Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
0003  *
0004  * This software is available to you under a choice of one of two
0005  * licenses.  You may choose to be licensed under the terms of the GNU
0006  * General Public License (GPL) Version 2, available from the file
0007  * COPYING in the main directory of this source tree, or the
0008  * OpenIB.org BSD license below:
0009  *
0010  *     Redistribution and use in source and binary forms, with or
0011  *     without modification, are permitted provided that the following
0012  *     conditions are met:
0013  *
0014  *      - Redistributions of source code must retain the above
0015  *        copyright notice, this list of conditions and the following
0016  *        disclaimer.
0017  *
0018  *      - Redistributions in binary form must reproduce the above
0019  *        copyright notice, this list of conditions and the following
0020  *        disclaimer in the documentation and/or other materials
0021  *        provided with the distribution.
0022  *
0023  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0024  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0025  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0026  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0027  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0028  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0029  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0030  * SOFTWARE.
0031  */
0032 #include <linux/skbuff.h>
0033 #include <linux/netdevice.h>
0034 #include <linux/etherdevice.h>
0035 #include <linux/if_vlan.h>
0036 #include <linux/ip.h>
0037 #include <linux/tcp.h>
0038 #include <linux/dma-mapping.h>
0039 #include <linux/slab.h>
0040 #include <linux/prefetch.h>
0041 #include <net/arp.h>
0042 #include "common.h"
0043 #include "regs.h"
0044 #include "sge_defs.h"
0045 #include "t3_cpl.h"
0046 #include "firmware_exports.h"
0047 #include "cxgb3_offload.h"
0048 
0049 #define USE_GTS 0
0050 
0051 #define SGE_RX_SM_BUF_SIZE 1536
0052 
0053 #define SGE_RX_COPY_THRES  256
0054 #define SGE_RX_PULL_LEN    128
0055 
0056 #define SGE_PG_RSVD SMP_CACHE_BYTES
0057 /*
0058  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
0059  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
0060  * directly.
0061  */
0062 #define FL0_PG_CHUNK_SIZE  2048
0063 #define FL0_PG_ORDER 0
0064 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
0065 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
0066 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
0067 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
0068 
0069 #define SGE_RX_DROP_THRES 16
0070 #define RX_RECLAIM_PERIOD (HZ/4)
0071 
0072 /*
0073  * Max number of Rx buffers we replenish at a time.
0074  */
0075 #define MAX_RX_REFILL 16U
0076 /*
0077  * Period of the Tx buffer reclaim timer.  This timer does not need to run
0078  * frequently as Tx buffers are usually reclaimed by new Tx packets.
0079  */
0080 #define TX_RECLAIM_PERIOD (HZ / 4)
0081 #define TX_RECLAIM_TIMER_CHUNK 64U
0082 #define TX_RECLAIM_CHUNK 16U
0083 
0084 /* WR size in bytes */
0085 #define WR_LEN (WR_FLITS * 8)
0086 
0087 /*
0088  * Types of Tx queues in each queue set.  Order here matters, do not change.
0089  */
0090 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
0091 
0092 /* Values for sge_txq.flags */
0093 enum {
0094     TXQ_RUNNING = 1 << 0,   /* fetch engine is running */
0095     TXQ_LAST_PKT_DB = 1 << 1,   /* last packet rang the doorbell */
0096 };
0097 
0098 struct tx_desc {
0099     __be64 flit[TX_DESC_FLITS];
0100 };
0101 
0102 struct rx_desc {
0103     __be32 addr_lo;
0104     __be32 len_gen;
0105     __be32 gen2;
0106     __be32 addr_hi;
0107 };
0108 
0109 struct tx_sw_desc {     /* SW state per Tx descriptor */
0110     struct sk_buff *skb;
0111     u8 eop;       /* set if last descriptor for packet */
0112     u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
0113     u8 fragidx;   /* first page fragment associated with descriptor */
0114     s8 sflit;     /* start flit of first SGL entry in descriptor */
0115 };
0116 
0117 struct rx_sw_desc {                /* SW state per Rx descriptor */
0118     union {
0119         struct sk_buff *skb;
0120         struct fl_pg_chunk pg_chunk;
0121     };
0122     DEFINE_DMA_UNMAP_ADDR(dma_addr);
0123 };
0124 
0125 struct rsp_desc {       /* response queue descriptor */
0126     struct rss_header rss_hdr;
0127     __be32 flags;
0128     __be32 len_cq;
0129     struct_group(immediate,
0130         u8 imm_data[47];
0131         u8 intr_gen;
0132     );
0133 };
0134 
0135 /*
0136  * Holds unmapping information for Tx packets that need deferred unmapping.
0137  * This structure lives at skb->head and must be allocated by callers.
0138  */
0139 struct deferred_unmap_info {
0140     struct pci_dev *pdev;
0141     dma_addr_t addr[MAX_SKB_FRAGS + 1];
0142 };
0143 
0144 /*
0145  * Maps a number of flits to the number of Tx descriptors that can hold them.
0146  * The formula is
0147  *
0148  * desc = 1 + (flits - 2) / (WR_FLITS - 1).
0149  *
0150  * HW allows up to 4 descriptors to be combined into a WR.
