0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015 #include <linux/module.h>
0016 #include <linux/kernel.h>
0017 #include <linux/types.h>
0018 #include <linux/string.h>
0019 #include <linux/ptrace.h>
0020 #include <linux/errno.h>
0021 #include <linux/ioport.h>
0022 #include <linux/interrupt.h>
0023 #include <linux/delay.h>
0024 #include <linux/netdevice.h>
0025 #include <linux/etherdevice.h>
0026 #include <linux/skbuff.h>
0027 #include <linux/spinlock.h>
0028 #include <linux/mii.h>
0029 #include <linux/ethtool.h>
0030 #include <linux/bitops.h>
0031 #include <linux/fs.h>
0032 #include <linux/platform_device.h>
0033 #include <linux/of_address.h>
0034 #include <linux/of_irq.h>
0035 #include <linux/of_platform.h>
0036
0037 #include <asm/irq.h>
0038 #include <linux/uaccess.h>
0039
0040 #include "fs_enet.h"
0041
0042
0043 #if defined(CONFIG_CPM1)
0044
0045 #define __fs_out32(addr, x) __raw_writel(x, addr)
0046 #define __fs_out16(addr, x) __raw_writew(x, addr)
0047 #define __fs_out8(addr, x) __raw_writeb(x, addr)
0048 #define __fs_in32(addr) __raw_readl(addr)
0049 #define __fs_in16(addr) __raw_readw(addr)
0050 #define __fs_in8(addr) __raw_readb(addr)
0051 #else
0052
0053 #define __fs_out32(addr, x) out_be32(addr, x)
0054 #define __fs_out16(addr, x) out_be16(addr, x)
0055 #define __fs_in32(addr) in_be32(addr)
0056 #define __fs_in16(addr) in_be16(addr)
0057 #define __fs_out8(addr, x) out_8(addr, x)
0058 #define __fs_in8(addr) in_8(addr)
0059 #endif
0060
0061
0062 #define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v))
0063 #define R32(_p, _m) __fs_in32(&(_p)->_m)
0064 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
0065 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
0066
0067 #define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v))
0068 #define R16(_p, _m) __fs_in16(&(_p)->_m)
0069 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
0070 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
0071
0072 #define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v))
0073 #define R8(_p, _m) __fs_in8(&(_p)->_m)
0074 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
0075 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
0076
0077 #define SCC_MAX_MULTICAST_ADDRS 64
0078
0079
0080
0081
0082 #define SCC_RESET_DELAY 50
0083
0084 static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op)
0085 {
0086 const struct fs_platform_info *fpi = fep->fpi;
0087
0088 return cpm_command(fpi->cp_command, op);
0089 }
0090
0091 static int do_pd_setup(struct fs_enet_private *fep)
0092 {
0093 struct platform_device *ofdev = to_platform_device(fep->dev);
0094
0095 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
0096 if (!fep->interrupt)
0097 return -EINVAL;
0098
0099 fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0);
0100 if (!fep->scc.sccp)
0101 return -EINVAL;
0102
0103 fep->scc.ep = of_iomap(ofdev->dev.of_node, 1);
0104 if (!fep->scc.ep) {
0105 iounmap(fep->scc.sccp);
0106 return -EINVAL;
0107 }
0108
0109 return 0;
0110 }
0111
0112 #define SCC_NAPI_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB | SCCE_ENET_TXB)
