Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * This file is part of the Chelsio T4 Ethernet driver for Linux.
0003  *
0004  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
0005  *
0006  * This software is available to you under a choice of one of two
0007  * licenses.  You may choose to be licensed under the terms of the GNU
0008  * General Public License (GPL) Version 2, available from the file
0009  * COPYING in the main directory of this source tree, or the
0010  * OpenIB.org BSD license below:
0011  *
0012  *     Redistribution and use in source and binary forms, with or
0013  *     without modification, are permitted provided that the following
0014  *     conditions are met:
0015  *
0016  *      - Redistributions of source code must retain the above
0017  *        copyright notice, this list of conditions and the following
0018  *        disclaimer.
0019  *
0020  *      - Redistributions in binary form must reproduce the above
0021  *        copyright notice, this list of conditions and the following
0022  *        disclaimer in the documentation and/or other materials
0023  *        provided with the distribution.
0024  *
0025  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0026  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0027  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0028  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0029  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0030  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0031  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0032  * SOFTWARE.
0033  */
0034 
0035 #include <linux/delay.h>
0036 #include "cxgb4.h"
0037 #include "t4_regs.h"
0038 #include "t4_values.h"
0039 #include "t4fw_api.h"
0040 #include "t4fw_version.h"
0041 
0042 /**
0043  *  t4_wait_op_done_val - wait until an operation is completed
0044  *  @adapter: the adapter performing the operation
0045  *  @reg: the register to check for completion
0046  *  @mask: a single-bit field within @reg that indicates completion
0047  *  @polarity: the value of the field when the operation is completed
0048  *  @attempts: number of check iterations
0049  *  @delay: delay in usecs between iterations
0050  *  @valp: where to store the value of the register at completion time
0051  *
0052  *  Wait until an operation is completed by checking a bit in a register
0053  *  up to @attempts times.  If @valp is not NULL the value of the register
0054  *  at the time it indicated completion is stored there.  Returns 0 if the
0055  *  operation completes and -EAGAIN otherwise.
0056  */
0057 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
0058                    int polarity, int attempts, int delay, u32 *valp)
0059 {
0060     while (1) {
0061         u32 val = t4_read_reg(adapter, reg);
0062 
0063         if (!!(val & mask) == polarity) {
0064             if (valp)
0065                 *valp = val;
0066             return 0;
0067         }
0068         if (--attempts == 0)
0069             return -EAGAIN;
0070         if (delay)
0071             udelay(delay);
0072     }
0073 }
0074 
0075 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
0076                   int polarity, int attempts, int delay)
0077 {
0078     return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
0079                    delay, NULL);
0080 }
0081 
0082 /**
0083  *  t4_set_reg_field - set a register field to a value
0084  *  @adapter: the adapter to program
0085  *  @addr: the register address
0086  *  @mask: specifies the portion of the register to modify
0087  *  @val: the new value for the register field
0088  *
0089  *  Sets a register field specified by the supplied mask to the
0090  *  given value.
0091  */
0092 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
0093               u32 val)
0094 {
0095     u32 v = t4_read_reg(adapter, addr) & ~mask;
0096 
0097     t4_write_reg(adapter, addr, v | val);
0098     (void) t4_read_reg(adapter, addr);      /* flush */
0099 }
0100 
0101 /**
0102  *  t4_read_indirect - read indirectly addressed registers
0103  *  @adap: the adapter
0104  *  @addr_reg: register holding the indirect address
0105  *  @data_reg: register holding the value of the indirect register
0106  *  @vals: where the read register values are stored
0107  *  @nregs: how many indirect registers to read
0108  *  @start_idx: index of first indirect register to read
0109  *
0110  *  Reads registers that are accessed indirectly through an address/data
0111  *  register pair.
0112  */
0113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
0114                  unsigned int data_reg, u32 *vals,
0115                  unsigned int nregs, unsigned int start_idx)
0116 {
0117     while (nregs--) {
0118         t4_write_reg(adap, addr_reg, start_idx);
0119         *vals++ = t4_read_reg(adap, data_reg);
0120         start_idx++;
0121     }
0122 }
0123 
0124 /**
0125  *  t4_write_indirect - write indirectly addressed registers
0126  *  @adap: the adapter
0127  *  @addr_reg: register holding the indirect addresses
0128  *  @data_reg: register holding the value for the indirect registers
0129  *  @vals: values to write
0130  *  @nregs: how many indirect registers to write
0131  *  @start_idx: address of first indirect register to write
0132  *
0133  *  Writes a sequential block of registers that are accessed indirectly
0134  *  through an address/data register pair.
0135  */
0136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
0137                unsigned int data_reg, const u32 *vals,
0138                unsigned int nregs, unsigned int start_idx)
0139 {
0140     while (nregs--) {
0141         t4_write_reg(adap, addr_reg, start_idx++);
0142         t4_write_reg(adap, data_reg, *vals++);
0143     }
0144 }
0145 
0146 /*
0147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
0148  * mechanism.  This guarantees that we get the real value even if we're
0149  * operating within a Virtual Machine and the Hypervisor is trapping our
0150  * Configuration Space accesses.
0151  */
0152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
0153 {
0154     u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
0155 
0156     if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
0157         req |= ENABLE_F;
0158     else
0159         req |= T6_ENABLE_F;
0160 
0161     if (is_t4(adap->params.chip))
0162         req |= LOCALCFG_F;
0163 
0164     t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
0165     *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0166 
0167     /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
0168      * Configuration Space read.  (None of the other fields matter when
0169      * ENABLE is 0 so a simple register write is easier than a
0170      * read-modify-write via t4_set_reg_field().)
0171      */
0172     t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0173 }
0174 
0175 /*
0176  * t4_report_fw_error - report firmware error
0177  * @adap: the adapter
0178  *
0179  * The adapter firmware can indicate error conditions to the host.
0180  * If the firmware has indicated an error, print out the reason for
0181  * the firmware error.
0182  */
0183 static void t4_report_fw_error(struct adapter *adap)
0184 {
0185     static const char *const reason[] = {
0186         "Crash",                        /* PCIE_FW_EVAL_CRASH */
0187         "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
0188         "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
0189         "During Device Initialization", /* PCIE_FW_EVAL_INIT */
0190         "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
0191         "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
0192         "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
0193         "Reserved",                     /* reserved */
0194     };
0195     u32 pcie_fw;
0196 
0197     pcie_fw = t4_read_reg(adap, PCIE_FW_A);
0198     if (pcie_fw & PCIE_FW_ERR_F) {
0199         dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
0200             reason[PCIE_FW_EVAL_G(pcie_fw)]);
0201         adap->flags &= ~CXGB4_FW_OK;
0202     }
0203 }
0204 
0205 /*
0206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
0207  */
0208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
0209              u32 mbox_addr)
0210 {
0211     for ( ; nflit; nflit--, mbox_addr += 8)
0212         *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
0213 }
0214 
0215 /*
0216  * Handle a FW assertion reported in a mailbox.
0217  */
0218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
0219 {
0220     struct fw_debug_cmd asrt;
0221 
0222     get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
0223     dev_alert(adap->pdev_dev,
0224           "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
0225           asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
0226           be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
0227 }
0228 
0229 /**
0230  *  t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
0231  *  @adapter: the adapter
0232  *  @cmd: the Firmware Mailbox Command or Reply
0233  *  @size: command length in bytes
0234  *  @access: the time (ms) needed to access the Firmware Mailbox
0235  *  @execute: the time (ms) the command spent being executed
0236  */
0237 static void t4_record_mbox(struct adapter *adapter,
0238                const __be64 *cmd, unsigned int size,
0239                int access, int execute)
0240 {
0241     struct mbox_cmd_log *log = adapter->mbox_log;
0242     struct mbox_cmd *entry;
0243     int i;
0244 
0245     entry = mbox_cmd_log_entry(log, log->cursor++);
0246     if (log->cursor == log->size)
0247         log->cursor = 0;
0248 
0249     for (i = 0; i < size / 8; i++)
0250         entry->cmd[i] = be64_to_cpu(cmd[i]);
0251     while (i < MBOX_LEN / 8)
0252         entry->cmd[i++] = 0;
0253     entry->timestamp = jiffies;
0254     entry->seqno = log->seqno++;
0255     entry->access = access;
0256     entry->execute = execute;
0257 }
0258 
0259 /**
0260  *  t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
0261  *  @adap: the adapter
0262  *  @mbox: index of the mailbox to use
0263  *  @cmd: the command to write
0264  *  @size: command length in bytes
0265  *  @rpl: where to optionally store the reply
0266  *  @sleep_ok: if true we may sleep while awaiting command completion
0267  *  @timeout: time to wait for command to finish before timing out
0268  *
0269  *  Sends the given command to FW through the selected mailbox and waits
0270  *  for the FW to execute the command.  If @rpl is not %NULL it is used to
0271  *  store the FW's reply to the command.  The command and its optional
0272  *  reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
0273  *  to respond.  @sleep_ok determines whether we may sleep while awaiting
0274  *  the response.  If sleeping is allowed we use progressive backoff
0275  *  otherwise we spin.
0276  *
0277  *  The return value is 0 on success or a negative errno on failure.  A
0278  *  failure can happen either because we are not able to execute the
0279  *  command or FW executes it but signals an error.  In the latter case
0280  *  the return value is the error code indicated by FW (negated).
0281  */
0282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
0283                 int size, void *rpl, bool sleep_ok, int timeout)
0284 {
0285     static const int delay[] = {
0286         1, 1, 3, 5, 10, 10, 20, 50, 100, 200
0287     };
0288 
0289     struct mbox_list entry;
0290     u16 access = 0;
0291     u16 execute = 0;
0292     u32 v;
0293     u64 res;
0294     int i, ms, delay_idx, ret;
0295     const __be64 *p = cmd;
0296     u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
0297     u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
0298     __be64 cmd_rpl[MBOX_LEN / 8];
0299     u32 pcie_fw;
0300 
0301     if ((size & 15) || size > MBOX_LEN)
0302         return -EINVAL;
0303 
0304     /*
0305      * If the device is off-line, as in EEH, commands will time out.
0306      * Fail them early so we don't waste time waiting.
0307      */
0308     if (adap->pdev->error_state != pci_channel_io_normal)
0309         return -EIO;
0310 
0311     /* If we have a negative timeout, that implies that we can't sleep. */
0312     if (timeout < 0) {
0313         sleep_ok = false;
0314         timeout = -timeout;
0315     }
0316 
0317     /* Queue ourselves onto the mailbox access list.  When our entry is at
0318      * the front of the list, we have rights to access the mailbox.  So we
0319      * wait [for a while] till we're at the front [or bail out with an
0320      * EBUSY] ...
0321      */
0322     spin_lock_bh(&adap->mbox_lock);
0323     list_add_tail(&entry.list, &adap->mlist.list);
0324     spin_unlock_bh(&adap->mbox_lock);
0325 
0326     delay_idx = 0;
0327     ms = delay[0];
0328 
0329     for (i = 0; ; i += ms) {
0330         /* If we've waited too long, return a busy indication.  This
0331          * really ought to be based on our initial position in the
0332          * mailbox access list but this is a start.  We very rarely
0333          * contend on access to the mailbox ...
0334          */
0335         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
0336         if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
0337             spin_lock_bh(&adap->mbox_lock);
0338             list_del(&entry.list);
0339             spin_unlock_bh(&adap->mbox_lock);
0340             ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
0341             t4_record_mbox(adap, cmd, size, access, ret);
0342             return ret;
0343         }
0344 
0345         /* If we're at the head, break out and start the mailbox
0346          * protocol.
0347          */
0348         if (list_first_entry(&adap->mlist.list, struct mbox_list,
0349                      list) == &entry)
0350             break;
0351 
0352         /* Delay for a bit before checking again ... */
0353         if (sleep_ok) {
0354             ms = delay[delay_idx];  /* last element may repeat */
0355             if (delay_idx < ARRAY_SIZE(delay) - 1)
0356                 delay_idx++;
0357             msleep(ms);
0358         } else {
0359             mdelay(ms);
0360         }
0361     }
0362 
0363     /* Loop trying to get ownership of the mailbox.  Return an error
0364      * if we can't gain ownership.
0365      */
0366     v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
0367     for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
0368         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
0369     if (v != MBOX_OWNER_DRV) {
0370         spin_lock_bh(&adap->mbox_lock);
0371         list_del(&entry.list);
0372         spin_unlock_bh(&adap->mbox_lock);
0373         ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
0374         t4_record_mbox(adap, cmd, size, access, ret);
0375         return ret;
0376     }
0377 
0378     /* Copy in the new mailbox command and send it on its way ... */
0379     t4_record_mbox(adap, cmd, size, access, 0);
0380     for (i = 0; i < size; i += 8)
0381         t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
0382 
0383     t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
0384     t4_read_reg(adap, ctl_reg);          /* flush write */
0385 
0386     delay_idx = 0;
0387     ms = delay[0];
0388 
0389     for (i = 0;
0390          !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
0391          i < timeout;
0392          i += ms) {
0393         if (sleep_ok) {
0394             ms = delay[delay_idx];  /* last element may repeat */
0395             if (delay_idx < ARRAY_SIZE(delay) - 1)
0396                 delay_idx++;
0397             msleep(ms);
0398         } else
0399             mdelay(ms);
0400 
0401         v = t4_read_reg(adap, ctl_reg);
0402         if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
0403             if (!(v & MBMSGVALID_F)) {
0404                 t4_write_reg(adap, ctl_reg, 0);
0405                 continue;
0406             }
0407 
0408             get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
0409             res = be64_to_cpu(cmd_rpl[0]);
0410 
0411             if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
0412                 fw_asrt(adap, data_reg);
0413                 res = FW_CMD_RETVAL_V(EIO);
0414             } else if (rpl) {
0415                 memcpy(rpl, cmd_rpl, size);
0416             }
0417 
0418             t4_write_reg(adap, ctl_reg, 0);
0419 
0420             execute = i + ms;
0421             t4_record_mbox(adap, cmd_rpl,
0422                        MBOX_LEN, access, execute);
0423             spin_lock_bh(&adap->mbox_lock);
0424             list_del(&entry.list);
0425             spin_unlock_bh(&adap->mbox_lock);
0426             return -FW_CMD_RETVAL_G((int)res);
0427         }
0428     }
0429 
0430     ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
0431     t4_record_mbox(adap, cmd, size, access, ret);
0432     dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
0433         *(const u8 *)cmd, mbox);
0434     t4_report_fw_error(adap);
0435     spin_lock_bh(&adap->mbox_lock);
0436     list_del(&entry.list);
0437     spin_unlock_bh(&adap->mbox_lock);
0438     t4_fatal_err(adap);
0439     return ret;
0440 }
0441 
0442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
0443             void *rpl, bool sleep_ok)
0444 {
0445     return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
0446                        FW_CMD_MAX_TIMEOUT);
0447 }
0448 
0449 static int t4_edc_err_read(struct adapter *adap, int idx)
0450 {
0451     u32 edc_ecc_err_addr_reg;
0452     u32 rdata_reg;
0453 
0454     if (is_t4(adap->params.chip)) {
0455         CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
0456         return 0;
0457     }
0458     if (idx != 0 && idx != 1) {
0459         CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
0460         return 0;
0461     }
0462 
0463     edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
0464     rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
0465 
0466     CH_WARN(adap,
0467         "edc%d err addr 0x%x: 0x%x.\n",
0468         idx, edc_ecc_err_addr_reg,
0469         t4_read_reg(adap, edc_ecc_err_addr_reg));
0470     CH_WARN(adap,
0471         "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
0472         rdata_reg,
0473         (unsigned long long)t4_read_reg64(adap, rdata_reg),
0474         (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
0475         (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
0476         (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
0477         (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
0478         (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
0479         (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
0480         (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
0481         (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
0482 
0483     return 0;
0484 }
0485 
0486 /**
0487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
0488  * @adap: the adapter
0489  * @win: PCI-E Memory Window to use
0490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
0491  * @mem_off: memory relative offset with respect to @mtype.
0492  * @mem_base: configured memory base address.
0493  * @mem_aperture: configured memory window aperture.
0494  *
0495  * Get the configured memory window's relative offset, base, and size.
0496  */
0497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
0498               u32 *mem_base, u32 *mem_aperture)
0499 {
0500     u32 edc_size, mc_size, mem_reg;
0501 
0502     /* Offset into the region of memory which is being accessed
0503      * MEM_EDC0 = 0
0504      * MEM_EDC1 = 1
0505      * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
0506      * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
0507      * MEM_HMA  = 4
0508      */
0509     edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
0510     if (mtype == MEM_HMA) {
0511         *mem_off = 2 * (edc_size * 1024 * 1024);
0512     } else if (mtype != MEM_MC1) {
0513         *mem_off = (mtype * (edc_size * 1024 * 1024));
0514     } else {
0515         mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
0516                               MA_EXT_MEMORY0_BAR_A));
0517         *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
0518     }
0519 
0520     /* Each PCI-E Memory Window is programmed with a window size -- or
0521      * "aperture" -- which controls the granularity of its mapping onto
0522      * adapter memory.  We need to grab that aperture in order to know
0523      * how to use the specified window.  The window is also programmed
0524      * with the base address of the Memory Window in BAR0's address
0525      * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
0526      * the address is relative to BAR0.
0527      */
0528     mem_reg = t4_read_reg(adap,
0529                   PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
0530                           win));
0531     /* a dead adapter will return 0xffffffff for PIO reads */
0532     if (mem_reg == 0xffffffff)
0533         return -ENXIO;
0534 
0535     *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
0536     *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
0537     if (is_t4(adap->params.chip))
0538         *mem_base -= adap->t4_bar0;
0539 
0540     return 0;
0541 }
0542 
0543 /**
0544  * t4_memory_update_win - Move memory window to specified address.
0545  * @adap: the adapter
0546  * @win: PCI-E Memory Window to use
0547  * @addr: location to move.
0548  *
0549  * Move memory window to specified address.
0550  */
0551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
0552 {
0553     t4_write_reg(adap,
0554              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
0555              addr);
0556     /* Read it back to ensure that changes propagate before we
0557      * attempt to use the new value.
0558      */
0559     t4_read_reg(adap,
0560             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
0561 }
0562 
0563 /**
0564  * t4_memory_rw_residual - Read/Write residual data.
0565  * @adap: the adapter
0566  * @off: relative offset within residual to start read/write.
0567  * @addr: address within indicated memory type.
0568  * @buf: host memory buffer
0569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
0570  *
0571  * Read/Write residual data less than 32-bits.
0572  */
0573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
0574                int dir)
0575 {
0576     union {
0577         u32 word;
0578         char byte[4];
0579     } last;
0580     unsigned char *bp;
0581     int i;
0582 
0583     if (dir == T4_MEMORY_READ) {
0584         last.word = le32_to_cpu((__force __le32)
0585                     t4_read_reg(adap, addr));
0586         for (bp = (unsigned char *)buf, i = off; i < 4; i++)
0587             bp[i] = last.byte[i];
0588     } else {
0589         last.word = *buf;
0590         for (i = off; i < 4; i++)
0591             last.byte[i] = 0;
0592         t4_write_reg(adap, addr,
0593                  (__force u32)cpu_to_le32(last.word));
0594     }
0595 }
0596 
0597 /**
0598  *  t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
0599  *  @adap: the adapter
0600  *  @win: PCI-E Memory Window to use
0601  *  @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
0602  *  @addr: address within indicated memory type
0603  *  @len: amount of memory to transfer
0604  *  @hbuf: host memory buffer
0605  *  @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
0606  *
0607  *  Reads/writes an [almost] arbitrary memory region in the firmware: the
0608  *  firmware memory address and host buffer must be aligned on 32-bit
0609  *  boundaries; the length may be arbitrary.  The memory is transferred as
0610  *  a raw byte sequence from/to the firmware's memory.  If this memory
0611  *  contains data structures which contain multi-byte integers, it's the
0612  *  caller's responsibility to perform appropriate byte order conversions.
0613  */
0614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
0615          u32 len, void *hbuf, int dir)
0616 {
0617     u32 pos, offset, resid, memoffset;
0618     u32 win_pf, mem_aperture, mem_base;
0619     u32 *buf;
0620     int ret;
0621 
0622     /* Argument sanity checks ...
0623      */
0624     if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
0625         return -EINVAL;
0626     buf = (u32 *)hbuf;
0627 
0628     /* It's convenient to be able to handle lengths which aren't a
0629      * multiple of 32-bits because we often end up transferring files to
0630      * the firmware.  So we'll handle that by normalizing the length here
0631      * and then handling any residual transfer at the end.
0632      */
0633     resid = len & 0x3;
0634     len -= resid;
0635 
0636     ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
0637                 &mem_aperture);
0638     if (ret)
0639         return ret;
0640 
0641     /* Determine the PCIE_MEM_ACCESS_OFFSET */
0642     addr = addr + memoffset;
0643 
0644     win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
0645 
0646     /* Calculate our initial PCI-E Memory Window Position and Offset into
0647      * that Window.
0648      */
0649     pos = addr & ~(mem_aperture - 1);
0650     offset = addr - pos;
0651 
0652     /* Set up initial PCI-E Memory Window to cover the start of our
0653      * transfer.
0654      */
0655     t4_memory_update_win(adap, win, pos | win_pf);
0656 
0657     /* Transfer data to/from the adapter as long as there's an integral
0658      * number of 32-bit transfers to complete.
0659      *
0660      * A note on Endianness issues:
0661      *
0662      * The "register" reads and writes below from/to the PCI-E Memory
0663      * Window invoke the standard adapter Big-Endian to PCI-E Link
0664      * Little-Endian "swizzel."  As a result, if we have the following
0665      * data in adapter memory:
0666      *
0667      *     Memory:  ... | b0 | b1 | b2 | b3 | ...
0668      *     Address:      i+0  i+1  i+2  i+3
0669      *
0670      * Then a read of the adapter memory via the PCI-E Memory Window
0671      * will yield:
0672      *
0673      *     x = readl(i)
0674      *         31                  0
0675      *         [ b3 | b2 | b1 | b0 ]
0676      *
0677      * If this value is stored into local memory on a Little-Endian system
0678      * it will show up correctly in local memory as:
0679      *
0680      *     ( ..., b0, b1, b2, b3, ... )
0681      *
0682      * But on a Big-Endian system, the store will show up in memory
0683      * incorrectly swizzled as:
0684      *
0685      *     ( ..., b3, b2, b1, b0, ... )
0686      *
0687      * So we need to account for this in the reads and writes to the
0688      * PCI-E Memory Window below by undoing the register read/write
0689      * swizzels.
0690      */
0691     while (len > 0) {
0692         if (dir == T4_MEMORY_READ)
0693             *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
0694                         mem_base + offset));
0695         else
0696             t4_write_reg(adap, mem_base + offset,
0697                      (__force u32)cpu_to_le32(*buf++));
0698         offset += sizeof(__be32);
0699         len -= sizeof(__be32);
0700 
0701         /* If we've reached the end of our current window aperture,
0702          * move the PCI-E Memory Window on to the next.  Note that
0703          * doing this here after "len" may be 0 allows us to set up
0704          * the PCI-E Memory Window for a possible final residual
0705          * transfer below ...
0706          */
0707         if (offset == mem_aperture) {
0708             pos += mem_aperture;
0709             offset = 0;
0710             t4_memory_update_win(adap, win, pos | win_pf);
0711         }
0712     }
0713 
0714     /* If the original transfer had a length which wasn't a multiple of
0715      * 32-bits, now's where we need to finish off the transfer of the
0716      * residual amount.  The PCI-E Memory Window has already been moved
0717      * above (if necessary) to cover this final transfer.
0718      */
0719     if (resid)
0720         t4_memory_rw_residual(adap, resid, mem_base + offset,
0721                       (u8 *)buf, dir);
0722 
0723     return 0;
0724 }
0725 
0726 /* Return the specified PCI-E Configuration Space register from our Physical
0727  * Function.  We try first via a Firmware LDST Command since we prefer to let
0728  * the firmware own all of these registers, but if that fails we go for it
0729  * directly ourselves.
0730  */
0731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
0732 {
0733     u32 val, ldst_addrspace;
0734 
0735     /* If fw_attach != 0, construct and send the Firmware LDST Command to
0736      * retrieve the specified PCI-E Configuration Space register.
0737      */
0738     struct fw_ldst_cmd ldst_cmd;
0739     int ret;
0740 
0741     memset(&ldst_cmd, 0, sizeof(ldst_cmd));
0742     ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
0743     ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
0744                            FW_CMD_REQUEST_F |
0745                            FW_CMD_READ_F |
0746                            ldst_addrspace);
0747     ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
0748     ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
0749     ldst_cmd.u.pcie.ctrl_to_fn =
0750         (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
0751     ldst_cmd.u.pcie.r = reg;
0752 
0753     /* If the LDST Command succeeds, return the result, otherwise
0754      * fall through to reading it directly ourselves ...
0755      */
0756     ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
0757              &ldst_cmd);
0758     if (ret == 0)
0759         val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
0760     else
0761         /* Read the desired Configuration Space register via the PCI-E
0762          * Backdoor mechanism.
0763          */
0764         t4_hw_pci_read_cfg4(adap, reg, &val);
0765     return val;
0766 }
0767 
0768 /* Get the window based on base passed to it.
0769  * Window aperture is currently unhandled, but there is no use case for it
0770  * right now
0771  */
0772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
0773              u32 memwin_base)
0774 {
0775     u32 ret;
0776 
0777     if (is_t4(adap->params.chip)) {
0778         u32 bar0;
0779 
0780         /* Truncation intentional: we only read the bottom 32-bits of
0781          * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
0782          * mechanism to read BAR0 instead of using
0783          * pci_resource_start() because we could be operating from
0784          * within a Virtual Machine which is trapping our accesses to
0785          * our Configuration Space and we need to set up the PCI-E
0786          * Memory Window decoders with the actual addresses which will
0787          * be coming across the PCI-E link.
0788          */
0789         bar0 = t4_read_pcie_cfg4(adap, pci_base);
0790         bar0 &= pci_mask;
0791         adap->t4_bar0 = bar0;
0792 
0793         ret = bar0 + memwin_base;
0794     } else {
0795         /* For T5, only relative offset inside the PCIe BAR is passed */
0796         ret = memwin_base;
0797     }
0798     return ret;
0799 }
0800 
0801 /* Get the default utility window (win0) used by everyone */
0802 u32 t4_get_util_window(struct adapter *adap)
0803 {
0804     return t4_get_window(adap, PCI_BASE_ADDRESS_0,
0805                  PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
0806 }
0807 
0808 /* Set up memory window for accessing adapter memory ranges.  (Read
0809  * back MA register to ensure that changes propagate before we attempt
0810  * to use the new values.)
0811  */
0812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
0813 {
0814     t4_write_reg(adap,
0815              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
0816              memwin_base | BIR_V(0) |
0817              WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
0818     t4_read_reg(adap,
0819             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
0820 }
0821 
0822 /**
0823  *  t4_get_regs_len - return the size of the chips register set
0824  *  @adapter: the adapter
0825  *
0826  *  Returns the size of the chip's BAR0 register space.
0827  */
0828 unsigned int t4_get_regs_len(struct adapter *adapter)
0829 {
0830     unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
0831 
0832     switch (chip_version) {
0833     case CHELSIO_T4:
0834         return T4_REGMAP_SIZE;
0835 
0836     case CHELSIO_T5:
0837     case CHELSIO_T6:
0838         return T5_REGMAP_SIZE;
0839     }
0840 
0841     dev_err(adapter->pdev_dev,
0842         "Unsupported chip version %d\n", chip_version);
0843     return 0;
0844 }
0845 
0846 /**
0847  *  t4_get_regs - read chip registers into provided buffer
0848  *  @adap: the adapter
0849  *  @buf: register buffer
0850  *  @buf_size: size (in bytes) of register buffer
0851  *
0852  *  If the provided register buffer isn't large enough for the chip's
0853  *  full register range, the register dump will be truncated to the
0854  *  register buffer's size.
0855  */
0856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
0857 {
0858     static const unsigned int t4_reg_ranges[] = {
0859         0x1008, 0x1108,
0860         0x1180, 0x1184,
0861         0x1190, 0x1194,
0862         0x11a0, 0x11a4,
0863         0x11b0, 0x11b4,
0864         0x11fc, 0x123c,
0865         0x1300, 0x173c,
0866         0x1800, 0x18fc,
0867         0x3000, 0x30d8,
0868         0x30e0, 0x30e4,
0869         0x30ec, 0x5910,
0870         0x5920, 0x5924,
0871         0x5960, 0x5960,
0872         0x5968, 0x5968,
0873         0x5970, 0x5970,
0874         0x5978, 0x5978,
0875         0x5980, 0x5980,
0876         0x5988, 0x5988,
0877         0x5990, 0x5990,
0878         0x5998, 0x5998,
0879         0x59a0, 0x59d4,
0880         0x5a00, 0x5ae0,
0881         0x5ae8, 0x5ae8,
0882         0x5af0, 0x5af0,
0883         0x5af8, 0x5af8,
0884         0x6000, 0x6098,
0885         0x6100, 0x6150,
0886         0x6200, 0x6208,
0887         0x6240, 0x6248,
0888         0x6280, 0x62b0,
0889         0x62c0, 0x6338,
0890         0x6370, 0x638c,
0891         0x6400, 0x643c,
0892         0x6500, 0x6524,
0893         0x6a00, 0x6a04,
0894         0x6a14, 0x6a38,
0895         0x6a60, 0x6a70,
0896         0x6a78, 0x6a78,
0897         0x6b00, 0x6b0c,
0898         0x6b1c, 0x6b84,
0899         0x6bf0, 0x6bf8,
0900         0x6c00, 0x6c0c,
0901         0x6c1c, 0x6c84,
0902         0x6cf0, 0x6cf8,
0903         0x6d00, 0x6d0c,
0904         0x6d1c, 0x6d84,
0905         0x6df0, 0x6df8,
0906         0x6e00, 0x6e0c,
0907         0x6e1c, 0x6e84,
0908         0x6ef0, 0x6ef8,
0909         0x6f00, 0x6f0c,
0910         0x6f1c, 0x6f84,
0911         0x6ff0, 0x6ff8,
0912         0x7000, 0x700c,
0913         0x701c, 0x7084,
0914         0x70f0, 0x70f8,
0915         0x7100, 0x710c,
0916         0x711c, 0x7184,
0917         0x71f0, 0x71f8,
0918         0x7200, 0x720c,
0919         0x721c, 0x7284,
0920         0x72f0, 0x72f8,
0921         0x7300, 0x730c,
0922         0x731c, 0x7384,
0923         0x73f0, 0x73f8,
0924         0x7400, 0x7450,
0925         0x7500, 0x7530,
0926         0x7600, 0x760c,
0927         0x7614, 0x761c,
0928         0x7680, 0x76cc,
0929         0x7700, 0x7798,
0930         0x77c0, 0x77fc,
0931         0x7900, 0x79fc,
0932         0x7b00, 0x7b58,
0933         0x7b60, 0x7b84,
0934         0x7b8c, 0x7c38,
0935         0x7d00, 0x7d38,
0936         0x7d40, 0x7d80,
0937         0x7d8c, 0x7ddc,
0938         0x7de4, 0x7e04,
0939         0x7e10, 0x7e1c,
0940         0x7e24, 0x7e38,
0941         0x7e40, 0x7e44,
0942         0x7e4c, 0x7e78,
0943         0x7e80, 0x7ea4,
0944         0x7eac, 0x7edc,
0945         0x7ee8, 0x7efc,
0946         0x8dc0, 0x8e04,
0947         0x8e10, 0x8e1c,
0948         0x8e30, 0x8e78,
0949         0x8ea0, 0x8eb8,
0950         0x8ec0, 0x8f6c,
0951         0x8fc0, 0x9008,
0952         0x9010, 0x9058,
0953         0x9060, 0x9060,
0954         0x9068, 0x9074,
0955         0x90fc, 0x90fc,
0956         0x9400, 0x9408,
0957         0x9410, 0x9458,
0958         0x9600, 0x9600,
0959         0x9608, 0x9638,
0960         0x9640, 0x96bc,
0961         0x9800, 0x9808,
0962         0x9820, 0x983c,
0963         0x9850, 0x9864,
0964         0x9c00, 0x9c6c,
0965         0x9c80, 0x9cec,
0966         0x9d00, 0x9d6c,
0967         0x9d80, 0x9dec,
0968         0x9e00, 0x9e6c,
0969         0x9e80, 0x9eec,
0970         0x9f00, 0x9f6c,
0971         0x9f80, 0x9fec,
0972         0xd004, 0xd004,
0973         0xd010, 0xd03c,
0974         0xdfc0, 0xdfe0,
0975         0xe000, 0xea7c,
0976         0xf000, 0x11110,
0977         0x11118, 0x11190,
0978         0x19040, 0x1906c,
0979         0x19078, 0x19080,
0980         0x1908c, 0x190e4,
0981         0x190f0, 0x190f8,
0982         0x19100, 0x19110,
0983         0x19120, 0x19124,
0984         0x19150, 0x19194,
0985         0x1919c, 0x191b0,
0986         0x191d0, 0x191e8,
0987         0x19238, 0x1924c,
0988         0x193f8, 0x1943c,
0989         0x1944c, 0x19474,
0990         0x19490, 0x194e0,
0991         0x194f0, 0x194f8,
0992         0x19800, 0x19c08,
0993         0x19c10, 0x19c90,
0994         0x19ca0, 0x19ce4,
0995         0x19cf0, 0x19d40,
0996         0x19d50, 0x19d94,
0997         0x19da0, 0x19de8,
0998         0x19df0, 0x19e40,
0999         0x19e50, 0x19e90,
1000         0x19ea0, 0x19f4c,
1001         0x1a000, 0x1a004,
1002         0x1a010, 0x1a06c,
1003         0x1a0b0, 0x1a0e4,
1004         0x1a0ec, 0x1a0f4,
1005         0x1a100, 0x1a108,
1006         0x1a114, 0x1a120,
1007         0x1a128, 0x1a130,
1008         0x1a138, 0x1a138,
1009         0x1a190, 0x1a1c4,
1010         0x1a1fc, 0x1a1fc,
1011         0x1e040, 0x1e04c,
1012         0x1e284, 0x1e28c,
1013         0x1e2c0, 0x1e2c0,
1014         0x1e2e0, 0x1e2e0,
1015         0x1e300, 0x1e384,
1016         0x1e3c0, 0x1e3c8,
1017         0x1e440, 0x1e44c,
1018         0x1e684, 0x1e68c,
1019         0x1e6c0, 0x1e6c0,
1020         0x1e6e0, 0x1e6e0,
1021         0x1e700, 0x1e784,
1022         0x1e7c0, 0x1e7c8,
1023         0x1e840, 0x1e84c,
1024         0x1ea84, 0x1ea8c,
1025         0x1eac0, 0x1eac0,
1026         0x1eae0, 0x1eae0,
1027         0x1eb00, 0x1eb84,
1028         0x1ebc0, 0x1ebc8,
1029         0x1ec40, 0x1ec4c,
1030         0x1ee84, 0x1ee8c,
1031         0x1eec0, 0x1eec0,
1032         0x1eee0, 0x1eee0,
1033         0x1ef00, 0x1ef84,
1034         0x1efc0, 0x1efc8,
1035         0x1f040, 0x1f04c,
1036         0x1f284, 0x1f28c,
1037         0x1f2c0, 0x1f2c0,
1038         0x1f2e0, 0x1f2e0,
1039         0x1f300, 0x1f384,
1040         0x1f3c0, 0x1f3c8,
1041         0x1f440, 0x1f44c,
1042         0x1f684, 0x1f68c,
1043         0x1f6c0, 0x1f6c0,
1044         0x1f6e0, 0x1f6e0,
1045         0x1f700, 0x1f784,
1046         0x1f7c0, 0x1f7c8,
1047         0x1f840, 0x1f84c,
1048         0x1fa84, 0x1fa8c,
1049         0x1fac0, 0x1fac0,
1050         0x1fae0, 0x1fae0,
1051         0x1fb00, 0x1fb84,
1052         0x1fbc0, 0x1fbc8,
1053         0x1fc40, 0x1fc4c,
1054         0x1fe84, 0x1fe8c,
1055         0x1fec0, 0x1fec0,
1056         0x1fee0, 0x1fee0,
1057         0x1ff00, 0x1ff84,
1058         0x1ffc0, 0x1ffc8,
1059         0x20000, 0x2002c,
1060         0x20100, 0x2013c,
1061         0x20190, 0x201a0,
1062         0x201a8, 0x201b8,
1063         0x201c4, 0x201c8,
1064         0x20200, 0x20318,
1065         0x20400, 0x204b4,
1066         0x204c0, 0x20528,
1067         0x20540, 0x20614,
1068         0x21000, 0x21040,
1069         0x2104c, 0x21060,
1070         0x210c0, 0x210ec,
1071         0x21200, 0x21268,
1072         0x21270, 0x21284,
1073         0x212fc, 0x21388,
1074         0x21400, 0x21404,
1075         0x21500, 0x21500,
1076         0x21510, 0x21518,
1077         0x2152c, 0x21530,
1078         0x2153c, 0x2153c,
1079         0x21550, 0x21554,
1080         0x21600, 0x21600,
1081         0x21608, 0x2161c,
1082         0x21624, 0x21628,
1083         0x21630, 0x21634,
1084         0x2163c, 0x2163c,
1085         0x21700, 0x2171c,
1086         0x21780, 0x2178c,
1087         0x21800, 0x21818,
1088         0x21820, 0x21828,
1089         0x21830, 0x21848,
1090         0x21850, 0x21854,
1091         0x21860, 0x21868,
1092         0x21870, 0x21870,
1093         0x21878, 0x21898,
1094         0x218a0, 0x218a8,
1095         0x218b0, 0x218c8,
1096         0x218d0, 0x218d4,
1097         0x218e0, 0x218e8,
1098         0x218f0, 0x218f0,
1099         0x218f8, 0x21a18,
1100         0x21a20, 0x21a28,
1101         0x21a30, 0x21a48,
1102         0x21a50, 0x21a54,
1103         0x21a60, 0x21a68,
1104         0x21a70, 0x21a70,
1105         0x21a78, 0x21a98,
1106         0x21aa0, 0x21aa8,
1107         0x21ab0, 0x21ac8,
1108         0x21ad0, 0x21ad4,
1109         0x21ae0, 0x21ae8,
1110         0x21af0, 0x21af0,
1111         0x21af8, 0x21c18,
1112         0x21c20, 0x21c20,
1113         0x21c28, 0x21c30,
1114         0x21c38, 0x21c38,
1115         0x21c80, 0x21c98,
1116         0x21ca0, 0x21ca8,
1117         0x21cb0, 0x21cc8,
1118         0x21cd0, 0x21cd4,
1119         0x21ce0, 0x21ce8,
1120         0x21cf0, 0x21cf0,
1121         0x21cf8, 0x21d7c,
1122         0x21e00, 0x21e04,
1123         0x22000, 0x2202c,
1124         0x22100, 0x2213c,
1125         0x22190, 0x221a0,
1126         0x221a8, 0x221b8,
1127         0x221c4, 0x221c8,
1128         0x22200, 0x22318,
1129         0x22400, 0x224b4,
1130         0x224c0, 0x22528,
1131         0x22540, 0x22614,
1132         0x23000, 0x23040,
1133         0x2304c, 0x23060,
1134         0x230c0, 0x230ec,
1135         0x23200, 0x23268,
1136         0x23270, 0x23284,
1137         0x232fc, 0x23388,
1138         0x23400, 0x23404,
1139         0x23500, 0x23500,
1140         0x23510, 0x23518,
1141         0x2352c, 0x23530,
1142         0x2353c, 0x2353c,
1143         0x23550, 0x23554,
1144         0x23600, 0x23600,
1145         0x23608, 0x2361c,
1146         0x23624, 0x23628,
1147         0x23630, 0x23634,
1148         0x2363c, 0x2363c,
1149         0x23700, 0x2371c,
1150         0x23780, 0x2378c,
1151         0x23800, 0x23818,
1152         0x23820, 0x23828,
1153         0x23830, 0x23848,
