:
1007             /* 80c24 is a "combo card" PHY, right? */
1008             return  ADVERTISE_10HALF |
1009                 ADVERTISE_10FULL;
1010         default:
1011             netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012                      "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013                      dir == mdi_read ? "READ" : "WRITE",
1014                      addr, reg, data);
1015             return 0xFFFF;
1016         }
1017     } else {
1018         switch (reg) {
1019         default:
1020             netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021                      "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022                      dir == mdi_read ? "READ" : "WRITE",
1023                      addr, reg, data);
1024             return 0xFFFF;
1025         }
1026     }
1027 }
1028 static inline int e100_phy_supports_mii(struct nic *nic)
1029 {
1030     /* for now, just check it by comparing whether we
1031        are using MII software emulation.
1032     */
1033     return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034 }
1035 
1036 static void e100_get_defaults(struct nic *nic)
1037 {
1038     struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039     struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040 
1041     /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042     nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043     if (nic->mac == mac_unknown)
1044         nic->mac = mac_82557_D100_A;
1045 
1046     nic->params.rfds = rfds;
1047     nic->params.cbs = cbs;
1048 
1049     /* Quadwords to DMA into FIFO before starting frame transmit */
1050     nic->tx_threshold = 0xE0;
1051 
1052     /* no interrupt for every tx completion, delay = 256us if not 557 */
1053     nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054         ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055 
1056     /* Template for a freshly allocated RFD */
1057     nic->blank_rfd.command = 0;
1058     nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059     nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060 
1061     /* MII setup */
1062     nic->mii.phy_id_mask = 0x1F;
1063     nic->mii.reg_num_mask = 0x1F;
1064     nic->mii.dev = nic->netdev;
1065     nic->mii.mdio_read = mdio_read;
1066     nic->mii.mdio_write = mdio_write;
1067 }
1068 
1069 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070 {
1071     struct config *config = &cb->u.config;
1072     u8 *c = (u8 *)config;
1073     struct net_device *netdev = nic->netdev;
1074 
1075     cb->command = cpu_to_le16(cb_config);
1076 
1077     memset(config, 0, sizeof(struct config));
1078 
1079     config->byte_count = 0x16;      /* bytes in this struct */
1080     config->rx_fifo_limit = 0x8;        /* bytes in FIFO before DMA */
1081     config->direct_rx_dma = 0x1;        /* reserved */
1082     config->standard_tcb = 0x1;     /* 1=standard, 0=extended */
1083     config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
1084     config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
1085     config->tx_underrun_retry = 0x3;    /* # of underrun retries */
1086     if (e100_phy_supports_mii(nic))
1087         config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088     config->pad10 = 0x6;
1089     config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1090     config->preamble_length = 0x2;      /* 0=1, 1=3, 2=7, 3=15 bytes */
1091     config->ifs = 0x6;          /* x16 = inter frame spacing */
1092     config->ip_addr_hi = 0xF2;      /* ARP IP filter - not used */
1093     config->pad15_1 = 0x1;
1094     config->pad15_2 = 0x1;
1095     config->crs_or_cdt = 0x0;       /* 0=CRS only, 1=CRS or CDT */
1096     config->fc_delay_hi = 0x40;     /* time delay for fc frame */
1097     config->tx_padding = 0x1;       /* 1=pad short frames */
1098     config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
1099     config->pad18 = 0x1;
1100     config->full_duplex_pin = 0x1;      /* 1=examine FDX# pin */
1101     config->pad20_1 = 0x1F;
1102     config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1103     config->pad21_1 = 0x5;
1104 
1105     config->adaptive_ifs = nic->adaptive_ifs;
1106     config->loopback = nic->loopback;
1107 
1108     if (nic->mii.force_media && nic->mii.full_duplex)
1109         config->full_duplex_force = 0x1;    /* 1=force, 0=auto */
1110 
1111     if (nic->flags & promiscuous || nic->loopback) {
1112         config->rx_save_bad_frames = 0x1;   /* 1=save, 0=discard */
1113         config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1114         config->promiscuous_mode = 0x1;     /* 1=on, 0=off */
1115     }
1116 
1117     if (unlikely(netdev->features & NETIF_F_RXFCS))
1118         config->rx_crc_transfer = 0x1;  /* 1=save, 0=discard */
1119 
1120     if (nic->flags & multicast_all)
1121         config->multicast_all = 0x1;        /* 1=accept, 0=no */
1122 
1123     /* disable WoL when up */
1124     if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125         config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1126 
1127     if (nic->mac >= mac_82558_D101_A4) {
1128         config->fc_disable = 0x1;   /* 1=Tx fc off, 0=Tx fc on */
1129         config->mwi_enable = 0x1;   /* 1=enable, 0=disable */
1130         config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1131         config->rx_long_ok = 0x1;   /* 1=VLANs ok, 0=standard */
1132         if (nic->mac >= mac_82559_D101M) {
1133             config->tno_intr = 0x1;     /* TCO stats enable */
1134             /* Enable TCO in extended config */
1135             if (nic->mac >= mac_82551_10) {
1136                 config->byte_count = 0x20; /* extended bytes */
1137                 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138             }
1139         } else {
1140             config->standard_stat_counter = 0x0;
1141         }
1142     }
1143 
1144     if (netdev->features & NETIF_F_RXALL) {
1145         config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146         config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147         config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148     }
1149 
1150     netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151              c + 0);
1152     netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153              c + 8);
1154     netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155              c + 16);
1156     return 0;
1157 }
1158 
1159 /*************************************************************************
1160 *  CPUSaver parameters
1161 *
1162 *  All CPUSaver parameters are 16-bit literals that are part of a
1163 *  "move immediate value" instruction.  By changing the value of
1164 *  the literal in the instruction before the code is loaded, the
1165 *  driver can change the algorithm.
1166 *
1167 *  INTDELAY - This loads the dead-man timer with its initial value.
1168 *    When this timer expires the interrupt is asserted, and the
1169 *    timer is reset each time a new packet is received.  (see
1170 *    BUNDLEMAX below to set the limit on number of chained packets)
1171 *    The current default is 0x600 or 1536.  Experiments show that
1172 *    the value should probably stay within the 0x200 - 0x1000.
1173 *
1174 *  BUNDLEMAX -
1175 *    This sets the maximum number of frames that will be bundled.  In
1176 *    some situations, such as the TCP windowing algorithm, it may be
1177 *    better to limit the growth of the bundle size than let it go as
1178 *    high as it can, because that could cause too much added latency.
1179 *    The default is six, because this is the number of packets in the
1180 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1181 *    an interrupt for every frame received.  If you do not want to put
1182 *    a limit on the bundle size, set this value to xFFFF.
1183 *
1184 *  BUNDLESMALL -
1185 *    This contains a bit-mask describing the minimum size frame that
1186 *    will be bundled.  The default masks the lower 7 bits, which means
1187 *    that any frame less than 128 bytes in length will not be bundled,
1188 *    but will instead immediately generate an interrupt.  This does
1189 *    not affect the current bundle in any way.  Any frame that is 128
1190 *    bytes or large will be bundled normally.  This feature is meant
1191 *    to provide immediate indication of ACK frames in a TCP environment.
1192 *    Customers were seeing poor performance when a machine with CPUSaver
1193 *    enabled was sending but not receiving.  The delay introduced when
1194 *    the ACKs were received was enough to reduce total throughput, because
1195 *    the sender would sit idle until the ACK was finally seen.
1196 *
1197 *    The current default is 0xFF80, which masks out the lower 7 bits.
1198 *    This means that any frame which is x7F (127) bytes or smaller
1199 *    will cause an immediate interrupt.  Because this value must be a
1200 *    bit mask, there are only a few valid values that can be used.  To
1201 *    turn this feature off, the driver can write the value xFFFF to the
1202 *    lower word of this instruction (in the same way that the other
1203 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204 *    cause an interrupt to be generated for every frame, because all
1205 *    standard Ethernet frames are <= 2047 bytes in length.
1206 *************************************************************************/
1207 
1208 /* if you wish to disable the ucode functionality, while maintaining the
1209  * workarounds it provides, set the following defines to:
1210  * BUNDLESMALL 0
1211  * BUNDLEMAX 1
1212  * INTDELAY 1
1213  */
1214 #define BUNDLESMALL 1
1215 #define BUNDLEMAX (u16)6
1216 #define INTDELAY (u16)1536 /* 0x600 */
1217 
1218 /* Initialize firmware */
1219 static const struct firmware *e100_request_firmware(struct nic *nic)
1220 {
1221     const char *fw_name;
1222     const struct firmware *fw = nic->fw;
1223     u8 timer, bundle, min_size;
1224     int err = 0;
1225     bool required = false;
1226 
1227     /* do not load u-code for ICH devices */
1228     if (nic->flags & ich)
1229         return NULL;
1230 
1231     /* Search for ucode match against h/w revision
1232      *
1233      * Based on comments in the source code for the FreeBSD fxp
1234      * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235      *
1236      *    "fixes for bugs in the B-step hardware (specifically, bugs
1237      *     with Inline Receive)."
1238      *
1239      * So we must fail if it cannot be loaded.
