Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0+
0002 /*
0003  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
0004  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
0005  *
0006  * Right now, I am very wasteful with the buffers.  I allocate memory
0007  * pages and then divide them into 2K frame buffers.  This way I know I
0008  * have buffers large enough to hold one frame within one buffer descriptor.
0009  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
0010  * will be much more memory efficient and will easily handle lots of
0011  * small packets.
0012  *
0013  * Much better multiple PHY support by Magnus Damm.
0014  * Copyright (c) 2000 Ericsson Radio Systems AB.
0015  *
0016  * Support for FEC controller of ColdFire processors.
0017  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
0018  *
0019  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
0020  * Copyright (c) 2004-2006 Macq Electronique SA.
0021  *
0022  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
0023  */
0024 
0025 #include <linux/module.h>
0026 #include <linux/kernel.h>
0027 #include <linux/string.h>
0028 #include <linux/pm_runtime.h>
0029 #include <linux/ptrace.h>
0030 #include <linux/errno.h>
0031 #include <linux/ioport.h>
0032 #include <linux/slab.h>
0033 #include <linux/interrupt.h>
0034 #include <linux/delay.h>
0035 #include <linux/netdevice.h>
0036 #include <linux/etherdevice.h>
0037 #include <linux/skbuff.h>
0038 #include <linux/in.h>
0039 #include <linux/ip.h>
0040 #include <net/ip.h>
0041 #include <net/selftests.h>
0042 #include <net/tso.h>
0043 #include <linux/tcp.h>
0044 #include <linux/udp.h>
0045 #include <linux/icmp.h>
0046 #include <linux/spinlock.h>
0047 #include <linux/workqueue.h>
0048 #include <linux/bitops.h>
0049 #include <linux/io.h>
0050 #include <linux/irq.h>
0051 #include <linux/clk.h>
0052 #include <linux/crc32.h>
0053 #include <linux/platform_device.h>
0054 #include <linux/mdio.h>
0055 #include <linux/phy.h>
0056 #include <linux/fec.h>
0057 #include <linux/of.h>
0058 #include <linux/of_device.h>
0059 #include <linux/of_gpio.h>
0060 #include <linux/of_mdio.h>
0061 #include <linux/of_net.h>
0062 #include <linux/regulator/consumer.h>
0063 #include <linux/if_vlan.h>
0064 #include <linux/pinctrl/consumer.h>
0065 #include <linux/prefetch.h>
0066 #include <linux/mfd/syscon.h>
0067 #include <linux/regmap.h>
0068 #include <soc/imx/cpuidle.h>
0069 
0070 #include <asm/cacheflush.h>
0071 
0072 #include "fec.h"
0073 
0074 static void set_multicast_list(struct net_device *ndev);
0075 static void fec_enet_itr_coal_init(struct net_device *ndev);
0076 
0077 #define DRIVER_NAME "fec"
0078 
0079 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
0080 
0081 /* Pause frame feild and FIFO threshold */
0082 #define FEC_ENET_FCE    (1 << 5)
0083 #define FEC_ENET_RSEM_V 0x84
0084 #define FEC_ENET_RSFL_V 16
0085 #define FEC_ENET_RAEM_V 0x8
0086 #define FEC_ENET_RAFL_V 0x8
0087 #define FEC_ENET_OPD_V  0xFFF0
0088 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
0089 
0090 struct fec_devinfo {
0091     u32 quirks;
0092 };
0093 
0094 static const struct fec_devinfo fec_imx25_info = {
0095     .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
0096           FEC_QUIRK_HAS_FRREG,
0097 };
0098 
0099 static const struct fec_devinfo fec_imx27_info = {
0100     .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
0101 };
0102 
0103 static const struct fec_devinfo fec_imx28_info = {
0104     .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
0105           FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
0106           FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
0107           FEC_QUIRK_NO_HARD_RESET,
0108 };
0109 
0110 static const struct fec_devinfo fec_imx6q_info = {
0111     .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
0112           FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
0113           FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
0114           FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
0115           FEC_QUIRK_HAS_PMQOS,
0116 };
0117 
0118 static const struct fec_devinfo fec_mvf600_info = {
0119     .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
0120 };
0121 
0122 static const struct fec_devinfo fec_imx6x_info = {
0123     .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
0124           FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
0125           FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
0126           FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
0127           FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
0128           FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
0129 };
0130 
0131 static const struct fec_devinfo fec_imx6ul_info = {
0132     .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
0133           FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
0134           FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
0135           FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
0136           FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
0137 };
0138 
0139 static const struct fec_devinfo fec_imx8mq_info = {
0140     .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
0141           FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
0142           FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
0143           FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
0144           FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
0145           FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
0146           FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
0147 };
0148 
0149 static const struct fec_devinfo fec_imx8qm_info = {
0150     .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
0151           FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
0152           FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
0153           FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
0154           FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
0155           FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
0156           FEC_QUIRK_DELAYED_CLKS_SUPPORT,
0157 };
0158 
0159 static struct platform_device_id fec_devtype[] = {
0160     {
0161         /* keep it for coldfire */
0162         .name = DRIVER_NAME,
0163         .driver_data = 0,
0164     }, {
0165         .name = "imx25-fec",
0166         .driver_data = (kernel_ulong_t)&fec_imx25_info,
0167     }, {
0168         .name = "imx27-fec",
0169         .driver_data = (kernel_ulong_t)&fec_imx27_info,
0170     }, {
0171         .name = "imx28-fec",
0172         .driver_data = (kernel_ulong_t)&fec_imx28_info,
0173     }, {
0174         .name = "imx6q-fec",
0175         .driver_data = (kernel_ulong_t)&fec_imx6q_info,
0176     }, {
0177         .name = "mvf600-fec",
0178         .driver_data = (kernel_ulong_t)&fec_mvf600_info,
0179     }, {
0180         .name = "imx6sx-fec",
0181         .driver_data = (kernel_ulong_t)&fec_imx6x_info,
0182     }, {
0183         .name = "imx6ul-fec",
0184         .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
0185     }, {
0186         .name = "imx8mq-fec",
0187         .driver_data = (kernel_ulong_t)&fec_imx8mq_info,
0188     }, {
0189         .name = "imx8qm-fec",
0190         .driver_data = (kernel_ulong_t)&fec_imx8qm_info,
0191     }, {
0192         /* sentinel */
0193     }
0194 };
0195 MODULE_DEVICE_TABLE(platform, fec_devtype);
0196 
0197 enum imx_fec_type {
0198     IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
0199     IMX27_FEC,  /* runs on i.mx27/35/51 */
0200     IMX28_FEC,
0201     IMX6Q_FEC,
0202     MVF600_FEC,
0203     IMX6SX_FEC,
0204     IMX6UL_FEC,
0205     IMX8MQ_FEC,
0206     IMX8QM_FEC,
0207 };
0208 
0209 static const struct of_device_id fec_dt_ids[] = {
0210     { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
0211     { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
0212     { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
0213     { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
0214     { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
0215     { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
0216     { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
0217     { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
0218     { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
0219     { /* sentinel */ }
0220 };
0221 MODULE_DEVICE_TABLE(of, fec_dt_ids);
0222 
0223 static unsigned char macaddr[ETH_ALEN];
0224 module_param_array(macaddr, byte, NULL, 0);
0225 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
0226 
0227 #if defined(CONFIG_M5272)
0228 /*
0229  * Some hardware gets it MAC address out of local flash memory.
0230  * if this is non-zero then assume it is the address to get MAC from.
0231  */
0232 #if defined(CONFIG_NETtel)
0233 #define FEC_FLASHMAC    0xf0006006
0234 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
0235 #define FEC_FLASHMAC    0xf0006000
0236 #elif defined(CONFIG_CANCam)
0237 #define FEC_FLASHMAC    0xf0020000
0238 #elif defined (CONFIG_M5272C3)
0239 #define FEC_FLASHMAC    (0xffe04000 + 4)
0240 #elif defined(CONFIG_MOD5272)
0241 #define FEC_FLASHMAC    0xffc0406b
0242 #else
0243 #define FEC_FLASHMAC    0
0244 #endif
0245 #endif /* CONFIG_M5272 */
0246 
0247 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
0248  *
0249  * 2048 byte skbufs are allocated. However, alignment requirements
0250  * varies between FEC variants. Worst case is 64, so round down by 64.
0251  */
0252 #define PKT_MAXBUF_SIZE     (round_down(2048 - 64, 64))
0253 #define PKT_MINBUF_SIZE     64
0254 
0255 /* FEC receive acceleration */
0256 #define FEC_RACC_IPDIS      (1 << 1)
0257 #define FEC_RACC_PRODIS     (1 << 2)
0258 #define FEC_RACC_SHIFT16    BIT(7)
0259 #define FEC_RACC_OPTIONS    (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
0260 
0261 /* MIB Control Register */
0262 #define FEC_MIB_CTRLSTAT_DISABLE    BIT(31)
0263 
0264 /*
0265  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
0266  * size bits. Other FEC hardware does not, so we need to take that into
0267  * account when setting it.
0268  */
0269 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
0270     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
0271     defined(CONFIG_ARM64)
0272 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
0273 #else
0274 #define OPT_FRAME_SIZE  0
0275 #endif
0276 
0277 /* FEC MII MMFR bits definition */
0278 #define FEC_MMFR_ST     (1 << 30)
0279 #define FEC_MMFR_ST_C45     (0)
0280 #define FEC_MMFR_OP_READ    (2 << 28)
0281 #define FEC_MMFR_OP_READ_C45    (3 << 28)
0282 #define FEC_MMFR_OP_WRITE   (1 << 28)
0283 #define FEC_MMFR_OP_ADDR_WRITE  (0)
0284 #define FEC_MMFR_PA(v)      ((v & 0x1f) << 23)
0285 #define FEC_MMFR_RA(v)      ((v & 0x1f) << 18)
0286 #define FEC_MMFR_TA     (2 << 16)
0287 #define FEC_MMFR_DATA(v)    (v & 0xffff)
0288 /* FEC ECR bits definition */
0289 #define FEC_ECR_MAGICEN     (1 << 2)
0290 #define FEC_ECR_SLEEP       (1 << 3)
0291 
0292 #define FEC_MII_TIMEOUT     30000 /* us */
0293 
0294 /* Transmitter timeout */
0295 #define TX_TIMEOUT (2 * HZ)
0296 
0297 #define FEC_PAUSE_FLAG_AUTONEG  0x1
0298 #define FEC_PAUSE_FLAG_ENABLE   0x2
0299 #define FEC_WOL_HAS_MAGIC_PACKET    (0x1 << 0)
0300 #define FEC_WOL_FLAG_ENABLE     (0x1 << 1)
0301 #define FEC_WOL_FLAG_SLEEP_ON       (0x1 << 2)
0302 
0303 #define COPYBREAK_DEFAULT   256
0304 
0305 /* Max number of allowed TCP segments for software TSO */
0306 #define FEC_MAX_TSO_SEGS    100
0307 #define FEC_MAX_SKB_DESCS   (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
0308 
0309 #define IS_TSO_HEADER(txq, addr) \
0310     ((addr >= txq->tso_hdrs_dma) && \
0311     (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
0312 
0313 static int mii_cnt;
0314 
0315 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
0316                          struct bufdesc_prop *bd)
0317 {
0318     return (bdp >= bd->last) ? bd->base
0319             : (struct bufdesc *)(((void *)bdp) + bd->dsize);
0320 }
0321 
0322 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
0323                          struct bufdesc_prop *bd)
0324 {
0325     return (bdp <= bd->base) ? bd->last
0326             : (struct bufdesc *)(((void *)bdp) - bd->dsize);
0327 }
0328 
0329 static int fec_enet_get_bd_index(struct bufdesc *bdp,
0330                  struct bufdesc_prop *bd)
0331 {
0332     return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
0333 }
0334 
0335 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
0336 {
0337     int entries;
0338 
0339     entries = (((const char *)txq->dirty_tx -
0340             (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
0341 
0342     return entries >= 0 ? entries : entries + txq->bd.ring_size;
0343 }
0344 
0345 static void swap_buffer(void *bufaddr, int len)
0346 {
0347     int i;
0348     unsigned int *buf = bufaddr;
0349 
0350     for (i = 0; i < len; i += 4, buf++)
0351         swab32s(buf);
0352 }
0353 
0354 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
0355 {
0356     int i;
0357     unsigned int *src = src_buf;
0358     unsigned int *dst = dst_buf;
0359 
0360     for (i = 0; i < len; i += 4, src++, dst++)
0361         *dst = swab32p(src);
0362 }
0363 
0364 static void fec_dump(struct net_device *ndev)
0365 {
0366     struct fec_enet_private *fep = netdev_priv(ndev);
0367     struct bufdesc *bdp;
0368     struct fec_enet_priv_tx_q *txq;
0369     int index = 0;
0370 
0371     netdev_info(ndev, "TX ring dump\n");
0372     pr_info("Nr     SC     addr       len  SKB\n");
0373 
0374     txq = fep->tx_queue[0];
0375     bdp = txq->bd.base;
0376 
0377     do {
0378         pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
0379             index,
0380             bdp == txq->bd.cur ? 'S' : ' ',
0381             bdp == txq->dirty_tx ? 'H' : ' ',
0382             fec16_to_cpu(bdp->cbd_sc),
0383             fec32_to_cpu(bdp->cbd_bufaddr),
0384             fec16_to_cpu(bdp->cbd_datlen),
0385             txq->tx_skbuff[index]);
0386         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
0387         index++;
0388     } while (bdp != txq->bd.base);
0389 }
0390 
0391 static inline bool is_ipv4_pkt(struct sk_buff *skb)
0392 {
0393     return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
0394 }
0395 
0396 static int
0397 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
0398 {
0399     /* Only run for packets requiring a checksum. */
0400     if (skb->ip_summed != CHECKSUM_PARTIAL)
0401         return 0;
0402 
0403     if (unlikely(skb_cow_head(skb, 0)))
0404         return -1;
0405 
0406     if (is_ipv4_pkt(skb))
0407         ip_hdr(skb)->check = 0;
0408     *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
0409 
0410     return 0;
0411 }
0412 
0413 static struct bufdesc *
0414 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
0415                  struct sk_buff *skb,
0416                  struct net_device *ndev)
0417 {
0418     struct fec_enet_private *fep = netdev_priv(ndev);
0419     struct bufdesc *bdp = txq->bd.cur;
0420     struct bufdesc_ex *ebdp;
0421     int nr_frags = skb_shinfo(skb)->nr_frags;
0422     int frag, frag_len;
0423     unsigned short status;
0424     unsigned int estatus = 0;
0425     skb_frag_t *this_frag;
0426     unsigned int index;
0427     void *bufaddr;
0428     dma_addr_t addr;
0429     int i;
0430 
0431     for (frag = 0; frag < nr_frags; frag++) {
0432         this_frag = &skb_shinfo(skb)->frags[frag];
0433         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
0434         ebdp = (struct bufdesc_ex *)bdp;
0435 
0436         status = fec16_to_cpu(bdp->cbd_sc);
0437         status &= ~BD_ENET_TX_STATS;
0438         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
0439         frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
0440 
0441         /* Handle the last BD specially */
0442         if (frag == nr_frags - 1) {
0443             status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
0444             if (fep->bufdesc_ex) {
0445                 estatus |= BD_ENET_TX_INT;
0446                 if (unlikely(skb_shinfo(skb)->tx_flags &
0447                     SKBTX_HW_TSTAMP && fep->hwts_tx_en))
0448                     estatus |= BD_ENET_TX_TS;
0449             }
0450         }
0451 
0452         if (fep->bufdesc_ex) {
0453             if (fep->quirks & FEC_QUIRK_HAS_AVB)
0454                 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
0455             if (skb->ip_summed == CHECKSUM_PARTIAL)
0456                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
0457 
0458             ebdp->cbd_bdu = 0;
0459             ebdp->cbd_esc = cpu_to_fec32(estatus);
0460         }
0461 
0462         bufaddr = skb_frag_address(this_frag);
0463 
0464         index = fec_enet_get_bd_index(bdp, &txq->bd);
0465         if (((unsigned long) bufaddr) & fep->tx_align ||
0466             fep->quirks & FEC_QUIRK_SWAP_FRAME) {
0467             memcpy(txq->tx_bounce[index], bufaddr, frag_len);
0468             bufaddr = txq->tx_bounce[index];
0469 
0470             if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
0471                 swap_buffer(bufaddr, frag_len);
0472         }
0473 
0474         addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
0475                       DMA_TO_DEVICE);
0476         if (dma_mapping_error(&fep->pdev->dev, addr)) {
0477             if (net_ratelimit())
0478                 netdev_err(ndev, "Tx DMA memory map failed\n");
0479             goto dma_mapping_error;
0480         }
0481 
0482         bdp->cbd_bufaddr = cpu_to_fec32(addr);
0483         bdp->cbd_datlen = cpu_to_fec16(frag_len);
0484         /* Make sure the updates to rest of the descriptor are
0485          * performed before transferring ownership.