0151  */
0152 static u8 flit_desc_map[] = {
0153     0,
0154 #if SGE_NUM_GENBITS == 1
0155     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0156     2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
0157     3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
0158     4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
0159 #elif SGE_NUM_GENBITS == 2
0160     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0161     2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
0162     3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
0163     4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
0164 #else
0165 # error "SGE_NUM_GENBITS must be 1 or 2"
0166 #endif
0167 };
0168 
0169 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
0170 {
0171     return container_of(q, struct sge_qset, fl[qidx]);
0172 }
0173 
0174 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
0175 {
0176     return container_of(q, struct sge_qset, rspq);
0177 }
0178 
0179 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
0180 {
0181     return container_of(q, struct sge_qset, txq[qidx]);
0182 }
0183 
0184 /**
0185  *  refill_rspq - replenish an SGE response queue
0186  *  @adapter: the adapter
0187  *  @q: the response queue to replenish
0188  *  @credits: how many new responses to make available
0189  *
0190  *  Replenishes a response queue by making the supplied number of responses
0191  *  available to HW.
0192  */
0193 static inline void refill_rspq(struct adapter *adapter,
0194                    const struct sge_rspq *q, unsigned int credits)
0195 {
0196     rmb();
0197     t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
0198              V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
0199 }
0200 
0201 /**
0202  *  need_skb_unmap - does the platform need unmapping of sk_buffs?
0203  *
0204  *  Returns true if the platform needs sk_buff unmapping.  The compiler
0205  *  optimizes away unnecessary code if this returns true.
0206  */
0207 static inline int need_skb_unmap(void)
0208 {
0209 #ifdef CONFIG_NEED_DMA_MAP_STATE
0210     return 1;
0211 #else
0212     return 0;
0213 #endif
0214 }
0215 
0216 /**
0217  *  unmap_skb - unmap a packet main body and its page fragments
0218  *  @skb: the packet
0219  *  @q: the Tx queue containing Tx descriptors for the packet
0220  *  @cidx: index of Tx descriptor
0221  *  @pdev: the PCI device
0222  *
0223  *  Unmap the main body of an sk_buff and its page fragments, if any.
0224  *  Because of the fairly complicated structure of our SGLs and the desire
0225  *  to conserve space for metadata, the information necessary to unmap an
0226  *  sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
0227  *  descriptors (the physical addresses of the various data buffers), and
0228  *  the SW descriptor state (assorted indices).  The send functions
0229  *  initialize the indices for the first packet descriptor so we can unmap
0230  *  the buffers held in the first Tx descriptor here, and we have enough
0231  *  information at this point to set the state for the next Tx descriptor.
0232  *
0233  *  Note that it is possible to clean up the first descriptor of a packet
0234  *  before the send routines have written the next descriptors, but this
0235  *  race does not cause any problem.  We just end up writing the unmapping
0236  *  info for the descriptor first.
0237  */
0238 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
0239                  unsigned int cidx, struct pci_dev *pdev)
0240 {
0241     const struct sg_ent *sgp;
0242     struct tx_sw_desc *d = &q->sdesc[cidx];
0243     int nfrags, frag_idx, curflit, j = d->addr_idx;
0244 
0245     sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
0246     frag_idx = d->fragidx;
0247 
0248     if (frag_idx == 0 && skb_headlen(skb)) {
0249         dma_unmap_single(&pdev->dev, be64_to_cpu(sgp->addr[0]),
0250                  skb_headlen(skb), DMA_TO_DEVICE);
0251         j = 1;
0252     }
0253 
0254     curflit = d->sflit + 1 + j;
0255     nfrags = skb_shinfo(skb)->nr_frags;
0256 
0257     while (frag_idx < nfrags && curflit < WR_FLITS) {
0258         dma_unmap_page(&pdev->dev, be64_to_cpu(sgp->addr[j]),
0259                    skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
0260                    DMA_TO_DEVICE);
0261         j ^= 1;
0262         if (j == 0) {
0263             sgp++;
0264             curflit++;
0265         }
0266         curflit++;
0267         frag_idx++;
0268     }
0269 
0270     if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
0271         d = cidx + 1 == q->size ? q->sdesc : d + 1;
0272         d->fragidx = frag_idx;
0273         d->addr_idx = j;
0274         d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
0275     }
0276 }
0277 
0278 /**
0279  *  free_tx_desc - reclaims Tx descriptors and their buffers
0280  *  @adapter: the adapter
0281  *  @q: the Tx queue to reclaim descriptors from
0282  *  @n: the number of descriptors to reclaim
0283  *
0284  *  Reclaims Tx descriptors from an SGE Tx queue and frees the associated
0285  *  Tx buffers.  Called with the Tx queue lock held.
0286  */
0287 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
0288              unsigned int n)
0289 {
0290     struct tx_sw_desc *d;
0291     struct pci_dev *pdev = adapter->pdev;
0292     unsigned int cidx = q->cidx;
0293 
0294     const int need_unmap = need_skb_unmap() &&
0295                    q->cntxt_id >= FW_TUNNEL_SGEEC_START;
0296 
0297     d = &q->sdesc[cidx];
0298     while (n--) {
0299         if (d->skb) {   /* an SGL is present */
0300             if (need_unmap)
0301                 unmap_skb(d->skb, q, cidx, pdev);
0302             if (d->eop) {
0303                 dev_consume_skb_any(d->skb);
0304                 d->skb = NULL;
0305             }
0306         }
0307         ++d;
0308         if (++cidx == q->size) {
0309             cidx = 0;
0310             d = q->sdesc;
0311         }
0312     }
0313     q->cidx = cidx;
0314 }
0315 
0316 /**
0317  *  reclaim_completed_tx - reclaims completed Tx descriptors
0318  *  @adapter: the adapter
0319  *  @q: the Tx queue to reclaim completed descriptors from
0320  *  @chunk: maximum number of descriptors to reclaim
0321  *
0322  *  Reclaims Tx descriptors that the SGE has indicated it has processed,
0323  *  and frees the associated buffers if possible.  Called with the Tx
0324  *  queue's lock held.