1240      *
1241      * The other microcode files are only required for the optional
1242      * CPUSaver feature.  Nice to have, but no reason to fail.
1243      */
1244     if (nic->mac == mac_82559_D101M) {
1245         fw_name = FIRMWARE_D101M;
1246     } else if (nic->mac == mac_82559_D101S) {
1247         fw_name = FIRMWARE_D101S;
1248     } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249         fw_name = FIRMWARE_D102E;
1250         required = true;
1251     } else { /* No ucode on other devices */
1252         return NULL;
1253     }
1254 
1255     /* If the firmware has not previously been loaded, request a pointer
1256      * to it. If it was previously loaded, we are reinitializing the
1257      * adapter, possibly in a resume from hibernate, in which case
1258      * request_firmware() cannot be used.
1259      */
1260     if (!fw)
1261         err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262 
1263     if (err) {
1264         if (required) {
1265             netif_err(nic, probe, nic->netdev,
1266                   "Failed to load firmware \"%s\": %d\n",
1267                   fw_name, err);
1268             return ERR_PTR(err);
1269         } else {
1270             netif_info(nic, probe, nic->netdev,
1271                    "CPUSaver disabled. Needs \"%s\": %d\n",
1272                    fw_name, err);
1273             return NULL;
1274         }
1275     }
1276 
1277     /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278        indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279     if (fw->size != UCODE_SIZE * 4 + 3) {
1280         netif_err(nic, probe, nic->netdev,
1281               "Firmware \"%s\" has wrong size %zu\n",
1282               fw_name, fw->size);
1283         release_firmware(fw);
1284         return ERR_PTR(-EINVAL);
1285     }
1286 
1287     /* Read timer, bundle and min_size from end of firmware blob */
1288     timer = fw->data[UCODE_SIZE * 4];
1289     bundle = fw->data[UCODE_SIZE * 4 + 1];
1290     min_size = fw->data[UCODE_SIZE * 4 + 2];
1291 
1292     if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293         min_size >= UCODE_SIZE) {
1294         netif_err(nic, probe, nic->netdev,
1295               "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296               fw_name, timer, bundle, min_size);
1297         release_firmware(fw);
1298         return ERR_PTR(-EINVAL);
1299     }
1300 
1301     /* OK, firmware is validated and ready to use. Save a pointer
1302      * to it in the nic */
1303     nic->fw = fw;
1304     return fw;
1305 }
1306 
1307 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308                  struct sk_buff *skb)
1309 {
1310     const struct firmware *fw = (void *)skb;
1311     u8 timer, bundle, min_size;
1312 
1313     /* It's not a real skb; we just abused the fact that e100_exec_cb
1314        will pass it through to here... */
1315     cb->skb = NULL;
1316 
1317     /* firmware is stored as little endian already */
1318     memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319 
1320     /* Read timer, bundle and min_size from end of firmware blob */
1321     timer = fw->data[UCODE_SIZE * 4];
1322     bundle = fw->data[UCODE_SIZE * 4 + 1];
1323     min_size = fw->data[UCODE_SIZE * 4 + 2];
1324 
1325     /* Insert user-tunable settings in cb->u.ucode */
1326     cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327     cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328     cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329     cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330     cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331     cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332 
1333     cb->command = cpu_to_le16(cb_ucode | cb_el);
1334     return 0;
1335 }
1336 
1337 static inline int e100_load_ucode_wait(struct nic *nic)
1338 {
1339     const struct firmware *fw;
1340     int err = 0, counter = 50;
1341     struct cb *cb = nic->cb_to_clean;
1342 
1343     fw = e100_request_firmware(nic);
1344     /* If it's NULL, then no ucode is required */
1345     if (IS_ERR_OR_NULL(fw))
1346         return PTR_ERR_OR_ZERO(fw);
1347 
1348     if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349         netif_err(nic, probe, nic->netdev,
1350               "ucode cmd failed with error %d\n", err);
1351 
1352     /* must restart cuc */
1353     nic->cuc_cmd = cuc_start;
1354 
1355     /* wait for completion */
1356     e100_write_flush(nic);
1357     udelay(10);
1358 
1359     /* wait for possibly (ouch) 500ms */
1360     while (!(cb->status & cpu_to_le16(cb_complete))) {
1361         msleep(10);
1362         if (!--counter) break;
1363     }
1364 
1365     /* ack any interrupts, something could have been set */
1366     iowrite8(~0, &nic->csr->scb.stat_ack);
1367 
1368     /* if the command failed, or is not OK, notify and return */
1369     if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370         netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371         err = -EPERM;
1372     }
1373 
1374     return err;
1375 }
1376 
1377 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378     struct sk_buff *skb)
1379 {
1380     cb->command = cpu_to_le16(cb_iaaddr);
1381     memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382     return 0;
1383 }
1384 
1385 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386 {
1387     cb->command = cpu_to_le16(cb_dump);
1388     cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389         offsetof(struct mem, dump_buf));
1390     return 0;
1391 }
1392 
1393 static int e100_phy_check_without_mii(struct nic *nic)
1394 {
1395     u8 phy_type;
1396     int without_mii;
1397 
1398     phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399 
1400     switch (phy_type) {
1401     case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402     case I82503: /* Non-MII PHY; UNTESTED! */
1403     case S80C24: /* Non-MII PHY; tested and working */
1404         /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405          * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406          * doesn't have a programming interface of any sort.  The
1407          * media is sensed automatically based on how the link partner
1408          * is configured.  This is, in essence, manual configuration.
1409          */
1410         netif_info(nic, probe, nic->netdev,
1411                "found MII-less i82503 or 80c24 or other PHY\n");
1412 
1413         nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414         nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415 
1416         /* these might be needed for certain MII-less cards...
1417          * nic->flags |= ich;
1418          * nic->flags |= ich_10h_workaround; */
1419 
1420         without_mii = 1;
1421         break;
1422     default:
1423         without_mii = 0;
1424         break;
1425     }
1426     return without_mii;
1427 }
1428 
1429 #define NCONFIG_AUTO_SWITCH 0x0080
1430 #define MII_NSC_CONG        MII_RESV1
1431 #define NSC_CONG_ENABLE     0x0100
1432 #define NSC_CONG_TXREADY    0x0400
1433 static int e100_phy_init(struct nic *nic)
1434 {
1435     struct net_device *netdev = nic->netdev;
1436     u32 addr;
1437     u16 bmcr, stat, id_lo, id_hi, cong;
1438 
1439     /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1440     for (addr = 0; addr < 32; addr++) {
1441         nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1442         bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1443         stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444         stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445         if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1446             break;
1447     }
1448     if (addr == 32) {
1449         /* uhoh, no PHY detected: check whether we seem to be some
1450          * weird, rare variant which is *known* to not have any MII.
1451          * But do this AFTER MII checking only, since this does
1452          * lookup of EEPROM values which may easily be unreliable. */
1453         if (e100_phy_check_without_mii(nic))
1454             return 0; /* simply return and hope for the best */
1455         else {
1456             /* for unknown cases log a fatal error */
1457             netif_err(nic, hw, nic->netdev,
1458                   "Failed to locate any known PHY, aborting\n");
1459             return -EAGAIN;
1460         }
1461     } else
1462         netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1463                  "phy_addr = %d\n", nic->mii.phy_id);
1464 
1465     /* Get phy ID */
1466     id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1467     id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1468     nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1469     netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1470              "phy ID = 0x%08X\n", nic->phy);
1471 
1472     /* Select the phy and isolate the rest */
1473     for (addr = 0; addr < 32; addr++) {
1474         if (addr != nic->mii.phy_id) {
1475             mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1476         } else if (nic->phy != phy_82552_v) {
1477             bmcr = mdio_read(netdev, addr, MII_BMCR);
1478             mdio_write(netdev, addr, MII_BMCR,
1479                 bmcr & ~BMCR_ISOLATE);
1480         }
1481     }
1482     /*
1483      * Workaround for 82552:
1484      * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1485      * other phy_id's) using bmcr value from addr discovery loop above.