0486          */
0487         wmb();
0488         bdp->cbd_sc = cpu_to_fec16(status);
0489     }
0490 
0491     return bdp;
0492 dma_mapping_error:
0493     bdp = txq->bd.cur;
0494     for (i = 0; i < frag; i++) {
0495         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
0496         dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
0497                  fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
0498     }
0499     return ERR_PTR(-ENOMEM);
0500 }
0501 
0502 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
0503                    struct sk_buff *skb, struct net_device *ndev)
0504 {
0505     struct fec_enet_private *fep = netdev_priv(ndev);
0506     int nr_frags = skb_shinfo(skb)->nr_frags;
0507     struct bufdesc *bdp, *last_bdp;
0508     void *bufaddr;
0509     dma_addr_t addr;
0510     unsigned short status;
0511     unsigned short buflen;
0512     unsigned int estatus = 0;
0513     unsigned int index;
0514     int entries_free;
0515 
0516     entries_free = fec_enet_get_free_txdesc_num(txq);
0517     if (entries_free < MAX_SKB_FRAGS + 1) {
0518         dev_kfree_skb_any(skb);
0519         if (net_ratelimit())
0520             netdev_err(ndev, "NOT enough BD for SG!\n");
0521         return NETDEV_TX_OK;
0522     }
0523 
0524     /* Protocol checksum off-load for TCP and UDP. */
0525     if (fec_enet_clear_csum(skb, ndev)) {
0526         dev_kfree_skb_any(skb);
0527         return NETDEV_TX_OK;
0528     }
0529 
0530     /* Fill in a Tx ring entry */
0531     bdp = txq->bd.cur;
0532     last_bdp = bdp;
0533     status = fec16_to_cpu(bdp->cbd_sc);
0534     status &= ~BD_ENET_TX_STATS;
0535 
0536     /* Set buffer length and buffer pointer */
0537     bufaddr = skb->data;
0538     buflen = skb_headlen(skb);
0539 
0540     index = fec_enet_get_bd_index(bdp, &txq->bd);
0541     if (((unsigned long) bufaddr) & fep->tx_align ||
0542         fep->quirks & FEC_QUIRK_SWAP_FRAME) {
0543         memcpy(txq->tx_bounce[index], skb->data, buflen);
0544         bufaddr = txq->tx_bounce[index];
0545 
0546         if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
0547             swap_buffer(bufaddr, buflen);
0548     }
0549 
0550     /* Push the data cache so the CPM does not get stale memory data. */
0551     addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
0552     if (dma_mapping_error(&fep->pdev->dev, addr)) {
0553         dev_kfree_skb_any(skb);
0554         if (net_ratelimit())
0555             netdev_err(ndev, "Tx DMA memory map failed\n");
0556         return NETDEV_TX_OK;
0557     }
0558 
0559     if (nr_frags) {
0560         last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
0561         if (IS_ERR(last_bdp)) {
0562             dma_unmap_single(&fep->pdev->dev, addr,
0563                      buflen, DMA_TO_DEVICE);
0564             dev_kfree_skb_any(skb);
0565             return NETDEV_TX_OK;
0566         }
0567     } else {
0568         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
0569         if (fep->bufdesc_ex) {
0570             estatus = BD_ENET_TX_INT;
0571             if (unlikely(skb_shinfo(skb)->tx_flags &
0572                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
0573                 estatus |= BD_ENET_TX_TS;
0574         }
0575     }
0576     bdp->cbd_bufaddr = cpu_to_fec32(addr);
0577     bdp->cbd_datlen = cpu_to_fec16(buflen);
0578 
0579     if (fep->bufdesc_ex) {
0580 
0581         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
0582 
0583         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
0584             fep->hwts_tx_en))
0585             skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
0586 
0587         if (fep->quirks & FEC_QUIRK_HAS_AVB)
0588             estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
0589 
0590         if (skb->ip_summed == CHECKSUM_PARTIAL)
0591             estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
0592 
0593         ebdp->cbd_bdu = 0;
0594         ebdp->cbd_esc = cpu_to_fec32(estatus);
0595     }
0596 
0597     index = fec_enet_get_bd_index(last_bdp, &txq->bd);
0598     /* Save skb pointer */
0599     txq->tx_skbuff[index] = skb;
0600 
0601     /* Make sure the updates to rest of the descriptor are performed before
0602      * transferring ownership.
0603      */
0604     wmb();
0605 
0606     /* Send it on its way.  Tell FEC it's ready, interrupt when done,
0607      * it's the last BD of the frame, and to put the CRC on the end.
0608      */
0609     status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
0610     bdp->cbd_sc = cpu_to_fec16(status);
0611 
0612     /* If this was the last BD in the ring, start at the beginning again. */
0613     bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
0614 
0615     skb_tx_timestamp(skb);
0616 
0617     /* Make sure the update to bdp and tx_skbuff are performed before
0618      * txq->bd.cur.
0619      */
0620     wmb();
0621     txq->bd.cur = bdp;
0622 
0623     /* Trigger transmission start */
0624     writel(0, txq->bd.reg_desc_active);
0625 
0626     return 0;
0627 }
0628 
0629 static int
0630 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
0631               struct net_device *ndev,
0632               struct bufdesc *bdp, int index, char *data,
0633               int size, bool last_tcp, bool is_last)
0634 {
0635     struct fec_enet_private *fep = netdev_priv(ndev);
0636     struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
0637     unsigned short status;
0638     unsigned int estatus = 0;
0639     dma_addr_t addr;
0640 
0641     status = fec16_to_cpu(bdp->cbd_sc);
0642     status &= ~BD_ENET_TX_STATS;
0643 
0644     status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
0645 
0646     if (((unsigned long) data) & fep->tx_align ||
0647         fep->quirks & FEC_QUIRK_SWAP_FRAME) {
0648         memcpy(txq->tx_bounce[index], data, size);
0649         data = txq->tx_bounce[index];
0650 
0651         if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
0652             swap_buffer(data, size);
0653     }
0654 
0655     addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
0656     if (dma_mapping_error(&fep->pdev->dev, addr)) {
0657         dev_kfree_skb_any(skb);
0658         if (net_ratelimit())
0659             netdev_err(ndev, "Tx DMA memory map failed\n");
0660         return NETDEV_TX_BUSY;
0661     }
0662 
0663     bdp->cbd_datlen = cpu_to_fec16(size);
0664     bdp->cbd_bufaddr = cpu_to_fec32(addr);
0665 
0666     if (fep->bufdesc_ex) {
0667         if (fep->quirks & FEC_QUIRK_HAS_AVB)
0668             estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
0669         if (skb->ip_summed == CHECKSUM_PARTIAL)
0670             estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
0671         ebdp->cbd_bdu = 0;
0672         ebdp->cbd_esc = cpu_to_fec32(estatus);
0673     }
0674 
0675     /* Handle the last BD specially */
0676     if (last_tcp)
0677         status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
0678     if (is_last) {
0679         status |= BD_ENET_TX_INTR;
0680         if (fep->bufdesc_ex)
0681             ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
0682     }
0683 
0684     bdp->cbd_sc = cpu_to_fec16(status);
0685 
0686     return 0;
0687 }
0688 
0689 static int
0690 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
0691              struct sk_buff *skb, struct net_device *ndev,
0692              struct bufdesc *bdp, int index)
0693 {
0694     struct fec_enet_private *fep = netdev_priv(ndev);
0695     int hdr_len = skb_tcp_all_headers(skb);
0696     struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
0697     void *bufaddr;
0698     unsigned long dmabuf;
0699     unsigned short status;
0700     unsigned int estatus = 0;
0701 
0702     status = fec16_to_cpu(bdp->cbd_sc);
0703     status &= ~BD_ENET_TX_STATS;
0704     status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
0705 
0706     bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
0707     dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
0708     if (((unsigned long)bufaddr) & fep->tx_align ||
0709         fep->quirks & FEC_QUIRK_SWAP_FRAME) {
0710         memcpy(txq->tx_bounce[index], skb->data, hdr_len);
0711         bufaddr = txq->tx_bounce[index];
0712 
0713         if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
0714             swap_buffer(bufaddr, hdr_len);
0715 
0716         dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
0717                     hdr_len, DMA_TO_DEVICE);
0718         if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
0719             dev_kfree_skb_any(skb);
0720             if (net_ratelimit())
0721                 netdev_err(ndev, "Tx DMA memory map failed\n");
0722             return NETDEV_TX_BUSY;
0723         }
0724     }
0725 
0726     bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
0727     bdp->cbd_datlen = cpu_to_fec16(hdr_len);
0728 
0729     if (fep->bufdesc_ex) {
0730         if (fep->quirks & FEC_QUIRK_HAS_AVB)
0731             estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
0732         if (skb->ip_summed == CHECKSUM_PARTIAL)
0733             estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
0734         ebdp->cbd_bdu = 0;
0735         ebdp->cbd_esc = cpu_to_fec32(estatus);
0736     }
0737 
0738     bdp->cbd_sc = cpu_to_fec16(status);
0739 
0740     return 0;
0741 }
0742 
0743 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
0744                    struct sk_buff *skb,
0745                    struct net_device *ndev)
0746 {
0747     struct fec_enet_private *fep = netdev_priv(ndev);
0748     int hdr_len, total_len, data_left;
0749     struct bufdesc *bdp = txq->bd.cur;
0750     struct tso_t tso;
0751     unsigned int index = 0;
0752     int ret;
0753 
0754     if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
0755         dev_kfree_skb_any(skb);
0756         if (net_ratelimit())
0757             netdev_err(ndev, "NOT enough BD for TSO!\n");
0758         return NETDEV_TX_OK;
0759     }
0760 
0761     /* Protocol checksum off-load for TCP and UDP. */
0762     if (fec_enet_clear_csum(skb, ndev)) {
0763         dev_kfree_skb_any(skb);
0764         return NETDEV_TX_OK;
0765     }
0766 
0767     /* Initialize the TSO handler, and prepare the first payload */
0768     hdr_len = tso_start(skb, &tso);
0769 
0770     total_len = skb->len - hdr_len;
0771     while (total_len > 0) {
0772         char *hdr;
0773 
0774         index = fec_enet_get_bd_index(bdp, &txq->bd);
0775         data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
0776         total_len -= data_left;
0777 
0778         /* prepare packet headers: MAC + IP + TCP */
0779         hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
0780         tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
0781         ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
0782         if (ret)
0783             goto err_release;
0784 
0785         while (data_left > 0) {
0786             int size;
0787 
0788             size = min_t(int, tso.size, data_left);
0789             bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
0790             index = fec_enet_get_bd_index(bdp, &txq->bd);
0791             ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
0792                             bdp, index,
0793                             tso.data, size,
0794                             size == data_left,
0795                             total_len == 0);
0796             if (ret)
0797                 goto err_release;
0798 
0799             data_left -= size;
0800             tso_build_data(skb, &tso, size);
0801         }
0802 
0803         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
0804     }
0805 
0806     /* Save skb pointer */
0807     txq->tx_skbuff[index] = skb;
0808 
0809     skb_tx_timestamp(skb);
0810     txq->bd.cur = bdp;
0811 
0812     /* Trigger transmission start */
0813     if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
0814         !readl(txq->bd.reg_desc_active) ||
0815         !readl(txq->bd.reg_desc_active) ||
0816         !readl(txq->bd.reg_desc_active) ||
0817         !readl(txq->bd.reg_desc_active))
0818         writel(0, txq->bd.reg_desc_active);
0819 
0820     return 0;
0821 
0822 err_release:
0823     /* TODO: Release all used data descriptors for TSO */
0824     return ret;
0825 }
0826 
0827 static netdev_tx_t
0828 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
0829 {
0830     struct fec_enet_private *fep = netdev_priv(ndev);
0831     int entries_free;
0832     unsigned short queue;
0833     struct fec_enet_priv_tx_q *txq;
0834     struct netdev_queue *nq;
0835     int ret;
0836 
0837     queue = skb_get_queue_mapping(skb);
0838     txq = fep->tx_queue[queue];
0839     nq = netdev_get_tx_queue(ndev, queue);
0840 
0841     if (skb_is_gso(skb))
0842         ret = fec_enet_txq_submit_tso(txq, skb, ndev);
0843     else
0844         ret = fec_enet_txq_submit_skb(txq, skb, ndev);
0845     if (ret)
0846         return ret;
0847 
0848     entries_free = fec_enet_get_free_txdesc_num(txq);
0849     if (entries_free <= txq->tx_stop_threshold)
0850         netif_tx_stop_queue(nq);
0851 
0852     return NETDEV_TX_OK;
0853 }
0854 
0855 /* Init RX & TX buffer descriptors
0856  */
0857 static void fec_enet_bd_init(struct net_device *dev)
0858 {
0859     struct fec_enet_private *fep = netdev_priv(dev);
0860     struct fec_enet_priv_tx_q *txq;
0861     struct fec_enet_priv_rx_q *rxq;
0862     struct bufdesc *bdp;
0863     unsigned int i;
0864     unsigned int q;
0865 
0866     for (q = 0; q < fep->num_rx_queues; q++) {
0867         /* Initialize the receive buffer descriptors. */
0868         rxq = fep->rx_queue[q];
0869         bdp = rxq->bd.base;
0870 
0871         for (i = 0; i < rxq->bd.ring_size; i++) {
0872 
0873             /* Initialize the BD for every fragment in the page. */
0874             if (bdp->cbd_bufaddr)
0875                 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
0876             else
0877                 bdp->cbd_sc = cpu_to_fec16(0);
0878             bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
0879         }
0880 
0881         /* Set the last buffer to wrap */
0882         bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
0883         bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
0884 
0885         rxq->bd.cur = rxq->bd.base;
0886     }
0887 
0888     for (q = 0; q < fep->num_tx_queues; q++) {
0889         /* ...and the same for transmit */
0890         txq = fep->tx_queue[q];
0891         bdp = txq->bd.base;
0892         txq->bd.cur = bdp;
0893 
0894         for (i = 0; i < txq->bd.ring_size; i++) {
0895             /* Initialize the BD for every fragment in the page. */
0896             bdp->cbd_sc = cpu_to_fec16(0);
0897             if (bdp->cbd_bufaddr &&
0898                 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
0899                 dma_unmap_single(&fep->pdev->dev,
0900                          fec32_to_cpu(bdp->cbd_bufaddr),
0901                          fec16_to_cpu(bdp->cbd_datlen),
0902                          DMA_TO_DEVICE);
0903             if (txq->tx_skbuff[i]) {
0904                 dev_kfree_skb_any(txq->tx_skbuff[i]);
0905                 txq->tx_skbuff[i] = NULL;
0906             }
0907             bdp->cbd_bufaddr = cpu_to_fec32(0);
0908             bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
0909         }
0910 
0911         /* Set the last buffer to wrap */
0912         bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
0913         bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
0914         txq->dirty_tx = bdp;
0915     }
0916 }
0917 
0918 static void fec_enet_active_rxring(struct net_device *ndev)
0919 {
0920     struct fec_enet_private *fep = netdev_priv(ndev);
0921     int i;
0922 
0923     for (i = 0; i < fep->num_rx_queues; i++)
0924         writel(0, fep->rx_queue[i]->bd.reg_desc_active);
0925 }
0926 
0927 static void fec_enet_enable_ring(struct net_device *ndev)
0928 {
0929     struct fec_enet_private *fep = netdev_priv(ndev);
0930     struct fec_enet_priv_tx_q *txq;
0931     struct fec_enet_priv_rx_q *rxq;
0932     int i;
0933 
0934     for (i = 0; i < fep->num_rx_queues; i++) {
0935         rxq = fep->rx_queue[i];
0936         writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
0937         writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
0938 
0939         /* enable DMA1/2 */
0940         if (i)
0941             writel(RCMR_MATCHEN | RCMR_CMP(i),
0942                    fep->hwp + FEC_RCMR(i));
0943     }
0944 
0945     for (i = 0; i < fep->num_tx_queues; i++) {
0946         txq = fep->tx_queue[i];
0947         writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
0948 
0949         /* enable DMA1/2 */
0950         if (i)
0951             writel(DMA_CLASS_EN | IDLE_SLOPE(i),
0952                    fep->hwp + FEC_DMA_CFG(i));
0953     }
0954 }
0955 
0956 static void fec_enet_reset_skb(struct net_device *ndev)
0957 {
0958     struct fec_enet_private *fep = netdev_priv(ndev);
0959     struct fec_enet_priv_tx_q *txq;
0960     int i, j;
0961 
0962     for (i = 0; i < fep->num_tx_queues; i++) {
0963         txq = fep->tx_queue[i];
0964 
0965         for (j = 0; j < txq->bd.ring_size; j++) {
0966             if (txq->tx_skbuff[j]) {
0967                 dev_kfree_skb_any(txq->tx_skbuff[j]);
0968                 txq->tx_skbuff[j] = NULL;
0969             }
0970         }
0971     }
0972 }
0973 
0974 /*
0975  * This function is called to start or restart the FEC during a link
0976  * change, transmit timeout, or to reconfigure the FEC.  The network
0977  * packet processing for this device must be stopped before this call.
0978  */
0979 static void
0980 fec_restart(struct net_device *ndev)
0981 {
0982     struct fec_enet_private *fep = netdev_priv(ndev);
0983     u32 temp_mac[2];
0984     u32 rcntl = OPT_FRAME_SIZE | 0x04;
0985     u32 ecntl = 0x2; /* ETHEREN */
0986 
0987     /* Whack a reset.  We should wait for this.
