0001
0002
0003
0004
0005
0006
0007
0008
0009
0010 #include "dl2k.h"
0011 #include <linux/dma-mapping.h>
0012
0013 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
0014 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
0015 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
0016 #define dr32(reg) ioread32(ioaddr + (reg))
0017 #define dr16(reg) ioread16(ioaddr + (reg))
0018 #define dr8(reg) ioread8(ioaddr + (reg))
0019
0020 #define MAX_UNITS 8
0021 static int mtu[MAX_UNITS];
0022 static int vlan[MAX_UNITS];
0023 static int jumbo[MAX_UNITS];
0024 static char *media[MAX_UNITS];
0025 static int tx_flow=-1;
0026 static int rx_flow=-1;
0027 static int copy_thresh;
0028 static int rx_coalesce=10;
0029 static int rx_timeout=200;
0030 static int tx_coalesce=16;
0031
0032
0033 MODULE_AUTHOR ("Edward Peng");
0034 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
0035 MODULE_LICENSE("GPL");
0036 module_param_array(mtu, int, NULL, 0);
0037 module_param_array(media, charp, NULL, 0);
0038 module_param_array(vlan, int, NULL, 0);
0039 module_param_array(jumbo, int, NULL, 0);
0040 module_param(tx_flow, int, 0);
0041 module_param(rx_flow, int, 0);
0042 module_param(copy_thresh, int, 0);
0043 module_param(rx_coalesce, int, 0);
0044 module_param(rx_timeout, int, 0);
0045 module_param(tx_coalesce, int, 0);
0046
0047
0048
0049 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
0050 UpdateStats | LinkEvent)
0051
0052 static void dl2k_enable_int(struct netdev_private *np)
0053 {
0054 void __iomem *ioaddr = np->ioaddr;
0055
0056 dw16(IntEnable, DEFAULT_INTR);
0057 }
0058
0059 static const int max_intrloop = 50;
0060 static const int multicast_filter_limit = 0x40;
0061
0062 static int rio_open (struct net_device *dev);
0063 static void rio_timer (struct timer_list *t);
0064 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
0065 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
0066 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
0067 static void rio_free_tx (struct net_device *dev, int irq);
0068 static void tx_error (struct net_device *dev, int tx_status);
0069 static int receive_packet (struct net_device *dev);
0070 static void rio_error (struct net_device *dev, int int_status);
0071 static void set_multicast (struct net_device *dev);
0072 static struct net_device_stats *get_stats (struct net_device *dev);
0073 static int clear_stats (struct net_device *dev);
0074 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
0075 static int rio_close (struct net_device *dev);
0076 static int find_miiphy (struct net_device *dev);
0077 static int parse_eeprom (struct net_device *dev);
0078 static int read_eeprom (struct netdev_private *, int eep_addr);
0079 static int mii_wait_link (struct net_device *dev, int wait);
0080 static int mii_set_media (struct net_device *dev);
0081 static int mii_get_media (struct net_device *dev);
0082 static int mii_set_media_pcs (struct net_device *dev);
0083 static int mii_get_media_pcs (struct net_device *dev);
0084 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
0085 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
0086 u16 data);
0087
0088 static const struct ethtool_ops ethtool_ops;
0089
0090 static const struct net_device_ops netdev_ops = {
0091 .ndo_open = rio_open,
0092 .ndo_start_xmit = start_xmit,
0093 .ndo_stop = rio_close,
0094 .ndo_get_stats = get_stats,
0095 .ndo_validate_addr = eth_validate_addr,
0096 .ndo_set_mac_address = eth_mac_addr,
0097 .ndo_set_rx_mode = set_multicast,
0098 .ndo_eth_ioctl = rio_ioctl,
0099 .ndo_tx_timeout = rio_tx_timeout,
0100 };
0101
0102 static int
0103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
0104 {
0105 struct net_device *dev;
0106 struct netdev_private *np;
0107 static int card_idx;
0108 int chip_idx = ent->driver_data;
0109 int err, irq;
0110 void __iomem *ioaddr;
0111 void *ring_space;
0112 dma_addr_t ring_dma;
0113
0114 err = pci_enable_device (pdev);
0115 if (err)
0116 return err;
0117
0118 irq = pdev->irq;
0119 err = pci_request_regions (pdev, "dl2k");
0120 if (err)
0121 goto err_out_disable;
0122
0123 pci_set_master (pdev);
0124
0125 err = -ENOMEM;
0126
0127 dev = alloc_etherdev (sizeof (*np));
0128 if (!dev)
0129 goto err_out_res;
0130 SET_NETDEV_DEV(dev, &pdev->dev);
0131
0132 np = netdev_priv(dev);
0133
0134
0135 ioaddr = pci_iomap(pdev, 0, 0);
0136 if (!ioaddr)
0137 goto err_out_dev;
0138 np->eeprom_addr = ioaddr;
0139
0140 #ifdef MEM_MAPPING
0141
0142 ioaddr = pci_iomap(pdev, 1, 0);
0143 if (!ioaddr)
0144 goto err_out_iounmap;
0145 #endif
0146 np->ioaddr = ioaddr;
0147 np->chip_id = chip_idx;
0148 np->pdev = pdev;
0149 spin_lock_init (&np->tx_lock);
0150 spin_lock_init (&np->rx_lock);
0151
0152
0153 np->an_enable = 1;
0154 np->tx_coalesce = 1;
0155 if (card_idx < MAX_UNITS) {
0156 if (media[card_idx] != NULL) {
0157 np->an_enable = 0;
0158 if (strcmp (media[card_idx], "auto") == 0 ||
0159 strcmp (media[card_idx], "autosense") == 0 ||
0160 strcmp (media[card_idx], "0") == 0 ) {
0161 np->an_enable = 2;
0162 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
0163 strcmp (media[card_idx], "4") == 0) {
0164 np->speed = 100;
0165 np->full_duplex = 1;
0166 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
0167 strcmp (media[card_idx], "3") == 0) {
0168 np->speed = 100;
0169 np->full_duplex = 0;
0170 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
0171 strcmp (media[card_idx], "2") == 0) {
0172 np->speed = 10;
0173 np->full_duplex = 1;
0174 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
0175 strcmp (media[card_idx], "1") == 0) {
0176 np->speed = 10;
0177 np->full_duplex = 0;
0178 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
0179 strcmp (media[card_idx], "6") == 0) {
0180 np->speed=1000;
0181 np->full_duplex=1;
0182 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
0183 strcmp (media[card_idx], "5") == 0) {
0184 np->speed = 1000;
0185 np->full_duplex = 0;
0186 } else {
0187 np->an_enable = 1;
0188 }
0189 }
0190 if (jumbo[card_idx] != 0) {
0191 np->jumbo = 1;
0192 dev->mtu = MAX_JUMBO;
0193 } else {
0194 np->jumbo = 0;