0113 #define SCC_EVENT (SCCE_ENET_RXF | SCCE_ENET_TXB)
0114 #define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY)
0115
0116 static int setup_data(struct net_device *dev)
0117 {
0118 struct fs_enet_private *fep = netdev_priv(dev);
0119
0120 do_pd_setup(fep);
0121
0122 fep->scc.hthi = 0;
0123 fep->scc.htlo = 0;
0124
0125 fep->ev_napi = SCC_NAPI_EVENT_MSK;
0126 fep->ev = SCC_EVENT | SCCE_ENET_TXE;
0127 fep->ev_err = SCC_ERR_EVENT_MSK;
0128
0129 return 0;
0130 }
0131
0132 static int allocate_bd(struct net_device *dev)
0133 {
0134 struct fs_enet_private *fep = netdev_priv(dev);
0135 const struct fs_platform_info *fpi = fep->fpi;
0136
0137 fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) *
0138 sizeof(cbd_t), 8);
0139 if (IS_ERR_VALUE(fep->ring_mem_addr))
0140 return -ENOMEM;
0141
0142 fep->ring_base = (void __iomem __force*)
0143 cpm_dpram_addr(fep->ring_mem_addr);
0144
0145 return 0;
0146 }
0147
0148 static void free_bd(struct net_device *dev)
0149 {
0150 struct fs_enet_private *fep = netdev_priv(dev);
0151
0152 if (fep->ring_base)
0153 cpm_dpfree(fep->ring_mem_addr);
0154 }
0155
0156 static void cleanup_data(struct net_device *dev)
0157 {
0158
0159 }
0160
0161 static void set_promiscuous_mode(struct net_device *dev)
0162 {
0163 struct fs_enet_private *fep = netdev_priv(dev);
0164 scc_t __iomem *sccp = fep->scc.sccp;
0165
0166 S16(sccp, scc_psmr, SCC_PSMR_PRO);
0167 }
0168
0169 static void set_multicast_start(struct net_device *dev)
0170 {
0171 struct fs_enet_private *fep = netdev_priv(dev);
0172 scc_enet_t __iomem *ep = fep->scc.ep;
0173
0174 W16(ep, sen_gaddr1, 0);
0175 W16(ep, sen_gaddr2, 0);
0176 W16(ep, sen_gaddr3, 0);
0177 W16(ep, sen_gaddr4, 0);
0178 }
0179
0180 static void set_multicast_one(struct net_device *dev, const u8 * mac)
0181 {
0182 struct fs_enet_private *fep = netdev_priv(dev);
0183 scc_enet_t __iomem *ep = fep->scc.ep;
0184 u16 taddrh, taddrm, taddrl;
0185
0186 taddrh = ((u16) mac[5] << 8) | mac[4];
0187 taddrm = ((u16) mac[3] << 8) | mac[2];
0188 taddrl = ((u16) mac[1] << 8) | mac[0];
0189
0190 W16(ep, sen_taddrh, taddrh);
0191 W16(ep, sen_taddrm, taddrm);
0192 W16(ep, sen_taddrl, taddrl);
0193 scc_cr_cmd(fep, CPM_CR_SET_GADDR);
0194 }
0195
0196 static void set_multicast_finish(struct net_device *dev)
0197 {
0198 struct fs_enet_private *fep = netdev_priv(dev);
0199 scc_t __iomem *sccp = fep->scc.sccp;
0200 scc_enet_t __iomem *ep = fep->scc.ep;
0201
0202
0203 C16(sccp, scc_psmr, SCC_PSMR_PRO);
0204
0205
0206 if ((dev->flags & IFF_ALLMULTI) != 0 ||
0207 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) {
0208
0209 W16(ep, sen_gaddr1, 0xffff);
0210 W16(ep, sen_gaddr2, 0xffff);
0211 W16(ep, sen_gaddr3, 0xffff);
0212 W16(ep, sen_gaddr4, 0xffff);
0213 }
0214 }
0215
0216 static void set_multicast_list(struct net_device *dev)
0217 {
0218 struct netdev_hw_addr *ha;
0219
0220 if ((dev->flags & IFF_PROMISC) == 0) {
0221 set_multicast_start(dev);
0222 netdev_for_each_mc_addr(ha, dev)
0223 set_multicast_one(dev, ha->addr);
0224 set_multicast_finish(dev);
0225 } else
0226 set_promiscuous_mode(dev);
0227 }