1486      */
1487     if (nic->phy == phy_82552_v)
1488         mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1489             bmcr & ~BMCR_ISOLATE);
1490 
1491     /* Handle National tx phys */
1492 #define NCS_PHY_MODEL_MASK  0xFFF0FFFF
1493     if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1494         /* Disable congestion control */
1495         cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1496         cong |= NSC_CONG_TXREADY;
1497         cong &= ~NSC_CONG_ENABLE;
1498         mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1499     }
1500 
1501     if (nic->phy == phy_82552_v) {
1502         u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1503 
1504         /* assign special tweaked mdio_ctrl() function */
1505         nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1506 
1507         /* Workaround Si not advertising flow-control during autoneg */
1508         advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1509         mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1510 
1511         /* Reset for the above changes to take effect */
1512         bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1513         bmcr |= BMCR_RESET;
1514         mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1515     } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1516        (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1517        (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1518         /* enable/disable MDI/MDI-X auto-switching. */
1519         mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1520                 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1521     }
1522 
1523     return 0;
1524 }
1525 
1526 static int e100_hw_init(struct nic *nic)
1527 {
1528     int err = 0;
1529 
1530     e100_hw_reset(nic);
1531 
1532     netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1533     if ((err = e100_self_test(nic)))
1534         return err;
1535 
1536     if ((err = e100_phy_init(nic)))
1537         return err;
1538     if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1539         return err;
1540     if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1541         return err;
1542     if ((err = e100_load_ucode_wait(nic)))
1543         return err;
1544     if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1545         return err;
1546     if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1547         return err;
1548     if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1549         nic->dma_addr + offsetof(struct mem, stats))))
1550         return err;
1551     if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1552         return err;
1553 
1554     e100_disable_irq(nic);
1555 
1556     return 0;
1557 }
1558 
1559 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1560 {
1561     struct net_device *netdev = nic->netdev;
1562     struct netdev_hw_addr *ha;
1563     u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1564 
1565     cb->command = cpu_to_le16(cb_multi);
1566     cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1567     i = 0;
1568     netdev_for_each_mc_addr(ha, netdev) {
1569         if (i == count)
1570             break;
1571         memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1572             ETH_ALEN);
1573     }
1574     return 0;
1575 }
1576 
1577 static void e100_set_multicast_list(struct net_device *netdev)
1578 {
1579     struct nic *nic = netdev_priv(netdev);
1580 
1581     netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1582              "mc_count=%d, flags=0x%04X\n",
1583              netdev_mc_count(netdev), netdev->flags);
1584 
1585     if (netdev->flags & IFF_PROMISC)
1586         nic->flags |= promiscuous;
1587     else
1588         nic->flags &= ~promiscuous;
1589 
1590     if (netdev->flags & IFF_ALLMULTI ||
1591         netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1592         nic->flags |= multicast_all;
1593     else
1594         nic->flags &= ~multicast_all;
1595 
1596     e100_exec_cb(nic, NULL, e100_configure);
1597     e100_exec_cb(nic, NULL, e100_multi);
1598 }
1599 
1600 static void e100_update_stats(struct nic *nic)
1601 {
1602     struct net_device *dev = nic->netdev;
1603     struct net_device_stats *ns = &dev->stats;
1604     struct stats *s = &nic->mem->stats;
1605     __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1606         (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1607         &s->complete;
1608 
1609     /* Device's stats reporting may take several microseconds to
1610      * complete, so we're always waiting for results of the
1611      * previous command. */
1612 
1613     if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1614         *complete = 0;
1615         nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1616         nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1617         ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1618         ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1619         ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1620         ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1621         ns->collisions += nic->tx_collisions;
1622         ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1623             le32_to_cpu(s->tx_lost_crs);
1624         nic->rx_short_frame_errors +=
1625             le32_to_cpu(s->rx_short_frame_errors);
1626         ns->rx_length_errors = nic->rx_short_frame_errors +
1627             nic->rx_over_length_errors;
1628         ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1629         ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1630         ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1631         ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1632         ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1633         ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1634             le32_to_cpu(s->rx_alignment_errors) +
1635             le32_to_cpu(s->rx_short_frame_errors) +
1636             le32_to_cpu(s->rx_cdt_errors);
1637         nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1638         nic->tx_single_collisions +=
1639             le32_to_cpu(s->tx_single_collisions);
1640         nic->tx_multiple_collisions +=
1641             le32_to_cpu(s->tx_multiple_collisions);
1642         if (nic->mac >= mac_82558_D101_A4) {
1643             nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1644             nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1645             nic->rx_fc_unsupported +=
1646                 le32_to_cpu(s->fc_rcv_unsupported);
1647             if (nic->mac >= mac_82559_D101M) {
1648                 nic->tx_tco_frames +=
1649                     le16_to_cpu(s->xmt_tco_frames);
1650                 nic->rx_tco_frames +=
1651                     le16_to_cpu(s->rcv_tco_frames);
1652             }
1653         }
1654     }
1655 
1656 
1657     if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1658         netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1659                  "exec cuc_dump_reset failed\n");
1660 }
1661 
1662 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1663 {
1664     /* Adjust inter-frame-spacing (IFS) between two transmits if
1665      * we're getting collisions on a half-duplex connection. */
1666 
1667     if (duplex == DUPLEX_HALF) {
1668         u32 prev = nic->adaptive_ifs;
1669         u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1670 
1671         if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1672            (nic->tx_frames > min_frames)) {
1673             if (nic->adaptive_ifs < 60)
1674                 nic->adaptive_ifs += 5;
1675         } else if (nic->tx_frames < min_frames) {
1676             if (nic->adaptive_ifs >= 5)
1677                 nic->adaptive_ifs -= 5;
1678         }
1679         if (nic->adaptive_ifs != prev)
1680             e100_exec_cb(nic, NULL, e100_configure);
1681     }
1682 }
1683 
1684 static void e100_watchdog(struct timer_list *t)
1685 {
1686     struct nic *nic = from_timer(nic, t, watchdog);
1687     struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1688     u32 speed;
1689 
1690     netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1691              "right now = %ld\n", jiffies);
1692 
1693     /* mii library handles link maintenance tasks */
1694 
1695     mii_ethtool_gset(&nic->mii, &cmd);
1696     speed = ethtool_cmd_speed(&cmd);
1697 
1698     if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1699         netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1700                 speed == SPEED_100 ? 100 : 10,
1701                 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1702     } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1703         netdev_info(nic->netdev, "NIC Link is Down\n");
1704     }
1705 
1706     mii_check_link(&nic->mii);
1707 
1708     /* Software generated interrupt to recover from (rare) Rx
1709      * allocation failure.
1710      * Unfortunately have to use a spinlock to not re-enable interrupts
1711      * accidentally, due to hardware that shares a register between the
1712      * interrupt mask bit and the SW Interrupt generation bit */
1713     spin_lock_irq(&nic->cmd_lock);
1714     iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1715     e100_write_flush(nic);
1716     spin_unlock_irq(&nic->cmd_lock);
1717 
1718     e100_update_stats(nic);
1719     e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1720 
1721     if (nic->mac <= mac_82557_D100_C)
1722         /* Issue a multicast command to workaround a 557 lock up */
1723         e100_set_multicast_list(nic->netdev);
1724 
1725     if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1726         /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1727         nic->flags |= ich_10h_workaround;
1728     else
1729         nic->flags &= ~ich_10h_workaround;
1730 
1731     mod_timer(&nic->watchdog,
1732           round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1733 }
1734 
1735 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1736     struct sk_buff *skb)
1737 {
1738     dma_addr_t dma_addr;
1739     cb->command = nic->tx_command;
1740 
1741     dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1742                   DMA_TO_DEVICE);
1743     /* If we can't map the skb, have the upper layer try later */
1744     if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1745         dev_kfree_skb_any(skb);
1746         skb = NULL;
1747         return -ENOMEM;
1748     }
1749 
1750     /*
1751      * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1752      * testing, ie sending frames with bad CRC.
