Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *      Davicom DM9000 Fast Ethernet driver for Linux.
0004  *  Copyright (C) 1997  Sten Wang
0005  *
0006  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
0007  *
0008  * Additional updates, Copyright:
0009  *  Ben Dooks <ben@simtec.co.uk>
0010  *  Sascha Hauer <s.hauer@pengutronix.de>
0011  */
0012 
0013 #include <linux/module.h>
0014 #include <linux/ioport.h>
0015 #include <linux/netdevice.h>
0016 #include <linux/etherdevice.h>
0017 #include <linux/interrupt.h>
0018 #include <linux/skbuff.h>
0019 #include <linux/spinlock.h>
0020 #include <linux/crc32.h>
0021 #include <linux/mii.h>
0022 #include <linux/of.h>
0023 #include <linux/of_net.h>
0024 #include <linux/ethtool.h>
0025 #include <linux/dm9000.h>
0026 #include <linux/delay.h>
0027 #include <linux/platform_device.h>
0028 #include <linux/irq.h>
0029 #include <linux/slab.h>
0030 #include <linux/regulator/consumer.h>
0031 #include <linux/gpio.h>
0032 #include <linux/of_gpio.h>
0033 
0034 #include <asm/delay.h>
0035 #include <asm/irq.h>
0036 #include <asm/io.h>
0037 
0038 #include "dm9000.h"
0039 
0040 /* Board/System/Debug information/definition ---------------- */
0041 
0042 #define DM9000_PHY      0x40    /* PHY address 0x01 */
0043 
0044 #define CARDNAME    "dm9000"
0045 
0046 /*
0047  * Transmit timeout, default 5 seconds.
0048  */
0049 static int watchdog = 5000;
0050 module_param(watchdog, int, 0400);
0051 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
0052 
0053 /*
0054  * Debug messages level
0055  */
0056 static int debug;
0057 module_param(debug, int, 0644);
0058 MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
0059 
0060 /* DM9000 register address locking.
0061  *
0062  * The DM9000 uses an address register to control where data written
0063  * to the data register goes. This means that the address register
0064  * must be preserved over interrupts or similar calls.
0065  *
0066  * During interrupt and other critical calls, a spinlock is used to
0067  * protect the system, but the calls themselves save the address
0068  * in the address register in case they are interrupting another
0069  * access to the device.
0070  *
0071  * For general accesses a lock is provided so that calls which are
0072  * allowed to sleep are serialised so that the address register does
0073  * not need to be saved. This lock also serves to serialise access
0074  * to the EEPROM and PHY access registers which are shared between
0075  * these two devices.
0076  */
0077 
0078 /* The driver supports the original DM9000E, and now the two newer
0079  * devices, DM9000A and DM9000B.
0080  */
0081 
0082 enum dm9000_type {
0083     TYPE_DM9000E,   /* original DM9000 */
0084     TYPE_DM9000A,
0085     TYPE_DM9000B
0086 };
0087 
0088 /* Structure/enum declaration ------------------------------- */
0089 struct board_info {
0090 
0091     void __iomem    *io_addr;   /* Register I/O base address */
0092     void __iomem    *io_data;   /* Data I/O address */
0093     u16      irq;       /* IRQ */
0094 
0095     u16     tx_pkt_cnt;
0096     u16     queue_pkt_len;
0097     u16     queue_start_addr;
0098     u16     queue_ip_summed;
0099     u16     dbug_cnt;
0100     u8      io_mode;        /* 0:word, 2:byte */
0101     u8      phy_addr;
0102     u8      imr_all;
0103 
0104     unsigned int    flags;
0105     unsigned int    in_timeout:1;
0106     unsigned int    in_suspend:1;
0107     unsigned int    wake_supported:1;
0108 
0109     enum dm9000_type type;
0110 
0111     void (*inblk)(void __iomem *port, void *data, int length);
0112     void (*outblk)(void __iomem *port, void *data, int length);
0113     void (*dumpblk)(void __iomem *port, int length);
0114 
0115     struct device   *dev;        /* parent device */
0116 
0117     struct resource *addr_res;   /* resources found */
0118     struct resource *data_res;
0119     struct resource *addr_req;   /* resources requested */
0120     struct resource *data_req;
0121 
0122     int      irq_wake;
0123 
0124     struct mutex     addr_lock; /* phy and eeprom access lock */
0125 
0126     struct delayed_work phy_poll;
0127     struct net_device  *ndev;
0128 
0129     spinlock_t  lock;
0130 
0131     struct mii_if_info mii;
0132     u32     msg_enable;
0133     u32     wake_state;
0134 
0135     int     ip_summed;
0136 
0137     struct regulator *power_supply;
0138 };
0139 
0140 /* debug code */
0141 
0142 #define dm9000_dbg(db, lev, msg...) do {        \
0143     if ((lev) < debug) {                \
0144         dev_dbg(db->dev, msg);          \
0145     }                       \
0146 } while (0)
0147 
0148 static inline struct board_info *to_dm9000_board(struct net_device *dev)
0149 {
0150     return netdev_priv(dev);
0151 }
0152 
0153 /* DM9000 network board routine ---------------------------- */
0154 
0155 /*
0156  *   Read a byte from I/O port
0157  */
0158 static u8
0159 ior(struct board_info *db, int reg)
0160 {
0161     writeb(reg, db->io_addr);
0162     return readb(db->io_data);
0163 }
0164 
0165 /*
0166  *   Write a byte to I/O port
0167  */
0168 
0169 static void
0170 iow(struct board_info *db, int reg, int value)
0171 {
0172     writeb(reg, db->io_addr);
0173     writeb(value, db->io_data);
0174 }
0175 
0176 static void
0177 dm9000_reset(struct board_info *db)
0178 {
0179     dev_dbg(db->dev, "resetting device\n");
0180 
0181     /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
0182      * The essential point is that we have to do a double reset, and the
0183      * instruction is to set LBK into MAC internal loopback mode.
0184      */
0185     iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
0186     udelay(100); /* Application note says at least 20 us */
0187     if (ior(db, DM9000_NCR) & 1)
0188         dev_err(db->dev, "dm9000 did not respond to first reset\n");
0189 
0190     iow(db, DM9000_NCR, 0);
0191     iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
0192     udelay(100);
0193     if (ior(db, DM9000_NCR) & 1)
0194         dev_err(db->dev, "dm9000 did not respond to second reset\n");
0195 }
0196 
0197 /* routines for sending block to chip */
0198 
0199 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
0200 {
0201     iowrite8_rep(reg, data, count);
0202 }
0203 
0204 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
0205 {
0206     iowrite16_rep(reg, data, (count+1) >> 1);
0207 }
0208 
0209 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
0210 {
0211     iowrite32_rep(reg, data, (count+3) >> 2);
0212 }
0213 
0214 /* input block from chip to memory */
0215 
0216 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
0217 {
0218     ioread8_rep(reg, data, count);
0219 }
0220 
0221 
0222 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
0223 {
0224     ioread16_rep(reg, data, (count+1) >> 1);
0225 }
0226 
0227 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
0228 {
0229     ioread32_rep(reg, data, (count+3) >> 2);
0230 }
0231 
0232 /* dump block from chip to null */
0233 
0234 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
0235 {
0236     int i;
0237 
0238     for (i = 0; i < count; i++)
0239         readb(reg);
0240 }
0241 
0242 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
0243 {
0244     int i;
0245 
0246     count = (count + 1) >> 1;
0247 
0248     for (i = 0; i < count; i++)
0249         readw(reg);
0250 }
0251 
0252 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
0253 {
0254     int i;
0255 
0256     count = (count + 3) >> 2;
0257 
0258     for (i = 0; i < count; i++)
0259         readl(reg);
0260 }
0261 
0262 /*
0263  * Sleep, either by using msleep() or if we are suspending, then
0264  * use mdelay() to sleep.