1154         0x23850, 0x23854,
1155         0x23860, 0x23868,
1156         0x23870, 0x23870,
1157         0x23878, 0x23898,
1158         0x238a0, 0x238a8,
1159         0x238b0, 0x238c8,
1160         0x238d0, 0x238d4,
1161         0x238e0, 0x238e8,
1162         0x238f0, 0x238f0,
1163         0x238f8, 0x23a18,
1164         0x23a20, 0x23a28,
1165         0x23a30, 0x23a48,
1166         0x23a50, 0x23a54,
1167         0x23a60, 0x23a68,
1168         0x23a70, 0x23a70,
1169         0x23a78, 0x23a98,
1170         0x23aa0, 0x23aa8,
1171         0x23ab0, 0x23ac8,
1172         0x23ad0, 0x23ad4,
1173         0x23ae0, 0x23ae8,
1174         0x23af0, 0x23af0,
1175         0x23af8, 0x23c18,
1176         0x23c20, 0x23c20,
1177         0x23c28, 0x23c30,
1178         0x23c38, 0x23c38,
1179         0x23c80, 0x23c98,
1180         0x23ca0, 0x23ca8,
1181         0x23cb0, 0x23cc8,
1182         0x23cd0, 0x23cd4,
1183         0x23ce0, 0x23ce8,
1184         0x23cf0, 0x23cf0,
1185         0x23cf8, 0x23d7c,
1186         0x23e00, 0x23e04,
1187         0x24000, 0x2402c,
1188         0x24100, 0x2413c,
1189         0x24190, 0x241a0,
1190         0x241a8, 0x241b8,
1191         0x241c4, 0x241c8,
1192         0x24200, 0x24318,
1193         0x24400, 0x244b4,
1194         0x244c0, 0x24528,
1195         0x24540, 0x24614,
1196         0x25000, 0x25040,
1197         0x2504c, 0x25060,
1198         0x250c0, 0x250ec,
1199         0x25200, 0x25268,
1200         0x25270, 0x25284,
1201         0x252fc, 0x25388,
1202         0x25400, 0x25404,
1203         0x25500, 0x25500,
1204         0x25510, 0x25518,
1205         0x2552c, 0x25530,
1206         0x2553c, 0x2553c,
1207         0x25550, 0x25554,
1208         0x25600, 0x25600,
1209         0x25608, 0x2561c,
1210         0x25624, 0x25628,
1211         0x25630, 0x25634,
1212         0x2563c, 0x2563c,
1213         0x25700, 0x2571c,
1214         0x25780, 0x2578c,
1215         0x25800, 0x25818,
1216         0x25820, 0x25828,
1217         0x25830, 0x25848,
1218         0x25850, 0x25854,
1219         0x25860, 0x25868,
1220         0x25870, 0x25870,
1221         0x25878, 0x25898,
1222         0x258a0, 0x258a8,
1223         0x258b0, 0x258c8,
1224         0x258d0, 0x258d4,
1225         0x258e0, 0x258e8,
1226         0x258f0, 0x258f0,
1227         0x258f8, 0x25a18,
1228         0x25a20, 0x25a28,
1229         0x25a30, 0x25a48,
1230         0x25a50, 0x25a54,
1231         0x25a60, 0x25a68,
1232         0x25a70, 0x25a70,
1233         0x25a78, 0x25a98,
1234         0x25aa0, 0x25aa8,
1235         0x25ab0, 0x25ac8,
1236         0x25ad0, 0x25ad4,
1237         0x25ae0, 0x25ae8,
1238         0x25af0, 0x25af0,
1239         0x25af8, 0x25c18,
1240         0x25c20, 0x25c20,
1241         0x25c28, 0x25c30,
1242         0x25c38, 0x25c38,
1243         0x25c80, 0x25c98,
1244         0x25ca0, 0x25ca8,
1245         0x25cb0, 0x25cc8,
1246         0x25cd0, 0x25cd4,
1247         0x25ce0, 0x25ce8,
1248         0x25cf0, 0x25cf0,
1249         0x25cf8, 0x25d7c,
1250         0x25e00, 0x25e04,
1251         0x26000, 0x2602c,
1252         0x26100, 0x2613c,
1253         0x26190, 0x261a0,
1254         0x261a8, 0x261b8,
1255         0x261c4, 0x261c8,
1256         0x26200, 0x26318,
1257         0x26400, 0x264b4,
1258         0x264c0, 0x26528,
1259         0x26540, 0x26614,
1260         0x27000, 0x27040,
1261         0x2704c, 0x27060,
1262         0x270c0, 0x270ec,
1263         0x27200, 0x27268,
1264         0x27270, 0x27284,
1265         0x272fc, 0x27388,
1266         0x27400, 0x27404,
1267         0x27500, 0x27500,
1268         0x27510, 0x27518,
1269         0x2752c, 0x27530,
1270         0x2753c, 0x2753c,
1271         0x27550, 0x27554,
1272         0x27600, 0x27600,
1273         0x27608, 0x2761c,
1274         0x27624, 0x27628,
1275         0x27630, 0x27634,
1276         0x2763c, 0x2763c,
1277         0x27700, 0x2771c,
1278         0x27780, 0x2778c,
1279         0x27800, 0x27818,
1280         0x27820, 0x27828,
1281         0x27830, 0x27848,
1282         0x27850, 0x27854,
1283         0x27860, 0x27868,
1284         0x27870, 0x27870,
1285         0x27878, 0x27898,
1286         0x278a0, 0x278a8,
1287         0x278b0, 0x278c8,
1288         0x278d0, 0x278d4,
1289         0x278e0, 0x278e8,
1290         0x278f0, 0x278f0,
1291         0x278f8, 0x27a18,
1292         0x27a20, 0x27a28,
1293         0x27a30, 0x27a48,
1294         0x27a50, 0x27a54,
1295         0x27a60, 0x27a68,
1296         0x27a70, 0x27a70,
1297         0x27a78, 0x27a98,
1298         0x27aa0, 0x27aa8,
1299         0x27ab0, 0x27ac8,
1300         0x27ad0, 0x27ad4,
1301         0x27ae0, 0x27ae8,
1302         0x27af0, 0x27af0,
1303         0x27af8, 0x27c18,
1304         0x27c20, 0x27c20,
1305         0x27c28, 0x27c30,
1306         0x27c38, 0x27c38,
1307         0x27c80, 0x27c98,
1308         0x27ca0, 0x27ca8,
1309         0x27cb0, 0x27cc8,
1310         0x27cd0, 0x27cd4,
1311         0x27ce0, 0x27ce8,
1312         0x27cf0, 0x27cf0,
1313         0x27cf8, 0x27d7c,
1314         0x27e00, 0x27e04,
1315     };
1316 
1317     static const unsigned int t5_reg_ranges[] = {
1318         0x1008, 0x10c0,
1319         0x10cc, 0x10f8,
1320         0x1100, 0x1100,
1321         0x110c, 0x1148,
1322         0x1180, 0x1184,
1323         0x1190, 0x1194,
1324         0x11a0, 0x11a4,
1325         0x11b0, 0x11b4,
1326         0x11fc, 0x123c,
1327         0x1280, 0x173c,
1328         0x1800, 0x18fc,
1329         0x3000, 0x3028,
1330         0x3060, 0x30b0,
1331         0x30b8, 0x30d8,
1332         0x30e0, 0x30fc,
1333         0x3140, 0x357c,
1334         0x35a8, 0x35cc,
1335         0x35ec, 0x35ec,
1336         0x3600, 0x5624,
1337         0x56cc, 0x56ec,
1338         0x56f4, 0x5720,
1339         0x5728, 0x575c,
1340         0x580c, 0x5814,
1341         0x5890, 0x589c,
1342         0x58a4, 0x58ac,
1343         0x58b8, 0x58bc,
1344         0x5940, 0x59c8,
1345         0x59d0, 0x59dc,
1346         0x59fc, 0x5a18,
1347         0x5a60, 0x5a70,
1348         0x5a80, 0x5a9c,
1349         0x5b94, 0x5bfc,
1350         0x6000, 0x6020,
1351         0x6028, 0x6040,
1352         0x6058, 0x609c,
1353         0x60a8, 0x614c,
1354         0x7700, 0x7798,
1355         0x77c0, 0x78fc,
1356         0x7b00, 0x7b58,
1357         0x7b60, 0x7b84,
1358         0x7b8c, 0x7c54,
1359         0x7d00, 0x7d38,
1360         0x7d40, 0x7d80,
1361         0x7d8c, 0x7ddc,
1362         0x7de4, 0x7e04,
1363         0x7e10, 0x7e1c,
1364         0x7e24, 0x7e38,
1365         0x7e40, 0x7e44,
1366         0x7e4c, 0x7e78,
1367         0x7e80, 0x7edc,
1368         0x7ee8, 0x7efc,
1369         0x8dc0, 0x8de0,
1370         0x8df8, 0x8e04,
1371         0x8e10, 0x8e84,
1372         0x8ea0, 0x8f84,
1373         0x8fc0, 0x9058,
1374         0x9060, 0x9060,
1375         0x9068, 0x90f8,
1376         0x9400, 0x9408,
1377         0x9410, 0x9470,
1378         0x9600, 0x9600,
1379         0x9608, 0x9638,
1380         0x9640, 0x96f4,
1381         0x9800, 0x9808,
1382         0x9810, 0x9864,
1383         0x9c00, 0x9c6c,
1384         0x9c80, 0x9cec,
1385         0x9d00, 0x9d6c,
1386         0x9d80, 0x9dec,
1387         0x9e00, 0x9e6c,
1388         0x9e80, 0x9eec,
1389         0x9f00, 0x9f6c,
1390         0x9f80, 0xa020,
1391         0xd000, 0xd004,
1392         0xd010, 0xd03c,
1393         0xdfc0, 0xdfe0,
1394         0xe000, 0x1106c,
1395         0x11074, 0x11088,
1396         0x1109c, 0x1117c,
1397         0x11190, 0x11204,
1398         0x19040, 0x1906c,
1399         0x19078, 0x19080,
1400         0x1908c, 0x190e8,
1401         0x190f0, 0x190f8,
1402         0x19100, 0x19110,
1403         0x19120, 0x19124,
1404         0x19150, 0x19194,
1405         0x1919c, 0x191b0,
1406         0x191d0, 0x191e8,
1407         0x19238, 0x19290,
1408         0x193f8, 0x19428,
1409         0x19430, 0x19444,
1410         0x1944c, 0x1946c,
1411         0x19474, 0x19474,
1412         0x19490, 0x194cc,
1413         0x194f0, 0x194f8,
1414         0x19c00, 0x19c08,
1415         0x19c10, 0x19c60,
1416         0x19c94, 0x19ce4,
1417         0x19cf0, 0x19d40,
1418         0x19d50, 0x19d94,
1419         0x19da0, 0x19de8,
1420         0x19df0, 0x19e10,
1421         0x19e50, 0x19e90,
1422         0x19ea0, 0x19f24,
1423         0x19f34, 0x19f34,
1424         0x19f40, 0x19f50,
1425         0x19f90, 0x19fb4,
1426         0x19fc4, 0x19fe4,
1427         0x1a000, 0x1a004,
1428         0x1a010, 0x1a06c,
1429         0x1a0b0, 0x1a0e4,
1430         0x1a0ec, 0x1a0f8,
1431         0x1a100, 0x1a108,
1432         0x1a114, 0x1a130,
1433         0x1a138, 0x1a1c4,
1434         0x1a1fc, 0x1a1fc,
1435         0x1e008, 0x1e00c,
1436         0x1e040, 0x1e044,
1437         0x1e04c, 0x1e04c,
1438         0x1e284, 0x1e290,
1439         0x1e2c0, 0x1e2c0,
1440         0x1e2e0, 0x1e2e0,
1441         0x1e300, 0x1e384,
1442         0x1e3c0, 0x1e3c8,
1443         0x1e408, 0x1e40c,
1444         0x1e440, 0x1e444,
1445         0x1e44c, 0x1e44c,
1446         0x1e684, 0x1e690,
1447         0x1e6c0, 0x1e6c0,
1448         0x1e6e0, 0x1e6e0,
1449         0x1e700, 0x1e784,
1450         0x1e7c0, 0x1e7c8,
1451         0x1e808, 0x1e80c,
1452         0x1e840, 0x1e844,
1453         0x1e84c, 0x1e84c,
1454         0x1ea84, 0x1ea90,
1455         0x1eac0, 0x1eac0,
1456         0x1eae0, 0x1eae0,
1457         0x1eb00, 0x1eb84,
1458         0x1ebc0, 0x1ebc8,
1459         0x1ec08, 0x1ec0c,
1460         0x1ec40, 0x1ec44,
1461         0x1ec4c, 0x1ec4c,
1462         0x1ee84, 0x1ee90,
1463         0x1eec0, 0x1eec0,
1464         0x1eee0, 0x1eee0,
1465         0x1ef00, 0x1ef84,
1466         0x1efc0, 0x1efc8,
1467         0x1f008, 0x1f00c,
1468         0x1f040, 0x1f044,
1469         0x1f04c, 0x1f04c,
1470         0x1f284, 0x1f290,
1471         0x1f2c0, 0x1f2c0,
1472         0x1f2e0, 0x1f2e0,
1473         0x1f300, 0x1f384,
1474         0x1f3c0, 0x1f3c8,
1475         0x1f408, 0x1f40c,
1476         0x1f440, 0x1f444,
1477         0x1f44c, 0x1f44c,
1478         0x1f684, 0x1f690,
1479         0x1f6c0, 0x1f6c0,
1480         0x1f6e0, 0x1f6e0,
1481         0x1f700, 0x1f784,
1482         0x1f7c0, 0x1f7c8,
1483         0x1f808, 0x1f80c,
1484         0x1f840, 0x1f844,
1485         0x1f84c, 0x1f84c,
1486         0x1fa84, 0x1fa90,
1487         0x1fac0, 0x1fac0,
1488         0x1fae0, 0x1fae0,
1489         0x1fb00, 0x1fb84,
1490         0x1fbc0, 0x1fbc8,
1491         0x1fc08, 0x1fc0c,
1492         0x1fc40, 0x1fc44,
1493         0x1fc4c, 0x1fc4c,
1494         0x1fe84, 0x1fe90,
1495         0x1fec0, 0x1fec0,
1496         0x1fee0, 0x1fee0,
1497         0x1ff00, 0x1ff84,
1498         0x1ffc0, 0x1ffc8,
1499         0x30000, 0x30030,
1500         0x30100, 0x30144,
1501         0x30190, 0x301a0,
1502         0x301a8, 0x301b8,
1503         0x301c4, 0x301c8,
1504         0x301d0, 0x301d0,
1505         0x30200, 0x30318,
1506         0x30400, 0x304b4,
1507         0x304c0, 0x3052c,
1508         0x30540, 0x3061c,
1509         0x30800, 0x30828,
1510         0x30834, 0x30834,
1511         0x308c0, 0x30908,
1512         0x30910, 0x309ac,
1513         0x30a00, 0x30a14,
1514         0x30a1c, 0x30a2c,
1515         0x30a44, 0x30a50,
1516         0x30a74, 0x30a74,
1517         0x30a7c, 0x30afc,
1518         0x30b08, 0x30c24,
1519         0x30d00, 0x30d00,
1520         0x30d08, 0x30d14,
1521         0x30d1c, 0x30d20,
1522         0x30d3c, 0x30d3c,
1523         0x30d48, 0x30d50,
1524         0x31200, 0x3120c,
1525         0x31220, 0x31220,
1526         0x31240, 0x31240,
1527         0x31600, 0x3160c,
1528         0x31a00, 0x31a1c,
1529         0x31e00, 0x31e20,
1530         0x31e38, 0x31e3c,
1531         0x31e80, 0x31e80,
1532         0x31e88, 0x31ea8,
1533         0x31eb0, 0x31eb4,
1534         0x31ec8, 0x31ed4,
1535         0x31fb8, 0x32004,
1536         0x32200, 0x32200,
1537         0x32208, 0x32240,
1538         0x32248, 0x32280,
1539         0x32288, 0x322c0,
1540         0x322c8, 0x322fc,
1541         0x32600, 0x32630,
1542         0x32a00, 0x32abc,
1543         0x32b00, 0x32b10,
1544         0x32b20, 0x32b30,
1545         0x32b40, 0x32b50,
1546         0x32b60, 0x32b70,
1547         0x33000, 0x33028,
1548         0x33030, 0x33048,
1549         0x33060, 0x33068,
1550         0x33070, 0x3309c,
1551         0x330f0, 0x33128,
1552         0x33130, 0x33148,
1553         0x33160, 0x33168,
1554         0x33170, 0x3319c,
1555         0x331f0, 0x33238,
1556         0x33240, 0x33240,
1557         0x33248, 0x33250,
1558         0x3325c, 0x33264,
1559         0x33270, 0x332b8,
1560         0x332c0, 0x332e4,
1561         0x332f8, 0x33338,
1562         0x33340, 0x33340,
1563         0x33348, 0x33350,
1564         0x3335c, 0x33364,
1565         0x33370, 0x333b8,
1566         0x333c0, 0x333e4,
1567         0x333f8, 0x33428,
1568         0x33430, 0x33448,
1569         0x33460, 0x33468,
1570         0x33470, 0x3349c,
1571         0x334f0, 0x33528,
1572         0x33530, 0x33548,
1573         0x33560, 0x33568,
1574         0x33570, 0x3359c,
1575         0x335f0, 0x33638,
1576         0x33640, 0x33640,
1577         0x33648, 0x33650,
1578         0x3365c, 0x33664,
1579         0x33670, 0x336b8,
1580         0x336c0, 0x336e4,
1581         0x336f8, 0x33738,
1582         0x33740, 0x33740,
1583         0x33748, 0x33750,
1584         0x3375c, 0x33764,
1585         0x33770, 0x337b8,
1586         0x337c0, 0x337e4,
1587         0x337f8, 0x337fc,
1588         0x33814, 0x33814,
1589         0x3382c, 0x3382c,
1590         0x33880, 0x3388c,
1591         0x338e8, 0x338ec,
1592         0x33900, 0x33928,
1593         0x33930, 0x33948,
1594         0x33960, 0x33968,
1595         0x33970, 0x3399c,
1596         0x339f0, 0x33a38,
1597         0x33a40, 0x33a40,
1598         0x33a48, 0x33a50,
1599         0x33a5c, 0x33a64,
1600         0x33a70, 0x33ab8,
1601         0x33ac0, 0x33ae4,
1602         0x33af8, 0x33b10,
1603         0x33b28, 0x33b28,
1604         0x33b3c, 0x33b50,
1605         0x33bf0, 0x33c10,
1606         0x33c28, 0x33c28,
1607         0x33c3c, 0x33c50,
1608         0x33cf0, 0x33cfc,
1609         0x34000, 0x34030,
1610         0x34100, 0x34144,
1611         0x34190, 0x341a0,
1612         0x341a8, 0x341b8,
1613         0x341c4, 0x341c8,
1614         0x341d0, 0x341d0,
1615         0x34200, 0x34318,
1616         0x34400, 0x344b4,
1617         0x344c0, 0x3452c,
1618         0x34540, 0x3461c,
1619         0x34800, 0x34828,
1620         0x34834, 0x34834,
1621         0x348c0, 0x34908,
1622         0x34910, 0x349ac,
1623         0x34a00, 0x34a14,
1624         0x34a1c, 0x34a2c,
1625         0x34a44, 0x34a50,
1626         0x34a74, 0x34a74,
1627         0x34a7c, 0x34afc,
1628         0x34b08, 0x34c24,
1629         0x34d00, 0x34d00,
1630         0x34d08, 0x34d14,
1631         0x34d1c, 0x34d20,
1632         0x34d3c, 0x34d3c,
1633         0x34d48, 0x34d50,
1634         0x35200, 0x3520c,
1635         0x35220, 0x35220,
1636         0x35240, 0x35240,
1637         0x35600, 0x3560c,
1638         0x35a00, 0x35a1c,
1639         0x35e00, 0x35e20,
1640         0x35e38, 0x35e3c,
1641         0x35e80, 0x35e80,
1642         0x35e88, 0x35ea8,
1643         0x35eb0, 0x35eb4,
1644         0x35ec8, 0x35ed4,
1645         0x35fb8, 0x36004,
1646         0x36200, 0x36200,
1647         0x36208, 0x36240,
1648         0x36248, 0x36280,
1649         0x36288, 0x362c0,
1650         0x362c8, 0x362fc,
1651         0x36600, 0x36630,
1652         0x36a00, 0x36abc,
1653         0x36b00, 0x36b10,
1654         0x36b20, 0x36b30,
1655         0x36b40, 0x36b50,
1656         0x36b60, 0x36b70,
1657         0x37000, 0x37028,
1658         0x37030, 0x37048,
1659         0x37060, 0x37068,
1660         0x37070, 0x3709c,
1661         0x370f0, 0x37128,
1662         0x37130, 0x37148,
1663         0x37160, 0x37168,
1664         0x37170, 0x3719c,
1665         0x371f0, 0x37238,
1666         0x37240, 0x37240,
1667         0x37248, 0x37250,
1668         0x3725c, 0x37264,
1669         0x37270, 0x372b8,
1670         0x372c0, 0x372e4,
1671         0x372f8, 0x37338,
1672         0x37340, 0x37340,
1673         0x37348, 0x37350,
1674         0x3735c, 0x37364,
1675         0x37370, 0x373b8,
1676         0x373c0, 0x373e4,
1677         0x373f8, 0x37428,
1678         0x37430, 0x37448,
1679         0x37460, 0x37468,
1680         0x37470, 0x3749c,
1681         0x374f0, 0x37528,
1682         0x37530, 0x37548,
1683         0x37560, 0x37568,
1684         0x37570, 0x3759c,
1685         0x375f0, 0x37638,
1686         0x37640, 0x37640,
1687         0x37648, 0x37650,
1688         0x3765c, 0x37664,
1689         0x37670, 0x376b8,
1690         0x376c0, 0x376e4,
1691         0x376f8, 0x37738,
1692         0x37740, 0x37740,
1693         0x37748, 0x37750,
1694         0x3775c, 0x37764,
1695         0x37770, 0x377b8,
1696         0x377c0, 0x377e4,
1697         0x377f8, 0x377fc,
1698         0x37814, 0x37814,
1699         0x3782c, 0x3782c,
1700         0x37880, 0x3788c,
1701         0x378e8, 0x378ec,
1702         0x37900, 0x37928,
1703         0x37930, 0x37948,
1704         0x37960, 0x37968,
1705         0x37970, 0x3799c,
1706         0x379f0, 0x37a38,
1707         0x37a40, 0x37a40,
1708         0x37a48, 0x37a50,
1709         0x37a5c, 0x37a64,
1710         0x37a70, 0x37ab8,
1711         0x37ac0, 0x37ae4,
1712         0x37af8, 0x37b10,
1713         0x37b28, 0x37b28,
1714         0x37b3c, 0x37b50,
1715         0x37bf0, 0x37c10,
1716         0x37c28, 0x37c28,
1717         0x37c3c, 0x37c50,
1718         0x37cf0, 0x37cfc,
1719         0x38000, 0x38030,
1720         0x38100, 0x38144,
1721         0x38190, 0x381a0,
1722         0x381a8, 0x381b8,
1723         0x381c4, 0x381c8,
1724         0x381d0, 0x381d0,
1725         0x38200, 0x38318,
1726         0x38400, 0x384b4,
1727         0x384c0, 0x3852c,
1728         0x38540, 0x3861c,
1729         0x38800, 0x38828,
1730         0x38834, 0x38834,
1731         0x388c0, 0x38908,
1732         0x38910, 0x389ac,
1733         0x38a00, 0x38a14,
1734         0x38a1c, 0x38a2c,
1735         0x38a44, 0x38a50,
1736         0x38a74, 0x38a74,
1737         0x38a7c, 0x38afc,
1738         0x38b08, 0x38c24,
1739         0x38d00, 0x38d00,
1740         0x38d08, 0x38d14,
1741         0x38d1c, 0x38d20,
1742         0x38d3c, 0x38d3c,
1743         0x38d48, 0x38d50,
1744         0x39200, 0x3920c,
1745         0x39220, 0x39220,
1746         0x39240, 0x39240,
1747         0x39600, 0x3960c,
1748         0x39a00, 0x39a1c,
1749         0x39e00, 0x39e20,
1750         0x39e38, 0x39e3c,
1751         0x39e80, 0x39e80,
1752         0x39e88, 0x39ea8,
1753         0x39eb0, 0x39eb4,
1754         0x39ec8, 0x39ed4,
1755         0x39fb8, 0x3a004,
1756         0x3a200, 0x3a200,
1757         0x3a208, 0x3a240,
1758         0x3a248, 0x3a280,
1759         0x3a288, 0x3a2c0,
1760         0x3a2c8, 0x3a2fc,
1761         0x3a600, 0x3a630,
1762         0x3aa00, 0x3aabc,
1763         0x3ab00, 0x3ab10,
1764         0x3ab20, 0x3ab30,
1765         0x3ab40, 0x3ab50,
1766         0x3ab60, 0x3ab70,
1767         0x3b000, 0x3b028,
1768         0x3b030, 0x3b048,
1769         0x3b060, 0x3b068,
1770         0x3b070, 0x3b09c,
1771         0x3b0f0, 0x3b128,
1772         0x3b130, 0x3b148,
1773         0x3b160, 0x3b168,
1774         0x3b170, 0x3b19c,
1775         0x3b1f0, 0x3b238,
1776         0x3b240, 0x3b240,
1777         0x3b248, 0x3b250,
1778         0x3b25c, 0x3b264,
1779         0x3b270, 0x3b2b8,
1780         0x3b2c0, 0x3b2e4,
1781         0x3b2f8, 0x3b338,
1782         0x3b340, 0x3b340,
1783         0x3b348, 0x3b350,
1784         0x3b35c, 0x3b364,
1785         0x3b370, 0x3b3b8,
1786         0x3b3c0, 0x3b3e4,
1787         0x3b3f8, 0x3b428,
1788         0x3b430, 0x3b448,
1789         0x3b460, 0x3b468,
1790         0x3b470, 0x3b49c,
1791         0x3b4f0, 0x3b528,
1792         0x3b530, 0x3b548,
1793         0x3b560, 0x3b568,
1794         0x3b570, 0x3b59c,
1795         0x3b5f0, 0x3b638,
1796         0x3b640, 0x3b640,
1797         0x3b648, 0x3b650,
1798         0x3b65c, 0x3b664,
1799         0x3b670, 0x3b6b8,
1800         0x3b6c0, 0x3b6e4,
1801         0x3b6f8, 0x3b738,
1802         0x3b740, 0x3b740,
1803         0x3b748, 0x3b750,
1804         0x3b75c, 0x3b764,
1805         0x3b770, 0x3b7b8,
1806         0x3b7c0, 0x3b7e4,
1807         0x3b7f8, 0x3b7fc,
1808         0x3b814, 0x3b814,
1809         0x3b82c, 0x3b82c,
1810         0x3b880, 0x3b88c,
1811         0x3b8e8, 0x3b8ec,
1812         0x3b900, 0x3b928,
1813         0x3b930, 0x3b948,
1814         0x3b960, 0x3b968,
1815         0x3b970, 0x3b99c,
1816         0x3b9f0, 0x3ba38,
1817         0x3ba40, 0x3ba40,
1818         0x3ba48, 0x3ba50,
1819         0x3ba5c, 0x3ba64,
1820         0x3ba70, 0x3bab8,
1821         0x3bac0, 0x3bae4,
1822         0x3baf8, 0x3bb10,
1823         0x3bb28, 0x3bb28,
1824         0x3bb3c, 0x3bb50,
1825         0x3bbf0, 0x3bc10,
1826         0x3bc28, 0x3bc28,
1827         0x3bc3c, 0x3bc50,
1828         0x3bcf0, 0x3bcfc,
1829         0x3c000, 0x3c030,
1830         0x3c100, 0x3c144,
1831         0x3c190, 0x3c1a0,
1832         0x3c1a8, 0x3c1b8,
1833         0x3c1c4, 0x3c1c8,
1834         0x3c1d0, 0x3c1d0,
1835         0x3c200, 0x3c318,
1836         0x3c400, 0x3c4b4,
1837         0x3c4c0, 0x3c52c,
1838         0x3c540, 0x3c61c,
1839         0x3c800, 0x3c828,
1840         0x3c834, 0x3c834,
1841         0x3c8c0, 0x3c908,
1842         0x3c910, 0x3c9ac,
1843         0x3ca00, 0x3ca14,
1844         0x3ca1c, 0x3ca2c,
1845         0x3ca44, 0x3ca50,
1846         0x3ca74, 0x3ca74,
1847         0x3ca7c, 0x3cafc,
1848         0x3cb08, 0x3cc24,
1849         0x3cd00, 0x3cd00,
1850         0x3cd08, 0x3cd14,
1851         0x3cd1c, 0x3cd20,
1852         0x3cd3c, 0x3cd3c,
1853         0x3cd48, 0x3cd50,
1854         0x3d200, 0x3d20c,
1855         0x3d220, 0x3d220,
1856         0x3d240, 0x3d240,
1857         0x3d600, 0x3d60c,
1858         0x3da00, 0x3da1c,
1859         0x3de00, 0x3de20,
1860         0x3de38, 0x3de3c,
1861         0x3de80, 0x3de80,
1862         0x3de88, 0x3dea8,
1863         0x3deb0, 0x3deb4,
1864         0x3dec8, 0x3ded4,
1865         0x3dfb8, 0x3e004,
1866         0x3e200, 0x3e200,
1867         0x3e208, 0x3e240,
1868         0x3e248, 0x3e280,
1869         0x3e288, 0x3e2c0,
1870         0x3e2c8, 0x3e2fc,
1871         0x3e600, 0x3e630,
1872         0x3ea00, 0x3eabc,
1873         0x3eb00, 0x3eb10,
1874         0x3eb20, 0x3eb30,
1875         0x3eb40, 0x3eb50,
1876         0x3eb60, 0x3eb70,
1877         0x3f000, 0x3f028,
1878         0x3f030, 0x3f048,
1879         0x3f060, 0x3f068,
1880         0x3f070, 0x3f09c,
1881         0x3f0f0, 0x3f128,
1882         0x3f130, 0x3f148,
1883         0x3f160, 0x3f168,
1884         0x3f170, 0x3f19c,
1885         0x3f1f0, 0x3f238,
1886         0x3f240, 0x3f240,
1887         0x3f248, 0x3f250,
1888         0x3f25c, 0x3f264,
1889         0x3f270, 0x3f2b8,
1890         0x3f2c0, 0x3f2e4,
1891         0x3f2f8, 0x3f338,
1892         0x3f340, 0x3f340,
1893         0x3f348, 0x3f350,
1894         0x3f35c, 0x3f364,
1895         0x3f370, 0x3f3b8,
1896         0x3f3c0, 0x3f3e4,
1897         0x3f3f8, 0x3f428,
1898         0x3f430, 0x3f448,
1899         0x3f460, 0x3f468,
1900         0x3f470, 0x3f49c,
1901         0x3f4f0, 0x3f528,
1902         0x3f530, 0x3f548,
1903         0x3f560, 0x3f568,
1904         0x3f570, 0x3f59c,
1905         0x3f5f0, 0x3f638,
1906         0x3f640, 0x3f640,
1907         0x3f648, 0x3f650,
1908         0x3f65c, 0x3f664,
1909         0x3f670, 0x3f6b8,
1910         0x3f6c0, 0x3f6e4,
1911         0x3f6f8, 0x3f738,
1912         0x3f740, 0x3f740,
1913         0x3f748, 0x3f750,
1914         0x3f75c, 0x3f764,
1915         0x3f770, 0x3f7b8,
1916         0x3f7c0, 0x3f7e4,
1917         0x3f7f8, 0x3f7fc,
1918         0x3f814, 0x3f814,
1919         0x3f82c, 0x3f82c,
1920         0x3f880, 0x3f88c,
1921         0x3f8e8, 0x3f8ec,
1922         0x3f900, 0x3f928,
1923         0x3f930, 0x3f948,
1924         0x3f960, 0x3f968,
1925         0x3f970, 0x3f99c,
1926         0x3f9f0, 0x3fa38,
1927         0x3fa40, 0x3fa40,
1928         0x3fa48, 0x3fa50,
1929         0x3fa5c, 0x3fa64,
1930         0x3fa70, 0x3fab8,
1931         0x3fac0, 0x3fae4,
1932         0x3faf8, 0x3fb10,
1933         0x3fb28, 0x3fb28,
1934         0x3fb3c, 0x3fb50,
1935         0x3fbf0, 0x3fc10,
1936         0x3fc28, 0x3fc28,
1937         0x3fc3c, 0x3fc50,
1938         0x3fcf0, 0x3fcfc,
1939         0x40000, 0x4000c,
1940         0x40040, 0x40050,
1941         0x40060, 0x40068,
1942         0x4007c, 0x4008c,
1943         0x40094, 0x400b0,
1944         0x400c0, 0x40144,
1945         0x40180, 0x4018c,
1946         0x40200, 0x40254,
1947         0x40260, 0x40264,
1948         0x40270, 0x40288,
1949         0x40290, 0x40298,
1950         0x402ac, 0x402c8,
1951         0x402d0, 0x402e0,
1952         0x402f0, 0x402f0,
1953         0x40300, 0x4033c,
1954         0x403f8, 0x403fc,
1955         0x41304, 0x413c4,
1956         0x41400, 0x4140c,
1957         0x41414, 0x4141c,
1958         0x41480, 0x414d0,
1959         0x44000, 0x44054,
1960         0x4405c, 0x44078,
1961         0x440c0, 0x44174,
1962         0x44180, 0x441ac,
1963         0x441b4, 0x441b8,
1964         0x441c0, 0x44254,
1965         0x4425c, 0x44278,
1966         0x442c0, 0x44374,
1967         0x44380, 0x443ac,
1968         0x443b4, 0x443b8,
1969         0x443c0, 0x44454,
1970         0x4445c, 0x44478,
1971         0x444c0, 0x44574,
1972         0x44580, 0x445ac,
1973         0x445b4, 0x445b8,
1974         0x445c0, 0x44654,
1975         0x4465c, 0x44678,
1976         0x446c0, 0x44774,
1977         0x44780, 0x447ac,
1978         0x447b4, 0x447b8,
1979         0x447c0, 0x44854,
1980         0x4485c, 0x44878,
1981         0x448c0, 0x44974,
1982         0x44980, 0x449ac,
1983         0x449b4, 0x449b8,
1984         0x449c0, 0x449fc,
1985         0x45000, 0x45004,
1986         0x45010, 0x45030,
1987         0x45040, 0x45060,
1988         0x45068, 0x45068,
1989         0x45080, 0x45084,
1990         0x450a0, 0x450b0,
1991         0x45200, 0x45204,
1992         0x45210, 0x45230,
1993         0x45240, 0x45260,
1994         0x45268, 0x45268,
1995         0x45280, 0x45284,
1996         0x452a0, 0x452b0,
1997         0x460c0, 0x460e4,
1998         0x47000, 0x4703c,
1999         0x47044, 0x4708c,
2000         0x47200, 0x47250,
2001         0x47400, 0x47408,
2002         0x47414, 0x47420,
2003         0x47600, 0x47618,
2004         0x47800, 0x47814,
2005         0x48000, 0x4800c,
2006         0x48040, 0x48050,
2007         0x48060, 0x48068,
2008         0x4807c, 0x4808c,
2009         0x48094, 0x480b0,
2010         0x480c0, 0x48144,
2011         0x48180, 0x4818c,
2012         0x48200, 0x48254,
2013         0x48260, 0x48264,
2014         0x48270, 0x48288,
2015         0x48290, 0x48298,
2016         0x482ac, 0x482c8,
2017         0x482d0, 0x482e0,
2018         0x482f0, 0x482f0,
2019         0x48300, 0x4833c,
2020         0x483f8, 0x483fc,
2021         0x49304, 0x493c4,
2022         0x49400, 0x4940c,
2023         0x49414, 0x4941c,
2024         0x49480, 0x494d0,
2025         0x4c000, 0x4c054,
2026         0x4c05c, 0x4c078,
2027         0x4c0c0, 0x4c174,
2028         0x4c180, 0x4c1ac,
2029         0x4c1b4, 0x4c1b8,
2030         0x4c1c0, 0x4c254,
2031         0x4c25c, 0x4c278,
2032         0x4c2c0, 0x4c374,
2033         0x4c380, 0x4c3ac,
2034         0x4c3b4, 0x4c3b8,
2035         0x4c3c0, 0x4c454,
2036         0x4c45c, 0x4c478,
2037         0x4c4c0, 0x4c574,
2038         0x4c580, 0x4c5ac,
2039         0x4c5b4, 0x4c5b8,
2040         0x4c5c0, 0x4c654,
2041         0x4c65c, 0x4c678,
2042         0x4c6c0, 0x4c774,
2043         0x4c780, 0x4c7ac,
2044         0x4c7b4, 0x4c7b8,
2045         0x4c7c0, 0x4c854,
2046         0x4c85c, 0x4c878,
2047         0x4c8c0, 0x4c974,
2048         0x4c980, 0x4c9ac,
2049         0x4c9b4, 0x4c9b8,
2050         0x4c9c0, 0x4c9fc,
2051         0x4d000, 0x4d004,
2052         0x4d010, 0x4d030,
2053         0x4d040, 0x4d060,
2054         0x4d068, 0x4d068,
2055         0x4d080, 0x4d084,
2056         0x4d0a0, 0x4d0b0,
2057         0x4d200, 0x4d204,
2058         0x4d210, 0x4d230,
2059         0x4d240, 0x4d260,
2060         0x4d268, 0x4d268,
2061         0x4d280, 0x4d284,
2062         0x4d2a0, 0x4d2b0,
2063         0x4e0c0, 0x4e0e4,
2064         0x4f000, 0x4f03c,
2065         0x4f044, 0x4f08c,
2066         0x4f200, 0x4f250,
2067         0x4f400, 0x4f408,
2068         0x4f414, 0x4f420,
2069         0x4f600, 0x4f618,
2070         0x4f800, 0x4f814,
2071         0x50000, 0x50084,
2072         0x50090, 0x500cc,
2073         0x50400, 0x50400,
2074         0x50800, 0x50884,
2075         0x50890, 0x508cc,
2076         0x50c00, 0x50c00,
2077         0x51000, 0x5101c,
2078         0x51300, 0x51308,
2079     };
2080 
2081     static const unsigned int t6_reg_ranges[] = {
2082         0x1008, 0x101c,
2083         0x1024, 0x10a8,
2084         0x10b4, 0x10f8,
2085         0x1100, 0x1114,
2086         0x111c, 0x112c,
2087         0x1138, 0x113c,
2088         0x1144, 0x114c,
2089         0x1180, 0x1184,
2090         0x1190, 0x1194,
2091         0x11a0, 0x11a4,
2092         0x11b0, 0x11b4,
2093         0x11fc, 0x123c,
2094         0x1254, 0x1274,
2095         0x1280, 0x133c,
2096         0x1800, 0x18fc,
2097         0x3000, 0x302c,
2098         0x3060, 0x30b0,
2099         0x30b8, 0x30d8,
2100         0x30e0, 0x30fc,
2101         0x3140, 0x357c,
2102         0x35a8, 0x35cc,
2103         0x35ec, 0x35ec,
2104         0x3600, 0x5624,
2105         0x56cc, 0x56ec,
2106         0x56f4, 0x5720,
2107         0x5728, 0x575c,
2108         0x580c, 0x5814,
2109         0x5890, 0x589c,
2110         0x58a4, 0x58ac,
2111         0x58b8, 0x58bc,
2112         0x5940, 0x595c,
2113         0x5980, 0x598c,
2114         0x59b0, 0x59c8,
2115         0x59d0, 0x59dc,
2116         0x59fc, 0x5a18,
2117         0x5a60, 0x5a6c,
2118         0x5a80, 0x5a8c,
2119         0x5a94, 0x5a9c,
2120         0x5b94, 0x5bfc,
2121         0x5c10, 0x5e48,
2122         0x5e50, 0x5e94,
2123         0x5ea0, 0x5eb0,
2124         0x5ec0, 0x5ec0,
2125         0x5ec8, 0x5ed0,
2126         0x5ee0, 0x5ee0,
2127         0x5ef0, 0x5ef0,
2128         0x5f00, 0x5f00,
2129         0x6000, 0x6020,
2130         0x6028, 0x6040,
2131         0x6058, 0x609c,
2132         0x60a8, 0x619c,
2133         0x7700, 0x7798,
2134         0x77c0, 0x7880,
2135         0x78cc, 0x78fc,
2136         0x7b00, 0x7b58,
2137         0x7b60, 0x7b84,
2138         0x7b8c, 0x7c54,
2139         0x7d00, 0x7d38,
2140         0x7d40, 0x7d84,
2141         0x7d8c, 0x7ddc,
2142         0x7de4, 0x7e04,
2143         0x7e10, 0x7e1c,
2144         0x7e24, 0x7e38,
2145         0x7e40, 0x7e44,
2146         0x7e4c, 0x7e78,
2147         0x7e80, 0x7edc,
2148         0x7ee8, 0x7efc,
2149         0x8dc0, 0x8de4,
2150         0x8df8, 0x8e04,
2151         0x8e10, 0x8e84,
2152         0x8ea0, 0x8f88,
2153         0x8fb8, 0x9058,
2154         0x9060, 0x9060,
2155         0x9068, 0x90f8,
2156         0x9100, 0x9124,
2157         0x9400, 0x9470,
2158         0x9600, 0x9600,
2159         0x9608, 0x9638,
2160         0x9640, 0x9704,
2161         0x9710, 0x971c,
2162         0x9800, 0x9808,
2163         0x9810, 0x9864,
2164         0x9c00, 0x9c6c,
2165         0x9c80, 0x9cec,
2166         0x9d00, 0x9d6c,
2167         0x9d80, 0x9dec,
2168         0x9e00, 0x9e6c,
2169         0x9e80, 0x9eec,
2170         0x9f00, 0x9f6c,
2171         0x9f80, 0xa020,
2172         0xd000, 0xd03c,
2173         0xd100, 0xd118,
2174         0xd200, 0xd214,
2175         0xd220, 0xd234,
2176         0xd240, 0xd254,
2177         0xd260, 0xd274,
2178         0xd280, 0xd294,
2179         0xd2a0, 0xd2b4,
2180         0xd2c0, 0xd2d4,
2181         0xd2e0, 0xd2f4,
2182         0xd300, 0xd31c,
2183         0xdfc0, 0xdfe0,
2184         0xe000, 0xf008,
2185         0xf010, 0xf018,
2186         0xf020, 0xf028,
2187         0x11000, 0x11014,
2188         0x11048, 0x1106c,
2189         0x11074, 0x11088,
2190         0x11098, 0x11120,
2191         0x1112c, 0x1117c,
2192         0x11190, 0x112e0,
2193         0x11300, 0x1130c,
2194         0x12000, 0x1206c,
2195         0x19040, 0x1906c,
2196         0x19078, 0x19080,
2197         0x1908c, 0x190e8,
2198         0x190f0, 0x190f8,
2199         0x19100, 0x19110,
2200         0x19120, 0x19124,
2201         0x19150, 0x19194,
2202         0x1919c, 0x191b0,
2203         0x191d0, 0x191e8,
2204         0x19238, 0x19290,
2205         0x192a4, 0x192b0,
2206         0x192bc, 0x192bc,
2207         0x19348, 0x1934c,
2208         0x193f8, 0x19418,
2209         0x19420, 0x19428,
2210         0x19430, 0x19444,
2211         0x1944c, 0x1946c,
2212         0x19474, 0x19474,
2213         0x19490, 0x194cc,
2214         0x194f0, 0x194f8,
2215         0x19c00, 0x19c48,
2216         0x19c50, 0x19c80,
2217         0x19c94, 0x19c98,
2218         0x19ca0, 0x19cbc,
2219         0x19ce4, 0x19ce4,
2220         0x19cf0, 0x19cf8,
2221         0x19d00, 0x19d28,
2222         0x19d50, 0x19d78,
2223         0x19d94, 0x19d98,
2224         0x19da0, 0x19dc8,
2225         0x19df0, 0x19e10,
2226         0x19e50, 0x19e6c,
2227         0x19ea0, 0x19ebc,
2228         0x19ec4, 0x19ef4,
2229         0x19f04, 0x19f2c,
2230         0x19f34, 0x19f34,
2231         0x19f40, 0x19f50,
2232         0x19f90, 0x19fac,
2233         0x19fc4, 0x19fc8,
2234         0x19fd0, 0x19fe4,
2235         0x1a000, 0x1a004,
2236         0x1a010, 0x1a06c,
2237         0x1a0b0, 0x1a0e4,
2238         0x1a0ec, 0x1a0f8,
2239         0x1a100, 0x1a108,
2240         0x1a114, 0x1a130,
2241         0x1a138, 0x1a1c4,
2242         0x1a1fc, 0x1a1fc,
2243         0x1e008, 0x1e00c,
2244         0x1e040, 0x1e044,
2245         0x1e04c, 0x1e04c,
2246         0x1e284, 0x1e290,
2247         0x1e2c0, 0x1e2c0,
2248         0x1e2e0, 0x1e2e0,
2249         0x1e300, 0x1e384,
2250         0x1e3c0, 0x1e3c8,
2251         0x1e408, 0x1e40c,
2252         0x1e440, 0x1e444,
2253         0x1e44c, 0x1e44c,
2254         0x1e684, 0x1e690,
2255         0x1e6c0, 0x1e6c0,
2256         0x1e6e0, 0x1e6e0,
2257         0x1e700, 0x1e784,
2258         0x1e7c0, 0x1e7c8,
2259         0x1e808, 0x1e80c,
2260         0x1e840, 0x1e844,
2261         0x1e84c, 0x1e84c,
2262         0x1ea84, 0x1ea90,
2263         0x1eac0, 0x1eac0,
2264         0x1eae0, 0x1eae0,
2265         0x1eb00, 0x1eb84,
2266         0x1ebc0, 0x1ebc8,
2267         0x1ec08, 0x1ec0c,
2268         0x1ec40, 0x1ec44,
2269         0x1ec4c, 0x1ec4c,
2270         0x1ee84, 0x1ee90,
2271         0x1eec0, 0x1eec0,
2272         0x1eee0, 0x1eee0,
2273         0x1ef00, 0x1ef84,
2274         0x1efc0, 0x1efc8,
2275         0x1f008, 0x1f00c,
2276         0x1f040, 0x1f044,
2277         0x1f04c, 0x1f04c,
2278         0x1f284, 0x1f290,
2279         0x1f2c0, 0x1f2c0,
2280         0x1f2e0, 0x1f2e0,
2281         0x1f300, 0x1f384,
2282         0x1f3c0, 0x1f3c8,
2283         0x1f408, 0x1f40c,
2284         0x1f440, 0x1f444,
2285         0x1f44c, 0x1f44c,
2286         0x1f684, 0x1f690,
2287         0x1f6c0, 0x1f6c0,
2288         0x1f6e0, 0x1f6e0,
2289         0x1f700, 0x1f784,
2290         0x1f7c0, 0x1f7c8,
2291         0x1f808, 0x1f80c,
2292         0x1f840, 0x1f844,
2293         0x1f84c, 0x1f84c,
2294         0x1fa84, 0x1fa90,
2295         0x1fac0, 0x1fac0,
2296         0x1fae0, 0x1fae0,
2297         0x1fb00, 0x1fb84,
2298         0x1fbc0, 0x1fbc8,
2299         0x1fc08, 0x1fc0c,
2300         0x1fc40, 0x1fc44,
2301         0x1fc4c, 0x1fc4c,
2302         0x1fe84, 0x1fe90,
2303         0x1fec0, 0x1fec0,
2304         0x1fee0, 0x1fee0,
2305         0x1ff00, 0x1ff84,
2306         0x1ffc0, 0x1ffc8,
2307         0x30000, 0x30030,
2308         0x30100, 0x30168,
2309         0x30190, 0x301a0,
2310         0x301a8, 0x301b8,
2311         0x301c4, 0x301c8,
2312         0x301d0, 0x301d0,
2313         0x30200, 0x30320,
2314         0x30400, 0x304b4,
2315         0x304c0, 0x3052c,
2316         0x30540, 0x3061c,
2317         0x30800, 0x308a0,
2318         0x308c0, 0x30908,
2319         0x30910, 0x309b8,
2320         0x30a00, 0x30a04,
2321         0x30a0c, 0x30a14,
2322         0x30a1c, 0x30a2c,
2323         0x30a44, 0x30a50,
2324         0x30a74, 0x30a74,
2325         0x30a7c, 0x30afc,
2326         0x30b08, 0x30c24,
2327         0x30d00, 0x30d14,
2328         0x30d1c, 0x30d3c,
2329         0x30d44, 0x30d4c,
2330         0x30d54, 0x30d74,
2331         0x30d7c, 0x30d7c,
2332         0x30de0, 0x30de0,
2333         0x30e00, 0x30ed4,
2334         0x30f00, 0x30fa4,
2335         0x30fc0, 0x30fc4,
2336         0x31000, 0x31004,
2337         0x31080, 0x310fc,
2338         0x31208, 0x31220,
2339         0x3123c, 0x31254,
2340         0x31300, 0x31300,
2341         0x31308, 0x3131c,
2342         0x31338, 0x3133c,
2343         0x31380, 0x31380,
2344         0x31388, 0x313a8,
2345         0x313b4, 0x313b4,
2346         0x31400, 0x31420,
2347         0x31438, 0x3143c,
2348         0x31480, 0x31480,
2349         0x314a8, 0x314a8,
2350         0x314b0, 0x314b4,
2351         0x314c8, 0x314d4,
2352         0x31a40, 0x31a4c,
2353         0x31af0, 0x31b20,
2354         0x31b38, 0x31b3c,
2355         0x31b80, 0x31b80,
2356         0x31ba8, 0x31ba8,
2357         0x31bb0, 0x31bb4,
2358         0x31bc8, 0x31bd4,
2359         0x32140, 0x3218c,
2360         0x321f0, 0x321f4,
2361         0x32200, 0x32200,
2362         0x32218, 0x32218,
2363         0x32400, 0x32400,
2364         0x32408, 0x3241c,
2365         0x32618, 0x32620,
2366         0x32664, 0x32664,
2367         0x326a8, 0x326a8,
2368         0x326ec, 0x326ec,
2369         0x32a00, 0x32abc,
2370         0x32b00, 0x32b18,
2371         0x32b20, 0x32b38,
2372         0x32b40, 0x32b58,
2373         0x32b60, 0x32b78,
2374         0x32c00, 0x32c00,
2375         0x32c08, 0x32c3c,
2376         0x33000, 0x3302c,
2377         0x33034, 0x33050,
2378         0x33058, 0x33058,
2379         0x33060, 0x3308c,
2380         0x3309c, 0x330ac,
2381         0x330c0, 0x330c0,
2382         0x330c8, 0x330d0,
2383         0x330d8, 0x330e0,
2384         0x330ec, 0x3312c,
2385         0x33134, 0x33150,
2386         0x33158, 0x33158,
2387         0x33160, 0x3318c,
2388         0x3319c, 0x331ac,
2389         0x331c0, 0x331c0,
2390         0x331c8, 0x331d0,
2391         0x331d8, 0x331e0,
2392         0x331ec, 0x33290,
2393         0x33298, 0x332c4,
2394         0x332e4, 0x33390,
2395         0x33398, 0x333c4,
2396         0x333e4, 0x3342c,
2397         0x33434, 0x33450,
2398         0x33458, 0x33458,
2399         0x33460, 0x3348c,
2400         0x3349c, 0x334ac,
2401         0x334c0, 0x334c0,
2402         0x334c8, 0x334d0,
2403         0x334d8, 0x334e0,
2404         0x334ec, 0x3352c,
2405         0x33534, 0x33550,
2406         0x33558, 0x33558,
2407         0x33560, 0x3358c,
2408         0x3359c, 0x335ac,
2409         0x335c0, 0x335c0,
2410         0x335c8, 0x335d0,
2411         0x335d8, 0x335e0,
2412         0x335ec, 0x33690,
2413         0x33698, 0x336c4,
2414         0x336e4, 0x33790,
2415         0x33798, 0x337c4,
2416         0x337e4, 0x337fc,
2417         0x33814, 0x33814,
2418         0x33854, 0x33868,
2419         0x33880, 0x3388c,
2420         0x338c0, 0x338d0,
2421         0x338e8, 0x338ec,
2422         0x33900, 0x3392c,
2423         0x33934, 0x33950,
2424         0x33958, 0x33958,
2425         0x33960, 0x3398c,
2426         0x3399c, 0x339ac,
2427         0x339c0, 0x339c0,
2428         0x339c8, 0x339d0,
2429         0x339d8, 0x339e0,
2430         0x339ec, 0x33a90,
2431         0x33a98, 0x33ac4,
2432         0x33ae4, 0x33b10,
2433         0x33b24, 0x33b28,
2434         0x33b38, 0x33b50,
2435         0x33bf0, 0x33c10,
2436         0x33c24, 0x33c28,
2437         0x33c38, 0x33c50,
2438         0x33cf0, 0x33cfc,
2439         0x34000, 0x34030,
2440         0x34100, 0x34168,
2441         0x34190, 0x341a0,
2442         0x341a8, 0x341b8,
2443         0x341c4, 0x341c8,
2444         0x341d0, 0x341d0,
2445         0x34200, 0x34320,
2446         0x34400, 0x344b4,
2447         0x344c0, 0x3452c,
2448         0x34540, 0x3461c,
2449         0x34800, 0x348a0,
2450         0x348c0, 0x34908,
2451         0x34910, 0x349b8,
2452         0x34a00, 0x34a04,
2453         0x34a0c, 0x34a14,
2454         0x34a1c, 0x34a2c,
2455         0x34a44, 0x34a50,
2456         0x34a74, 0x34a74,
2457         0x34a7c, 0x34afc,
2458         0x34b08, 0x34c24,
2459         0x34d00, 0x34d14,
2460         0x34d1c, 0x34d3c,
2461         0x34d44, 0x34d4c,
2462         0x34d54, 0x34d74,
2463         0x34d7c, 0x34d7c,
2464         0x34de0, 0x34de0,
2465         0x34e00, 0x34ed4,
2466         0x34f00, 0x34fa4,
2467         0x34fc0, 0x34fc4,
2468         0x35000, 0x35004,
2469         0x35080, 0x350fc,
2470         0x35208, 0x35220,
2471         0x3523c, 0x35254,
2472         0x35300, 0x35300,
2473         0x35308, 0x3531c,
2474         0x35338, 0x3533c,
2475         0x35380, 0x35380,
2476         0x35388, 0x353a8,
2477         0x353b4, 0x353b4,
2478         0x35400, 0x35420,
2479         0x35438, 0x3543c,
2480         0x35480, 0x35480,
2481         0x354a8, 0x354a8,
2482         0x354b0, 0x354b4,
2483         0x354c8, 0x354d4,
2484         0x35a40, 0x35a4c,
2485         0x35af0, 0x35b20,
2486         0x35b38, 0x35b3c,
2487         0x35b80, 0x35b80,
2488         0x35ba8, 0x35ba8,
2489         0x35bb0, 0x35bb4,
2490         0x35bc8, 0x35bd4,
2491         0x36140, 0x3618c,
2492         0x361f0, 0x361f4,
2493         0x36200, 0x36200,
2494         0x36218, 0x36218,
2495         0x36400, 0x36400,
2496         0x36408, 0x3641c,
2497         0x36618, 0x36620,
2498         0x36664, 0x36664,
2499         0x366a8, 0x366a8,
2500         0x366ec, 0x366ec,
2501         0x36a00, 0x36abc,
2502         0x36b00, 0x36b18,
2503         0x36b20, 0x36b38,
2504         0x36b40, 0x36b58,
2505         0x36b60, 0x36b78,
2506         0x36c00, 0x36c00,
2507         0x36c08, 0x36c3c,
2508         0x37000, 0x3702c,
2509         0x37034, 0x37050,
2510         0x37058, 0x37058,
2511         0x37060, 0x3708c,
2512         0x3709c, 0x370ac,
2513         0x370c0, 0x370c0,
2514         0x370c8, 0x370d0,
2515         0x370d8, 0x370e0,
2516         0x370ec, 0x3712c,
2517         0x37134, 0x37150,
2518         0x37158, 0x37158,
2519         0x37160, 0x3718c,
2520         0x3719c, 0x371ac,
2521         0x371c0, 0x371c0,
2522         0x371c8, 0x371d0,
2523         0x371d8, 0x371e0,
2524         0x371ec, 0x37290,
2525         0x37298, 0x372c4,
2526         0x372e4, 0x37390,
2527         0x37398, 0x373c4,
2528         0x373e4, 0x3742c,
2529         0x37434, 0x37450,
2530         0x37458, 0x37458,
2531         0x37460, 0x3748c,