0988      * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
0989      * instead of reset MAC itself.
0990      */
0991     if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
0992         ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
0993         writel(0, fep->hwp + FEC_ECNTRL);
0994     } else {
0995         writel(1, fep->hwp + FEC_ECNTRL);
0996         udelay(10);
0997     }
0998 
0999     /*
1000      * enet-mac reset will reset mac address registers too,
1001      * so need to reconfigure it.
1002      */
1003     memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1004     writel((__force u32)cpu_to_be32(temp_mac[0]),
1005            fep->hwp + FEC_ADDR_LOW);
1006     writel((__force u32)cpu_to_be32(temp_mac[1]),
1007            fep->hwp + FEC_ADDR_HIGH);
1008 
1009     /* Clear any outstanding interrupt, except MDIO. */
1010     writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1011 
1012     fec_enet_bd_init(ndev);
1013 
1014     fec_enet_enable_ring(ndev);
1015 
1016     /* Reset tx SKB buffers. */
1017     fec_enet_reset_skb(ndev);
1018 
1019     /* Enable MII mode */
1020     if (fep->full_duplex == DUPLEX_FULL) {
1021         /* FD enable */
1022         writel(0x04, fep->hwp + FEC_X_CNTRL);
1023     } else {
1024         /* No Rcv on Xmit */
1025         rcntl |= 0x02;
1026         writel(0x0, fep->hwp + FEC_X_CNTRL);
1027     }
1028 
1029     /* Set MII speed */
1030     writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1031 
1032 #if !defined(CONFIG_M5272)
1033     if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1034         u32 val = readl(fep->hwp + FEC_RACC);
1035 
1036         /* align IP header */
1037         val |= FEC_RACC_SHIFT16;
1038         if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1039             /* set RX checksum */
1040             val |= FEC_RACC_OPTIONS;
1041         else
1042             val &= ~FEC_RACC_OPTIONS;
1043         writel(val, fep->hwp + FEC_RACC);
1044         writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1045     }
1046 #endif
1047 
1048     /*
1049      * The phy interface and speed need to get configured
1050      * differently on enet-mac.
1051      */
1052     if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1053         /* Enable flow control and length check */
1054         rcntl |= 0x40000000 | 0x00000020;
1055 
1056         /* RGMII, RMII or MII */
1057         if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1058             fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1059             fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1060             fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1061             rcntl |= (1 << 6);
1062         else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1063             rcntl |= (1 << 8);
1064         else
1065             rcntl &= ~(1 << 8);
1066 
1067         /* 1G, 100M or 10M */
1068         if (ndev->phydev) {
1069             if (ndev->phydev->speed == SPEED_1000)
1070                 ecntl |= (1 << 5);
1071             else if (ndev->phydev->speed == SPEED_100)
1072                 rcntl &= ~(1 << 9);
1073             else
1074                 rcntl |= (1 << 9);
1075         }
1076     } else {
1077 #ifdef FEC_MIIGSK_ENR
1078         if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1079             u32 cfgr;
1080             /* disable the gasket and wait */
1081             writel(0, fep->hwp + FEC_MIIGSK_ENR);
1082             while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1083                 udelay(1);
1084 
1085             /*
1086              * configure the gasket:
1087              *   RMII, 50 MHz, no loopback, no echo
1088              *   MII, 25 MHz, no loopback, no echo
1089              */
1090             cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1091                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1092             if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1093                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1094             writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1095 
1096             /* re-enable the gasket */
1097             writel(2, fep->hwp + FEC_MIIGSK_ENR);
1098         }
1099 #endif
1100     }
1101 
1102 #if !defined(CONFIG_M5272)
1103     /* enable pause frame*/
1104     if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1105         ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1106          ndev->phydev && ndev->phydev->pause)) {
1107         rcntl |= FEC_ENET_FCE;
1108 
1109         /* set FIFO threshold parameter to reduce overrun */
1110         writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1111         writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1112         writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1113         writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1114 
1115         /* OPD */
1116         writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1117     } else {
1118         rcntl &= ~FEC_ENET_FCE;
1119     }
1120 #endif /* !defined(CONFIG_M5272) */
1121 
1122     writel(rcntl, fep->hwp + FEC_R_CNTRL);
1123 
1124     /* Setup multicast filter. */
1125     set_multicast_list(ndev);
1126 #ifndef CONFIG_M5272
1127     writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1128     writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1129 #endif
1130 
1131     if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1132         /* enable ENET endian swap */
1133         ecntl |= (1 << 8);
1134         /* enable ENET store and forward mode */
1135         writel(1 << 8, fep->hwp + FEC_X_WMRK);
1136     }
1137 
1138     if (fep->bufdesc_ex)
1139         ecntl |= (1 << 4);
1140 
1141     if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1142         fep->rgmii_txc_dly)
1143         ecntl |= FEC_ENET_TXC_DLY;
1144     if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1145         fep->rgmii_rxc_dly)
1146         ecntl |= FEC_ENET_RXC_DLY;
1147 
1148 #ifndef CONFIG_M5272
1149     /* Enable the MIB statistic event counters */
1150     writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1151 #endif
1152 
1153     /* And last, enable the transmit and receive processing */
1154     writel(ecntl, fep->hwp + FEC_ECNTRL);
1155     fec_enet_active_rxring(ndev);
1156 
1157     if (fep->bufdesc_ex)
1158         fec_ptp_start_cyclecounter(ndev);
1159 
1160     /* Enable interrupts we wish to service */
1161     if (fep->link)
1162         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1163     else
1164         writel(0, fep->hwp + FEC_IMASK);
1165 
1166     /* Init the interrupt coalescing */
1167     fec_enet_itr_coal_init(ndev);
1168 
1169 }
1170 
1171 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1172 {
1173     struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1174     struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1175 
1176     if (stop_gpr->gpr) {
1177         if (enabled)
1178             regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1179                        BIT(stop_gpr->bit),
1180                        BIT(stop_gpr->bit));
1181         else
1182             regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1183                        BIT(stop_gpr->bit), 0);
1184     } else if (pdata && pdata->sleep_mode_enable) {
1185         pdata->sleep_mode_enable(enabled);
1186     }
1187 }
1188 
1189 static void fec_irqs_disable(struct net_device *ndev)
1190 {
1191     struct fec_enet_private *fep = netdev_priv(ndev);
1192 
1193     writel(0, fep->hwp + FEC_IMASK);
1194 }
1195 
1196 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1197 {
1198     struct fec_enet_private *fep = netdev_priv(ndev);
1199 
1200     writel(0, fep->hwp + FEC_IMASK);
1201     writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1202 }
1203 
1204 static void
1205 fec_stop(struct net_device *ndev)
1206 {
1207     struct fec_enet_private *fep = netdev_priv(ndev);
1208     u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1209     u32 val;
1210 
1211     /* We cannot expect a graceful transmit stop without link !!! */
1212     if (fep->link) {
1213         writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1214         udelay(10);
1215         if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1216             netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1217     }
1218 
1219     /* Whack a reset.  We should wait for this.
1220      * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1221      * instead of reset MAC itself.
1222      */
1223     if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1224         if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1225             writel(0, fep->hwp + FEC_ECNTRL);
1226         } else {
1227             writel(1, fep->hwp + FEC_ECNTRL);
1228             udelay(10);
1229         }
1230     } else {
1231         val = readl(fep->hwp + FEC_ECNTRL);
1232         val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1233         writel(val, fep->hwp + FEC_ECNTRL);
1234     }
1235     writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1236     writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1237 
1238     /* We have to keep ENET enabled to have MII interrupt stay working */
1239     if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1240         !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1241         writel(2, fep->hwp + FEC_ECNTRL);
1242         writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1243     }
1244 }
1245 
1246 
1247 static void
1248 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1249 {
1250     struct fec_enet_private *fep = netdev_priv(ndev);
1251 
1252     fec_dump(ndev);
1253 
1254     ndev->stats.tx_errors++;
1255 
1256     schedule_work(&fep->tx_timeout_work);
1257 }
1258 
1259 static void fec_enet_timeout_work(struct work_struct *work)
1260 {
1261     struct fec_enet_private *fep =
1262         container_of(work, struct fec_enet_private, tx_timeout_work);
1263     struct net_device *ndev = fep->netdev;
1264 
1265     rtnl_lock();
1266     if (netif_device_present(ndev) || netif_running(ndev)) {
1267         napi_disable(&fep->napi);
1268         netif_tx_lock_bh(ndev);
1269         fec_restart(ndev);
1270         netif_tx_wake_all_queues(ndev);
1271         netif_tx_unlock_bh(ndev);
1272         napi_enable(&fep->napi);
1273     }
1274     rtnl_unlock();
1275 }
1276 
1277 static void
1278 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1279     struct skb_shared_hwtstamps *hwtstamps)
1280 {
1281     unsigned long flags;
1282     u64 ns;
1283 
1284     spin_lock_irqsave(&fep->tmreg_lock, flags);
1285     ns = timecounter_cyc2time(&fep->tc, ts);
1286     spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1287 
1288     memset(hwtstamps, 0, sizeof(*hwtstamps));
1289     hwtstamps->hwtstamp = ns_to_ktime(ns);
1290 }
1291 
1292 static void
1293 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1294 {
1295     struct  fec_enet_private *fep;
1296     struct bufdesc *bdp;
1297     unsigned short status;
1298     struct  sk_buff *skb;
1299     struct fec_enet_priv_tx_q *txq;
1300     struct netdev_queue *nq;
1301     int index = 0;
1302     int entries_free;
1303 
1304     fep = netdev_priv(ndev);
1305 
1306     txq = fep->tx_queue[queue_id];
1307     /* get next bdp of dirty_tx */
1308     nq = netdev_get_tx_queue(ndev, queue_id);
1309     bdp = txq->dirty_tx;
1310 
1311     /* get next bdp of dirty_tx */
1312     bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1313 
1314     while (bdp != READ_ONCE(txq->bd.cur)) {
1315         /* Order the load of bd.cur and cbd_sc */
1316         rmb();
1317         status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1318         if (status & BD_ENET_TX_READY)
1319             break;
1320 
1321         index = fec_enet_get_bd_index(bdp, &txq->bd);
1322 
1323         skb = txq->tx_skbuff[index];
1324         txq->tx_skbuff[index] = NULL;
1325         if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1326             dma_unmap_single(&fep->pdev->dev,
1327                      fec32_to_cpu(bdp->cbd_bufaddr),
1328                      fec16_to_cpu(bdp->cbd_datlen),
1329                      DMA_TO_DEVICE);
1330         bdp->cbd_bufaddr = cpu_to_fec32(0);
1331         if (!skb)
1332             goto skb_done;
1333 
1334         /* Check for errors. */
1335         if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1336                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1337                    BD_ENET_TX_CSL)) {
1338             ndev->stats.tx_errors++;
1339             if (status & BD_ENET_TX_HB)  /* No heartbeat */
1340                 ndev->stats.tx_heartbeat_errors++;
1341             if (status & BD_ENET_TX_LC)  /* Late collision */
1342                 ndev->stats.tx_window_errors++;
1343             if (status & BD_ENET_TX_RL)  /* Retrans limit */
1344                 ndev->stats.tx_aborted_errors++;
1345             if (status & BD_ENET_TX_UN)  /* Underrun */
1346                 ndev->stats.tx_fifo_errors++;
1347             if (status & BD_ENET_TX_CSL) /* Carrier lost */
1348                 ndev->stats.tx_carrier_errors++;
1349         } else {
1350             ndev->stats.tx_packets++;
1351             ndev->stats.tx_bytes += skb->len;
1352         }
1353 
1354         /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1355          * are to time stamp the packet, so we still need to check time
1356          * stamping enabled flag.
1357          */
1358         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1359                  fep->hwts_tx_en) &&
1360             fep->bufdesc_ex) {
1361             struct skb_shared_hwtstamps shhwtstamps;
1362             struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1363 
1364             fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1365             skb_tstamp_tx(skb, &shhwtstamps);
1366         }
1367 
1368         /* Deferred means some collisions occurred during transmit,
1369          * but we eventually sent the packet OK.
1370          */
1371         if (status & BD_ENET_TX_DEF)
1372             ndev->stats.collisions++;
1373 
1374         /* Free the sk buffer associated with this last transmit */
1375         dev_kfree_skb_any(skb);
1376 skb_done:
1377         /* Make sure the update to bdp and tx_skbuff are performed
1378          * before dirty_tx
1379          */
1380         wmb();
1381         txq->dirty_tx = bdp;
1382 
1383         /* Update pointer to next buffer descriptor to be transmitted */
1384         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1385 
1386         /* Since we have freed up a buffer, the ring is no longer full
1387          */
1388         if (netif_tx_queue_stopped(nq)) {
1389             entries_free = fec_enet_get_free_txdesc_num(txq);
1390             if (entries_free >= txq->tx_wake_threshold)
1391                 netif_tx_wake_queue(nq);
1392         }
1393     }
1394 
1395     /* ERR006358: Keep the transmitter going */
1396     if (bdp != txq->bd.cur &&
1397         readl(txq->bd.reg_desc_active) == 0)
1398         writel(0, txq->bd.reg_desc_active);
1399 }
1400 
1401 static void fec_enet_tx(struct net_device *ndev)
1402 {
1403     struct fec_enet_private *fep = netdev_priv(ndev);
1404     int i;
1405 
1406     /* Make sure that AVB queues are processed first. */
1407     for (i = fep->num_tx_queues - 1; i >= 0; i--)
1408         fec_enet_tx_queue(ndev, i);
1409 }
1410 
1411 static int
1412 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1413 {
1414     struct  fec_enet_private *fep = netdev_priv(ndev);
1415     int off;
1416 
1417     off = ((unsigned long)skb->data) & fep->rx_align;
1418     if (off)
1419         skb_reserve(skb, fep->rx_align + 1 - off);
1420 
1421     bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1422     if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1423         if (net_ratelimit())
1424             netdev_err(ndev, "Rx DMA memory map failed\n");
1425         return -ENOMEM;
1426     }
1427 
1428     return 0;
1429 }
1430 
1431 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1432                    struct bufdesc *bdp, u32 length, bool swap)
1433 {
1434     struct  fec_enet_private *fep = netdev_priv(ndev);
1435     struct sk_buff *new_skb;
1436 
1437     if (length > fep->rx_copybreak)
1438         return false;
1439 
1440     new_skb = netdev_alloc_skb(ndev, length);
1441     if (!new_skb)
1442         return false;
1443 
1444     dma_sync_single_for_cpu(&fep->pdev->dev,
1445                 fec32_to_cpu(bdp->cbd_bufaddr),
1446                 FEC_ENET_RX_FRSIZE - fep->rx_align,
1447                 DMA_FROM_DEVICE);
1448     if (!swap)
1449         memcpy(new_skb->data, (*skb)->data, length);
1450     else
1451         swap_buffer2(new_skb->data, (*skb)->data, length);
1452     *skb = new_skb;
1453 
1454     return true;
1455 }
1456 
1457 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1458  * When we update through the ring, if the next incoming buffer has
1459  * not been given to the system, we just set the empty indicator,
1460  * effectively tossing the packet.
1461  */
1462 static int
1463 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1464 {
1465     struct fec_enet_private *fep = netdev_priv(ndev);
1466     struct fec_enet_priv_rx_q *rxq;
1467     struct bufdesc *bdp;
1468     unsigned short status;
1469     struct  sk_buff *skb_new = NULL;
1470     struct  sk_buff *skb;
1471     ushort  pkt_len;
1472     __u8 *data;
1473     int pkt_received = 0;
1474     struct  bufdesc_ex *ebdp = NULL;
1475     bool    vlan_packet_rcvd = false;
1476     u16 vlan_tag;
1477     int index = 0;
1478     bool    is_copybreak;
1479     bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1480 
1481 #ifdef CONFIG_M532x
1482     flush_cache_all();
1483 #endif
1484     rxq = fep->rx_queue[queue_id];
1485 
1486     /* First, grab all of the stats for the incoming packet.
1487      * These get messed up if we get called due to a busy condition.
1488      */
1489     bdp = rxq->bd.cur;
1490 
1491     while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1492 
1493         if (pkt_received >= budget)
1494             break;
1495         pkt_received++;
1496 
1497         writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1498 
1499         /* Check for errors. */
1500         status ^= BD_ENET_RX_LAST;
1501         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1502                BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1503                BD_ENET_RX_CL)) {
1504             ndev->stats.rx_errors++;
1505             if (status & BD_ENET_RX_OV) {
1506                 /* FIFO overrun */
1507                 ndev->stats.rx_fifo_errors++;
1508                 goto rx_processing_done;
1509             }
1510             if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1511                         | BD_ENET_RX_LAST)) {
1512                 /* Frame too long or too short. */
1513                 ndev->stats.rx_length_errors++;
1514                 if (status & BD_ENET_RX_LAST)
1515                     netdev_err(ndev, "rcv is not +last\n");
1516             }
1517             if (status & BD_ENET_RX_CR) /* CRC Error */
1518                 ndev->stats.rx_crc_errors++;
1519             /* Report late collisions as a frame error. */
1520             if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1521                 ndev->stats.rx_frame_errors++;
1522             goto rx_processing_done;
1523         }
1524 
1525         /* Process the incoming frame. */
1526         ndev->stats.rx_packets++;
1527         pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1528         ndev->stats.rx_bytes += pkt_len;
1529 
1530         index = fec_enet_get_bd_index(bdp, &rxq->bd);
1531         skb = rxq->rx_skbuff[index];
1532 
1533         /* The packet length includes FCS, but we don't want to
1534          * include that when passing upstream as it messes up
1535          * bridging applications.