0265  */
0266 static void dm9000_msleep(struct board_info *db, unsigned int ms)
0267 {
0268     if (db->in_suspend || db->in_timeout)
0269         mdelay(ms);
0270     else
0271         msleep(ms);
0272 }
0273 
0274 /* Read a word from phyxcer */
0275 static int
0276 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
0277 {
0278     struct board_info *db = netdev_priv(dev);
0279     unsigned long flags;
0280     unsigned int reg_save;
0281     int ret;
0282 
0283     mutex_lock(&db->addr_lock);
0284 
0285     spin_lock_irqsave(&db->lock, flags);
0286 
0287     /* Save previous register address */
0288     reg_save = readb(db->io_addr);
0289 
0290     /* Fill the phyxcer register into REG_0C */
0291     iow(db, DM9000_EPAR, DM9000_PHY | reg);
0292 
0293     /* Issue phyxcer read command */
0294     iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
0295 
0296     writeb(reg_save, db->io_addr);
0297     spin_unlock_irqrestore(&db->lock, flags);
0298 
0299     dm9000_msleep(db, 1);       /* Wait read complete */
0300 
0301     spin_lock_irqsave(&db->lock, flags);
0302     reg_save = readb(db->io_addr);
0303 
0304     iow(db, DM9000_EPCR, 0x0);  /* Clear phyxcer read command */
0305 
0306     /* The read data keeps on REG_0D & REG_0E */
0307     ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
0308 
0309     /* restore the previous address */
0310     writeb(reg_save, db->io_addr);
0311     spin_unlock_irqrestore(&db->lock, flags);
0312 
0313     mutex_unlock(&db->addr_lock);
0314 
0315     dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
0316     return ret;
0317 }
0318 
0319 /* Write a word to phyxcer */
0320 static void
0321 dm9000_phy_write(struct net_device *dev,
0322          int phyaddr_unused, int reg, int value)
0323 {
0324     struct board_info *db = netdev_priv(dev);
0325     unsigned long flags;
0326     unsigned long reg_save;
0327 
0328     dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
0329     if (!db->in_timeout)
0330         mutex_lock(&db->addr_lock);
0331 
0332     spin_lock_irqsave(&db->lock, flags);
0333 
0334     /* Save previous register address */
0335     reg_save = readb(db->io_addr);
0336 
0337     /* Fill the phyxcer register into REG_0C */
0338     iow(db, DM9000_EPAR, DM9000_PHY | reg);
0339 
0340     /* Fill the written data into REG_0D & REG_0E */
0341     iow(db, DM9000_EPDRL, value);
0342     iow(db, DM9000_EPDRH, value >> 8);
0343 
0344     /* Issue phyxcer write command */
0345     iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
0346 
0347     writeb(reg_save, db->io_addr);
0348     spin_unlock_irqrestore(&db->lock, flags);
0349 
0350     dm9000_msleep(db, 1);       /* Wait write complete */
0351 
0352     spin_lock_irqsave(&db->lock, flags);
0353     reg_save = readb(db->io_addr);
0354 
0355     iow(db, DM9000_EPCR, 0x0);  /* Clear phyxcer write command */
0356 
0357     /* restore the previous address */
0358     writeb(reg_save, db->io_addr);
0359 
0360     spin_unlock_irqrestore(&db->lock, flags);
0361     if (!db->in_timeout)
0362         mutex_unlock(&db->addr_lock);
0363 }
0364 
0365 /* dm9000_set_io
0366  *
0367  * select the specified set of io routines to use with the
0368  * device
0369  */
0370 
0371 static void dm9000_set_io(struct board_info *db, int byte_width)
0372 {
0373     /* use the size of the data resource to work out what IO
0374      * routines we want to use
0375      */
0376 
0377     switch (byte_width) {
0378     case 1:
0379         db->dumpblk = dm9000_dumpblk_8bit;
0380         db->outblk  = dm9000_outblk_8bit;
0381         db->inblk   = dm9000_inblk_8bit;
0382         break;
0383 
0384 
0385     case 3:
0386         dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
0387         fallthrough;
0388     case 2:
0389         db->dumpblk = dm9000_dumpblk_16bit;
0390         db->outblk  = dm9000_outblk_16bit;
0391         db->inblk   = dm9000_inblk_16bit;
0392         break;
0393 
0394     case 4:
0395     default:
0396         db->dumpblk = dm9000_dumpblk_32bit;
0397         db->outblk  = dm9000_outblk_32bit;
0398         db->inblk   = dm9000_inblk_32bit;
0399         break;
0400     }
0401 }
0402 
0403 static void dm9000_schedule_poll(struct board_info *db)
0404 {
0405     if (db->type == TYPE_DM9000E)
0406         schedule_delayed_work(&db->phy_poll, HZ * 2);
0407 }
0408 
0409 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
0410 {
0411     struct board_info *dm = to_dm9000_board(dev);
0412 
0413     if (!netif_running(dev))
0414         return -EINVAL;
0415 
0416     return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
0417 }
0418 
0419 static unsigned int
0420 dm9000_read_locked(struct board_info *db, int reg)
0421 {
0422     unsigned long flags;
0423     unsigned int ret;
0424 
0425     spin_lock_irqsave(&db->lock, flags);
0426     ret = ior(db, reg);
0427     spin_unlock_irqrestore(&db->lock, flags);
0428 
0429     return ret;
0430 }
0431 
0432 static int dm9000_wait_eeprom(struct board_info *db)
0433 {
0434     unsigned int status;
0435     int timeout = 8;    /* wait max 8msec */
0436 
0437     /* The DM9000 data sheets say we should be able to
0438      * poll the ERRE bit in EPCR to wait for the EEPROM
0439      * operation. From testing several chips, this bit
0440      * does not seem to work.
0441      *
0442      * We attempt to use the bit, but fall back to the
0443      * timeout (which is why we do not return an error
0444      * on expiry) to say that the EEPROM operation has
0445      * completed.