0195 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
0196 dev->mtu = mtu[card_idx];
0197 }
0198 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
0199 vlan[card_idx] : 0;
0200 if (rx_coalesce > 0 && rx_timeout > 0) {
0201 np->rx_coalesce = rx_coalesce;
0202 np->rx_timeout = rx_timeout;
0203 np->coalesce = 1;
0204 }
0205 np->tx_flow = (tx_flow == 0) ? 0 : 1;
0206 np->rx_flow = (rx_flow == 0) ? 0 : 1;
0207
0208 if (tx_coalesce < 1)
0209 tx_coalesce = 1;
0210 else if (tx_coalesce > TX_RING_SIZE-1)
0211 tx_coalesce = TX_RING_SIZE - 1;
0212 }
0213 dev->netdev_ops = &netdev_ops;
0214 dev->watchdog_timeo = TX_TIMEOUT;
0215 dev->ethtool_ops = ðtool_ops;
0216 #if 0
0217 dev->features = NETIF_F_IP_CSUM;
0218 #endif
0219
0220 dev->min_mtu = ETH_MIN_MTU;
0221 dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
0222
0223 pci_set_drvdata (pdev, dev);
0224
0225 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
0226 GFP_KERNEL);
0227 if (!ring_space)
0228 goto err_out_iounmap;
0229 np->tx_ring = ring_space;
0230 np->tx_ring_dma = ring_dma;
0231
0232 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
0233 GFP_KERNEL);
0234 if (!ring_space)
0235 goto err_out_unmap_tx;
0236 np->rx_ring = ring_space;
0237 np->rx_ring_dma = ring_dma;
0238
0239
0240 parse_eeprom (dev);
0241
0242
0243 err = find_miiphy (dev);
0244 if (err)
0245 goto err_out_unmap_rx;
0246
0247
0248 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
0249 np->link_status = 0;
0250
0251 if (np->phy_media) {
0252
0253 if (np->an_enable == 2) {
0254 np->an_enable = 1;
0255 }
0256 } else {
0257
0258
0259 if (np->speed == 1000)
0260 np->an_enable = 1;
0261 }
0262
0263 err = register_netdev (dev);
0264 if (err)
0265 goto err_out_unmap_rx;
0266
0267 card_idx++;
0268
0269 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
0270 dev->name, np->name, dev->dev_addr, irq);
0271 if (tx_coalesce > 1)
0272 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
0273 tx_coalesce);
0274 if (np->coalesce)
0275 printk(KERN_INFO
0276 "rx_coalesce:\t%d packets\n"
0277 "rx_timeout: \t%d ns\n",
0278 np->rx_coalesce, np->rx_timeout*640);
0279 if (np->vlan)
0280 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
0281 return 0;
0282
0283 err_out_unmap_rx:
0284 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
0285 np->rx_ring_dma);
0286 err_out_unmap_tx:
0287 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
0288 np->tx_ring_dma);
0289 err_out_iounmap:
0290 #ifdef MEM_MAPPING
0291 pci_iounmap(pdev, np->ioaddr);
0292 #endif
0293 pci_iounmap(pdev, np->eeprom_addr);
0294 err_out_dev:
0295 free_netdev (dev);
0296 err_out_res:
0297 pci_release_regions (pdev);
0298 err_out_disable:
0299 pci_disable_device (pdev);
0300 return err;
0301 }
0302
0303 static int
0304 find_miiphy (struct net_device *dev)
0305 {
0306 struct netdev_private *np = netdev_priv(dev);
0307 int i, phy_found = 0;
0308
0309 np->phy_addr = 1;
0310
0311 for (i = 31; i >= 0; i--) {
0312 int mii_status = mii_read (dev, i, 1);
0313 if (mii_status != 0xffff && mii_status != 0x0000) {
0314 np->phy_addr = i;
0315 phy_found++;
0316 }
0317 }
0318 if (!phy_found) {
0319 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
0320 return -ENODEV;
0321 }
0322 return 0;
0323 }
0324
0325 static int
0326 parse_eeprom (struct net_device *dev)
0327 {
0328 struct netdev_private *np = netdev_priv(dev);
0329 void __iomem *ioaddr = np->ioaddr;
0330 int i, j;
0331 u8 sromdata[256];
0332 u8 *psib;
0333 u32 crc;
0334 PSROM_t psrom = (PSROM_t) sromdata;
0335
0336 int cid, next;
0337
0338 for (i = 0; i < 128; i++)
0339 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
0340
0341 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {
0342
0343 crc = ~ether_crc_le (256 - 4, sromdata);
0344 if (psrom->crc != cpu_to_le32(crc)) {
0345 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
0346 dev->name);
0347 return -1;
0348 }
0349 }
0350
0351
0352 eth_hw_addr_set(dev, psrom->mac_addr);
0353
0354 if (np->chip_id == CHIP_IP1000A) {
0355 np->led_mode = psrom->led_mode;
0356 return 0;
0357 }
0358
0359 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
0360 return 0;
0361 }
0362
0363
0364 i = 0x30;
0365 psib = (u8 *) sromdata;
0366 do {
0367 cid = psib[i++];
0368 next = psib[i++];
0369 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
0370 printk (KERN_ERR "Cell data error\n");
0371 return -1;
0372 }
0373 switch (cid) {
0374 case 0:
0375 break;
0376 case 1:
0377 return 0;
0378 case 2:
0379 np->duplex_polarity = psib[i];
0380 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
0381 break;
0382 case 3:
0383 np->wake_polarity = psib[i];
0384 break;
0385 case 9:
0386 j = (next - i > 255) ? 255 : next - i;
0387 memcpy (np->name, &(psib[i]), j);
0388 break;
0389 case 4:
0390 case 5:
0391 case 6:
0392 case 7:
0393 case 8:
0394 break;
0395 default:
0396 return -1;
0397 }
0398 i = next;
0399 } while (1);
0400
0401 return 0;
0402 }
0403
0404 static void rio_set_led_mode(struct net_device *dev)
0405 {
0406 struct netdev_private *np = netdev_priv(dev);
0407 void __iomem *ioaddr = np->ioaddr;
0408 u32 mode;
0409
0410 if (np->chip_id != CHIP_IP1000A)
0411 return;
0412
0413 mode = dr32(ASICCtrl);
0414 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
0415
0416 if (np->led_mode & 0x01)
0417 mode |= IPG_AC_LED_MODE;
0418 if (np->led_mode & 0x02)
0419 mode |= IPG_AC_LED_MODE_BIT_1;
0420 if (np->led_mode & 0x08)
0421 mode |= IPG_AC_LED_SPEED;
0422
0423 dw32(ASICCtrl, mode);
0424 }
0425
0426 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
0427 {
0428 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
0429 }
0430
0431 static void free_list(struct net_device *dev)
0432 {
0433 struct netdev_private *np = netdev_priv(dev);
0434 struct sk_buff *skb;
0435 int i;
0436
0437
0438 for (i = 0; i < RX_RING_SIZE; i++) {
0439 skb = np->rx_skbuff[i];
0440 if (skb) {
0441 dma_unmap_single(&np->pdev->dev,
0442 desc_to_dma(&np->rx_ring[i]),
0443 skb->len, DMA_FROM_DEVICE);
0444 dev_kfree_skb(skb);
0445 np->rx_skbuff[i] = NULL;
0446 }
0447 np->rx_ring[i].status = 0;
0448 np->rx_ring[i].fraginfo = 0;
0449 }
0450 for (i = 0; i < TX_RING_SIZE; i++) {