0228
0229
0230
0231
0232
0233
0234 static void restart(struct net_device *dev)
0235 {
0236 struct fs_enet_private *fep = netdev_priv(dev);
0237 scc_t __iomem *sccp = fep->scc.sccp;
0238 scc_enet_t __iomem *ep = fep->scc.ep;
0239 const struct fs_platform_info *fpi = fep->fpi;
0240 u16 paddrh, paddrm, paddrl;
0241 const unsigned char *mac;
0242 int i;
0243
0244 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
0245
0246
0247 for (i = 0; i < sizeof(*ep); i++)
0248 __fs_out8((u8 __iomem *)ep + i, 0);
0249
0250
0251 W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr);
0252 W16(ep, sen_genscc.scc_tbase,
0253 fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring);
0254
0255
0256
0257 #ifndef CONFIG_NOT_COHERENT_CACHE
0258 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL);
0259 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL);
0260 #else
0261 W8(ep, sen_genscc.scc_rfcr, SCC_EB);
0262 W8(ep, sen_genscc.scc_tfcr, SCC_EB);
0263 #endif
0264
0265
0266
0267
0268
0269 W16(ep, sen_genscc.scc_mrblr, 0x5f0);
0270
0271
0272
0273 W32(ep, sen_cpres, 0xffffffff);
0274 W32(ep, sen_cmask, 0xdebb20e3);
0275
0276 W32(ep, sen_crcec, 0);
0277 W32(ep, sen_alec, 0);
0278 W32(ep, sen_disfc, 0);
0279
0280 W16(ep, sen_pads, 0x8888);
0281 W16(ep, sen_retlim, 15);
0282
0283 W16(ep, sen_maxflr, 0x5ee);
0284
0285 W16(ep, sen_minflr, PKT_MINBUF_SIZE);
0286
0287 W16(ep, sen_maxd1, 0x000005f0);
0288 W16(ep, sen_maxd2, 0x000005f0);
0289
0290
0291
0292 W16(ep, sen_gaddr1, 0);
0293 W16(ep, sen_gaddr2, 0);
0294 W16(ep, sen_gaddr3, 0);
0295 W16(ep, sen_gaddr4, 0);
0296 W16(ep, sen_iaddr1, 0);
0297 W16(ep, sen_iaddr2, 0);
0298 W16(ep, sen_iaddr3, 0);
0299 W16(ep, sen_iaddr4, 0);
0300
0301
0302
0303 mac = dev->dev_addr;
0304 paddrh = ((u16) mac[5] << 8) | mac[4];
0305 paddrm = ((u16) mac[3] << 8) | mac[2];
0306 paddrl = ((u16) mac[1] << 8) | mac[0];
0307
0308 W16(ep, sen_paddrh, paddrh);
0309 W16(ep, sen_paddrm, paddrm);
0310 W16(ep, sen_paddrl, paddrl);
0311
0312 W16(ep, sen_pper, 0);
0313 W16(ep, sen_taddrl, 0);
0314 W16(ep, sen_taddrm, 0);
0315 W16(ep, sen_taddrh, 0);
0316
0317 fs_init_bds(dev);
0318
0319 scc_cr_cmd(fep, CPM_CR_INIT_TRX);
0320
0321 W16(sccp, scc_scce, 0xffff);
0322
0323
0324
0325 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
0326
0327
0328
0329
0330 W32(sccp, scc_gsmrh, 0);
0331 W32(sccp, scc_gsmrl,
0332 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 |
0333 SCC_GSMRL_MODE_ENET);
0334
0335
0336
0337 W16(sccp, scc_dsr, 0xd555);
0338
0339
0340
0341
0342 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22);
0343
0344
0345 if (dev->phydev->duplex)
0346 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE);
0347
0348
0349 set_multicast_list(dev);
0350
0351 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
0352 }
0353
0354 static void stop(struct net_device *dev)
0355 {
0356 struct fs_enet_private *fep = netdev_priv(dev);
0357 scc_t __iomem *sccp = fep->scc.sccp;
0358 int i;
0359
0360 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++)
0361 udelay(1);
0362
0363 if (i == SCC_RESET_DELAY)