0446      */
0447 
0448     while (1) {
0449         status = dm9000_read_locked(db, DM9000_EPCR);
0450 
0451         if ((status & EPCR_ERRE) == 0)
0452             break;
0453 
0454         msleep(1);
0455 
0456         if (timeout-- < 0) {
0457             dev_dbg(db->dev, "timeout waiting EEPROM\n");
0458             break;
0459         }
0460     }
0461 
0462     return 0;
0463 }
0464 
0465 /*
0466  *  Read a word data from EEPROM
0467  */
0468 static void
0469 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
0470 {
0471     unsigned long flags;
0472 
0473     if (db->flags & DM9000_PLATF_NO_EEPROM) {
0474         to[0] = 0xff;
0475         to[1] = 0xff;
0476         return;
0477     }
0478 
0479     mutex_lock(&db->addr_lock);
0480 
0481     spin_lock_irqsave(&db->lock, flags);
0482 
0483     iow(db, DM9000_EPAR, offset);
0484     iow(db, DM9000_EPCR, EPCR_ERPRR);
0485 
0486     spin_unlock_irqrestore(&db->lock, flags);
0487 
0488     dm9000_wait_eeprom(db);
0489 
0490     /* delay for at-least 150uS */
0491     msleep(1);
0492 
0493     spin_lock_irqsave(&db->lock, flags);
0494 
0495     iow(db, DM9000_EPCR, 0x0);
0496 
0497     to[0] = ior(db, DM9000_EPDRL);
0498     to[1] = ior(db, DM9000_EPDRH);
0499 
0500     spin_unlock_irqrestore(&db->lock, flags);
0501 
0502     mutex_unlock(&db->addr_lock);
0503 }
0504 
0505 /*
0506  * Write a word data to SROM
0507  */
0508 static void
0509 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
0510 {
0511     unsigned long flags;
0512 
0513     if (db->flags & DM9000_PLATF_NO_EEPROM)
0514         return;
0515 
0516     mutex_lock(&db->addr_lock);
0517 
0518     spin_lock_irqsave(&db->lock, flags);
0519     iow(db, DM9000_EPAR, offset);
0520     iow(db, DM9000_EPDRH, data[1]);
0521     iow(db, DM9000_EPDRL, data[0]);
0522     iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
0523     spin_unlock_irqrestore(&db->lock, flags);
0524 
0525     dm9000_wait_eeprom(db);
0526 
0527     mdelay(1);  /* wait at least 150uS to clear */
0528 
0529     spin_lock_irqsave(&db->lock, flags);
0530     iow(db, DM9000_EPCR, 0);
0531     spin_unlock_irqrestore(&db->lock, flags);
0532 
0533     mutex_unlock(&db->addr_lock);
0534 }
0535 
0536 /* ethtool ops */
0537 
0538 static void dm9000_get_drvinfo(struct net_device *dev,
0539                    struct ethtool_drvinfo *info)
0540 {
0541     struct board_info *dm = to_dm9000_board(dev);
0542 
0543     strlcpy(info->driver, CARDNAME, sizeof(info->driver));
0544     strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
0545         sizeof(info->bus_info));
0546 }
0547 
0548 static u32 dm9000_get_msglevel(struct net_device *dev)
0549 {
0550     struct board_info *dm = to_dm9000_board(dev);
0551 
0552     return dm->msg_enable;
0553 }
0554 
0555 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
0556 {
0557     struct board_info *dm = to_dm9000_board(dev);
0558 
0559     dm->msg_enable = value;
0560 }
0561 
0562 static int dm9000_get_link_ksettings(struct net_device *dev,
0563                      struct ethtool_link_ksettings *cmd)
0564 {
0565     struct board_info *dm = to_dm9000_board(dev);
0566 
0567     mii_ethtool_get_link_ksettings(&dm->mii, cmd);
0568     return 0;
0569 }
0570 
0571 static int dm9000_set_link_ksettings(struct net_device *dev,
0572                      const struct ethtool_link_ksettings *cmd)
0573 {
0574     struct board_info *dm = to_dm9000_board(dev);
0575 
0576     return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
0577 }
0578 
0579 static int dm9000_nway_reset(struct net_device *dev)
0580 {
0581     struct board_info *dm = to_dm9000_board(dev);
0582     return mii_nway_restart(&dm->mii);
0583 }
0584 
0585 static int dm9000_set_features(struct net_device *dev,
0586     netdev_features_t features)
0587 {
0588     struct board_info *dm = to_dm9000_board(dev);
0589     netdev_features_t changed = dev->features ^ features;
0590     unsigned long flags;
0591 
0592     if (!(changed & NETIF_F_RXCSUM))
0593         return 0;
0594 
0595     spin_lock_irqsave(&dm->lock, flags);
0596     iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
0597     spin_unlock_irqrestore(&dm->lock, flags);
0598 
0599     return 0;
0600 }
0601 
0602 static u32 dm9000_get_link(struct net_device *dev)
0603 {
0604     struct board_info *dm = to_dm9000_board(dev);
0605     u32 ret;
0606 
0607     if (dm->flags & DM9000_PLATF_EXT_PHY)
0608         ret = mii_link_ok(&dm->mii);
0609     else
0610         ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
0611 
0612     return ret;
0613 }
0614 
0615 #define DM_EEPROM_MAGIC     (0x444D394B)
0616 
0617 static int dm9000_get_eeprom_len(struct net_device *dev)
0618 {
0619     return 128;
0620 }
0621 
0622 static int dm9000_get_eeprom(struct net_device *dev,
0623                  struct ethtool_eeprom *ee, u8 *data)
0624 {
0625     struct board_info *dm = to_dm9000_board(dev);
0626     int offset = ee->offset;
0627     int len = ee->len;
0628     int i;
0629 
0630     /* EEPROM access is aligned to two bytes */
0631 
0632     if ((len & 1) != 0 || (offset & 1) != 0)
0633         return -EINVAL;
0634 
0635     if (dm->flags & DM9000_PLATF_NO_EEPROM)
0636         return -ENOENT;
0637 
0638     ee->magic = DM_EEPROM_MAGIC;
0639 
0640     for (i = 0; i < len; i += 2)
0641         dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
0642 
0643     return 0;
0644 }
0645 
0646 static int dm9000_set_eeprom(struct net_device *dev,
0647                  struct ethtool_eeprom *ee, u8 *data)
0648 {
0649     struct board_info *dm = to_dm9000_board(dev);
0650     int offset = ee->offset;
0651     int len = ee->len;
0652     int done;
0653 
0654     /* EEPROM access is aligned to two bytes */
0655 
0656     if (dm->flags & DM9000_PLATF_NO_EEPROM)
0657         return -ENOENT;
0658 
0659     if (ee->magic != DM_EEPROM_MAGIC)
0660         return -EINVAL;
0661 
0662     while (len > 0) {
0663         if (len & 1 || offset & 1) {
0664             int which = offset & 1;
0665             u8 tmp[2];
0666 
0667             dm9000_read_eeprom(dm, offset / 2, tmp);
0668             tmp[which] = *data;
0669             dm9000_write_eeprom(dm, offset / 2, tmp);
0670 
0671             done = 1;
0672         } else {
0673             dm9000_write_eeprom(dm, offset / 2, data);
0674             done = 2;
0675         }
0676 
0677         data += done;
0678         offset += done;
0679         len -= done;
0680     }
0681 
0682     return 0;
0683 }
0684 
0685 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
0686 {
0687     struct board_info *dm = to_dm9000_board(dev);
0688 
0689     memset(w, 0, sizeof(struct ethtool_wolinfo));
0690 
0691     /* note, we could probably support wake-phy too */
0692     w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
0693     w->wolopts = dm->wake_state;
0694 }
0695 
0696 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
0697 {
0698     struct board_info *dm = to_dm9000_board(dev);