0451 skb = np->tx_skbuff[i];
0452 if (skb) {
0453 dma_unmap_single(&np->pdev->dev,
0454 desc_to_dma(&np->tx_ring[i]),
0455 skb->len, DMA_TO_DEVICE);
0456 dev_kfree_skb(skb);
0457 np->tx_skbuff[i] = NULL;
0458 }
0459 }
0460 }
0461
0462 static void rio_reset_ring(struct netdev_private *np)
0463 {
0464 int i;
0465
0466 np->cur_rx = 0;
0467 np->cur_tx = 0;
0468 np->old_rx = 0;
0469 np->old_tx = 0;
0470
0471 for (i = 0; i < TX_RING_SIZE; i++)
0472 np->tx_ring[i].status = cpu_to_le64(TFDDone);
0473
0474 for (i = 0; i < RX_RING_SIZE; i++)
0475 np->rx_ring[i].status = 0;
0476 }
0477
0478
0479 static int alloc_list(struct net_device *dev)
0480 {
0481 struct netdev_private *np = netdev_priv(dev);
0482 int i;
0483
0484 rio_reset_ring(np);
0485 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
0486
0487
0488 for (i = 0; i < TX_RING_SIZE; i++) {
0489 np->tx_skbuff[i] = NULL;
0490 np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
0491 ((i + 1) % TX_RING_SIZE) *
0492 sizeof(struct netdev_desc));
0493 }
0494
0495
0496 for (i = 0; i < RX_RING_SIZE; i++) {
0497
0498 struct sk_buff *skb;
0499
0500 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
0501 np->rx_skbuff[i] = skb;
0502 if (!skb) {
0503 free_list(dev);
0504 return -ENOMEM;
0505 }
0506
0507 np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
0508 ((i + 1) % RX_RING_SIZE) *
0509 sizeof(struct netdev_desc));
0510
0511 np->rx_ring[i].fraginfo =
0512 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
0513 np->rx_buf_sz, DMA_FROM_DEVICE));
0514 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
0515 }
0516
0517 return 0;
0518 }
0519
0520 static void rio_hw_init(struct net_device *dev)
0521 {
0522 struct netdev_private *np = netdev_priv(dev);
0523 void __iomem *ioaddr = np->ioaddr;
0524 int i;
0525 u16 macctrl;
0526
0527
0528 dw16(ASICCtrl + 2,
0529 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
0530 mdelay(10);
0531
0532 rio_set_led_mode(dev);
0533
0534
0535 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
0536
0537 if (np->chip_id == CHIP_IP1000A &&
0538 (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
0539
0540 mii_write(dev, np->phy_addr, 31, 0x0001);
0541 mii_write(dev, np->phy_addr, 27, 0x01e0);
0542 mii_write(dev, np->phy_addr, 31, 0x0002);
0543 mii_write(dev, np->phy_addr, 27, 0xeb8e);
0544 mii_write(dev, np->phy_addr, 31, 0x0000);
0545 mii_write(dev, np->phy_addr, 30, 0x005e);
0546
0547 mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
0548 }
0549
0550 if (np->phy_media)
0551 mii_set_media_pcs(dev);
0552 else
0553 mii_set_media(dev);
0554
0555
0556 if (np->jumbo != 0)
0557 dw16(MaxFrameSize, MAX_JUMBO+14);
0558
0559
0560 dw32(RFDListPtr0, np->rx_ring_dma);
0561 dw32(RFDListPtr1, 0);
0562
0563
0564
0565
0566
0567 for (i = 0; i < 3; i++)
0568 dw16(StationAddr0 + 2 * i,
0569 cpu_to_le16(((const u16 *)dev->dev_addr)[i]));
0570
0571 set_multicast (dev);
0572 if (np->coalesce) {
0573 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
0574 }
0575
0576 dw8(RxDMAPollPeriod, 0x20);
0577 dw8(TxDMAPollPeriod, 0xff);
0578 dw8(RxDMABurstThresh, 0x30);
0579 dw8(RxDMAUrgentThresh, 0x30);
0580 dw32(RmonStatMask, 0x0007ffff);
0581
0582 clear_stats (dev);
0583
0584
0585 if (np->vlan) {
0586
0587 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
0588
0589 dw16(VLANId, np->vlan);
0590
0591 dw32(VLANTag, 0x8100 << 16 | np->vlan);
0592
0593
0594 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
0595 }
0596
0597
0598 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
0599
0600 macctrl = 0;
0601 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
0602 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
0603 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
0604 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
0605 dw16(MACCtrl, macctrl);
0606 }
0607
0608 static void rio_hw_stop(struct net_device *dev)
0609 {
0610 struct netdev_private *np = netdev_priv(dev);
0611 void __iomem *ioaddr = np->ioaddr;
0612
0613
0614 dw16(IntEnable, 0);
0615
0616
0617 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
0618 }
0619
0620 static int rio_open(struct net_device *dev)
0621 {
0622 struct netdev_private *np = netdev_priv(dev);
0623 const int irq = np->pdev->irq;
0624 int i;
0625
0626 i = alloc_list(dev);
0627 if (i)
0628 return i;
0629
0630 rio_hw_init(dev);
0631
0632 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
0633 if (i) {
0634 rio_hw_stop(dev);
0635 free_list(dev);
0636 return i;
0637 }
0638
0639 timer_setup(&np->timer, rio_timer, 0);
0640 np->timer.expires = jiffies + 1 * HZ;
0641 add_timer(&np->timer);
0642
0643 netif_start_queue (dev);
0644
0645 dl2k_enable_int(np);
0646 return 0;
0647 }
0648
0649 static void
0650 rio_timer (struct timer_list *t)
0651 {
0652 struct netdev_private *np = from_timer(np, t, timer);
0653 struct net_device *dev = pci_get_drvdata(np->pdev);
0654 unsigned int entry;
0655 int next_tick = 1*HZ;
0656 unsigned long flags;
0657
0658 spin_lock_irqsave(&np->rx_lock, flags);
0659
0660 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
0661 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
0662
0663 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
0664 struct sk_buff *skb;
0665 entry = np->old_rx % RX_RING_SIZE;
0666
0667 if (np->rx_skbuff[entry] == NULL) {
0668 skb = netdev_alloc_skb_ip_align(dev,
0669 np->rx_buf_sz);
0670 if (skb == NULL) {
0671 np->rx_ring[entry].fraginfo = 0;
0672 printk (KERN_INFO
0673 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
0674 dev->name, entry);
0675 break;
0676 }
0677 np->rx_skbuff[entry] = skb;
0678 np->rx_ring[entry].fraginfo =
0679 cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
0680 np->rx_buf_sz, DMA_FROM_DEVICE));
0681 }
0682 np->rx_ring[entry].fraginfo |=
0683 cpu_to_le64((u64)np->rx_buf_sz << 48);
0684 np->rx_ring[entry].status = 0;
0685 }
0686 }
0687 spin_unlock_irqrestore (&np->rx_lock, flags);
0688 np->timer.expires = jiffies + next_tick;
0689 add_timer(&np->timer);
0690 }
0691
0692 static void
0693 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
0694 {