1753      */
1754     if (unlikely(skb->no_fcs))
1755         cb->command |= cpu_to_le16(cb_tx_nc);
1756     else
1757         cb->command &= ~cpu_to_le16(cb_tx_nc);
1758 
1759     /* interrupt every 16 packets regardless of delay */
1760     if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1761         cb->command |= cpu_to_le16(cb_i);
1762     cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1763     cb->u.tcb.tcb_byte_count = 0;
1764     cb->u.tcb.threshold = nic->tx_threshold;
1765     cb->u.tcb.tbd_count = 1;
1766     cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1767     cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1768     skb_tx_timestamp(skb);
1769     return 0;
1770 }
1771 
1772 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1773                    struct net_device *netdev)
1774 {
1775     struct nic *nic = netdev_priv(netdev);
1776     int err;
1777 
1778     if (nic->flags & ich_10h_workaround) {
1779         /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1780            Issue a NOP command followed by a 1us delay before
1781            issuing the Tx command. */
1782         if (e100_exec_cmd(nic, cuc_nop, 0))
1783             netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1784                      "exec cuc_nop failed\n");
1785         udelay(1);
1786     }
1787 
1788     err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1789 
1790     switch (err) {
1791     case -ENOSPC:
1792         /* We queued the skb, but now we're out of space. */
1793         netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1794                  "No space for CB\n");
1795         netif_stop_queue(netdev);
1796         break;
1797     case -ENOMEM:
1798         /* This is a hard error - log it. */
1799         netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1800                  "Out of Tx resources, returning skb\n");
1801         netif_stop_queue(netdev);
1802         return NETDEV_TX_BUSY;
1803     }
1804 
1805     return NETDEV_TX_OK;
1806 }
1807 
1808 static int e100_tx_clean(struct nic *nic)
1809 {
1810     struct net_device *dev = nic->netdev;
1811     struct cb *cb;
1812     int tx_cleaned = 0;
1813 
1814     spin_lock(&nic->cb_lock);
1815 
1816     /* Clean CBs marked complete */
1817     for (cb = nic->cb_to_clean;
1818         cb->status & cpu_to_le16(cb_complete);
1819         cb = nic->cb_to_clean = cb->next) {
1820         dma_rmb(); /* read skb after status */
1821         netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1822                  "cb[%d]->status = 0x%04X\n",
1823                  (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1824                  cb->status);
1825 
1826         if (likely(cb->skb != NULL)) {
1827             dev->stats.tx_packets++;
1828             dev->stats.tx_bytes += cb->skb->len;
1829 
1830             dma_unmap_single(&nic->pdev->dev,
1831                      le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1832                      le16_to_cpu(cb->u.tcb.tbd.size),
1833                      DMA_TO_DEVICE);
1834             dev_kfree_skb_any(cb->skb);
1835             cb->skb = NULL;
1836             tx_cleaned = 1;
1837         }
1838         cb->status = 0;
1839         nic->cbs_avail++;
1840     }
1841 
1842     spin_unlock(&nic->cb_lock);
1843 
1844     /* Recover from running out of Tx resources in xmit_frame */
1845     if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1846         netif_wake_queue(nic->netdev);
1847 
1848     return tx_cleaned;
1849 }
1850 
1851 static void e100_clean_cbs(struct nic *nic)
1852 {
1853     if (nic->cbs) {
1854         while (nic->cbs_avail != nic->params.cbs.count) {
1855             struct cb *cb = nic->cb_to_clean;
1856             if (cb->skb) {
1857                 dma_unmap_single(&nic->pdev->dev,
1858                          le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1859                          le16_to_cpu(cb->u.tcb.tbd.size),
1860                          DMA_TO_DEVICE);
1861                 dev_kfree_skb(cb->skb);
1862             }
1863             nic->cb_to_clean = nic->cb_to_clean->next;
1864             nic->cbs_avail++;
1865         }
1866         dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1867         nic->cbs = NULL;
1868         nic->cbs_avail = 0;
1869     }
1870     nic->cuc_cmd = cuc_start;
1871     nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1872         nic->cbs;
1873 }
1874 
1875 static int e100_alloc_cbs(struct nic *nic)
1876 {
1877     struct cb *cb;
1878     unsigned int i, count = nic->params.cbs.count;
1879 
1880     nic->cuc_cmd = cuc_start;
1881     nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1882     nic->cbs_avail = 0;
1883 
1884     nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1885                    &nic->cbs_dma_addr);
1886     if (!nic->cbs)
1887         return -ENOMEM;
1888 
1889     for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1890         cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1891         cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1892 
1893         cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1894         cb->link = cpu_to_le32(nic->cbs_dma_addr +
1895             ((i+1) % count) * sizeof(struct cb));
1896     }
1897 
1898     nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1899     nic->cbs_avail = count;
1900 
1901     return 0;
1902 }
1903 
1904 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1905 {
1906     if (!nic->rxs) return;
1907     if (RU_SUSPENDED != nic->ru_running) return;
1908 
1909     /* handle init time starts */
1910     if (!rx) rx = nic->rxs;
1911 
1912     /* (Re)start RU if suspended or idle and RFA is non-NULL */
1913     if (rx->skb) {
1914         e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1915         nic->ru_running = RU_RUNNING;
1916     }
1917 }
1918 
1919 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1920 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1921 {
1922     if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1923         return -ENOMEM;
1924 
1925     /* Init, and map the RFD. */
1926     skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1927     rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1928                       RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1929 
1930     if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1931         dev_kfree_skb_any(rx->skb);
1932         rx->skb = NULL;
1933         rx->dma_addr = 0;
1934         return -ENOMEM;
1935     }
1936 
1937     /* Link the RFD to end of RFA by linking previous RFD to
1938      * this one.  We are safe to touch the previous RFD because
1939      * it is protected by the before last buffer's el bit being set */
1940     if (rx->prev->skb) {
1941         struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1942         put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1943         dma_sync_single_for_device(&nic->pdev->dev,
1944                        rx->prev->dma_addr,
1945                        sizeof(struct rfd),
1946                        DMA_BIDIRECTIONAL);
1947     }
1948 
1949     return 0;
1950 }
1951 
1952 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1953     unsigned int *work_done, unsigned int work_to_do)
1954 {
1955     struct net_device *dev = nic->netdev;
1956     struct sk_buff *skb = rx->skb;
1957     struct rfd *rfd = (struct rfd *)skb->data;
1958     u16 rfd_status, actual_size;
1959     u16 fcs_pad = 0;
1960 
1961     if (unlikely(work_done && *work_done >= work_to_do))
1962         return -EAGAIN;
1963 
1964     /* Need to sync before taking a peek at cb_complete bit */
1965     dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1966                 sizeof(struct rfd), DMA_BIDIRECTIONAL);
1967     rfd_status = le16_to_cpu(rfd->status);
1968 
1969     netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1970              "status=0x%04X\n", rfd_status);
1971     dma_rmb(); /* read size after status bit */
1972 
1973     /* If data isn't ready, nothing to indicate */
1974     if (unlikely(!(rfd_status & cb_complete))) {
1975         /* If the next buffer has the el bit, but we think the receiver
1976          * is still running, check to see if it really stopped while
1977          * we had interrupts off.
1978          * This allows for a fast restart without re-enabling
1979          * interrupts */
1980         if ((le16_to_cpu(rfd->command) & cb_el) &&
1981             (RU_RUNNING == nic->ru_running))
1982 
1983             if (ioread8(&nic->csr->scb.status) & rus_no_res)
1984                 nic->ru_running = RU_SUSPENDED;
1985         dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1986                        sizeof(struct rfd),
1987                        DMA_FROM_DEVICE);
1988         return -ENODATA;
1989     }
1990 
1991     /* Get actual data size */
1992     if (unlikely(dev->features & NETIF_F_RXFCS))
1993         fcs_pad = 4;
1994     actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1995     if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1996         actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1997 
1998     /* Get data */
1999     dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
2000              DMA_BIDIRECTIONAL);
2001 
2002     /* If this buffer has the el bit, but we think the receiver
2003      * is still running, check to see if it really stopped while
2004      * we had interrupts off.
2005      * This allows for a fast restart without re-enabling interrupts.
2006      * This can happen when the RU sees the size change but also sees
2007      * the el bit set. */
2008     if ((le16_to_cpu(rfd->command) & cb_el) &&
2009         (RU_RUNNING == nic->ru_running)) {
2010 
2011         if (ioread8(&nic->csr->scb.status) & rus_no_res)
2012         nic->ru_running = RU_SUSPENDED;
2013     }
2014 
2015     /* Pull off the RFD and put the actual data (minus eth hdr) */
2016     skb_reserve(skb, sizeof(struct rfd));
2017     skb_put(skb, actual_size);
2018     skb->protocol = eth_type_trans(skb, nic->netdev);
2019 
2020     /* If we are receiving all frames, then don't bother
2021      * checking for errors.
2022      */
2023     if (unlikely(dev->features & NETIF_F_RXALL)) {
2024         if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2025             /* Received oversized frame, but keep it. */
2026             nic->rx_over_length_errors++;
2027         goto process_skb;
2028     }
2029 
2030     if (unlikely(!(rfd_status & cb_ok))) {
2031         /* Don't indicate if hardware indicates errors */
2032         dev_kfree_skb_any(skb);
2033     } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2034         /* Don't indicate oversized frames */
2035         nic->rx_over_length_errors++;
2036         dev_kfree_skb_any(skb);
2037     } else {
2038 process_skb:
2039         dev->stats.rx_packets++;
2040         dev->stats.rx_bytes += (actual_size - fcs_pad);
2041         netif_receive_skb(skb);
2042         if (work_done)
2043             (*work_done)++;
2044     }
2045 
2046     rx->skb = NULL;
2047 
2048     return 0;
2049 }
2050 
2051 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2052     unsigned int work_to_do)
2053 {
2054     struct rx *rx;
2055     int restart_required = 0, err = 0;
2056     struct rx *old_before_last_rx, *new_before_last_rx;
2057     struct rfd *old_before_last_rfd, *new_before_last_rfd;
2058 
2059     /* Indicate newly arrived packets */
2060     for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2061         err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2062         /* Hit quota or no more to clean */
2063         if (-EAGAIN == err || -ENODATA == err)
2064             break;
2065     }
2066 
2067 
2068     /* On EAGAIN, hit quota so have more work to do, restart once
2069      * cleanup is complete.
2070      * Else, are we already rnr? then pay attention!!! this ensures that
2071      * the state machine progression never allows a start with a
2072      * partially cleaned list, avoiding a race between hardware
2073      * and rx_to_clean when in NAPI mode */
2074     if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2075         restart_required = 1;
2076 
2077     old_before_last_rx = nic->rx_to_use->prev->prev;
2078     old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2079 
2080     /* Alloc new skbs to refill list */
2081     for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2082         if (unlikely(e100_rx_alloc_skb(nic, rx)))
2083             break; /* Better luck next time (see watchdog) */
2084     }
2085 
2086     new_before_last_rx = nic->rx_to_use->prev->prev;
2087     if (new_before_last_rx != old_before_last_rx) {
2088         /* Set the el-bit on the buffer that is before the last buffer.
2089          * This lets us update the next pointer on the last buffer
2090          * without worrying about hardware touching it.
2091          * We set the size to 0 to prevent hardware from touching this
2092          * buffer.