0325  */
0326 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
0327                         struct sge_txq *q,
0328                         unsigned int chunk)
0329 {
0330     unsigned int reclaim = q->processed - q->cleaned;
0331 
0332     reclaim = min(chunk, reclaim);
0333     if (reclaim) {
0334         free_tx_desc(adapter, q, reclaim);
0335         q->cleaned += reclaim;
0336         q->in_use -= reclaim;
0337     }
0338     return q->processed - q->cleaned;
0339 }
0340 
0341 /**
0342  *  should_restart_tx - are there enough resources to restart a Tx queue?
0343  *  @q: the Tx queue
0344  *
0345  *  Checks if there are enough descriptors to restart a suspended Tx queue.
0346  */
0347 static inline int should_restart_tx(const struct sge_txq *q)
0348 {
0349     unsigned int r = q->processed - q->cleaned;
0350 
0351     return q->in_use - r < (q->size >> 1);
0352 }
0353 
0354 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
0355               struct rx_sw_desc *d)
0356 {
0357     if (q->use_pages && d->pg_chunk.page) {
0358         (*d->pg_chunk.p_cnt)--;
0359         if (!*d->pg_chunk.p_cnt)
0360             dma_unmap_page(&pdev->dev, d->pg_chunk.mapping,
0361                        q->alloc_size, DMA_FROM_DEVICE);
0362 
0363         put_page(d->pg_chunk.page);
0364         d->pg_chunk.page = NULL;
0365     } else {
0366         dma_unmap_single(&pdev->dev, dma_unmap_addr(d, dma_addr),
0367                  q->buf_size, DMA_FROM_DEVICE);
0368         kfree_skb(d->skb);
0369         d->skb = NULL;
0370     }
0371 }
0372 
0373 /**
0374  *  free_rx_bufs - free the Rx buffers on an SGE free list
0375  *  @pdev: the PCI device associated with the adapter
0376  *  @q: the SGE free list to clean up
0377  *
0378  *  Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
0379  *  this queue should be stopped before calling this function.
0380  */
0381 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
0382 {
0383     unsigned int cidx = q->cidx;
0384 
0385     while (q->credits--) {
0386         struct rx_sw_desc *d = &q->sdesc[cidx];
0387 
0388 
0389         clear_rx_desc(pdev, q, d);
0390         if (++cidx == q->size)
0391             cidx = 0;
0392     }
0393 
0394     if (q->pg_chunk.page) {
0395         __free_pages(q->pg_chunk.page, q->order);
0396         q->pg_chunk.page = NULL;
0397     }
0398 }
0399 
0400 /**
0401  *  add_one_rx_buf - add a packet buffer to a free-buffer list
0402  *  @va:  buffer start VA
0403  *  @len: the buffer length
0404  *  @d: the HW Rx descriptor to write
0405  *  @sd: the SW Rx descriptor to write
0406  *  @gen: the generation bit value
0407  *  @pdev: the PCI device associated with the adapter
0408  *
0409  *  Add a buffer of the given length to the supplied HW and SW Rx
0410  *  descriptors.
0411  */
0412 static inline int add_one_rx_buf(void *va, unsigned int len,
0413                  struct rx_desc *d, struct rx_sw_desc *sd,
0414                  unsigned int gen, struct pci_dev *pdev)
0415 {
0416     dma_addr_t mapping;
0417 
0418     mapping = dma_map_single(&pdev->dev, va, len, DMA_FROM_DEVICE);
0419     if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
0420         return -ENOMEM;
0421 
0422     dma_unmap_addr_set(sd, dma_addr, mapping);
0423 
0424     d->addr_lo = cpu_to_be32(mapping);
0425     d->addr_hi = cpu_to_be32((u64) mapping >> 32);
0426     dma_wmb();
0427     d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
0428     d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
0429     return 0;
0430 }
0431 
0432 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
0433                    unsigned int gen)
0434 {
0435     d->addr_lo = cpu_to_be32(mapping);
0436     d->addr_hi = cpu_to_be32((u64) mapping >> 32);
0437     dma_wmb();
0438     d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
0439     d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
0440     return 0;
0441 }
0442 
0443 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
0444               struct rx_sw_desc *sd, gfp_t gfp,
0445               unsigned int order)
0446 {
0447     if (!q->pg_chunk.page) {
0448         dma_addr_t mapping;
0449 
0450         q->pg_chunk.page = alloc_pages(gfp, order);
0451         if (unlikely(!q->pg_chunk.page))
0452             return -ENOMEM;
0453         q->pg_chunk.va = page_address(q->pg_chunk.page);
0454         q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
0455                     SGE_PG_RSVD;
0456         q->pg_chunk.offset = 0;
0457         mapping = dma_map_page(&adapter->pdev->dev, q->pg_chunk.page,
0458                        0, q->alloc_size, DMA_FROM_DEVICE);
0459         if (unlikely(dma_mapping_error(&adapter->pdev->dev, mapping))) {
0460             __free_pages(q->pg_chunk.page, order);
0461             q->pg_chunk.page = NULL;
0462             return -EIO;
0463         }
0464         q->pg_chunk.mapping = mapping;
0465     }
0466     sd->pg_chunk = q->pg_chunk;
0467 
0468     prefetch(sd->pg_chunk.p_cnt);
0469 
0470     q->pg_chunk.offset += q->buf_size;
0471     if (q->pg_chunk.offset == (PAGE_SIZE << order))
0472         q->pg_chunk.page = NULL;
0473     else {
0474         q->pg_chunk.va += q->buf_size;
0475         get_page(q->pg_chunk.page);
0476     }
0477 
0478     if (sd->pg_chunk.offset == 0)
0479         *sd->pg_chunk.p_cnt = 1;
0480     else
0481         *sd->pg_chunk.p_cnt += 1;
0482 
0483     return 0;
0484 }
0485 
0486 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
0487 {
0488     if (q->pend_cred >= q->credits / 4) {
0489         q->pend_cred = 0;
0490         wmb();
0491         t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
0492     }
0493 }
0494 
0495 /**
0496  *  refill_fl - refill an SGE free-buffer list
0497  *  @adap: the adapter
0498  *  @q: the free-list to refill
0499  *  @n: the number of new buffers to allocate
0500  *  @gfp: the gfp flags for allocating new buffers
0501  *
0502  *  (Re)populate an SGE free-buffer list with up to @n new packet buffers,
0503  *  allocated with the supplied gfp flags.  The caller must assure that
0504  *  @n does not exceed the queue's capacity.