0699     unsigned long flags;
0700     u32 opts = w->wolopts;
0701     u32 wcr = 0;
0702 
0703     if (!dm->wake_supported)
0704         return -EOPNOTSUPP;
0705 
0706     if (opts & ~WAKE_MAGIC)
0707         return -EINVAL;
0708 
0709     if (opts & WAKE_MAGIC)
0710         wcr |= WCR_MAGICEN;
0711 
0712     mutex_lock(&dm->addr_lock);
0713 
0714     spin_lock_irqsave(&dm->lock, flags);
0715     iow(dm, DM9000_WCR, wcr);
0716     spin_unlock_irqrestore(&dm->lock, flags);
0717 
0718     mutex_unlock(&dm->addr_lock);
0719 
0720     if (dm->wake_state != opts) {
0721         /* change in wol state, update IRQ state */
0722 
0723         if (!dm->wake_state)
0724             irq_set_irq_wake(dm->irq_wake, 1);
0725         else if (dm->wake_state && !opts)
0726             irq_set_irq_wake(dm->irq_wake, 0);
0727     }
0728 
0729     dm->wake_state = opts;
0730     return 0;
0731 }
0732 
0733 static const struct ethtool_ops dm9000_ethtool_ops = {
0734     .get_drvinfo        = dm9000_get_drvinfo,
0735     .get_msglevel       = dm9000_get_msglevel,
0736     .set_msglevel       = dm9000_set_msglevel,
0737     .nway_reset     = dm9000_nway_reset,
0738     .get_link       = dm9000_get_link,
0739     .get_wol        = dm9000_get_wol,
0740     .set_wol        = dm9000_set_wol,
0741     .get_eeprom_len     = dm9000_get_eeprom_len,
0742     .get_eeprom     = dm9000_get_eeprom,
0743     .set_eeprom     = dm9000_set_eeprom,
0744     .get_link_ksettings = dm9000_get_link_ksettings,
0745     .set_link_ksettings = dm9000_set_link_ksettings,
0746 };
0747 
0748 static void dm9000_show_carrier(struct board_info *db,
0749                 unsigned carrier, unsigned nsr)
0750 {
0751     int lpa;
0752     struct net_device *ndev = db->ndev;
0753     struct mii_if_info *mii = &db->mii;
0754     unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
0755 
0756     if (carrier) {
0757         lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
0758         dev_info(db->dev,
0759              "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
0760              ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
0761              (ncr & NCR_FDX) ? "full" : "half", lpa);
0762     } else {
0763         dev_info(db->dev, "%s: link down\n", ndev->name);
0764     }
0765 }
0766 
0767 static void
0768 dm9000_poll_work(struct work_struct *w)
0769 {
0770     struct delayed_work *dw = to_delayed_work(w);
0771     struct board_info *db = container_of(dw, struct board_info, phy_poll);
0772     struct net_device *ndev = db->ndev;
0773 
0774     if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
0775         !(db->flags & DM9000_PLATF_EXT_PHY)) {
0776         unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
0777         unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
0778         unsigned new_carrier;
0779 
0780         new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
0781 
0782         if (old_carrier != new_carrier) {
0783             if (netif_msg_link(db))
0784                 dm9000_show_carrier(db, new_carrier, nsr);
0785 
0786             if (!new_carrier)
0787                 netif_carrier_off(ndev);
0788             else
0789                 netif_carrier_on(ndev);
0790         }
0791     } else
0792         mii_check_media(&db->mii, netif_msg_link(db), 0);
0793 
0794     if (netif_running(ndev))
0795         dm9000_schedule_poll(db);
0796 }
0797 
0798 /* dm9000_release_board
0799  *
0800  * release a board, and any mapped resources
0801  */
0802 
0803 static void
0804 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
0805 {
0806     /* unmap our resources */
0807 
0808     iounmap(db->io_addr);
0809     iounmap(db->io_data);
0810 
0811     /* release the resources */
0812 
0813     if (db->data_req)
0814         release_resource(db->data_req);
0815     kfree(db->data_req);
0816 
0817     if (db->addr_req)
0818         release_resource(db->addr_req);
0819     kfree(db->addr_req);
0820 }
0821 
0822 static unsigned char dm9000_type_to_char(enum dm9000_type type)
0823 {
0824     switch (type) {
0825     case TYPE_DM9000E: return 'e';
0826     case TYPE_DM9000A: return 'a';
0827     case TYPE_DM9000B: return 'b';
0828     }
0829 
0830     return '?';
0831 }
0832 
0833 /*
0834  *  Set DM9000 multicast address
0835  */
0836 static void
0837 dm9000_hash_table_unlocked(struct net_device *dev)
0838 {
0839     struct board_info *db = netdev_priv(dev);
0840     struct netdev_hw_addr *ha;
0841     int i, oft;
0842     u32 hash_val;
0843     u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
0844     u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
0845 
0846     dm9000_dbg(db, 1, "entering %s\n", __func__);
0847 
0848     for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
0849         iow(db, oft, dev->dev_addr[i]);
0850 
0851     if (dev->flags & IFF_PROMISC)
0852         rcr |= RCR_PRMSC;
0853 
0854     if (dev->flags & IFF_ALLMULTI)
0855         rcr |= RCR_ALL;
0856 
0857     /* the multicast address in Hash Table : 64 bits */
0858     netdev_for_each_mc_addr(ha, dev) {
0859         hash_val = ether_crc_le(6, ha->addr) & 0x3f;
0860         hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
0861     }
0862 
0863     /* Write the hash table to MAC MD table */
0864     for (i = 0, oft = DM9000_MAR; i < 4; i++) {
0865         iow(db, oft++, hash_table[i]);
0866         iow(db, oft++, hash_table[i] >> 8);
0867     }
0868 
0869     iow(db, DM9000_RCR, rcr);
0870 }
0871 
0872 static void
0873 dm9000_hash_table(struct net_device *dev)
0874 {
0875     struct board_info *db = netdev_priv(dev);
0876     unsigned long flags;
0877 
0878     spin_lock_irqsave(&db->lock, flags);
0879     dm9000_hash_table_unlocked(dev);
0880     spin_unlock_irqrestore(&db->lock, flags);
0881 }
0882 
0883 static void
0884 dm9000_mask_interrupts(struct board_info *db)
0885 {
0886     iow(db, DM9000_IMR, IMR_PAR);
0887 }
0888 
0889 static void
0890 dm9000_unmask_interrupts(struct board_info *db)
0891 {
0892     iow(db, DM9000_IMR, db->imr_all);
0893 }
0894 
0895 /*
0896  * Initialize dm9000 board
0897  */
0898 static void
0899 dm9000_init_dm9000(struct net_device *dev)
0900 {
0901     struct board_info *db = netdev_priv(dev);
0902     unsigned int imr;
0903     unsigned int ncr;
0904 
0905     dm9000_dbg(db, 1, "entering %s\n", __func__);
0906 
0907     dm9000_reset(db);
0908     dm9000_mask_interrupts(db);
0909 
0910     /* I/O mode */
0911     db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
0912 
0913     /* Checksum mode */
0914     if (dev->hw_features & NETIF_F_RXCSUM)
0915         iow(db, DM9000_RCSR,
0916             (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
0917 
0918     iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
0919     iow(db, DM9000_GPR, 0);
0920 
0921     /* If we are dealing with DM9000B, some extra steps are required: a
0922      * manual phy reset, and setting init params.