0695 struct netdev_private *np = netdev_priv(dev);
0696 void __iomem *ioaddr = np->ioaddr;
0697
0698 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
0699 dev->name, dr32(TxStatus));
0700 rio_free_tx(dev, 0);
0701 dev->if_port = 0;
0702 netif_trans_update(dev);
0703 }
0704
0705 static netdev_tx_t
0706 start_xmit (struct sk_buff *skb, struct net_device *dev)
0707 {
0708 struct netdev_private *np = netdev_priv(dev);
0709 void __iomem *ioaddr = np->ioaddr;
0710 struct netdev_desc *txdesc;
0711 unsigned entry;
0712 u64 tfc_vlan_tag = 0;
0713
0714 if (np->link_status == 0) {
0715 dev_kfree_skb(skb);
0716 return NETDEV_TX_OK;
0717 }
0718 entry = np->cur_tx % TX_RING_SIZE;
0719 np->tx_skbuff[entry] = skb;
0720 txdesc = &np->tx_ring[entry];
0721
0722 #if 0
0723 if (skb->ip_summed == CHECKSUM_PARTIAL) {
0724 txdesc->status |=
0725 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
0726 IPChecksumEnable);
0727 }
0728 #endif
0729 if (np->vlan) {
0730 tfc_vlan_tag = VLANTagInsert |
0731 ((u64)np->vlan << 32) |
0732 ((u64)skb->priority << 45);
0733 }
0734 txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
0735 skb->len, DMA_TO_DEVICE));
0736 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
0737
0738
0739
0740 if (entry % np->tx_coalesce == 0 || np->speed == 10)
0741 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
0742 WordAlignDisable |
0743 TxDMAIndicate |
0744 (1 << FragCountShift));
0745 else
0746 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
0747 WordAlignDisable |
0748 (1 << FragCountShift));
0749
0750
0751 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
0752
0753 dw32(CountDown, 10000);
0754 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
0755 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
0756 < TX_QUEUE_LEN - 1 && np->speed != 10) {
0757
0758 } else if (!netif_queue_stopped(dev)) {
0759 netif_stop_queue (dev);
0760 }
0761
0762
0763 if (!dr32(TFDListPtr0)) {
0764 dw32(TFDListPtr0, np->tx_ring_dma +
0765 entry * sizeof (struct netdev_desc));
0766 dw32(TFDListPtr1, 0);
0767 }
0768
0769 return NETDEV_TX_OK;
0770 }
0771
0772 static irqreturn_t
0773 rio_interrupt (int irq, void *dev_instance)
0774 {
0775 struct net_device *dev = dev_instance;
0776 struct netdev_private *np = netdev_priv(dev);
0777 void __iomem *ioaddr = np->ioaddr;
0778 unsigned int_status;
0779 int cnt = max_intrloop;
0780 int handled = 0;
0781
0782 while (1) {
0783 int_status = dr16(IntStatus);
0784 dw16(IntStatus, int_status);
0785 int_status &= DEFAULT_INTR;
0786 if (int_status == 0 || --cnt < 0)
0787 break;
0788 handled = 1;
0789
0790 if (int_status & RxDMAComplete)
0791 receive_packet (dev);
0792
0793 if ((int_status & (TxDMAComplete|IntRequested))) {
0794 int tx_status;
0795 tx_status = dr32(TxStatus);
0796 if (tx_status & 0x01)
0797 tx_error (dev, tx_status);
0798
0799 rio_free_tx (dev, 1);
0800 }
0801
0802
0803 if (int_status &
0804 (HostError | LinkEvent | UpdateStats))
0805 rio_error (dev, int_status);
0806 }
0807 if (np->cur_tx != np->old_tx)
0808 dw32(CountDown, 100);
0809 return IRQ_RETVAL(handled);
0810 }
0811
0812 static void
0813 rio_free_tx (struct net_device *dev, int irq)
0814 {
0815 struct netdev_private *np = netdev_priv(dev);
0816 int entry = np->old_tx % TX_RING_SIZE;
0817 int tx_use = 0;
0818 unsigned long flag = 0;
0819
0820 if (irq)
0821 spin_lock(&np->tx_lock);
0822 else
0823 spin_lock_irqsave(&np->tx_lock, flag);
0824
0825
0826 while (entry != np->cur_tx) {
0827 struct sk_buff *skb;
0828
0829 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
0830 break;
0831 skb = np->tx_skbuff[entry];
0832 dma_unmap_single(&np->pdev->dev,
0833 desc_to_dma(&np->tx_ring[entry]), skb->len,
0834 DMA_TO_DEVICE);
0835 if (irq)
0836 dev_consume_skb_irq(skb);
0837 else
0838 dev_kfree_skb(skb);
0839
0840 np->tx_skbuff[entry] = NULL;
0841 entry = (entry + 1) % TX_RING_SIZE;
0842 tx_use++;
0843 }
0844 if (irq)
0845 spin_unlock(&np->tx_lock);
0846 else
0847 spin_unlock_irqrestore(&np->tx_lock, flag);
0848 np->old_tx = entry;
0849
0850
0851
0852
0853 if (netif_queue_stopped(dev) &&
0854 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
0855 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
0856 netif_wake_queue (dev);
0857 }
0858 }
0859
0860 static void
0861 tx_error (struct net_device *dev, int tx_status)
0862 {
0863 struct netdev_private *np = netdev_priv(dev);
0864 void __iomem *ioaddr = np->ioaddr;
0865 int frame_id;
0866 int i;
0867
0868 frame_id = (tx_status & 0xffff0000);
0869 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
0870 dev->name, tx_status, frame_id);
0871 dev->stats.tx_errors++;
0872
0873 if (tx_status & 0x10) {
0874 dev->stats.tx_fifo_errors++;
0875 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
0876
0877 dw16(ASICCtrl + 2,
0878 TxReset | DMAReset | FIFOReset | NetworkReset);
0879
0880 for (i = 50; i > 0; i--) {
0881 if (!(dr16(ASICCtrl + 2) & ResetBusy))
0882 break;
0883 mdelay (1);
0884 }
0885 rio_set_led_mode(dev);
0886 rio_free_tx (dev, 1);
0887
0888 dw32(TFDListPtr0, np->tx_ring_dma +
0889 np->old_tx * sizeof (struct netdev_desc));
0890 dw32(TFDListPtr1, 0);
0891
0892
0893 }
0894
0895 if (tx_status & 0x04) {
0896 dev->stats.tx_fifo_errors++;
0897
0898 dw16(ASICCtrl + 2, TxReset | FIFOReset);
0899
0900 for (i = 50; i > 0; i--) {
0901 if (!(dr16(ASICCtrl + 2) & ResetBusy))
0902 break;
0903 mdelay (1);
0904 }
0905 rio_set_led_mode(dev);
0906
0907 }
0908
0909 if (tx_status & 0x08)
0910 dev->stats.collisions++;
0911
0912 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
0913 }
0914
0915 static int
0916 receive_packet (struct net_device *dev)
0917 {
0918 struct netdev_private *np = netdev_priv(dev);
0919 int entry = np->cur_rx % RX_RING_SIZE;
0920 int cnt = 30;
0921
0922
0923 while (1) {
0924 struct netdev_desc *desc = &np->rx_ring[entry];
0925 int pkt_len;
0926 u64 frame_status;
0927
0928 if (!(desc->status & cpu_to_le64(RFDDone)) ||
0929 !(desc->status & cpu_to_le64(FrameStart)) ||
0930 !(desc->status & cpu_to_le64(FrameEnd)))
0931 break;
0932
0933
0934 frame_status = le64_to_cpu(desc->status);
0935 pkt_len = frame_status & 0xffff;