0505  */
0506 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
0507 {
0508     struct rx_sw_desc *sd = &q->sdesc[q->pidx];
0509     struct rx_desc *d = &q->desc[q->pidx];
0510     unsigned int count = 0;
0511 
0512     while (n--) {
0513         dma_addr_t mapping;
0514         int err;
0515 
0516         if (q->use_pages) {
0517             if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
0518                             q->order))) {
0519 nomem:              q->alloc_failed++;
0520                 break;
0521             }
0522             mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
0523             dma_unmap_addr_set(sd, dma_addr, mapping);
0524 
0525             add_one_rx_chunk(mapping, d, q->gen);
0526             dma_sync_single_for_device(&adap->pdev->dev, mapping,
0527                            q->buf_size - SGE_PG_RSVD,
0528                            DMA_FROM_DEVICE);
0529         } else {
0530             void *buf_start;
0531 
0532             struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
0533             if (!skb)
0534                 goto nomem;
0535 
0536             sd->skb = skb;
0537             buf_start = skb->data;
0538             err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
0539                          q->gen, adap->pdev);
0540             if (unlikely(err)) {
0541                 clear_rx_desc(adap->pdev, q, sd);
0542                 break;
0543             }
0544         }
0545 
0546         d++;
0547         sd++;
0548         if (++q->pidx == q->size) {
0549             q->pidx = 0;
0550             q->gen ^= 1;
0551             sd = q->sdesc;
0552             d = q->desc;
0553         }
0554         count++;
0555     }
0556 
0557     q->credits += count;
0558     q->pend_cred += count;
0559     ring_fl_db(adap, q);
0560 
0561     return count;
0562 }
0563 
0564 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
0565 {
0566     refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
0567           GFP_ATOMIC | __GFP_COMP);
0568 }
0569 
0570 /**
0571  *  recycle_rx_buf - recycle a receive buffer
0572  *  @adap: the adapter
0573  *  @q: the SGE free list
0574  *  @idx: index of buffer to recycle
0575  *
0576  *  Recycles the specified buffer on the given free list by adding it at
0577  *  the next available slot on the list.
0578  */
0579 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
0580                unsigned int idx)
0581 {
0582     struct rx_desc *from = &q->desc[idx];
0583     struct rx_desc *to = &q->desc[q->pidx];
0584 
0585     q->sdesc[q->pidx] = q->sdesc[idx];
0586     to->addr_lo = from->addr_lo;    /* already big endian */
0587     to->addr_hi = from->addr_hi;    /* likewise */
0588     dma_wmb();
0589     to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
0590     to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
0591 
0592     if (++q->pidx == q->size) {
0593         q->pidx = 0;
0594         q->gen ^= 1;
0595     }
0596 
0597     q->credits++;
0598     q->pend_cred++;
0599     ring_fl_db(adap, q);
0600 }
0601 
0602 /**
0603  *  alloc_ring - allocate resources for an SGE descriptor ring
0604  *  @pdev: the PCI device
0605  *  @nelem: the number of descriptors
0606  *  @elem_size: the size of each descriptor
0607  *  @sw_size: the size of the SW state associated with each ring element
0608  *  @phys: the physical address of the allocated ring
0609  *  @metadata: address of the array holding the SW state for the ring
0610  *
0611  *  Allocates resources for an SGE descriptor ring, such as Tx queues,
0612  *  free buffer lists, or response queues.  Each SGE ring requires
0613  *  space for its HW descriptors plus, optionally, space for the SW state
0614  *  associated with each HW entry (the metadata).  The function returns
0615  *  three values: the virtual address for the HW ring (the return value
0616  *  of the function), the physical address of the HW ring, and the address
0617  *  of the SW ring.