2093          * When the hardware hits the before last buffer with el-bit
2094          * and size of 0, it will RNR interrupt, the RUS will go into
2095          * the No Resources state.  It will not complete nor write to
2096          * this buffer. */
2097         new_before_last_rfd =
2098             (struct rfd *)new_before_last_rx->skb->data;
2099         new_before_last_rfd->size = 0;
2100         new_before_last_rfd->command |= cpu_to_le16(cb_el);
2101         dma_sync_single_for_device(&nic->pdev->dev,
2102                        new_before_last_rx->dma_addr,
2103                        sizeof(struct rfd),
2104                        DMA_BIDIRECTIONAL);
2105 
2106         /* Now that we have a new stopping point, we can clear the old
2107          * stopping point.  We must sync twice to get the proper
2108          * ordering on the hardware side of things. */
2109         old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2110         dma_sync_single_for_device(&nic->pdev->dev,
2111                        old_before_last_rx->dma_addr,
2112                        sizeof(struct rfd),
2113                        DMA_BIDIRECTIONAL);
2114         old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2115                             + ETH_FCS_LEN);
2116         dma_sync_single_for_device(&nic->pdev->dev,
2117                        old_before_last_rx->dma_addr,
2118                        sizeof(struct rfd),
2119                        DMA_BIDIRECTIONAL);
2120     }
2121 
2122     if (restart_required) {
2123         // ack the rnr?
2124         iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2125         e100_start_receiver(nic, nic->rx_to_clean);
2126         if (work_done)
2127             (*work_done)++;
2128     }
2129 }
2130 
2131 static void e100_rx_clean_list(struct nic *nic)
2132 {
2133     struct rx *rx;
2134     unsigned int i, count = nic->params.rfds.count;
2135 
2136     nic->ru_running = RU_UNINITIALIZED;
2137 
2138     if (nic->rxs) {
2139         for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2140             if (rx->skb) {
2141                 dma_unmap_single(&nic->pdev->dev,
2142                          rx->dma_addr, RFD_BUF_LEN,
2143                          DMA_BIDIRECTIONAL);
2144                 dev_kfree_skb(rx->skb);
2145             }
2146         }
2147         kfree(nic->rxs);
2148         nic->rxs = NULL;
2149     }
2150 
2151     nic->rx_to_use = nic->rx_to_clean = NULL;
2152 }
2153 
2154 static int e100_rx_alloc_list(struct nic *nic)
2155 {
2156     struct rx *rx;
2157     unsigned int i, count = nic->params.rfds.count;
2158     struct rfd *before_last;
2159 
2160     nic->rx_to_use = nic->rx_to_clean = NULL;
2161     nic->ru_running = RU_UNINITIALIZED;
2162 
2163     if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2164         return -ENOMEM;
2165 
2166     for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2167         rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2168         rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2169         if (e100_rx_alloc_skb(nic, rx)) {
2170             e100_rx_clean_list(nic);
2171             return -ENOMEM;
2172         }
2173     }
2174     /* Set the el-bit on the buffer that is before the last buffer.
2175      * This lets us update the next pointer on the last buffer without
2176      * worrying about hardware touching it.
2177      * We set the size to 0 to prevent hardware from touching this buffer.
2178      * When the hardware hits the before last buffer with el-bit and size
2179      * of 0, it will RNR interrupt, the RU will go into the No Resources
2180      * state.  It will not complete nor write to this buffer. */
2181     rx = nic->rxs->prev->prev;
2182     before_last = (struct rfd *)rx->skb->data;
2183     before_last->command |= cpu_to_le16(cb_el);
2184     before_last->size = 0;
2185     dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2186                    sizeof(struct rfd), DMA_BIDIRECTIONAL);
2187 
2188     nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2189     nic->ru_running = RU_SUSPENDED;
2190 
2191     return 0;
2192 }
2193 
2194 static irqreturn_t e100_intr(int irq, void *dev_id)
2195 {
2196     struct net_device *netdev = dev_id;
2197     struct nic *nic = netdev_priv(netdev);
2198     u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2199 
2200     netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2201              "stat_ack = 0x%02X\n", stat_ack);
2202 
2203     if (stat_ack == stat_ack_not_ours ||    /* Not our interrupt */
2204        stat_ack == stat_ack_not_present)    /* Hardware is ejected */
2205         return IRQ_NONE;
2206 
2207     /* Ack interrupt(s) */
2208     iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2209 
2210     /* We hit Receive No Resource (RNR); restart RU after cleaning */
2211     if (stat_ack & stat_ack_rnr)
2212         nic->ru_running = RU_SUSPENDED;
2213 
2214     if (likely(napi_schedule_prep(&nic->napi))) {
2215         e100_disable_irq(nic);
2216         __napi_schedule(&nic->napi);
2217     }
2218 
2219     return IRQ_HANDLED;
2220 }
2221 
2222 static int e100_poll(struct napi_struct *napi, int budget)
2223 {
2224     struct nic *nic = container_of(napi, struct nic, napi);
2225     unsigned int work_done = 0;
2226 
2227     e100_rx_clean(nic, &work_done, budget);
2228     e100_tx_clean(nic);
2229 
2230     /* If budget fully consumed, continue polling */
2231     if (work_done == budget)
2232         return budget;
2233 
2234     /* only re-enable interrupt if stack agrees polling is really done */
2235     if (likely(napi_complete_done(napi, work_done)))
2236         e100_enable_irq(nic);
2237 
2238     return work_done;
2239 }
2240 
2241 #ifdef CONFIG_NET_POLL_CONTROLLER
2242 static void e100_netpoll(struct net_device *netdev)
2243 {
2244     struct nic *nic = netdev_priv(netdev);
2245 
2246     e100_disable_irq(nic);
2247     e100_intr(nic->pdev->irq, netdev);
2248     e100_tx_clean(nic);
2249     e100_enable_irq(nic);
2250 }
2251 #endif
2252 
2253 static int e100_set_mac_address(struct net_device *netdev, void *p)
2254 {
2255     struct nic *nic = netdev_priv(netdev);
2256     struct sockaddr *addr = p;
2257 
2258     if (!is_valid_ether_addr(addr->sa_data))
2259         return -EADDRNOTAVAIL;
2260 
2261     eth_hw_addr_set(netdev, addr->sa_data);
2262     e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2263 
2264     return 0;
2265 }
2266 
2267 static int e100_asf(struct nic *nic)
2268 {
2269     /* ASF can be enabled from eeprom */
2270     return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2271        (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2272        !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2273        ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2274 }
2275 
2276 static int e100_up(struct nic *nic)
2277 {
2278     int err;
2279 
2280     if ((err = e100_rx_alloc_list(nic)))
2281         return err;
2282     if ((err = e100_alloc_cbs(nic)))
2283         goto err_rx_clean_list;
2284     if ((err = e100_hw_init(nic)))
2285         goto err_clean_cbs;
2286     e100_set_multicast_list(nic->netdev);
2287     e100_start_receiver(nic, NULL);
2288     mod_timer(&nic->watchdog, jiffies);
2289     if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2290         nic->netdev->name, nic->netdev)))
2291         goto err_no_irq;
2292     netif_wake_queue(nic->netdev);
2293     napi_enable(&nic->napi);
2294     /* enable ints _after_ enabling poll, preventing a race between
2295      * disable ints+schedule */
2296     e100_enable_irq(nic);
2297     return 0;
2298 
2299 err_no_irq:
2300     del_timer_sync(&nic->watchdog);
2301 err_clean_cbs:
2302     e100_clean_cbs(nic);
2303 err_rx_clean_list:
2304     e100_rx_clean_list(nic);
2305     return err;
2306 }
2307 
2308 static void e100_down(struct nic *nic)
2309 {
2310     /* wait here for poll to complete */
2311     napi_disable(&nic->napi);
2312     netif_stop_queue(nic->netdev);
2313     e100_hw_reset(nic);
2314     free_irq(nic->pdev->irq, nic->netdev);
2315     del_timer_sync(&nic->watchdog);
2316     netif_carrier_off(nic->netdev);
2317     e100_clean_cbs(nic);
2318     e100_rx_clean_list(nic);
2319 }
2320 
2321 static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2322 {
2323     struct nic *nic = netdev_priv(netdev);
2324 
2325     /* Reset outside of interrupt context, to avoid request_irq
2326      * in interrupt context */
2327     schedule_work(&nic->tx_timeout_task);
2328 }
2329 
2330 static void e100_tx_timeout_task(struct work_struct *work)
2331 {
2332     struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2333     struct net_device *netdev = nic->netdev;
2334 
2335     netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2336              "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2337 
2338     rtnl_lock();
2339     if (netif_running(netdev)) {
2340         e100_down(netdev_priv(netdev));
2341         e100_up(netdev_priv(netdev));
2342     }
2343     rtnl_unlock();
2344 }
2345 
2346 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2347 {
2348     int err;
2349     struct sk_buff *skb;
2350 
2351     /* Use driver resources to perform internal MAC or PHY
2352      * loopback test.  A single packet is prepared and transmitted
2353      * in loopback mode, and the test passes if the received
2354      * packet compares byte-for-byte to the transmitted packet. */
2355 
2356     if ((err = e100_rx_alloc_list(nic)))
2357         return err;
2358     if ((err = e100_alloc_cbs(nic)))
2359         goto err_clean_rx;
2360 
2361     /* ICH PHY loopback is broken so do MAC loopback instead */
2362     if (nic->flags & ich && loopback_mode == lb_phy)
2363         loopback_mode = lb_mac;
2364 
2365     nic->loopback = loopback_mode;
2366     if ((err = e100_hw_init(nic)))
2367         goto err_loopback_none;
2368 
2369     if (loopback_mode == lb_phy)
2370         mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2371             BMCR_LOOPBACK);
2372 
2373     e100_start_receiver(nic, NULL);
2374 
2375     if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2376         err = -ENOMEM;
2377         goto err_loopback_none;
2378     }
2379     skb_put(skb, ETH_DATA_LEN);
2380     memset(skb->data, 0xFF, ETH_DATA_LEN);
2381     e100_xmit_frame(skb, nic->netdev);
2382 
2383     msleep(10);
2384 
2385     dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2386                 RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2387 
2388     if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2389        skb->data, ETH_DATA_LEN))
2390         err = -EAGAIN;
2391 
2392 err_loopback_none:
2393     mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2394     nic->loopback = lb_none;
2395     e100_clean_cbs(nic);
2396     e100_hw_reset(nic);
2397 err_clean_rx:
2398     e100_rx_clean_list(nic);
2399     return err;
2400 }
2401 
2402 #define MII_LED_CONTROL 0x1B
2403 #define E100_82552_LED_OVERRIDE 0x19
2404 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2405 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2406 
2407 static int e100_get_link_ksettings(struct net_device *netdev,
2408                    struct ethtool_link_ksettings *cmd)
2409 {
2410     struct nic *nic = netdev_priv(netdev);
2411 
2412     mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2413 
2414     return 0;
2415 }
2416 
2417 static int e100_set_link_ksettings(struct net_device *netdev,
2418                    const struct ethtool_link_ksettings *cmd)
2419 {
2420     struct nic *nic = netdev_priv(netdev);
2421     int err;
2422 
2423     mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2424     err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2425     e100_exec_cb(nic, NULL, e100_configure);
2426 
2427     return err;
2428 }
2429 
2430 static void e100_get_drvinfo(struct net_device *netdev,
2431     struct ethtool_drvinfo *info)
2432 {
2433     struct nic *nic = netdev_priv(netdev);
2434     strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2435     strlcpy(info->bus_info, pci_name(nic->pdev),
2436         sizeof(info->bus_info));
2437 }
2438 
2439 #define E100_PHY_REGS 0x1D
2440 static int e100_get_regs_len(struct net_device *netdev)
2441 {
2442     struct nic *nic = netdev_priv(netdev);
2443 
2444     /* We know the number of registers, and the size of the dump buffer.