0936 if (--cnt < 0)
0937 break;
0938
0939 if (frame_status & RFS_Errors) {
0940 dev->stats.rx_errors++;
0941 if (frame_status & (RxRuntFrame | RxLengthError))
0942 dev->stats.rx_length_errors++;
0943 if (frame_status & RxFCSError)
0944 dev->stats.rx_crc_errors++;
0945 if (frame_status & RxAlignmentError && np->speed != 1000)
0946 dev->stats.rx_frame_errors++;
0947 if (frame_status & RxFIFOOverrun)
0948 dev->stats.rx_fifo_errors++;
0949 } else {
0950 struct sk_buff *skb;
0951
0952
0953 if (pkt_len > copy_thresh) {
0954 dma_unmap_single(&np->pdev->dev,
0955 desc_to_dma(desc),
0956 np->rx_buf_sz,
0957 DMA_FROM_DEVICE);
0958 skb_put (skb = np->rx_skbuff[entry], pkt_len);
0959 np->rx_skbuff[entry] = NULL;
0960 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
0961 dma_sync_single_for_cpu(&np->pdev->dev,
0962 desc_to_dma(desc),
0963 np->rx_buf_sz,
0964 DMA_FROM_DEVICE);
0965 skb_copy_to_linear_data (skb,
0966 np->rx_skbuff[entry]->data,
0967 pkt_len);
0968 skb_put (skb, pkt_len);
0969 dma_sync_single_for_device(&np->pdev->dev,
0970 desc_to_dma(desc),
0971 np->rx_buf_sz,
0972 DMA_FROM_DEVICE);
0973 }
0974 skb->protocol = eth_type_trans (skb, dev);
0975 #if 0
0976
0977 if (np->pdev->pci_rev_id >= 0x0c &&
0978 !(frame_status & (TCPError | UDPError | IPError))) {
0979 skb->ip_summed = CHECKSUM_UNNECESSARY;
0980 }
0981 #endif
0982 netif_rx (skb);
0983 }
0984 entry = (entry + 1) % RX_RING_SIZE;
0985 }
0986 spin_lock(&np->rx_lock);
0987 np->cur_rx = entry;
0988
0989 entry = np->old_rx;
0990 while (entry != np->cur_rx) {
0991 struct sk_buff *skb;
0992
0993 if (np->rx_skbuff[entry] == NULL) {
0994 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
0995 if (skb == NULL) {
0996 np->rx_ring[entry].fraginfo = 0;
0997 printk (KERN_INFO
0998 "%s: receive_packet: "
0999 "Unable to re-allocate Rx skbuff.#%d\n",
1000 dev->name, entry);
1001 break;
1002 }
1003 np->rx_skbuff[entry] = skb;
1004 np->rx_ring[entry].fraginfo =
1005 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1006 np->rx_buf_sz, DMA_FROM_DEVICE));
1007 }
1008 np->rx_ring[entry].fraginfo |=
1009 cpu_to_le64((u64)np->rx_buf_sz << 48);
1010 np->rx_ring[entry].status = 0;
1011 entry = (entry + 1) % RX_RING_SIZE;
1012 }
1013 np->old_rx = entry;
1014 spin_unlock(&np->rx_lock);
1015 return 0;
1016 }
1017
1018 static void
1019 rio_error (struct net_device *dev, int int_status)
1020 {
1021 struct netdev_private *np = netdev_priv(dev);
1022 void __iomem *ioaddr = np->ioaddr;
1023 u16 macctrl;
1024
1025
1026 if (int_status & LinkEvent) {
1027 if (mii_wait_link (dev, 10) == 0) {
1028 printk (KERN_INFO "%s: Link up\n", dev->name);
1029 if (np->phy_media)
1030 mii_get_media_pcs (dev);
1031 else
1032 mii_get_media (dev);
1033 if (np->speed == 1000)
1034 np->tx_coalesce = tx_coalesce;
1035 else
1036 np->tx_coalesce = 1;
1037 macctrl = 0;
1038 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1039 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1040 macctrl |= (np->tx_flow) ?
1041 TxFlowControlEnable : 0;
1042 macctrl |= (np->rx_flow) ?
1043 RxFlowControlEnable : 0;
1044 dw16(MACCtrl, macctrl);
1045 np->link_status = 1;
1046 netif_carrier_on(dev);
1047 } else {
1048 printk (KERN_INFO "%s: Link off\n", dev->name);
1049 np->link_status = 0;
1050 netif_carrier_off(dev);
1051 }
1052 }
1053
1054
1055 if (int_status & UpdateStats) {
1056 get_stats (dev);
1057 }
1058
1059
1060
1061 if (int_status & HostError) {
1062 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1063 dev->name, int_status);
1064 dw16(ASICCtrl + 2, GlobalReset | HostReset);
1065 mdelay (500);
1066 rio_set_led_mode(dev);
1067 }
1068 }
1069
1070 static struct net_device_stats *
1071 get_stats (struct net_device *dev)
1072 {
1073 struct netdev_private *np = netdev_priv(dev);
1074 void __iomem *ioaddr = np->ioaddr;
1075 #ifdef MEM_MAPPING
1076 int i;
1077 #endif
1078 unsigned int stat_reg;
1079
1080
1081
1082
1083 dev->stats.rx_packets += dr32(FramesRcvOk);
1084 dev->stats.tx_packets += dr32(FramesXmtOk);
1085 dev->stats.rx_bytes += dr32(OctetRcvOk);
1086 dev->stats.tx_bytes += dr32(OctetXmtOk);
1087
1088 dev->stats.multicast = dr32(McstFramesRcvdOk);
1089 dev->stats.collisions += dr32(SingleColFrames)
1090 + dr32(MultiColFrames);
1091
1092
1093 stat_reg = dr16(FramesAbortXSColls);
1094 dev->stats.tx_aborted_errors += stat_reg;
1095 dev->stats.tx_errors += stat_reg;
1096
1097 stat_reg = dr16(CarrierSenseErrors);
1098 dev->stats.tx_carrier_errors += stat_reg;
1099 dev->stats.tx_errors += stat_reg;
1100
1101
1102 dr32(McstOctetXmtOk);
1103 dr16(BcstFramesXmtdOk);
1104 dr32(McstFramesXmtdOk);
1105 dr16(BcstFramesRcvdOk);
1106 dr16(MacControlFramesRcvd);
1107 dr16(FrameTooLongErrors);
1108 dr16(InRangeLengthErrors);
1109 dr16(FramesCheckSeqErrors);
1110 dr16(FramesLostRxErrors);
1111 dr32(McstOctetXmtOk);
1112 dr32(BcstOctetXmtOk);
1113 dr32(McstFramesXmtdOk);
1114 dr32(FramesWDeferredXmt);
1115 dr32(LateCollisions);
1116 dr16(BcstFramesXmtdOk);
1117 dr16(MacControlFramesXmtd);
1118 dr16(FramesWEXDeferal);
1119
1120 #ifdef MEM_MAPPING
1121 for (i = 0x100; i <= 0x150; i += 4)
1122 dr32(i);
1123 #endif
1124 dr16(TxJumboFrames);
1125 dr16(RxJumboFrames);
1126 dr16(TCPCheckSumErrors);
1127 dr16(UDPCheckSumErrors);
1128 dr16(IPCheckSumErrors);
1129 return &dev->stats;
1130 }
1131
1132 static int
1133 clear_stats (struct net_device *dev)
1134 {
1135 struct netdev_private *np = netdev_priv(dev);
1136 void __iomem *ioaddr = np->ioaddr;
1137 #ifdef MEM_MAPPING
1138 int i;
1139 #endif
1140
1141
1142
1143 dr32(FramesRcvOk);
1144 dr32(FramesXmtOk);
1145 dr32(OctetRcvOk);
1146 dr32(OctetXmtOk);
1147
1148 dr32(McstFramesRcvdOk);
1149 dr32(SingleColFrames);
1150 dr32(MultiColFrames);
1151 dr32(LateCollisions);
1152
1153 dr16(FrameTooLongErrors);
1154 dr16(InRangeLengthErrors);
1155 dr16(FramesCheckSeqErrors);
1156 dr16(FramesLostRxErrors);
1157
1158
1159 dr16(FramesAbortXSColls);
1160 dr16(CarrierSenseErrors);
1161
1162
1163 dr32(McstOctetXmtOk);
1164 dr16(BcstFramesXmtdOk);
1165 dr32(McstFramesXmtdOk);
1166 dr16(BcstFramesRcvdOk);
1167 dr16(MacControlFramesRcvd);
1168 dr32(McstOctetXmtOk);