0618  */
0619 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
0620             size_t sw_size, dma_addr_t * phys, void *metadata)
0621 {
0622     size_t len = nelem * elem_size;
0623     void *s = NULL;
0624     void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
0625 
0626     if (!p)
0627         return NULL;
0628     if (sw_size && metadata) {
0629         s = kcalloc(nelem, sw_size, GFP_KERNEL);
0630 
0631         if (!s) {
0632             dma_free_coherent(&pdev->dev, len, p, *phys);
0633             return NULL;
0634         }
0635         *(void **)metadata = s;
0636     }
0637     return p;
0638 }
0639 
0640 /**
0641  *  t3_reset_qset - reset a sge qset
0642  *  @q: the queue set
0643  *
0644  *  Reset the qset structure.
0645  *  the NAPI structure is preserved in the event of
0646  *  the qset's reincarnation, for example during EEH recovery.
0647  */
0648 static void t3_reset_qset(struct sge_qset *q)
0649 {
0650     if (q->adap &&
0651         !(q->adap->flags & NAPI_INIT)) {
0652         memset(q, 0, sizeof(*q));
0653         return;
0654     }
0655 
0656     q->adap = NULL;
0657     memset(&q->rspq, 0, sizeof(q->rspq));
0658     memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
0659     memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
0660     q->txq_stopped = 0;
0661     q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
0662     q->rx_reclaim_timer.function = NULL;
0663     q->nomem = 0;
0664     napi_free_frags(&q->napi);
0665 }
0666 
0667 
0668 /**
0669  *  t3_free_qset - free the resources of an SGE queue set
0670  *  @adapter: the adapter owning the queue set
0671  *  @q: the queue set
0672  *
0673  *  Release the HW and SW resources associated with an SGE queue set, such
0674  *  as HW contexts, packet buffers, and descriptor rings.  Traffic to the
0675  *  queue set must be quiesced prior to calling this.
0676  */
0677 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
0678 {
0679     int i;
0680     struct pci_dev *pdev = adapter->pdev;
0681 
0682     for (i = 0; i < SGE_RXQ_PER_SET; ++i)
0683         if (q->fl[i].desc) {
0684             spin_lock_irq(&adapter->sge.reg_lock);
0685             t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
0686             spin_unlock_irq(&adapter->sge.reg_lock);
0687             free_rx_bufs(pdev, &q->fl[i]);
0688             kfree(q->fl[i].sdesc);
0689             dma_free_coherent(&pdev->dev,
0690                       q->fl[i].size *
0691                       sizeof(struct rx_desc), q->fl[i].desc,
0692                       q->fl[i].phys_addr);
0693         }
0694 
0695     for (i = 0; i < SGE_TXQ_PER_SET; ++i)
0696         if (q->txq[i].desc) {
0697             spin_lock_irq(&adapter->sge.reg_lock);
0698             t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
0699             spin_unlock_irq(&adapter->sge.reg_lock);
0700             if (q->txq[i].sdesc) {
0701                 free_tx_desc(adapter, &q->txq[i],
0702                          q->txq[i].in_use);
0703                 kfree(q->txq[i].sdesc);
0704             }
0705             dma_free_coherent(&pdev->dev,
0706                       q->txq[i].size *
0707                       sizeof(struct tx_desc),
0708                       q->txq[i].desc, q->txq[i].phys_addr);
0709             __skb_queue_purge(&q->txq[i].sendq);
0710         }
0711 
0712     if (q->rspq.desc) {
0713         spin_lock_irq(&adapter->sge.reg_lock);
0714         t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
0715         spin_unlock_irq(&adapter->sge.reg_lock);
0716         dma_free_coherent(&pdev->dev,
0717                   q->rspq.size * sizeof(struct rsp_desc),
0718                   q->rspq.desc, q->rspq.phys_addr);
0719     }
0720 
0721     t3_reset_qset(q);
0722 }
0723 
0724 /**
0725  *  init_qset_cntxt - initialize an SGE queue set context info
0726  *  @qs: the queue set
0727  *  @id: the queue set id
0728  *
0729  *  Initializes the TIDs and context ids for the queues of a queue set.
0730  */
0731 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
0732 {
0733     qs->rspq.cntxt_id = id;
0734     qs->fl[0].cntxt_id = 2 * id;
0735     qs->fl[1].cntxt_id = 2 * id + 1;
0736     qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
0737     qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
0738     qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
0739     qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
0740     qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
0741 }
0742 
0743 /**
0744  *  sgl_len - calculates the size of an SGL of the given capacity
0745  *  @n: the number of SGL entries
0746  *
0747  *  Calculates the number of flits needed for a scatter/gather list that
0748  *  can hold the given number of entries.
0749  */
0750 static inline unsigned int sgl_len(unsigned int n)
0751 {
0752     /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
0753     return (3 * n) / 2 + (n & 1);
0754 }
0755 
0756 /**
0757  *  flits_to_desc - returns the num of Tx descriptors for the given flits
0758  *  @n: the number of flits
0759  *
0760  *  Calculates the number of Tx descriptors needed for the supplied number
0761  *  of flits.
0762  */
0763 static inline unsigned int flits_to_desc(unsigned int n)
0764 {
0765     BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
0766     return flit_desc_map[n];
0767 }
0768 
0769 /**
0770  *  get_packet - return the next ingress packet buffer from a free list
0771  *  @adap: the adapter that received the packet
0772  *  @fl: the SGE free list holding the packet
0773  *  @len: the packet length including any SGE padding
0774  *  @drop_thres: # of remaining buffers before we start dropping packets
0775  *
0776  *  Get the next packet from a free list and complete setup of the
0777  *  sk_buff.  If the packet is small we make a copy and recycle the
0778  *  original buffer, otherwise we use the original buffer itself.  If a
0779  *  positive drop threshold is supplied packets are dropped and their
0780  *  buffers recycled if (a) the number of remaining buffers is under the
0781  *  threshold and the packet is too big to copy, or (b) the packet should
0782  *  be copied but there is no memory for the copy.