1536          */
1537         is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1538                           need_swap);
1539         if (!is_copybreak) {
1540             skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1541             if (unlikely(!skb_new)) {
1542                 ndev->stats.rx_dropped++;
1543                 goto rx_processing_done;
1544             }
1545             dma_unmap_single(&fep->pdev->dev,
1546                      fec32_to_cpu(bdp->cbd_bufaddr),
1547                      FEC_ENET_RX_FRSIZE - fep->rx_align,
1548                      DMA_FROM_DEVICE);
1549         }
1550 
1551         prefetch(skb->data - NET_IP_ALIGN);
1552         skb_put(skb, pkt_len - 4);
1553         data = skb->data;
1554 
1555         if (!is_copybreak && need_swap)
1556             swap_buffer(data, pkt_len);
1557 
1558 #if !defined(CONFIG_M5272)
1559         if (fep->quirks & FEC_QUIRK_HAS_RACC)
1560             data = skb_pull_inline(skb, 2);
1561 #endif
1562 
1563         /* Extract the enhanced buffer descriptor */
1564         ebdp = NULL;
1565         if (fep->bufdesc_ex)
1566             ebdp = (struct bufdesc_ex *)bdp;
1567 
1568         /* If this is a VLAN packet remove the VLAN Tag */
1569         vlan_packet_rcvd = false;
1570         if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1571             fep->bufdesc_ex &&
1572             (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1573             /* Push and remove the vlan tag */
1574             struct vlan_hdr *vlan_header =
1575                     (struct vlan_hdr *) (data + ETH_HLEN);
1576             vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1577 
1578             vlan_packet_rcvd = true;
1579 
1580             memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1581             skb_pull(skb, VLAN_HLEN);
1582         }
1583 
1584         skb->protocol = eth_type_trans(skb, ndev);
1585 
1586         /* Get receive timestamp from the skb */
1587         if (fep->hwts_rx_en && fep->bufdesc_ex)
1588             fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1589                       skb_hwtstamps(skb));
1590 
1591         if (fep->bufdesc_ex &&
1592             (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1593             if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1594                 /* don't check it */
1595                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1596             } else {
1597                 skb_checksum_none_assert(skb);
1598             }
1599         }
1600 
1601         /* Handle received VLAN packets */
1602         if (vlan_packet_rcvd)
1603             __vlan_hwaccel_put_tag(skb,
1604                            htons(ETH_P_8021Q),
1605                            vlan_tag);
1606 
1607         skb_record_rx_queue(skb, queue_id);
1608         napi_gro_receive(&fep->napi, skb);
1609 
1610         if (is_copybreak) {
1611             dma_sync_single_for_device(&fep->pdev->dev,
1612                            fec32_to_cpu(bdp->cbd_bufaddr),
1613                            FEC_ENET_RX_FRSIZE - fep->rx_align,
1614                            DMA_FROM_DEVICE);
1615         } else {
1616             rxq->rx_skbuff[index] = skb_new;
1617             fec_enet_new_rxbdp(ndev, bdp, skb_new);
1618         }
1619 
1620 rx_processing_done:
1621         /* Clear the status flags for this buffer */
1622         status &= ~BD_ENET_RX_STATS;
1623 
1624         /* Mark the buffer empty */
1625         status |= BD_ENET_RX_EMPTY;
1626 
1627         if (fep->bufdesc_ex) {
1628             struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1629 
1630             ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1631             ebdp->cbd_prot = 0;
1632             ebdp->cbd_bdu = 0;
1633         }
1634         /* Make sure the updates to rest of the descriptor are
1635          * performed before transferring ownership.
1636          */
1637         wmb();
1638         bdp->cbd_sc = cpu_to_fec16(status);
1639 
1640         /* Update BD pointer to next entry */
1641         bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1642 
1643         /* Doing this here will keep the FEC running while we process
1644          * incoming frames.  On a heavily loaded network, we should be
1645          * able to keep up at the expense of system resources.
1646          */
1647         writel(0, rxq->bd.reg_desc_active);
1648     }
1649     rxq->bd.cur = bdp;
1650     return pkt_received;
1651 }
1652 
1653 static int fec_enet_rx(struct net_device *ndev, int budget)
1654 {
1655     struct fec_enet_private *fep = netdev_priv(ndev);
1656     int i, done = 0;
1657 
1658     /* Make sure that AVB queues are processed first. */
1659     for (i = fep->num_rx_queues - 1; i >= 0; i--)
1660         done += fec_enet_rx_queue(ndev, budget - done, i);
1661 
1662     return done;
1663 }
1664 
1665 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1666 {
1667     uint int_events;
1668 
1669     int_events = readl(fep->hwp + FEC_IEVENT);
1670 
1671     /* Don't clear MDIO events, we poll for those */
1672     int_events &= ~FEC_ENET_MII;
1673 
1674     writel(int_events, fep->hwp + FEC_IEVENT);
1675 
1676     return int_events != 0;
1677 }
1678 
1679 static irqreturn_t
1680 fec_enet_interrupt(int irq, void *dev_id)
1681 {
1682     struct net_device *ndev = dev_id;
1683     struct fec_enet_private *fep = netdev_priv(ndev);
1684     irqreturn_t ret = IRQ_NONE;
1685 
1686     if (fec_enet_collect_events(fep) && fep->link) {
1687         ret = IRQ_HANDLED;
1688 
1689         if (napi_schedule_prep(&fep->napi)) {
1690             /* Disable interrupts */
1691             writel(0, fep->hwp + FEC_IMASK);
1692             __napi_schedule(&fep->napi);
1693         }
1694     }
1695 
1696     return ret;
1697 }
1698 
1699 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1700 {
1701     struct net_device *ndev = napi->dev;
1702     struct fec_enet_private *fep = netdev_priv(ndev);
1703     int done = 0;
1704 
1705     do {
1706         done += fec_enet_rx(ndev, budget - done);
1707         fec_enet_tx(ndev);
1708     } while ((done < budget) && fec_enet_collect_events(fep));
1709 
1710     if (done < budget) {
1711         napi_complete_done(napi, done);
1712         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1713     }
1714 
1715     return done;
1716 }
1717 
1718 /* ------------------------------------------------------------------------- */
1719 static int fec_get_mac(struct net_device *ndev)
1720 {
1721     struct fec_enet_private *fep = netdev_priv(ndev);
1722     unsigned char *iap, tmpaddr[ETH_ALEN];
1723     int ret;
1724 
1725     /*
1726      * try to get mac address in following order:
1727      *
1728      * 1) module parameter via kernel command line in form
1729      *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1730      */
1731     iap = macaddr;
1732 
1733     /*
1734      * 2) from device tree data
1735      */
1736     if (!is_valid_ether_addr(iap)) {
1737         struct device_node *np = fep->pdev->dev.of_node;
1738         if (np) {
1739             ret = of_get_mac_address(np, tmpaddr);
1740             if (!ret)
1741                 iap = tmpaddr;
1742             else if (ret == -EPROBE_DEFER)
1743                 return ret;
1744         }
1745     }
1746 
1747     /*
1748      * 3) from flash or fuse (via platform data)
1749      */
1750     if (!is_valid_ether_addr(iap)) {
1751 #ifdef CONFIG_M5272
1752         if (FEC_FLASHMAC)
1753             iap = (unsigned char *)FEC_FLASHMAC;
1754 #else
1755         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1756 
1757         if (pdata)
1758             iap = (unsigned char *)&pdata->mac;
1759 #endif
1760     }
1761 
1762     /*
1763      * 4) FEC mac registers set by bootloader
1764      */
1765     if (!is_valid_ether_addr(iap)) {
1766         *((__be32 *) &tmpaddr[0]) =
1767             cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1768         *((__be16 *) &tmpaddr[4]) =
1769             cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1770         iap = &tmpaddr[0];
1771     }
1772 
1773     /*
1774      * 5) random mac address
1775      */
1776     if (!is_valid_ether_addr(iap)) {
1777         /* Report it and use a random ethernet address instead */
1778         dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1779         eth_hw_addr_random(ndev);
1780         dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1781              ndev->dev_addr);
1782         return 0;
1783     }
1784 
1785     /* Adjust MAC if using macaddr */
1786     eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1787 
1788     return 0;
1789 }
1790 
1791 /* ------------------------------------------------------------------------- */
1792 
1793 /*
1794  * Phy section
1795  */
1796 static void fec_enet_adjust_link(struct net_device *ndev)
1797 {
1798     struct fec_enet_private *fep = netdev_priv(ndev);
1799     struct phy_device *phy_dev = ndev->phydev;
1800     int status_change = 0;
1801 
1802     /*
1803      * If the netdev is down, or is going down, we're not interested
1804      * in link state events, so just mark our idea of the link as down
1805      * and ignore the event.
1806      */
1807     if (!netif_running(ndev) || !netif_device_present(ndev)) {
1808         fep->link = 0;
1809     } else if (phy_dev->link) {
1810         if (!fep->link) {
1811             fep->link = phy_dev->link;
1812             status_change = 1;
1813         }
1814 
1815         if (fep->full_duplex != phy_dev->duplex) {
1816             fep->full_duplex = phy_dev->duplex;
1817             status_change = 1;
1818         }
1819 
1820         if (phy_dev->speed != fep->speed) {
1821             fep->speed = phy_dev->speed;
1822             status_change = 1;
1823         }
1824 
1825         /* if any of the above changed restart the FEC */
1826         if (status_change) {
1827             napi_disable(&fep->napi);
1828             netif_tx_lock_bh(ndev);
1829             fec_restart(ndev);
1830             netif_tx_wake_all_queues(ndev);
1831             netif_tx_unlock_bh(ndev);
1832             napi_enable(&fep->napi);
1833         }
1834     } else {
1835         if (fep->link) {
1836             napi_disable(&fep->napi);
1837             netif_tx_lock_bh(ndev);
1838             fec_stop(ndev);
1839             netif_tx_unlock_bh(ndev);
1840             napi_enable(&fep->napi);
1841             fep->link = phy_dev->link;
1842             status_change = 1;
1843         }
1844     }
1845 
1846     if (status_change)
1847         phy_print_status(phy_dev);
1848 }
1849 
1850 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1851 {
1852     uint ievent;
1853     int ret;
1854 
1855     ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1856                     ievent & FEC_ENET_MII, 2, 30000);
1857 
1858     if (!ret)
1859         writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1860 
1861     return ret;
1862 }
1863 
1864 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1865 {
1866     struct fec_enet_private *fep = bus->priv;
1867     struct device *dev = &fep->pdev->dev;
1868     int ret = 0, frame_start, frame_addr, frame_op;
1869     bool is_c45 = !!(regnum & MII_ADDR_C45);
1870 
1871     ret = pm_runtime_resume_and_get(dev);
1872     if (ret < 0)
1873         return ret;
1874 
1875     if (is_c45) {
1876         frame_start = FEC_MMFR_ST_C45;
1877 
1878         /* write address */
1879         frame_addr = (regnum >> 16);
1880         writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1881                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1882                FEC_MMFR_TA | (regnum & 0xFFFF),
1883                fep->hwp + FEC_MII_DATA);
1884 
1885         /* wait for end of transfer */
1886         ret = fec_enet_mdio_wait(fep);
1887         if (ret) {
1888             netdev_err(fep->netdev, "MDIO address write timeout\n");
1889             goto out;
1890         }
1891 
1892         frame_op = FEC_MMFR_OP_READ_C45;
1893 
1894     } else {
1895         /* C22 read */
1896         frame_op = FEC_MMFR_OP_READ;
1897         frame_start = FEC_MMFR_ST;
1898         frame_addr = regnum;
1899     }
1900 
1901     /* start a read op */
1902     writel(frame_start | frame_op |
1903         FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1904         FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1905 
1906     /* wait for end of transfer */
1907     ret = fec_enet_mdio_wait(fep);
1908     if (ret) {
1909         netdev_err(fep->netdev, "MDIO read timeout\n");
1910         goto out;
1911     }
1912 
1913     ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1914 
1915 out:
1916     pm_runtime_mark_last_busy(dev);
1917     pm_runtime_put_autosuspend(dev);
1918 
1919     return ret;
1920 }
1921 
1922 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1923                u16 value)
1924 {
1925     struct fec_enet_private *fep = bus->priv;
1926     struct device *dev = &fep->pdev->dev;
1927     int ret, frame_start, frame_addr;
1928     bool is_c45 = !!(regnum & MII_ADDR_C45);
1929 
1930     ret = pm_runtime_resume_and_get(dev);
1931     if (ret < 0)
1932         return ret;
1933 
1934     if (is_c45) {
1935         frame_start = FEC_MMFR_ST_C45;
1936 
1937         /* write address */
1938         frame_addr = (regnum >> 16);
1939         writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1940                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1941                FEC_MMFR_TA | (regnum & 0xFFFF),
1942                fep->hwp + FEC_MII_DATA);
1943 
1944         /* wait for end of transfer */
1945         ret = fec_enet_mdio_wait(fep);
1946         if (ret) {
1947             netdev_err(fep->netdev, "MDIO address write timeout\n");
1948             goto out;
1949         }
1950     } else {
1951         /* C22 write */
1952         frame_start = FEC_MMFR_ST;
1953         frame_addr = regnum;
1954     }
1955 
1956     /* start a write op */
1957     writel(frame_start | FEC_MMFR_OP_WRITE |
1958         FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1959         FEC_MMFR_TA | FEC_MMFR_DATA(value),
1960         fep->hwp + FEC_MII_DATA);
1961 
1962     /* wait for end of transfer */
1963     ret = fec_enet_mdio_wait(fep);
1964     if (ret)
1965         netdev_err(fep->netdev, "MDIO write timeout\n");
1966 
1967 out:
1968     pm_runtime_mark_last_busy(dev);
1969     pm_runtime_put_autosuspend(dev);
1970 
1971     return ret;
1972 }
1973 
1974 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1975 {
1976     struct fec_enet_private *fep = netdev_priv(ndev);
1977     struct phy_device *phy_dev = ndev->phydev;
1978 
1979     if (phy_dev) {
1980         phy_reset_after_clk_enable(phy_dev);
1981     } else if (fep->phy_node) {
1982         /*
1983          * If the PHY still is not bound to the MAC, but there is
1984          * OF PHY node and a matching PHY device instance already,
1985          * use the OF PHY node to obtain the PHY device instance,
1986          * and then use that PHY device instance when triggering
1987          * the PHY reset.