0923      */
0924     if (db->type == TYPE_DM9000B) {
0925         dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
0926         dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
0927     }
0928 
0929     ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
0930 
0931     /* if wol is needed, then always set NCR_WAKEEN otherwise we end
0932      * up dumping the wake events if we disable this. There is already
0933      * a wake-mask in DM9000_WCR */
0934     if (db->wake_supported)
0935         ncr |= NCR_WAKEEN;
0936 
0937     iow(db, DM9000_NCR, ncr);
0938 
0939     /* Program operating register */
0940     iow(db, DM9000_TCR, 0);         /* TX Polling clear */
0941     iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
0942     iow(db, DM9000_FCR, 0xff);  /* Flow Control */
0943     iow(db, DM9000_SMCR, 0);        /* Special Mode */
0944     /* clear TX status */
0945     iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
0946     iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
0947 
0948     /* Set address filter table */
0949     dm9000_hash_table_unlocked(dev);
0950 
0951     imr = IMR_PAR | IMR_PTM | IMR_PRM;
0952     if (db->type != TYPE_DM9000E)
0953         imr |= IMR_LNKCHNG;
0954 
0955     db->imr_all = imr;
0956 
0957     /* Init Driver variable */
0958     db->tx_pkt_cnt = 0;
0959     db->queue_pkt_len = 0;
0960     netif_trans_update(dev);
0961 }
0962 
0963 /* Our watchdog timed out. Called by the networking layer */
0964 static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
0965 {
0966     struct board_info *db = netdev_priv(dev);
0967     u8 reg_save;
0968     unsigned long flags;
0969 
0970     /* Save previous register address */
0971     spin_lock_irqsave(&db->lock, flags);
0972     db->in_timeout = 1;
0973     reg_save = readb(db->io_addr);
0974 
0975     netif_stop_queue(dev);
0976     dm9000_init_dm9000(dev);
0977     dm9000_unmask_interrupts(db);
0978     /* We can accept TX packets again */
0979     netif_trans_update(dev); /* prevent tx timeout */
0980     netif_wake_queue(dev);
0981 
0982     /* Restore previous register address */
0983     writeb(reg_save, db->io_addr);
0984     db->in_timeout = 0;
0985     spin_unlock_irqrestore(&db->lock, flags);
0986 }
0987 
0988 static void dm9000_send_packet(struct net_device *dev,
0989                    int ip_summed,
0990                    u16 pkt_len)
0991 {
0992     struct board_info *dm = to_dm9000_board(dev);
0993 
0994     /* The DM9000 is not smart enough to leave fragmented packets alone. */
0995     if (dm->ip_summed != ip_summed) {
0996         if (ip_summed == CHECKSUM_NONE)
0997             iow(dm, DM9000_TCCR, 0);
0998         else
0999             iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1000         dm->ip_summed = ip_summed;
1001     }
1002 
1003     /* Set TX length to DM9000 */
1004     iow(dm, DM9000_TXPLL, pkt_len);
1005     iow(dm, DM9000_TXPLH, pkt_len >> 8);
1006 
1007     /* Issue TX polling command */
1008     iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1009 }
1010 
1011 /*
1012  *  Hardware start transmission.
1013  *  Send a packet to media from the upper layer.
1014  */
1015 static int
1016 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1017 {
1018     unsigned long flags;
1019     struct board_info *db = netdev_priv(dev);
1020 
1021     dm9000_dbg(db, 3, "%s:\n", __func__);
1022 
1023     if (db->tx_pkt_cnt > 1)
1024         return NETDEV_TX_BUSY;
1025 
1026     spin_lock_irqsave(&db->lock, flags);
1027 
1028     /* Move data to DM9000 TX RAM */
1029     writeb(DM9000_MWCMD, db->io_addr);
1030 
1031     (db->outblk)(db->io_data, skb->data, skb->len);
1032     dev->stats.tx_bytes += skb->len;
1033 
1034     db->tx_pkt_cnt++;
1035     /* TX control: First packet immediately send, second packet queue */
1036     if (db->tx_pkt_cnt == 1) {
1037         dm9000_send_packet(dev, skb->ip_summed, skb->len);
1038     } else {
1039         /* Second packet */
1040         db->queue_pkt_len = skb->len;
1041         db->queue_ip_summed = skb->ip_summed;
1042         netif_stop_queue(dev);
1043     }
1044 
1045     spin_unlock_irqrestore(&db->lock, flags);
1046 
1047     /* free this SKB */
1048     dev_consume_skb_any(skb);
1049 
1050     return NETDEV_TX_OK;
1051 }
1052 
1053 /*
1054  * DM9000 interrupt handler
1055  * receive the packet to upper layer, free the transmitted packet
1056  */
1057 
1058 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1059 {
1060     int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1061 
1062     if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1063         /* One packet sent complete */
1064         db->tx_pkt_cnt--;
1065         dev->stats.tx_packets++;
1066 
1067         if (netif_msg_tx_done(db))
1068             dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1069 
1070         /* Queue packet check & send */
1071         if (db->tx_pkt_cnt > 0)
1072             dm9000_send_packet(dev, db->queue_ip_summed,
1073                        db->queue_pkt_len);
1074         netif_wake_queue(dev);
1075     }
1076 }
1077 
1078 struct dm9000_rxhdr {
1079     u8  RxPktReady;
1080     u8  RxStatus;
1081     __le16  RxLen;
1082 } __packed;
1083 
1084 /*
1085  *  Received a packet and pass to upper layer
1086  */
1087 static void
1088 dm9000_rx(struct net_device *dev)
1089 {
1090     struct board_info *db = netdev_priv(dev);
1091     struct dm9000_rxhdr rxhdr;
1092     struct sk_buff *skb;
1093     u8 rxbyte, *rdptr;
1094     bool GoodPacket;
1095     int RxLen;
1096 
1097     /* Check packet ready or not */
1098     do {
1099         ior(db, DM9000_MRCMDX); /* Dummy read */
1100 
1101         /* Get most updated data */
1102         rxbyte = readb(db->io_data);
1103 
1104         /* Status check: this byte must be 0 or 1 */
1105         if (rxbyte & DM9000_PKT_ERR) {
1106             dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1107             iow(db, DM9000_RCR, 0x00);  /* Stop Device */
1108             return;
1109         }
1110 
1111         if (!(rxbyte & DM9000_PKT_RDY))
1112             return;
1113 
1114         /* A packet ready now  & Get status/length */
1115         GoodPacket = true;
1116         writeb(DM9000_MRCMD, db->io_addr);
1117 
1118         (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1119 
1120         RxLen = le16_to_cpu(rxhdr.RxLen);
1121 
1122         if (netif_msg_rx_status(db))
1123             dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1124                 rxhdr.RxStatus, RxLen);
1125 
1126         /* Packet Status check */
1127         if (RxLen < 0x40) {
1128             GoodPacket = false;
1129             if (netif_msg_rx_err(db))
1130                 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1131         }
1132 
1133         if (RxLen > DM9000_PKT_MAX) {
1134             dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1135         }
1136 
1137         /* rxhdr.RxStatus is identical to RSR register. */