0783  */
0784 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
0785                   unsigned int len, unsigned int drop_thres)
0786 {
0787     struct sk_buff *skb = NULL;
0788     struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
0789 
0790     prefetch(sd->skb->data);
0791     fl->credits--;
0792 
0793     if (len <= SGE_RX_COPY_THRES) {
0794         skb = alloc_skb(len, GFP_ATOMIC);
0795         if (likely(skb != NULL)) {
0796             __skb_put(skb, len);
0797             dma_sync_single_for_cpu(&adap->pdev->dev,
0798                         dma_unmap_addr(sd, dma_addr),
0799                         len, DMA_FROM_DEVICE);
0800             memcpy(skb->data, sd->skb->data, len);
0801             dma_sync_single_for_device(&adap->pdev->dev,
0802                            dma_unmap_addr(sd, dma_addr),
0803                            len, DMA_FROM_DEVICE);
0804         } else if (!drop_thres)
0805             goto use_orig_buf;
0806 recycle:
0807         recycle_rx_buf(adap, fl, fl->cidx);
0808         return skb;
0809     }
0810 
0811     if (unlikely(fl->credits < drop_thres) &&
0812         refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
0813               GFP_ATOMIC | __GFP_COMP) == 0)
0814         goto recycle;
0815 
0816 use_orig_buf:
0817     dma_unmap_single(&adap->pdev->dev, dma_unmap_addr(sd, dma_addr),
0818              fl->buf_size, DMA_FROM_DEVICE);
0819     skb = sd->skb;
0820     skb_put(skb, len);
0821     __refill_fl(adap, fl);
0822     return skb;
0823 }
0824 
0825 /**
0826  *  get_packet_pg - return the next ingress packet buffer from a free list
0827  *  @adap: the adapter that received the packet
0828  *  @fl: the SGE free list holding the packet
0829  *  @q: the queue
0830  *  @len: the packet length including any SGE padding
0831  *  @drop_thres: # of remaining buffers before we start dropping packets
0832  *
0833  *  Get the next packet from a free list populated with page chunks.
0834  *  If the packet is small we make a copy and recycle the original buffer,
0835  *  otherwise we attach the original buffer as a page fragment to a fresh
0836  *  sk_buff.  If a positive drop threshold is supplied packets are dropped
0837  *  and their buffers recycled if (a) the number of remaining buffers is
0838  *  under the threshold and the packet is too big to copy, or (b) there's
0839  *  no system memory.
0840  *
0841  *  Note: this function is similar to @get_packet but deals with Rx buffers
0842  *  that are page chunks rather than sk_buffs.
0843  */
0844 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
0845                      struct sge_rspq *q, unsigned int len,
0846                      unsigned int drop_thres)
0847 {
0848     struct sk_buff *newskb, *skb;
0849     struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
0850 
0851     dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
0852 
0853     newskb = skb = q->pg_skb;
0854     if (!skb && (len <= SGE_RX_COPY_THRES)) {
0855         newskb = alloc_skb(len, GFP_ATOMIC);
0856         if (likely(newskb != NULL)) {
0857             __skb_put(newskb, len);
0858             dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr,
0859                         len, DMA_FROM_DEVICE);
0860             memcpy(newskb->data, sd->pg_chunk.va, len);
0861             dma_sync_single_for_device(&adap->pdev->dev, dma_addr,
0862                            len, DMA_FROM_DEVICE);
0863         } else if (!drop_thres)
0864             return NULL;
0865 recycle:
0866         fl->credits--;
0867         recycle_rx_buf(adap, fl, fl->cidx);
0868         q->rx_recycle_buf++;
0869         return newskb;
0870     }
0871 
0872     if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
0873         goto recycle;
0874 
0875     prefetch(sd->pg_chunk.p_cnt);
0876 
0877     if (!skb)
0878         newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
0879 
0880     if (unlikely(!newskb)) {
0881         if (!drop_thres)
0882             return NULL;
0883         goto recycle;
0884     }
0885 
0886     dma_sync_single_for_cpu(&adap->pdev->dev, dma_addr, len,
0887                 DMA_FROM_DEVICE);
0888     (*sd->pg_chunk.p_cnt)--;
0889     if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
0890         dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping,
0891                    fl->alloc_size, DMA_FROM_DEVICE);
0892     if (!skb) {
0893         __skb_put(newskb, SGE_RX_PULL_LEN);
0894         memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
0895         skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
0896                    sd->pg_chunk.offset + SGE_RX_PULL_LEN,
0897                    len - SGE_RX_PULL_LEN);
0898         newskb->len = len;
0899         newskb->data_len = len - SGE_RX_PULL_LEN;
0900         newskb->truesize += newskb->data_len;
0901     } else {
0902         skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
0903                    sd->pg_chunk.page,
0904                    sd->pg_chunk.offset, len);
0905         newskb->len += len;
0906         newskb->data_len += len;
0907         newskb->truesize += len;
0908     }
0909 
0910     fl->credits--;
0911     /*
0912      * We do not refill FLs here, we let the caller do it to overlap a
0913      * prefetch.