1169 dr32(BcstOctetXmtOk);
1170 dr32(McstFramesXmtdOk);
1171 dr32(FramesWDeferredXmt);
1172 dr16(BcstFramesXmtdOk);
1173 dr16(MacControlFramesXmtd);
1174 dr16(FramesWEXDeferal);
1175 #ifdef MEM_MAPPING
1176 for (i = 0x100; i <= 0x150; i += 4)
1177 dr32(i);
1178 #endif
1179 dr16(TxJumboFrames);
1180 dr16(RxJumboFrames);
1181 dr16(TCPCheckSumErrors);
1182 dr16(UDPCheckSumErrors);
1183 dr16(IPCheckSumErrors);
1184 return 0;
1185 }
1186
1187 static void
1188 set_multicast (struct net_device *dev)
1189 {
1190 struct netdev_private *np = netdev_priv(dev);
1191 void __iomem *ioaddr = np->ioaddr;
1192 u32 hash_table[2];
1193 u16 rx_mode = 0;
1194
1195 hash_table[0] = hash_table[1] = 0;
1196
1197 hash_table[1] |= 0x02000000;
1198 if (dev->flags & IFF_PROMISC) {
1199
1200 rx_mode = ReceiveAllFrames;
1201 } else if ((dev->flags & IFF_ALLMULTI) ||
1202 (netdev_mc_count(dev) > multicast_filter_limit)) {
1203
1204 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1205 } else if (!netdev_mc_empty(dev)) {
1206 struct netdev_hw_addr *ha;
1207
1208
1209 rx_mode =
1210 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1211 netdev_for_each_mc_addr(ha, dev) {
1212 int bit, index = 0;
1213 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1214
1215
1216 for (bit = 0; bit < 6; bit++)
1217 if (crc & (1 << (31 - bit)))
1218 index |= (1 << bit);
1219 hash_table[index / 32] |= (1 << (index % 32));
1220 }
1221 } else {
1222 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1223 }
1224 if (np->vlan) {
1225
1226 rx_mode |= ReceiveVLANMatch;
1227 }
1228
1229 dw32(HashTable0, hash_table[0]);
1230 dw32(HashTable1, hash_table[1]);
1231 dw16(ReceiveMode, rx_mode);
1232 }
1233
1234 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1235 {
1236 struct netdev_private *np = netdev_priv(dev);
1237
1238 strlcpy(info->driver, "dl2k", sizeof(info->driver));
1239 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1240 }
1241
1242 static int rio_get_link_ksettings(struct net_device *dev,
1243 struct ethtool_link_ksettings *cmd)
1244 {
1245 struct netdev_private *np = netdev_priv(dev);
1246 u32 supported, advertising;
1247
1248 if (np->phy_media) {
1249
1250 supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1251 advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1252 cmd->base.port = PORT_FIBRE;
1253 } else {
1254
1255 supported = SUPPORTED_10baseT_Half |
1256 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1257 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1258 SUPPORTED_Autoneg | SUPPORTED_MII;
1259 advertising = ADVERTISED_10baseT_Half |
1260 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1261 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1262 ADVERTISED_Autoneg | ADVERTISED_MII;
1263 cmd->base.port = PORT_MII;
1264 }
1265 if (np->link_status) {
1266 cmd->base.speed = np->speed;
1267 cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1268 } else {
1269 cmd->base.speed = SPEED_UNKNOWN;
1270 cmd->base.duplex = DUPLEX_UNKNOWN;
1271 }
1272 if (np->an_enable)
1273 cmd->base.autoneg = AUTONEG_ENABLE;
1274 else
1275 cmd->base.autoneg = AUTONEG_DISABLE;
1276
1277 cmd->base.phy_address = np->phy_addr;
1278
1279 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1280 supported);
1281 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1282 advertising);
1283
1284 return 0;
1285 }
1286
1287 static int rio_set_link_ksettings(struct net_device *dev,
1288 const struct ethtool_link_ksettings *cmd)
1289 {
1290 struct netdev_private *np = netdev_priv(dev);
1291 u32 speed = cmd->base.speed;
1292 u8 duplex = cmd->base.duplex;
1293
1294 netif_carrier_off(dev);
1295 if (cmd->base.autoneg == AUTONEG_ENABLE) {
1296 if (np->an_enable) {
1297 return 0;
1298 } else {
1299 np->an_enable = 1;
1300 mii_set_media(dev);
1301 return 0;
1302 }
1303 } else {
1304 np->an_enable = 0;
1305 if (np->speed == 1000) {
1306 speed = SPEED_100;
1307 duplex = DUPLEX_FULL;
1308 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1309 }
1310 switch (speed) {
1311 case SPEED_10:
1312 np->speed = 10;
1313 np->full_duplex = (duplex == DUPLEX_FULL);
1314 break;
1315 case SPEED_100:
1316 np->speed = 100;
1317 np->full_duplex = (duplex == DUPLEX_FULL);
1318 break;
1319 case SPEED_1000:
1320 default:
1321 return -EINVAL;
1322 }
1323 mii_set_media(dev);
1324 }
1325 return 0;
1326 }
1327
1328 static u32 rio_get_link(struct net_device *dev)
1329 {
1330 struct netdev_private *np = netdev_priv(dev);
1331 return np->link_status;
1332 }
1333
1334 static const struct ethtool_ops ethtool_ops = {
1335 .get_drvinfo = rio_get_drvinfo,
1336 .get_link = rio_get_link,
1337 .get_link_ksettings = rio_get_link_ksettings,
1338 .set_link_ksettings = rio_set_link_ksettings,
1339 };
1340
1341 static int
1342 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1343 {
1344 int phy_addr;
1345 struct netdev_private *np = netdev_priv(dev);
1346 struct mii_ioctl_data *miidata = if_mii(rq);
1347
1348 phy_addr = np->phy_addr;
1349 switch (cmd) {
1350 case SIOCGMIIPHY:
1351 miidata->phy_id = phy_addr;
1352 break;
1353 case SIOCGMIIREG:
1354 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1355 break;
1356 case SIOCSMIIREG:
1357 if (!capable(CAP_NET_ADMIN))
1358 return -EPERM;
1359 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1360 break;
1361 default:
1362 return -EOPNOTSUPP;
1363 }
1364 return 0;
1365 }
1366
1367 #define EEP_READ 0x0200
1368 #define EEP_BUSY 0x8000
1369
1370
1371 static int read_eeprom(struct netdev_private *np, int eep_addr)
1372 {
1373 void __iomem *ioaddr = np->eeprom_addr;
1374 int i = 1000;
1375
1376 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1377 while (i-- > 0) {
1378 if (!(dr16(EepromCtrl) & EEP_BUSY))
1379 return dr16(EepromData);
1380 }
1381 return 0;
1382 }
1383
1384 enum phy_ctrl_bits {
1385 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1386 MII_DUPLEX = 0x08,
1387 };
1388
1389 #define mii_delay() dr8(PhyCtrl)
1390 static void
1391 mii_sendbit (struct net_device *dev, u32 data)
1392 {
1393 struct netdev_private *np = netdev_priv(dev);
1394 void __iomem *ioaddr = np->ioaddr;
1395