2532         0x3749c, 0x374ac,
2533         0x374c0, 0x374c0,
2534         0x374c8, 0x374d0,
2535         0x374d8, 0x374e0,
2536         0x374ec, 0x3752c,
2537         0x37534, 0x37550,
2538         0x37558, 0x37558,
2539         0x37560, 0x3758c,
2540         0x3759c, 0x375ac,
2541         0x375c0, 0x375c0,
2542         0x375c8, 0x375d0,
2543         0x375d8, 0x375e0,
2544         0x375ec, 0x37690,
2545         0x37698, 0x376c4,
2546         0x376e4, 0x37790,
2547         0x37798, 0x377c4,
2548         0x377e4, 0x377fc,
2549         0x37814, 0x37814,
2550         0x37854, 0x37868,
2551         0x37880, 0x3788c,
2552         0x378c0, 0x378d0,
2553         0x378e8, 0x378ec,
2554         0x37900, 0x3792c,
2555         0x37934, 0x37950,
2556         0x37958, 0x37958,
2557         0x37960, 0x3798c,
2558         0x3799c, 0x379ac,
2559         0x379c0, 0x379c0,
2560         0x379c8, 0x379d0,
2561         0x379d8, 0x379e0,
2562         0x379ec, 0x37a90,
2563         0x37a98, 0x37ac4,
2564         0x37ae4, 0x37b10,
2565         0x37b24, 0x37b28,
2566         0x37b38, 0x37b50,
2567         0x37bf0, 0x37c10,
2568         0x37c24, 0x37c28,
2569         0x37c38, 0x37c50,
2570         0x37cf0, 0x37cfc,
2571         0x40040, 0x40040,
2572         0x40080, 0x40084,
2573         0x40100, 0x40100,
2574         0x40140, 0x401bc,
2575         0x40200, 0x40214,
2576         0x40228, 0x40228,
2577         0x40240, 0x40258,
2578         0x40280, 0x40280,
2579         0x40304, 0x40304,
2580         0x40330, 0x4033c,
2581         0x41304, 0x413c8,
2582         0x413d0, 0x413dc,
2583         0x413f0, 0x413f0,
2584         0x41400, 0x4140c,
2585         0x41414, 0x4141c,
2586         0x41480, 0x414d0,
2587         0x44000, 0x4407c,
2588         0x440c0, 0x441ac,
2589         0x441b4, 0x4427c,
2590         0x442c0, 0x443ac,
2591         0x443b4, 0x4447c,
2592         0x444c0, 0x445ac,
2593         0x445b4, 0x4467c,
2594         0x446c0, 0x447ac,
2595         0x447b4, 0x4487c,
2596         0x448c0, 0x449ac,
2597         0x449b4, 0x44a7c,
2598         0x44ac0, 0x44bac,
2599         0x44bb4, 0x44c7c,
2600         0x44cc0, 0x44dac,
2601         0x44db4, 0x44e7c,
2602         0x44ec0, 0x44fac,
2603         0x44fb4, 0x4507c,
2604         0x450c0, 0x451ac,
2605         0x451b4, 0x451fc,
2606         0x45800, 0x45804,
2607         0x45810, 0x45830,
2608         0x45840, 0x45860,
2609         0x45868, 0x45868,
2610         0x45880, 0x45884,
2611         0x458a0, 0x458b0,
2612         0x45a00, 0x45a04,
2613         0x45a10, 0x45a30,
2614         0x45a40, 0x45a60,
2615         0x45a68, 0x45a68,
2616         0x45a80, 0x45a84,
2617         0x45aa0, 0x45ab0,
2618         0x460c0, 0x460e4,
2619         0x47000, 0x4703c,
2620         0x47044, 0x4708c,
2621         0x47200, 0x47250,
2622         0x47400, 0x47408,
2623         0x47414, 0x47420,
2624         0x47600, 0x47618,
2625         0x47800, 0x47814,
2626         0x47820, 0x4782c,
2627         0x50000, 0x50084,
2628         0x50090, 0x500cc,
2629         0x50300, 0x50384,
2630         0x50400, 0x50400,
2631         0x50800, 0x50884,
2632         0x50890, 0x508cc,
2633         0x50b00, 0x50b84,
2634         0x50c00, 0x50c00,
2635         0x51000, 0x51020,
2636         0x51028, 0x510b0,
2637         0x51300, 0x51324,
2638     };
2639 
2640     u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641     const unsigned int *reg_ranges;
2642     int reg_ranges_size, range;
2643     unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644 
2645     /* Select the right set of register ranges to dump depending on the
2646      * adapter chip type.
2647      */
2648     switch (chip_version) {
2649     case CHELSIO_T4:
2650         reg_ranges = t4_reg_ranges;
2651         reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652         break;
2653 
2654     case CHELSIO_T5:
2655         reg_ranges = t5_reg_ranges;
2656         reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657         break;
2658 
2659     case CHELSIO_T6:
2660         reg_ranges = t6_reg_ranges;
2661         reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662         break;
2663 
2664     default:
2665         dev_err(adap->pdev_dev,
2666             "Unsupported chip version %d\n", chip_version);
2667         return;
2668     }
2669 
2670     /* Clear the register buffer and insert the appropriate register
2671      * values selected by the above register ranges.
2672      */
2673     memset(buf, 0, buf_size);
2674     for (range = 0; range < reg_ranges_size; range += 2) {
2675         unsigned int reg = reg_ranges[range];
2676         unsigned int last_reg = reg_ranges[range + 1];
2677         u32 *bufp = (u32 *)((char *)buf + reg);
2678 
2679         /* Iterate across the register range filling in the register
2680          * buffer but don't write past the end of the register buffer.
2681          */
2682         while (reg <= last_reg && bufp < buf_end) {
2683             *bufp++ = t4_read_reg(adap, reg);
2684             reg += sizeof(u32);
2685         }
2686     }
2687 }
2688 
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713     fn *= sz;
2714     if (phys_addr < 1024)
2715         return phys_addr + (31 << 10);
2716     if (phys_addr < 1024 + fn)
2717         return 31744 - fn + phys_addr - 1024;
2718     if (phys_addr < EEPROMSIZE)
2719         return phys_addr - 1024 - fn;
2720     return -EINVAL;
2721 }
2722 
2723 /**
2724  *  t4_seeprom_wp - enable/disable EEPROM write protection
2725  *  @adapter: the adapter
2726  *  @enable: whether to enable or disable write protection
2727  *
2728  *  Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732     unsigned int v = enable ? 0xc : 0;
2733     int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734     return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *  t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *  @adapter: adapter to read
2740  *  @p: where to store the parameters
2741  *
2742  *  Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746     unsigned int id_len, pn_len, sn_len, na_len;
2747     int id, sn, pn, na, addr, ret = 0;
2748     u8 *vpd, base_val = 0;
2749 
2750     vpd = vmalloc(VPD_LEN);
2751     if (!vpd)
2752         return -ENOMEM;
2753 
2754     /* Card information normally starts at VPD_BASE but early cards had
2755      * it at 0.
2756      */
2757     ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2758     if (ret < 0)
2759         goto out;
2760 
2761     addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2762 
2763     ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2764     if (ret < 0)
2765         goto out;
2766 
2767     ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len);
2768     if (ret < 0)
2769         goto out;
2770     id = ret;
2771 
2772     ret = pci_vpd_check_csum(vpd, VPD_LEN);
2773     if (ret) {
2774         dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n");
2775         ret = -EINVAL;
2776         goto out;
2777     }
2778 
2779     ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2780                        PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len);
2781     if (ret < 0)
2782         goto out;
2783     sn = ret;
2784 
2785     ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2786                        PCI_VPD_RO_KEYWORD_PARTNO, &pn_len);
2787     if (ret < 0)
2788         goto out;
2789     pn = ret;
2790 
2791     ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len);
2792     if (ret < 0)
2793         goto out;
2794     na = ret;
2795 
2796     memcpy(p->id, vpd + id, min_t(unsigned int, id_len, ID_LEN));
2797     strim(p->id);
2798     memcpy(p->sn, vpd + sn, min_t(unsigned int, sn_len, SERNUM_LEN));
2799     strim(p->sn);
2800     memcpy(p->pn, vpd + pn, min_t(unsigned int, pn_len, PN_LEN));
2801     strim(p->pn);
2802     memcpy(p->na, vpd + na, min_t(unsigned int, na_len, MACADDR_LEN));
2803     strim(p->na);
2804 
2805 out:
2806     vfree(vpd);
2807     if (ret < 0) {
2808         dev_err(adapter->pdev_dev, "error reading VPD\n");
2809         return ret;
2810     }
2811 
2812     return 0;
2813 }
2814 
2815 /**
2816  *  t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2817  *  @adapter: adapter to read
2818  *  @p: where to store the parameters
2819  *
2820  *  Reads card parameters stored in VPD EEPROM and retrieves the Core
2821  *  Clock.  This can only be called after a connection to the firmware
2822  *  is established.
2823  */
2824 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2825 {
2826     u32 cclk_param, cclk_val;
2827     int ret;
2828 
2829     /* Grab the raw VPD parameters.
2830      */
2831     ret = t4_get_raw_vpd_params(adapter, p);
2832     if (ret)
2833         return ret;
2834 
2835     /* Ask firmware for the Core Clock since it knows how to translate the
2836      * Reference Clock ('V2') VPD field into a Core Clock value ...
2837      */
2838     cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2839               FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2840     ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2841                   1, &cclk_param, &cclk_val);
2842 
2843     if (ret)
2844         return ret;
2845     p->cclk = cclk_val;
2846 
2847     return 0;
2848 }
2849 
2850 /**
2851  *  t4_get_pfres - retrieve VF resource limits
2852  *  @adapter: the adapter
2853  *
2854  *  Retrieves configured resource limits and capabilities for a physical
2855  *  function.  The results are stored in @adapter->pfres.
2856  */
2857 int t4_get_pfres(struct adapter *adapter)
2858 {
2859     struct pf_resources *pfres = &adapter->params.pfres;
2860     struct fw_pfvf_cmd cmd, rpl;
2861     int v;
2862     u32 word;
2863 
2864     /* Execute PFVF Read command to get VF resource limits; bail out early
2865      * with error on command failure.
2866      */
2867     memset(&cmd, 0, sizeof(cmd));
2868     cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2869                     FW_CMD_REQUEST_F |
2870                     FW_CMD_READ_F |
2871                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2872                     FW_PFVF_CMD_VFN_V(0));
2873     cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2874     v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2875     if (v != FW_SUCCESS)
2876         return v;
2877 
2878     /* Extract PF resource limits and return success.
2879      */
2880     word = be32_to_cpu(rpl.niqflint_niq);
2881     pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2882     pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2883 
2884     word = be32_to_cpu(rpl.type_to_neq);
2885     pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2886     pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2887 
2888     word = be32_to_cpu(rpl.tc_to_nexactf);
2889     pfres->tc = FW_PFVF_CMD_TC_G(word);
2890     pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2891     pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2892 
2893     word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2894     pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2895     pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2896     pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2897 
2898     return 0;
2899 }
2900 
2901 /* serial flash and firmware constants */
2902 enum {
2903     SF_ATTEMPTS = 10,             /* max retries for SF operations */
2904 
2905     /* flash command opcodes */
2906     SF_PROG_PAGE    = 2,          /* program page */
2907     SF_WR_DISABLE   = 4,          /* disable writes */
2908     SF_RD_STATUS    = 5,          /* read status register */
2909     SF_WR_ENABLE    = 6,          /* enable writes */
2910     SF_RD_DATA_FAST = 0xb,        /* read flash */
2911     SF_RD_ID        = 0x9f,       /* read ID */
2912     SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2913 };
2914 
2915 /**
2916  *  sf1_read - read data from the serial flash
2917  *  @adapter: the adapter
2918  *  @byte_cnt: number of bytes to read
2919  *  @cont: whether another operation will be chained
2920  *  @lock: whether to lock SF for PL access only
2921  *  @valp: where to store the read data
2922  *
2923  *  Reads up to 4 bytes of data from the serial flash.  The location of
2924  *  the read needs to be specified prior to calling this by issuing the
2925  *  appropriate commands to the serial flash.
2926  */
2927 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2928             int lock, u32 *valp)
2929 {
2930     int ret;
2931 
2932     if (!byte_cnt || byte_cnt > 4)
2933         return -EINVAL;
2934     if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2935         return -EBUSY;
2936     t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2937              SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2938     ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2939     if (!ret)
2940         *valp = t4_read_reg(adapter, SF_DATA_A);
2941     return ret;
2942 }
2943 
2944 /**
2945  *  sf1_write - write data to the serial flash
2946  *  @adapter: the adapter
2947  *  @byte_cnt: number of bytes to write
2948  *  @cont: whether another operation will be chained
2949  *  @lock: whether to lock SF for PL access only
2950  *  @val: value to write
2951  *
2952  *  Writes up to 4 bytes of data to the serial flash.  The location of
2953  *  the write needs to be specified prior to calling this by issuing the
2954  *  appropriate commands to the serial flash.
2955  */
2956 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957              int lock, u32 val)
2958 {
2959     if (!byte_cnt || byte_cnt > 4)
2960         return -EINVAL;
2961     if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2962         return -EBUSY;
2963     t4_write_reg(adapter, SF_DATA_A, val);
2964     t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2965              SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2966     return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2967 }
2968 
2969 /**
2970  *  flash_wait_op - wait for a flash operation to complete
2971  *  @adapter: the adapter
2972  *  @attempts: max number of polls of the status register
2973  *  @delay: delay between polls in ms
2974  *
2975  *  Wait for a flash operation to complete by polling the status register.
2976  */
2977 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2978 {
2979     int ret;
2980     u32 status;
2981 
2982     while (1) {
2983         if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2984             (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2985             return ret;
2986         if (!(status & 1))
2987             return 0;
2988         if (--attempts == 0)
2989             return -EAGAIN;
2990         if (delay)
2991             msleep(delay);
2992     }
2993 }
2994 
2995 /**
2996  *  t4_read_flash - read words from serial flash
2997  *  @adapter: the adapter
2998  *  @addr: the start address for the read
2999  *  @nwords: how many 32-bit words to read
3000  *  @data: where to store the read data
3001  *  @byte_oriented: whether to store data as bytes or as words
3002  *
3003  *  Read the specified number of 32-bit words from the serial flash.
3004  *  If @byte_oriented is set the read data is stored as a byte array
3005  *  (i.e., big-endian), otherwise as 32-bit words in the platform's
3006  *  natural endianness.
3007  */
3008 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3009           unsigned int nwords, u32 *data, int byte_oriented)
3010 {
3011     int ret;
3012 
3013     if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3014         return -EINVAL;
3015 
3016     addr = swab32(addr) | SF_RD_DATA_FAST;
3017 
3018     if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3019         (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3020         return ret;
3021 
3022     for ( ; nwords; nwords--, data++) {
3023         ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3024         if (nwords == 1)
3025             t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3026         if (ret)
3027             return ret;
3028         if (byte_oriented)
3029             *data = (__force __u32)(cpu_to_be32(*data));
3030     }
3031     return 0;
3032 }
3033 
3034 /**
3035  *  t4_write_flash - write up to a page of data to the serial flash
3036  *  @adapter: the adapter
3037  *  @addr: the start address to write
3038  *  @n: length of data to write in bytes
3039  *  @data: the data to write
3040  *  @byte_oriented: whether to store data as bytes or as words
3041  *
3042  *  Writes up to a page of data (256 bytes) to the serial flash starting
3043  *  at the given address.  All the data must be written to the same page.
3044  *  If @byte_oriented is set the write data is stored as byte stream
3045  *  (i.e. matches what on disk), otherwise in big-endian.
3046  */
3047 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3048               unsigned int n, const u8 *data, bool byte_oriented)
3049 {
3050     unsigned int i, c, left, val, offset = addr & 0xff;
3051     u32 buf[64];
3052     int ret;
3053 
3054     if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3055         return -EINVAL;
3056 
3057     val = swab32(addr) | SF_PROG_PAGE;
3058 
3059     if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3060         (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3061         goto unlock;
3062 
3063     for (left = n; left; left -= c, data += c) {
3064         c = min(left, 4U);
3065         for (val = 0, i = 0; i < c; ++i) {
3066             if (byte_oriented)
3067                 val = (val << 8) + data[i];
3068             else
3069                 val = (val << 8) + data[c - i - 1];
3070         }
3071 
3072         ret = sf1_write(adapter, c, c != left, 1, val);
3073         if (ret)
3074             goto unlock;
3075     }
3076     ret = flash_wait_op(adapter, 8, 1);
3077     if (ret)
3078         goto unlock;
3079 
3080     t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3081 
3082     /* Read the page to verify the write succeeded */
3083     ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3084                 byte_oriented);
3085     if (ret)
3086         return ret;
3087 
3088     if (memcmp(data - n, (u8 *)buf + offset, n)) {
3089         dev_err(adapter->pdev_dev,
3090             "failed to correctly write the flash page at %#x\n",
3091             addr);
3092         return -EIO;
3093     }
3094     return 0;
3095 
3096 unlock:
3097     t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3098     return ret;
3099 }
3100 
3101 /**
3102  *  t4_get_fw_version - read the firmware version
3103  *  @adapter: the adapter
3104  *  @vers: where to place the version
3105  *
3106  *  Reads the FW version from flash.
3107  */
3108 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3109 {
3110     return t4_read_flash(adapter, FLASH_FW_START +
3111                  offsetof(struct fw_hdr, fw_ver), 1,
3112                  vers, 0);
3113 }
3114 
3115 /**
3116  *  t4_get_bs_version - read the firmware bootstrap version
3117  *  @adapter: the adapter
3118  *  @vers: where to place the version
3119  *
3120  *  Reads the FW Bootstrap version from flash.
3121  */
3122 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3123 {
3124     return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3125                  offsetof(struct fw_hdr, fw_ver), 1,
3126                  vers, 0);
3127 }
3128 
3129 /**
3130  *  t4_get_tp_version - read the TP microcode version
3131  *  @adapter: the adapter
3132  *  @vers: where to place the version
3133  *
3134  *  Reads the TP microcode version from flash.
3135  */
3136 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3137 {
3138     return t4_read_flash(adapter, FLASH_FW_START +
3139                  offsetof(struct fw_hdr, tp_microcode_ver),
3140                  1, vers, 0);
3141 }
3142 
3143 /**
3144  *  t4_get_exprom_version - return the Expansion ROM version (if any)
3145  *  @adap: the adapter
3146  *  @vers: where to place the version
3147  *
3148  *  Reads the Expansion ROM header from FLASH and returns the version
3149  *  number (if present) through the @vers return value pointer.  We return
3150  *  this in the Firmware Version Format since it's convenient.  Return
3151  *  0 on success, -ENOENT if no Expansion ROM is present.
3152  */
3153 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3154 {
3155     struct exprom_header {
3156         unsigned char hdr_arr[16];  /* must start with 0x55aa */
3157         unsigned char hdr_ver[4];   /* Expansion ROM version */
3158     } *hdr;
3159     u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3160                        sizeof(u32))];
3161     int ret;
3162 
3163     ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3164                 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3165                 0);
3166     if (ret)
3167         return ret;
3168 
3169     hdr = (struct exprom_header *)exprom_header_buf;
3170     if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3171         return -ENOENT;
3172 
3173     *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3174          FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3175          FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3176          FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3177     return 0;
3178 }
3179 
3180 /**
3181  *      t4_get_vpd_version - return the VPD version
3182  *      @adapter: the adapter
3183  *      @vers: where to place the version
3184  *
3185  *      Reads the VPD via the Firmware interface (thus this can only be called
3186  *      once we're ready to issue Firmware commands).  The format of the
3187  *      VPD version is adapter specific.  Returns 0 on success, an error on
3188  *      failure.
3189  *
3190  *      Note that early versions of the Firmware didn't include the ability
3191  *      to retrieve the VPD version, so we zero-out the return-value parameter
3192  *      in that case to avoid leaving it with garbage in it.
3193  *
3194  *      Also note that the Firmware will return its cached copy of the VPD
3195  *      Revision ID, not the actual Revision ID as written in the Serial
3196  *      EEPROM.  This is only an issue if a new VPD has been written and the
3197  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3198  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3199  *      if the Host Driver will be performing a full adapter initialization.
3200  */
3201 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3202 {
3203     u32 vpdrev_param;
3204     int ret;
3205 
3206     vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3207             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3208     ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3209                   1, &vpdrev_param, vers);
3210     if (ret)
3211         *vers = 0;
3212     return ret;
3213 }
3214 
3215 /**
3216  *      t4_get_scfg_version - return the Serial Configuration version
3217  *      @adapter: the adapter
3218  *      @vers: where to place the version
3219  *
3220  *      Reads the Serial Configuration Version via the Firmware interface
3221  *      (thus this can only be called once we're ready to issue Firmware
3222  *      commands).  The format of the Serial Configuration version is
3223  *      adapter specific.  Returns 0 on success, an error on failure.
3224  *
3225  *      Note that early versions of the Firmware didn't include the ability
3226  *      to retrieve the Serial Configuration version, so we zero-out the
3227  *      return-value parameter in that case to avoid leaving it with
3228  *      garbage in it.
3229  *
3230  *      Also note that the Firmware will return its cached copy of the Serial
3231  *      Initialization Revision ID, not the actual Revision ID as written in
3232  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3233  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3234  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3235  *      been issued if the Host Driver will be performing a full adapter
3236  *      initialization.
3237  */
3238 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3239 {
3240     u32 scfgrev_param;
3241     int ret;
3242 
3243     scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3244              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3245     ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3246                   1, &scfgrev_param, vers);
3247     if (ret)
3248         *vers = 0;
3249     return ret;
3250 }
3251 
3252 /**
3253  *      t4_get_version_info - extract various chip/firmware version information
3254  *      @adapter: the adapter
3255  *
3256  *      Reads various chip/firmware version numbers and stores them into the
3257  *      adapter Adapter Parameters structure.  If any of the efforts fails
3258  *      the first failure will be returned, but all of the version numbers
3259  *      will be read.
3260  */
3261 int t4_get_version_info(struct adapter *adapter)
3262 {
3263     int ret = 0;
3264 
3265     #define FIRST_RET(__getvinfo) \
3266     do { \
3267         int __ret = __getvinfo; \
3268         if (__ret && !ret) \
3269             ret = __ret; \
3270     } while (0)
3271 
3272     FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3273     FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3274     FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3275     FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3276     FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3277     FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3278 
3279     #undef FIRST_RET
3280     return ret;
3281 }
3282 
3283 /**
3284  *      t4_dump_version_info - dump all of the adapter configuration IDs
3285  *      @adapter: the adapter
3286  *
3287  *      Dumps all of the various bits of adapter configuration version/revision
3288  *      IDs information.  This is typically called at some point after
3289  *      t4_get_version_info() has been called.
3290  */
3291 void t4_dump_version_info(struct adapter *adapter)
3292 {
3293     /* Device information */
3294     dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3295          adapter->params.vpd.id,
3296          CHELSIO_CHIP_RELEASE(adapter->params.chip));
3297     dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3298          adapter->params.vpd.sn, adapter->params.vpd.pn);
3299 
3300     /* Firmware Version */
3301     if (!adapter->params.fw_vers)
3302         dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3303     else
3304         dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3305              FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3306              FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3307              FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3308              FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3309 
3310     /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3311      * Firmware, so dev_info() is more appropriate here.)
3312      */
3313     if (!adapter->params.bs_vers)
3314         dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3315     else
3316         dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3317              FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3318              FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3319              FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3320              FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3321 
3322     /* TP Microcode Version */
3323     if (!adapter->params.tp_vers)
3324         dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3325     else
3326         dev_info(adapter->pdev_dev,
3327              "TP Microcode version: %u.%u.%u.%u\n",
3328              FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3329              FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3330              FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3331              FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3332 
3333     /* Expansion ROM version */
3334     if (!adapter->params.er_vers)
3335         dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3336     else
3337         dev_info(adapter->pdev_dev,
3338              "Expansion ROM version: %u.%u.%u.%u\n",
3339              FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3340              FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3341              FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3342              FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3343 
3344     /* Serial Configuration version */
3345     dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3346          adapter->params.scfg_vers);
3347 
3348     /* VPD Version */
3349     dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3350          adapter->params.vpd_vers);
3351 }
3352 
3353 /**
3354  *  t4_check_fw_version - check if the FW is supported with this driver
3355  *  @adap: the adapter
3356  *
3357  *  Checks if an adapter's FW is compatible with the driver.  Returns 0
3358  *  if there's exact match, a negative error if the version could not be
3359  *  read or there's a major version mismatch
3360  */
3361 int t4_check_fw_version(struct adapter *adap)
3362 {
3363     int i, ret, major, minor, micro;
3364     int exp_major, exp_minor, exp_micro;
3365     unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3366 
3367     ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3368     /* Try multiple times before returning error */
3369     for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3370         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3371 
3372     if (ret)
3373         return ret;
3374 
3375     major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3376     minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3377     micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3378 
3379     switch (chip_version) {
3380     case CHELSIO_T4:
3381         exp_major = T4FW_MIN_VERSION_MAJOR;
3382         exp_minor = T4FW_MIN_VERSION_MINOR;
3383         exp_micro = T4FW_MIN_VERSION_MICRO;
3384         break;
3385     case CHELSIO_T5:
3386         exp_major = T5FW_MIN_VERSION_MAJOR;
3387         exp_minor = T5FW_MIN_VERSION_MINOR;
3388         exp_micro = T5FW_MIN_VERSION_MICRO;
3389         break;
3390     case CHELSIO_T6:
3391         exp_major = T6FW_MIN_VERSION_MAJOR;
3392         exp_minor = T6FW_MIN_VERSION_MINOR;
3393         exp_micro = T6FW_MIN_VERSION_MICRO;
3394         break;
3395     default:
3396         dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3397             adap->chip);
3398         return -EINVAL;
3399     }
3400 
3401     if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3402         (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3403         dev_err(adap->pdev_dev,
3404             "Card has firmware version %u.%u.%u, minimum "
3405             "supported firmware is %u.%u.%u.\n", major, minor,
3406             micro, exp_major, exp_minor, exp_micro);
3407         return -EFAULT;
3408     }
3409     return 0;
3410 }
3411 
3412 /* Is the given firmware API compatible with the one the driver was compiled
3413  * with?
3414  */
3415 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3416 {
3417 
3418     /* short circuit if it's the exact same firmware version */
3419     if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3420         return 1;
3421 
3422 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3423     if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3424         SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3425         return 1;
3426 #undef SAME_INTF
3427 
3428     return 0;
3429 }
3430 
3431 /* The firmware in the filesystem is usable, but should it be installed?
3432  * This routine explains itself in detail if it indicates the filesystem
3433  * firmware should be installed.
3434  */
3435 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3436                 int k, int c)
3437 {
3438     const char *reason;
3439 
3440     if (!card_fw_usable) {
3441         reason = "incompatible or unusable";
3442         goto install;
3443     }
3444 
3445     if (k > c) {
3446         reason = "older than the version supported with this driver";
3447         goto install;
3448     }
3449 
3450     return 0;
3451 
3452 install:
3453     dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3454         "installing firmware %u.%u.%u.%u on card.\n",
3455         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3456         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3457         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3458         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3459 
3460     return 1;
3461 }
3462 
3463 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3464            const u8 *fw_data, unsigned int fw_size,
3465            struct fw_hdr *card_fw, enum dev_state state,
3466            int *reset)
3467 {
3468     int ret, card_fw_usable, fs_fw_usable;
3469     const struct fw_hdr *fs_fw;
3470     const struct fw_hdr *drv_fw;
3471 
3472     drv_fw = &fw_info->fw_hdr;
3473 
3474     /* Read the header of the firmware on the card */
3475     ret = t4_read_flash(adap, FLASH_FW_START,
3476                 sizeof(*card_fw) / sizeof(uint32_t),
3477                 (uint32_t *)card_fw, 1);
3478     if (ret == 0) {
3479         card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3480     } else {
3481         dev_err(adap->pdev_dev,
3482             "Unable to read card's firmware header: %d\n", ret);
3483         card_fw_usable = 0;
3484     }
3485 
3486     if (fw_data != NULL) {
3487         fs_fw = (const void *)fw_data;
3488         fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3489     } else {
3490         fs_fw = NULL;
3491         fs_fw_usable = 0;
3492     }
3493 
3494     if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3495         (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3496         /* Common case: the firmware on the card is an exact match and
3497          * the filesystem one is an exact match too, or the filesystem
3498          * one is absent/incompatible.
3499          */
3500     } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3501            should_install_fs_fw(adap, card_fw_usable,
3502                     be32_to_cpu(fs_fw->fw_ver),
3503                     be32_to_cpu(card_fw->fw_ver))) {
3504         ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3505                     fw_size, 0);
3506         if (ret != 0) {
3507             dev_err(adap->pdev_dev,
3508                 "failed to install firmware: %d\n", ret);
3509             goto bye;
3510         }
3511 
3512         /* Installed successfully, update the cached header too. */
3513         *card_fw = *fs_fw;
3514         card_fw_usable = 1;
3515         *reset = 0; /* already reset as part of load_fw */
3516     }
3517 
3518     if (!card_fw_usable) {
3519         uint32_t d, c, k;
3520 
3521         d = be32_to_cpu(drv_fw->fw_ver);
3522         c = be32_to_cpu(card_fw->fw_ver);
3523         k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3524 
3525         dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3526             "chip state %d, "
3527             "driver compiled with %d.%d.%d.%d, "
3528             "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3529             state,
3530             FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3531             FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3532             FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3533             FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3534             FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3535             FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3536         ret = -EINVAL;
3537         goto bye;
3538     }
3539 
3540     /* We're using whatever's on the card and it's known to be good. */
3541     adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3542     adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3543 
3544 bye:
3545     return ret;
3546 }
3547 
3548 /**
3549  *  t4_flash_erase_sectors - erase a range of flash sectors
3550  *  @adapter: the adapter
3551  *  @start: the first sector to erase
3552  *  @end: the last sector to erase
3553  *
3554  *  Erases the sectors in the given inclusive range.
3555  */
3556 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3557 {
3558     int ret = 0;
3559 
3560     if (end >= adapter->params.sf_nsec)
3561         return -EINVAL;
3562 
3563     while (start <= end) {
3564         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3565             (ret = sf1_write(adapter, 4, 0, 1,
3566                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3567             (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3568             dev_err(adapter->pdev_dev,
3569                 "erase of flash sector %d failed, error %d\n",
3570                 start, ret);
3571             break;
3572         }
3573         start++;
3574     }
3575     t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3576     return ret;
3577 }
3578 
3579 /**
3580  *  t4_flash_cfg_addr - return the address of the flash configuration file
3581  *  @adapter: the adapter
3582  *
3583  *  Return the address within the flash where the Firmware Configuration
3584  *  File is stored.
3585  */
3586 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3587 {
3588     if (adapter->params.sf_size == 0x100000)
3589         return FLASH_FPGA_CFG_START;
3590     else
3591         return FLASH_CFG_START;
3592 }
3593 
3594 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3595  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3596  * and emit an error message for mismatched firmware to save our caller the
3597  * effort ...
3598  */
3599 static bool t4_fw_matches_chip(const struct adapter *adap,
3600                    const struct fw_hdr *hdr)
3601 {
3602     /* The expression below will return FALSE for any unsupported adapter
3603      * which will keep us "honest" in the future ...
3604      */
3605     if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3606         (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3607         (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3608         return true;
3609 
3610     dev_err(adap->pdev_dev,
3611         "FW image (%d) is not suitable for this adapter (%d)\n",
3612         hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3613     return false;
3614 }
3615 
3616 /**
3617  *  t4_load_fw - download firmware
3618  *  @adap: the adapter
3619  *  @fw_data: the firmware image to write
3620  *  @size: image size
3621  *
3622  *  Write the supplied firmware image to the card's serial flash.
3623  */
3624 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3625 {
3626     u32 csum;
3627     int ret, addr;
3628     unsigned int i;
3629     u8 first_page[SF_PAGE_SIZE];
3630     const __be32 *p = (const __be32 *)fw_data;
3631     const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3632     unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3633     unsigned int fw_start_sec = FLASH_FW_START_SEC;
3634     unsigned int fw_size = FLASH_FW_MAX_SIZE;
3635     unsigned int fw_start = FLASH_FW_START;
3636 
3637     if (!size) {
3638         dev_err(adap->pdev_dev, "FW image has no data\n");
3639         return -EINVAL;
3640     }
3641     if (size & 511) {
3642         dev_err(adap->pdev_dev,
3643             "FW image size not multiple of 512 bytes\n");
3644         return -EINVAL;
3645     }
3646     if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3647         dev_err(adap->pdev_dev,
3648             "FW image size differs from size in FW header\n");
3649         return -EINVAL;
3650     }
3651     if (size > fw_size) {
3652         dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3653             fw_size);
3654         return -EFBIG;
3655     }
3656     if (!t4_fw_matches_chip(adap, hdr))
3657         return -EINVAL;
3658 
3659     for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3660         csum += be32_to_cpu(p[i]);
3661 
3662     if (csum != 0xffffffff) {
3663         dev_err(adap->pdev_dev,
3664             "corrupted firmware image, checksum %#x\n", csum);
3665         return -EINVAL;
3666     }
3667 
3668     i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3669     ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3670     if (ret)
3671         goto out;
3672 
3673     /*
3674      * We write the correct version at the end so the driver can see a bad
3675      * version if the FW write fails.  Start by writing a copy of the
3676      * first page with a bad version.
3677      */
3678     memcpy(first_page, fw_data, SF_PAGE_SIZE);
3679     ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3680     ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3681     if (ret)
3682         goto out;
3683 
3684     addr = fw_start;
3685     for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3686         addr += SF_PAGE_SIZE;
3687         fw_data += SF_PAGE_SIZE;
3688         ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3689         if (ret)
3690             goto out;
3691     }
3692 
3693     ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3694                  sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3695                  true);
3696 out:
3697     if (ret)
3698         dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3699             ret);
3700     else
3701         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3702     return ret;
3703 }
3704 
3705 /**
3706  *  t4_phy_fw_ver - return current PHY firmware version
3707  *  @adap: the adapter
3708  *  @phy_fw_ver: return value buffer for PHY firmware version
3709  *
3710  *  Returns the current version of external PHY firmware on the
3711  *  adapter.