1988          */
1989         phy_dev = of_phy_find_device(fep->phy_node);
1990         phy_reset_after_clk_enable(phy_dev);
1991         put_device(&phy_dev->mdio.dev);
1992     }
1993 }
1994 
1995 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1996 {
1997     struct fec_enet_private *fep = netdev_priv(ndev);
1998     int ret;
1999 
2000     if (enable) {
2001         ret = clk_prepare_enable(fep->clk_enet_out);
2002         if (ret)
2003             return ret;
2004 
2005         if (fep->clk_ptp) {
2006             mutex_lock(&fep->ptp_clk_mutex);
2007             ret = clk_prepare_enable(fep->clk_ptp);
2008             if (ret) {
2009                 mutex_unlock(&fep->ptp_clk_mutex);
2010                 goto failed_clk_ptp;
2011             } else {
2012                 fep->ptp_clk_on = true;
2013             }
2014             mutex_unlock(&fep->ptp_clk_mutex);
2015         }
2016 
2017         ret = clk_prepare_enable(fep->clk_ref);
2018         if (ret)
2019             goto failed_clk_ref;
2020 
2021         ret = clk_prepare_enable(fep->clk_2x_txclk);
2022         if (ret)
2023             goto failed_clk_2x_txclk;
2024 
2025         fec_enet_phy_reset_after_clk_enable(ndev);
2026     } else {
2027         clk_disable_unprepare(fep->clk_enet_out);
2028         if (fep->clk_ptp) {
2029             mutex_lock(&fep->ptp_clk_mutex);
2030             clk_disable_unprepare(fep->clk_ptp);
2031             fep->ptp_clk_on = false;
2032             mutex_unlock(&fep->ptp_clk_mutex);
2033         }
2034         clk_disable_unprepare(fep->clk_ref);
2035         clk_disable_unprepare(fep->clk_2x_txclk);
2036     }
2037 
2038     return 0;
2039 
2040 failed_clk_2x_txclk:
2041     if (fep->clk_ref)
2042         clk_disable_unprepare(fep->clk_ref);
2043 failed_clk_ref:
2044     if (fep->clk_ptp) {
2045         mutex_lock(&fep->ptp_clk_mutex);
2046         clk_disable_unprepare(fep->clk_ptp);
2047         fep->ptp_clk_on = false;
2048         mutex_unlock(&fep->ptp_clk_mutex);
2049     }
2050 failed_clk_ptp:
2051     clk_disable_unprepare(fep->clk_enet_out);
2052 
2053     return ret;
2054 }
2055 
2056 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2057                       struct device_node *np)
2058 {
2059     u32 rgmii_tx_delay, rgmii_rx_delay;
2060 
2061     /* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2062     if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2063         if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2064             dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2065             return -EINVAL;
2066         } else if (rgmii_tx_delay == 2000) {
2067             fep->rgmii_txc_dly = true;
2068         }
2069     }
2070 
2071     /* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2072     if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2073         if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2074             dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2075             return -EINVAL;
2076         } else if (rgmii_rx_delay == 2000) {
2077             fep->rgmii_rxc_dly = true;
2078         }
2079     }
2080 
2081     return 0;
2082 }
2083 
2084 static int fec_enet_mii_probe(struct net_device *ndev)
2085 {
2086     struct fec_enet_private *fep = netdev_priv(ndev);
2087     struct phy_device *phy_dev = NULL;
2088     char mdio_bus_id[MII_BUS_ID_SIZE];
2089     char phy_name[MII_BUS_ID_SIZE + 3];
2090     int phy_id;
2091     int dev_id = fep->dev_id;
2092 
2093     if (fep->phy_node) {
2094         phy_dev = of_phy_connect(ndev, fep->phy_node,
2095                      &fec_enet_adjust_link, 0,
2096                      fep->phy_interface);
2097         if (!phy_dev) {
2098             netdev_err(ndev, "Unable to connect to phy\n");
2099             return -ENODEV;
2100         }
2101     } else {
2102         /* check for attached phy */
2103         for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2104             if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2105                 continue;
2106             if (dev_id--)
2107                 continue;
2108             strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2109             break;
2110         }
2111 
2112         if (phy_id >= PHY_MAX_ADDR) {
2113             netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2114             strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2115             phy_id = 0;
2116         }
2117 
2118         snprintf(phy_name, sizeof(phy_name),
2119              PHY_ID_FMT, mdio_bus_id, phy_id);
2120         phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2121                       fep->phy_interface);
2122     }
2123 
2124     if (IS_ERR(phy_dev)) {
2125         netdev_err(ndev, "could not attach to PHY\n");
2126         return PTR_ERR(phy_dev);
2127     }
2128 
2129     /* mask with MAC supported features */
2130     if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2131         phy_set_max_speed(phy_dev, 1000);
2132         phy_remove_link_mode(phy_dev,
2133                      ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2134 #if !defined(CONFIG_M5272)
2135         phy_support_sym_pause(phy_dev);
2136 #endif
2137     }
2138     else
2139         phy_set_max_speed(phy_dev, 100);
2140 
2141     fep->link = 0;
2142     fep->full_duplex = 0;
2143 
2144     phy_dev->mac_managed_pm = 1;
2145 
2146     phy_attached_info(phy_dev);
2147 
2148     return 0;
2149 }
2150 
2151 static int fec_enet_mii_init(struct platform_device *pdev)
2152 {
2153     static struct mii_bus *fec0_mii_bus;
2154     struct net_device *ndev = platform_get_drvdata(pdev);
2155     struct fec_enet_private *fep = netdev_priv(ndev);
2156     bool suppress_preamble = false;
2157     struct device_node *node;
2158     int err = -ENXIO;
2159     u32 mii_speed, holdtime;
2160     u32 bus_freq;
2161 
2162     /*
2163      * The i.MX28 dual fec interfaces are not equal.
2164      * Here are the differences:
2165      *
2166      *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2167      *  - fec0 acts as the 1588 time master while fec1 is slave
2168      *  - external phys can only be configured by fec0
2169      *
2170      * That is to say fec1 can not work independently. It only works
2171      * when fec0 is working. The reason behind this design is that the
2172      * second interface is added primarily for Switch mode.
2173      *
2174      * Because of the last point above, both phys are attached on fec0
2175      * mdio interface in board design, and need to be configured by
2176      * fec0 mii_bus.
2177      */
2178     if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2179         /* fec1 uses fec0 mii_bus */
2180         if (mii_cnt && fec0_mii_bus) {
2181             fep->mii_bus = fec0_mii_bus;
2182             mii_cnt++;
2183             return 0;
2184         }
2185         return -ENOENT;
2186     }
2187 
2188     bus_freq = 2500000; /* 2.5MHz by default */
2189     node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2190     if (node) {
2191         of_property_read_u32(node, "clock-frequency", &bus_freq);
2192         suppress_preamble = of_property_read_bool(node,
2193                               "suppress-preamble");
2194     }
2195 
2196     /*
2197      * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2198      *
2199      * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2200      * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2201      * Reference Manual has an error on this, and gets fixed on i.MX6Q
2202      * document.
2203      */
2204     mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2205     if (fep->quirks & FEC_QUIRK_ENET_MAC)
2206         mii_speed--;
2207     if (mii_speed > 63) {
2208         dev_err(&pdev->dev,
2209             "fec clock (%lu) too fast to get right mii speed\n",
2210             clk_get_rate(fep->clk_ipg));
2211         err = -EINVAL;
2212         goto err_out;
2213     }
2214 
2215     /*
2216      * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2217      * MII_SPEED) register that defines the MDIO output hold time. Earlier
2218      * versions are RAZ there, so just ignore the difference and write the
2219      * register always.
2220      * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2221      * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2222      * output.
2223      * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2224      * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2225      * holdtime cannot result in a value greater than 3.
2226      */
2227     holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2228 
2229     fep->phy_speed = mii_speed << 1 | holdtime << 8;
2230 
2231     if (suppress_preamble)
2232         fep->phy_speed |= BIT(7);
2233 
2234     if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2235         /* Clear MMFR to avoid to generate MII event by writing MSCR.
2236          * MII event generation condition:
2237          * - writing MSCR:
2238          *  - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2239          *    mscr_reg_data_in[7:0] != 0
2240          * - writing MMFR:
2241          *  - mscr[7:0]_not_zero
2242          */
2243         writel(0, fep->hwp + FEC_MII_DATA);
2244     }
2245 
2246     writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2247 
2248     /* Clear any pending transaction complete indication */
2249     writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2250 
2251     fep->mii_bus = mdiobus_alloc();
2252     if (fep->mii_bus == NULL) {
2253         err = -ENOMEM;
2254         goto err_out;
2255     }
2256 
2257     fep->mii_bus->name = "fec_enet_mii_bus";
2258     fep->mii_bus->read = fec_enet_mdio_read;
2259     fep->mii_bus->write = fec_enet_mdio_write;
2260     snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2261         pdev->name, fep->dev_id + 1);
2262     fep->mii_bus->priv = fep;
2263     fep->mii_bus->parent = &pdev->dev;
2264 
2265     err = of_mdiobus_register(fep->mii_bus, node);
2266     if (err)
2267         goto err_out_free_mdiobus;
2268     of_node_put(node);
2269 
2270     mii_cnt++;
2271 
2272     /* save fec0 mii_bus */
2273     if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2274         fec0_mii_bus = fep->mii_bus;
2275 
2276     return 0;
2277 
2278 err_out_free_mdiobus:
2279     mdiobus_free(fep->mii_bus);
2280 err_out:
2281     of_node_put(node);
2282     return err;
2283 }
2284 
2285 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2286 {
2287     if (--mii_cnt == 0) {
2288         mdiobus_unregister(fep->mii_bus);
2289         mdiobus_free(fep->mii_bus);
2290     }
2291 }
2292 
2293 static void fec_enet_get_drvinfo(struct net_device *ndev,
2294                  struct ethtool_drvinfo *info)
2295 {
2296     struct fec_enet_private *fep = netdev_priv(ndev);
2297 
2298     strlcpy(info->driver, fep->pdev->dev.driver->name,
2299         sizeof(info->driver));
2300     strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2301 }
2302 
2303 static int fec_enet_get_regs_len(struct net_device *ndev)
2304 {
2305     struct fec_enet_private *fep = netdev_priv(ndev);
2306     struct resource *r;
2307     int s = 0;
2308 
2309     r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2310     if (r)
2311         s = resource_size(r);
2312 
2313     return s;
2314 }
2315 
2316 /* List of registers that can be safety be read to dump them with ethtool */
2317 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2318     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2319     defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2320 static __u32 fec_enet_register_version = 2;
2321 static u32 fec_enet_register_offset[] = {
2322     FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2323     FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2324     FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2325     FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2326     FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2327     FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2328     FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2329     FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2330     FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2331     FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2332     FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2333     FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2334     RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2335     RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2336     RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2337     RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2338     RMON_T_P_GTE2048, RMON_T_OCTETS,
2339     IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2340     IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2341     IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2342     RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2343     RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2344     RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2345     RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2346     RMON_R_P_GTE2048, RMON_R_OCTETS,
2347     IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2348     IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2349 };
2350 #else
2351 static __u32 fec_enet_register_version = 1;
2352 static u32 fec_enet_register_offset[] = {
2353     FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2354     FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2355     FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2356     FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2357     FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2358     FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2359     FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2360     FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2361     FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2362 };
2363 #endif
2364 
2365 static void fec_enet_get_regs(struct net_device *ndev,
2366                   struct ethtool_regs *regs, void *regbuf)
2367 {
2368     struct fec_enet_private *fep = netdev_priv(ndev);
2369     u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2370     struct device *dev = &fep->pdev->dev;
2371     u32 *buf = (u32 *)regbuf;
2372     u32 i, off;
2373     int ret;
2374 
2375     ret = pm_runtime_resume_and_get(dev);
2376     if (ret < 0)
2377         return;
2378 
2379     regs->version = fec_enet_register_version;
2380 
2381     memset(buf, 0, regs->len);
2382 
2383     for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2384         off = fec_enet_register_offset[i];
2385 
2386         if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2387             !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2388             continue;
2389 
2390         off >>= 2;
2391         buf[off] = readl(&theregs[off]);
2392     }
2393 
2394     pm_runtime_mark_last_busy(dev);
2395     pm_runtime_put_autosuspend(dev);
2396 }
2397 
2398 static int fec_enet_get_ts_info(struct net_device *ndev,
2399                 struct ethtool_ts_info *info)
2400 {
2401     struct fec_enet_private *fep = netdev_priv(ndev);
2402 
2403     if (fep->bufdesc_ex) {
2404 
2405         info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2406                     SOF_TIMESTAMPING_RX_SOFTWARE |
2407                     SOF_TIMESTAMPING_SOFTWARE |
2408                     SOF_TIMESTAMPING_TX_HARDWARE |
2409                     SOF_TIMESTAMPING_RX_HARDWARE |
2410                     SOF_TIMESTAMPING_RAW_HARDWARE;
2411         if (fep->ptp_clock)
2412             info->phc_index = ptp_clock_index(fep->ptp_clock);
2413         else
2414             info->phc_index = -1;
2415 
2416         info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2417                  (1 << HWTSTAMP_TX_ON);
2418 
2419         info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2420                    (1 << HWTSTAMP_FILTER_ALL);
2421         return 0;
2422     } else {
2423         return ethtool_op_get_ts_info(ndev, info);
2424     }
2425 }
2426 
2427 #if !defined(CONFIG_M5272)
2428 
2429 static void fec_enet_get_pauseparam(struct net_device *ndev,
2430                     struct ethtool_pauseparam *pause)
2431 {
2432     struct fec_enet_private *fep = netdev_priv(ndev);
2433 
2434     pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2435     pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2436     pause->rx_pause = pause->tx_pause;
2437 }
2438 
2439 static int fec_enet_set_pauseparam(struct net_device *ndev,
2440                    struct ethtool_pauseparam *pause)
2441 {
2442     struct fec_enet_private *fep = netdev_priv(ndev);
2443 
2444     if (!ndev->phydev)
2445         return -ENODEV;
2446 
2447     if (pause->tx_pause != pause->rx_pause) {
2448         netdev_info(ndev,
2449             "hardware only support enable/disable both tx and rx");
2450         return -EINVAL;
2451     }
2452 
2453     fep->pause_flag = 0;
2454 
2455     /* tx pause must be same as rx pause */
2456     fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2457     fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2458 
2459     phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2460               pause->autoneg);
2461 
2462     if (pause->autoneg) {
2463         if (netif_running(ndev))
2464             fec_stop(ndev);
2465         phy_start_aneg(ndev->phydev);
2466     }
2467     if (netif_running(ndev)) {
2468         napi_disable(&fep->napi);
2469         netif_tx_lock_bh(ndev);
2470         fec_restart(ndev);
2471         netif_tx_wake_all_queues(ndev);
2472         netif_tx_unlock_bh(ndev);
2473         napi_enable(&fep->napi);
2474     }
2475 
2476     return 0;
2477 }
2478 
2479 static const struct fec_stat {
2480     char name[ETH_GSTRING_LEN];
2481     u16 offset;
2482 } fec_stats[] = {
2483     /* RMON TX */
2484     { "tx_dropped", RMON_T_DROP },
2485     { "tx_packets", RMON_T_PACKETS },
2486     { "tx_broadcast", RMON_T_BC_PKT },
2487     { "tx_multicast", RMON_T_MC_PKT },
2488     { "tx_crc_errors", RMON_T_CRC_ALIGN },
2489     { "tx_undersize", RMON_T_UNDERSIZE },
2490     { "tx_oversize", RMON_T_OVERSIZE },
2491     { "tx_fragment", RMON_T_FRAG },
2492     { "tx_jabber", RMON_T_JAB },
2493     { "tx_collision", RMON_T_COL },
2494     { "tx_64byte", RMON_T_P64 },
2495     { "tx_65to127byte", RMON_T_P65TO127 },
2496     { "tx_128to255byte", RMON_T_P128TO255 },
2497     { "tx_256to511byte", RMON_T_P256TO511 },
2498     { "tx_512to1023byte", RMON_T_P512TO1023 },
2499     { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2500     { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2501     { "tx_octets", RMON_T_OCTETS },
2502 
2503     /* IEEE TX */
2504     { "IEEE_tx_drop", IEEE_T_DROP },
2505     { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2506     { "IEEE_tx_1col", IEEE_T_1COL },
2507     { "IEEE_tx_mcol", IEEE_T_MCOL },
2508     { "IEEE_tx_def", IEEE_T_DEF },
2509     { "IEEE_tx_lcol", IEEE_T_LCOL },
2510     { "IEEE_tx_excol", IEEE_T_EXCOL },
2511     { "IEEE_tx_macerr", IEEE_T_MACERR },
2512     { "IEEE_tx_cserr", IEEE_T_CSERR },
2513     { "IEEE_tx_sqe", IEEE_T_SQE },
2514     { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2515     { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2516 
2517     /* RMON RX */
2518     { "rx_packets", RMON_R_PACKETS },
2519     { "rx_broadcast", RMON_R_BC_PKT },
2520     { "rx_multicast", RMON_R_MC_PKT },
2521     { "rx_crc_errors", RMON_R_CRC_ALIGN },
2522     { "rx_undersize", RMON_R_UNDERSIZE },
2523     { "rx_oversize", RMON_R_OVERSIZE },
2524     { "rx_fragment", RMON_R_FRAG },
2525     { "rx_jabber", RMON_R_JAB },
2526     { "rx_64byte", RMON_R_P64 },
2527     { "rx_65to127byte", RMON_R_P65TO127 },
2528     { "rx_128to255byte", RMON_R_P128TO255 },
2529     { "rx_256to511byte", RMON_R_P256TO511 },
2530     { "rx_512to1023byte", RMON_R_P512TO1023 },
2531     { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2532     { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2533     { "rx_octets", RMON_R_OCTETS },
2534 
2535     /* IEEE RX */
2536     { "IEEE_rx_drop", IEEE_R_DROP },
2537     { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2538     { "IEEE_rx_crc", IEEE_R_CRC },
2539     { "IEEE_rx_align", IEEE_R_ALIGN },
2540     { "IEEE_rx_macerr", IEEE_R_MACERR },
2541     { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2542     { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2543 };
2544 
2545 #define FEC_STATS_SIZE      (ARRAY_SIZE(fec_stats) * sizeof(u64))
2546 
2547 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2548 {
2549     struct fec_enet_private *fep = netdev_priv(dev);
2550     int i;
2551 
2552     for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2553         fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2554 }
2555 
2556 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2557                        struct ethtool_stats *stats, u64 *data)
2558 {
2559     struct fec_enet_private *fep = netdev_priv(dev);
2560 
2561     if (netif_running(dev))
2562         fec_enet_update_ethtool_stats(dev);
2563 
2564     memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2565 }
2566 
2567 static void fec_enet_get_strings(struct net_device *netdev,
2568     u32 stringset, u8 *data)
2569 {
2570     int i;
2571     switch (stringset) {
2572     case ETH_SS_STATS:
2573         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2574             memcpy(data + i * ETH_GSTRING_LEN,
2575                 fec_stats[i].name, ETH_GSTRING_LEN);
2576         break;
2577     case ETH_SS_TEST:
2578         net_selftest_get_strings(data);
2579         break;
2580     }
2581 }
2582 
2583 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2584 {
2585     switch (sset) {
2586     case ETH_SS_STATS:
2587         return ARRAY_SIZE(fec_stats);
2588     case ETH_SS_TEST:
2589         return net_selftest_get_count();
2590     default:
2591         return -EOPNOTSUPP;
2592     }
2593 }
2594 
2595 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2596 {
2597     struct fec_enet_private *fep = netdev_priv(dev);
2598     int i;
2599 
2600     /* Disable MIB statistics counters */
2601     writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2602 
2603     for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2604         writel(0, fep->hwp + fec_stats[i].offset);
2605 
2606     /* Don't disable MIB statistics counters */
2607     writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2608 }
2609 
2610 #else   /* !defined(CONFIG_M5272) */
2611 #define FEC_STATS_SIZE  0
2612 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2613 {
2614 }
2615 
2616 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2617 {
2618 }
2619 #endif /* !defined(CONFIG_M5272) */
2620 
2621 /* ITR clock source is enet system clock (clk_ahb).