1396 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1397 dw8(PhyCtrl, data);
1398 mii_delay ();
1399 dw8(PhyCtrl, data | MII_CLK);
1400 mii_delay ();
1401 }
1402
1403 static int
1404 mii_getbit (struct net_device *dev)
1405 {
1406 struct netdev_private *np = netdev_priv(dev);
1407 void __iomem *ioaddr = np->ioaddr;
1408 u8 data;
1409
1410 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1411 dw8(PhyCtrl, data);
1412 mii_delay ();
1413 dw8(PhyCtrl, data | MII_CLK);
1414 mii_delay ();
1415 return (dr8(PhyCtrl) >> 1) & 1;
1416 }
1417
1418 static void
1419 mii_send_bits (struct net_device *dev, u32 data, int len)
1420 {
1421 int i;
1422
1423 for (i = len - 1; i >= 0; i--) {
1424 mii_sendbit (dev, data & (1 << i));
1425 }
1426 }
1427
1428 static int
1429 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1430 {
1431 u32 cmd;
1432 int i;
1433 u32 retval = 0;
1434
1435
1436 mii_send_bits (dev, 0xffffffff, 32);
1437
1438
1439 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1440 mii_send_bits (dev, cmd, 14);
1441
1442 if (mii_getbit (dev))
1443 goto err_out;
1444
1445 for (i = 0; i < 16; i++) {
1446 retval |= mii_getbit (dev);
1447 retval <<= 1;
1448 }
1449
1450 mii_getbit (dev);
1451 return (retval >> 1) & 0xffff;
1452
1453 err_out:
1454 return 0;
1455 }
1456 static int
1457 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1458 {
1459 u32 cmd;
1460
1461
1462 mii_send_bits (dev, 0xffffffff, 32);
1463
1464
1465 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1466 mii_send_bits (dev, cmd, 32);
1467
1468 mii_getbit (dev);
1469 return 0;
1470 }
1471 static int
1472 mii_wait_link (struct net_device *dev, int wait)
1473 {
1474 __u16 bmsr;
1475 int phy_addr;
1476 struct netdev_private *np;
1477
1478 np = netdev_priv(dev);
1479 phy_addr = np->phy_addr;
1480
1481 do {
1482 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1483 if (bmsr & BMSR_LSTATUS)
1484 return 0;
1485 mdelay (1);
1486 } while (--wait > 0);
1487 return -1;
1488 }
1489 static int
1490 mii_get_media (struct net_device *dev)
1491 {
1492 __u16 negotiate;
1493 __u16 bmsr;
1494 __u16 mscr;
1495 __u16 mssr;
1496 int phy_addr;
1497 struct netdev_private *np;
1498
1499 np = netdev_priv(dev);
1500 phy_addr = np->phy_addr;
1501
1502 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1503 if (np->an_enable) {
1504 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1505
1506 return -1;
1507 }
1508 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1509 mii_read (dev, phy_addr, MII_LPA);
1510 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1511 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1512 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1513 np->speed = 1000;
1514 np->full_duplex = 1;
1515 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1516 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1517 np->speed = 1000;
1518 np->full_duplex = 0;
1519 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1520 } else if (negotiate & ADVERTISE_100FULL) {
1521 np->speed = 100;
1522 np->full_duplex = 1;
1523 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1524 } else if (negotiate & ADVERTISE_100HALF) {
1525 np->speed = 100;
1526 np->full_duplex = 0;
1527 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1528 } else if (negotiate & ADVERTISE_10FULL) {
1529 np->speed = 10;
1530 np->full_duplex = 1;
1531 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1532 } else if (negotiate & ADVERTISE_10HALF) {
1533 np->speed = 10;
1534 np->full_duplex = 0;
1535 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1536 }
1537 if (negotiate & ADVERTISE_PAUSE_CAP) {
1538 np->tx_flow &= 1;
1539 np->rx_flow &= 1;
1540 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1541 np->tx_flow = 0;
1542 np->rx_flow &= 1;
1543 }
1544
1545 } else {
1546 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1547 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1548 case BMCR_SPEED1000:
1549 printk (KERN_INFO "Operating at 1000 Mbps, ");
1550 break;
1551 case BMCR_SPEED100:
1552 printk (KERN_INFO "Operating at 100 Mbps, ");
1553 break;
1554 case 0:
1555 printk (KERN_INFO "Operating at 10 Mbps, ");
1556 }
1557 if (bmcr & BMCR_FULLDPLX) {
1558 printk (KERN_CONT "Full duplex\n");
1559 } else {
1560 printk (KERN_CONT "Half duplex\n");
1561 }
1562 }
1563 if (np->tx_flow)
1564 printk(KERN_INFO "Enable Tx Flow Control\n");
1565 else
1566 printk(KERN_INFO "Disable Tx Flow Control\n");
1567 if (np->rx_flow)
1568 printk(KERN_INFO "Enable Rx Flow Control\n");
1569 else
1570 printk(KERN_INFO "Disable Rx Flow Control\n");
1571
1572 return 0;
1573 }
1574
1575 static int
1576 mii_set_media (struct net_device *dev)
1577 {
1578 __u16 pscr;
1579 __u16 bmcr;
1580 __u16 bmsr;
1581 __u16 anar;
1582 int phy_addr;
1583 struct netdev_private *np;
1584 np = netdev_priv(dev);
1585 phy_addr = np->phy_addr;
1586
1587
1588 if (np->an_enable) {
1589
1590 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1591 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1592 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1593 ADVERTISE_100HALF | ADVERTISE_10HALF |
1594 ADVERTISE_100BASE4);
1595 if (bmsr & BMSR_100FULL)
1596 anar |= ADVERTISE_100FULL;
1597 if (bmsr & BMSR_100HALF)
1598 anar |= ADVERTISE_100HALF;
1599 if (bmsr & BMSR_100BASE4)
1600 anar |= ADVERTISE_100BASE4;
1601 if (bmsr & BMSR_10FULL)
1602 anar |= ADVERTISE_10FULL;
1603 if (bmsr & BMSR_10HALF)
1604 anar |= ADVERTISE_10HALF;
1605 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1606 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1607
1608
1609 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1610 pscr |= 3 << 5;
1611 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1612
1613
1614 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1615 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1616 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1617 mdelay(1);
1618 } else {
1619
1620
1621 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1622 pscr &= ~(3 << 5);
1623 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1624
1625