3712  */
3713 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3714 {
3715     u32 param, val;
3716     int ret;
3717 
3718     param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3719          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3720          FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3721          FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3722     ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3723                   &param, &val);
3724     if (ret)
3725         return ret;
3726     *phy_fw_ver = val;
3727     return 0;
3728 }
3729 
3730 /**
3731  *  t4_load_phy_fw - download port PHY firmware
3732  *  @adap: the adapter
3733  *  @win: the PCI-E Memory Window index to use for t4_memory_rw()
3734  *  @phy_fw_version: function to check PHY firmware versions
3735  *  @phy_fw_data: the PHY firmware image to write
3736  *  @phy_fw_size: image size
3737  *
3738  *  Transfer the specified PHY firmware to the adapter.  If a non-NULL
3739  *  @phy_fw_version is supplied, then it will be used to determine if
3740  *  it's necessary to perform the transfer by comparing the version
3741  *  of any existing adapter PHY firmware with that of the passed in
3742  *  PHY firmware image.
3743  *
3744  *  A negative error number will be returned if an error occurs.  If
3745  *  version number support is available and there's no need to upgrade
3746  *  the firmware, 0 will be returned.  If firmware is successfully
3747  *  transferred to the adapter, 1 will be returned.
3748  *
3749  *  NOTE: some adapters only have local RAM to store the PHY firmware.  As
3750  *  a result, a RESET of the adapter would cause that RAM to lose its
3751  *  contents.  Thus, loading PHY firmware on such adapters must happen
3752  *  after any FW_RESET_CMDs ...
3753  */
3754 int t4_load_phy_fw(struct adapter *adap, int win,
3755            int (*phy_fw_version)(const u8 *, size_t),
3756            const u8 *phy_fw_data, size_t phy_fw_size)
3757 {
3758     int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3759     unsigned long mtype = 0, maddr = 0;
3760     u32 param, val;
3761     int ret;
3762 
3763     /* If we have version number support, then check to see if the adapter
3764      * already has up-to-date PHY firmware loaded.
3765      */
3766     if (phy_fw_version) {
3767         new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3768         ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3769         if (ret < 0)
3770             return ret;
3771 
3772         if (cur_phy_fw_ver >= new_phy_fw_vers) {
3773             CH_WARN(adap, "PHY Firmware already up-to-date, "
3774                 "version %#x\n", cur_phy_fw_ver);
3775             return 0;
3776         }
3777     }
3778 
3779     /* Ask the firmware where it wants us to copy the PHY firmware image.
3780      * The size of the file requires a special version of the READ command
3781      * which will pass the file size via the values field in PARAMS_CMD and
3782      * retrieve the return value from firmware and place it in the same
3783      * buffer values
3784      */
3785     param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3786          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3787          FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3788          FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3789     val = phy_fw_size;
3790     ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3791                  &param, &val, 1, true);
3792     if (ret < 0)
3793         return ret;
3794     mtype = val >> 8;
3795     maddr = (val & 0xff) << 16;
3796 
3797     /* Copy the supplied PHY Firmware image to the adapter memory location
3798      * allocated by the adapter firmware.
3799      */
3800     spin_lock_bh(&adap->win0_lock);
3801     ret = t4_memory_rw(adap, win, mtype, maddr,
3802                phy_fw_size, (__be32 *)phy_fw_data,
3803                T4_MEMORY_WRITE);
3804     spin_unlock_bh(&adap->win0_lock);
3805     if (ret)
3806         return ret;
3807 
3808     /* Tell the firmware that the PHY firmware image has been written to
3809      * RAM and it can now start copying it over to the PHYs.  The chip
3810      * firmware will RESET the affected PHYs as part of this operation
3811      * leaving them running the new PHY firmware image.
3812      */
3813     param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3815          FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3816          FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3817     ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3818                     &param, &val, 30000);
3819 
3820     /* If we have version number support, then check to see that the new
3821      * firmware got loaded properly.
3822      */
3823     if (phy_fw_version) {
3824         ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3825         if (ret < 0)
3826             return ret;
3827 
3828         if (cur_phy_fw_ver != new_phy_fw_vers) {
3829             CH_WARN(adap, "PHY Firmware did not update: "
3830                 "version on adapter %#x, "
3831                 "version flashed %#x\n",
3832                 cur_phy_fw_ver, new_phy_fw_vers);
3833             return -ENXIO;
3834         }
3835     }
3836 
3837     return 1;
3838 }
3839 
3840 /**
3841  *  t4_fwcache - firmware cache operation
3842  *  @adap: the adapter
3843  *  @op  : the operation (flush or flush and invalidate)
3844  */
3845 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3846 {
3847     struct fw_params_cmd c;
3848 
3849     memset(&c, 0, sizeof(c));
3850     c.op_to_vfn =
3851         cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3852                 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3853                 FW_PARAMS_CMD_PFN_V(adap->pf) |
3854                 FW_PARAMS_CMD_VFN_V(0));
3855     c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3856     c.param[0].mnem =
3857         cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3858                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3859     c.param[0].val = cpu_to_be32(op);
3860 
3861     return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3862 }
3863 
3864 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3865             unsigned int *pif_req_wrptr,
3866             unsigned int *pif_rsp_wrptr)
3867 {
3868     int i, j;
3869     u32 cfg, val, req, rsp;
3870 
3871     cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3872     if (cfg & LADBGEN_F)
3873         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3874 
3875     val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3876     req = POLADBGWRPTR_G(val);
3877     rsp = PILADBGWRPTR_G(val);
3878     if (pif_req_wrptr)
3879         *pif_req_wrptr = req;
3880     if (pif_rsp_wrptr)
3881         *pif_rsp_wrptr = rsp;
3882 
3883     for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3884         for (j = 0; j < 6; j++) {
3885             t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3886                      PILADBGRDPTR_V(rsp));
3887             *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3888             *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3889             req++;
3890             rsp++;
3891         }
3892         req = (req + 2) & POLADBGRDPTR_M;
3893         rsp = (rsp + 2) & PILADBGRDPTR_M;
3894     }
3895     t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3896 }
3897 
3898 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3899 {
3900     u32 cfg;
3901     int i, j, idx;
3902 
3903     cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3904     if (cfg & LADBGEN_F)
3905         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3906 
3907     for (i = 0; i < CIM_MALA_SIZE; i++) {
3908         for (j = 0; j < 5; j++) {
3909             idx = 8 * i + j;
3910             t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3911                      PILADBGRDPTR_V(idx));
3912             *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3913             *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3914         }
3915     }
3916     t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3917 }
3918 
3919 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3920 {
3921     unsigned int i, j;
3922 
3923     for (i = 0; i < 8; i++) {
3924         u32 *p = la_buf + i;
3925 
3926         t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3927         j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3928         t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3929         for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3930             *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3931     }
3932 }
3933 
3934 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3935  * Capabilities which we control with separate controls -- see, for instance,
3936  * Pause Frames and Forward Error Correction.  In order to determine what the
3937  * full set of Advertised Port Capabilities are, the base Advertised Port
3938  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3939  * Port Capabilities associated with those other controls.  See
3940  * t4_link_acaps() for how this is done.
3941  */
3942 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3943              FW_PORT_CAP32_ANEG)
3944 
3945 /**
3946  *  fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3947  *  @caps16: a 16-bit Port Capabilities value
3948  *
3949  *  Returns the equivalent 32-bit Port Capabilities value.
3950  */
3951 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3952 {
3953     fw_port_cap32_t caps32 = 0;
3954 
3955     #define CAP16_TO_CAP32(__cap) \
3956         do { \
3957             if (caps16 & FW_PORT_CAP_##__cap) \
3958                 caps32 |= FW_PORT_CAP32_##__cap; \
3959         } while (0)
3960 
3961     CAP16_TO_CAP32(SPEED_100M);
3962     CAP16_TO_CAP32(SPEED_1G);
3963     CAP16_TO_CAP32(SPEED_25G);
3964     CAP16_TO_CAP32(SPEED_10G);
3965     CAP16_TO_CAP32(SPEED_40G);
3966     CAP16_TO_CAP32(SPEED_100G);
3967     CAP16_TO_CAP32(FC_RX);
3968     CAP16_TO_CAP32(FC_TX);
3969     CAP16_TO_CAP32(ANEG);
3970     CAP16_TO_CAP32(FORCE_PAUSE);
3971     CAP16_TO_CAP32(MDIAUTO);
3972     CAP16_TO_CAP32(MDISTRAIGHT);
3973     CAP16_TO_CAP32(FEC_RS);
3974     CAP16_TO_CAP32(FEC_BASER_RS);
3975     CAP16_TO_CAP32(802_3_PAUSE);
3976     CAP16_TO_CAP32(802_3_ASM_DIR);
3977 
3978     #undef CAP16_TO_CAP32
3979 
3980     return caps32;
3981 }
3982 
3983 /**
3984  *  fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3985  *  @caps32: a 32-bit Port Capabilities value
3986  *
3987  *  Returns the equivalent 16-bit Port Capabilities value.  Note that
3988  *  not all 32-bit Port Capabilities can be represented in the 16-bit
3989  *  Port Capabilities and some fields/values may not make it.
3990  */
3991 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3992 {
3993     fw_port_cap16_t caps16 = 0;
3994 
3995     #define CAP32_TO_CAP16(__cap) \
3996         do { \
3997             if (caps32 & FW_PORT_CAP32_##__cap) \
3998                 caps16 |= FW_PORT_CAP_##__cap; \
3999         } while (0)
4000 
4001     CAP32_TO_CAP16(SPEED_100M);
4002     CAP32_TO_CAP16(SPEED_1G);
4003     CAP32_TO_CAP16(SPEED_10G);
4004     CAP32_TO_CAP16(SPEED_25G);
4005     CAP32_TO_CAP16(SPEED_40G);
4006     CAP32_TO_CAP16(SPEED_100G);
4007     CAP32_TO_CAP16(FC_RX);
4008     CAP32_TO_CAP16(FC_TX);
4009     CAP32_TO_CAP16(802_3_PAUSE);
4010     CAP32_TO_CAP16(802_3_ASM_DIR);
4011     CAP32_TO_CAP16(ANEG);
4012     CAP32_TO_CAP16(FORCE_PAUSE);
4013     CAP32_TO_CAP16(MDIAUTO);
4014     CAP32_TO_CAP16(MDISTRAIGHT);
4015     CAP32_TO_CAP16(FEC_RS);
4016     CAP32_TO_CAP16(FEC_BASER_RS);
4017 
4018     #undef CAP32_TO_CAP16
4019 
4020     return caps16;
4021 }
4022 
4023 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4024 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4025 {
4026     enum cc_pause cc_pause = 0;
4027 
4028     if (fw_pause & FW_PORT_CAP32_FC_RX)
4029         cc_pause |= PAUSE_RX;
4030     if (fw_pause & FW_PORT_CAP32_FC_TX)
4031         cc_pause |= PAUSE_TX;
4032 
4033     return cc_pause;
4034 }
4035 
4036 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4037 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4038 {
4039     /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4040      * commands, etc.
4041      */
4042     fw_port_cap32_t fw_pause = 0;
4043 
4044     if (cc_pause & PAUSE_RX)
4045         fw_pause |= FW_PORT_CAP32_FC_RX;
4046     if (cc_pause & PAUSE_TX)
4047         fw_pause |= FW_PORT_CAP32_FC_TX;
4048     if (!(cc_pause & PAUSE_AUTONEG))
4049         fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4050 
4051     /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4052      * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4053      * Note that these bits are ignored in L1 Configure commands.
4054      */
4055     if (cc_pause & PAUSE_RX) {
4056         if (cc_pause & PAUSE_TX)
4057             fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4058         else
4059             fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4060                     FW_PORT_CAP32_802_3_PAUSE;
4061     } else if (cc_pause & PAUSE_TX) {
4062         fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4063     }
4064 
4065     return fw_pause;
4066 }
4067 
4068 /* Translate Firmware Forward Error Correction specification to Common Code */
4069 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4070 {
4071     enum cc_fec cc_fec = 0;
4072 
4073     if (fw_fec & FW_PORT_CAP32_FEC_RS)
4074         cc_fec |= FEC_RS;
4075     if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4076         cc_fec |= FEC_BASER_RS;
4077 
4078     return cc_fec;
4079 }
4080 
4081 /* Translate Common Code Forward Error Correction specification to Firmware */
4082 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4083 {
4084     fw_port_cap32_t fw_fec = 0;
4085 
4086     if (cc_fec & FEC_RS)
4087         fw_fec |= FW_PORT_CAP32_FEC_RS;
4088     if (cc_fec & FEC_BASER_RS)
4089         fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4090 
4091     return fw_fec;
4092 }
4093 
4094 /**
4095  *  t4_link_acaps - compute Link Advertised Port Capabilities
4096  *  @adapter: the adapter
4097  *  @port: the Port ID
4098  *  @lc: the Port's Link Configuration
4099  *
4100  *  Synthesize the Advertised Port Capabilities we'll be using based on
4101  *  the base Advertised Port Capabilities (which have been filtered by
4102  *  ADVERT_MASK) plus the individual controls for things like Pause
4103  *  Frames, Forward Error Correction, MDI, etc.
4104  */
4105 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4106                   struct link_config *lc)
4107 {
4108     fw_port_cap32_t fw_fc, fw_fec, acaps;
4109     unsigned int fw_mdi;
4110     char cc_fec;
4111 
4112     fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4113 
4114     /* Convert driver coding of Pause Frame Flow Control settings into the
4115      * Firmware's API.
4116      */
4117     fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4118 
4119     /* Convert Common Code Forward Error Control settings into the
4120      * Firmware's API.  If the current Requested FEC has "Automatic"
4121      * (IEEE 802.3) specified, then we use whatever the Firmware
4122      * sent us as part of its IEEE 802.3-based interpretation of
4123      * the Transceiver Module EPROM FEC parameters.  Otherwise we
4124      * use whatever is in the current Requested FEC settings.
4125      */
4126     if (lc->requested_fec & FEC_AUTO)
4127         cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4128     else
4129         cc_fec = lc->requested_fec;
4130     fw_fec = cc_to_fwcap_fec(cc_fec);
4131 
4132     /* Figure out what our Requested Port Capabilities are going to be.
4133      * Note parallel structure in t4_handle_get_port_info() and
4134      * init_link_config().
4135      */
4136     if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4137         acaps = lc->acaps | fw_fc | fw_fec;
4138         lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4139         lc->fec = cc_fec;
4140     } else if (lc->autoneg == AUTONEG_DISABLE) {
4141         acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4142         lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4143         lc->fec = cc_fec;
4144     } else {
4145         acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4146     }
4147 
4148     /* Some Requested Port Capabilities are trivially wrong if they exceed
4149      * the Physical Port Capabilities.  We can check that here and provide
4150      * moderately useful feedback in the system log.
4151      *
4152      * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4153      * we need to exclude this from this check in order to maintain
4154      * compatibility ...
4155      */
4156     if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4157         dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4158             acaps, lc->pcaps);
4159         return -EINVAL;
4160     }
4161 
4162     return acaps;
4163 }
4164 
4165 /**
4166  *  t4_link_l1cfg_core - apply link configuration to MAC/PHY
4167  *  @adapter: the adapter
4168  *  @mbox: the Firmware Mailbox to use
4169  *  @port: the Port ID
4170  *  @lc: the Port's Link Configuration
4171  *  @sleep_ok: if true we may sleep while awaiting command completion
4172  *  @timeout: time to wait for command to finish before timing out
4173  *      (negative implies @sleep_ok=false)
4174  *
4175  *  Set up a port's MAC and PHY according to a desired link configuration.
4176  *  - If the PHY can auto-negotiate first decide what to advertise, then
4177  *    enable/disable auto-negotiation as desired, and reset.
4178  *  - If the PHY does not auto-negotiate just reset it.
4179  *  - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4180  *    otherwise do it later based on the outcome of auto-negotiation.
4181  */
4182 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4183                unsigned int port, struct link_config *lc,
4184                u8 sleep_ok, int timeout)
4185 {
4186     unsigned int fw_caps = adapter->params.fw_caps_support;
4187     struct fw_port_cmd cmd;
4188     fw_port_cap32_t rcap;
4189     int ret;
4190 
4191     if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4192         lc->autoneg == AUTONEG_ENABLE) {
4193         return -EINVAL;
4194     }
4195 
4196     /* Compute our Requested Port Capabilities and send that on to the
4197      * Firmware.
4198      */
4199     rcap = t4_link_acaps(adapter, port, lc);
4200     memset(&cmd, 0, sizeof(cmd));
4201     cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4202                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4203                        FW_PORT_CMD_PORTID_V(port));
4204     cmd.action_to_len16 =
4205         cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4206                          ? FW_PORT_ACTION_L1_CFG
4207                          : FW_PORT_ACTION_L1_CFG32) |
4208                          FW_LEN16(cmd));
4209     if (fw_caps == FW_CAPS16)
4210         cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4211     else
4212         cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4213 
4214     ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4215                       sleep_ok, timeout);
4216 
4217     /* Unfortunately, even if the Requested Port Capabilities "fit" within
4218      * the Physical Port Capabilities, some combinations of features may
4219      * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4220      * Error Correction.  So if the Firmware rejects the L1 Configure
4221      * request, flag that here.
4222      */
4223     if (ret) {
4224         dev_err(adapter->pdev_dev,
4225             "Requested Port Capabilities %#x rejected, error %d\n",
4226             rcap, -ret);
4227         return ret;
4228     }
4229     return 0;
4230 }
4231 
4232 /**
4233  *  t4_restart_aneg - restart autonegotiation
4234  *  @adap: the adapter
4235  *  @mbox: mbox to use for the FW command
4236  *  @port: the port id
4237  *
4238  *  Restarts autonegotiation for the selected port.
4239  */
4240 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4241 {
4242     unsigned int fw_caps = adap->params.fw_caps_support;
4243     struct fw_port_cmd c;
4244 
4245     memset(&c, 0, sizeof(c));
4246     c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4247                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4248                      FW_PORT_CMD_PORTID_V(port));
4249     c.action_to_len16 =
4250         cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4251                          ? FW_PORT_ACTION_L1_CFG
4252                          : FW_PORT_ACTION_L1_CFG32) |
4253                 FW_LEN16(c));
4254     if (fw_caps == FW_CAPS16)
4255         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4256     else
4257         c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4258     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4259 }
4260 
4261 typedef void (*int_handler_t)(struct adapter *adap);
4262 
4263 struct intr_info {
4264     unsigned int mask;       /* bits to check in interrupt status */
4265     const char *msg;         /* message to print or NULL */
4266     short stat_idx;          /* stat counter to increment or -1 */
4267     unsigned short fatal;    /* whether the condition reported is fatal */
4268     int_handler_t int_handler; /* platform-specific int handler */
4269 };
4270 
4271 /**
4272  *  t4_handle_intr_status - table driven interrupt handler
4273  *  @adapter: the adapter that generated the interrupt
4274  *  @reg: the interrupt status register to process
4275  *  @acts: table of interrupt actions
4276  *
4277  *  A table driven interrupt handler that applies a set of masks to an
4278  *  interrupt status word and performs the corresponding actions if the
4279  *  interrupts described by the mask have occurred.  The actions include
4280  *  optionally emitting a warning or alert message.  The table is terminated
4281  *  by an entry specifying mask 0.  Returns the number of fatal interrupt
4282  *  conditions.
4283  */
4284 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4285                  const struct intr_info *acts)
4286 {
4287     int fatal = 0;
4288     unsigned int mask = 0;
4289     unsigned int status = t4_read_reg(adapter, reg);
4290 
4291     for ( ; acts->mask; ++acts) {
4292         if (!(status & acts->mask))
4293             continue;
4294         if (acts->fatal) {
4295             fatal++;
4296             dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4297                   status & acts->mask);
4298         } else if (acts->msg && printk_ratelimit())
4299             dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4300                  status & acts->mask);
4301         if (acts->int_handler)
4302             acts->int_handler(adapter);
4303         mask |= acts->mask;
4304     }
4305     status &= mask;
4306     if (status)                           /* clear processed interrupts */
4307         t4_write_reg(adapter, reg, status);
4308     return fatal;
4309 }
4310 
4311 /*
4312  * Interrupt handler for the PCIE module.
4313  */
4314 static void pcie_intr_handler(struct adapter *adapter)
4315 {
4316     static const struct intr_info sysbus_intr_info[] = {
4317         { RNPP_F, "RXNP array parity error", -1, 1 },
4318         { RPCP_F, "RXPC array parity error", -1, 1 },
4319         { RCIP_F, "RXCIF array parity error", -1, 1 },
4320         { RCCP_F, "Rx completions control array parity error", -1, 1 },
4321         { RFTP_F, "RXFT array parity error", -1, 1 },
4322         { 0 }
4323     };
4324     static const struct intr_info pcie_port_intr_info[] = {
4325         { TPCP_F, "TXPC array parity error", -1, 1 },
4326         { TNPP_F, "TXNP array parity error", -1, 1 },
4327         { TFTP_F, "TXFT array parity error", -1, 1 },
4328         { TCAP_F, "TXCA array parity error", -1, 1 },
4329         { TCIP_F, "TXCIF array parity error", -1, 1 },
4330         { RCAP_F, "RXCA array parity error", -1, 1 },
4331         { OTDD_F, "outbound request TLP discarded", -1, 1 },
4332         { RDPE_F, "Rx data parity error", -1, 1 },
4333         { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4334         { 0 }
4335     };
4336     static const struct intr_info pcie_intr_info[] = {
4337         { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4338         { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4339         { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4340         { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4341         { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4342         { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4343         { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4344         { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4345         { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4346         { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4347         { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4348         { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4349         { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4350         { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4351         { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4352         { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4353         { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4354         { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4355         { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4356         { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4357         { FIDPERR_F, "PCI FID parity error", -1, 1 },
4358         { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4359         { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4360         { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4361         { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4362         { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4363         { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4364         { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4365         { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4366         { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4367           -1, 0 },
4368         { 0 }
4369     };
4370 
4371     static struct intr_info t5_pcie_intr_info[] = {
4372         { MSTGRPPERR_F, "Master Response Read Queue parity error",
4373           -1, 1 },
4374         { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4375         { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4376         { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4377         { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4378         { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4379         { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4380         { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4381           -1, 1 },
4382         { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4383           -1, 1 },
4384         { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4385         { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4386         { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4387         { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4388         { DREQWRPERR_F, "PCI DMA channel write request parity error",
4389           -1, 1 },
4390         { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4391         { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4392         { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4393         { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4394         { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4395         { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4396         { FIDPERR_F, "PCI FID parity error", -1, 1 },
4397         { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4398         { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4399         { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4400         { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4401           -1, 1 },
4402         { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4403           -1, 1 },
4404         { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4405         { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4406         { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4407         { READRSPERR_F, "Outbound read error", -1, 0 },
4408         { 0 }
4409     };
4410 
4411     int fat;
4412 
4413     if (is_t4(adapter->params.chip))
4414         fat = t4_handle_intr_status(adapter,
4415                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4416                 sysbus_intr_info) +
4417             t4_handle_intr_status(adapter,
4418                     PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4419                     pcie_port_intr_info) +
4420             t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4421                           pcie_intr_info);
4422     else
4423         fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4424                         t5_pcie_intr_info);
4425 
4426     if (fat)
4427         t4_fatal_err(adapter);
4428 }
4429 
4430 /*
4431  * TP interrupt handler.
4432  */
4433 static void tp_intr_handler(struct adapter *adapter)
4434 {
4435     static const struct intr_info tp_intr_info[] = {
4436         { 0x3fffffff, "TP parity error", -1, 1 },
4437         { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4438         { 0 }
4439     };
4440 
4441     if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4442         t4_fatal_err(adapter);
4443 }
4444 
4445 /*
4446  * SGE interrupt handler.
4447  */
4448 static void sge_intr_handler(struct adapter *adapter)
4449 {
4450     u32 v = 0, perr;
4451     u32 err;
4452 
4453     static const struct intr_info sge_intr_info[] = {
4454         { ERR_CPL_EXCEED_IQE_SIZE_F,
4455           "SGE received CPL exceeding IQE size", -1, 1 },
4456         { ERR_INVALID_CIDX_INC_F,
4457           "SGE GTS CIDX increment too large", -1, 0 },
4458         { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4459         { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4460         { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4461           "SGE IQID > 1023 received CPL for FL", -1, 0 },
4462         { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4463           0 },
4464         { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4465           0 },
4466         { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4467           0 },
4468         { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4469           0 },
4470         { ERR_ING_CTXT_PRIO_F,
4471           "SGE too many priority ingress contexts", -1, 0 },
4472         { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4473         { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4474         { 0 }
4475     };
4476 
4477     static struct intr_info t4t5_sge_intr_info[] = {
4478         { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4479         { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4480         { ERR_EGR_CTXT_PRIO_F,
4481           "SGE too many priority egress contexts", -1, 0 },
4482         { 0 }
4483     };
4484 
4485     perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4486     if (perr) {
4487         v |= perr;
4488         dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4489               perr);
4490     }
4491 
4492     perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4493     if (perr) {
4494         v |= perr;
4495         dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4496               perr);
4497     }
4498 
4499     if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4500         perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4501         /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4502         perr &= ~ERR_T_RXCRC_F;
4503         if (perr) {
4504             v |= perr;
4505             dev_alert(adapter->pdev_dev,
4506                   "SGE Cause5 Parity Error %#x\n", perr);
4507         }
4508     }
4509 
4510     v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4511     if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4512         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4513                        t4t5_sge_intr_info);
4514 
4515     err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4516     if (err & ERROR_QID_VALID_F) {
4517         dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4518             ERROR_QID_G(err));
4519         if (err & UNCAPTURED_ERROR_F)
4520             dev_err(adapter->pdev_dev,
4521                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4522         t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4523                  UNCAPTURED_ERROR_F);
4524     }
4525 
4526     if (v != 0)
4527         t4_fatal_err(adapter);
4528 }
4529 
4530 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4531               OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4532 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4533               IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4534 
4535 /*
4536  * CIM interrupt handler.
4537  */
4538 static void cim_intr_handler(struct adapter *adapter)
4539 {
4540     static const struct intr_info cim_intr_info[] = {
4541         { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4542         { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4543         { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4544         { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4545         { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4546         { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4547         { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4548         { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4549         { 0 }
4550     };
4551     static const struct intr_info cim_upintr_info[] = {
4552         { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4553         { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4554         { ILLWRINT_F, "CIM illegal write", -1, 1 },
4555         { ILLRDINT_F, "CIM illegal read", -1, 1 },
4556         { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4557         { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4558         { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4559         { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4560         { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4561         { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4562         { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4563         { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4564         { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4565         { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4566         { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4567         { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4568         { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4569         { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4570         { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4571         { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4572         { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4573         { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4574         { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4575         { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4576         { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4577         { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4578         { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4579         { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4580         { 0 }
4581     };
4582 
4583     u32 val, fw_err;
4584     int fat;
4585 
4586     fw_err = t4_read_reg(adapter, PCIE_FW_A);
4587     if (fw_err & PCIE_FW_ERR_F)
4588         t4_report_fw_error(adapter);
4589 
4590     /* When the Firmware detects an internal error which normally
4591      * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4592      * in order to make sure the Host sees the Firmware Crash.  So
4593      * if we have a Timer0 interrupt and don't see a Firmware Crash,
4594      * ignore the Timer0 interrupt.
4595      */
4596 
4597     val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4598     if (val & TIMER0INT_F)
4599         if (!(fw_err & PCIE_FW_ERR_F) ||
4600             (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4601             t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4602                      TIMER0INT_F);
4603 
4604     fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4605                     cim_intr_info) +
4606           t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4607                     cim_upintr_info);
4608     if (fat)
4609         t4_fatal_err(adapter);
4610 }
4611 
4612 /*
4613  * ULP RX interrupt handler.
4614  */
4615 static void ulprx_intr_handler(struct adapter *adapter)
4616 {
4617     static const struct intr_info ulprx_intr_info[] = {
4618         { 0x1800000, "ULPRX context error", -1, 1 },
4619         { 0x7fffff, "ULPRX parity error", -1, 1 },
4620         { 0 }
4621     };
4622 
4623     if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4624         t4_fatal_err(adapter);
4625 }
4626 
4627 /*
4628  * ULP TX interrupt handler.
4629  */
4630 static void ulptx_intr_handler(struct adapter *adapter)
4631 {
4632     static const struct intr_info ulptx_intr_info[] = {
4633         { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4634           0 },
4635         { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4636           0 },
4637         { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4638           0 },
4639         { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4640           0 },
4641         { 0xfffffff, "ULPTX parity error", -1, 1 },
4642         { 0 }
4643     };
4644 
4645     if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4646         t4_fatal_err(adapter);
4647 }
4648 
4649 /*
4650  * PM TX interrupt handler.
4651  */
4652 static void pmtx_intr_handler(struct adapter *adapter)
4653 {
4654     static const struct intr_info pmtx_intr_info[] = {
4655         { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4656         { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4657         { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4658         { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4659         { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4660         { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4661         { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4662           -1, 1 },
4663         { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4664         { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4665         { 0 }
4666     };
4667 
4668     if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4669         t4_fatal_err(adapter);
4670 }
4671 
4672 /*
4673  * PM RX interrupt handler.
4674  */
4675 static void pmrx_intr_handler(struct adapter *adapter)
4676 {
4677     static const struct intr_info pmrx_intr_info[] = {
4678         { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4679         { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4680         { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4681         { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4682           -1, 1 },
4683         { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4684         { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4685         { 0 }
4686     };
4687 
4688     if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4689         t4_fatal_err(adapter);
4690 }
4691 
4692 /*
4693  * CPL switch interrupt handler.
4694  */
4695 static void cplsw_intr_handler(struct adapter *adapter)
4696 {
4697     static const struct intr_info cplsw_intr_info[] = {
4698         { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4699         { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4700         { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4701         { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4702         { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4703         { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4704         { 0 }
4705     };
4706 
4707     if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4708         t4_fatal_err(adapter);
4709 }
4710 
4711 /*
4712  * LE interrupt handler.
4713  */
4714 static void le_intr_handler(struct adapter *adap)
4715 {
4716     enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4717     static const struct intr_info le_intr_info[] = {
4718         { LIPMISS_F, "LE LIP miss", -1, 0 },
4719         { LIP0_F, "LE 0 LIP error", -1, 0 },
4720         { PARITYERR_F, "LE parity error", -1, 1 },
4721         { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4722         { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4723         { 0 }
4724     };
4725 
4726     static struct intr_info t6_le_intr_info[] = {
4727         { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4728         { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4729         { CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4730         { TCAMINTPERR_F, "LE parity error", -1, 1 },
4731         { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4732         { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4733         { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4734         { 0 }
4735     };
4736 
4737     if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4738                   (chip <= CHELSIO_T5) ?
4739                   le_intr_info : t6_le_intr_info))
4740         t4_fatal_err(adap);
4741 }
4742 
4743 /*
4744  * MPS interrupt handler.
4745  */
4746 static void mps_intr_handler(struct adapter *adapter)
4747 {
4748     static const struct intr_info mps_rx_intr_info[] = {
4749         { 0xffffff, "MPS Rx parity error", -1, 1 },
4750         { 0 }
4751     };
4752     static const struct intr_info mps_tx_intr_info[] = {
4753         { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4754         { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4755         { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4756           -1, 1 },
4757         { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4758           -1, 1 },
4759         { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4760         { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4761         { FRMERR_F, "MPS Tx framing error", -1, 1 },
4762         { 0 }
4763     };
4764     static const struct intr_info t6_mps_tx_intr_info[] = {
4765         { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4766         { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4767         { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4768           -1, 1 },
4769         { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4770           -1, 1 },
4771         /* MPS Tx Bubble is normal for T6 */
4772         { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4773         { FRMERR_F, "MPS Tx framing error", -1, 1 },
4774         { 0 }
4775     };
4776     static const struct intr_info mps_trc_intr_info[] = {
4777         { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4778         { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4779           -1, 1 },
4780         { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4781         { 0 }
4782     };
4783     static const struct intr_info mps_stat_sram_intr_info[] = {
4784         { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4785         { 0 }
4786     };
4787     static const struct intr_info mps_stat_tx_intr_info[] = {
4788         { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4789         { 0 }
4790     };
4791     static const struct intr_info mps_stat_rx_intr_info[] = {
4792         { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4793         { 0 }
4794     };
4795     static const struct intr_info mps_cls_intr_info[] = {
4796         { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4797         { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4798         { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4799         { 0 }
4800     };
4801 
4802     int fat;
4803 
4804     fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4805                     mps_rx_intr_info) +
4806           t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4807                     is_t6(adapter->params.chip)
4808                     ? t6_mps_tx_intr_info
4809                     : mps_tx_intr_info) +
4810           t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4811                     mps_trc_intr_info) +
4812           t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4813                     mps_stat_sram_intr_info) +
4814           t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4815                     mps_stat_tx_intr_info) +
4816           t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4817                     mps_stat_rx_intr_info) +
4818           t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4819                     mps_cls_intr_info);
4820 
4821     t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4822     t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4823     if (fat)
4824         t4_fatal_err(adapter);
4825 }
4826 
4827 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4828               ECC_UE_INT_CAUSE_F)
4829 
4830 /*
4831  * EDC/MC interrupt handler.
4832  */
4833 static void mem_intr_handler(struct adapter *adapter, int idx)
4834 {
4835     static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4836 
4837     unsigned int addr, cnt_addr, v;
4838 
4839     if (idx <= MEM_EDC1) {
4840         addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4841         cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4842     } else if (idx == MEM_MC) {
4843         if (is_t4(adapter->params.chip)) {
4844             addr = MC_INT_CAUSE_A;
4845             cnt_addr = MC_ECC_STATUS_A;
4846         } else {
4847             addr = MC_P_INT_CAUSE_A;
4848             cnt_addr = MC_P_ECC_STATUS_A;
4849         }
4850     } else {
4851         addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4852         cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4853     }
4854 
4855     v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4856     if (v & PERR_INT_CAUSE_F)
4857         dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4858               name[idx]);
4859     if (v & ECC_CE_INT_CAUSE_F) {
4860         u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4861 
4862         t4_edc_err_read(adapter, idx);
4863 
4864         t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4865         if (printk_ratelimit())
4866             dev_warn(adapter->pdev_dev,
4867                  "%u %s correctable ECC data error%s\n",
4868                  cnt, name[idx], cnt > 1 ? "s" : "");
4869     }
4870     if (v & ECC_UE_INT_CAUSE_F)
4871         dev_alert(adapter->pdev_dev,
4872               "%s uncorrectable ECC data error\n", name[idx]);
4873 
4874     t4_write_reg(adapter, addr, v);
4875     if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4876         t4_fatal_err(adapter);
4877 }
4878 
4879 /*
4880  * MA interrupt handler.
4881  */
4882 static void ma_intr_handler(struct adapter *adap)
4883 {
4884     u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4885 
4886     if (status & MEM_PERR_INT_CAUSE_F) {
4887         dev_alert(adap->pdev_dev,
4888               "MA parity error, parity status %#x\n",
4889               t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4890         if (is_t5(adap->params.chip))
4891             dev_alert(adap->pdev_dev,
4892                   "MA parity error, parity status %#x\n",
4893                   t4_read_reg(adap,
4894                           MA_PARITY_ERROR_STATUS2_A));
4895     }
4896     if (status & MEM_WRAP_INT_CAUSE_F) {
4897         v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4898         dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4899               "client %u to address %#x\n",
4900               MEM_WRAP_CLIENT_NUM_G(v),
4901               MEM_WRAP_ADDRESS_G(v) << 4);
4902     }
4903     t4_write_reg(adap, MA_INT_CAUSE_A, status);
4904     t4_fatal_err(adap);
4905 }
4906 
4907 /*
4908  * SMB interrupt handler.
4909  */
4910 static void smb_intr_handler(struct adapter *adap)
4911 {
4912     static const struct intr_info smb_intr_info[] = {
4913         { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4914         { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4915         { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4916         { 0 }
4917     };
4918 
4919     if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4920         t4_fatal_err(adap);
4921 }
4922 
4923 /*
4924  * NC-SI interrupt handler.
4925  */
4926 static void ncsi_intr_handler(struct adapter *adap)
4927 {
4928     static const struct intr_info ncsi_intr_info[] = {
4929         { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4930         { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4931         { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4932         { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4933         { 0 }
4934     };
4935 
4936     if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4937         t4_fatal_err(adap);
4938 }
4939 
4940 /*
4941  * XGMAC interrupt handler.
4942  */
4943 static void xgmac_intr_handler(struct adapter *adap, int port)
4944 {
4945     u32 v, int_cause_reg;
4946 
4947     if (is_t4(adap->params.chip))
4948         int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4949     else
4950         int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4951 
4952     v = t4_read_reg(adap, int_cause_reg);
4953 
4954     v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4955     if (!v)
4956         return;
4957 
4958     if (v & TXFIFO_PRTY_ERR_F)
4959         dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4960               port);
4961     if (v & RXFIFO_PRTY_ERR_F)
4962         dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4963               port);
4964     t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4965     t4_fatal_err(adap);
4966 }
4967 
4968 /*
4969  * PL interrupt handler.
4970  */
4971 static void pl_intr_handler(struct adapter *adap)
4972 {
4973     static const struct intr_info pl_intr_info[] = {
4974         { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4975         { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4976         { 0 }
4977     };
4978 
4979     if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4980         t4_fatal_err(adap);
4981 }
4982 
4983 #define PF_INTR_MASK (PFSW_F)
4984 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4985         EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4986         CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4987 
4988 /**
4989  *  t4_slow_intr_handler - control path interrupt handler
4990  *  @adapter: the adapter
4991  *
4992  *  T4 interrupt handler for non-data global interrupt events, e.g., errors.
4993  *  The designation 'slow' is because it involves register reads, while
4994  *  data interrupts typically don't involve any MMIOs.
4995  */
4996 int t4_slow_intr_handler(struct adapter *adapter)
4997 {
4998     /* There are rare cases where a PL_INT_CAUSE bit may end up getting
4999      * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5000      * easiest just to mask that case here.
5001      */
5002     u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5003     u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5004     u32 cause = raw_cause & enable;
5005 
5006     if (!(cause & GLBL_INTR_MASK))
5007         return 0;
5008     if (cause & CIM_F)
5009         cim_intr_handler(adapter);
5010     if (cause & MPS_F)
5011         mps_intr_handler(adapter);
5012     if (cause & NCSI_F)
5013         ncsi_intr_handler(adapter);
5014     if (cause & PL_F)
5015         pl_intr_handler(adapter);
5016     if (cause & SMB_F)
5017         smb_intr_handler(adapter);
5018     if (cause & XGMAC0_F)
5019         xgmac_intr_handler(adapter, 0);
5020     if (cause & XGMAC1_F)
5021         xgmac_intr_handler(adapter, 1);
5022     if (cause & XGMAC_KR0_F)
5023         xgmac_intr_handler(adapter, 2);
5024     if (cause & XGMAC_KR1_F)
5025         xgmac_intr_handler(adapter, 3);
5026     if (cause & PCIE_F)
5027         pcie_intr_handler(adapter);
5028     if (cause & MC_F)
5029         mem_intr_handler(adapter, MEM_MC);
5030     if (is_t5(adapter->params.chip) && (cause & MC1_F))
5031         mem_intr_handler(adapter, MEM_MC1);
5032     if (cause & EDC0_F)
5033         mem_intr_handler(adapter, MEM_EDC0);
5034     if (cause & EDC1_F)
5035         mem_intr_handler(adapter, MEM_EDC1);
5036     if (cause & LE_F)
5037         le_intr_handler(adapter);
5038     if (cause & TP_F)
5039         tp_intr_handler(adapter);
5040     if (cause & MA_F)
5041         ma_intr_handler(adapter);
5042     if (cause & PM_TX_F)
5043         pmtx_intr_handler(adapter);
5044     if (cause & PM_RX_F)
5045         pmrx_intr_handler(adapter);
5046     if (cause & ULP_RX_F)
5047         ulprx_intr_handler(adapter);
5048     if (cause & CPL_SWITCH_F)
5049         cplsw_intr_handler(adapter);
5050     if (cause & SGE_F)
5051         sge_intr_handler(adapter);
5052     if (cause & ULP_TX_F)
5053         ulptx_intr_handler(adapter);
5054 
5055     /* Clear the interrupts just processed for which we are the master. */
5056     t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5057     (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5058     return 1;
5059 }
5060 
5061 /**
5062  *  t4_intr_enable - enable interrupts
5063  *  @adapter: the adapter whose interrupts should be enabled
5064  *
5065  *  Enable PF-specific interrupts for the calling function and the top-level
5066  *  interrupt concentrator for global interrupts.  Interrupts are already
5067  *  enabled at each module, here we just enable the roots of the interrupt
5068  *  hierarchies.
5069  *
5070  *  Note: this function should be called only when the driver manages
5071  *  non PF-specific interrupts from the various HW modules.  Only one PCI
5072  *  function at a time should be doing this.
5073  */
5074 void t4_intr_enable(struct adapter *adapter)
5075 {
5076     u32 val = 0;
5077     u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5078     u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5079             SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5080 
5081     if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5082         val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5083     t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5084              ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5085              ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5086              ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5087              ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5088              ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5089              DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5090     t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5091     t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5092 }
5093 
5094 /**
5095  *  t4_intr_disable - disable interrupts
5096  *  @adapter: the adapter whose interrupts should be disabled
5097  *
5098  *  Disable interrupts.  We only disable the top-level interrupt
5099  *  concentrators.  The caller must be a PCI function managing global
5100  *  interrupts.
5101  */
5102 void t4_intr_disable(struct adapter *adapter)
5103 {
5104     u32 whoami, pf;
5105 
5106     if (pci_channel_offline(adapter->pdev))
5107         return;
5108 
5109     whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5110     pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5111             SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5112 
5113     t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5114     t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5115 }
5116 
5117 unsigned int t4_chip_rss_size(struct adapter *adap)
5118 {
5119     if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5120         return RSS_NENTRIES;
5121     else
5122         return T6_RSS_NENTRIES;
5123 }
5124 
5125 /**
5126  *  t4_config_rss_range - configure a portion of the RSS mapping table
5127  *  @adapter: the adapter
5128  *  @mbox: mbox to use for the FW command
5129  *  @viid: virtual interface whose RSS subtable is to be written
5130  *  @start: start entry in the table to write
5131  *  @n: how many table entries to write
5132  *  @rspq: values for the response queue lookup table
5133  *  @nrspq: number of values in @rspq
5134  *
5135  *  Programs the selected part of the VI's RSS mapping table with the
5136  *  provided values.  If @nrspq < @n the supplied values are used repeatedly
5137  *  until the full table range is populated.
5138  *
5139  *  The caller must ensure the values in @rspq are in the range allowed for
5140  *  @viid.