1138         if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1139                       RSR_PLE | RSR_RWTO |
1140                       RSR_LCS | RSR_RF)) {
1141             GoodPacket = false;
1142             if (rxhdr.RxStatus & RSR_FOE) {
1143                 if (netif_msg_rx_err(db))
1144                     dev_dbg(db->dev, "fifo error\n");
1145                 dev->stats.rx_fifo_errors++;
1146             }
1147             if (rxhdr.RxStatus & RSR_CE) {
1148                 if (netif_msg_rx_err(db))
1149                     dev_dbg(db->dev, "crc error\n");
1150                 dev->stats.rx_crc_errors++;
1151             }
1152             if (rxhdr.RxStatus & RSR_RF) {
1153                 if (netif_msg_rx_err(db))
1154                     dev_dbg(db->dev, "length error\n");
1155                 dev->stats.rx_length_errors++;
1156             }
1157         }
1158 
1159         /* Move data from DM9000 */
1160         if (GoodPacket &&
1161             ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1162             skb_reserve(skb, 2);
1163             rdptr = skb_put(skb, RxLen - 4);
1164 
1165             /* Read received packet from RX SRAM */
1166 
1167             (db->inblk)(db->io_data, rdptr, RxLen);
1168             dev->stats.rx_bytes += RxLen;
1169 
1170             /* Pass to upper layer */
1171             skb->protocol = eth_type_trans(skb, dev);
1172             if (dev->features & NETIF_F_RXCSUM) {
1173                 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1174                     skb->ip_summed = CHECKSUM_UNNECESSARY;
1175                 else
1176                     skb_checksum_none_assert(skb);
1177             }
1178             netif_rx(skb);
1179             dev->stats.rx_packets++;
1180 
1181         } else {
1182             /* need to dump the packet's data */
1183 
1184             (db->dumpblk)(db->io_data, RxLen);
1185         }
1186     } while (rxbyte & DM9000_PKT_RDY);
1187 }
1188 
1189 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1190 {
1191     struct net_device *dev = dev_id;
1192     struct board_info *db = netdev_priv(dev);
1193     int int_status;
1194     unsigned long flags;
1195     u8 reg_save;
1196 
1197     dm9000_dbg(db, 3, "entering %s\n", __func__);
1198 
1199     /* A real interrupt coming */
1200 
1201     /* holders of db->lock must always block IRQs */
1202     spin_lock_irqsave(&db->lock, flags);
1203 
1204     /* Save previous register address */
1205     reg_save = readb(db->io_addr);
1206 
1207     dm9000_mask_interrupts(db);
1208     /* Got DM9000 interrupt status */
1209     int_status = ior(db, DM9000_ISR);   /* Got ISR */
1210     iow(db, DM9000_ISR, int_status);    /* Clear ISR status */
1211 
1212     if (netif_msg_intr(db))
1213         dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1214 
1215     /* Received the coming packet */
1216     if (int_status & ISR_PRS)
1217         dm9000_rx(dev);
1218 
1219     /* Transmit Interrupt check */
1220     if (int_status & ISR_PTS)
1221         dm9000_tx_done(dev, db);
1222 
1223     if (db->type != TYPE_DM9000E) {
1224         if (int_status & ISR_LNKCHNG) {
1225             /* fire a link-change request */
1226             schedule_delayed_work(&db->phy_poll, 1);
1227         }
1228     }
1229 
1230     dm9000_unmask_interrupts(db);
1231     /* Restore previous register address */
1232     writeb(reg_save, db->io_addr);
1233 
1234     spin_unlock_irqrestore(&db->lock, flags);
1235 
1236     return IRQ_HANDLED;
1237 }
1238 
1239 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1240 {
1241     struct net_device *dev = dev_id;
1242     struct board_info *db = netdev_priv(dev);
1243     unsigned long flags;
1244     unsigned nsr, wcr;
1245 
1246     spin_lock_irqsave(&db->lock, flags);
1247 
1248     nsr = ior(db, DM9000_NSR);
1249     wcr = ior(db, DM9000_WCR);
1250 
1251     dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1252 
1253     if (nsr & NSR_WAKEST) {
1254         /* clear, so we can avoid */
1255         iow(db, DM9000_NSR, NSR_WAKEST);
1256 
1257         if (wcr & WCR_LINKST)
1258             dev_info(db->dev, "wake by link status change\n");
1259         if (wcr & WCR_SAMPLEST)
1260             dev_info(db->dev, "wake by sample packet\n");
1261         if (wcr & WCR_MAGICST)
1262             dev_info(db->dev, "wake by magic packet\n");
1263         if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1264             dev_err(db->dev, "wake signalled with no reason? "
1265                 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1266     }
1267 
1268     spin_unlock_irqrestore(&db->lock, flags);
1269 
1270     return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1271 }
1272 
1273 #ifdef CONFIG_NET_POLL_CONTROLLER
1274 /*
1275  *Used by netconsole
1276  */
1277 static void dm9000_poll_controller(struct net_device *dev)
1278 {
1279     disable_irq(dev->irq);
1280     dm9000_interrupt(dev->irq, dev);
1281     enable_irq(dev->irq);
1282 }
1283 #endif
1284 
1285 /*
1286  *  Open the interface.
1287  *  The interface is opened whenever "ifconfig" actives it.
1288  */
1289 static int
1290 dm9000_open(struct net_device *dev)
1291 {
1292     struct board_info *db = netdev_priv(dev);
1293     unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1294 
1295     if (netif_msg_ifup(db))
1296         dev_dbg(db->dev, "enabling %s\n", dev->name);
1297 
1298     /* If there is no IRQ type specified, tell the user that this is a
1299      * problem
1300      */
1301     if (irq_flags == IRQF_TRIGGER_NONE)
1302         dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1303 
1304     irq_flags |= IRQF_SHARED;
1305 
1306     /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1307     iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1308     mdelay(1); /* delay needs by DM9000B */
1309 
1310     /* Initialize DM9000 board */
1311     dm9000_init_dm9000(dev);
1312 
1313     if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1314         return -EAGAIN;
1315     /* Now that we have an interrupt handler hooked up we can unmask
1316      * our interrupts
1317      */
1318     dm9000_unmask_interrupts(db);
1319 
1320     /* Init driver variable */
1321     db->dbug_cnt = 0;
1322 
1323     mii_check_media(&db->mii, netif_msg_link(db), 1);
1324     netif_start_queue(dev);
1325 
1326     /* Poll initial link status */
1327     schedule_delayed_work(&db->phy_poll, 1);
1328 
1329     return 0;
1330 }
1331 
1332 static void
1333 dm9000_shutdown(struct net_device *dev)
1334 {
1335     struct board_info *db = netdev_priv(dev);
1336 
1337     /* RESET device */
1338     dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1339     iow(db, DM9000_GPR, 0x01);  /* Power-Down PHY */
1340     dm9000_mask_interrupts(db);
1341     iow(db, DM9000_RCR, 0x00);  /* Disable RX */
1342 }
1343 
1344 /*
1345  * Stop the interface.
1346  * The interface is stopped when it is brought.