2622  * TCTT unit is cycle_ns * 64 cycle
2623  * So, the ICTT value = X us / (cycle_ns * 64)
2624  */
2625 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2626 {
2627     struct fec_enet_private *fep = netdev_priv(ndev);
2628 
2629     return us * (fep->itr_clk_rate / 64000) / 1000;
2630 }
2631 
2632 /* Set threshold for interrupt coalescing */
2633 static void fec_enet_itr_coal_set(struct net_device *ndev)
2634 {
2635     struct fec_enet_private *fep = netdev_priv(ndev);
2636     int rx_itr, tx_itr;
2637 
2638     /* Must be greater than zero to avoid unpredictable behavior */
2639     if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2640         !fep->tx_time_itr || !fep->tx_pkts_itr)
2641         return;
2642 
2643     /* Select enet system clock as Interrupt Coalescing
2644      * timer Clock Source
2645      */
2646     rx_itr = FEC_ITR_CLK_SEL;
2647     tx_itr = FEC_ITR_CLK_SEL;
2648 
2649     /* set ICFT and ICTT */
2650     rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2651     rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2652     tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2653     tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2654 
2655     rx_itr |= FEC_ITR_EN;
2656     tx_itr |= FEC_ITR_EN;
2657 
2658     writel(tx_itr, fep->hwp + FEC_TXIC0);
2659     writel(rx_itr, fep->hwp + FEC_RXIC0);
2660     if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2661         writel(tx_itr, fep->hwp + FEC_TXIC1);
2662         writel(rx_itr, fep->hwp + FEC_RXIC1);
2663         writel(tx_itr, fep->hwp + FEC_TXIC2);
2664         writel(rx_itr, fep->hwp + FEC_RXIC2);
2665     }
2666 }
2667 
2668 static int fec_enet_get_coalesce(struct net_device *ndev,
2669                  struct ethtool_coalesce *ec,
2670                  struct kernel_ethtool_coalesce *kernel_coal,
2671                  struct netlink_ext_ack *extack)
2672 {
2673     struct fec_enet_private *fep = netdev_priv(ndev);
2674 
2675     if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2676         return -EOPNOTSUPP;
2677 
2678     ec->rx_coalesce_usecs = fep->rx_time_itr;
2679     ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2680 
2681     ec->tx_coalesce_usecs = fep->tx_time_itr;
2682     ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2683 
2684     return 0;
2685 }
2686 
2687 static int fec_enet_set_coalesce(struct net_device *ndev,
2688                  struct ethtool_coalesce *ec,
2689                  struct kernel_ethtool_coalesce *kernel_coal,
2690                  struct netlink_ext_ack *extack)
2691 {
2692     struct fec_enet_private *fep = netdev_priv(ndev);
2693     struct device *dev = &fep->pdev->dev;
2694     unsigned int cycle;
2695 
2696     if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2697         return -EOPNOTSUPP;
2698 
2699     if (ec->rx_max_coalesced_frames > 255) {
2700         dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2701         return -EINVAL;
2702     }
2703 
2704     if (ec->tx_max_coalesced_frames > 255) {
2705         dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2706         return -EINVAL;
2707     }
2708 
2709     cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2710     if (cycle > 0xFFFF) {
2711         dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2712         return -EINVAL;
2713     }
2714 
2715     cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2716     if (cycle > 0xFFFF) {
2717         dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2718         return -EINVAL;
2719     }
2720 
2721     fep->rx_time_itr = ec->rx_coalesce_usecs;
2722     fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2723 
2724     fep->tx_time_itr = ec->tx_coalesce_usecs;
2725     fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2726 
2727     fec_enet_itr_coal_set(ndev);
2728 
2729     return 0;
2730 }
2731 
2732 static void fec_enet_itr_coal_init(struct net_device *ndev)
2733 {
2734     struct ethtool_coalesce ec;
2735 
2736     ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2737     ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2738 
2739     ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2740     ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2741 
2742     fec_enet_set_coalesce(ndev, &ec, NULL, NULL);
2743 }
2744 
2745 static int fec_enet_get_tunable(struct net_device *netdev,
2746                 const struct ethtool_tunable *tuna,
2747                 void *data)
2748 {
2749     struct fec_enet_private *fep = netdev_priv(netdev);
2750     int ret = 0;
2751 
2752     switch (tuna->id) {
2753     case ETHTOOL_RX_COPYBREAK:
2754         *(u32 *)data = fep->rx_copybreak;
2755         break;
2756     default:
2757         ret = -EINVAL;
2758         break;
2759     }
2760 
2761     return ret;
2762 }
2763 
2764 static int fec_enet_set_tunable(struct net_device *netdev,
2765                 const struct ethtool_tunable *tuna,
2766                 const void *data)
2767 {
2768     struct fec_enet_private *fep = netdev_priv(netdev);
2769     int ret = 0;
2770 
2771     switch (tuna->id) {
2772     case ETHTOOL_RX_COPYBREAK:
2773         fep->rx_copybreak = *(u32 *)data;
2774         break;
2775     default:
2776         ret = -EINVAL;
2777         break;
2778     }
2779 
2780     return ret;
2781 }
2782 
2783 /* LPI Sleep Ts count base on tx clk (clk_ref).
2784  * The lpi sleep cnt value = X us / (cycle_ns).
2785  */
2786 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2787 {
2788     struct fec_enet_private *fep = netdev_priv(ndev);
2789 
2790     return us * (fep->clk_ref_rate / 1000) / 1000;
2791 }
2792 
2793 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2794 {
2795     struct fec_enet_private *fep = netdev_priv(ndev);
2796     struct ethtool_eee *p = &fep->eee;
2797     unsigned int sleep_cycle, wake_cycle;
2798     int ret = 0;
2799 
2800     if (enable) {
2801         ret = phy_init_eee(ndev->phydev, false);
2802         if (ret)
2803             return ret;
2804 
2805         sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2806         wake_cycle = sleep_cycle;
2807     } else {
2808         sleep_cycle = 0;
2809         wake_cycle = 0;
2810     }
2811 
2812     p->tx_lpi_enabled = enable;
2813     p->eee_enabled = enable;
2814     p->eee_active = enable;
2815 
2816     writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2817     writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2818 
2819     return 0;
2820 }
2821 
2822 static int
2823 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2824 {
2825     struct fec_enet_private *fep = netdev_priv(ndev);
2826     struct ethtool_eee *p = &fep->eee;
2827 
2828     if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2829         return -EOPNOTSUPP;
2830 
2831     if (!netif_running(ndev))
2832         return -ENETDOWN;
2833 
2834     edata->eee_enabled = p->eee_enabled;
2835     edata->eee_active = p->eee_active;
2836     edata->tx_lpi_timer = p->tx_lpi_timer;
2837     edata->tx_lpi_enabled = p->tx_lpi_enabled;
2838 
2839     return phy_ethtool_get_eee(ndev->phydev, edata);
2840 }
2841 
2842 static int
2843 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2844 {
2845     struct fec_enet_private *fep = netdev_priv(ndev);
2846     struct ethtool_eee *p = &fep->eee;
2847     int ret = 0;
2848 
2849     if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2850         return -EOPNOTSUPP;
2851 
2852     if (!netif_running(ndev))
2853         return -ENETDOWN;
2854 
2855     p->tx_lpi_timer = edata->tx_lpi_timer;
2856 
2857     if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
2858         !edata->tx_lpi_timer)
2859         ret = fec_enet_eee_mode_set(ndev, false);
2860     else
2861         ret = fec_enet_eee_mode_set(ndev, true);
2862 
2863     if (ret)
2864         return ret;
2865 
2866     return phy_ethtool_set_eee(ndev->phydev, edata);
2867 }
2868 
2869 static void
2870 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2871 {
2872     struct fec_enet_private *fep = netdev_priv(ndev);
2873 
2874     if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2875         wol->supported = WAKE_MAGIC;
2876         wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2877     } else {
2878         wol->supported = wol->wolopts = 0;
2879     }
2880 }
2881 
2882 static int
2883 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2884 {
2885     struct fec_enet_private *fep = netdev_priv(ndev);
2886 
2887     if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2888         return -EINVAL;
2889 
2890     if (wol->wolopts & ~WAKE_MAGIC)
2891         return -EINVAL;
2892 
2893     device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2894     if (device_may_wakeup(&ndev->dev))
2895         fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2896     else
2897         fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2898 
2899     return 0;
2900 }
2901 
2902 static const struct ethtool_ops fec_enet_ethtool_ops = {
2903     .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2904                      ETHTOOL_COALESCE_MAX_FRAMES,
2905     .get_drvinfo        = fec_enet_get_drvinfo,
2906     .get_regs_len       = fec_enet_get_regs_len,
2907     .get_regs       = fec_enet_get_regs,
2908     .nway_reset     = phy_ethtool_nway_reset,
2909     .get_link       = ethtool_op_get_link,
2910     .get_coalesce       = fec_enet_get_coalesce,
2911     .set_coalesce       = fec_enet_set_coalesce,
2912 #ifndef CONFIG_M5272
2913     .get_pauseparam     = fec_enet_get_pauseparam,
2914     .set_pauseparam     = fec_enet_set_pauseparam,
2915     .get_strings        = fec_enet_get_strings,
2916     .get_ethtool_stats  = fec_enet_get_ethtool_stats,
2917     .get_sset_count     = fec_enet_get_sset_count,
2918 #endif
2919     .get_ts_info        = fec_enet_get_ts_info,
2920     .get_tunable        = fec_enet_get_tunable,
2921     .set_tunable        = fec_enet_set_tunable,
2922     .get_wol        = fec_enet_get_wol,
2923     .set_wol        = fec_enet_set_wol,
2924     .get_eee        = fec_enet_get_eee,
2925     .set_eee        = fec_enet_set_eee,
2926     .get_link_ksettings = phy_ethtool_get_link_ksettings,
2927     .set_link_ksettings = phy_ethtool_set_link_ksettings,
2928     .self_test      = net_selftest,
2929 };
2930 
2931 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2932 {
2933     struct fec_enet_private *fep = netdev_priv(ndev);
2934     struct phy_device *phydev = ndev->phydev;
2935 
2936     if (!netif_running(ndev))
2937         return -EINVAL;
2938 
2939     if (!phydev)
2940         return -ENODEV;
2941 
2942     if (fep->bufdesc_ex) {
2943         bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2944 
2945         if (cmd == SIOCSHWTSTAMP) {
2946             if (use_fec_hwts)
2947                 return fec_ptp_set(ndev, rq);
2948             fec_ptp_disable_hwts(ndev);
2949         } else if (cmd == SIOCGHWTSTAMP) {
2950             if (use_fec_hwts)
2951                 return fec_ptp_get(ndev, rq);
2952         }
2953     }
2954 
2955     return phy_mii_ioctl(phydev, rq, cmd);
2956 }
2957 
2958 static void fec_enet_free_buffers(struct net_device *ndev)
2959 {
2960     struct fec_enet_private *fep = netdev_priv(ndev);
2961     unsigned int i;
2962     struct sk_buff *skb;
2963     struct bufdesc  *bdp;
2964     struct fec_enet_priv_tx_q *txq;
2965     struct fec_enet_priv_rx_q *rxq;
2966     unsigned int q;
2967 
2968     for (q = 0; q < fep->num_rx_queues; q++) {
2969         rxq = fep->rx_queue[q];
2970         bdp = rxq->bd.base;
2971         for (i = 0; i < rxq->bd.ring_size; i++) {
2972             skb = rxq->rx_skbuff[i];
2973             rxq->rx_skbuff[i] = NULL;
2974             if (skb) {
2975                 dma_unmap_single(&fep->pdev->dev,
2976                          fec32_to_cpu(bdp->cbd_bufaddr),
2977                          FEC_ENET_RX_FRSIZE - fep->rx_align,
2978                          DMA_FROM_DEVICE);
2979                 dev_kfree_skb(skb);
2980             }
2981             bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2982         }
2983     }
2984 
2985     for (q = 0; q < fep->num_tx_queues; q++) {
2986         txq = fep->tx_queue[q];
2987         for (i = 0; i < txq->bd.ring_size; i++) {
2988             kfree(txq->tx_bounce[i]);
2989             txq->tx_bounce[i] = NULL;
2990             skb = txq->tx_skbuff[i];
2991             txq->tx_skbuff[i] = NULL;
2992             dev_kfree_skb(skb);
2993         }
2994     }
2995 }
2996 
2997 static void fec_enet_free_queue(struct net_device *ndev)
2998 {
2999     struct fec_enet_private *fep = netdev_priv(ndev);
3000     int i;
3001     struct fec_enet_priv_tx_q *txq;
3002 
3003     for (i = 0; i < fep->num_tx_queues; i++)
3004         if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3005             txq = fep->tx_queue[i];
3006             dma_free_coherent(&fep->pdev->dev,
3007                       txq->bd.ring_size * TSO_HEADER_SIZE,
3008                       txq->tso_hdrs,
3009                       txq->tso_hdrs_dma);
3010         }
3011 
3012     for (i = 0; i < fep->num_rx_queues; i++)
3013         kfree(fep->rx_queue[i]);
3014     for (i = 0; i < fep->num_tx_queues; i++)
3015         kfree(fep->tx_queue[i]);
3016 }
3017 
3018 static int fec_enet_alloc_queue(struct net_device *ndev)
3019 {
3020     struct fec_enet_private *fep = netdev_priv(ndev);
3021     int i;
3022     int ret = 0;
3023     struct fec_enet_priv_tx_q *txq;
3024 
3025     for (i = 0; i < fep->num_tx_queues; i++) {
3026         txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3027         if (!txq) {
3028             ret = -ENOMEM;
3029             goto alloc_failed;
3030         }
3031 
3032         fep->tx_queue[i] = txq;
3033         txq->bd.ring_size = TX_RING_SIZE;
3034         fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3035 
3036         txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3037         txq->tx_wake_threshold =
3038             (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3039 
3040         txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3041                     txq->bd.ring_size * TSO_HEADER_SIZE,
3042                     &txq->tso_hdrs_dma,
3043                     GFP_KERNEL);
3044         if (!txq->tso_hdrs) {
3045             ret = -ENOMEM;
3046             goto alloc_failed;
3047         }
3048     }
3049 
3050     for (i = 0; i < fep->num_rx_queues; i++) {
3051         fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3052                        GFP_KERNEL);
3053         if (!fep->rx_queue[i]) {
3054             ret = -ENOMEM;
3055             goto alloc_failed;
3056         }
3057 
3058         fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3059         fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3060     }
3061     return ret;
3062 
3063 alloc_failed:
3064     fec_enet_free_queue(ndev);
3065     return ret;
3066 }
3067 
3068 static int
3069 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3070 {
3071     struct fec_enet_private *fep = netdev_priv(ndev);
3072     unsigned int i;
3073     struct sk_buff *skb;
3074     struct bufdesc  *bdp;
3075     struct fec_enet_priv_rx_q *rxq;
3076 
3077     rxq = fep->rx_queue[queue];
3078     bdp = rxq->bd.base;
3079     for (i = 0; i < rxq->bd.ring_size; i++) {
3080         skb = __netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE, GFP_KERNEL);
3081         if (!skb)
3082             goto err_alloc;
3083 
3084         if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
3085             dev_kfree_skb(skb);
3086             goto err_alloc;
3087         }
3088 
3089         rxq->rx_skbuff[i] = skb;
3090         bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3091 
3092         if (fep->bufdesc_ex) {
3093             struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3094             ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3095         }
3096 
3097         bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3098     }
3099 
3100     /* Set the last buffer to wrap. */
3101     bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3102     bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3103     return 0;
3104 
3105  err_alloc:
3106     fec_enet_free_buffers(ndev);
3107     return -ENOMEM;
3108 }
3109 
3110 static int
3111 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3112 {
3113     struct fec_enet_private *fep = netdev_priv(ndev);
3114     unsigned int i;
3115     struct bufdesc  *bdp;
3116     struct fec_enet_priv_tx_q *txq;
3117 
3118     txq = fep->tx_queue[queue];
3119     bdp = txq->bd.base;
3120     for (i = 0; i < txq->bd.ring_size; i++) {
3121         txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3122         if (!txq->tx_bounce[i])
3123             goto err_alloc;
3124 
3125         bdp->cbd_sc = cpu_to_fec16(0);
3126         bdp->cbd_bufaddr = cpu_to_fec32(0);
3127 
3128         if (fep->bufdesc_ex) {
3129             struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3130             ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3131         }
3132 
3133         bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3134     }
3135 
3136     /* Set the last buffer to wrap. */
3137     bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3138     bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3139 
3140     return 0;
3141 
3142  err_alloc:
3143     fec_enet_free_buffers(ndev);
3144     return -ENOMEM;
3145 }
3146 
3147 static int fec_enet_alloc_buffers(struct net_device *ndev)
3148 {
3149     struct fec_enet_private *fep = netdev_priv(ndev);
3150     unsigned int i;
3151 
3152     for (i = 0; i < fep->num_rx_queues; i++)
3153         if (fec_enet_alloc_rxq_buffers(ndev, i))
3154             return -ENOMEM;
3155 
3156     for (i = 0; i < fep->num_tx_queues; i++)
3157         if (fec_enet_alloc_txq_buffers(ndev, i))
3158             return -ENOMEM;
3159     return 0;
3160 }
3161 
3162 static int
3163 fec_enet_open(struct net_device *ndev)
3164 {
3165     struct fec_enet_private *fep = netdev_priv(ndev);
3166     int ret;
3167     bool reset_again;
3168 
3169     ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3170     if (ret < 0)
3171         return ret;
3172 
3173     pinctrl_pm_select_default_state(&fep->pdev->dev);
3174     ret = fec_enet_clk_enable(ndev, true);
3175     if (ret)
3176         goto clk_enable;
3177 
3178     /* During the first fec_enet_open call the PHY isn't probed at this
3179      * point. Therefore the phy_reset_after_clk_enable() call within
3180      * fec_enet_clk_enable() fails. As we need this reset in order to be
3181      * sure the PHY is working correctly we check if we need to reset again
3182      * later when the PHY is probed
3183      */
3184     if (ndev->phydev && ndev->phydev->drv)
3185         reset_again = false;
3186     else
3187         reset_again = true;
3188 
3189     /* I should reset the ring buffers here, but I don't yet know
3190      * a simple way to do that.