5141  */
5142 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5143             int start, int n, const u16 *rspq, unsigned int nrspq)
5144 {
5145     int ret;
5146     const u16 *rsp = rspq;
5147     const u16 *rsp_end = rspq + nrspq;
5148     struct fw_rss_ind_tbl_cmd cmd;
5149 
5150     memset(&cmd, 0, sizeof(cmd));
5151     cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5152                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5153                    FW_RSS_IND_TBL_CMD_VIID_V(viid));
5154     cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5155 
5156     /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5157     while (n > 0) {
5158         int nq = min(n, 32);
5159         __be32 *qp = &cmd.iq0_to_iq2;
5160 
5161         cmd.niqid = cpu_to_be16(nq);
5162         cmd.startidx = cpu_to_be16(start);
5163 
5164         start += nq;
5165         n -= nq;
5166 
5167         while (nq > 0) {
5168             unsigned int v;
5169 
5170             v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5171             if (++rsp >= rsp_end)
5172                 rsp = rspq;
5173             v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5174             if (++rsp >= rsp_end)
5175                 rsp = rspq;
5176             v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5177             if (++rsp >= rsp_end)
5178                 rsp = rspq;
5179 
5180             *qp++ = cpu_to_be32(v);
5181             nq -= 3;
5182         }
5183 
5184         ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5185         if (ret)
5186             return ret;
5187     }
5188     return 0;
5189 }
5190 
5191 /**
5192  *  t4_config_glbl_rss - configure the global RSS mode
5193  *  @adapter: the adapter
5194  *  @mbox: mbox to use for the FW command
5195  *  @mode: global RSS mode
5196  *  @flags: mode-specific flags
5197  *
5198  *  Sets the global RSS mode.
5199  */
5200 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5201                unsigned int flags)
5202 {
5203     struct fw_rss_glb_config_cmd c;
5204 
5205     memset(&c, 0, sizeof(c));
5206     c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5207                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5208     c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5209     if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5210         c.u.manual.mode_pkd =
5211             cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5212     } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5213         c.u.basicvirtual.mode_pkd =
5214             cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5215         c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5216     } else
5217         return -EINVAL;
5218     return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5219 }
5220 
5221 /**
5222  *  t4_config_vi_rss - configure per VI RSS settings
5223  *  @adapter: the adapter
5224  *  @mbox: mbox to use for the FW command
5225  *  @viid: the VI id
5226  *  @flags: RSS flags
5227  *  @defq: id of the default RSS queue for the VI.
5228  *
5229  *  Configures VI-specific RSS properties.
5230  */
5231 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5232              unsigned int flags, unsigned int defq)
5233 {
5234     struct fw_rss_vi_config_cmd c;
5235 
5236     memset(&c, 0, sizeof(c));
5237     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5238                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5239                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5240     c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5241     c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5242                     FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5243     return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5244 }
5245 
5246 /* Read an RSS table row */
5247 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5248 {
5249     t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5250     return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5251                    5, 0, val);
5252 }
5253 
5254 /**
5255  *  t4_read_rss - read the contents of the RSS mapping table
5256  *  @adapter: the adapter
5257  *  @map: holds the contents of the RSS mapping table
5258  *
5259  *  Reads the contents of the RSS hash->queue mapping table.
5260  */
5261 int t4_read_rss(struct adapter *adapter, u16 *map)
5262 {
5263     int i, ret, nentries;
5264     u32 val;
5265 
5266     nentries = t4_chip_rss_size(adapter);
5267     for (i = 0; i < nentries / 2; ++i) {
5268         ret = rd_rss_row(adapter, i, &val);
5269         if (ret)
5270             return ret;
5271         *map++ = LKPTBLQUEUE0_G(val);
5272         *map++ = LKPTBLQUEUE1_G(val);
5273     }
5274     return 0;
5275 }
5276 
5277 static unsigned int t4_use_ldst(struct adapter *adap)
5278 {
5279     return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5280 }
5281 
5282 /**
5283  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5284  * @adap: the adapter
5285  * @cmd: TP fw ldst address space type
5286  * @vals: where the indirect register values are stored/written
5287  * @nregs: how many indirect registers to read/write
5288  * @start_index: index of first indirect register to read/write
5289  * @rw: Read (1) or Write (0)
5290  * @sleep_ok: if true we may sleep while awaiting command completion
5291  *
5292  * Access TP indirect registers through LDST
5293  */
5294 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5295                 unsigned int nregs, unsigned int start_index,
5296                 unsigned int rw, bool sleep_ok)
5297 {
5298     int ret = 0;
5299     unsigned int i;
5300     struct fw_ldst_cmd c;
5301 
5302     for (i = 0; i < nregs; i++) {
5303         memset(&c, 0, sizeof(c));
5304         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5305                         FW_CMD_REQUEST_F |
5306                         (rw ? FW_CMD_READ_F :
5307                               FW_CMD_WRITE_F) |
5308                         FW_LDST_CMD_ADDRSPACE_V(cmd));
5309         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5310 
5311         c.u.addrval.addr = cpu_to_be32(start_index + i);
5312         c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5313         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5314                       sleep_ok);
5315         if (ret)
5316             return ret;
5317 
5318         if (rw)
5319             vals[i] = be32_to_cpu(c.u.addrval.val);
5320     }
5321     return 0;
5322 }
5323 
5324 /**
5325  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5326  * @adap: the adapter
5327  * @reg_addr: Address Register
5328  * @reg_data: Data register
5329  * @buff: where the indirect register values are stored/written
5330  * @nregs: how many indirect registers to read/write
5331  * @start_index: index of first indirect register to read/write
5332  * @rw: READ(1) or WRITE(0)
5333  * @sleep_ok: if true we may sleep while awaiting command completion
5334  *
5335  * Read/Write TP indirect registers through LDST if possible.
5336  * Else, use backdoor access
5337  **/
5338 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5339                   u32 *buff, u32 nregs, u32 start_index, int rw,
5340                   bool sleep_ok)
5341 {
5342     int rc = -EINVAL;
5343     int cmd;
5344 
5345     switch (reg_addr) {
5346     case TP_PIO_ADDR_A:
5347         cmd = FW_LDST_ADDRSPC_TP_PIO;
5348         break;
5349     case TP_TM_PIO_ADDR_A:
5350         cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5351         break;
5352     case TP_MIB_INDEX_A:
5353         cmd = FW_LDST_ADDRSPC_TP_MIB;
5354         break;
5355     default:
5356         goto indirect_access;
5357     }
5358 
5359     if (t4_use_ldst(adap))
5360         rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5361                       sleep_ok);
5362 
5363 indirect_access:
5364 
5365     if (rc) {
5366         if (rw)
5367             t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5368                      start_index);
5369         else
5370             t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5371                       start_index);
5372     }
5373 }
5374 
5375 /**
5376  * t4_tp_pio_read - Read TP PIO registers
5377  * @adap: the adapter
5378  * @buff: where the indirect register values are written
5379  * @nregs: how many indirect registers to read
5380  * @start_index: index of first indirect register to read
5381  * @sleep_ok: if true we may sleep while awaiting command completion
5382  *
5383  * Read TP PIO Registers
5384  **/
5385 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5386             u32 start_index, bool sleep_ok)
5387 {
5388     t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5389               start_index, 1, sleep_ok);
5390 }
5391 
5392 /**
5393  * t4_tp_pio_write - Write TP PIO registers
5394  * @adap: the adapter
5395  * @buff: where the indirect register values are stored
5396  * @nregs: how many indirect registers to write
5397  * @start_index: index of first indirect register to write
5398  * @sleep_ok: if true we may sleep while awaiting command completion
5399  *
5400  * Write TP PIO Registers
5401  **/
5402 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5403                 u32 start_index, bool sleep_ok)
5404 {
5405     t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5406               start_index, 0, sleep_ok);
5407 }
5408 
5409 /**
5410  * t4_tp_tm_pio_read - Read TP TM PIO registers
5411  * @adap: the adapter
5412  * @buff: where the indirect register values are written
5413  * @nregs: how many indirect registers to read
5414  * @start_index: index of first indirect register to read
5415  * @sleep_ok: if true we may sleep while awaiting command completion
5416  *
5417  * Read TP TM PIO Registers
5418  **/
5419 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5420                u32 start_index, bool sleep_ok)
5421 {
5422     t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5423               nregs, start_index, 1, sleep_ok);
5424 }
5425 
5426 /**
5427  * t4_tp_mib_read - Read TP MIB registers
5428  * @adap: the adapter
5429  * @buff: where the indirect register values are written
5430  * @nregs: how many indirect registers to read
5431  * @start_index: index of first indirect register to read
5432  * @sleep_ok: if true we may sleep while awaiting command completion
5433  *
5434  * Read TP MIB Registers
5435  **/
5436 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5437             bool sleep_ok)
5438 {
5439     t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5440               start_index, 1, sleep_ok);
5441 }
5442 
5443 /**
5444  *  t4_read_rss_key - read the global RSS key
5445  *  @adap: the adapter
5446  *  @key: 10-entry array holding the 320-bit RSS key
5447  *      @sleep_ok: if true we may sleep while awaiting command completion
5448  *
5449  *  Reads the global 320-bit RSS key.
5450  */
5451 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5452 {
5453     t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5454 }
5455 
5456 /**
5457  *  t4_write_rss_key - program one of the RSS keys
5458  *  @adap: the adapter
5459  *  @key: 10-entry array holding the 320-bit RSS key
5460  *  @idx: which RSS key to write
5461  *      @sleep_ok: if true we may sleep while awaiting command completion
5462  *
5463  *  Writes one of the RSS keys with the given 320-bit value.  If @idx is
5464  *  0..15 the corresponding entry in the RSS key table is written,
5465  *  otherwise the global RSS key is written.
5466  */
5467 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5468               bool sleep_ok)
5469 {
5470     u8 rss_key_addr_cnt = 16;
5471     u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5472 
5473     /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5474      * allows access to key addresses 16-63 by using KeyWrAddrX
5475      * as index[5:4](upper 2) into key table
5476      */
5477     if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5478         (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5479         rss_key_addr_cnt = 32;
5480 
5481     t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5482 
5483     if (idx >= 0 && idx < rss_key_addr_cnt) {
5484         if (rss_key_addr_cnt > 16)
5485             t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5486                      KEYWRADDRX_V(idx >> 4) |
5487                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5488         else
5489             t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5490                      KEYWRADDR_V(idx) | KEYWREN_F);
5491     }
5492 }
5493 
5494 /**
5495  *  t4_read_rss_pf_config - read PF RSS Configuration Table
5496  *  @adapter: the adapter
5497  *  @index: the entry in the PF RSS table to read
5498  *  @valp: where to store the returned value
5499  *      @sleep_ok: if true we may sleep while awaiting command completion
5500  *
5501  *  Reads the PF RSS Configuration Table at the specified index and returns
5502  *  the value found there.
5503  */
5504 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5505                u32 *valp, bool sleep_ok)
5506 {
5507     t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5508 }
5509 
5510 /**
5511  *  t4_read_rss_vf_config - read VF RSS Configuration Table
5512  *  @adapter: the adapter
5513  *  @index: the entry in the VF RSS table to read
5514  *  @vfl: where to store the returned VFL
5515  *  @vfh: where to store the returned VFH
5516  *      @sleep_ok: if true we may sleep while awaiting command completion
5517  *
5518  *  Reads the VF RSS Configuration Table at the specified index and returns
5519  *  the (VFL, VFH) values found there.
5520  */
5521 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5522                u32 *vfl, u32 *vfh, bool sleep_ok)
5523 {
5524     u32 vrt, mask, data;
5525 
5526     if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5527         mask = VFWRADDR_V(VFWRADDR_M);
5528         data = VFWRADDR_V(index);
5529     } else {
5530          mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5531          data = T6_VFWRADDR_V(index);
5532     }
5533 
5534     /* Request that the index'th VF Table values be read into VFL/VFH.
5535      */
5536     vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5537     vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5538     vrt |= data | VFRDEN_F;
5539     t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5540 
5541     /* Grab the VFL/VFH values ...
5542      */
5543     t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5544     t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5545 }
5546 
5547 /**
5548  *  t4_read_rss_pf_map - read PF RSS Map
5549  *  @adapter: the adapter
5550  *      @sleep_ok: if true we may sleep while awaiting command completion
5551  *
5552  *  Reads the PF RSS Map register and returns its value.
5553  */
5554 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5555 {
5556     u32 pfmap;
5557 
5558     t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5559     return pfmap;
5560 }
5561 
5562 /**
5563  *  t4_read_rss_pf_mask - read PF RSS Mask
5564  *  @adapter: the adapter
5565  *      @sleep_ok: if true we may sleep while awaiting command completion
5566  *
5567  *  Reads the PF RSS Mask register and returns its value.
5568  */
5569 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5570 {
5571     u32 pfmask;
5572 
5573     t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5574     return pfmask;
5575 }
5576 
5577 /**
5578  *  t4_tp_get_tcp_stats - read TP's TCP MIB counters
5579  *  @adap: the adapter
5580  *  @v4: holds the TCP/IP counter values
5581  *  @v6: holds the TCP/IPv6 counter values
5582  *      @sleep_ok: if true we may sleep while awaiting command completion
5583  *
5584  *  Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5585  *  Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5586  */
5587 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5588              struct tp_tcp_stats *v6, bool sleep_ok)
5589 {
5590     u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5591 
5592 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5593 #define STAT(x)     val[STAT_IDX(x)]
5594 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5595 
5596     if (v4) {
5597         t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5598                    TP_MIB_TCP_OUT_RST_A, sleep_ok);
5599         v4->tcp_out_rsts = STAT(OUT_RST);
5600         v4->tcp_in_segs  = STAT64(IN_SEG);
5601         v4->tcp_out_segs = STAT64(OUT_SEG);
5602         v4->tcp_retrans_segs = STAT64(RXT_SEG);
5603     }
5604     if (v6) {
5605         t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5606                    TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5607         v6->tcp_out_rsts = STAT(OUT_RST);
5608         v6->tcp_in_segs  = STAT64(IN_SEG);
5609         v6->tcp_out_segs = STAT64(OUT_SEG);
5610         v6->tcp_retrans_segs = STAT64(RXT_SEG);
5611     }
5612 #undef STAT64
5613 #undef STAT
5614 #undef STAT_IDX
5615 }
5616 
5617 /**
5618  *  t4_tp_get_err_stats - read TP's error MIB counters
5619  *  @adap: the adapter
5620  *  @st: holds the counter values
5621  *      @sleep_ok: if true we may sleep while awaiting command completion
5622  *
5623  *  Returns the values of TP's error counters.
5624  */
5625 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5626              bool sleep_ok)
5627 {
5628     int nchan = adap->params.arch.nchan;
5629 
5630     t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5631                sleep_ok);
5632     t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5633                sleep_ok);
5634     t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5635                sleep_ok);
5636     t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5637                TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5638     t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5639                TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5640     t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5641                sleep_ok);
5642     t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5643                TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5644     t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5645                TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5646     t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5647                sleep_ok);
5648 }
5649 
5650 /**
5651  *  t4_tp_get_cpl_stats - read TP's CPL MIB counters
5652  *  @adap: the adapter
5653  *  @st: holds the counter values
5654  *      @sleep_ok: if true we may sleep while awaiting command completion
5655  *
5656  *  Returns the values of TP's CPL counters.
5657  */
5658 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5659              bool sleep_ok)
5660 {
5661     int nchan = adap->params.arch.nchan;
5662 
5663     t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5664 
5665     t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5666 }
5667 
5668 /**
5669  *  t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5670  *  @adap: the adapter
5671  *  @st: holds the counter values
5672  *      @sleep_ok: if true we may sleep while awaiting command completion
5673  *
5674  *  Returns the values of TP's RDMA counters.
5675  */
5676 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5677               bool sleep_ok)
5678 {
5679     t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5680                sleep_ok);
5681 }
5682 
5683 /**
5684  *  t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5685  *  @adap: the adapter
5686  *  @idx: the port index
5687  *  @st: holds the counter values
5688  *      @sleep_ok: if true we may sleep while awaiting command completion
5689  *
5690  *  Returns the values of TP's FCoE counters for the selected port.
5691  */
5692 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5693                struct tp_fcoe_stats *st, bool sleep_ok)
5694 {
5695     u32 val[2];
5696 
5697     t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5698                sleep_ok);
5699 
5700     t4_tp_mib_read(adap, &st->frames_drop, 1,
5701                TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5702 
5703     t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5704                sleep_ok);
5705 
5706     st->octets_ddp = ((u64)val[0] << 32) | val[1];
5707 }
5708 
5709 /**
5710  *  t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5711  *  @adap: the adapter
5712  *  @st: holds the counter values
5713  *      @sleep_ok: if true we may sleep while awaiting command completion
5714  *
5715  *  Returns the values of TP's counters for non-TCP directly-placed packets.
5716  */
5717 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5718               bool sleep_ok)
5719 {
5720     u32 val[4];
5721 
5722     t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5723     st->frames = val[0];
5724     st->drops = val[1];
5725     st->octets = ((u64)val[2] << 32) | val[3];
5726 }
5727 
5728 /**
5729  *  t4_read_mtu_tbl - returns the values in the HW path MTU table
5730  *  @adap: the adapter
5731  *  @mtus: where to store the MTU values
5732  *  @mtu_log: where to store the MTU base-2 log (may be %NULL)
5733  *
5734  *  Reads the HW path MTU table.
5735  */
5736 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5737 {
5738     u32 v;
5739     int i;
5740 
5741     for (i = 0; i < NMTUS; ++i) {
5742         t4_write_reg(adap, TP_MTU_TABLE_A,
5743                  MTUINDEX_V(0xff) | MTUVALUE_V(i));
5744         v = t4_read_reg(adap, TP_MTU_TABLE_A);
5745         mtus[i] = MTUVALUE_G(v);
5746         if (mtu_log)
5747             mtu_log[i] = MTUWIDTH_G(v);
5748     }
5749 }
5750 
5751 /**
5752  *  t4_read_cong_tbl - reads the congestion control table
5753  *  @adap: the adapter
5754  *  @incr: where to store the alpha values
5755  *
5756  *  Reads the additive increments programmed into the HW congestion
5757  *  control table.
5758  */
5759 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5760 {
5761     unsigned int mtu, w;
5762 
5763     for (mtu = 0; mtu < NMTUS; ++mtu)
5764         for (w = 0; w < NCCTRL_WIN; ++w) {
5765             t4_write_reg(adap, TP_CCTRL_TABLE_A,
5766                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5767             incr[mtu][w] = (u16)t4_read_reg(adap,
5768                         TP_CCTRL_TABLE_A) & 0x1fff;
5769         }
5770 }
5771 
5772 /**
5773  *  t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5774  *  @adap: the adapter
5775  *  @addr: the indirect TP register address
5776  *  @mask: specifies the field within the register to modify
5777  *  @val: new value for the field
5778  *
5779  *  Sets a field of an indirect TP register to the given value.
5780  */
5781 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5782                 unsigned int mask, unsigned int val)
5783 {
5784     t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5785     val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5786     t4_write_reg(adap, TP_PIO_DATA_A, val);
5787 }
5788 
5789 /**
5790  *  init_cong_ctrl - initialize congestion control parameters
5791  *  @a: the alpha values for congestion control
5792  *  @b: the beta values for congestion control
5793  *
5794  *  Initialize the congestion control parameters.
5795  */
5796 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5797 {
5798     a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5799     a[9] = 2;
5800     a[10] = 3;
5801     a[11] = 4;
5802     a[12] = 5;
5803     a[13] = 6;
5804     a[14] = 7;
5805     a[15] = 8;
5806     a[16] = 9;
5807     a[17] = 10;
5808     a[18] = 14;
5809     a[19] = 17;
5810     a[20] = 21;
5811     a[21] = 25;
5812     a[22] = 30;
5813     a[23] = 35;
5814     a[24] = 45;
5815     a[25] = 60;
5816     a[26] = 80;
5817     a[27] = 100;
5818     a[28] = 200;
5819     a[29] = 300;
5820     a[30] = 400;
5821     a[31] = 500;
5822 
5823     b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5824     b[9] = b[10] = 1;
5825     b[11] = b[12] = 2;
5826     b[13] = b[14] = b[15] = b[16] = 3;
5827     b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5828     b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5829     b[28] = b[29] = 6;
5830     b[30] = b[31] = 7;
5831 }
5832 
5833 /* The minimum additive increment value for the congestion control table */
5834 #define CC_MIN_INCR 2U
5835 
5836 /**
5837  *  t4_load_mtus - write the MTU and congestion control HW tables
5838  *  @adap: the adapter
5839  *  @mtus: the values for the MTU table
5840  *  @alpha: the values for the congestion control alpha parameter
5841  *  @beta: the values for the congestion control beta parameter
5842  *
5843  *  Write the HW MTU table with the supplied MTUs and the high-speed
5844  *  congestion control table with the supplied alpha, beta, and MTUs.
5845  *  We write the two tables together because the additive increments
5846  *  depend on the MTUs.
5847  */
5848 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5849           const unsigned short *alpha, const unsigned short *beta)
5850 {
5851     static const unsigned int avg_pkts[NCCTRL_WIN] = {
5852         2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5853         896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5854         28672, 40960, 57344, 81920, 114688, 163840, 229376
5855     };
5856 
5857     unsigned int i, w;
5858 
5859     for (i = 0; i < NMTUS; ++i) {
5860         unsigned int mtu = mtus[i];
5861         unsigned int log2 = fls(mtu);
5862 
5863         if (!(mtu & ((1 << log2) >> 2)))     /* round */
5864             log2--;
5865         t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5866                  MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5867 
5868         for (w = 0; w < NCCTRL_WIN; ++w) {
5869             unsigned int inc;
5870 
5871             inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5872                   CC_MIN_INCR);
5873 
5874             t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5875                      (w << 16) | (beta[w] << 13) | inc);
5876         }
5877     }
5878 }
5879 
5880 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5881  * clocks.  The formula is
5882  *
5883  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5884  *
5885  * which is equivalent to
5886  *
5887  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5888  */
5889 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5890 {
5891     u64 v = bytes256 * adap->params.vpd.cclk;
5892 
5893     return v * 62 + v / 2;
5894 }
5895 
5896 /**
5897  *  t4_get_chan_txrate - get the current per channel Tx rates
5898  *  @adap: the adapter
5899  *  @nic_rate: rates for NIC traffic
5900  *  @ofld_rate: rates for offloaded traffic
5901  *
5902  *  Return the current Tx rates in bytes/s for NIC and offloaded traffic
5903  *  for each channel.
5904  */
5905 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5906 {
5907     u32 v;
5908 
5909     v = t4_read_reg(adap, TP_TX_TRATE_A);
5910     nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5911     nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5912     if (adap->params.arch.nchan == NCHAN) {
5913         nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5914         nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5915     }
5916 
5917     v = t4_read_reg(adap, TP_TX_ORATE_A);
5918     ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5919     ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5920     if (adap->params.arch.nchan == NCHAN) {
5921         ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5922         ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5923     }
5924 }
5925 
5926 /**
5927  *  t4_set_trace_filter - configure one of the tracing filters
5928  *  @adap: the adapter
5929  *  @tp: the desired trace filter parameters
5930  *  @idx: which filter to configure
5931  *  @enable: whether to enable or disable the filter
5932  *
5933  *  Configures one of the tracing filters available in HW.  If @enable is
5934  *  %0 @tp is not examined and may be %NULL. The user is responsible to
5935  *  set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5936  */
5937 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5938             int idx, int enable)
5939 {
5940     int i, ofst = idx * 4;
5941     u32 data_reg, mask_reg, cfg;
5942 
5943     if (!enable) {
5944         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5945         return 0;
5946     }
5947 
5948     cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5949     if (cfg & TRCMULTIFILTER_F) {
5950         /* If multiple tracers are enabled, then maximum
5951          * capture size is 2.5KB (FIFO size of a single channel)
5952          * minus 2 flits for CPL_TRACE_PKT header.
5953          */
5954         if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5955             return -EINVAL;
5956     } else {
5957         /* If multiple tracers are disabled, to avoid deadlocks
5958          * maximum packet capture size of 9600 bytes is recommended.
5959          * Also in this mode, only trace0 can be enabled and running.
5960          */
5961         if (tp->snap_len > 9600 || idx)
5962             return -EINVAL;
5963     }
5964 
5965     if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5966         tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5967         tp->min_len > TFMINPKTSIZE_M)
5968         return -EINVAL;
5969 
5970     /* stop the tracer we'll be changing */
5971     t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5972 
5973     idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5974     data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5975     mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5976 
5977     for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5978         t4_write_reg(adap, data_reg, tp->data[i]);
5979         t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5980     }
5981     t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5982              TFCAPTUREMAX_V(tp->snap_len) |
5983              TFMINPKTSIZE_V(tp->min_len));
5984     t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5985              TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5986              (is_t4(adap->params.chip) ?
5987              TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5988              T5_TFPORT_V(tp->port) | T5_TFEN_F |
5989              T5_TFINVERTMATCH_V(tp->invert)));
5990 
5991     return 0;
5992 }
5993 
5994 /**
5995  *  t4_get_trace_filter - query one of the tracing filters
5996  *  @adap: the adapter
5997  *  @tp: the current trace filter parameters
5998  *  @idx: which trace filter to query
5999  *  @enabled: non-zero if the filter is enabled
6000  *
6001  *  Returns the current settings of one of the HW tracing filters.
6002  */
6003 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6004              int *enabled)
6005 {
6006     u32 ctla, ctlb;
6007     int i, ofst = idx * 4;
6008     u32 data_reg, mask_reg;
6009 
6010     ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6011     ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6012 
6013     if (is_t4(adap->params.chip)) {
6014         *enabled = !!(ctla & TFEN_F);
6015         tp->port =  TFPORT_G(ctla);
6016         tp->invert = !!(ctla & TFINVERTMATCH_F);
6017     } else {
6018         *enabled = !!(ctla & T5_TFEN_F);
6019         tp->port = T5_TFPORT_G(ctla);
6020         tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6021     }
6022     tp->snap_len = TFCAPTUREMAX_G(ctlb);
6023     tp->min_len = TFMINPKTSIZE_G(ctlb);
6024     tp->skip_ofst = TFOFFSET_G(ctla);
6025     tp->skip_len = TFLENGTH_G(ctla);
6026 
6027     ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6028     data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6029     mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6030 
6031     for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6032         tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6033         tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6034     }
6035 }
6036 
6037 /**
6038  *  t4_pmtx_get_stats - returns the HW stats from PMTX
6039  *  @adap: the adapter
6040  *  @cnt: where to store the count statistics
6041  *  @cycles: where to store the cycle statistics
6042  *
6043  *  Returns performance statistics from PMTX.
6044  */
6045 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6046 {
6047     int i;
6048     u32 data[2];
6049 
6050     for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6051         t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6052         cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6053         if (is_t4(adap->params.chip)) {
6054             cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6055         } else {
6056             t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6057                      PM_TX_DBG_DATA_A, data, 2,
6058                      PM_TX_DBG_STAT_MSB_A);
6059             cycles[i] = (((u64)data[0] << 32) | data[1]);
6060         }
6061     }
6062 }
6063 
6064 /**
6065  *  t4_pmrx_get_stats - returns the HW stats from PMRX
6066  *  @adap: the adapter
6067  *  @cnt: where to store the count statistics
6068  *  @cycles: where to store the cycle statistics
6069  *
6070  *  Returns performance statistics from PMRX.
6071  */
6072 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6073 {
6074     int i;
6075     u32 data[2];
6076 
6077     for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6078         t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6079         cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6080         if (is_t4(adap->params.chip)) {
6081             cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6082         } else {
6083             t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6084                      PM_RX_DBG_DATA_A, data, 2,
6085                      PM_RX_DBG_STAT_MSB_A);
6086             cycles[i] = (((u64)data[0] << 32) | data[1]);
6087         }
6088     }
6089 }
6090 
6091 /**
6092  *  compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6093  *  @adapter: the adapter
6094  *  @pidx: the port index
6095  *
6096  *  Computes and returns a bitmap indicating which MPS buffer groups are
6097  *  associated with the given Port.  Bit i is set if buffer group i is
6098  *  used by the Port.
6099  */
6100 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6101                           int pidx)
6102 {
6103     unsigned int chip_version, nports;
6104 
6105     chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6106     nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6107 
6108     switch (chip_version) {
6109     case CHELSIO_T4:
6110     case CHELSIO_T5:
6111         switch (nports) {
6112         case 1: return 0xf;
6113         case 2: return 3 << (2 * pidx);
6114         case 4: return 1 << pidx;
6115         }
6116         break;
6117 
6118     case CHELSIO_T6:
6119         switch (nports) {
6120         case 2: return 1 << (2 * pidx);
6121         }
6122         break;
6123     }
6124 
6125     dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6126         chip_version, nports);
6127 
6128     return 0;
6129 }
6130 
6131 /**
6132  *  t4_get_mps_bg_map - return the buffer groups associated with a port
6133  *  @adapter: the adapter
6134  *  @pidx: the port index
6135  *
6136  *  Returns a bitmap indicating which MPS buffer groups are associated
6137  *  with the given Port.  Bit i is set if buffer group i is used by the
6138  *  Port.
6139  */
6140 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6141 {
6142     u8 *mps_bg_map;
6143     unsigned int nports;
6144 
6145     nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6146     if (pidx >= nports) {
6147         CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6148             pidx, nports);
6149         return 0;
6150     }
6151 
6152     /* If we've already retrieved/computed this, just return the result.
6153      */
6154     mps_bg_map = adapter->params.mps_bg_map;
6155     if (mps_bg_map[pidx])
6156         return mps_bg_map[pidx];
6157 
6158     /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6159      * If we're talking to such Firmware, let it tell us.  If the new
6160      * API isn't supported, revert back to old hardcoded way.  The value
6161      * obtained from Firmware is encoded in below format:
6162      *
6163      * val = (( MPSBGMAP[Port 3] << 24 ) |
6164      *        ( MPSBGMAP[Port 2] << 16 ) |
6165      *        ( MPSBGMAP[Port 1] <<  8 ) |
6166      *        ( MPSBGMAP[Port 0] <<  0 ))
6167      */
6168     if (adapter->flags & CXGB4_FW_OK) {
6169         u32 param, val;
6170         int ret;
6171 
6172         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6173              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6174         ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6175                      0, 1, &param, &val);
6176         if (!ret) {
6177             int p;
6178 
6179             /* Store the BG Map for all of the Ports in order to
6180              * avoid more calls to the Firmware in the future.
6181              */
6182             for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6183                 mps_bg_map[p] = val & 0xff;
6184 
6185             return mps_bg_map[pidx];
6186         }
6187     }
6188 
6189     /* Either we're not talking to the Firmware or we're dealing with
6190      * older Firmware which doesn't support the new API to get the MPS
6191      * Buffer Group Map.  Fall back to computing it ourselves.
6192      */
6193     mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6194     return mps_bg_map[pidx];
6195 }
6196 
6197 /**
6198  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6199  *      @adapter: the adapter
6200  *      @pidx: the port index
6201  */
6202 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6203 {
6204     unsigned int nports;
6205     u32 param, val = 0;
6206     int ret;
6207 
6208     nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6209     if (pidx >= nports) {
6210         CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6211             pidx, nports);
6212         return 0;
6213     }
6214 
6215     /* FW version >= 1.16.44.0 can determine E2C channel map using
6216      * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6217      */
6218     param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6219          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6220     ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6221                  0, 1, &param, &val);
6222     if (!ret)
6223         return (val >> (8 * pidx)) & 0xff;
6224 
6225     return 0;
6226 }
6227 
6228 /**
6229  *  t4_get_tp_ch_map - return TP ingress channels associated with a port
6230  *  @adap: the adapter
6231  *  @pidx: the port index
6232  *
6233  *  Returns a bitmap indicating which TP Ingress Channels are associated
6234  *  with a given Port.  Bit i is set if TP Ingress Channel i is used by
6235  *  the Port.
6236  */
6237 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6238 {
6239     unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6240     unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6241 
6242     if (pidx >= nports) {
6243         dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6244              pidx, nports);
6245         return 0;
6246     }
6247 
6248     switch (chip_version) {
6249     case CHELSIO_T4:
6250     case CHELSIO_T5:
6251         /* Note that this happens to be the same values as the MPS
6252          * Buffer Group Map for these Chips.  But we replicate the code
6253          * here because they're really separate concepts.
6254          */
6255         switch (nports) {
6256         case 1: return 0xf;
6257         case 2: return 3 << (2 * pidx);
6258         case 4: return 1 << pidx;
6259         }
6260         break;
6261 
6262     case CHELSIO_T6:
6263         switch (nports) {
6264         case 1:
6265         case 2: return 1 << pidx;
6266         }
6267         break;
6268     }
6269 
6270     dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6271         chip_version, nports);
6272     return 0;
6273 }
6274 
6275 /**
6276  *      t4_get_port_type_description - return Port Type string description
6277  *      @port_type: firmware Port Type enumeration
6278  */
6279 const char *t4_get_port_type_description(enum fw_port_type port_type)
6280 {
6281     static const char *const port_type_description[] = {
6282         "Fiber_XFI",
6283         "Fiber_XAUI",
6284         "BT_SGMII",
6285         "BT_XFI",
6286         "BT_XAUI",
6287         "KX4",
6288         "CX4",
6289         "KX",
6290         "KR",
6291         "SFP",
6292         "BP_AP",
6293         "BP4_AP",
6294         "QSFP_10G",
6295         "QSA",
6296         "QSFP",
6297         "BP40_BA",
6298         "KR4_100G",
6299         "CR4_QSFP",
6300         "CR_QSFP",
6301         "CR2_QSFP",
6302         "SFP28",
6303         "KR_SFP28",
6304         "KR_XLAUI"
6305     };
6306 
6307     if (port_type < ARRAY_SIZE(port_type_description))
6308         return port_type_description[port_type];
6309     return "UNKNOWN";
6310 }
6311 
6312 /**
6313  *      t4_get_port_stats_offset - collect port stats relative to a previous
6314  *                                 snapshot
6315  *      @adap: The adapter
6316  *      @idx: The port
6317  *      @stats: Current stats to fill
6318  *      @offset: Previous stats snapshot
6319  */
6320 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6321                   struct port_stats *stats,
6322                   struct port_stats *offset)
6323 {
6324     u64 *s, *o;
6325     int i;
6326 
6327     t4_get_port_stats(adap, idx, stats);
6328     for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6329             i < (sizeof(struct port_stats) / sizeof(u64));
6330             i++, s++, o++)
6331         *s -= *o;
6332 }
6333 
6334 /**
6335  *  t4_get_port_stats - collect port statistics
6336  *  @adap: the adapter
6337  *  @idx: the port index
6338  *  @p: the stats structure to fill
6339  *
6340  *  Collect statistics related to the given port from HW.
6341  */
6342 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6343 {
6344     u32 bgmap = t4_get_mps_bg_map(adap, idx);
6345     u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6346 
6347 #define GET_STAT(name) \
6348     t4_read_reg64(adap, \
6349     (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6350     T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6351 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6352 
6353     p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6354     p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6355     p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6356     p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6357     p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6358     p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6359     p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6360     p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6361     p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6362     p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6363     p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6364     p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6365     p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6366     p->tx_drop             = GET_STAT(TX_PORT_DROP);
6367     p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6368     p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6369     p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6370     p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6371     p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6372     p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6373     p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6374     p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6375     p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6376 
6377     if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6378         if (stat_ctl & COUNTPAUSESTATTX_F)
6379             p->tx_frames_64 -= p->tx_pause;
6380         if (stat_ctl & COUNTPAUSEMCTX_F)
6381             p->tx_mcast_frames -= p->tx_pause;
6382     }
6383     p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6384     p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6385     p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6386     p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6387     p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6388     p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6389     p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6390     p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6391     p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6392     p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6393     p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6394     p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6395     p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6396     p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6397     p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6398     p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6399     p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6400     p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6401     p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6402     p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6403     p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6404     p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6405     p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6406     p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6407     p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6408     p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6409     p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6410 
6411     if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6412         if (stat_ctl & COUNTPAUSESTATRX_F)
6413             p->rx_frames_64 -= p->rx_pause;
6414         if (stat_ctl & COUNTPAUSEMCRX_F)
6415             p->rx_mcast_frames -= p->rx_pause;
6416     }
6417 
6418     p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6419     p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6420     p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6421     p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6422     p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6423     p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6424     p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6425     p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6426 
6427 #undef GET_STAT
6428 #undef GET_STAT_COM
6429 }
6430 
6431 /**
6432  *  t4_get_lb_stats - collect loopback port statistics
6433  *  @adap: the adapter
6434  *  @idx: the loopback port index
6435  *  @p: the stats structure to fill
6436  *
6437  *  Return HW statistics for the given loopback port.
6438  */
6439 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6440 {
6441     u32 bgmap = t4_get_mps_bg_map(adap, idx);
6442 
6443 #define GET_STAT(name) \
6444     t4_read_reg64(adap, \
6445     (is_t4(adap->params.chip) ? \
6446     PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6447     T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6448 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6449 
6450     p->octets           = GET_STAT(BYTES);
6451     p->frames           = GET_STAT(FRAMES);
6452     p->bcast_frames     = GET_STAT(BCAST);
6453     p->mcast_frames     = GET_STAT(MCAST);
6454     p->ucast_frames     = GET_STAT(UCAST);
6455     p->error_frames     = GET_STAT(ERROR);
6456 
6457     p->frames_64        = GET_STAT(64B);
6458     p->frames_65_127    = GET_STAT(65B_127B);
6459     p->frames_128_255   = GET_STAT(128B_255B);
6460     p->frames_256_511   = GET_STAT(256B_511B);
6461     p->frames_512_1023  = GET_STAT(512B_1023B);
6462     p->frames_1024_1518 = GET_STAT(1024B_1518B);
6463     p->frames_1519_max  = GET_STAT(1519B_MAX);
6464     p->drop             = GET_STAT(DROP_FRAMES);
6465 
6466     p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6467     p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6468     p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6469     p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6470     p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6471     p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6472     p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6473     p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6474 
6475 #undef GET_STAT
6476 #undef GET_STAT_COM
6477 }
6478 
6479 /*     t4_mk_filtdelwr - create a delete filter WR
6480  *     @ftid: the filter ID
6481  *     @wr: the filter work request to populate
6482  *     @qid: ingress queue to receive the delete notification
6483  *
6484  *     Creates a filter work request to delete the supplied filter.  If @qid is
6485  *     negative the delete notification is suppressed.
6486  */
6487 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6488 {
6489     memset(wr, 0, sizeof(*wr));
6490     wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6491     wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6492     wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6493                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6494     wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6495     if (qid >= 0)
6496         wr->rx_chan_rx_rpl_iq =
6497             cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6498 }
6499 
6500 #define INIT_CMD(var, cmd, rd_wr) do { \
6501     (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6502                     FW_CMD_REQUEST_F | \
6503                     FW_CMD_##rd_wr##_F); \
6504     (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6505 } while (0)
6506 
6507 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6508               u32 addr, u32 val)
6509 {
6510     u32 ldst_addrspace;
6511     struct fw_ldst_cmd c;
6512 
6513     memset(&c, 0, sizeof(c));
6514     ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6515     c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6516                     FW_CMD_REQUEST_F |
6517                     FW_CMD_WRITE_F |
6518                     ldst_addrspace);
6519     c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6520     c.u.addrval.addr = cpu_to_be32(addr);
6521     c.u.addrval.val = cpu_to_be32(val);
6522 
6523     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6524 }
6525 
6526 /**
6527  *  t4_mdio_rd - read a PHY register through MDIO
6528  *  @adap: the adapter
6529  *  @mbox: mailbox to use for the FW command
6530  *  @phy_addr: the PHY address
6531  *  @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6532  *  @reg: the register to read
6533  *  @valp: where to store the value
6534  *
6535  *  Issues a FW command through the given mailbox to read a PHY register.
6536  */
6537 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6538            unsigned int mmd, unsigned int reg, u16 *valp)
6539 {
6540     int ret;
6541     u32 ldst_addrspace;
6542     struct fw_ldst_cmd c;
6543 
6544     memset(&c, 0, sizeof(c));
6545     ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6546     c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6547                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
6548                     ldst_addrspace);
6549     c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6550     c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6551                      FW_LDST_CMD_MMD_V(mmd));
6552     c.u.mdio.raddr = cpu_to_be16(reg);
6553 
6554     ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6555     if (ret == 0)
6556         *valp = be16_to_cpu(c.u.mdio.rval);
6557     return ret;
6558 }
6559 
6560 /**
6561  *  t4_mdio_wr - write a PHY register through MDIO
6562  *  @adap: the adapter
6563  *  @mbox: mailbox to use for the FW command
6564  *  @phy_addr: the PHY address
6565  *  @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6566  *  @reg: the register to write
6567  *  @val: value to write
6568  *
6569  *  Issues a FW command through the given mailbox to write a PHY register.
6570  */
6571 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6572            unsigned int mmd, unsigned int reg, u16 val)
6573 {
6574     u32 ldst_addrspace;
6575     struct fw_ldst_cmd c;
6576 
6577     memset(&c, 0, sizeof(c));
6578     ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6579     c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6580                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6581                     ldst_addrspace);
6582     c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6583     c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6584                      FW_LDST_CMD_MMD_V(mmd));
6585     c.u.mdio.raddr = cpu_to_be16(reg);
6586     c.u.mdio.rval = cpu_to_be16(val);
6587 
6588     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6589 }
6590 
6591 /**
6592  *  t4_sge_decode_idma_state - decode the idma state
6593  *  @adapter: the adapter
6594  *  @state: the state idma is stuck in
6595  */
6596 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6597 {
6598     static const char * const t4_decode[] = {
6599         "IDMA_IDLE",
6600         "IDMA_PUSH_MORE_CPL_FIFO",
6601         "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6602         "Not used",
6603         "IDMA_PHYSADDR_SEND_PCIEHDR",
6604         "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6605         "IDMA_PHYSADDR_SEND_PAYLOAD",
6606         "IDMA_SEND_FIFO_TO_IMSG",
6607         "IDMA_FL_REQ_DATA_FL_PREP",
6608         "IDMA_FL_REQ_DATA_FL",
6609         "IDMA_FL_DROP",
6610         "IDMA_FL_H_REQ_HEADER_FL",
6611         "IDMA_FL_H_SEND_PCIEHDR",
6612         "IDMA_FL_H_PUSH_CPL_FIFO",
6613         "IDMA_FL_H_SEND_CPL",
6614         "IDMA_FL_H_SEND_IP_HDR_FIRST",
6615         "IDMA_FL_H_SEND_IP_HDR",
6616         "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6617         "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6618         "IDMA_FL_H_SEND_IP_HDR_PADDING",
6619         "IDMA_FL_D_SEND_PCIEHDR",
6620         "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6621         "IDMA_FL_D_REQ_NEXT_DATA_FL",
6622         "IDMA_FL_SEND_PCIEHDR",
6623         "IDMA_FL_PUSH_CPL_FIFO",
6624         "IDMA_FL_SEND_CPL",
6625         "IDMA_FL_SEND_PAYLOAD_FIRST",
6626         "IDMA_FL_SEND_PAYLOAD",
6627         "IDMA_FL_REQ_NEXT_DATA_FL",
6628         "IDMA_FL_SEND_NEXT_PCIEHDR",
6629         "IDMA_FL_SEND_PADDING",
6630         "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6631         "IDMA_FL_SEND_FIFO_TO_IMSG",
6632         "IDMA_FL_REQ_DATAFL_DONE",
6633         "IDMA_FL_REQ_HEADERFL_DONE",
6634     };
6635     static const char * const t5_decode[] = {
6636         "IDMA_IDLE",
6637         "IDMA_ALMOST_IDLE",
6638         "IDMA_PUSH_MORE_CPL_FIFO",
6639         "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6640         "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6641         "IDMA_PHYSADDR_SEND_PCIEHDR",
6642         "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6643         "IDMA_PHYSADDR_SEND_PAYLOAD",
6644         "IDMA_SEND_FIFO_TO_IMSG",
6645         "IDMA_FL_REQ_DATA_FL",
6646         "IDMA_FL_DROP",
6647         "IDMA_FL_DROP_SEND_INC",
6648         "IDMA_FL_H_REQ_HEADER_FL",
6649         "IDMA_FL_H_SEND_PCIEHDR",
6650         "IDMA_FL_H_PUSH_CPL_FIFO",
6651         "IDMA_FL_H_SEND_CPL",
6652         "IDMA_FL_H_SEND_IP_HDR_FIRST",
6653         "IDMA_FL_H_SEND_IP_HDR",
6654         "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6655         "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6656         "IDMA_FL_H_SEND_IP_HDR_PADDING",
6657         "IDMA_FL_D_SEND_PCIEHDR",
6658         "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6659         "IDMA_FL_D_REQ_NEXT_DATA_FL",
6660         "IDMA_FL_SEND_PCIEHDR",
6661         "IDMA_FL_PUSH_CPL_FIFO",
6662         "IDMA_FL_SEND_CPL",
6663         "IDMA_FL_SEND_PAYLOAD_FIRST",
6664         "IDMA_FL_SEND_PAYLOAD",
6665         "IDMA_FL_REQ_NEXT_DATA_FL",
6666         "IDMA_FL_SEND_NEXT_PCIEHDR",
6667         "IDMA_FL_SEND_PADDING",
6668         "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6669     };
6670     static const char * const t6_decode[] = {
6671         "IDMA_IDLE",
6672         "IDMA_PUSH_MORE_CPL_FIFO",
6673         "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6674         "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6675         "IDMA_PHYSADDR_SEND_PCIEHDR",
6676         "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6677         "IDMA_PHYSADDR_SEND_PAYLOAD",
6678         "IDMA_FL_REQ_DATA_FL",
6679         "IDMA_FL_DROP",
6680         "IDMA_FL_DROP_SEND_INC",
6681         "IDMA_FL_H_REQ_HEADER_FL",
6682         "IDMA_FL_H_SEND_PCIEHDR",
6683         "IDMA_FL_H_PUSH_CPL_FIFO",
6684         "IDMA_FL_H_SEND_CPL",
6685         "IDMA_FL_H_SEND_IP_HDR_FIRST",
6686         "IDMA_FL_H_SEND_IP_HDR",
6687         "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6688         "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6689         "IDMA_FL_H_SEND_IP_HDR_PADDING",
6690         "IDMA_FL_D_SEND_PCIEHDR",
6691         "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6692         "IDMA_FL_D_REQ_NEXT_DATA_FL",
6693         "IDMA_FL_SEND_PCIEHDR",
6694         "IDMA_FL_PUSH_CPL_FIFO",
6695         "IDMA_FL_SEND_CPL",
6696         "IDMA_FL_SEND_PAYLOAD_FIRST",
6697         "IDMA_FL_SEND_PAYLOAD",
6698         "IDMA_FL_REQ_NEXT_DATA_FL",
6699         "IDMA_FL_SEND_NEXT_PCIEHDR",
6700         "IDMA_FL_SEND_PADDING",
6701         "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6702     };
6703     static const u32 sge_regs[] = {
6704         SGE_DEBUG_DATA_LOW_INDEX_2_A,
6705         SGE_DEBUG_DATA_LOW_INDEX_3_A,
6706         SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6707     };
6708     const char **sge_idma_decode;
6709     int sge_idma_decode_nstates;
6710     int i;
6711     unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6712 
6713     /* Select the right set of decode strings to dump depending on the
6714      * adapter chip type.