0914      */
0915     return newskb;
0916 }
0917 
0918 /**
0919  *  get_imm_packet - return the next ingress packet buffer from a response
0920  *  @resp: the response descriptor containing the packet data
0921  *
0922  *  Return a packet containing the immediate data of the given response.
0923  */
0924 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
0925 {
0926     struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
0927 
0928     if (skb) {
0929         __skb_put(skb, IMMED_PKT_SIZE);
0930         BUILD_BUG_ON(IMMED_PKT_SIZE != sizeof(resp->immediate));
0931         skb_copy_to_linear_data(skb, &resp->immediate, IMMED_PKT_SIZE);
0932     }
0933     return skb;
0934 }
0935 
0936 /**
0937  *  calc_tx_descs - calculate the number of Tx descriptors for a packet
0938  *  @skb: the packet
0939  *
0940  *  Returns the number of Tx descriptors needed for the given Ethernet
0941  *  packet.  Ethernet packets require addition of WR and CPL headers.
0942  */
0943 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
0944 {
0945     unsigned int flits;
0946 
0947     if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
0948         return 1;
0949 
0950     flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
0951     if (skb_shinfo(skb)->gso_size)
0952         flits++;
0953     return flits_to_desc(flits);
0954 }
0955 
0956 /*  map_skb - map a packet main body and its page fragments
0957  *  @pdev: the PCI device
0958  *  @skb: the packet
0959  *  @addr: placeholder to save the mapped addresses
0960  *
0961  *  map the main body of an sk_buff and its page fragments, if any.
0962  */
0963 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
0964            dma_addr_t *addr)
0965 {
0966     const skb_frag_t *fp, *end;
0967     const struct skb_shared_info *si;
0968 
0969     if (skb_headlen(skb)) {
0970         *addr = dma_map_single(&pdev->dev, skb->data,
0971                        skb_headlen(skb), DMA_TO_DEVICE);
0972         if (dma_mapping_error(&pdev->dev, *addr))
0973             goto out_err;
0974         addr++;
0975     }
0976 
0977     si = skb_shinfo(skb);
0978     end = &si->frags[si->nr_frags];
0979 
0980     for (fp = si->frags; fp < end; fp++) {
0981         *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
0982                      DMA_TO_DEVICE);
0983         if (dma_mapping_error(&pdev->dev, *addr))
0984             goto unwind;
0985         addr++;
0986     }
0987     return 0;
0988 
0989 unwind:
0990     while (fp-- > si->frags)
0991         dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
0992                    DMA_TO_DEVICE);
0993 
0994     dma_unmap_single(&pdev->dev, addr[-1], skb_headlen(skb),
0995              DMA_TO_DEVICE);
0996 out_err:
0997     return -ENOMEM;
0998 }
0999 
1000 /**
1001  *  write_sgl - populate a scatter/gather list for a packet
1002  *  @skb: the packet
1003  *  @sgp: the SGL to populate
1004  *  @start: start address of skb main body data to include in the SGL
1005  *  @len: length of skb main body data to include in the SGL
1006  *  @addr: the list of the mapped addresses
1007  *
1008  *  Copies the scatter/gather list for the buffers that make up a packet
1009  *  and returns the SGL size in 8-byte words.  The caller must size the SGL
1010  *  appropriately.
1011  */
1012 static inline unsigned int write_sgl(const struct sk_buff *skb,
1013                      struct sg_ent *sgp, unsigned char *start,
1014                      unsigned int len, const dma_addr_t *addr)
1015 {
1016     unsigned int i, j = 0, k = 0, nfrags;
1017 
1018     if (len) {
1019         sgp->len[0] = cpu_to_be32(len);
1020         sgp->addr[j++] = cpu_to_be64(addr[k++]);
1021     }
1022 
1023     nfrags = skb_shinfo(skb)->nr_frags;
1024     for (i = 0; i < nfrags; i++) {
1025         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1026 
1027         sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1028         sgp->addr[j] = cpu_to_be64(addr[k++]);
1029         j ^= 1;
1030         if (j == 0)
1031             ++sgp;
1032     }
1033     if (j)
1034         sgp->len[j] = 0;
1035     return ((nfrags + (len != 0)) * 3) / 2 + j;
1036 }
1037 
1038 /**
1039  *  check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1040  *  @adap: the adapter
1041  *  @q: the Tx queue
1042  *
1043  *  Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1044  *  where the HW is going to sleep just after we checked, however,
1045  *  then the interrupt handler will detect the outstanding TX packet
1046  *  and ring the doorbell for us.
1047  *
1048  *  When GTS is disabled we unconditionally ring the doorbell.
1049  */
1050 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1051 {
1052 #if USE_GTS
1053     clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1054     if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1055         set_bit(TXQ_LAST_PKT_DB, &q->flags);
1056         t3_write_reg(adap, A_SG_KDOORBELL,
1057                  F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1058     }
1059 #else
1060     wmb();          /* write descriptors before telling HW */
1061     t3_write_reg(adap, A_SG_KDOORBELL,
1062              F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1063 #endif
1064 }
1065 
1066 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1067 {
1068 #if SGE_NUM_GENBITS == 2
1069     d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1070 #endif
1071 }
1072 
1073 /**
1074  *  write_wr_hdr_sgl - write a WR header and, optionally, SGL
1075  *  @ndesc: number of Tx descriptors spanned by the SGL
1076  *  @skb: the packet corresponding to the WR
1077  *  @d: first Tx descriptor to be written
1078  *  @pidx: index of above descriptors
1079  *  @q: the SGE Tx queue
1080  *  @sgl: the SGL
1081  *  @flits: number of flits to the start of the SGL in the first descriptor
1082  *  @sgl_flits: the SGL size in flits
1083  *  @gen: the Tx descriptor generation
1084  *  @wr_hi: top 32 bits of WR header based on WR type (big endian)
1085  *  @wr_lo: low 32 bits of WR header based on WR type (big endian)
1086  *
1087  *  Write a work request header and an associated SGL.  If the SGL is
1088  *  small enough to fit into one Tx descriptor it has already been written
1089  *  and we just need to write the WR header.  Otherwise we distribute the
1090  *  SGL across the number of descriptors it spans.