3191      */
3192 
3193     ret = fec_enet_alloc_buffers(ndev);
3194     if (ret)
3195         goto err_enet_alloc;
3196 
3197     /* Init MAC prior to mii bus probe */
3198     fec_restart(ndev);
3199 
3200     /* Call phy_reset_after_clk_enable() again if it failed during
3201      * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3202      */
3203     if (reset_again)
3204         fec_enet_phy_reset_after_clk_enable(ndev);
3205 
3206     /* Probe and connect to PHY when open the interface */
3207     ret = fec_enet_mii_probe(ndev);
3208     if (ret)
3209         goto err_enet_mii_probe;
3210 
3211     if (fep->quirks & FEC_QUIRK_ERR006687)
3212         imx6q_cpuidle_fec_irqs_used();
3213 
3214     if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3215         cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3216 
3217     napi_enable(&fep->napi);
3218     phy_start(ndev->phydev);
3219     netif_tx_start_all_queues(ndev);
3220 
3221     device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3222                  FEC_WOL_FLAG_ENABLE);
3223 
3224     return 0;
3225 
3226 err_enet_mii_probe:
3227     fec_enet_free_buffers(ndev);
3228 err_enet_alloc:
3229     fec_enet_clk_enable(ndev, false);
3230 clk_enable:
3231     pm_runtime_mark_last_busy(&fep->pdev->dev);
3232     pm_runtime_put_autosuspend(&fep->pdev->dev);
3233     pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3234     return ret;
3235 }
3236 
3237 static int
3238 fec_enet_close(struct net_device *ndev)
3239 {
3240     struct fec_enet_private *fep = netdev_priv(ndev);
3241 
3242     phy_stop(ndev->phydev);
3243 
3244     if (netif_device_present(ndev)) {
3245         napi_disable(&fep->napi);
3246         netif_tx_disable(ndev);
3247         fec_stop(ndev);
3248     }
3249 
3250     phy_disconnect(ndev->phydev);
3251 
3252     if (fep->quirks & FEC_QUIRK_ERR006687)
3253         imx6q_cpuidle_fec_irqs_unused();
3254 
3255     fec_enet_update_ethtool_stats(ndev);
3256 
3257     fec_enet_clk_enable(ndev, false);
3258     if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3259         cpu_latency_qos_remove_request(&fep->pm_qos_req);
3260 
3261     pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3262     pm_runtime_mark_last_busy(&fep->pdev->dev);
3263     pm_runtime_put_autosuspend(&fep->pdev->dev);
3264 
3265     fec_enet_free_buffers(ndev);
3266 
3267     return 0;
3268 }
3269 
3270 /* Set or clear the multicast filter for this adaptor.
3271  * Skeleton taken from sunlance driver.
3272  * The CPM Ethernet implementation allows Multicast as well as individual
3273  * MAC address filtering.  Some of the drivers check to make sure it is
3274  * a group multicast address, and discard those that are not.  I guess I
3275  * will do the same for now, but just remove the test if you want
3276  * individual filtering as well (do the upper net layers want or support
3277  * this kind of feature?).
3278  */
3279 
3280 #define FEC_HASH_BITS   6       /* #bits in hash */
3281 
3282 static void set_multicast_list(struct net_device *ndev)
3283 {
3284     struct fec_enet_private *fep = netdev_priv(ndev);
3285     struct netdev_hw_addr *ha;
3286     unsigned int crc, tmp;
3287     unsigned char hash;
3288     unsigned int hash_high = 0, hash_low = 0;
3289 
3290     if (ndev->flags & IFF_PROMISC) {
3291         tmp = readl(fep->hwp + FEC_R_CNTRL);
3292         tmp |= 0x8;
3293         writel(tmp, fep->hwp + FEC_R_CNTRL);
3294         return;
3295     }
3296 
3297     tmp = readl(fep->hwp + FEC_R_CNTRL);
3298     tmp &= ~0x8;
3299     writel(tmp, fep->hwp + FEC_R_CNTRL);
3300 
3301     if (ndev->flags & IFF_ALLMULTI) {
3302         /* Catch all multicast addresses, so set the
3303          * filter to all 1's
3304          */
3305         writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3306         writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3307 
3308         return;
3309     }
3310 
3311     /* Add the addresses in hash register */
3312     netdev_for_each_mc_addr(ha, ndev) {
3313         /* calculate crc32 value of mac address */
3314         crc = ether_crc_le(ndev->addr_len, ha->addr);
3315 
3316         /* only upper 6 bits (FEC_HASH_BITS) are used
3317          * which point to specific bit in the hash registers
3318          */
3319         hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3320 
3321         if (hash > 31)
3322             hash_high |= 1 << (hash - 32);
3323         else
3324             hash_low |= 1 << hash;
3325     }
3326 
3327     writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3328     writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3329 }
3330 
3331 /* Set a MAC change in hardware. */
3332 static int
3333 fec_set_mac_address(struct net_device *ndev, void *p)
3334 {
3335     struct fec_enet_private *fep = netdev_priv(ndev);
3336     struct sockaddr *addr = p;
3337 
3338     if (addr) {
3339         if (!is_valid_ether_addr(addr->sa_data))
3340             return -EADDRNOTAVAIL;
3341         eth_hw_addr_set(ndev, addr->sa_data);
3342     }
3343 
3344     /* Add netif status check here to avoid system hang in below case:
3345      * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3346      * After ethx down, fec all clocks are gated off and then register
3347      * access causes system hang.
3348      */
3349     if (!netif_running(ndev))
3350         return 0;
3351 
3352     writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3353         (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3354         fep->hwp + FEC_ADDR_LOW);
3355     writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3356         fep->hwp + FEC_ADDR_HIGH);
3357     return 0;
3358 }
3359 
3360 #ifdef CONFIG_NET_POLL_CONTROLLER
3361 /**
3362  * fec_poll_controller - FEC Poll controller function
3363  * @dev: The FEC network adapter
3364  *
3365  * Polled functionality used by netconsole and others in non interrupt mode
3366  *
3367  */
3368 static void fec_poll_controller(struct net_device *dev)
3369 {
3370     int i;
3371     struct fec_enet_private *fep = netdev_priv(dev);
3372 
3373     for (i = 0; i < FEC_IRQ_NUM; i++) {
3374         if (fep->irq[i] > 0) {
3375             disable_irq(fep->irq[i]);
3376             fec_enet_interrupt(fep->irq[i], dev);
3377             enable_irq(fep->irq[i]);
3378         }
3379     }
3380 }
3381 #endif
3382 
3383 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3384     netdev_features_t features)
3385 {
3386     struct fec_enet_private *fep = netdev_priv(netdev);
3387     netdev_features_t changed = features ^ netdev->features;
3388 
3389     netdev->features = features;
3390 
3391     /* Receive checksum has been changed */
3392     if (changed & NETIF_F_RXCSUM) {
3393         if (features & NETIF_F_RXCSUM)
3394             fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3395         else
3396             fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3397     }
3398 }
3399 
3400 static int fec_set_features(struct net_device *netdev,
3401     netdev_features_t features)
3402 {
3403     struct fec_enet_private *fep = netdev_priv(netdev);
3404     netdev_features_t changed = features ^ netdev->features;
3405 
3406     if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3407         napi_disable(&fep->napi);
3408         netif_tx_lock_bh(netdev);
3409         fec_stop(netdev);
3410         fec_enet_set_netdev_features(netdev, features);
3411         fec_restart(netdev);
3412         netif_tx_wake_all_queues(netdev);
3413         netif_tx_unlock_bh(netdev);
3414         napi_enable(&fep->napi);
3415     } else {
3416         fec_enet_set_netdev_features(netdev, features);
3417     }
3418 
3419     return 0;
3420 }
3421 
3422 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3423 {
3424     struct vlan_ethhdr *vhdr;
3425     unsigned short vlan_TCI = 0;
3426 
3427     if (skb->protocol == htons(ETH_P_ALL)) {
3428         vhdr = (struct vlan_ethhdr *)(skb->data);
3429         vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3430     }
3431 
3432     return vlan_TCI;
3433 }
3434 
3435 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3436                  struct net_device *sb_dev)
3437 {
3438     struct fec_enet_private *fep = netdev_priv(ndev);
3439     u16 vlan_tag;
3440 
3441     if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3442         return netdev_pick_tx(ndev, skb, NULL);
3443 
3444     vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3445     if (!vlan_tag)
3446         return vlan_tag;
3447 
3448     return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3449 }
3450 
3451 static const struct net_device_ops fec_netdev_ops = {
3452     .ndo_open       = fec_enet_open,
3453     .ndo_stop       = fec_enet_close,
3454     .ndo_start_xmit     = fec_enet_start_xmit,
3455     .ndo_select_queue       = fec_enet_select_queue,
3456     .ndo_set_rx_mode    = set_multicast_list,
3457     .ndo_validate_addr  = eth_validate_addr,
3458     .ndo_tx_timeout     = fec_timeout,
3459     .ndo_set_mac_address    = fec_set_mac_address,
3460     .ndo_eth_ioctl      = fec_enet_ioctl,
3461 #ifdef CONFIG_NET_POLL_CONTROLLER
3462     .ndo_poll_controller    = fec_poll_controller,
3463 #endif
3464     .ndo_set_features   = fec_set_features,
3465 };
3466 
3467 static const unsigned short offset_des_active_rxq[] = {
3468     FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3469 };
3470 
3471 static const unsigned short offset_des_active_txq[] = {
3472     FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3473 };
3474 
3475  /*
3476   * XXX:  We need to clean up on failure exits here.
3477   *
3478   */
3479 static int fec_enet_init(struct net_device *ndev)
3480 {
3481     struct fec_enet_private *fep = netdev_priv(ndev);
3482     struct bufdesc *cbd_base;
3483     dma_addr_t bd_dma;
3484     int bd_size;
3485     unsigned int i;
3486     unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3487             sizeof(struct bufdesc);
3488     unsigned dsize_log2 = __fls(dsize);
3489     int ret;
3490 
3491     WARN_ON(dsize != (1 << dsize_log2));
3492 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3493     fep->rx_align = 0xf;
3494     fep->tx_align = 0xf;
3495 #else
3496     fep->rx_align = 0x3;
3497     fep->tx_align = 0x3;
3498 #endif
3499 
3500     /* Check mask of the streaming and coherent API */
3501     ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3502     if (ret < 0) {
3503         dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3504         return ret;
3505     }
3506 
3507     ret = fec_enet_alloc_queue(ndev);
3508     if (ret)
3509         return ret;
3510 
3511     bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3512 
3513     /* Allocate memory for buffer descriptors. */
3514     cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3515                        GFP_KERNEL);
3516     if (!cbd_base) {
3517         ret = -ENOMEM;
3518         goto free_queue_mem;
3519     }
3520 
3521     /* Get the Ethernet address */
3522     ret = fec_get_mac(ndev);
3523     if (ret)
3524         goto free_queue_mem;
3525 
3526     /* make sure MAC we just acquired is programmed into the hw */
3527     fec_set_mac_address(ndev, NULL);
3528 
3529     /* Set receive and transmit descriptor base. */
3530     for (i = 0; i < fep->num_rx_queues; i++) {
3531         struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3532         unsigned size = dsize * rxq->bd.ring_size;
3533 
3534         rxq->bd.qid = i;
3535         rxq->bd.base = cbd_base;
3536         rxq->bd.cur = cbd_base;
3537         rxq->bd.dma = bd_dma;
3538         rxq->bd.dsize = dsize;
3539         rxq->bd.dsize_log2 = dsize_log2;
3540         rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3541         bd_dma += size;
3542         cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3543         rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3544     }
3545 
3546     for (i = 0; i < fep->num_tx_queues; i++) {
3547         struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3548         unsigned size = dsize * txq->bd.ring_size;
3549 
3550         txq->bd.qid = i;
3551         txq->bd.base = cbd_base;
3552         txq->bd.cur = cbd_base;
3553         txq->bd.dma = bd_dma;
3554         txq->bd.dsize = dsize;
3555         txq->bd.dsize_log2 = dsize_log2;
3556         txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3557         bd_dma += size;
3558         cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3559         txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3560     }
3561 
3562 
3563     /* The FEC Ethernet specific entries in the device structure */
3564     ndev->watchdog_timeo = TX_TIMEOUT;
3565     ndev->netdev_ops = &fec_netdev_ops;
3566     ndev->ethtool_ops = &fec_enet_ethtool_ops;
3567 
3568     writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3569     netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3570 
3571     if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3572         /* enable hw VLAN support */
3573         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3574 
3575     if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3576         netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
3577 
3578         /* enable hw accelerator */
3579         ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3580                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3581         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3582     }
3583 
3584     if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3585         fep->tx_align = 0;
3586         fep->rx_align = 0x3f;
3587     }
3588 
3589     ndev->hw_features = ndev->features;
3590 
3591     fec_restart(ndev);
3592 
3593     if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3594         fec_enet_clear_ethtool_stats(ndev);
3595     else
3596         fec_enet_update_ethtool_stats(ndev);
3597 
3598     return 0;
3599 
3600 free_queue_mem:
3601     fec_enet_free_queue(ndev);
3602     return ret;
3603 }
3604 
3605 #ifdef CONFIG_OF
3606 static int fec_reset_phy(struct platform_device *pdev)
3607 {
3608     int err, phy_reset;
3609     bool active_high = false;
3610     int msec = 1, phy_post_delay = 0;
3611     struct device_node *np = pdev->dev.of_node;
3612 
3613     if (!np)
3614         return 0;
3615 
3616     err = of_property_read_u32(np, "phy-reset-duration", &msec);
3617     /* A sane reset duration should not be longer than 1s */
3618     if (!err && msec > 1000)
3619         msec = 1;
3620 
3621     phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3622     if (phy_reset == -EPROBE_DEFER)
3623         return phy_reset;
3624     else if (!gpio_is_valid(phy_reset))
3625         return 0;
3626 
3627     err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3628     /* valid reset duration should be less than 1s */
3629     if (!err && phy_post_delay > 1000)
3630         return -EINVAL;
3631 
3632     active_high = of_property_read_bool(np, "phy-reset-active-high");
3633 
3634     err = devm_gpio_request_one(&pdev->dev, phy_reset,
3635             active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3636             "phy-reset");
3637     if (err) {
3638         dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3639         return err;
3640     }
3641 
3642     if (msec > 20)
3643         msleep(msec);
3644     else
3645         usleep_range(msec * 1000, msec * 1000 + 1000);
3646 
3647     gpio_set_value_cansleep(phy_reset, !active_high);
3648 
3649     if (!phy_post_delay)
3650         return 0;
3651 
3652     if (phy_post_delay > 20)
3653         msleep(phy_post_delay);
3654     else
3655         usleep_range(phy_post_delay * 1000,
3656                  phy_post_delay * 1000 + 1000);
3657 
3658     return 0;
3659 }
3660 #else /* CONFIG_OF */
3661 static int fec_reset_phy(struct platform_device *pdev)
3662 {
3663     /*
3664      * In case of platform probe, the reset has been done
3665      * by machine code.