0364 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n");
0365
0366 W16(sccp, scc_sccm, 0);
0367 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
0368
0369 fs_cleanup_bds(dev);
0370 }
0371
0372 static void napi_clear_event_fs(struct net_device *dev)
0373 {
0374 struct fs_enet_private *fep = netdev_priv(dev);
0375 scc_t __iomem *sccp = fep->scc.sccp;
0376
0377 W16(sccp, scc_scce, SCC_NAPI_EVENT_MSK);
0378 }
0379
0380 static void napi_enable_fs(struct net_device *dev)
0381 {
0382 struct fs_enet_private *fep = netdev_priv(dev);
0383 scc_t __iomem *sccp = fep->scc.sccp;
0384
0385 S16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK);
0386 }
0387
0388 static void napi_disable_fs(struct net_device *dev)
0389 {
0390 struct fs_enet_private *fep = netdev_priv(dev);
0391 scc_t __iomem *sccp = fep->scc.sccp;
0392
0393 C16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK);
0394 }
0395
0396 static void rx_bd_done(struct net_device *dev)
0397 {
0398
0399 }
0400
0401 static void tx_kickstart(struct net_device *dev)
0402 {
0403
0404 }
0405
0406 static u32 get_int_events(struct net_device *dev)
0407 {
0408 struct fs_enet_private *fep = netdev_priv(dev);
0409 scc_t __iomem *sccp = fep->scc.sccp;
0410
0411 return (u32) R16(sccp, scc_scce);
0412 }
0413
0414 static void clear_int_events(struct net_device *dev, u32 int_events)
0415 {
0416 struct fs_enet_private *fep = netdev_priv(dev);
0417 scc_t __iomem *sccp = fep->scc.sccp;
0418
0419 W16(sccp, scc_scce, int_events & 0xffff);
0420 }
0421
0422 static void ev_error(struct net_device *dev, u32 int_events)
0423 {
0424 struct fs_enet_private *fep = netdev_priv(dev);
0425
0426 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events);
0427 }
0428
0429 static int get_regs(struct net_device *dev, void *p, int *sizep)
0430 {
0431 struct fs_enet_private *fep = netdev_priv(dev);
0432
0433 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *))
0434 return -EINVAL;
0435
0436 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t));
0437 p = (char *)p + sizeof(scc_t);
0438
0439 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *));
0440
0441 return 0;
0442 }
0443
0444 static int get_regs_len(struct net_device *dev)
0445 {
0446 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *);
0447 }
0448
0449 static void tx_restart(struct net_device *dev)
0450 {
0451 struct fs_enet_private *fep = netdev_priv(dev);
0452
0453 scc_cr_cmd(fep, CPM_CR_RESTART_TX);
0454 }
0455
0456
0457
0458
0459
0460 const struct fs_ops fs_scc_ops = {
0461 .setup_data = setup_data,
0462 .cleanup_data = cleanup_data,
0463 .set_multicast_list = set_multicast_list,
0464 .restart = restart,
0465 .stop = stop,
0466 .napi_clear_event = napi_clear_event_fs,
0467 .napi_enable = napi_enable_fs,
0468 .napi_disable = napi_disable_fs,
0469 .rx_bd_done = rx_bd_done,
0470 .tx_kickstart = tx_kickstart,
0471 .get_int_events = get_int_events,
0472 .clear_int_events = clear_int_events,
0473 .ev_error = ev_error,
0474 .get_regs = get_regs,
0475 .get_regs_len = get_regs_len,
0476 .tx_restart = tx_restart,
0477 .allocate_bd = allocate_bd,
0478 .free_bd = free_bd,
0479 };