1626 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1627 bmcr |= BMCR_RESET;
1628 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1629
1630
1631 bmcr = 0x1940;
1632 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1633 mdelay (100);
1634
1635
1636 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1637
1638
1639 bmcr = BMCR_PDOWN;
1640 if (np->speed == 100) {
1641 bmcr |= BMCR_SPEED100;
1642 printk (KERN_INFO "Manual 100 Mbps, ");
1643 } else if (np->speed == 10) {
1644 printk (KERN_INFO "Manual 10 Mbps, ");
1645 }
1646 if (np->full_duplex) {
1647 bmcr |= BMCR_FULLDPLX;
1648 printk (KERN_CONT "Full duplex\n");
1649 } else {
1650 printk (KERN_CONT "Half duplex\n");
1651 }
1652 #if 0
1653
1654 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1655 mscr |= MII_MSCR_CFG_ENABLE;
1656 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1657 #endif
1658 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1659 mdelay(10);
1660 }
1661 return 0;
1662 }
1663
1664 static int
1665 mii_get_media_pcs (struct net_device *dev)
1666 {
1667 __u16 negotiate;
1668 __u16 bmsr;
1669 int phy_addr;
1670 struct netdev_private *np;
1671
1672 np = netdev_priv(dev);
1673 phy_addr = np->phy_addr;
1674
1675 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1676 if (np->an_enable) {
1677 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1678
1679 return -1;
1680 }
1681 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1682 mii_read (dev, phy_addr, PCS_ANLPAR);
1683 np->speed = 1000;
1684 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1685 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1686 np->full_duplex = 1;
1687 } else {
1688 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1689 np->full_duplex = 0;
1690 }
1691 if (negotiate & PCS_ANAR_PAUSE) {
1692 np->tx_flow &= 1;
1693 np->rx_flow &= 1;
1694 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1695 np->tx_flow = 0;
1696 np->rx_flow &= 1;
1697 }
1698
1699 } else {
1700 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1701 printk (KERN_INFO "Operating at 1000 Mbps, ");
1702 if (bmcr & BMCR_FULLDPLX) {
1703 printk (KERN_CONT "Full duplex\n");
1704 } else {
1705 printk (KERN_CONT "Half duplex\n");
1706 }
1707 }
1708 if (np->tx_flow)
1709 printk(KERN_INFO "Enable Tx Flow Control\n");
1710 else
1711 printk(KERN_INFO "Disable Tx Flow Control\n");
1712 if (np->rx_flow)
1713 printk(KERN_INFO "Enable Rx Flow Control\n");
1714 else
1715 printk(KERN_INFO "Disable Rx Flow Control\n");
1716
1717 return 0;
1718 }
1719
1720 static int
1721 mii_set_media_pcs (struct net_device *dev)
1722 {
1723 __u16 bmcr;
1724 __u16 esr;
1725 __u16 anar;
1726 int phy_addr;
1727 struct netdev_private *np;
1728 np = netdev_priv(dev);
1729 phy_addr = np->phy_addr;
1730
1731
1732 if (np->an_enable) {
1733
1734 esr = mii_read (dev, phy_addr, PCS_ESR);
1735 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1736 ~PCS_ANAR_HALF_DUPLEX &
1737 ~PCS_ANAR_FULL_DUPLEX;
1738 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1739 anar |= PCS_ANAR_HALF_DUPLEX;
1740 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1741 anar |= PCS_ANAR_FULL_DUPLEX;
1742 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1743 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1744
1745
1746 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1747 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1748 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1749 mdelay(1);
1750 } else {
1751
1752
1753 bmcr = BMCR_RESET;
1754 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1755 mdelay(10);
1756 if (np->full_duplex) {
1757 bmcr = BMCR_FULLDPLX;
1758 printk (KERN_INFO "Manual full duplex\n");
1759 } else {
1760 bmcr = 0;
1761 printk (KERN_INFO "Manual half duplex\n");
1762 }
1763 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1764 mdelay(10);
1765
1766
1767 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1768 }
1769 return 0;
1770 }
1771
1772
1773 static int
1774 rio_close (struct net_device *dev)
1775 {
1776 struct netdev_private *np = netdev_priv(dev);
1777 struct pci_dev *pdev = np->pdev;
1778
1779 netif_stop_queue (dev);
1780
1781 rio_hw_stop(dev);
1782
1783 free_irq(pdev->irq, dev);
1784 del_timer_sync (&np->timer);
1785
1786 free_list(dev);
1787
1788 return 0;
1789 }
1790
1791 static void
1792 rio_remove1 (struct pci_dev *pdev)
1793 {
1794 struct net_device *dev = pci_get_drvdata (pdev);
1795
1796 if (dev) {
1797 struct netdev_private *np = netdev_priv(dev);
1798
1799 unregister_netdev (dev);
1800 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1801 np->rx_ring_dma);
1802 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1803 np->tx_ring_dma);
1804 #ifdef MEM_MAPPING
1805 pci_iounmap(pdev, np->ioaddr);
1806 #endif
1807 pci_iounmap(pdev, np->eeprom_addr);
1808 free_netdev (dev);
1809 pci_release_regions (pdev);
1810 pci_disable_device (pdev);
1811 }
1812 }
1813
1814 #ifdef CONFIG_PM_SLEEP
1815 static int rio_suspend(struct device *device)
1816 {
1817 struct net_device *dev = dev_get_drvdata(device);
1818 struct netdev_private *np = netdev_priv(dev);
1819
1820 if (!netif_running(dev))
1821 return 0;
1822
1823 netif_device_detach(dev);
1824 del_timer_sync(&np->timer);
1825 rio_hw_stop(dev);
1826
1827 return 0;
1828 }
1829
1830 static int rio_resume(struct device *device)
1831 {
1832 struct net_device *dev = dev_get_drvdata(device);
1833 struct netdev_private *np = netdev_priv(dev);
1834
1835 if (!netif_running(dev))
1836 return 0;
1837
1838 rio_reset_ring(np);
1839 rio_hw_init(dev);
1840 np->timer.expires = jiffies + 1 * HZ;
1841 add_timer(&np->timer);
1842 netif_device_attach(dev);
1843 dl2k_enable_int(np);
1844
1845 return 0;
1846 }
1847
1848 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1849 #define RIO_PM_OPS (&rio_pm_ops)
1850
1851 #else
1852
1853 #define RIO_PM_OPS NULL
1854
1855 #endif
1856
1857 static struct pci_driver rio_driver = {
1858 .name = "dl2k",
1859 .id_table = rio_pci_tbl,
1860 .probe = rio_probe1,
1861 .remove = rio_remove1,
1862 .driver.pm = RIO_PM_OPS,
1863 };
1864
1865 module_pci_driver(rio_driver);
1866
1867