3666      */
3667     return 0;
3668 }
3669 #endif /* CONFIG_OF */
3670 
3671 static void
3672 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3673 {
3674     struct device_node *np = pdev->dev.of_node;
3675 
3676     *num_tx = *num_rx = 1;
3677 
3678     if (!np || !of_device_is_available(np))
3679         return;
3680 
3681     /* parse the num of tx and rx queues */
3682     of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3683 
3684     of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3685 
3686     if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3687         dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3688              *num_tx);
3689         *num_tx = 1;
3690         return;
3691     }
3692 
3693     if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3694         dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3695              *num_rx);
3696         *num_rx = 1;
3697         return;
3698     }
3699 
3700 }
3701 
3702 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3703 {
3704     int irq_cnt = platform_irq_count(pdev);
3705 
3706     if (irq_cnt > FEC_IRQ_NUM)
3707         irq_cnt = FEC_IRQ_NUM;  /* last for pps */
3708     else if (irq_cnt == 2)
3709         irq_cnt = 1;    /* last for pps */
3710     else if (irq_cnt <= 0)
3711         irq_cnt = 1;    /* At least 1 irq is needed */
3712     return irq_cnt;
3713 }
3714 
3715 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
3716 {
3717     struct net_device *ndev = platform_get_drvdata(pdev);
3718     struct fec_enet_private *fep = netdev_priv(ndev);
3719 
3720     if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
3721         fep->wake_irq = fep->irq[2];
3722     else
3723         fep->wake_irq = fep->irq[0];
3724 }
3725 
3726 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3727                    struct device_node *np)
3728 {
3729     struct device_node *gpr_np;
3730     u32 out_val[3];
3731     int ret = 0;
3732 
3733     gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3734     if (!gpr_np)
3735         return 0;
3736 
3737     ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3738                      ARRAY_SIZE(out_val));
3739     if (ret) {
3740         dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3741         goto out;
3742     }
3743 
3744     fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3745     if (IS_ERR(fep->stop_gpr.gpr)) {
3746         dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3747         ret = PTR_ERR(fep->stop_gpr.gpr);
3748         fep->stop_gpr.gpr = NULL;
3749         goto out;
3750     }
3751 
3752     fep->stop_gpr.reg = out_val[1];
3753     fep->stop_gpr.bit = out_val[2];
3754 
3755 out:
3756     of_node_put(gpr_np);
3757 
3758     return ret;
3759 }
3760 
3761 static int
3762 fec_probe(struct platform_device *pdev)
3763 {
3764     struct fec_enet_private *fep;
3765     struct fec_platform_data *pdata;
3766     phy_interface_t interface;
3767     struct net_device *ndev;
3768     int i, irq, ret = 0;
3769     const struct of_device_id *of_id;
3770     static int dev_id;
3771     struct device_node *np = pdev->dev.of_node, *phy_node;
3772     int num_tx_qs;
3773     int num_rx_qs;
3774     char irq_name[8];
3775     int irq_cnt;
3776     struct fec_devinfo *dev_info;
3777 
3778     fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3779 
3780     /* Init network device */
3781     ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3782                   FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3783     if (!ndev)
3784         return -ENOMEM;
3785 
3786     SET_NETDEV_DEV(ndev, &pdev->dev);
3787 
3788     /* setup board info structure */
3789     fep = netdev_priv(ndev);
3790 
3791     of_id = of_match_device(fec_dt_ids, &pdev->dev);
3792     if (of_id)
3793         pdev->id_entry = of_id->data;
3794     dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3795     if (dev_info)
3796         fep->quirks = dev_info->quirks;
3797 
3798     fep->netdev = ndev;
3799     fep->num_rx_queues = num_rx_qs;
3800     fep->num_tx_queues = num_tx_qs;
3801 
3802 #if !defined(CONFIG_M5272)
3803     /* default enable pause frame auto negotiation */
3804     if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3805         fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3806 #endif
3807 
3808     /* Select default pin state */
3809     pinctrl_pm_select_default_state(&pdev->dev);
3810 
3811     fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3812     if (IS_ERR(fep->hwp)) {
3813         ret = PTR_ERR(fep->hwp);
3814         goto failed_ioremap;
3815     }
3816 
3817     fep->pdev = pdev;
3818     fep->dev_id = dev_id++;
3819 
3820     platform_set_drvdata(pdev, ndev);
3821 
3822     if ((of_machine_is_compatible("fsl,imx6q") ||
3823          of_machine_is_compatible("fsl,imx6dl")) &&
3824         !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3825         fep->quirks |= FEC_QUIRK_ERR006687;
3826 
3827     if (of_get_property(np, "fsl,magic-packet", NULL))
3828         fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3829 
3830     ret = fec_enet_init_stop_mode(fep, np);
3831     if (ret)
3832         goto failed_stop_mode;
3833 
3834     phy_node = of_parse_phandle(np, "phy-handle", 0);
3835     if (!phy_node && of_phy_is_fixed_link(np)) {
3836         ret = of_phy_register_fixed_link(np);
3837         if (ret < 0) {
3838             dev_err(&pdev->dev,
3839                 "broken fixed-link specification\n");
3840             goto failed_phy;
3841         }
3842         phy_node = of_node_get(np);
3843     }
3844     fep->phy_node = phy_node;
3845 
3846     ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3847     if (ret) {
3848         pdata = dev_get_platdata(&pdev->dev);
3849         if (pdata)
3850             fep->phy_interface = pdata->phy;
3851         else
3852             fep->phy_interface = PHY_INTERFACE_MODE_MII;
3853     } else {
3854         fep->phy_interface = interface;
3855     }
3856 
3857     ret = fec_enet_parse_rgmii_delay(fep, np);
3858     if (ret)
3859         goto failed_rgmii_delay;
3860 
3861     fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3862     if (IS_ERR(fep->clk_ipg)) {
3863         ret = PTR_ERR(fep->clk_ipg);
3864         goto failed_clk;
3865     }
3866 
3867     fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3868     if (IS_ERR(fep->clk_ahb)) {
3869         ret = PTR_ERR(fep->clk_ahb);
3870         goto failed_clk;
3871     }
3872 
3873     fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3874 
3875     /* enet_out is optional, depends on board */
3876     fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
3877     if (IS_ERR(fep->clk_enet_out)) {
3878         ret = PTR_ERR(fep->clk_enet_out);
3879         goto failed_clk;
3880     }
3881 
3882     fep->ptp_clk_on = false;
3883     mutex_init(&fep->ptp_clk_mutex);
3884 
3885     /* clk_ref is optional, depends on board */
3886     fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
3887     if (IS_ERR(fep->clk_ref)) {
3888         ret = PTR_ERR(fep->clk_ref);
3889         goto failed_clk;
3890     }
3891     fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
3892 
3893     /* clk_2x_txclk is optional, depends on board */
3894     if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
3895         fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
3896         if (IS_ERR(fep->clk_2x_txclk))
3897             fep->clk_2x_txclk = NULL;
3898     }
3899 
3900     fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3901     fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3902     if (IS_ERR(fep->clk_ptp)) {
3903         fep->clk_ptp = NULL;
3904         fep->bufdesc_ex = false;
3905     }
3906 
3907     ret = fec_enet_clk_enable(ndev, true);
3908     if (ret)
3909         goto failed_clk;
3910 
3911     ret = clk_prepare_enable(fep->clk_ipg);
3912     if (ret)
3913         goto failed_clk_ipg;
3914     ret = clk_prepare_enable(fep->clk_ahb);
3915     if (ret)
3916         goto failed_clk_ahb;
3917 
3918     fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3919     if (!IS_ERR(fep->reg_phy)) {
3920         ret = regulator_enable(fep->reg_phy);
3921         if (ret) {
3922             dev_err(&pdev->dev,
3923                 "Failed to enable phy regulator: %d\n", ret);
3924             goto failed_regulator;
3925         }
3926     } else {
3927         if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3928             ret = -EPROBE_DEFER;
3929             goto failed_regulator;
3930         }
3931         fep->reg_phy = NULL;
3932     }
3933 
3934     pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3935     pm_runtime_use_autosuspend(&pdev->dev);
3936     pm_runtime_get_noresume(&pdev->dev);
3937     pm_runtime_set_active(&pdev->dev);
3938     pm_runtime_enable(&pdev->dev);
3939 
3940     ret = fec_reset_phy(pdev);
3941     if (ret)
3942         goto failed_reset;
3943 
3944     irq_cnt = fec_enet_get_irq_cnt(pdev);
3945     if (fep->bufdesc_ex)
3946         fec_ptp_init(pdev, irq_cnt);
3947 
3948     ret = fec_enet_init(ndev);
3949     if (ret)
3950         goto failed_init;
3951 
3952     for (i = 0; i < irq_cnt; i++) {
3953         snprintf(irq_name, sizeof(irq_name), "int%d", i);
3954         irq = platform_get_irq_byname_optional(pdev, irq_name);
3955         if (irq < 0)
3956             irq = platform_get_irq(pdev, i);
3957         if (irq < 0) {
3958             ret = irq;
3959             goto failed_irq;
3960         }
3961         ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3962                        0, pdev->name, ndev);
3963         if (ret)
3964             goto failed_irq;
3965 
3966         fep->irq[i] = irq;
3967     }
3968 
3969     /* Decide which interrupt line is wakeup capable */
3970     fec_enet_get_wakeup_irq(pdev);
3971 
3972     ret = fec_enet_mii_init(pdev);
3973     if (ret)
3974         goto failed_mii_init;
3975 
3976     /* Carrier starts down, phylib will bring it up */
3977     netif_carrier_off(ndev);
3978     fec_enet_clk_enable(ndev, false);
3979     pinctrl_pm_select_sleep_state(&pdev->dev);
3980 
3981     ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3982 
3983     ret = register_netdev(ndev);
3984     if (ret)
3985         goto failed_register;
3986 
3987     device_init_wakeup(&ndev->dev, fep->wol_flag &
3988                FEC_WOL_HAS_MAGIC_PACKET);
3989 
3990     if (fep->bufdesc_ex && fep->ptp_clock)
3991         netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3992 
3993     fep->rx_copybreak = COPYBREAK_DEFAULT;
3994     INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3995 
3996     pm_runtime_mark_last_busy(&pdev->dev);
3997     pm_runtime_put_autosuspend(&pdev->dev);
3998 
3999     return 0;
4000 
4001 failed_register:
4002     fec_enet_mii_remove(fep);
4003 failed_mii_init:
4004 failed_irq:
4005 failed_init:
4006     fec_ptp_stop(pdev);
4007 failed_reset:
4008     pm_runtime_put_noidle(&pdev->dev);
4009     pm_runtime_disable(&pdev->dev);
4010     if (fep->reg_phy)
4011         regulator_disable(fep->reg_phy);
4012 failed_regulator:
4013     clk_disable_unprepare(fep->clk_ahb);
4014 failed_clk_ahb:
4015     clk_disable_unprepare(fep->clk_ipg);
4016 failed_clk_ipg:
4017     fec_enet_clk_enable(ndev, false);
4018 failed_clk:
4019 failed_rgmii_delay:
4020     if (of_phy_is_fixed_link(np))
4021         of_phy_deregister_fixed_link(np);
4022     of_node_put(phy_node);
4023 failed_stop_mode:
4024 failed_phy:
4025     dev_id--;
4026 failed_ioremap:
4027     free_netdev(ndev);
4028 
4029     return ret;
4030 }
4031 
4032 static int
4033 fec_drv_remove(struct platform_device *pdev)
4034 {
4035     struct net_device *ndev = platform_get_drvdata(pdev);
4036     struct fec_enet_private *fep = netdev_priv(ndev);
4037     struct device_node *np = pdev->dev.of_node;
4038     int ret;
4039 
4040     ret = pm_runtime_resume_and_get(&pdev->dev);
4041     if (ret < 0)
4042         return ret;
4043 
4044     cancel_work_sync(&fep->tx_timeout_work);
4045     fec_ptp_stop(pdev);
4046     unregister_netdev(ndev);
4047     fec_enet_mii_remove(fep);
4048     if (fep->reg_phy)
4049         regulator_disable(fep->reg_phy);
4050 
4051     if (of_phy_is_fixed_link(np))
4052         of_phy_deregister_fixed_link(np);
4053     of_node_put(fep->phy_node);
4054 
4055     clk_disable_unprepare(fep->clk_ahb);
4056     clk_disable_unprepare(fep->clk_ipg);
4057     pm_runtime_put_noidle(&pdev->dev);
4058     pm_runtime_disable(&pdev->dev);
4059 
4060     free_netdev(ndev);
4061     return 0;
4062 }
4063 
4064 static int __maybe_unused fec_suspend(struct device *dev)
4065 {
4066     struct net_device *ndev = dev_get_drvdata(dev);
4067     struct fec_enet_private *fep = netdev_priv(ndev);
4068 
4069     rtnl_lock();
4070     if (netif_running(ndev)) {
4071         if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4072             fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4073         phy_stop(ndev->phydev);
4074         napi_disable(&fep->napi);
4075         netif_tx_lock_bh(ndev);
4076         netif_device_detach(ndev);
4077         netif_tx_unlock_bh(ndev);
4078         fec_stop(ndev);
4079         if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4080             fec_irqs_disable(ndev);
4081             pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4082         } else {
4083             fec_irqs_disable_except_wakeup(ndev);
4084             if (fep->wake_irq > 0) {
4085                 disable_irq(fep->wake_irq);
4086                 enable_irq_wake(fep->wake_irq);
4087             }
4088             fec_enet_stop_mode(fep, true);
4089         }
4090         /* It's safe to disable clocks since interrupts are masked */
4091         fec_enet_clk_enable(ndev, false);
4092     }
4093     rtnl_unlock();
4094 
4095     if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4096         regulator_disable(fep->reg_phy);
4097 
4098     /* SOC supply clock to phy, when clock is disabled, phy link down
4099      * SOC control phy regulator, when regulator is disabled, phy link down
4100      */
4101     if (fep->clk_enet_out || fep->reg_phy)
4102         fep->link = 0;
4103 
4104     return 0;
4105 }
4106 
4107 static int __maybe_unused fec_resume(struct device *dev)
4108 {
4109     struct net_device *ndev = dev_get_drvdata(dev);
4110     struct fec_enet_private *fep = netdev_priv(ndev);
4111     int ret;
4112     int val;
4113 
4114     if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4115         ret = regulator_enable(fep->reg_phy);
4116         if (ret)
4117             return ret;
4118     }
4119 
4120     rtnl_lock();
4121     if (netif_running(ndev)) {
4122         ret = fec_enet_clk_enable(ndev, true);
4123         if (ret) {
4124             rtnl_unlock();
4125             goto failed_clk;
4126         }
4127         if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4128             fec_enet_stop_mode(fep, false);
4129             if (fep->wake_irq) {
4130                 disable_irq_wake(fep->wake_irq);
4131                 enable_irq(fep->wake_irq);
4132             }
4133 
4134             val = readl(fep->hwp + FEC_ECNTRL);
4135             val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4136             writel(val, fep->hwp + FEC_ECNTRL);
4137             fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4138         } else {
4139             pinctrl_pm_select_default_state(&fep->pdev->dev);
4140         }
4141         fec_restart(ndev);
4142         netif_tx_lock_bh(ndev);
4143         netif_device_attach(ndev);
4144         netif_tx_unlock_bh(ndev);
4145         napi_enable(&fep->napi);
4146         phy_init_hw(ndev->phydev);
4147         phy_start(ndev->phydev);
4148     }
4149     rtnl_unlock();
4150 
4151     return 0;
4152 
4153 failed_clk:
4154     if (fep->reg_phy)
4155         regulator_disable(fep->reg_phy);
4156     return ret;
4157 }
4158 
4159 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4160 {
4161     struct net_device *ndev = dev_get_drvdata(dev);
4162     struct fec_enet_private *fep = netdev_priv(ndev);
4163 
4164     clk_disable_unprepare(fep->clk_ahb);
4165     clk_disable_unprepare(fep->clk_ipg);
4166 
4167     return 0;
4168 }
4169 
4170 static int __maybe_unused fec_runtime_resume(struct device *dev)
4171 {
4172     struct net_device *ndev = dev_get_drvdata(dev);
4173     struct fec_enet_private *fep = netdev_priv(ndev);
4174     int ret;
4175 
4176     ret = clk_prepare_enable(fep->clk_ahb);
4177     if (ret)
4178         return ret;
4179     ret = clk_prepare_enable(fep->clk_ipg);
4180     if (ret)
4181         goto failed_clk_ipg;
4182 
4183     return 0;
4184 
4185 failed_clk_ipg:
4186     clk_disable_unprepare(fep->clk_ahb);
4187     return ret;
4188 }
4189 
4190 static const struct dev_pm_ops fec_pm_ops = {
4191     SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4192     SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4193 };
4194 
4195 static struct platform_driver fec_driver = {
4196     .driver = {
4197         .name   = DRIVER_NAME,
4198         .pm = &fec_pm_ops,
4199         .of_match_table = fec_dt_ids,
4200         .suppress_bind_attrs = true,
4201     },
4202     .id_table = fec_devtype,
4203     .probe  = fec_probe,
4204     .remove = fec_drv_remove,
4205 };
4206 
4207 module_platform_driver(fec_driver);
4208 
4209 MODULE_LICENSE("GPL");