2445      * Calculate the total size in bytes.
2446      */
2447     return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2448 }
2449 
2450 static void e100_get_regs(struct net_device *netdev,
2451     struct ethtool_regs *regs, void *p)
2452 {
2453     struct nic *nic = netdev_priv(netdev);
2454     u32 *buff = p;
2455     int i;
2456 
2457     regs->version = (1 << 24) | nic->pdev->revision;
2458     buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2459         ioread8(&nic->csr->scb.cmd_lo) << 16 |
2460         ioread16(&nic->csr->scb.status);
2461     for (i = 0; i < E100_PHY_REGS; i++)
2462         /* Note that we read the registers in reverse order. This
2463          * ordering is the ABI apparently used by ethtool and other
2464          * applications.
2465          */
2466         buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2467                     E100_PHY_REGS - 1 - i);
2468     memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2469     e100_exec_cb(nic, NULL, e100_dump);
2470     msleep(10);
2471     memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2472            sizeof(nic->mem->dump_buf));
2473 }
2474 
2475 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2476 {
2477     struct nic *nic = netdev_priv(netdev);
2478     wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2479     wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2480 }
2481 
2482 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2483 {
2484     struct nic *nic = netdev_priv(netdev);
2485 
2486     if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2487         !device_can_wakeup(&nic->pdev->dev))
2488         return -EOPNOTSUPP;
2489 
2490     if (wol->wolopts)
2491         nic->flags |= wol_magic;
2492     else
2493         nic->flags &= ~wol_magic;
2494 
2495     device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2496 
2497     e100_exec_cb(nic, NULL, e100_configure);
2498 
2499     return 0;
2500 }
2501 
2502 static u32 e100_get_msglevel(struct net_device *netdev)
2503 {
2504     struct nic *nic = netdev_priv(netdev);
2505     return nic->msg_enable;
2506 }
2507 
2508 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2509 {
2510     struct nic *nic = netdev_priv(netdev);
2511     nic->msg_enable = value;
2512 }
2513 
2514 static int e100_nway_reset(struct net_device *netdev)
2515 {
2516     struct nic *nic = netdev_priv(netdev);
2517     return mii_nway_restart(&nic->mii);
2518 }
2519 
2520 static u32 e100_get_link(struct net_device *netdev)
2521 {
2522     struct nic *nic = netdev_priv(netdev);
2523     return mii_link_ok(&nic->mii);
2524 }
2525 
2526 static int e100_get_eeprom_len(struct net_device *netdev)
2527 {
2528     struct nic *nic = netdev_priv(netdev);
2529     return nic->eeprom_wc << 1;
2530 }
2531 
2532 #define E100_EEPROM_MAGIC   0x1234
2533 static int e100_get_eeprom(struct net_device *netdev,
2534     struct ethtool_eeprom *eeprom, u8 *bytes)
2535 {
2536     struct nic *nic = netdev_priv(netdev);
2537 
2538     eeprom->magic = E100_EEPROM_MAGIC;
2539     memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2540 
2541     return 0;
2542 }
2543 
2544 static int e100_set_eeprom(struct net_device *netdev,
2545     struct ethtool_eeprom *eeprom, u8 *bytes)
2546 {
2547     struct nic *nic = netdev_priv(netdev);
2548 
2549     if (eeprom->magic != E100_EEPROM_MAGIC)
2550         return -EINVAL;
2551 
2552     memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2553 
2554     return e100_eeprom_save(nic, eeprom->offset >> 1,
2555         (eeprom->len >> 1) + 1);
2556 }
2557 
2558 static void e100_get_ringparam(struct net_device *netdev,
2559                    struct ethtool_ringparam *ring,
2560                    struct kernel_ethtool_ringparam *kernel_ring,
2561                    struct netlink_ext_ack *extack)
2562 {
2563     struct nic *nic = netdev_priv(netdev);
2564     struct param_range *rfds = &nic->params.rfds;
2565     struct param_range *cbs = &nic->params.cbs;
2566 
2567     ring->rx_max_pending = rfds->max;
2568     ring->tx_max_pending = cbs->max;
2569     ring->rx_pending = rfds->count;
2570     ring->tx_pending = cbs->count;
2571 }
2572 
2573 static int e100_set_ringparam(struct net_device *netdev,
2574                   struct ethtool_ringparam *ring,
2575                   struct kernel_ethtool_ringparam *kernel_ring,
2576                   struct netlink_ext_ack *extack)
2577 {
2578     struct nic *nic = netdev_priv(netdev);
2579     struct param_range *rfds = &nic->params.rfds;
2580     struct param_range *cbs = &nic->params.cbs;
2581 
2582     if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2583         return -EINVAL;
2584 
2585     if (netif_running(netdev))
2586         e100_down(nic);
2587     rfds->count = max(ring->rx_pending, rfds->min);
2588     rfds->count = min(rfds->count, rfds->max);
2589     cbs->count = max(ring->tx_pending, cbs->min);
2590     cbs->count = min(cbs->count, cbs->max);
2591     netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2592            rfds->count, cbs->count);
2593     if (netif_running(netdev))
2594         e100_up(nic);
2595 
2596     return 0;
2597 }
2598 
2599 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2600     "Link test     (on/offline)",
2601     "Eeprom test   (on/offline)",
2602     "Self test        (offline)",
2603     "Mac loopback     (offline)",
2604     "Phy loopback     (offline)",
2605 };
2606 #define E100_TEST_LEN   ARRAY_SIZE(e100_gstrings_test)
2607 
2608 static void e100_diag_test(struct net_device *netdev,
2609     struct ethtool_test *test, u64 *data)
2610 {
2611     struct ethtool_cmd cmd;
2612     struct nic *nic = netdev_priv(netdev);
2613     int i;
2614 
2615     memset(data, 0, E100_TEST_LEN * sizeof(u64));
2616     data[0] = !mii_link_ok(&nic->mii);
2617     data[1] = e100_eeprom_load(nic);
2618     if (test->flags & ETH_TEST_FL_OFFLINE) {
2619 
2620         /* save speed, duplex & autoneg settings */
2621         mii_ethtool_gset(&nic->mii, &cmd);
2622 
2623         if (netif_running(netdev))
2624             e100_down(nic);
2625         data[2] = e100_self_test(nic);
2626         data[3] = e100_loopback_test(nic, lb_mac);
2627         data[4] = e100_loopback_test(nic, lb_phy);
2628 
2629         /* restore speed, duplex & autoneg settings */
2630         mii_ethtool_sset(&nic->mii, &cmd);
2631 
2632         if (netif_running(netdev))
2633             e100_up(nic);
2634     }
2635     for (i = 0; i < E100_TEST_LEN; i++)
2636         test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2637 
2638     msleep_interruptible(4 * 1000);
2639 }
2640 
2641 static int e100_set_phys_id(struct net_device *netdev,
2642                 enum ethtool_phys_id_state state)
2643 {
2644     struct nic *nic = netdev_priv(netdev);
2645     enum led_state {
2646         led_on     = 0x01,
2647         led_off    = 0x04,
2648         led_on_559 = 0x05,
2649         led_on_557 = 0x07,
2650     };
2651     u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2652         MII_LED_CONTROL;
2653     u16 leds = 0;
2654 
2655     switch (state) {
2656     case ETHTOOL_ID_ACTIVE:
2657         return 2;
2658 
2659     case ETHTOOL_ID_ON:
2660         leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2661                (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2662         break;
2663 
2664     case ETHTOOL_ID_OFF:
2665         leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2666         break;
2667 
2668     case ETHTOOL_ID_INACTIVE:
2669         break;
2670     }
2671 
2672     mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2673     return 0;
2674 }
2675 
2676 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2677     "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2678     "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2679     "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2680     "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2681     "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2682     "tx_heartbeat_errors", "tx_window_errors",
2683     /* device-specific stats */
2684     "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2685     "tx_flow_control_pause", "rx_flow_control_pause",
2686     "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2687     "rx_short_frame_errors", "rx_over_length_errors",