6715      */
6716     switch (chip_version) {
6717     case CHELSIO_T4:
6718         sge_idma_decode = (const char **)t4_decode;
6719         sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6720         break;
6721 
6722     case CHELSIO_T5:
6723         sge_idma_decode = (const char **)t5_decode;
6724         sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6725         break;
6726 
6727     case CHELSIO_T6:
6728         sge_idma_decode = (const char **)t6_decode;
6729         sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6730         break;
6731 
6732     default:
6733         dev_err(adapter->pdev_dev,
6734             "Unsupported chip version %d\n", chip_version);
6735         return;
6736     }
6737 
6738     if (is_t4(adapter->params.chip)) {
6739         sge_idma_decode = (const char **)t4_decode;
6740         sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6741     } else {
6742         sge_idma_decode = (const char **)t5_decode;
6743         sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6744     }
6745 
6746     if (state < sge_idma_decode_nstates)
6747         CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6748     else
6749         CH_WARN(adapter, "idma state %d unknown\n", state);
6750 
6751     for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6752         CH_WARN(adapter, "SGE register %#x value %#x\n",
6753             sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6754 }
6755 
6756 /**
6757  *      t4_sge_ctxt_flush - flush the SGE context cache
6758  *      @adap: the adapter
6759  *      @mbox: mailbox to use for the FW command
6760  *      @ctxt_type: Egress or Ingress
6761  *
6762  *      Issues a FW command through the given mailbox to flush the
6763  *      SGE context cache.
6764  */
6765 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6766 {
6767     int ret;
6768     u32 ldst_addrspace;
6769     struct fw_ldst_cmd c;
6770 
6771     memset(&c, 0, sizeof(c));
6772     ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6773                          FW_LDST_ADDRSPC_SGE_EGRC :
6774                          FW_LDST_ADDRSPC_SGE_INGC);
6775     c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6776                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
6777                     ldst_addrspace);
6778     c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6779     c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6780 
6781     ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6782     return ret;
6783 }
6784 
6785 /**
6786  *  t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6787  *  @adap: the adapter
6788  *  @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6789  *  @dbqtimers: SGE Doorbell Queue Timer table
6790  *
6791  *  Reads the SGE Doorbell Queue Timer values into the provided table.
6792  *  Returns 0 on success (Firmware and Hardware support this feature),
6793  *  an error on failure.
6794  */
6795 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6796               u16 *dbqtimers)
6797 {
6798     int ret, dbqtimerix;
6799 
6800     ret = 0;
6801     dbqtimerix = 0;
6802     while (dbqtimerix < ndbqtimers) {
6803         int nparams, param;
6804         u32 params[7], vals[7];
6805 
6806         nparams = ndbqtimers - dbqtimerix;
6807         if (nparams > ARRAY_SIZE(params))
6808             nparams = ARRAY_SIZE(params);
6809 
6810         for (param = 0; param < nparams; param++)
6811             params[param] =
6812               (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6813                FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6814                FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6815         ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6816                       nparams, params, vals);
6817         if (ret)
6818             break;
6819 
6820         for (param = 0; param < nparams; param++)
6821             dbqtimers[dbqtimerix++] = vals[param];
6822     }
6823     return ret;
6824 }
6825 
6826 /**
6827  *      t4_fw_hello - establish communication with FW
6828  *      @adap: the adapter
6829  *      @mbox: mailbox to use for the FW command
6830  *      @evt_mbox: mailbox to receive async FW events
6831  *      @master: specifies the caller's willingness to be the device master
6832  *  @state: returns the current device state (if non-NULL)
6833  *
6834  *  Issues a command to establish communication with FW.  Returns either
6835  *  an error (negative integer) or the mailbox of the Master PF.
6836  */
6837 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6838         enum dev_master master, enum dev_state *state)
6839 {
6840     int ret;
6841     struct fw_hello_cmd c;
6842     u32 v;
6843     unsigned int master_mbox;
6844     int retries = FW_CMD_HELLO_RETRIES;
6845 
6846 retry:
6847     memset(&c, 0, sizeof(c));
6848     INIT_CMD(c, HELLO, WRITE);
6849     c.err_to_clearinit = cpu_to_be32(
6850         FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6851         FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6852         FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6853                     mbox : FW_HELLO_CMD_MBMASTER_M) |
6854         FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6855         FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6856         FW_HELLO_CMD_CLEARINIT_F);
6857 
6858     /*
6859      * Issue the HELLO command to the firmware.  If it's not successful
6860      * but indicates that we got a "busy" or "timeout" condition, retry
6861      * the HELLO until we exhaust our retry limit.  If we do exceed our
6862      * retry limit, check to see if the firmware left us any error
6863      * information and report that if so.
6864      */
6865     ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6866     if (ret < 0) {
6867         if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6868             goto retry;
6869         if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6870             t4_report_fw_error(adap);
6871         return ret;
6872     }
6873 
6874     v = be32_to_cpu(c.err_to_clearinit);
6875     master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6876     if (state) {
6877         if (v & FW_HELLO_CMD_ERR_F)
6878             *state = DEV_STATE_ERR;
6879         else if (v & FW_HELLO_CMD_INIT_F)
6880             *state = DEV_STATE_INIT;
6881         else
6882             *state = DEV_STATE_UNINIT;
6883     }
6884 
6885     /*
6886      * If we're not the Master PF then we need to wait around for the
6887      * Master PF Driver to finish setting up the adapter.
6888      *
6889      * Note that we also do this wait if we're a non-Master-capable PF and
6890      * there is no current Master PF; a Master PF may show up momentarily
6891      * and we wouldn't want to fail pointlessly.  (This can happen when an
6892      * OS loads lots of different drivers rapidly at the same time).  In
6893      * this case, the Master PF returned by the firmware will be
6894      * PCIE_FW_MASTER_M so the test below will work ...
6895      */
6896     if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6897         master_mbox != mbox) {
6898         int waiting = FW_CMD_HELLO_TIMEOUT;
6899 
6900         /*
6901          * Wait for the firmware to either indicate an error or
6902          * initialized state.  If we see either of these we bail out
6903          * and report the issue to the caller.  If we exhaust the
6904          * "hello timeout" and we haven't exhausted our retries, try
6905          * again.  Otherwise bail with a timeout error.
6906          */
6907         for (;;) {
6908             u32 pcie_fw;
6909 
6910             msleep(50);
6911             waiting -= 50;
6912 
6913             /*
6914              * If neither Error nor Initialized are indicated
6915              * by the firmware keep waiting till we exhaust our
6916              * timeout ... and then retry if we haven't exhausted
6917              * our retries ...
6918              */
6919             pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6920             if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6921                 if (waiting <= 0) {
6922                     if (retries-- > 0)
6923                         goto retry;
6924 
6925                     return -ETIMEDOUT;
6926                 }
6927                 continue;
6928             }
6929 
6930             /*
6931              * We either have an Error or Initialized condition
6932              * report errors preferentially.
6933              */
6934             if (state) {
6935                 if (pcie_fw & PCIE_FW_ERR_F)
6936                     *state = DEV_STATE_ERR;
6937                 else if (pcie_fw & PCIE_FW_INIT_F)
6938                     *state = DEV_STATE_INIT;
6939             }
6940 
6941             /*
6942              * If we arrived before a Master PF was selected and
6943              * there's not a valid Master PF, grab its identity
6944              * for our caller.
6945              */
6946             if (master_mbox == PCIE_FW_MASTER_M &&
6947                 (pcie_fw & PCIE_FW_MASTER_VLD_F))
6948                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6949             break;
6950         }
6951     }
6952 
6953     return master_mbox;
6954 }
6955 
6956 /**
6957  *  t4_fw_bye - end communication with FW
6958  *  @adap: the adapter
6959  *  @mbox: mailbox to use for the FW command
6960  *
6961  *  Issues a command to terminate communication with FW.
6962  */
6963 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6964 {
6965     struct fw_bye_cmd c;
6966 
6967     memset(&c, 0, sizeof(c));
6968     INIT_CMD(c, BYE, WRITE);
6969     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6970 }
6971 
6972 /**
6973  *  t4_early_init - ask FW to initialize the device
6974  *  @adap: the adapter
6975  *  @mbox: mailbox to use for the FW command
6976  *
6977  *  Issues a command to FW to partially initialize the device.  This
6978  *  performs initialization that generally doesn't depend on user input.
6979  */
6980 int t4_early_init(struct adapter *adap, unsigned int mbox)
6981 {
6982     struct fw_initialize_cmd c;
6983 
6984     memset(&c, 0, sizeof(c));
6985     INIT_CMD(c, INITIALIZE, WRITE);
6986     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6987 }
6988 
6989 /**
6990  *  t4_fw_reset - issue a reset to FW
6991  *  @adap: the adapter
6992  *  @mbox: mailbox to use for the FW command
6993  *  @reset: specifies the type of reset to perform
6994  *
6995  *  Issues a reset command of the specified type to FW.
6996  */
6997 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6998 {
6999     struct fw_reset_cmd c;
7000 
7001     memset(&c, 0, sizeof(c));
7002     INIT_CMD(c, RESET, WRITE);
7003     c.val = cpu_to_be32(reset);
7004     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7005 }
7006 
7007 /**
7008  *  t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7009  *  @adap: the adapter
7010  *  @mbox: mailbox to use for the FW RESET command (if desired)
7011  *  @force: force uP into RESET even if FW RESET command fails
7012  *
7013  *  Issues a RESET command to firmware (if desired) with a HALT indication
7014  *  and then puts the microprocessor into RESET state.  The RESET command
7015  *  will only be issued if a legitimate mailbox is provided (mbox <=
7016  *  PCIE_FW_MASTER_M).
7017  *
7018  *  This is generally used in order for the host to safely manipulate the
7019  *  adapter without fear of conflicting with whatever the firmware might
7020  *  be doing.  The only way out of this state is to RESTART the firmware
7021  *  ...
7022  */
7023 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7024 {
7025     int ret = 0;
7026 
7027     /*
7028      * If a legitimate mailbox is provided, issue a RESET command
7029      * with a HALT indication.
7030      */
7031     if (mbox <= PCIE_FW_MASTER_M) {
7032         struct fw_reset_cmd c;
7033 
7034         memset(&c, 0, sizeof(c));
7035         INIT_CMD(c, RESET, WRITE);
7036         c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7037         c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7038         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039     }
7040 
7041     /*
7042      * Normally we won't complete the operation if the firmware RESET
7043      * command fails but if our caller insists we'll go ahead and put the
7044      * uP into RESET.  This can be useful if the firmware is hung or even
7045      * missing ...  We'll have to take the risk of putting the uP into
7046      * RESET without the cooperation of firmware in that case.
7047      *
7048      * We also force the firmware's HALT flag to be on in case we bypassed
7049      * the firmware RESET command above or we're dealing with old firmware
7050      * which doesn't have the HALT capability.  This will serve as a flag
7051      * for the incoming firmware to know that it's coming out of a HALT
7052      * rather than a RESET ... if it's new enough to understand that ...
7053      */
7054     if (ret == 0 || force) {
7055         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7056         t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7057                  PCIE_FW_HALT_F);
7058     }
7059 
7060     /*
7061      * And we always return the result of the firmware RESET command
7062      * even when we force the uP into RESET ...
7063      */
7064     return ret;
7065 }
7066 
7067 /**
7068  *  t4_fw_restart - restart the firmware by taking the uP out of RESET
7069  *  @adap: the adapter
7070  *  @mbox: mailbox to use for the FW command
7071  *  @reset: if we want to do a RESET to restart things
7072  *
7073  *  Restart firmware previously halted by t4_fw_halt().  On successful
7074  *  return the previous PF Master remains as the new PF Master and there
7075  *  is no need to issue a new HELLO command, etc.
7076  *
7077  *  We do this in two ways:
7078  *
7079  *   1. If we're dealing with newer firmware we'll simply want to take
7080  *      the chip's microprocessor out of RESET.  This will cause the
7081  *      firmware to start up from its start vector.  And then we'll loop
7082  *      until the firmware indicates it's started again (PCIE_FW.HALT
7083  *      reset to 0) or we timeout.
7084  *
7085  *   2. If we're dealing with older firmware then we'll need to RESET
7086  *      the chip since older firmware won't recognize the PCIE_FW.HALT
7087  *      flag and automatically RESET itself on startup.
7088  */
7089 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7090 {
7091     if (reset) {
7092         /*
7093          * Since we're directing the RESET instead of the firmware
7094          * doing it automatically, we need to clear the PCIE_FW.HALT
7095          * bit.
7096          */
7097         t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7098 
7099         /*
7100          * If we've been given a valid mailbox, first try to get the
7101          * firmware to do the RESET.  If that works, great and we can
7102          * return success.  Otherwise, if we haven't been given a
7103          * valid mailbox or the RESET command failed, fall back to
7104          * hitting the chip with a hammer.
7105          */
7106         if (mbox <= PCIE_FW_MASTER_M) {
7107             t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7108             msleep(100);
7109             if (t4_fw_reset(adap, mbox,
7110                     PIORST_F | PIORSTMODE_F) == 0)
7111                 return 0;
7112         }
7113 
7114         t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7115         msleep(2000);
7116     } else {
7117         int ms;
7118 
7119         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7120         for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7121             if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7122                 return 0;
7123             msleep(100);
7124             ms += 100;
7125         }
7126         return -ETIMEDOUT;
7127     }
7128     return 0;
7129 }
7130 
7131 /**
7132  *  t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7133  *  @adap: the adapter
7134  *  @mbox: mailbox to use for the FW RESET command (if desired)
7135  *  @fw_data: the firmware image to write
7136  *  @size: image size
7137  *  @force: force upgrade even if firmware doesn't cooperate
7138  *
7139  *  Perform all of the steps necessary for upgrading an adapter's
7140  *  firmware image.  Normally this requires the cooperation of the
7141  *  existing firmware in order to halt all existing activities
7142  *  but if an invalid mailbox token is passed in we skip that step
7143  *  (though we'll still put the adapter microprocessor into RESET in
7144  *  that case).
7145  *
7146  *  On successful return the new firmware will have been loaded and
7147  *  the adapter will have been fully RESET losing all previous setup
7148  *  state.  On unsuccessful return the adapter may be completely hosed ...
7149  *  positive errno indicates that the adapter is ~probably~ intact, a
7150  *  negative errno indicates that things are looking bad ...
7151  */
7152 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7153           const u8 *fw_data, unsigned int size, int force)
7154 {
7155     const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7156     int reset, ret;
7157 
7158     if (!t4_fw_matches_chip(adap, fw_hdr))
7159         return -EINVAL;
7160 
7161     /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7162      * set wont be sent when we are flashing FW.
7163      */
7164     adap->flags &= ~CXGB4_FW_OK;
7165 
7166     ret = t4_fw_halt(adap, mbox, force);
7167     if (ret < 0 && !force)
7168         goto out;
7169 
7170     ret = t4_load_fw(adap, fw_data, size);
7171     if (ret < 0)
7172         goto out;
7173 
7174     /*
7175      * If there was a Firmware Configuration File stored in FLASH,
7176      * there's a good chance that it won't be compatible with the new
7177      * Firmware.  In order to prevent difficult to diagnose adapter
7178      * initialization issues, we clear out the Firmware Configuration File
7179      * portion of the FLASH .  The user will need to re-FLASH a new
7180      * Firmware Configuration File which is compatible with the new
7181      * Firmware if that's desired.
7182      */
7183     (void)t4_load_cfg(adap, NULL, 0);
7184 
7185     /*
7186      * Older versions of the firmware don't understand the new
7187      * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7188      * restart.  So for newly loaded older firmware we'll have to do the
7189      * RESET for it so it starts up on a clean slate.  We can tell if
7190      * the newly loaded firmware will handle this right by checking
7191      * its header flags to see if it advertises the capability.
7192      */
7193     reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7194     ret = t4_fw_restart(adap, mbox, reset);
7195 
7196     /* Grab potentially new Firmware Device Log parameters so we can see
7197      * how healthy the new Firmware is.  It's okay to contact the new
7198      * Firmware for these parameters even though, as far as it's
7199      * concerned, we've never said "HELLO" to it ...
7200      */
7201     (void)t4_init_devlog_params(adap);
7202 out:
7203     adap->flags |= CXGB4_FW_OK;
7204     return ret;
7205 }
7206 
7207 /**
7208  *  t4_fl_pkt_align - return the fl packet alignment
7209  *  @adap: the adapter
7210  *
7211  *  T4 has a single field to specify the packing and padding boundary.
7212  *  T5 onwards has separate fields for this and hence the alignment for
7213  *  next packet offset is maximum of these two.
7214  *
7215  */
7216 int t4_fl_pkt_align(struct adapter *adap)
7217 {
7218     u32 sge_control, sge_control2;
7219     unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7220 
7221     sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7222 
7223     /* T4 uses a single control field to specify both the PCIe Padding and
7224      * Packing Boundary.  T5 introduced the ability to specify these
7225      * separately.  The actual Ingress Packet Data alignment boundary
7226      * within Packed Buffer Mode is the maximum of these two
7227      * specifications.  (Note that it makes no real practical sense to
7228      * have the Padding Boundary be larger than the Packing Boundary but you
7229      * could set the chip up that way and, in fact, legacy T4 code would
7230      * end doing this because it would initialize the Padding Boundary and
7231      * leave the Packing Boundary initialized to 0 (16 bytes).)
7232      * Padding Boundary values in T6 starts from 8B,
7233      * where as it is 32B for T4 and T5.
7234      */
7235     if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7236         ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7237     else
7238         ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7239 
7240     ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7241 
7242     fl_align = ingpadboundary;
7243     if (!is_t4(adap->params.chip)) {
7244         /* T5 has a weird interpretation of one of the PCIe Packing
7245          * Boundary values.  No idea why ...
7246          */
7247         sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7248         ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7249         if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7250             ingpackboundary = 16;
7251         else
7252             ingpackboundary = 1 << (ingpackboundary +
7253                         INGPACKBOUNDARY_SHIFT_X);
7254 
7255         fl_align = max(ingpadboundary, ingpackboundary);
7256     }
7257     return fl_align;
7258 }
7259 
7260 /**
7261  *  t4_fixup_host_params - fix up host-dependent parameters
7262  *  @adap: the adapter
7263  *  @page_size: the host's Base Page Size
7264  *  @cache_line_size: the host's Cache Line Size
7265  *
7266  *  Various registers in T4 contain values which are dependent on the
7267  *  host's Base Page and Cache Line Sizes.  This function will fix all of
7268  *  those registers with the appropriate values as passed in ...
7269  */
7270 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7271              unsigned int cache_line_size)
7272 {
7273     unsigned int page_shift = fls(page_size) - 1;
7274     unsigned int sge_hps = page_shift - 10;
7275     unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7276     unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7277     unsigned int fl_align_log = fls(fl_align) - 1;
7278 
7279     t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7280              HOSTPAGESIZEPF0_V(sge_hps) |
7281              HOSTPAGESIZEPF1_V(sge_hps) |
7282              HOSTPAGESIZEPF2_V(sge_hps) |
7283              HOSTPAGESIZEPF3_V(sge_hps) |
7284              HOSTPAGESIZEPF4_V(sge_hps) |
7285              HOSTPAGESIZEPF5_V(sge_hps) |
7286              HOSTPAGESIZEPF6_V(sge_hps) |
7287              HOSTPAGESIZEPF7_V(sge_hps));
7288 
7289     if (is_t4(adap->params.chip)) {
7290         t4_set_reg_field(adap, SGE_CONTROL_A,
7291                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7292                  EGRSTATUSPAGESIZE_F,
7293                  INGPADBOUNDARY_V(fl_align_log -
7294                           INGPADBOUNDARY_SHIFT_X) |
7295                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7296     } else {
7297         unsigned int pack_align;
7298         unsigned int ingpad, ingpack;
7299 
7300         /* T5 introduced the separation of the Free List Padding and
7301          * Packing Boundaries.  Thus, we can select a smaller Padding
7302          * Boundary to avoid uselessly chewing up PCIe Link and Memory
7303          * Bandwidth, and use a Packing Boundary which is large enough
7304          * to avoid false sharing between CPUs, etc.
7305          *
7306          * For the PCI Link, the smaller the Padding Boundary the
7307          * better.  For the Memory Controller, a smaller Padding
7308          * Boundary is better until we cross under the Memory Line
7309          * Size (the minimum unit of transfer to/from Memory).  If we
7310          * have a Padding Boundary which is smaller than the Memory
7311          * Line Size, that'll involve a Read-Modify-Write cycle on the
7312          * Memory Controller which is never good.
7313          */
7314 
7315         /* We want the Packing Boundary to be based on the Cache Line
7316          * Size in order to help avoid False Sharing performance
7317          * issues between CPUs, etc.  We also want the Packing
7318          * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7319          * get best performance when the Packing Boundary is a
7320          * multiple of the Maximum Payload Size.
7321          */
7322         pack_align = fl_align;
7323         if (pci_is_pcie(adap->pdev)) {
7324             unsigned int mps, mps_log;
7325             u16 devctl;
7326 
7327             /* The PCIe Device Control Maximum Payload Size field
7328              * [bits 7:5] encodes sizes as powers of 2 starting at
7329              * 128 bytes.
7330              */
7331             pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7332                           &devctl);
7333             mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7334             mps = 1 << mps_log;
7335             if (mps > pack_align)
7336                 pack_align = mps;
7337         }
7338 
7339         /* N.B. T5/T6 have a crazy special interpretation of the "0"
7340          * value for the Packing Boundary.  This corresponds to 16
7341          * bytes instead of the expected 32 bytes.  So if we want 32
7342          * bytes, the best we can really do is 64 bytes ...
7343          */
7344         if (pack_align <= 16) {
7345             ingpack = INGPACKBOUNDARY_16B_X;
7346             fl_align = 16;
7347         } else if (pack_align == 32) {
7348             ingpack = INGPACKBOUNDARY_64B_X;
7349             fl_align = 64;
7350         } else {
7351             unsigned int pack_align_log = fls(pack_align) - 1;
7352 
7353             ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7354             fl_align = pack_align;
7355         }
7356 
7357         /* Use the smallest Ingress Padding which isn't smaller than
7358          * the Memory Controller Read/Write Size.  We'll take that as
7359          * being 8 bytes since we don't know of any system with a
7360          * wider Memory Controller Bus Width.
7361          */
7362         if (is_t5(adap->params.chip))
7363             ingpad = INGPADBOUNDARY_32B_X;
7364         else
7365             ingpad = T6_INGPADBOUNDARY_8B_X;
7366 
7367         t4_set_reg_field(adap, SGE_CONTROL_A,
7368                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7369                  EGRSTATUSPAGESIZE_F,
7370                  INGPADBOUNDARY_V(ingpad) |
7371                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7372         t4_set_reg_field(adap, SGE_CONTROL2_A,
7373                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7374                  INGPACKBOUNDARY_V(ingpack));
7375     }
7376     /*
7377      * Adjust various SGE Free List Host Buffer Sizes.
7378      *
7379      * This is something of a crock since we're using fixed indices into
7380      * the array which are also known by the sge.c code and the T4
7381      * Firmware Configuration File.  We need to come up with a much better
7382      * approach to managing this array.  For now, the first four entries
7383      * are:
7384      *
7385      *   0: Host Page Size
7386      *   1: 64KB
7387      *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7388      *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7389      *
7390      * For the single-MTU buffers in unpacked mode we need to include
7391      * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7392      * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7393      * Padding boundary.  All of these are accommodated in the Factory
7394      * Default Firmware Configuration File but we need to adjust it for
7395      * this host's cache line size.
7396      */
7397     t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7398     t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7399              (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7400              & ~(fl_align-1));
7401     t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7402              (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7403              & ~(fl_align-1));
7404 
7405     t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7406 
7407     return 0;
7408 }
7409 
7410 /**
7411  *  t4_fw_initialize - ask FW to initialize the device
7412  *  @adap: the adapter
7413  *  @mbox: mailbox to use for the FW command
7414  *
7415  *  Issues a command to FW to partially initialize the device.  This
7416  *  performs initialization that generally doesn't depend on user input.
7417  */
7418 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7419 {
7420     struct fw_initialize_cmd c;
7421 
7422     memset(&c, 0, sizeof(c));
7423     INIT_CMD(c, INITIALIZE, WRITE);
7424     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7425 }
7426 
7427 /**
7428  *  t4_query_params_rw - query FW or device parameters
7429  *  @adap: the adapter
7430  *  @mbox: mailbox to use for the FW command
7431  *  @pf: the PF
7432  *  @vf: the VF
7433  *  @nparams: the number of parameters
7434  *  @params: the parameter names
7435  *  @val: the parameter values
7436  *  @rw: Write and read flag
7437  *  @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7438  *
7439  *  Reads the value of FW or device parameters.  Up to 7 parameters can be
7440  *  queried at once.
7441  */
7442 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7443                unsigned int vf, unsigned int nparams, const u32 *params,
7444                u32 *val, int rw, bool sleep_ok)
7445 {
7446     int i, ret;
7447     struct fw_params_cmd c;
7448     __be32 *p = &c.param[0].mnem;
7449 
7450     if (nparams > 7)
7451         return -EINVAL;
7452 
7453     memset(&c, 0, sizeof(c));
7454     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7455                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7456                   FW_PARAMS_CMD_PFN_V(pf) |
7457                   FW_PARAMS_CMD_VFN_V(vf));
7458     c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7459 
7460     for (i = 0; i < nparams; i++) {
7461         *p++ = cpu_to_be32(*params++);
7462         if (rw)
7463             *p = cpu_to_be32(*(val + i));
7464         p++;
7465     }
7466 
7467     ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7468     if (ret == 0)
7469         for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7470             *val++ = be32_to_cpu(*p);
7471     return ret;
7472 }
7473 
7474 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7475             unsigned int vf, unsigned int nparams, const u32 *params,
7476             u32 *val)
7477 {
7478     return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7479                   true);
7480 }
7481 
7482 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7483                unsigned int vf, unsigned int nparams, const u32 *params,
7484                u32 *val)
7485 {
7486     return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7487                   false);
7488 }
7489 
7490 /**
7491  *      t4_set_params_timeout - sets FW or device parameters
7492  *      @adap: the adapter
7493  *      @mbox: mailbox to use for the FW command
7494  *      @pf: the PF
7495  *      @vf: the VF
7496  *      @nparams: the number of parameters
7497  *      @params: the parameter names
7498  *      @val: the parameter values
7499  *      @timeout: the timeout time
7500  *
7501  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7502  *      specified at once.
7503  */
7504 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7505               unsigned int pf, unsigned int vf,
7506               unsigned int nparams, const u32 *params,
7507               const u32 *val, int timeout)
7508 {
7509     struct fw_params_cmd c;
7510     __be32 *p = &c.param[0].mnem;
7511 
7512     if (nparams > 7)
7513         return -EINVAL;
7514 
7515     memset(&c, 0, sizeof(c));
7516     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7517                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7518                   FW_PARAMS_CMD_PFN_V(pf) |
7519                   FW_PARAMS_CMD_VFN_V(vf));
7520     c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7521 
7522     while (nparams--) {
7523         *p++ = cpu_to_be32(*params++);
7524         *p++ = cpu_to_be32(*val++);
7525     }
7526 
7527     return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7528 }
7529 
7530 /**
7531  *  t4_set_params - sets FW or device parameters
7532  *  @adap: the adapter
7533  *  @mbox: mailbox to use for the FW command
7534  *  @pf: the PF
7535  *  @vf: the VF
7536  *  @nparams: the number of parameters
7537  *  @params: the parameter names
7538  *  @val: the parameter values
7539  *
7540  *  Sets the value of FW or device parameters.  Up to 7 parameters can be
7541  *  specified at once.
7542  */
7543 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7544           unsigned int vf, unsigned int nparams, const u32 *params,
7545           const u32 *val)
7546 {
7547     return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7548                      FW_CMD_MAX_TIMEOUT);
7549 }
7550 
7551 /**
7552  *  t4_cfg_pfvf - configure PF/VF resource limits
7553  *  @adap: the adapter
7554  *  @mbox: mailbox to use for the FW command
7555  *  @pf: the PF being configured
7556  *  @vf: the VF being configured
7557  *  @txq: the max number of egress queues
7558  *  @txq_eth_ctrl: the max number of egress Ethernet or control queues
7559  *  @rxqi: the max number of interrupt-capable ingress queues
7560  *  @rxq: the max number of interruptless ingress queues
7561  *  @tc: the PCI traffic class
7562  *  @vi: the max number of virtual interfaces
7563  *  @cmask: the channel access rights mask for the PF/VF
7564  *  @pmask: the port access rights mask for the PF/VF
7565  *  @nexact: the maximum number of exact MPS filters
7566  *  @rcaps: read capabilities
7567  *  @wxcaps: write/execute capabilities
7568  *
7569  *  Configures resource limits and capabilities for a physical or virtual
7570  *  function.
7571  */
7572 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7573         unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7574         unsigned int rxqi, unsigned int rxq, unsigned int tc,
7575         unsigned int vi, unsigned int cmask, unsigned int pmask,
7576         unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7577 {
7578     struct fw_pfvf_cmd c;
7579 
7580     memset(&c, 0, sizeof(c));
7581     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7582                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7583                   FW_PFVF_CMD_VFN_V(vf));
7584     c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7585     c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7586                      FW_PFVF_CMD_NIQ_V(rxq));
7587     c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7588                     FW_PFVF_CMD_PMASK_V(pmask) |
7589                     FW_PFVF_CMD_NEQ_V(txq));
7590     c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7591                       FW_PFVF_CMD_NVI_V(vi) |
7592                       FW_PFVF_CMD_NEXACTF_V(nexact));
7593     c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7594                     FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7595                     FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7596     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7597 }
7598 
7599 /**
7600  *  t4_alloc_vi - allocate a virtual interface
7601  *  @adap: the adapter
7602  *  @mbox: mailbox to use for the FW command
7603  *  @port: physical port associated with the VI
7604  *  @pf: the PF owning the VI
7605  *  @vf: the VF owning the VI
7606  *  @nmac: number of MAC addresses needed (1 to 5)
7607  *  @mac: the MAC addresses of the VI
7608  *  @rss_size: size of RSS table slice associated with this VI
7609  *  @vivld: the destination to store the VI Valid value.
7610  *  @vin: the destination to store the VIN value.
7611  *
7612  *  Allocates a virtual interface for the given physical port.  If @mac is
7613  *  not %NULL it contains the MAC addresses of the VI as assigned by FW.
7614  *  @mac should be large enough to hold @nmac Ethernet addresses, they are
7615  *  stored consecutively so the space needed is @nmac * 6 bytes.
7616  *  Returns a negative error number or the non-negative VI id.
7617  */
7618 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7619         unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7620         unsigned int *rss_size, u8 *vivld, u8 *vin)
7621 {
7622     int ret;
7623     struct fw_vi_cmd c;
7624 
7625     memset(&c, 0, sizeof(c));
7626     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7627                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7628                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7629     c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7630     c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7631     c.nmac = nmac - 1;
7632 
7633     ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7634     if (ret)
7635         return ret;
7636 
7637     if (mac) {
7638         memcpy(mac, c.mac, sizeof(c.mac));
7639         switch (nmac) {
7640         case 5:
7641             memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7642             fallthrough;
7643         case 4:
7644             memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7645             fallthrough;
7646         case 3:
7647             memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7648             fallthrough;
7649         case 2:
7650             memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7651         }
7652     }
7653     if (rss_size)
7654         *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7655 
7656     if (vivld)
7657         *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7658 
7659     if (vin)
7660         *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7661 
7662     return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7663 }
7664 
7665 /**
7666  *  t4_free_vi - free a virtual interface
7667  *  @adap: the adapter
7668  *  @mbox: mailbox to use for the FW command
7669  *  @pf: the PF owning the VI
7670  *  @vf: the VF owning the VI
7671  *  @viid: virtual interface identifiler
7672  *
7673  *  Free a previously allocated virtual interface.
7674  */
7675 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7676            unsigned int vf, unsigned int viid)
7677 {
7678     struct fw_vi_cmd c;
7679 
7680     memset(&c, 0, sizeof(c));
7681     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7682                   FW_CMD_REQUEST_F |
7683                   FW_CMD_EXEC_F |
7684                   FW_VI_CMD_PFN_V(pf) |
7685                   FW_VI_CMD_VFN_V(vf));
7686     c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7687     c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7688 
7689     return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7690 }
7691 
7692 /**
7693  *  t4_set_rxmode - set Rx properties of a virtual interface
7694  *  @adap: the adapter
7695  *  @mbox: mailbox to use for the FW command
7696  *  @viid: the VI id
7697  *  @viid_mirror: the mirror VI id
7698  *  @mtu: the new MTU or -1
7699  *  @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7700  *  @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7701  *  @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7702  *  @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7703  *  @sleep_ok: if true we may sleep while awaiting command completion
7704  *
7705  *  Sets Rx properties of a virtual interface.
7706  */
7707 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7708           unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7709           int bcast, int vlanex, bool sleep_ok)
7710 {
7711     struct fw_vi_rxmode_cmd c, c_mirror;
7712     int ret;
7713 
7714     /* convert to FW values */
7715     if (mtu < 0)
7716         mtu = FW_RXMODE_MTU_NO_CHG;
7717     if (promisc < 0)
7718         promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7719     if (all_multi < 0)
7720         all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7721     if (bcast < 0)
7722         bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7723     if (vlanex < 0)
7724         vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7725 
7726     memset(&c, 0, sizeof(c));
7727     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7728                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7729                    FW_VI_RXMODE_CMD_VIID_V(viid));
7730     c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7731     c.mtu_to_vlanexen =
7732         cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7733                 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7734                 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7735                 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7736                 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7737 
7738     if (viid_mirror) {
7739         memcpy(&c_mirror, &c, sizeof(c_mirror));
7740         c_mirror.op_to_viid =
7741             cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7742                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7743                     FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7744     }
7745 
7746     ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7747     if (ret)
7748         return ret;
7749 
7750     if (viid_mirror)
7751         ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7752                       NULL, sleep_ok);
7753 
7754     return ret;
7755 }
7756 
7757 /**
7758  *      t4_free_encap_mac_filt - frees MPS entry at given index
7759  *      @adap: the adapter
7760  *      @viid: the VI id
7761  *      @idx: index of MPS entry to be freed
7762  *      @sleep_ok: call is allowed to sleep
7763  *
7764  *      Frees the MPS entry at supplied index
7765  *
7766  *      Returns a negative error number or zero on success
7767  */
7768 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7769                int idx, bool sleep_ok)
7770 {
7771     struct fw_vi_mac_exact *p;
7772     struct fw_vi_mac_cmd c;
7773     int ret = 0;
7774     u32 exact;
7775 
7776     memset(&c, 0, sizeof(c));
7777     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7778                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7779                    FW_CMD_EXEC_V(0) |
7780                    FW_VI_MAC_CMD_VIID_V(viid));
7781     exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7782     c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7783                       exact |
7784                       FW_CMD_LEN16_V(1));
7785     p = c.u.exact;
7786     p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7787                       FW_VI_MAC_CMD_IDX_V(idx));
7788     eth_zero_addr(p->macaddr);
7789     ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7790     return ret;
7791 }
7792 
7793 /**
7794  *  t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7795  *  @adap: the adapter
7796  *  @viid: the VI id
7797  *  @addr: the MAC address
7798  *  @mask: the mask
7799  *  @idx: index of the entry in mps tcam
7800  *  @lookup_type: MAC address for inner (1) or outer (0) header
7801  *  @port_id: the port index
7802  *  @sleep_ok: call is allowed to sleep
7803  *
7804  *  Removes the mac entry at the specified index using raw mac interface.
7805  *
7806  *  Returns a negative error number on failure.
7807  */
7808 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7809              const u8 *addr, const u8 *mask, unsigned int idx,
7810              u8 lookup_type, u8 port_id, bool sleep_ok)
7811 {
7812     struct fw_vi_mac_cmd c;
7813     struct fw_vi_mac_raw *p = &c.u.raw;
7814     u32 val;
7815 
7816     memset(&c, 0, sizeof(c));
7817     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7818                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7819                    FW_CMD_EXEC_V(0) |
7820                    FW_VI_MAC_CMD_VIID_V(viid));
7821     val = FW_CMD_LEN16_V(1) |
7822           FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7823     c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7824                       FW_CMD_LEN16_V(val));
7825 
7826     p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7827                      FW_VI_MAC_ID_BASED_FREE);
7828 
7829     /* Lookup Type. Outer header: 0, Inner header: 1 */
7830     p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7831                    DATAPORTNUM_V(port_id));
7832     /* Lookup mask and port mask */
7833     p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7834                     DATAPORTNUM_V(DATAPORTNUM_M));
7835 
7836     /* Copy the address and the mask */
7837     memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7838     memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7839 
7840     return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7841 }
7842 
7843 /**
7844  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7845  *      @adap: the adapter
7846  *      @viid: the VI id
7847  *      @addr: the MAC address
7848  *      @mask: the mask
7849  *      @vni: the VNI id for the tunnel protocol
7850  *      @vni_mask: mask for the VNI id
7851  *      @dip_hit: to enable DIP match for the MPS entry
7852  *      @lookup_type: MAC address for inner (1) or outer (0) header
7853  *      @sleep_ok: call is allowed to sleep
7854  *
7855  *      Allocates an MPS entry with specified MAC address and VNI value.
7856  *
7857  *      Returns a negative error number or the allocated index for this mac.
7858  */
7859 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7860                 const u8 *addr, const u8 *mask, unsigned int vni,
7861                 unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7862                 bool sleep_ok)
7863 {
7864     struct fw_vi_mac_cmd c;
7865     struct fw_vi_mac_vni *p = c.u.exact_vni;
7866     int ret = 0;
7867     u32 val;
7868 
7869     memset(&c, 0, sizeof(c));
7870     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7871                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7872                    FW_VI_MAC_CMD_VIID_V(viid));
7873     val = FW_CMD_LEN16_V(1) |
7874           FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7875     c.freemacs_to_len16 = cpu_to_be32(val);
7876     p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7877                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7878     memcpy(p->macaddr, addr, sizeof(p->macaddr));
7879     memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7880 
7881     p->lookup_type_to_vni =
7882         cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7883                 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7884                 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7885     p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7886     ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7887     if (ret == 0)
7888         ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7889     return ret;
7890 }
7891 
7892 /**
7893  *  t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7894  *  @adap: the adapter
7895  *  @viid: the VI id
7896  *  @addr: the MAC address
7897  *  @mask: the mask
7898  *  @idx: index at which to add this entry
7899  *  @lookup_type: MAC address for inner (1) or outer (0) header
7900  *  @port_id: the port index
7901  *  @sleep_ok: call is allowed to sleep
7902  *
7903  *  Adds the mac entry at the specified index using raw mac interface.
7904  *
7905  *  Returns a negative error number or the allocated index for this mac.
7906  */
7907 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7908               const u8 *addr, const u8 *mask, unsigned int idx,
7909               u8 lookup_type, u8 port_id, bool sleep_ok)
7910 {
7911     int ret = 0;
7912     struct fw_vi_mac_cmd c;
7913     struct fw_vi_mac_raw *p = &c.u.raw;
7914     u32 val;
7915 
7916     memset(&c, 0, sizeof(c));
7917     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7918                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7919                    FW_VI_MAC_CMD_VIID_V(viid));
7920     val = FW_CMD_LEN16_V(1) |
7921           FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7922     c.freemacs_to_len16 = cpu_to_be32(val);
7923 
7924     /* Specify that this is an inner mac address */
7925     p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7926 
7927     /* Lookup Type. Outer header: 0, Inner header: 1 */
7928     p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7929                    DATAPORTNUM_V(port_id));
7930     /* Lookup mask and port mask */
7931     p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7932                     DATAPORTNUM_V(DATAPORTNUM_M));
7933 
7934     /* Copy the address and the mask */
7935     memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7936     memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7937 
7938     ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7939     if (ret == 0) {
7940         ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7941         if (ret != idx)
7942             ret = -ENOMEM;
7943     }
7944 
7945     return ret;
7946 }
7947 
7948 /**
7949  *  t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7950  *  @adap: the adapter
7951  *  @mbox: mailbox to use for the FW command
7952  *  @viid: the VI id
7953  *  @free: if true any existing filters for this VI id are first removed
7954  *  @naddr: the number of MAC addresses to allocate filters for (up to 7)
7955  *  @addr: the MAC address(es)
7956  *  @idx: where to store the index of each allocated filter
7957  *  @hash: pointer to hash address filter bitmap
7958  *  @sleep_ok: call is allowed to sleep
7959  *
7960  *  Allocates an exact-match filter for each of the supplied addresses and
7961  *  sets it to the corresponding address.  If @idx is not %NULL it should
7962  *  have at least @naddr entries, each of which will be set to the index of
7963  *  the filter allocated for the corresponding MAC address.  If a filter
7964  *  could not be allocated for an address its index is set to 0xffff.