1347  */
1348 static int
1349 dm9000_stop(struct net_device *ndev)
1350 {
1351     struct board_info *db = netdev_priv(ndev);
1352 
1353     if (netif_msg_ifdown(db))
1354         dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1355 
1356     cancel_delayed_work_sync(&db->phy_poll);
1357 
1358     netif_stop_queue(ndev);
1359     netif_carrier_off(ndev);
1360 
1361     /* free interrupt */
1362     free_irq(ndev->irq, ndev);
1363 
1364     dm9000_shutdown(ndev);
1365 
1366     return 0;
1367 }
1368 
1369 static const struct net_device_ops dm9000_netdev_ops = {
1370     .ndo_open       = dm9000_open,
1371     .ndo_stop       = dm9000_stop,
1372     .ndo_start_xmit     = dm9000_start_xmit,
1373     .ndo_tx_timeout     = dm9000_timeout,
1374     .ndo_set_rx_mode    = dm9000_hash_table,
1375     .ndo_eth_ioctl      = dm9000_ioctl,
1376     .ndo_set_features   = dm9000_set_features,
1377     .ndo_validate_addr  = eth_validate_addr,
1378     .ndo_set_mac_address    = eth_mac_addr,
1379 #ifdef CONFIG_NET_POLL_CONTROLLER
1380     .ndo_poll_controller    = dm9000_poll_controller,
1381 #endif
1382 };
1383 
1384 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1385 {
1386     struct dm9000_plat_data *pdata;
1387     struct device_node *np = dev->of_node;
1388     int ret;
1389 
1390     if (!IS_ENABLED(CONFIG_OF) || !np)
1391         return ERR_PTR(-ENXIO);
1392 
1393     pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1394     if (!pdata)
1395         return ERR_PTR(-ENOMEM);
1396 
1397     if (of_find_property(np, "davicom,ext-phy", NULL))
1398         pdata->flags |= DM9000_PLATF_EXT_PHY;
1399     if (of_find_property(np, "davicom,no-eeprom", NULL))
1400         pdata->flags |= DM9000_PLATF_NO_EEPROM;
1401 
1402     ret = of_get_mac_address(np, pdata->dev_addr);
1403     if (ret == -EPROBE_DEFER)
1404         return ERR_PTR(ret);
1405 
1406     return pdata;
1407 }
1408 
1409 /*
1410  * Search DM9000 board, allocate space and register it
1411  */
1412 static int
1413 dm9000_probe(struct platform_device *pdev)
1414 {
1415     struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1416     struct board_info *db;  /* Point a board information structure */
1417     struct net_device *ndev;
1418     struct device *dev = &pdev->dev;
1419     const unsigned char *mac_src;
1420     int ret = 0;
1421     int iosize;
1422     int i;
1423     u32 id_val;
1424     int reset_gpios;
1425     enum of_gpio_flags flags;
1426     struct regulator *power;
1427     bool inv_mac_addr = false;
1428     u8 addr[ETH_ALEN];
1429 
1430     power = devm_regulator_get(dev, "vcc");
1431     if (IS_ERR(power)) {
1432         if (PTR_ERR(power) == -EPROBE_DEFER)
1433             return -EPROBE_DEFER;
1434         dev_dbg(dev, "no regulator provided\n");
1435     } else {
1436         ret = regulator_enable(power);
1437         if (ret != 0) {
1438             dev_err(dev,
1439                 "Failed to enable power regulator: %d\n", ret);
1440             return ret;
1441         }
1442         dev_dbg(dev, "regulator enabled\n");
1443     }
1444 
1445     reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1446                           &flags);
1447     if (gpio_is_valid(reset_gpios)) {
1448         ret = devm_gpio_request_one(dev, reset_gpios, flags,
1449                         "dm9000_reset");
1450         if (ret) {
1451             dev_err(dev, "failed to request reset gpio %d: %d\n",
1452                 reset_gpios, ret);
1453             goto out_regulator_disable;
1454         }
1455 
1456         /* According to manual PWRST# Low Period Min 1ms */
1457         msleep(2);
1458         gpio_set_value(reset_gpios, 1);
1459         /* Needs 3ms to read eeprom when PWRST is deasserted */
1460         msleep(4);
1461     }
1462 
1463     if (!pdata) {
1464         pdata = dm9000_parse_dt(&pdev->dev);
1465         if (IS_ERR(pdata)) {
1466             ret = PTR_ERR(pdata);
1467             goto out_regulator_disable;
1468         }
1469     }
1470 
1471     /* Init network device */
1472     ndev = alloc_etherdev(sizeof(struct board_info));
1473     if (!ndev) {
1474         ret = -ENOMEM;
1475         goto out_regulator_disable;
1476     }
1477 
1478     SET_NETDEV_DEV(ndev, &pdev->dev);
1479 
1480     dev_dbg(&pdev->dev, "dm9000_probe()\n");
1481 
1482     /* setup board info structure */
1483     db = netdev_priv(ndev);
1484 
1485     db->dev = &pdev->dev;
1486     db->ndev = ndev;
1487     if (!IS_ERR(power))
1488         db->power_supply = power;
1489 
1490     spin_lock_init(&db->lock);
1491     mutex_init(&db->addr_lock);
1492 
1493     INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1494 
1495     db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1496     db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1497 
1498     if (!db->addr_res || !db->data_res) {
1499         dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1500             db->addr_res, db->data_res);
1501         ret = -ENOENT;
1502         goto out;
1503     }
1504 
1505     ndev->irq = platform_get_irq(pdev, 0);
1506     if (ndev->irq < 0) {
1507         ret = ndev->irq;
1508         goto out;
1509     }
1510 
1511     db->irq_wake = platform_get_irq_optional(pdev, 1);
1512     if (db->irq_wake >= 0) {
1513         dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1514 
1515         ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1516                   IRQF_SHARED, dev_name(db->dev), ndev);
1517         if (ret) {
1518             dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1519         } else {
1520 
1521             /* test to see if irq is really wakeup capable */
1522             ret = irq_set_irq_wake(db->irq_wake, 1);
1523             if (ret) {
1524                 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1525                     db->irq_wake, ret);
1526             } else {
1527                 irq_set_irq_wake(db->irq_wake, 0);
1528                 db->wake_supported = 1;
1529             }
1530         }
1531     }
1532 
1533     iosize = resource_size(db->addr_res);
1534     db->addr_req = request_mem_region(db->addr_res->start, iosize,
1535                       pdev->name);
1536 
1537     if (db->addr_req == NULL) {
1538         dev_err(db->dev, "cannot claim address reg area\n");
1539         ret = -EIO;
1540         goto out;
1541     }
1542 
1543     db->io_addr = ioremap(db->addr_res->start, iosize);
1544 
1545     if (db->io_addr == NULL) {
1546         dev_err(db->dev, "failed to ioremap address reg\n");
1547         ret = -EINVAL;
1548         goto out;
1549     }
1550 
1551     iosize = resource_size(db->data_res);
1552     db->data_req = request_mem_region(db->data_res->start, iosize,
1553                       pdev->name);
1554 
1555     if (db->data_req == NULL) {
1556         dev_err(db->dev, "cannot claim data reg area\n");
1557         ret = -EIO;
1558         goto out;
1559     }
1560 
1561     db->io_data = ioremap(db->data_res->start, iosize);
1562 
1563     if (db->io_data == NULL) {
1564         dev_err(db->dev, "failed to ioremap data reg\n");
1565         ret = -EINVAL;
1566         goto out;
1567     }
1568 
1569     /* fill in parameters for net-dev structure */
1570     ndev->base_addr = (unsigned long)db->io_addr;
1571 
1572     /* ensure at least we have a default set of IO routines */
1573     dm9000_set_io(db, iosize);
1574 
1575     /* check to see if anything is being over-ridden */