2688 };
2689 #define E100_NET_STATS_LEN  21
2690 #define E100_STATS_LEN  ARRAY_SIZE(e100_gstrings_stats)
2691 
2692 static int e100_get_sset_count(struct net_device *netdev, int sset)
2693 {
2694     switch (sset) {
2695     case ETH_SS_TEST:
2696         return E100_TEST_LEN;
2697     case ETH_SS_STATS:
2698         return E100_STATS_LEN;
2699     default:
2700         return -EOPNOTSUPP;
2701     }
2702 }
2703 
2704 static void e100_get_ethtool_stats(struct net_device *netdev,
2705     struct ethtool_stats *stats, u64 *data)
2706 {
2707     struct nic *nic = netdev_priv(netdev);
2708     int i;
2709 
2710     for (i = 0; i < E100_NET_STATS_LEN; i++)
2711         data[i] = ((unsigned long *)&netdev->stats)[i];
2712 
2713     data[i++] = nic->tx_deferred;
2714     data[i++] = nic->tx_single_collisions;
2715     data[i++] = nic->tx_multiple_collisions;
2716     data[i++] = nic->tx_fc_pause;
2717     data[i++] = nic->rx_fc_pause;
2718     data[i++] = nic->rx_fc_unsupported;
2719     data[i++] = nic->tx_tco_frames;
2720     data[i++] = nic->rx_tco_frames;
2721     data[i++] = nic->rx_short_frame_errors;
2722     data[i++] = nic->rx_over_length_errors;
2723 }
2724 
2725 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2726 {
2727     switch (stringset) {
2728     case ETH_SS_TEST:
2729         memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2730         break;
2731     case ETH_SS_STATS:
2732         memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2733         break;
2734     }
2735 }
2736 
2737 static const struct ethtool_ops e100_ethtool_ops = {
2738     .get_drvinfo        = e100_get_drvinfo,
2739     .get_regs_len       = e100_get_regs_len,
2740     .get_regs       = e100_get_regs,
2741     .get_wol        = e100_get_wol,
2742     .set_wol        = e100_set_wol,
2743     .get_msglevel       = e100_get_msglevel,
2744     .set_msglevel       = e100_set_msglevel,
2745     .nway_reset     = e100_nway_reset,
2746     .get_link       = e100_get_link,
2747     .get_eeprom_len     = e100_get_eeprom_len,
2748     .get_eeprom     = e100_get_eeprom,
2749     .set_eeprom     = e100_set_eeprom,
2750     .get_ringparam      = e100_get_ringparam,
2751     .set_ringparam      = e100_set_ringparam,
2752     .self_test      = e100_diag_test,
2753     .get_strings        = e100_get_strings,
2754     .set_phys_id        = e100_set_phys_id,
2755     .get_ethtool_stats  = e100_get_ethtool_stats,
2756     .get_sset_count     = e100_get_sset_count,
2757     .get_ts_info        = ethtool_op_get_ts_info,
2758     .get_link_ksettings = e100_get_link_ksettings,
2759     .set_link_ksettings = e100_set_link_ksettings,
2760 };
2761 
2762 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2763 {
2764     struct nic *nic = netdev_priv(netdev);
2765 
2766     return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2767 }
2768 
2769 static int e100_alloc(struct nic *nic)
2770 {
2771     nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2772                       &nic->dma_addr, GFP_KERNEL);
2773     return nic->mem ? 0 : -ENOMEM;
2774 }
2775 
2776 static void e100_free(struct nic *nic)
2777 {
2778     if (nic->mem) {
2779         dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2780                   nic->mem, nic->dma_addr);
2781         nic->mem = NULL;
2782     }
2783 }
2784 
2785 static int e100_open(struct net_device *netdev)
2786 {
2787     struct nic *nic = netdev_priv(netdev);
2788     int err = 0;
2789 
2790     netif_carrier_off(netdev);
2791     if ((err = e100_up(nic)))
2792         netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2793     return err;
2794 }
2795 
2796 static int e100_close(struct net_device *netdev)
2797 {
2798     e100_down(netdev_priv(netdev));
2799     return 0;
2800 }
2801 
2802 static int e100_set_features(struct net_device *netdev,
2803                  netdev_features_t features)
2804 {
2805     struct nic *nic = netdev_priv(netdev);
2806     netdev_features_t changed = features ^ netdev->features;
2807 
2808     if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2809         return 0;
2810 
2811     netdev->features = features;
2812     e100_exec_cb(nic, NULL, e100_configure);
2813     return 1;
2814 }
2815 
2816 static const struct net_device_ops e100_netdev_ops = {
2817     .ndo_open       = e100_open,
2818     .ndo_stop       = e100_close,
2819     .ndo_start_xmit     = e100_xmit_frame,
2820     .ndo_validate_addr  = eth_validate_addr,
2821     .ndo_set_rx_mode    = e100_set_multicast_list,
2822     .ndo_set_mac_address    = e100_set_mac_address,
2823     .ndo_eth_ioctl      = e100_do_ioctl,
2824     .ndo_tx_timeout     = e100_tx_timeout,
2825 #ifdef CONFIG_NET_POLL_CONTROLLER
2826     .ndo_poll_controller    = e100_netpoll,
2827 #endif
2828     .ndo_set_features   = e100_set_features,
2829 };
2830 
2831 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2832 {
2833     struct net_device *netdev;
2834     struct nic *nic;
2835     int err;
2836 
2837     if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2838         return -ENOMEM;
2839 
2840     netdev->hw_features |= NETIF_F_RXFCS;
2841     netdev->priv_flags |= IFF_SUPP_NOFCS;
2842     netdev->hw_features |= NETIF_F_RXALL;
2843 
2844     netdev->netdev_ops = &e100_netdev_ops;
2845     netdev->ethtool_ops = &e100_ethtool_ops;
2846     netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2847     strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2848 
2849     nic = netdev_priv(netdev);
2850     netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2851     nic->netdev = netdev;
2852     nic->pdev = pdev;
2853     nic->msg_enable = (1 << debug) - 1;
2854     nic->mdio_ctrl = mdio_ctrl_hw;
2855     pci_set_drvdata(pdev, netdev);
2856 
2857     if ((err = pci_enable_device(pdev))) {
2858         netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2859         goto err_out_free_dev;
2860     }
2861 
2862     if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2863         netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2864         err = -ENODEV;
2865         goto err_out_disable_pdev;
2866     }
2867 
2868     if ((err = pci_request_regions(pdev, DRV_NAME))) {
2869         netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2870         goto err_out_disable_pdev;
2871     }
2872 
2873     if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2874         netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2875         goto err_out_free_res;
2876     }
2877 
2878     SET_NETDEV_DEV(netdev, &pdev->dev);
2879 
2880     if (use_io)
2881         netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2882 
2883     nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2884     if (!nic->csr) {
2885         netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2886         err = -ENOMEM;
2887         goto err_out_free_res;
2888     }
2889 
2890     if (ent->driver_data)
2891         nic->flags |= ich;
2892     else
2893         nic->flags &= ~ich;
2894 
2895     e100_get_defaults(nic);
2896 
2897     /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2898     if (nic->mac < mac_82558_D101_A4)
2899         netdev->features |= NETIF_F_VLAN_CHALLENGED;
2900 
2901     /* locks must be initialized before calling hw_reset */
2902     spin_lock_init(&nic->cb_lock);
2903     spin_lock_init(&nic->cmd_lock);
2904     spin_lock_init(&nic->mdio_lock);
2905 
2906     /* Reset the device before pci_set_master() in case device is in some
2907      * funky state and has an interrupt pending - hint: we don't have the
2908      * interrupt handler registered yet. */
2909     e100_hw_reset(nic);
2910 
2911     pci_set_master(pdev);
2912 
2913     timer_setup(&nic->watchdog, e100_watchdog, 0);
2914 
2915     INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2916 
2917     if ((err = e100_alloc(nic))) {
2918         netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2919         goto err_out_iounmap;
2920     }
2921 
2922     if ((err = e100_eeprom_load(nic)))
2923         goto err_out_free;
2924 
2925     e100_phy_init(nic);
2926 
2927     eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2928     if (!is_valid_ether_addr(netdev->dev_addr)) {
2929         if (!eeprom_bad_csum_allow) {
2930             netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2931             err = -EAGAIN;