7965  *  If @hash is not %NULL addresses that fail to allocate an exact filter
7966  *  are hashed and update the hash filter bitmap pointed at by @hash.
7967  *
7968  *  Returns a negative error number or the number of filters allocated.
7969  */
7970 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7971               unsigned int viid, bool free, unsigned int naddr,
7972               const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7973 {
7974     int offset, ret = 0;
7975     struct fw_vi_mac_cmd c;
7976     unsigned int nfilters = 0;
7977     unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7978     unsigned int rem = naddr;
7979 
7980     if (naddr > max_naddr)
7981         return -EINVAL;
7982 
7983     for (offset = 0; offset < naddr ; /**/) {
7984         unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7985                      rem : ARRAY_SIZE(c.u.exact));
7986         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7987                              u.exact[fw_naddr]), 16);
7988         struct fw_vi_mac_exact *p;
7989         int i;
7990 
7991         memset(&c, 0, sizeof(c));
7992         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7993                        FW_CMD_REQUEST_F |
7994                        FW_CMD_WRITE_F |
7995                        FW_CMD_EXEC_V(free) |
7996                        FW_VI_MAC_CMD_VIID_V(viid));
7997         c.freemacs_to_len16 =
7998             cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7999                     FW_CMD_LEN16_V(len16));
8000 
8001         for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8002             p->valid_to_idx =
8003                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8004                         FW_VI_MAC_CMD_IDX_V(
8005                             FW_VI_MAC_ADD_MAC));
8006             memcpy(p->macaddr, addr[offset + i],
8007                    sizeof(p->macaddr));
8008         }
8009 
8010         /* It's okay if we run out of space in our MAC address arena.
8011          * Some of the addresses we submit may get stored so we need
8012          * to run through the reply to see what the results were ...
8013          */
8014         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8015         if (ret && ret != -FW_ENOMEM)
8016             break;
8017 
8018         for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8019             u16 index = FW_VI_MAC_CMD_IDX_G(
8020                     be16_to_cpu(p->valid_to_idx));
8021 
8022             if (idx)
8023                 idx[offset + i] = (index >= max_naddr ?
8024                            0xffff : index);
8025             if (index < max_naddr)
8026                 nfilters++;
8027             else if (hash)
8028                 *hash |= (1ULL <<
8029                       hash_mac_addr(addr[offset + i]));
8030         }
8031 
8032         free = false;
8033         offset += fw_naddr;
8034         rem -= fw_naddr;
8035     }
8036 
8037     if (ret == 0 || ret == -FW_ENOMEM)
8038         ret = nfilters;
8039     return ret;
8040 }
8041 
8042 /**
8043  *  t4_free_mac_filt - frees exact-match filters of given MAC addresses
8044  *  @adap: the adapter
8045  *  @mbox: mailbox to use for the FW command
8046  *  @viid: the VI id
8047  *  @naddr: the number of MAC addresses to allocate filters for (up to 7)
8048  *  @addr: the MAC address(es)
8049  *  @sleep_ok: call is allowed to sleep
8050  *
8051  *  Frees the exact-match filter for each of the supplied addresses
8052  *
8053  *  Returns a negative error number or the number of filters freed.
8054  */
8055 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8056              unsigned int viid, unsigned int naddr,
8057              const u8 **addr, bool sleep_ok)
8058 {
8059     int offset, ret = 0;
8060     struct fw_vi_mac_cmd c;
8061     unsigned int nfilters = 0;
8062     unsigned int max_naddr = is_t4(adap->params.chip) ?
8063                        NUM_MPS_CLS_SRAM_L_INSTANCES :
8064                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8065     unsigned int rem = naddr;
8066 
8067     if (naddr > max_naddr)
8068         return -EINVAL;
8069 
8070     for (offset = 0; offset < (int)naddr ; /**/) {
8071         unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8072                      ? rem
8073                      : ARRAY_SIZE(c.u.exact));
8074         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8075                              u.exact[fw_naddr]), 16);
8076         struct fw_vi_mac_exact *p;
8077         int i;
8078 
8079         memset(&c, 0, sizeof(c));
8080         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8081                      FW_CMD_REQUEST_F |
8082                      FW_CMD_WRITE_F |
8083                      FW_CMD_EXEC_V(0) |
8084                      FW_VI_MAC_CMD_VIID_V(viid));
8085         c.freemacs_to_len16 =
8086                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8087                         FW_CMD_LEN16_V(len16));
8088 
8089         for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8090             p->valid_to_idx = cpu_to_be16(
8091                 FW_VI_MAC_CMD_VALID_F |
8092                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8093             memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8094         }
8095 
8096         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8097         if (ret)
8098             break;
8099 
8100         for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8101             u16 index = FW_VI_MAC_CMD_IDX_G(
8102                         be16_to_cpu(p->valid_to_idx));
8103 
8104             if (index < max_naddr)
8105                 nfilters++;
8106         }
8107 
8108         offset += fw_naddr;
8109         rem -= fw_naddr;
8110     }
8111 
8112     if (ret == 0)
8113         ret = nfilters;
8114     return ret;
8115 }
8116 
8117 /**
8118  *  t4_change_mac - modifies the exact-match filter for a MAC address
8119  *  @adap: the adapter
8120  *  @mbox: mailbox to use for the FW command
8121  *  @viid: the VI id
8122  *  @idx: index of existing filter for old value of MAC address, or -1
8123  *  @addr: the new MAC address value
8124  *  @persist: whether a new MAC allocation should be persistent
8125  *  @smt_idx: the destination to store the new SMT index.
8126  *
8127  *  Modifies an exact-match filter and sets it to the new MAC address.
8128  *  Note that in general it is not possible to modify the value of a given
8129  *  filter so the generic way to modify an address filter is to free the one
8130  *  being used by the old address value and allocate a new filter for the
8131  *  new address value.  @idx can be -1 if the address is a new addition.
8132  *
8133  *  Returns a negative error number or the index of the filter with the new
8134  *  MAC value.
8135  */
8136 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8137           int idx, const u8 *addr, bool persist, u8 *smt_idx)
8138 {
8139     int ret, mode;
8140     struct fw_vi_mac_cmd c;
8141     struct fw_vi_mac_exact *p = c.u.exact;
8142     unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8143 
8144     if (idx < 0)                             /* new allocation */
8145         idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8146     mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8147 
8148     memset(&c, 0, sizeof(c));
8149     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8150                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8151                    FW_VI_MAC_CMD_VIID_V(viid));
8152     c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8153     p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8154                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8155                       FW_VI_MAC_CMD_IDX_V(idx));
8156     memcpy(p->macaddr, addr, sizeof(p->macaddr));
8157 
8158     ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8159     if (ret == 0) {
8160         ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8161         if (ret >= max_mac_addr)
8162             ret = -ENOMEM;
8163         if (smt_idx) {
8164             if (adap->params.viid_smt_extn_support) {
8165                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8166                             (be32_to_cpu(c.op_to_viid));
8167             } else {
8168                 /* In T4/T5, SMT contains 256 SMAC entries
8169                  * organized in 128 rows of 2 entries each.
8170                  * In T6, SMT contains 256 SMAC entries in
8171                  * 256 rows.
8172                  */
8173                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8174                                      CHELSIO_T5)
8175                     *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8176                 else
8177                     *smt_idx = (viid & FW_VIID_VIN_M);
8178             }
8179         }
8180     }
8181     return ret;
8182 }
8183 
8184 /**
8185  *  t4_set_addr_hash - program the MAC inexact-match hash filter
8186  *  @adap: the adapter
8187  *  @mbox: mailbox to use for the FW command
8188  *  @viid: the VI id
8189  *  @ucast: whether the hash filter should also match unicast addresses
8190  *  @vec: the value to be written to the hash filter
8191  *  @sleep_ok: call is allowed to sleep
8192  *
8193  *  Sets the 64-bit inexact-match hash filter for a virtual interface.
8194  */
8195 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8196              bool ucast, u64 vec, bool sleep_ok)
8197 {
8198     struct fw_vi_mac_cmd c;
8199 
8200     memset(&c, 0, sizeof(c));
8201     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8202                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8203                    FW_VI_ENABLE_CMD_VIID_V(viid));
8204     c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8205                       FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8206                       FW_CMD_LEN16_V(1));
8207     c.u.hash.hashvec = cpu_to_be64(vec);
8208     return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8209 }
8210 
8211 /**
8212  *      t4_enable_vi_params - enable/disable a virtual interface
8213  *      @adap: the adapter
8214  *      @mbox: mailbox to use for the FW command
8215  *      @viid: the VI id
8216  *      @rx_en: 1=enable Rx, 0=disable Rx
8217  *      @tx_en: 1=enable Tx, 0=disable Tx
8218  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8219  *
8220  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8221  *      only makes sense when enabling a Virtual Interface ...
8222  */
8223 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8224             unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8225 {
8226     struct fw_vi_enable_cmd c;
8227 
8228     memset(&c, 0, sizeof(c));
8229     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8230                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8231                    FW_VI_ENABLE_CMD_VIID_V(viid));
8232     c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8233                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8234                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8235                      FW_LEN16(c));
8236     return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8237 }
8238 
8239 /**
8240  *  t4_enable_vi - enable/disable a virtual interface
8241  *  @adap: the adapter
8242  *  @mbox: mailbox to use for the FW command
8243  *  @viid: the VI id
8244  *  @rx_en: 1=enable Rx, 0=disable Rx
8245  *  @tx_en: 1=enable Tx, 0=disable Tx
8246  *
8247  *  Enables/disables a virtual interface.
8248  */
8249 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8250          bool rx_en, bool tx_en)
8251 {
8252     return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8253 }
8254 
8255 /**
8256  *  t4_enable_pi_params - enable/disable a Port's Virtual Interface
8257  *      @adap: the adapter
8258  *      @mbox: mailbox to use for the FW command
8259  *      @pi: the Port Information structure
8260  *      @rx_en: 1=enable Rx, 0=disable Rx
8261  *      @tx_en: 1=enable Tx, 0=disable Tx
8262  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8263  *
8264  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8265  *  Enable only makes sense when enabling a Virtual Interface ...
8266  *  If the Virtual Interface enable/disable operation is successful,
8267  *  we notify the OS-specific code of a potential Link Status change
8268  *  via the OS Contract API t4_os_link_changed().
8269  */
8270 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8271             struct port_info *pi,
8272             bool rx_en, bool tx_en, bool dcb_en)
8273 {
8274     int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8275                       rx_en, tx_en, dcb_en);
8276     if (ret)
8277         return ret;
8278     t4_os_link_changed(adap, pi->port_id,
8279                rx_en && tx_en && pi->link_cfg.link_ok);
8280     return 0;
8281 }
8282 
8283 /**
8284  *  t4_identify_port - identify a VI's port by blinking its LED
8285  *  @adap: the adapter
8286  *  @mbox: mailbox to use for the FW command
8287  *  @viid: the VI id
8288  *  @nblinks: how many times to blink LED at 2.5 Hz
8289  *
8290  *  Identifies a VI's port by blinking its LED.
8291  */
8292 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8293              unsigned int nblinks)
8294 {
8295     struct fw_vi_enable_cmd c;
8296 
8297     memset(&c, 0, sizeof(c));
8298     c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8299                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8300                    FW_VI_ENABLE_CMD_VIID_V(viid));
8301     c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8302     c.blinkdur = cpu_to_be16(nblinks);
8303     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8304 }
8305 
8306 /**
8307  *  t4_iq_stop - stop an ingress queue and its FLs
8308  *  @adap: the adapter
8309  *  @mbox: mailbox to use for the FW command
8310  *  @pf: the PF owning the queues
8311  *  @vf: the VF owning the queues
8312  *  @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8313  *  @iqid: ingress queue id
8314  *  @fl0id: FL0 queue id or 0xffff if no attached FL0
8315  *  @fl1id: FL1 queue id or 0xffff if no attached FL1
8316  *
8317  *  Stops an ingress queue and its associated FLs, if any.  This causes
8318  *  any current or future data/messages destined for these queues to be
8319  *  tossed.
8320  */
8321 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8322            unsigned int vf, unsigned int iqtype, unsigned int iqid,
8323            unsigned int fl0id, unsigned int fl1id)
8324 {
8325     struct fw_iq_cmd c;
8326 
8327     memset(&c, 0, sizeof(c));
8328     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8329                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8330                   FW_IQ_CMD_VFN_V(vf));
8331     c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8332     c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8333     c.iqid = cpu_to_be16(iqid);
8334     c.fl0id = cpu_to_be16(fl0id);
8335     c.fl1id = cpu_to_be16(fl1id);
8336     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8337 }
8338 
8339 /**
8340  *  t4_iq_free - free an ingress queue and its FLs
8341  *  @adap: the adapter
8342  *  @mbox: mailbox to use for the FW command
8343  *  @pf: the PF owning the queues
8344  *  @vf: the VF owning the queues
8345  *  @iqtype: the ingress queue type
8346  *  @iqid: ingress queue id
8347  *  @fl0id: FL0 queue id or 0xffff if no attached FL0
8348  *  @fl1id: FL1 queue id or 0xffff if no attached FL1
8349  *
8350  *  Frees an ingress queue and its associated FLs, if any.
8351  */
8352 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8353            unsigned int vf, unsigned int iqtype, unsigned int iqid,
8354            unsigned int fl0id, unsigned int fl1id)
8355 {
8356     struct fw_iq_cmd c;
8357 
8358     memset(&c, 0, sizeof(c));
8359     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8360                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8361                   FW_IQ_CMD_VFN_V(vf));
8362     c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8363     c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8364     c.iqid = cpu_to_be16(iqid);
8365     c.fl0id = cpu_to_be16(fl0id);
8366     c.fl1id = cpu_to_be16(fl1id);
8367     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8368 }
8369 
8370 /**
8371  *  t4_eth_eq_free - free an Ethernet egress queue
8372  *  @adap: the adapter
8373  *  @mbox: mailbox to use for the FW command
8374  *  @pf: the PF owning the queue
8375  *  @vf: the VF owning the queue
8376  *  @eqid: egress queue id
8377  *
8378  *  Frees an Ethernet egress queue.
8379  */
8380 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8381            unsigned int vf, unsigned int eqid)
8382 {
8383     struct fw_eq_eth_cmd c;
8384 
8385     memset(&c, 0, sizeof(c));
8386     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8387                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8388                   FW_EQ_ETH_CMD_PFN_V(pf) |
8389                   FW_EQ_ETH_CMD_VFN_V(vf));
8390     c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8391     c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8392     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8393 }
8394 
8395 /**
8396  *  t4_ctrl_eq_free - free a control egress queue
8397  *  @adap: the adapter
8398  *  @mbox: mailbox to use for the FW command
8399  *  @pf: the PF owning the queue
8400  *  @vf: the VF owning the queue
8401  *  @eqid: egress queue id
8402  *
8403  *  Frees a control egress queue.
8404  */
8405 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8406             unsigned int vf, unsigned int eqid)
8407 {
8408     struct fw_eq_ctrl_cmd c;
8409 
8410     memset(&c, 0, sizeof(c));
8411     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8412                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8413                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8414                   FW_EQ_CTRL_CMD_VFN_V(vf));
8415     c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8416     c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8417     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8418 }
8419 
8420 /**
8421  *  t4_ofld_eq_free - free an offload egress queue
8422  *  @adap: the adapter
8423  *  @mbox: mailbox to use for the FW command
8424  *  @pf: the PF owning the queue
8425  *  @vf: the VF owning the queue
8426  *  @eqid: egress queue id
8427  *
8428  *  Frees a control egress queue.
8429  */
8430 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8431             unsigned int vf, unsigned int eqid)
8432 {
8433     struct fw_eq_ofld_cmd c;
8434 
8435     memset(&c, 0, sizeof(c));
8436     c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8437                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8438                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8439                   FW_EQ_OFLD_CMD_VFN_V(vf));
8440     c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8441     c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8442     return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8443 }
8444 
8445 /**
8446  *  t4_link_down_rc_str - return a string for a Link Down Reason Code
8447  *  @link_down_rc: Link Down Reason Code
8448  *
8449  *  Returns a string representation of the Link Down Reason Code.
8450  */
8451 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8452 {
8453     static const char * const reason[] = {
8454         "Link Down",
8455         "Remote Fault",
8456         "Auto-negotiation Failure",
8457         "Reserved",
8458         "Insufficient Airflow",
8459         "Unable To Determine Reason",
8460         "No RX Signal Detected",
8461         "Reserved",
8462     };
8463 
8464     if (link_down_rc >= ARRAY_SIZE(reason))
8465         return "Bad Reason Code";
8466 
8467     return reason[link_down_rc];
8468 }
8469 
8470 /* Return the highest speed set in the port capabilities, in Mb/s. */
8471 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8472 {
8473     #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8474         do { \
8475             if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8476                 return __speed; \
8477         } while (0)
8478 
8479     TEST_SPEED_RETURN(400G, 400000);
8480     TEST_SPEED_RETURN(200G, 200000);
8481     TEST_SPEED_RETURN(100G, 100000);
8482     TEST_SPEED_RETURN(50G,   50000);
8483     TEST_SPEED_RETURN(40G,   40000);
8484     TEST_SPEED_RETURN(25G,   25000);
8485     TEST_SPEED_RETURN(10G,   10000);
8486     TEST_SPEED_RETURN(1G,     1000);
8487     TEST_SPEED_RETURN(100M,    100);
8488 
8489     #undef TEST_SPEED_RETURN
8490 
8491     return 0;
8492 }
8493 
8494 /**
8495  *  fwcap_to_fwspeed - return highest speed in Port Capabilities
8496  *  @acaps: advertised Port Capabilities
8497  *
8498  *  Get the highest speed for the port from the advertised Port
8499  *  Capabilities.  It will be either the highest speed from the list of
8500  *  speeds or whatever user has set using ethtool.
8501  */
8502 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8503 {
8504     #define TEST_SPEED_RETURN(__caps_speed) \
8505         do { \
8506             if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8507                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8508         } while (0)
8509 
8510     TEST_SPEED_RETURN(400G);
8511     TEST_SPEED_RETURN(200G);
8512     TEST_SPEED_RETURN(100G);
8513     TEST_SPEED_RETURN(50G);
8514     TEST_SPEED_RETURN(40G);
8515     TEST_SPEED_RETURN(25G);
8516     TEST_SPEED_RETURN(10G);
8517     TEST_SPEED_RETURN(1G);
8518     TEST_SPEED_RETURN(100M);
8519 
8520     #undef TEST_SPEED_RETURN
8521 
8522     return 0;
8523 }
8524 
8525 /**
8526  *  lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8527  *  @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8528  *
8529  *  Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8530  *  32-bit Port Capabilities value.
8531  */
8532 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8533 {
8534     fw_port_cap32_t linkattr = 0;
8535 
8536     /* Unfortunately the format of the Link Status in the old
8537      * 16-bit Port Information message isn't the same as the
8538      * 16-bit Port Capabilities bitfield used everywhere else ...
8539      */
8540     if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8541         linkattr |= FW_PORT_CAP32_FC_RX;
8542     if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8543         linkattr |= FW_PORT_CAP32_FC_TX;
8544     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8545         linkattr |= FW_PORT_CAP32_SPEED_100M;
8546     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8547         linkattr |= FW_PORT_CAP32_SPEED_1G;
8548     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8549         linkattr |= FW_PORT_CAP32_SPEED_10G;
8550     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8551         linkattr |= FW_PORT_CAP32_SPEED_25G;
8552     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8553         linkattr |= FW_PORT_CAP32_SPEED_40G;
8554     if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8555         linkattr |= FW_PORT_CAP32_SPEED_100G;
8556 
8557     return linkattr;
8558 }
8559 
8560 /**
8561  *  t4_handle_get_port_info - process a FW reply message
8562  *  @pi: the port info
8563  *  @rpl: start of the FW message
8564  *
8565  *  Processes a GET_PORT_INFO FW reply message.
8566  */
8567 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8568 {
8569     const struct fw_port_cmd *cmd = (const void *)rpl;
8570     fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8571     struct link_config *lc = &pi->link_cfg;
8572     struct adapter *adapter = pi->adapter;
8573     unsigned int speed, fc, fec, adv_fc;
8574     enum fw_port_module_type mod_type;
8575     int action, link_ok, linkdnrc;
8576     enum fw_port_type port_type;
8577 
8578     /* Extract the various fields from the Port Information message.
8579      */
8580     action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8581     switch (action) {
8582     case FW_PORT_ACTION_GET_PORT_INFO: {
8583         u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8584 
8585         link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8586         linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8587         port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8588         mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8589         pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8590         acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8591         lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8592         linkattr = lstatus_to_fwcap(lstatus);
8593         break;
8594     }
8595 
8596     case FW_PORT_ACTION_GET_PORT_INFO32: {
8597         u32 lstatus32;
8598 
8599         lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8600         link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8601         linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8602         port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8603         mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8604         pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8605         acaps = be32_to_cpu(cmd->u.info32.acaps32);
8606         lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8607         linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8608         break;
8609     }
8610 
8611     default:
8612         dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8613             be32_to_cpu(cmd->action_to_len16));
8614         return;
8615     }
8616 
8617     fec = fwcap_to_cc_fec(acaps);
8618     adv_fc = fwcap_to_cc_pause(acaps);
8619     fc = fwcap_to_cc_pause(linkattr);
8620     speed = fwcap_to_speed(linkattr);
8621 
8622     /* Reset state for communicating new Transceiver Module status and
8623      * whether the OS-dependent layer wants us to redo the current
8624      * "sticky" L1 Configure Link Parameters.
8625      */
8626     lc->new_module = false;
8627     lc->redo_l1cfg = false;
8628 
8629     if (mod_type != pi->mod_type) {
8630         /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8631          * various fundamental Port Capabilities which used to be
8632          * immutable can now change radically.  We can now have
8633          * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8634          * all change based on what Transceiver Module is inserted.
8635          * So we need to record the Physical "Port" Capabilities on
8636          * every Transceiver Module change.
8637          */
8638         lc->pcaps = pcaps;
8639 
8640         /* When a new Transceiver Module is inserted, the Firmware
8641          * will examine its i2c EPROM to determine its type and
8642          * general operating parameters including things like Forward
8643          * Error Control, etc.  Various IEEE 802.3 standards dictate
8644          * how to interpret these i2c values to determine default
8645          * "sutomatic" settings.  We record these for future use when
8646          * the user explicitly requests these standards-based values.
8647          */
8648         lc->def_acaps = acaps;
8649 
8650         /* Some versions of the early T6 Firmware "cheated" when
8651          * handling different Transceiver Modules by changing the
8652          * underlaying Port Type reported to the Host Drivers.  As
8653          * such we need to capture whatever Port Type the Firmware
8654          * sends us and record it in case it's different from what we
8655          * were told earlier.  Unfortunately, since Firmware is
8656          * forever, we'll need to keep this code here forever, but in
8657          * later T6 Firmware it should just be an assignment of the
8658          * same value already recorded.
8659          */
8660         pi->port_type = port_type;
8661 
8662         /* Record new Module Type information.
8663          */
8664         pi->mod_type = mod_type;
8665 
8666         /* Let the OS-dependent layer know if we have a new
8667          * Transceiver Module inserted.
8668          */
8669         lc->new_module = t4_is_inserted_mod_type(mod_type);
8670 
8671         t4_os_portmod_changed(adapter, pi->port_id);
8672     }
8673 
8674     if (link_ok != lc->link_ok || speed != lc->speed ||
8675         fc != lc->fc || adv_fc != lc->advertised_fc ||
8676         fec != lc->fec) {
8677         /* something changed */
8678         if (!link_ok && lc->link_ok) {
8679             lc->link_down_rc = linkdnrc;
8680             dev_warn_ratelimited(adapter->pdev_dev,
8681                          "Port %d link down, reason: %s\n",
8682                          pi->tx_chan,
8683                          t4_link_down_rc_str(linkdnrc));
8684         }
8685         lc->link_ok = link_ok;
8686         lc->speed = speed;
8687         lc->advertised_fc = adv_fc;
8688         lc->fc = fc;
8689         lc->fec = fec;
8690 
8691         lc->lpacaps = lpacaps;
8692         lc->acaps = acaps & ADVERT_MASK;
8693 
8694         /* If we're not physically capable of Auto-Negotiation, note
8695          * this as Auto-Negotiation disabled.  Otherwise, we track
8696          * what Auto-Negotiation settings we have.  Note parallel
8697          * structure in t4_link_l1cfg_core() and init_link_config().
8698          */
8699         if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8700             lc->autoneg = AUTONEG_DISABLE;
8701         } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8702             lc->autoneg = AUTONEG_ENABLE;
8703         } else {
8704             /* When Autoneg is disabled, user needs to set
8705              * single speed.
8706              * Similar to cxgb4_ethtool.c: set_link_ksettings
8707              */
8708             lc->acaps = 0;
8709             lc->speed_caps = fwcap_to_fwspeed(acaps);
8710             lc->autoneg = AUTONEG_DISABLE;
8711         }
8712 
8713         t4_os_link_changed(adapter, pi->port_id, link_ok);
8714     }
8715 
8716     /* If we have a new Transceiver Module and the OS-dependent code has
8717      * told us that it wants us to redo whatever "sticky" L1 Configuration
8718      * Link Parameters are set, do that now.
8719      */
8720     if (lc->new_module && lc->redo_l1cfg) {
8721         struct link_config old_lc;
8722         int ret;
8723 
8724         /* Save the current L1 Configuration and restore it if an
8725          * error occurs.  We probably should fix the l1_cfg*()
8726          * routines not to change the link_config when an error
8727          * occurs ...
8728          */
8729         old_lc = *lc;
8730         ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8731         if (ret) {
8732             *lc = old_lc;
8733             dev_warn(adapter->pdev_dev,
8734                  "Attempt to update new Transceiver Module settings failed\n");
8735         }
8736     }
8737     lc->new_module = false;
8738     lc->redo_l1cfg = false;
8739 }
8740 
8741 /**
8742  *  t4_update_port_info - retrieve and update port information if changed
8743  *  @pi: the port_info
8744  *
8745  *  We issue a Get Port Information Command to the Firmware and, if
8746  *  successful, we check to see if anything is different from what we
8747  *  last recorded and update things accordingly.
8748  */
8749 int t4_update_port_info(struct port_info *pi)
8750 {
8751     unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8752     struct fw_port_cmd port_cmd;
8753     int ret;
8754 
8755     memset(&port_cmd, 0, sizeof(port_cmd));
8756     port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8757                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
8758                         FW_PORT_CMD_PORTID_V(pi->tx_chan));
8759     port_cmd.action_to_len16 = cpu_to_be32(
8760         FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8761                      ? FW_PORT_ACTION_GET_PORT_INFO
8762                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8763         FW_LEN16(port_cmd));
8764     ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8765              &port_cmd, sizeof(port_cmd), &port_cmd);
8766     if (ret)
8767         return ret;
8768 
8769     t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8770     return 0;
8771 }
8772 
8773 /**
8774  *  t4_get_link_params - retrieve basic link parameters for given port
8775  *  @pi: the port
8776  *  @link_okp: value return pointer for link up/down
8777  *  @speedp: value return pointer for speed (Mb/s)
8778  *  @mtup: value return pointer for mtu
8779  *
8780  *  Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8781  *  and MTU for a specified port.  A negative error is returned on
8782  *  failure; 0 on success.
8783  */
8784 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8785                unsigned int *speedp, unsigned int *mtup)
8786 {
8787     unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8788     unsigned int action, link_ok, mtu;
8789     struct fw_port_cmd port_cmd;
8790     fw_port_cap32_t linkattr;
8791     int ret;
8792 
8793     memset(&port_cmd, 0, sizeof(port_cmd));
8794     port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8795                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
8796                         FW_PORT_CMD_PORTID_V(pi->tx_chan));
8797     action = (fw_caps == FW_CAPS16
8798           ? FW_PORT_ACTION_GET_PORT_INFO
8799           : FW_PORT_ACTION_GET_PORT_INFO32);
8800     port_cmd.action_to_len16 = cpu_to_be32(
8801         FW_PORT_CMD_ACTION_V(action) |
8802         FW_LEN16(port_cmd));
8803     ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8804              &port_cmd, sizeof(port_cmd), &port_cmd);
8805     if (ret)
8806         return ret;
8807 
8808     if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8809         u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8810 
8811         link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8812         linkattr = lstatus_to_fwcap(lstatus);
8813         mtu = be16_to_cpu(port_cmd.u.info.mtu);
8814     } else {
8815         u32 lstatus32 =
8816                be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8817 
8818         link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8819         linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8820         mtu = FW_PORT_CMD_MTU32_G(
8821             be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8822     }
8823 
8824     if (link_okp)
8825         *link_okp = link_ok;
8826     if (speedp)
8827         *speedp = fwcap_to_speed(linkattr);
8828     if (mtup)
8829         *mtup = mtu;
8830 
8831     return 0;
8832 }
8833 
8834 /**
8835  *      t4_handle_fw_rpl - process a FW reply message
8836  *      @adap: the adapter
8837  *      @rpl: start of the FW message
8838  *
8839  *      Processes a FW message, such as link state change messages.
8840  */
8841 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8842 {
8843     u8 opcode = *(const u8 *)rpl;
8844 
8845     /* This might be a port command ... this simplifies the following
8846      * conditionals ...  We can get away with pre-dereferencing
8847      * action_to_len16 because it's in the first 16 bytes and all messages
8848      * will be at least that long.
8849      */
8850     const struct fw_port_cmd *p = (const void *)rpl;
8851     unsigned int action =
8852         FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8853 
8854     if (opcode == FW_PORT_CMD &&
8855         (action == FW_PORT_ACTION_GET_PORT_INFO ||
8856          action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8857         int i;
8858         int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8859         struct port_info *pi = NULL;
8860 
8861         for_each_port(adap, i) {
8862             pi = adap2pinfo(adap, i);
8863             if (pi->tx_chan == chan)
8864                 break;
8865         }
8866 
8867         t4_handle_get_port_info(pi, rpl);
8868     } else {
8869         dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8870              opcode);
8871         return -EINVAL;
8872     }
8873     return 0;
8874 }
8875 
8876 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8877 {
8878     u16 val;
8879 
8880     if (pci_is_pcie(adapter->pdev)) {
8881         pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8882         p->speed = val & PCI_EXP_LNKSTA_CLS;
8883         p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8884     }
8885 }
8886 
8887 /**
8888  *  init_link_config - initialize a link's SW state
8889  *  @lc: pointer to structure holding the link state
8890  *  @pcaps: link Port Capabilities
8891  *  @acaps: link current Advertised Port Capabilities
8892  *
8893  *  Initializes the SW state maintained for each link, including the link's
8894  *  capabilities and default speed/flow-control/autonegotiation settings.
8895  */
8896 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8897                  fw_port_cap32_t acaps)
8898 {
8899     lc->pcaps = pcaps;
8900     lc->def_acaps = acaps;
8901     lc->lpacaps = 0;
8902     lc->speed_caps = 0;
8903     lc->speed = 0;
8904     lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8905 
8906     /* For Forward Error Control, we default to whatever the Firmware
8907      * tells us the Link is currently advertising.
8908      */
8909     lc->requested_fec = FEC_AUTO;
8910     lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8911 
8912     /* If the Port is capable of Auto-Negtotiation, initialize it as
8913      * "enabled" and copy over all of the Physical Port Capabilities
8914      * to the Advertised Port Capabilities.  Otherwise mark it as
8915      * Auto-Negotiate disabled and select the highest supported speed
8916      * for the link.  Note parallel structure in t4_link_l1cfg_core()
8917      * and t4_handle_get_port_info().
8918      */
8919     if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8920         lc->acaps = lc->pcaps & ADVERT_MASK;
8921         lc->autoneg = AUTONEG_ENABLE;
8922         lc->requested_fc |= PAUSE_AUTONEG;
8923     } else {
8924         lc->acaps = 0;
8925         lc->autoneg = AUTONEG_DISABLE;
8926         lc->speed_caps = fwcap_to_fwspeed(acaps);
8927     }
8928 }
8929 
8930 #define CIM_PF_NOACCESS 0xeeeeeeee
8931 
8932 int t4_wait_dev_ready(void __iomem *regs)
8933 {
8934     u32 whoami;
8935 
8936     whoami = readl(regs + PL_WHOAMI_A);
8937     if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8938         return 0;
8939 
8940     msleep(500);
8941     whoami = readl(regs + PL_WHOAMI_A);
8942     return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8943 }
8944 
8945 struct flash_desc {
8946     u32 vendor_and_model_id;
8947     u32 size_mb;
8948 };
8949 
8950 static int t4_get_flash_params(struct adapter *adap)
8951 {
8952     /* Table for non-Numonix supported flash parts.  Numonix parts are left
8953      * to the preexisting code.  All flash parts have 64KB sectors.
8954      */
8955     static struct flash_desc supported_flash[] = {
8956         { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8957     };
8958 
8959     unsigned int part, manufacturer;
8960     unsigned int density, size = 0;
8961     u32 flashid = 0;
8962     int ret;
8963 
8964     /* Issue a Read ID Command to the Flash part.  We decode supported
8965      * Flash parts and their sizes from this.  There's a newer Query
8966      * Command which can retrieve detailed geometry information but many
8967      * Flash parts don't support it.
8968      */
8969 
8970     ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8971     if (!ret)
8972         ret = sf1_read(adap, 3, 0, 1, &flashid);
8973     t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8974     if (ret)
8975         return ret;
8976 
8977     /* Check to see if it's one of our non-standard supported Flash parts.
8978      */
8979     for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8980         if (supported_flash[part].vendor_and_model_id == flashid) {
8981             adap->params.sf_size = supported_flash[part].size_mb;
8982             adap->params.sf_nsec =
8983                 adap->params.sf_size / SF_SEC_SIZE;
8984             goto found;
8985         }
8986 
8987     /* Decode Flash part size.  The code below looks repetitive with
8988      * common encodings, but that's not guaranteed in the JEDEC
8989      * specification for the Read JEDEC ID command.  The only thing that
8990      * we're guaranteed by the JEDEC specification is where the
8991      * Manufacturer ID is in the returned result.  After that each
8992      * Manufacturer ~could~ encode things completely differently.
8993      * Note, all Flash parts must have 64KB sectors.
8994      */
8995     manufacturer = flashid & 0xff;
8996     switch (manufacturer) {
8997     case 0x20: { /* Micron/Numonix */
8998         /* This Density -> Size decoding table is taken from Micron
8999          * Data Sheets.
9000          */
9001         density = (flashid >> 16) & 0xff;
9002         switch (density) {
9003         case 0x14: /* 1MB */
9004             size = 1 << 20;
9005             break;
9006         case 0x15: /* 2MB */
9007             size = 1 << 21;
9008             break;
9009         case 0x16: /* 4MB */
9010             size = 1 << 22;
9011             break;
9012         case 0x17: /* 8MB */
9013             size = 1 << 23;
9014             break;
9015         case 0x18: /* 16MB */
9016             size = 1 << 24;
9017             break;
9018         case 0x19: /* 32MB */
9019             size = 1 << 25;
9020             break;
9021         case 0x20: /* 64MB */
9022             size = 1 << 26;
9023             break;
9024         case 0x21: /* 128MB */
9025             size = 1 << 27;
9026             break;
9027         case 0x22: /* 256MB */
9028             size = 1 << 28;
9029             break;
9030         }
9031         break;
9032     }
9033     case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9034         /* This Density -> Size decoding table is taken from ISSI
9035          * Data Sheets.
9036          */
9037         density = (flashid >> 16) & 0xff;
9038         switch (density) {
9039         case 0x16: /* 32 MB */
9040             size = 1 << 25;
9041             break;
9042         case 0x17: /* 64MB */
9043             size = 1 << 26;
9044             break;
9045         }
9046         break;
9047     }
9048     case 0xc2: { /* Macronix */
9049         /* This Density -> Size decoding table is taken from Macronix
9050          * Data Sheets.
9051          */
9052         density = (flashid >> 16) & 0xff;
9053         switch (density) {
9054         case 0x17: /* 8MB */
9055             size = 1 << 23;
9056             break;
9057         case 0x18: /* 16MB */
9058             size = 1 << 24;
9059             break;
9060         }
9061         break;
9062     }
9063     case 0xef: { /* Winbond */
9064         /* This Density -> Size decoding table is taken from Winbond
9065          * Data Sheets.
9066          */
9067         density = (flashid >> 16) & 0xff;
9068         switch (density) {
9069         case 0x17: /* 8MB */
9070             size = 1 << 23;
9071             break;
9072         case 0x18: /* 16MB */
9073             size = 1 << 24;
9074             break;
9075         }
9076         break;
9077     }
9078     }
9079 
9080     /* If we didn't recognize the FLASH part, that's no real issue: the
9081      * Hardware/Software contract says that Hardware will _*ALWAYS*_
9082      * use a FLASH part which is at least 4MB in size and has 64KB
9083      * sectors.  The unrecognized FLASH part is likely to be much larger
9084      * than 4MB, but that's all we really need.
9085      */
9086     if (size == 0) {
9087         dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9088              flashid);
9089         size = 1 << 22;
9090     }
9091 
9092     /* Store decoded Flash size and fall through into vetting code. */
9093     adap->params.sf_size = size;
9094     adap->params.sf_nsec = size / SF_SEC_SIZE;
9095 
9096 found:
9097     if (adap->params.sf_size < FLASH_MIN_SIZE)
9098         dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9099              flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9100     return 0;
9101 }
9102 
9103 /**
9104  *  t4_prep_adapter - prepare SW and HW for operation
9105  *  @adapter: the adapter
9106  *
9107  *  Initialize adapter SW state for the various HW modules, set initial
9108  *  values for some adapter tunables, take PHYs out of reset, and
9109  *  initialize the MDIO interface.
9110  */
9111 int t4_prep_adapter(struct adapter *adapter)
9112 {
9113     int ret, ver;
9114     uint16_t device_id;
9115     u32 pl_rev;
9116 
9117     get_pci_mode(adapter, &adapter->params.pci);
9118     pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9119 
9120     ret = t4_get_flash_params(adapter);
9121     if (ret < 0) {
9122         dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9123         return ret;
9124     }
9125 
9126     /* Retrieve adapter's device ID
9127      */
9128     pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9129     ver = device_id >> 12;
9130     adapter->params.chip = 0;
9131     switch (ver) {
9132     case CHELSIO_T4:
9133         adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9134         adapter->params.arch.sge_fl_db = DBPRIO_F;
9135         adapter->params.arch.mps_tcam_size =
9136                  NUM_MPS_CLS_SRAM_L_INSTANCES;
9137         adapter->params.arch.mps_rplc_size = 128;
9138         adapter->params.arch.nchan = NCHAN;
9139         adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9140         adapter->params.arch.vfcount = 128;
9141         /* Congestion map is for 4 channels so that
9142          * MPS can have 4 priority per port.
9143          */
9144         adapter->params.arch.cng_ch_bits_log = 2;
9145         break;
9146     case CHELSIO_T5:
9147         adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9148         adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9149         adapter->params.arch.mps_tcam_size =
9150                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9151         adapter->params.arch.mps_rplc_size = 128;
9152         adapter->params.arch.nchan = NCHAN;
9153         adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9154         adapter->params.arch.vfcount = 128;
9155         adapter->params.arch.cng_ch_bits_log = 2;
9156         break;
9157     case CHELSIO_T6:
9158         adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9159         adapter->params.arch.sge_fl_db = 0;
9160         adapter->params.arch.mps_tcam_size =
9161                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9162         adapter->params.arch.mps_rplc_size = 256;
9163         adapter->params.arch.nchan = 2;
9164         adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9165         adapter->params.arch.vfcount = 256;
9166         /* Congestion map will be for 2 channels so that
9167          * MPS can have 8 priority per port.
9168          */
9169         adapter->params.arch.cng_ch_bits_log = 3;
9170         break;
9171     default:
9172         dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9173             device_id);
9174         return -EINVAL;
9175     }
9176 
9177     adapter->params.cim_la_size = CIMLA_SIZE;
9178     init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9179 
9180     /*
9181      * Default port for debugging in case we can't reach FW.
9182      */
9183     adapter->params.nports = 1;
9184     adapter->params.portvec = 1;
9185     adapter->params.vpd.cclk = 50000;
9186 
9187     /* Set PCIe completion timeout to 4 seconds. */
9188     pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9189                        PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9190     return 0;
9191 }
9192 
9193 /**
9194  *  t4_shutdown_adapter - shut down adapter, host & wire
9195  *  @adapter: the adapter
9196  *
9197  *  Perform an emergency shutdown of the adapter and stop it from
9198  *  continuing any further communication on the ports or DMA to the
9199  *  host.  This is typically used when the adapter and/or firmware
9200  *  have crashed and we want to prevent any further accidental
9201  *  communication with the rest of the world.  This will also force
9202  *  the port Link Status to go down -- if register writes work --
9203  *  which should help our peers figure out that we're down.
9204  */
9205 int t4_shutdown_adapter(struct adapter *adapter)
9206 {
9207     int port;
9208 
9209     t4_intr_disable(adapter);
9210     t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9211     for_each_port(adapter, port) {
9212         u32 a_port_cfg = is_t4(adapter->params.chip) ?
9213                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9214                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9215 
9216         t4_write_reg(adapter, a_port_cfg,
9217                  t4_read_reg(adapter, a_port_cfg)
9218                  & ~SIGNAL_DET_V(1));
9219     }
9220     t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9221 
9222     return 0;
9223 }
9224 
9225 /**
9226  *  t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9227  *  @adapter: the adapter
9228  *  @qid: the Queue ID
9229  *  @qtype: the Ingress or Egress type for @qid
9230  *  @user: true if this request is for a user mode queue
9231  *  @pbar2_qoffset: BAR2 Queue Offset
9232  *  @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9233  *
9234  *  Returns the BAR2 SGE Queue Registers information associated with the
9235  *  indicated Absolute Queue ID.  These are passed back in return value
9236  *  pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9237  *  and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9238  *
9239  *  This may return an error which indicates that BAR2 SGE Queue
9240  *  registers aren't available.  If an error is not returned, then the
9241  *  following values are returned:
9242  *
9243  *    *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9244  *    *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9245  *
9246  *  If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9247  *  require the "Inferred Queue ID" ability may be used.  E.g. the
9248  *  Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9249  *  then these "Inferred Queue ID" register may not be used.
9250  */
9251 int t4_bar2_sge_qregs(struct adapter *adapter,
9252               unsigned int qid,
9253               enum t4_bar2_qtype qtype,
9254               int user,
9255               u64 *pbar2_qoffset,
9256               unsigned int *pbar2_qid)
9257 {
9258     unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9259     u64 bar2_page_offset, bar2_qoffset;
9260     unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9261 
9262     /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9263     if (!user && is_t4(adapter->params.chip))
9264         return -EINVAL;
9265 
9266     /* Get our SGE Page Size parameters.
9267      */
9268     page_shift = adapter->params.sge.hps + 10;
9269     page_size = 1 << page_shift;
9270 
9271     /* Get the right Queues per Page parameters for our Queue.
9272      */
9273     qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9274              ? adapter->params.sge.eq_qpp
9275              : adapter->params.sge.iq_qpp);
9276     qpp_mask = (1 << qpp_shift) - 1;
9277 
9278     /*  Calculate the basics of the BAR2 SGE Queue register area:
9279      *  o The BAR2 page the Queue registers will be in.
9280      *  o The BAR2 Queue ID.
9281      *  o The BAR2 Queue ID Offset into the BAR2 page.
9282      */
9283     bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9284     bar2_qid = qid & qpp_mask;
9285     bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9286 
9287     /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9288      * hardware will infer the Absolute Queue ID simply from the writes to
9289      * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9290      * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9291      * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9292      * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9293      * from the BAR2 Page and BAR2 Queue ID.