1576     if (pdata != NULL) {
1577         /* check to see if the driver wants to over-ride the
1578          * default IO width */
1579 
1580         if (pdata->flags & DM9000_PLATF_8BITONLY)
1581             dm9000_set_io(db, 1);
1582 
1583         if (pdata->flags & DM9000_PLATF_16BITONLY)
1584             dm9000_set_io(db, 2);
1585 
1586         if (pdata->flags & DM9000_PLATF_32BITONLY)
1587             dm9000_set_io(db, 4);
1588 
1589         /* check to see if there are any IO routine
1590          * over-rides */
1591 
1592         if (pdata->inblk != NULL)
1593             db->inblk = pdata->inblk;
1594 
1595         if (pdata->outblk != NULL)
1596             db->outblk = pdata->outblk;
1597 
1598         if (pdata->dumpblk != NULL)
1599             db->dumpblk = pdata->dumpblk;
1600 
1601         db->flags = pdata->flags;
1602     }
1603 
1604 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1605     db->flags |= DM9000_PLATF_SIMPLE_PHY;
1606 #endif
1607 
1608     dm9000_reset(db);
1609 
1610     /* try multiple times, DM9000 sometimes gets the read wrong */
1611     for (i = 0; i < 8; i++) {
1612         id_val  = ior(db, DM9000_VIDL);
1613         id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1614         id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1615         id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1616 
1617         if (id_val == DM9000_ID)
1618             break;
1619         dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1620     }
1621 
1622     if (id_val != DM9000_ID) {
1623         dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1624         ret = -ENODEV;
1625         goto out;
1626     }
1627 
1628     /* Identify what type of DM9000 we are working on */
1629 
1630     id_val = ior(db, DM9000_CHIPR);
1631     dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1632 
1633     switch (id_val) {
1634     case CHIPR_DM9000A:
1635         db->type = TYPE_DM9000A;
1636         break;
1637     case CHIPR_DM9000B:
1638         db->type = TYPE_DM9000B;
1639         break;
1640     default:
1641         dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1642         db->type = TYPE_DM9000E;
1643     }
1644 
1645     /* dm9000a/b are capable of hardware checksum offload */
1646     if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1647         ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1648         ndev->features |= ndev->hw_features;
1649     }
1650 
1651     /* from this point we assume that we have found a DM9000 */
1652 
1653     ndev->netdev_ops    = &dm9000_netdev_ops;
1654     ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1655     ndev->ethtool_ops   = &dm9000_ethtool_ops;
1656 
1657     db->msg_enable       = NETIF_MSG_LINK;
1658     db->mii.phy_id_mask  = 0x1f;
1659     db->mii.reg_num_mask = 0x1f;
1660     db->mii.force_media  = 0;
1661     db->mii.full_duplex  = 0;
1662     db->mii.dev      = ndev;
1663     db->mii.mdio_read    = dm9000_phy_read;
1664     db->mii.mdio_write   = dm9000_phy_write;
1665 
1666     mac_src = "eeprom";
1667 
1668     /* try reading the node address from the attached EEPROM */
1669     for (i = 0; i < 6; i += 2)
1670         dm9000_read_eeprom(db, i / 2, addr + i);
1671     eth_hw_addr_set(ndev, addr);
1672 
1673     if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1674         mac_src = "platform data";
1675         eth_hw_addr_set(ndev, pdata->dev_addr);
1676     }
1677 
1678     if (!is_valid_ether_addr(ndev->dev_addr)) {
1679         /* try reading from mac */
1680 
1681         mac_src = "chip";
1682         for (i = 0; i < 6; i++)
1683             addr[i] = ior(db, i + DM9000_PAR);
1684         eth_hw_addr_set(ndev, pdata->dev_addr);
1685     }
1686 
1687     if (!is_valid_ether_addr(ndev->dev_addr)) {
1688         inv_mac_addr = true;
1689         eth_hw_addr_random(ndev);
1690         mac_src = "random";
1691     }
1692 
1693 
1694     platform_set_drvdata(pdev, ndev);
1695     ret = register_netdev(ndev);
1696 
1697     if (ret == 0) {
1698         if (inv_mac_addr)
1699             dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1700                  ndev->name);
1701         printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1702                ndev->name, dm9000_type_to_char(db->type),
1703                db->io_addr, db->io_data, ndev->irq,
1704                ndev->dev_addr, mac_src);
1705     }
1706     return 0;
1707 
1708 out:
1709     dev_err(db->dev, "not found (%d).\n", ret);
1710 
1711     dm9000_release_board(pdev, db);
1712     free_netdev(ndev);
1713 
1714 out_regulator_disable:
1715     if (!IS_ERR(power))
1716         regulator_disable(power);
1717 
1718     return ret;
1719 }
1720 
1721 static int
1722 dm9000_drv_suspend(struct device *dev)
1723 {
1724     struct net_device *ndev = dev_get_drvdata(dev);
1725     struct board_info *db;
1726 
1727     if (ndev) {
1728         db = netdev_priv(ndev);
1729         db->in_suspend = 1;
1730 
1731         if (!netif_running(ndev))
1732             return 0;
1733 
1734         netif_device_detach(ndev);
1735 
1736         /* only shutdown if not using WoL */
1737         if (!db->wake_state)
1738             dm9000_shutdown(ndev);
1739     }
1740     return 0;
1741 }
1742 
1743 static int
1744 dm9000_drv_resume(struct device *dev)
1745 {
1746     struct net_device *ndev = dev_get_drvdata(dev);
1747     struct board_info *db = netdev_priv(ndev);
1748 
1749     if (ndev) {
1750         if (netif_running(ndev)) {
1751             /* reset if we were not in wake mode to ensure if
1752              * the device was powered off it is in a known state */
1753             if (!db->wake_state) {
1754                 dm9000_init_dm9000(ndev);
1755                 dm9000_unmask_interrupts(db);
1756             }
1757 
1758             netif_device_attach(ndev);
1759         }
1760 
1761         db->in_suspend = 0;
1762     }
1763     return 0;
1764 }
1765 
1766 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1767     .suspend    = dm9000_drv_suspend,
1768     .resume     = dm9000_drv_resume,
1769 };
1770 
1771 static int
1772 dm9000_drv_remove(struct platform_device *pdev)
1773 {
1774     struct net_device *ndev = platform_get_drvdata(pdev);
1775     struct board_info *dm = to_dm9000_board(ndev);
1776 
1777     unregister_netdev(ndev);
1778     dm9000_release_board(pdev, dm);
1779     free_netdev(ndev);      /* free device structure */
1780     if (dm->power_supply)
1781         regulator_disable(dm->power_supply);
1782 
1783     dev_dbg(&pdev->dev, "released and freed device\n");
1784     return 0;
1785 }
1786 
1787 #ifdef CONFIG_OF
1788 static const struct of_device_id dm9000_of_matches[] = {
1789     { .compatible = "davicom,dm9000", },
1790     { /* sentinel */ }
1791 };
1792 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1793 #endif
1794 
1795 static struct platform_driver dm9000_driver = {
1796     .driver = {
1797         .name    = "dm9000",
1798         .pm  = &dm9000_drv_pm_ops,
1799         .of_match_table = of_match_ptr(dm9000_of_matches),
1800     },
1801     .probe   = dm9000_probe,
1802     .remove  = dm9000_drv_remove,
1803 };
1804 
1805 module_platform_driver(dm9000_driver);
1806 
1807 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1808 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1809 MODULE_LICENSE("GPL");
1810 MODULE_ALIAS("platform:dm9000");