2932             goto err_out_free;
2933         } else {
2934             netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2935         }
2936     }
2937 
2938     /* Wol magic packet can be enabled from eeprom */
2939     if ((nic->mac >= mac_82558_D101_A4) &&
2940        (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2941         nic->flags |= wol_magic;
2942         device_set_wakeup_enable(&pdev->dev, true);
2943     }
2944 
2945     /* ack any pending wake events, disable PME */
2946     pci_pme_active(pdev, false);
2947 
2948     strcpy(netdev->name, "eth%d");
2949     if ((err = register_netdev(netdev))) {
2950         netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2951         goto err_out_free;
2952     }
2953     nic->cbs_pool = dma_pool_create(netdev->name,
2954                &nic->pdev->dev,
2955                nic->params.cbs.max * sizeof(struct cb),
2956                sizeof(u32),
2957                0);
2958     if (!nic->cbs_pool) {
2959         netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2960         err = -ENOMEM;
2961         goto err_out_pool;
2962     }
2963     netif_info(nic, probe, nic->netdev,
2964            "addr 0x%llx, irq %d, MAC addr %pM\n",
2965            (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2966            pdev->irq, netdev->dev_addr);
2967 
2968     return 0;
2969 
2970 err_out_pool:
2971     unregister_netdev(netdev);
2972 err_out_free:
2973     e100_free(nic);
2974 err_out_iounmap:
2975     pci_iounmap(pdev, nic->csr);
2976 err_out_free_res:
2977     pci_release_regions(pdev);
2978 err_out_disable_pdev:
2979     pci_disable_device(pdev);
2980 err_out_free_dev:
2981     free_netdev(netdev);
2982     return err;
2983 }
2984 
2985 static void e100_remove(struct pci_dev *pdev)
2986 {
2987     struct net_device *netdev = pci_get_drvdata(pdev);
2988 
2989     if (netdev) {
2990         struct nic *nic = netdev_priv(netdev);
2991         unregister_netdev(netdev);
2992         e100_free(nic);
2993         pci_iounmap(pdev, nic->csr);
2994         dma_pool_destroy(nic->cbs_pool);
2995         free_netdev(netdev);
2996         pci_release_regions(pdev);
2997         pci_disable_device(pdev);
2998     }
2999 }
3000 
3001 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
3002 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3003 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3004 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3005 {
3006     struct net_device *netdev = pci_get_drvdata(pdev);
3007     struct nic *nic = netdev_priv(netdev);
3008 
3009     netif_device_detach(netdev);
3010 
3011     if (netif_running(netdev))
3012         e100_down(nic);
3013 
3014     if ((nic->flags & wol_magic) | e100_asf(nic)) {
3015         /* enable reverse auto-negotiation */
3016         if (nic->phy == phy_82552_v) {
3017             u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3018                                        E100_82552_SMARTSPEED);
3019 
3020             mdio_write(netdev, nic->mii.phy_id,
3021                        E100_82552_SMARTSPEED, smartspeed |
3022                        E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3023         }
3024         *enable_wake = true;
3025     } else {
3026         *enable_wake = false;
3027     }
3028 
3029     pci_disable_device(pdev);
3030 }
3031 
3032 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3033 {
3034     if (wake)
3035         return pci_prepare_to_sleep(pdev);
3036 
3037     pci_wake_from_d3(pdev, false);
3038     pci_set_power_state(pdev, PCI_D3hot);
3039 
3040     return 0;
3041 }
3042 
3043 static int __maybe_unused e100_suspend(struct device *dev_d)
3044 {
3045     bool wake;
3046 
3047     __e100_shutdown(to_pci_dev(dev_d), &wake);
3048 
3049     return 0;
3050 }
3051 
3052 static int __maybe_unused e100_resume(struct device *dev_d)
3053 {
3054     struct net_device *netdev = dev_get_drvdata(dev_d);
3055     struct nic *nic = netdev_priv(netdev);
3056     int err;
3057 
3058     err = pci_enable_device(to_pci_dev(dev_d));
3059     if (err) {
3060         netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3061         return err;
3062     }
3063     pci_set_master(to_pci_dev(dev_d));
3064 
3065     /* disable reverse auto-negotiation */
3066     if (nic->phy == phy_82552_v) {
3067         u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3068                                    E100_82552_SMARTSPEED);
3069 
3070         mdio_write(netdev, nic->mii.phy_id,
3071                    E100_82552_SMARTSPEED,
3072                    smartspeed & ~(E100_82552_REV_ANEG));
3073     }
3074 
3075     if (netif_running(netdev))
3076         e100_up(nic);
3077 
3078     netif_device_attach(netdev);
3079 
3080     return 0;
3081 }
3082 
3083 static void e100_shutdown(struct pci_dev *pdev)
3084 {
3085     bool wake;
3086     __e100_shutdown(pdev, &wake);
3087     if (system_state == SYSTEM_POWER_OFF)
3088         __e100_power_off(pdev, wake);
3089 }
3090 
3091 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3092 /**
3093  * e100_io_error_detected - called when PCI error is detected.
3094  * @pdev: Pointer to PCI device
3095  * @state: The current pci connection state
3096  */
3097 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3098 {
3099     struct net_device *netdev = pci_get_drvdata(pdev);
3100     struct nic *nic = netdev_priv(netdev);
3101 
3102     netif_device_detach(netdev);
3103 
3104     if (state == pci_channel_io_perm_failure)
3105         return PCI_ERS_RESULT_DISCONNECT;
3106 
3107     if (netif_running(netdev))
3108         e100_down(nic);
3109     pci_disable_device(pdev);
3110 
3111     /* Request a slot reset. */
3112     return PCI_ERS_RESULT_NEED_RESET;
3113 }
3114 
3115 /**
3116  * e100_io_slot_reset - called after the pci bus has been reset.
3117  * @pdev: Pointer to PCI device
3118  *
3119  * Restart the card from scratch.
3120  */
3121 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3122 {
3123     struct net_device *netdev = pci_get_drvdata(pdev);
3124     struct nic *nic = netdev_priv(netdev);
3125 
3126     if (pci_enable_device(pdev)) {
3127         pr_err("Cannot re-enable PCI device after reset\n");
3128         return PCI_ERS_RESULT_DISCONNECT;
3129     }
3130     pci_set_master(pdev);
3131 
3132     /* Only one device per card can do a reset */
3133     if (0 != PCI_FUNC(pdev->devfn))
3134         return PCI_ERS_RESULT_RECOVERED;
3135     e100_hw_reset(nic);
3136     e100_phy_init(nic);
3137 
3138     return PCI_ERS_RESULT_RECOVERED;
3139 }
3140 
3141 /**
3142  * e100_io_resume - resume normal operations
3143  * @pdev: Pointer to PCI device
3144  *
3145  * Resume normal operations after an error recovery
3146  * sequence has been completed.
3147  */
3148 static void e100_io_resume(struct pci_dev *pdev)
3149 {
3150     struct net_device *netdev = pci_get_drvdata(pdev);
3151     struct nic *nic = netdev_priv(netdev);
3152 
3153     /* ack any pending wake events, disable PME */
3154     pci_enable_wake(pdev, PCI_D0, 0);
3155 
3156     netif_device_attach(netdev);
3157     if (netif_running(netdev)) {
3158         e100_open(netdev);
3159         mod_timer(&nic->watchdog, jiffies);
3160     }
3161 }
3162 
3163 static const struct pci_error_handlers e100_err_handler = {
3164     .error_detected = e100_io_error_detected,
3165     .slot_reset = e100_io_slot_reset,
3166     .resume = e100_io_resume,
3167 };
3168 
3169 static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3170 
3171 static struct pci_driver e100_driver = {
3172     .name =         DRV_NAME,
3173     .id_table =     e100_id_table,
3174     .probe =        e100_probe,
3175     .remove =       e100_remove,
3176 
3177     /* Power Management hooks */
3178     .driver.pm =    &e100_pm_ops,
3179 
3180     .shutdown =     e100_shutdown,
3181     .err_handler = &e100_err_handler,
3182 };
3183 
3184 static int __init e100_init_module(void)
3185 {
3186     if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3187         pr_info("%s\n", DRV_DESCRIPTION);
3188         pr_info("%s\n", DRV_COPYRIGHT);
3189     }
3190     return pci_register_driver(&e100_driver);
3191 }
3192 
3193 static void __exit e100_cleanup_module(void)
3194 {
3195     pci_unregister_driver(&e100_driver);
3196 }
3197 
3198 module_init(e100_init_module);
3199 module_exit(e100_cleanup_module);