9294      *
9295      * One important censequence of this is that some BAR2 SGE registers
9296      * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9297      * there.  But other registers synthesize the SGE Queue ID purely
9298      * from the writes to the registers -- the Write Combined Doorbell
9299      * Buffer is a good example.  These BAR2 SGE Registers are only
9300      * available for those BAR2 SGE Register areas where the SGE Absolute
9301      * Queue ID can be inferred from simple writes.
9302      */
9303     bar2_qoffset = bar2_page_offset;
9304     bar2_qinferred = (bar2_qid_offset < page_size);
9305     if (bar2_qinferred) {
9306         bar2_qoffset += bar2_qid_offset;
9307         bar2_qid = 0;
9308     }
9309 
9310     *pbar2_qoffset = bar2_qoffset;
9311     *pbar2_qid = bar2_qid;
9312     return 0;
9313 }
9314 
9315 /**
9316  *  t4_init_devlog_params - initialize adapter->params.devlog
9317  *  @adap: the adapter
9318  *
9319  *  Initialize various fields of the adapter's Firmware Device Log
9320  *  Parameters structure.
9321  */
9322 int t4_init_devlog_params(struct adapter *adap)
9323 {
9324     struct devlog_params *dparams = &adap->params.devlog;
9325     u32 pf_dparams;
9326     unsigned int devlog_meminfo;
9327     struct fw_devlog_cmd devlog_cmd;
9328     int ret;
9329 
9330     /* If we're dealing with newer firmware, the Device Log Parameters
9331      * are stored in a designated register which allows us to access the
9332      * Device Log even if we can't talk to the firmware.
9333      */
9334     pf_dparams =
9335         t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9336     if (pf_dparams) {
9337         unsigned int nentries, nentries128;
9338 
9339         dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9340         dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9341 
9342         nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9343         nentries = (nentries128 + 1) * 128;
9344         dparams->size = nentries * sizeof(struct fw_devlog_e);
9345 
9346         return 0;
9347     }
9348 
9349     /* Otherwise, ask the firmware for it's Device Log Parameters.
9350      */
9351     memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9352     devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9353                          FW_CMD_REQUEST_F | FW_CMD_READ_F);
9354     devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9355     ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9356              &devlog_cmd);
9357     if (ret)
9358         return ret;
9359 
9360     devlog_meminfo =
9361         be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9362     dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9363     dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9364     dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9365 
9366     return 0;
9367 }
9368 
9369 /**
9370  *  t4_init_sge_params - initialize adap->params.sge
9371  *  @adapter: the adapter
9372  *
9373  *  Initialize various fields of the adapter's SGE Parameters structure.
9374  */
9375 int t4_init_sge_params(struct adapter *adapter)
9376 {
9377     struct sge_params *sge_params = &adapter->params.sge;
9378     u32 hps, qpp;
9379     unsigned int s_hps, s_qpp;
9380 
9381     /* Extract the SGE Page Size for our PF.
9382      */
9383     hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9384     s_hps = (HOSTPAGESIZEPF0_S +
9385          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9386     sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9387 
9388     /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9389      */
9390     s_qpp = (QUEUESPERPAGEPF0_S +
9391         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9392     qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9393     sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9394     qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9395     sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9396 
9397     return 0;
9398 }
9399 
9400 /**
9401  *      t4_init_tp_params - initialize adap->params.tp
9402  *      @adap: the adapter
9403  *      @sleep_ok: if true we may sleep while awaiting command completion
9404  *
9405  *      Initialize various fields of the adapter's TP Parameters structure.
9406  */
9407 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9408 {
9409     u32 param, val, v;
9410     int chan, ret;
9411 
9412 
9413     v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9414     adap->params.tp.tre = TIMERRESOLUTION_G(v);
9415     adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9416 
9417     /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9418     for (chan = 0; chan < NCHAN; chan++)
9419         adap->params.tp.tx_modq[chan] = chan;
9420 
9421     /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9422      * Configuration.
9423      */
9424     param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9425          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9426          FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9427 
9428     /* Read current value */
9429     ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9430                   &param, &val);
9431     if (ret == 0) {
9432         dev_info(adap->pdev_dev,
9433              "Current filter mode/mask 0x%x:0x%x\n",
9434              FW_PARAMS_PARAM_FILTER_MODE_G(val),
9435              FW_PARAMS_PARAM_FILTER_MASK_G(val));
9436         adap->params.tp.vlan_pri_map =
9437             FW_PARAMS_PARAM_FILTER_MODE_G(val);
9438         adap->params.tp.filter_mask =
9439             FW_PARAMS_PARAM_FILTER_MASK_G(val);
9440     } else {
9441         dev_info(adap->pdev_dev,
9442              "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9443 
9444         /* Incase of older-fw (which doesn't expose the api
9445          * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9446          * the fw api) combination, fall-back to older method of reading
9447          * the filter mode from indirect-register
9448          */
9449         t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9450                    TP_VLAN_PRI_MAP_A, sleep_ok);
9451 
9452         /* With the older-fw and newer-driver combination we might run
9453          * into an issue when user wants to use hash filter region but
9454          * the filter_mask is zero, in this case filter_mask validation
9455          * is tough. To avoid that we set the filter_mask same as filter
9456          * mode, which will behave exactly as the older way of ignoring
9457          * the filter mask validation.
9458          */
9459         adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9460     }
9461 
9462     t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9463                TP_INGRESS_CONFIG_A, sleep_ok);
9464 
9465     /* For T6, cache the adapter's compressed error vector
9466      * and passing outer header info for encapsulated packets.
9467      */
9468     if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9469         v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9470         adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9471     }
9472 
9473     /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9474      * shift positions of several elements of the Compressed Filter Tuple
9475      * for this adapter which we need frequently ...
9476      */
9477     adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9478     adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9479     adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9480     adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9481     adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9482     adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9483                                    PROTOCOL_F);
9484     adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9485                                 ETHERTYPE_F);
9486     adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9487                                    MACMATCH_F);
9488     adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9489                                 MPSHITTYPE_F);
9490     adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9491                                FRAGMENTATION_F);
9492 
9493     /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9494      * represents the presence of an Outer VLAN instead of a VNIC ID.
9495      */
9496     if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9497         adap->params.tp.vnic_shift = -1;
9498 
9499     v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9500     adap->params.tp.hash_filter_mask = v;
9501     v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9502     adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9503     return 0;
9504 }
9505 
9506 /**
9507  *      t4_filter_field_shift - calculate filter field shift
9508  *      @adap: the adapter
9509  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9510  *
9511  *      Return the shift position of a filter field within the Compressed
9512  *      Filter Tuple.  The filter field is specified via its selection bit
9513  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9514  */
9515 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9516 {
9517     unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9518     unsigned int sel;
9519     int field_shift;
9520 
9521     if ((filter_mode & filter_sel) == 0)
9522         return -1;
9523 
9524     for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9525         switch (filter_mode & sel) {
9526         case FCOE_F:
9527             field_shift += FT_FCOE_W;
9528             break;
9529         case PORT_F:
9530             field_shift += FT_PORT_W;
9531             break;
9532         case VNIC_ID_F:
9533             field_shift += FT_VNIC_ID_W;
9534             break;
9535         case VLAN_F:
9536             field_shift += FT_VLAN_W;
9537             break;
9538         case TOS_F:
9539             field_shift += FT_TOS_W;
9540             break;
9541         case PROTOCOL_F:
9542             field_shift += FT_PROTOCOL_W;
9543             break;
9544         case ETHERTYPE_F:
9545             field_shift += FT_ETHERTYPE_W;
9546             break;
9547         case MACMATCH_F:
9548             field_shift += FT_MACMATCH_W;
9549             break;
9550         case MPSHITTYPE_F:
9551             field_shift += FT_MPSHITTYPE_W;
9552             break;
9553         case FRAGMENTATION_F:
9554             field_shift += FT_FRAGMENTATION_W;
9555             break;
9556         }
9557     }
9558     return field_shift;
9559 }
9560 
9561 int t4_init_rss_mode(struct adapter *adap, int mbox)
9562 {
9563     int i, ret;
9564     struct fw_rss_vi_config_cmd rvc;
9565 
9566     memset(&rvc, 0, sizeof(rvc));
9567 
9568     for_each_port(adap, i) {
9569         struct port_info *p = adap2pinfo(adap, i);
9570 
9571         rvc.op_to_viid =
9572             cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9573                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9574                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9575         rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9576         ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9577         if (ret)
9578             return ret;
9579         p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9580     }
9581     return 0;
9582 }
9583 
9584 /**
9585  *  t4_init_portinfo - allocate a virtual interface and initialize port_info
9586  *  @pi: the port_info
9587  *  @mbox: mailbox to use for the FW command
9588  *  @port: physical port associated with the VI
9589  *  @pf: the PF owning the VI
9590  *  @vf: the VF owning the VI
9591  *  @mac: the MAC address of the VI
9592  *
9593  *  Allocates a virtual interface for the given physical port.  If @mac is
9594  *  not %NULL it contains the MAC address of the VI as assigned by FW.
9595  *  @mac should be large enough to hold an Ethernet address.
9596  *  Returns < 0 on error.
9597  */
9598 int t4_init_portinfo(struct port_info *pi, int mbox,
9599              int port, int pf, int vf, u8 mac[])
9600 {
9601     struct adapter *adapter = pi->adapter;
9602     unsigned int fw_caps = adapter->params.fw_caps_support;
9603     struct fw_port_cmd cmd;
9604     unsigned int rss_size;
9605     enum fw_port_type port_type;
9606     int mdio_addr;
9607     fw_port_cap32_t pcaps, acaps;
9608     u8 vivld = 0, vin = 0;
9609     int ret;
9610 
9611     /* If we haven't yet determined whether we're talking to Firmware
9612      * which knows the new 32-bit Port Capabilities, it's time to find
9613      * out now.  This will also tell new Firmware to send us Port Status
9614      * Updates using the new 32-bit Port Capabilities version of the
9615      * Port Information message.
9616      */
9617     if (fw_caps == FW_CAPS_UNKNOWN) {
9618         u32 param, val;
9619 
9620         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9621              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9622         val = 1;
9623         ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9624         fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9625         adapter->params.fw_caps_support = fw_caps;
9626     }
9627 
9628     memset(&cmd, 0, sizeof(cmd));
9629     cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9630                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9631                        FW_PORT_CMD_PORTID_V(port));
9632     cmd.action_to_len16 = cpu_to_be32(
9633         FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9634                      ? FW_PORT_ACTION_GET_PORT_INFO
9635                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9636         FW_LEN16(cmd));
9637     ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9638     if (ret)
9639         return ret;
9640 
9641     /* Extract the various fields from the Port Information message.
9642      */
9643     if (fw_caps == FW_CAPS16) {
9644         u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9645 
9646         port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9647         mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9648                  ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9649                  : -1);
9650         pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9651         acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9652     } else {
9653         u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9654 
9655         port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9656         mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9657                  ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9658                  : -1);
9659         pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9660         acaps = be32_to_cpu(cmd.u.info32.acaps32);
9661     }
9662 
9663     ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9664               &vivld, &vin);
9665     if (ret < 0)
9666         return ret;
9667 
9668     pi->viid = ret;
9669     pi->tx_chan = port;
9670     pi->lport = port;
9671     pi->rss_size = rss_size;
9672     pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9673 
9674     /* If fw supports returning the VIN as part of FW_VI_CMD,
9675      * save the returned values.
9676      */
9677     if (adapter->params.viid_smt_extn_support) {
9678         pi->vivld = vivld;
9679         pi->vin = vin;
9680     } else {
9681         /* Retrieve the values from VIID */
9682         pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9683         pi->vin =  FW_VIID_VIN_G(pi->viid);
9684     }
9685 
9686     pi->port_type = port_type;
9687     pi->mdio_addr = mdio_addr;
9688     pi->mod_type = FW_PORT_MOD_TYPE_NA;
9689 
9690     init_link_config(&pi->link_cfg, pcaps, acaps);
9691     return 0;
9692 }
9693 
9694 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9695 {
9696     u8 addr[6];
9697     int ret, i, j = 0;
9698 
9699     for_each_port(adap, i) {
9700         struct port_info *pi = adap2pinfo(adap, i);
9701 
9702         while ((adap->params.portvec & (1 << j)) == 0)
9703             j++;
9704 
9705         ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9706         if (ret)
9707             return ret;
9708 
9709         eth_hw_addr_set(adap->port[i], addr);
9710         j++;
9711     }
9712     return 0;
9713 }
9714 
9715 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9716             u16 *mirror_viid)
9717 {
9718     int ret;
9719 
9720     ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9721               NULL, NULL);
9722     if (ret < 0)
9723         return ret;
9724 
9725     if (mirror_viid)
9726         *mirror_viid = ret;
9727 
9728     return 0;
9729 }
9730 
9731 /**
9732  *  t4_read_cimq_cfg - read CIM queue configuration
9733  *  @adap: the adapter
9734  *  @base: holds the queue base addresses in bytes
9735  *  @size: holds the queue sizes in bytes
9736  *  @thres: holds the queue full thresholds in bytes
9737  *
9738  *  Returns the current configuration of the CIM queues, starting with
9739  *  the IBQs, then the OBQs.
9740  */
9741 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9742 {
9743     unsigned int i, v;
9744     int cim_num_obq = is_t4(adap->params.chip) ?
9745                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9746 
9747     for (i = 0; i < CIM_NUM_IBQ; i++) {
9748         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9749                  QUENUMSELECT_V(i));
9750         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9751         /* value is in 256-byte units */
9752         *base++ = CIMQBASE_G(v) * 256;
9753         *size++ = CIMQSIZE_G(v) * 256;
9754         *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9755     }
9756     for (i = 0; i < cim_num_obq; i++) {
9757         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9758                  QUENUMSELECT_V(i));
9759         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9760         /* value is in 256-byte units */
9761         *base++ = CIMQBASE_G(v) * 256;
9762         *size++ = CIMQSIZE_G(v) * 256;
9763     }
9764 }
9765 
9766 /**
9767  *  t4_read_cim_ibq - read the contents of a CIM inbound queue
9768  *  @adap: the adapter
9769  *  @qid: the queue index
9770  *  @data: where to store the queue contents
9771  *  @n: capacity of @data in 32-bit words
9772  *
9773  *  Reads the contents of the selected CIM queue starting at address 0 up
9774  *  to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9775  *  error and the number of 32-bit words actually read on success.
9776  */
9777 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9778 {
9779     int i, err, attempts;
9780     unsigned int addr;
9781     const unsigned int nwords = CIM_IBQ_SIZE * 4;
9782 
9783     if (qid > 5 || (n & 3))
9784         return -EINVAL;
9785 
9786     addr = qid * nwords;
9787     if (n > nwords)
9788         n = nwords;
9789 
9790     /* It might take 3-10ms before the IBQ debug read access is allowed.
9791      * Wait for 1 Sec with a delay of 1 usec.
9792      */
9793     attempts = 1000000;
9794 
9795     for (i = 0; i < n; i++, addr++) {
9796         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9797                  IBQDBGEN_F);
9798         err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9799                       attempts, 1);
9800         if (err)
9801             return err;
9802         *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9803     }
9804     t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9805     return i;
9806 }
9807 
9808 /**
9809  *  t4_read_cim_obq - read the contents of a CIM outbound queue
9810  *  @adap: the adapter
9811  *  @qid: the queue index
9812  *  @data: where to store the queue contents
9813  *  @n: capacity of @data in 32-bit words
9814  *
9815  *  Reads the contents of the selected CIM queue starting at address 0 up
9816  *  to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9817  *  error and the number of 32-bit words actually read on success.
9818  */
9819 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9820 {
9821     int i, err;
9822     unsigned int addr, v, nwords;
9823     int cim_num_obq = is_t4(adap->params.chip) ?
9824                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9825 
9826     if ((qid > (cim_num_obq - 1)) || (n & 3))
9827         return -EINVAL;
9828 
9829     t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9830              QUENUMSELECT_V(qid));
9831     v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9832 
9833     addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9834     nwords = CIMQSIZE_G(v) * 64;  /* same */
9835     if (n > nwords)
9836         n = nwords;
9837 
9838     for (i = 0; i < n; i++, addr++) {
9839         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9840                  OBQDBGEN_F);
9841         err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9842                       2, 1);
9843         if (err)
9844             return err;
9845         *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9846     }
9847     t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9848     return i;
9849 }
9850 
9851 /**
9852  *  t4_cim_read - read a block from CIM internal address space
9853  *  @adap: the adapter
9854  *  @addr: the start address within the CIM address space
9855  *  @n: number of words to read
9856  *  @valp: where to store the result
9857  *
9858  *  Reads a block of 4-byte words from the CIM intenal address space.
9859  */
9860 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9861         unsigned int *valp)
9862 {
9863     int ret = 0;
9864 
9865     if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9866         return -EBUSY;
9867 
9868     for ( ; !ret && n--; addr += 4) {
9869         t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9870         ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9871                       0, 5, 2);
9872         if (!ret)
9873             *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9874     }
9875     return ret;
9876 }
9877 
9878 /**
9879  *  t4_cim_write - write a block into CIM internal address space
9880  *  @adap: the adapter
9881  *  @addr: the start address within the CIM address space
9882  *  @n: number of words to write
9883  *  @valp: set of values to write
9884  *
9885  *  Writes a block of 4-byte words into the CIM intenal address space.
9886  */
9887 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9888          const unsigned int *valp)
9889 {
9890     int ret = 0;
9891 
9892     if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9893         return -EBUSY;
9894 
9895     for ( ; !ret && n--; addr += 4) {
9896         t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9897         t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9898         ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9899                       0, 5, 2);
9900     }
9901     return ret;
9902 }
9903 
9904 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9905              unsigned int val)
9906 {
9907     return t4_cim_write(adap, addr, 1, &val);
9908 }
9909 
9910 /**
9911  *  t4_cim_read_la - read CIM LA capture buffer
9912  *  @adap: the adapter
9913  *  @la_buf: where to store the LA data
9914  *  @wrptr: the HW write pointer within the capture buffer
9915  *
9916  *  Reads the contents of the CIM LA buffer with the most recent entry at
9917  *  the end of the returned data and with the entry at @wrptr first.
9918  *  We try to leave the LA in the running state we find it in.
9919  */
9920 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9921 {
9922     int i, ret;
9923     unsigned int cfg, val, idx;
9924 
9925     ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9926     if (ret)
9927         return ret;
9928 
9929     if (cfg & UPDBGLAEN_F) {    /* LA is running, freeze it */
9930         ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9931         if (ret)
9932             return ret;
9933     }
9934 
9935     ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9936     if (ret)
9937         goto restart;
9938 
9939     idx = UPDBGLAWRPTR_G(val);
9940     if (wrptr)
9941         *wrptr = idx;
9942 
9943     for (i = 0; i < adap->params.cim_la_size; i++) {
9944         ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9945                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9946         if (ret)
9947             break;
9948         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9949         if (ret)
9950             break;
9951         if (val & UPDBGLARDEN_F) {
9952             ret = -ETIMEDOUT;
9953             break;
9954         }
9955         ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9956         if (ret)
9957             break;
9958 
9959         /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9960          * identify the 32-bit portion of the full 312-bit data
9961          */
9962         if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9963             idx = (idx & 0xff0) + 0x10;
9964         else
9965             idx++;
9966         /* address can't exceed 0xfff */
9967         idx &= UPDBGLARDPTR_M;
9968     }
9969 restart:
9970     if (cfg & UPDBGLAEN_F) {
9971         int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9972                       cfg & ~UPDBGLARDEN_F);
9973         if (!ret)
9974             ret = r;
9975     }
9976     return ret;
9977 }
9978 
9979 /**
9980  *  t4_tp_read_la - read TP LA capture buffer
9981  *  @adap: the adapter
9982  *  @la_buf: where to store the LA data
9983  *  @wrptr: the HW write pointer within the capture buffer
9984  *
9985  *  Reads the contents of the TP LA buffer with the most recent entry at
9986  *  the end of the returned data and with the entry at @wrptr first.
9987  *  We leave the LA in the running state we find it in.
9988  */
9989 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9990 {
9991     bool last_incomplete;
9992     unsigned int i, cfg, val, idx;
9993 
9994     cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9995     if (cfg & DBGLAENABLE_F)            /* freeze LA */
9996         t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9997                  adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9998 
9999     val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10000     idx = DBGLAWPTR_G(val);
10001     last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10002     if (last_incomplete)
10003         idx = (idx + 1) & DBGLARPTR_M;
10004     if (wrptr)
10005         *wrptr = idx;
10006 
10007     val &= 0xffff;
10008     val &= ~DBGLARPTR_V(DBGLARPTR_M);
10009     val |= adap->params.tp.la_mask;
10010 
10011     for (i = 0; i < TPLA_SIZE; i++) {
10012         t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10013         la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10014         idx = (idx + 1) & DBGLARPTR_M;
10015     }
10016 
10017     /* Wipe out last entry if it isn't valid */
10018     if (last_incomplete)
10019         la_buf[TPLA_SIZE - 1] = ~0ULL;
10020 
10021     if (cfg & DBGLAENABLE_F)                    /* restore running state */
10022         t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10023                  cfg | adap->params.tp.la_mask);
10024 }
10025 
10026 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10027  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10028  * state for more than the Warning Threshold then we'll issue a warning about
10029  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10030  * appears to be hung every Warning Repeat second till the situation clears.
10031  * If the situation clears, we'll note that as well.
10032  */
10033 #define SGE_IDMA_WARN_THRESH 1
10034 #define SGE_IDMA_WARN_REPEAT 300
10035 
10036 /**
10037  *  t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10038  *  @adapter: the adapter
10039  *  @idma: the adapter IDMA Monitor state
10040  *
10041  *  Initialize the state of an SGE Ingress DMA Monitor.
10042  */
10043 void t4_idma_monitor_init(struct adapter *adapter,
10044               struct sge_idma_monitor_state *idma)
10045 {
10046     /* Initialize the state variables for detecting an SGE Ingress DMA
10047      * hang.  The SGE has internal counters which count up on each clock
10048      * tick whenever the SGE finds its Ingress DMA State Engines in the
10049      * same state they were on the previous clock tick.  The clock used is
10050      * the Core Clock so we have a limit on the maximum "time" they can
10051      * record; typically a very small number of seconds.  For instance,
10052      * with a 600MHz Core Clock, we can only count up to a bit more than
10053      * 7s.  So we'll synthesize a larger counter in order to not run the
10054      * risk of having the "timers" overflow and give us the flexibility to
10055      * maintain a Hung SGE State Machine of our own which operates across
10056      * a longer time frame.
10057      */
10058     idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10059     idma->idma_stalled[0] = 0;
10060     idma->idma_stalled[1] = 0;
10061 }
10062 
10063 /**
10064  *  t4_idma_monitor - monitor SGE Ingress DMA state
10065  *  @adapter: the adapter
10066  *  @idma: the adapter IDMA Monitor state
10067  *  @hz: number of ticks/second
10068  *  @ticks: number of ticks since the last IDMA Monitor call
10069  */
10070 void t4_idma_monitor(struct adapter *adapter,
10071              struct sge_idma_monitor_state *idma,
10072              int hz, int ticks)
10073 {
10074     int i, idma_same_state_cnt[2];
10075 
10076      /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10077       * are counters inside the SGE which count up on each clock when the
10078       * SGE finds its Ingress DMA State Engines in the same states they
10079       * were in the previous clock.  The counters will peg out at
10080       * 0xffffffff without wrapping around so once they pass the 1s
10081       * threshold they'll stay above that till the IDMA state changes.
10082       */
10083     t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10084     idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10085     idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10086 
10087     for (i = 0; i < 2; i++) {
10088         u32 debug0, debug11;
10089 
10090         /* If the Ingress DMA Same State Counter ("timer") is less
10091          * than 1s, then we can reset our synthesized Stall Timer and
10092          * continue.  If we have previously emitted warnings about a
10093          * potential stalled Ingress Queue, issue a note indicating
10094          * that the Ingress Queue has resumed forward progress.
10095          */
10096         if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10097             if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10098                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10099                      "resumed after %d seconds\n",
10100                      i, idma->idma_qid[i],
10101                      idma->idma_stalled[i] / hz);
10102             idma->idma_stalled[i] = 0;
10103             continue;
10104         }
10105 
10106         /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10107          * domain.  The first time we get here it'll be because we
10108          * passed the 1s Threshold; each additional time it'll be
10109          * because the RX Timer Callback is being fired on its regular
10110          * schedule.
10111          *
10112          * If the stall is below our Potential Hung Ingress Queue
10113          * Warning Threshold, continue.
10114          */
10115         if (idma->idma_stalled[i] == 0) {
10116             idma->idma_stalled[i] = hz;
10117             idma->idma_warn[i] = 0;
10118         } else {
10119             idma->idma_stalled[i] += ticks;
10120             idma->idma_warn[i] -= ticks;
10121         }
10122 
10123         if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10124             continue;
10125 
10126         /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10127          */
10128         if (idma->idma_warn[i] > 0)
10129             continue;
10130         idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10131 
10132         /* Read and save the SGE IDMA State and Queue ID information.
10133          * We do this every time in case it changes across time ...
10134          * can't be too careful ...
10135          */
10136         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10137         debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10138         idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10139 
10140         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10141         debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10142         idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10143 
10144         dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10145              "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10146              i, idma->idma_qid[i], idma->idma_state[i],
10147              idma->idma_stalled[i] / hz,
10148              debug0, debug11);
10149         t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10150     }
10151 }
10152 
10153 /**
10154  *  t4_load_cfg - download config file
10155  *  @adap: the adapter
10156  *  @cfg_data: the cfg text file to write
10157  *  @size: text file size
10158  *
10159  *  Write the supplied config text file to the card's serial flash.
10160  */
10161 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10162 {
10163     int ret, i, n, cfg_addr;
10164     unsigned int addr;
10165     unsigned int flash_cfg_start_sec;
10166     unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10167 
10168     cfg_addr = t4_flash_cfg_addr(adap);
10169     if (cfg_addr < 0)
10170         return cfg_addr;
10171 
10172     addr = cfg_addr;
10173     flash_cfg_start_sec = addr / SF_SEC_SIZE;
10174 
10175     if (size > FLASH_CFG_MAX_SIZE) {
10176         dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10177             FLASH_CFG_MAX_SIZE);
10178         return -EFBIG;
10179     }
10180 
10181     i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10182              sf_sec_size);
10183     ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10184                      flash_cfg_start_sec + i - 1);
10185     /* If size == 0 then we're simply erasing the FLASH sectors associated
10186      * with the on-adapter Firmware Configuration File.
10187      */
10188     if (ret || size == 0)
10189         goto out;
10190 
10191     /* this will write to the flash up to SF_PAGE_SIZE at a time */
10192     for (i = 0; i < size; i += SF_PAGE_SIZE) {
10193         if ((size - i) <  SF_PAGE_SIZE)
10194             n = size - i;
10195         else
10196             n = SF_PAGE_SIZE;
10197         ret = t4_write_flash(adap, addr, n, cfg_data, true);
10198         if (ret)
10199             goto out;
10200 
10201         addr += SF_PAGE_SIZE;
10202         cfg_data += SF_PAGE_SIZE;
10203     }
10204 
10205 out:
10206     if (ret)
10207         dev_err(adap->pdev_dev, "config file %s failed %d\n",
10208             (size == 0 ? "clear" : "download"), ret);
10209     return ret;
10210 }
10211 
10212 /**
10213  *  t4_set_vf_mac_acl - Set MAC address for the specified VF
10214  *  @adapter: The adapter
10215  *  @vf: one of the VFs instantiated by the specified PF
10216  *  @naddr: the number of MAC addresses
10217  *  @addr: the MAC address(es) to be set to the specified VF
10218  */
10219 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10220               unsigned int naddr, u8 *addr)
10221 {
10222     struct fw_acl_mac_cmd cmd;
10223 
10224     memset(&cmd, 0, sizeof(cmd));
10225     cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10226                     FW_CMD_REQUEST_F |
10227                     FW_CMD_WRITE_F |
10228                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10229                     FW_ACL_MAC_CMD_VFN_V(vf));
10230 
10231     /* Note: Do not enable the ACL */
10232     cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10233     cmd.nmac = naddr;
10234 
10235     switch (adapter->pf) {
10236     case 3:
10237         memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10238         break;
10239     case 2:
10240         memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10241         break;
10242     case 1:
10243         memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10244         break;
10245     case 0:
10246         memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10247         break;
10248     }
10249 
10250     return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10251 }
10252 
10253 /**
10254  * t4_read_pace_tbl - read the pace table
10255  * @adap: the adapter
10256  * @pace_vals: holds the returned values
10257  *
10258  * Returns the values of TP's pace table in microseconds.
10259  */
10260 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10261 {
10262     unsigned int i, v;
10263 
10264     for (i = 0; i < NTX_SCHED; i++) {
10265         t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10266         v = t4_read_reg(adap, TP_PACE_TABLE_A);
10267         pace_vals[i] = dack_ticks_to_usec(adap, v);
10268     }
10269 }
10270 
10271 /**
10272  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10273  * @adap: the adapter
10274  * @sched: the scheduler index
10275  * @kbps: the byte rate in Kbps
10276  * @ipg: the interpacket delay in tenths of nanoseconds
10277  * @sleep_ok: if true we may sleep while awaiting command completion
10278  *
10279  * Return the current configuration of a HW Tx scheduler.
10280  */
10281 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10282              unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10283 {
10284     unsigned int v, addr, bpt, cpt;
10285 
10286     if (kbps) {
10287         addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10288         t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10289         if (sched & 1)
10290             v >>= 16;
10291         bpt = (v >> 8) & 0xff;
10292         cpt = v & 0xff;
10293         if (!cpt) {
10294             *kbps = 0;  /* scheduler disabled */
10295         } else {
10296             v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10297             *kbps = (v * bpt) / 125;
10298         }
10299     }
10300     if (ipg) {
10301         addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10302         t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10303         if (sched & 1)
10304             v >>= 16;
10305         v &= 0xffff;
10306         *ipg = (10000 * v) / core_ticks_per_usec(adap);
10307     }
10308 }
10309 
10310 /* t4_sge_ctxt_rd - read an SGE context through FW
10311  * @adap: the adapter
10312  * @mbox: mailbox to use for the FW command
10313  * @cid: the context id
10314  * @ctype: the context type
10315  * @data: where to store the context data
10316  *
10317  * Issues a FW command through the given mailbox to read an SGE context.
10318  */
10319 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10320            enum ctxt_type ctype, u32 *data)
10321 {
10322     struct fw_ldst_cmd c;
10323     int ret;
10324 
10325     if (ctype == CTXT_FLM)
10326         ret = FW_LDST_ADDRSPC_SGE_FLMC;
10327     else
10328         ret = FW_LDST_ADDRSPC_SGE_CONMC;
10329 
10330     memset(&c, 0, sizeof(c));
10331     c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10332                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
10333                     FW_LDST_CMD_ADDRSPACE_V(ret));
10334     c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10335     c.u.idctxt.physid = cpu_to_be32(cid);
10336 
10337     ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10338     if (ret == 0) {
10339         data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10340         data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10341         data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10342         data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10343         data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10344         data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10345     }
10346     return ret;
10347 }
10348 
10349 /**
10350  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10351  * @adap: the adapter
10352  * @cid: the context id
10353  * @ctype: the context type
10354  * @data: where to store the context data
10355  *
10356  * Reads an SGE context directly, bypassing FW.  This is only for
10357  * debugging when FW is unavailable.
10358  */
10359 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10360               enum ctxt_type ctype, u32 *data)
10361 {
10362     int i, ret;
10363 
10364     t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10365     ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10366     if (!ret)
10367         for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10368             *data++ = t4_read_reg(adap, i);
10369     return ret;
10370 }
10371 
10372 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10373             u8 rateunit, u8 ratemode, u8 channel, u8 class,
10374             u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10375             u16 burstsize)
10376 {
10377     struct fw_sched_cmd cmd;
10378 
10379     memset(&cmd, 0, sizeof(cmd));
10380     cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10381                       FW_CMD_REQUEST_F |
10382                       FW_CMD_WRITE_F);
10383     cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10384 
10385     cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10386     cmd.u.params.type = type;
10387     cmd.u.params.level = level;
10388     cmd.u.params.mode = mode;
10389     cmd.u.params.ch = channel;
10390     cmd.u.params.cl = class;
10391     cmd.u.params.unit = rateunit;
10392     cmd.u.params.rate = ratemode;
10393     cmd.u.params.min = cpu_to_be32(minrate);
10394     cmd.u.params.max = cpu_to_be32(maxrate);
10395     cmd.u.params.weight = cpu_to_be16(weight);
10396     cmd.u.params.pktsize = cpu_to_be16(pktsize);
10397     cmd.u.params.burstsize = cpu_to_be16(burstsize);
10398 
10399     return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10400                    NULL, 1);
10401 }
10402 
10403 /**
10404  *  t4_i2c_rd - read I2C data from adapter
10405  *  @adap: the adapter
10406  *  @mbox: mailbox to use for the FW command
10407  *  @port: Port number if per-port device; <0 if not
10408  *  @devid: per-port device ID or absolute device ID
10409  *  @offset: byte offset into device I2C space
10410  *  @len: byte length of I2C space data
10411  *  @buf: buffer in which to return I2C data
10412  *
10413  *  Reads the I2C data from the indicated device and location.
10414  */
10415 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10416           unsigned int devid, unsigned int offset,
10417           unsigned int len, u8 *buf)
10418 {
10419     struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10420     unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10421     int ret = 0;
10422 
10423     if (len > I2C_PAGE_SIZE)
10424         return -EINVAL;
10425 
10426     /* Dont allow reads that spans multiple pages */
10427     if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10428         return -EINVAL;
10429 
10430     memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10431     ldst_cmd.op_to_addrspace =
10432         cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10433                 FW_CMD_REQUEST_F |
10434                 FW_CMD_READ_F |
10435                 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10436     ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10437     ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10438     ldst_cmd.u.i2c.did = devid;
10439 
10440     while (len > 0) {
10441         unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10442 
10443         ldst_cmd.u.i2c.boffset = offset;
10444         ldst_cmd.u.i2c.blen = i2c_len;
10445 
10446         ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10447                  &ldst_rpl);
10448         if (ret)
10449             break;
10450 
10451         memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10452         offset += i2c_len;
10453         buf += i2c_len;
10454         len -= i2c_len;
10455     }
10456 
10457     return ret;
10458 }
10459 
10460 /**
10461  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10462  *      @adap: the adapter
10463  *      @mbox: mailbox to use for the FW command
10464  *      @vf: one of the VFs instantiated by the specified PF
10465  *      @vlan: The vlanid to be set
10466  */
10467 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10468             u16 vlan)
10469 {
10470     struct fw_acl_vlan_cmd vlan_cmd;
10471     unsigned int enable;
10472 
10473     enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10474     memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10475     vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10476                      FW_CMD_REQUEST_F |
10477                      FW_CMD_WRITE_F |
10478                      FW_CMD_EXEC_F |
10479                      FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10480                      FW_ACL_VLAN_CMD_VFN_V(vf));
10481     vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10482     /* Drop all packets that donot match vlan id */
10483     vlan_cmd.dropnovlan_fm = (enable
10484                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10485                      FW_ACL_VLAN_CMD_FM_F) : 0);
10486     if (enable != 0) {
10487         vlan_cmd.nvlan = 1;
10488         vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10489     }
10490 
10491     return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10492 }
10493 
10494 /**
10495  *  modify_device_id - Modifies the device ID of the Boot BIOS image
10496  *  @device_id: the device ID to write.
10497  *  @boot_data: the boot image to modify.
10498  *
10499  *  Write the supplied device ID to the boot BIOS image.
10500  */
10501 static void modify_device_id(int device_id, u8 *boot_data)
10502 {
10503     struct cxgb4_pcir_data *pcir_header;
10504     struct legacy_pci_rom_hdr *header;
10505     u8 *cur_header = boot_data;
10506     u16 pcir_offset;
10507 
10508      /* Loop through all chained images and change the device ID's */
10509     do {
10510         header = (struct legacy_pci_rom_hdr *)cur_header;
10511         pcir_offset = le16_to_cpu(header->pcir_offset);
10512         pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10513                   pcir_offset);
10514 
10515         /**
10516          * Only modify the Device ID if code type is Legacy or HP.
10517          * 0x00: Okay to modify
10518          * 0x01: FCODE. Do not modify
10519          * 0x03: Okay to modify
10520          * 0x04-0xFF: Do not modify
10521          */
10522         if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10523             u8 csum = 0;
10524             int i;
10525 
10526             /**
10527              * Modify Device ID to match current adatper
10528              */
10529             pcir_header->device_id = cpu_to_le16(device_id);
10530 
10531             /**
10532              * Set checksum temporarily to 0.
10533              * We will recalculate it later.
10534              */
10535             header->cksum = 0x0;
10536 
10537             /**
10538              * Calculate and update checksum
10539              */
10540             for (i = 0; i < (header->size512 * 512); i++)
10541                 csum += cur_header[i];
10542 
10543             /**
10544              * Invert summed value to create the checksum
10545              * Writing new checksum value directly to the boot data
10546              */
10547             cur_header[7] = -csum;
10548 
10549         } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10550             /**
10551              * Modify Device ID to match current adatper
10552              */
10553             pcir_header->device_id = cpu_to_le16(device_id);
10554         }
10555 
10556         /**
10557          * Move header pointer up to the next image in the ROM.
10558          */
10559         cur_header += header->size512 * 512;
10560     } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10561 }
10562 
10563 /**
10564  *  t4_load_boot - download boot flash
10565  *  @adap: the adapter
10566  *  @boot_data: the boot image to write
10567  *  @boot_addr: offset in flash to write boot_data
10568  *  @size: image size
10569  *
10570  *  Write the supplied boot image to the card's serial flash.
10571  *  The boot image has the following sections: a 28-byte header and the
10572  *  boot image.
10573  */
10574 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10575          unsigned int boot_addr, unsigned int size)
10576 {
10577     unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10578     unsigned int boot_sector = (boot_addr * 1024);
10579     struct cxgb4_pci_exp_rom_header *header;
10580     struct cxgb4_pcir_data *pcir_header;
10581     int pcir_offset;
10582     unsigned int i;
10583     u16 device_id;
10584     int ret, addr;
10585 
10586     /**
10587      * Make sure the boot image does not encroach on the firmware region
10588      */
10589     if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10590         dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10591         return -EFBIG;
10592     }
10593 
10594     /* Get boot header */
10595     header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10596     pcir_offset = le16_to_cpu(header->pcir_offset);
10597     /* PCIR Data Structure */
10598     pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10599 
10600     /**
10601      * Perform some primitive sanity testing to avoid accidentally
10602      * writing garbage over the boot sectors.  We ought to check for
10603      * more but it's not worth it for now ...
10604      */
10605     if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10606         dev_err(adap->pdev_dev, "boot image too small/large\n");
10607         return -EFBIG;
10608     }
10609 
10610     if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10611         dev_err(adap->pdev_dev, "Boot image missing signature\n");
10612         return -EINVAL;
10613     }
10614 
10615     /* Check PCI header signature */
10616     if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10617         dev_err(adap->pdev_dev, "PCI header missing signature\n");
10618         return -EINVAL;
10619     }
10620 
10621     /* Check Vendor ID matches Chelsio ID*/
10622     if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10623         dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10624         return -EINVAL;
10625     }
10626 
10627     /**
10628      * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10629      * and Boot configuration data sections. These 3 boot sections span
10630      * sectors 0 to 7 in flash and live right before the FW image location.
10631      */
10632     i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10633     ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10634                      (boot_sector >> 16) + i - 1);
10635 
10636     /**
10637      * If size == 0 then we're simply erasing the FLASH sectors associated
10638      * with the on-adapter option ROM file
10639      */
10640     if (ret || size == 0)
10641         goto out;
10642     /* Retrieve adapter's device ID */
10643     pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10644        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10645     device_id = device_id & 0xf0ff;
10646 
10647      /* Check PCIE Device ID */
10648     if (le16_to_cpu(pcir_header->device_id) != device_id) {
10649         /**
10650          * Change the device ID in the Boot BIOS image to match
10651          * the Device ID of the current adapter.
10652          */
10653         modify_device_id(device_id, boot_data);
10654     }
10655 
10656     /**
10657      * Skip over the first SF_PAGE_SIZE worth of data and write it after
10658      * we finish copying the rest of the boot image. This will ensure
10659      * that the BIOS boot header will only be written if the boot image
10660      * was written in full.
10661      */
10662     addr = boot_sector;
10663     for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10664         addr += SF_PAGE_SIZE;
10665         boot_data += SF_PAGE_SIZE;
10666         ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10667                      false);
10668         if (ret)
10669             goto out;
10670     }
10671 
10672     ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10673                  (const u8 *)header, false);
10674 
10675 out:
10676     if (ret)
10677         dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10678             ret);
10679     return ret;
10680 }
10681 
10682 /**
10683  *  t4_flash_bootcfg_addr - return the address of the flash
10684  *  optionrom configuration
10685  *  @adapter: the adapter
10686  *
10687  *  Return the address within the flash where the OptionROM Configuration
10688  *  is stored, or an error if the device FLASH is too small to contain
10689  *  a OptionROM Configuration.
10690  */
10691 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10692 {
10693     /**
10694      * If the device FLASH isn't large enough to hold a Firmware
10695      * Configuration File, return an error.
10696      */
10697     if (adapter->params.sf_size <
10698         FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10699         return -ENOSPC;
10700 
10701     return FLASH_BOOTCFG_START;
10702 }
10703 
10704 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10705 {
10706     unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10707     struct cxgb4_bootcfg_data *header;
10708     unsigned int flash_cfg_start_sec;
10709     unsigned int addr, npad;
10710     int ret, i, n, cfg_addr;
10711 
10712     cfg_addr = t4_flash_bootcfg_addr(adap);
10713     if (cfg_addr < 0)
10714         return cfg_addr;
10715 
10716     addr = cfg_addr;
10717     flash_cfg_start_sec = addr / SF_SEC_SIZE;
10718 
10719     if (size > FLASH_BOOTCFG_MAX_SIZE) {
10720         dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10721             FLASH_BOOTCFG_MAX_SIZE);
10722         return -EFBIG;
10723     }
10724 
10725     header = (struct cxgb4_bootcfg_data *)cfg_data;
10726     if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10727         dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10728         ret = -EINVAL;
10729         goto out;
10730     }
10731 
10732     i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10733              sf_sec_size);
10734     ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10735                      flash_cfg_start_sec + i - 1);
10736 
10737     /**
10738      * If size == 0 then we're simply erasing the FLASH sectors associated
10739      * with the on-adapter OptionROM Configuration File.
10740      */
10741     if (ret || size == 0)
10742         goto out;
10743 
10744     /* this will write to the flash up to SF_PAGE_SIZE at a time */
10745     for (i = 0; i < size; i += SF_PAGE_SIZE) {
10746         n = min_t(u32, size - i, SF_PAGE_SIZE);
10747 
10748         ret = t4_write_flash(adap, addr, n, cfg_data, false);
10749         if (ret)
10750             goto out;
10751 
10752         addr += SF_PAGE_SIZE;
10753         cfg_data += SF_PAGE_SIZE;
10754     }
10755 
10756     npad = ((size + 4 - 1) & ~3) - size;
10757     for (i = 0; i < npad; i++) {
10758         u8 data = 0;
10759 
10760         ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10761                      false);
10762         if (ret)
10763             goto out;
10764     }
10765 
10766 out:
10767     if (ret)
10768         dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10769             (size == 0 ? "clear" : "download"), ret);
10770     return ret;
10771 }