1091  */
1092 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1093                  struct tx_desc *d, unsigned int pidx,
1094                  const struct sge_txq *q,
1095                  const struct sg_ent *sgl,
1096                  unsigned int flits, unsigned int sgl_flits,
1097                  unsigned int gen, __be32 wr_hi,
1098                  __be32 wr_lo)
1099 {
1100     struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1101     struct tx_sw_desc *sd = &q->sdesc[pidx];
1102 
1103     sd->skb = skb;
1104     if (need_skb_unmap()) {
1105         sd->fragidx = 0;
1106         sd->addr_idx = 0;
1107         sd->sflit = flits;
1108     }
1109 
1110     if (likely(ndesc == 1)) {
1111         sd->eop = 1;
1112         wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1113                    V_WR_SGLSFLT(flits)) | wr_hi;
1114         dma_wmb();
1115         wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1116                    V_WR_GEN(gen)) | wr_lo;
1117         wr_gen2(d, gen);
1118     } else {
1119         unsigned int ogen = gen;
1120         const u64 *fp = (const u64 *)sgl;
1121         struct work_request_hdr *wp = wrp;
1122 
1123         wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1124                    V_WR_SGLSFLT(flits)) | wr_hi;
1125 
1126         while (sgl_flits) {
1127             unsigned int avail = WR_FLITS - flits;
1128 
1129             if (avail > sgl_flits)
1130                 avail = sgl_flits;
1131             memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1132             sgl_flits -= avail;
1133             ndesc--;
1134             if (!sgl_flits)
1135                 break;
1136 
1137             fp += avail;
1138             d++;
1139             sd->eop = 0;
1140             sd++;
1141             if (++pidx == q->size) {
1142                 pidx = 0;
1143                 gen ^= 1;
1144                 d = q->desc;
1145                 sd = q->sdesc;
1146             }
1147 
1148             sd->skb = skb;
1149             wrp = (struct work_request_hdr *)d;
1150             wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1151                        V_WR_SGLSFLT(1)) | wr_hi;
1152             wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1153                             sgl_flits + 1)) |
1154                        V_WR_GEN(gen)) | wr_lo;
1155             wr_gen2(d, gen);
1156             flits = 1;
1157         }
1158         sd->eop = 1;
1159         wrp->wr_hi |= htonl(F_WR_EOP);
1160         dma_wmb();
1161         wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1162         wr_gen2((struct tx_desc *)wp, ogen);
1163         WARN_ON(ndesc != 0);
1164     }
1165 }
1166 
1167 /**
1168  *  write_tx_pkt_wr - write a TX_PKT work request
1169  *  @adap: the adapter
1170  *  @skb: the packet to send
1171  *  @pi: the egress interface
1172  *  @pidx: index of the first Tx descriptor to write
1173  *  @gen: the generation value to use
1174  *  @q: the Tx queue
1175  *  @ndesc: number of descriptors the packet will occupy
1176  *  @compl: the value of the COMPL bit to use
1177  *  @addr: address
1178  *
1179  *  Generate a TX_PKT work request to send the supplied packet.
1180  */
1181 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1182                 const struct port_info *pi,
1183                 unsigned int pidx, unsigned int gen,
1184                 struct sge_txq *q, unsigned int ndesc,
1185                 unsigned int compl, const dma_addr_t *addr)
1186 {
1187     unsigned int flits, sgl_flits, cntrl, tso_info;
1188     struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1189     struct tx_desc *d = &q->desc[pidx];
1190     struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1191 
1192     cpl->len = htonl(skb->len);
1193     cntrl = V_TXPKT_INTF(pi->port_id);
1194 
1195     if (skb_vlan_tag_present(skb))
1196         cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1197 
1198     tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1199     if (tso_info) {
1200         int eth_type;
1201         struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1202 
1203         d->flit[2] = 0;
1204         cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1205         hdr->cntrl = htonl(cntrl);
1206         eth_type = skb_network_offset(skb) == ETH_HLEN ?
1207             CPL_ETH_II : CPL_ETH_II_VLAN;
1208         tso_info |= V_LSO_ETH_TYPE(eth_type) |
1209             V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1210             V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1211         hdr->lso_info = htonl(tso_info);
1212         flits = 3;
1213     } else {
1214         cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1215         cntrl |= F_TXPKT_IPCSUM_DIS;    /* SW calculates IP csum */
1216         cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1217         cpl->cntrl = htonl(cntrl);
1218 
1219         if (skb->len <= WR_LEN - sizeof(*cpl)) {
1220             q->sdesc[pidx].skb = NULL;
1221             if (!skb->data_len)
1222                 skb_copy_from_linear_data(skb, &d->flit[2],
1223                               skb->len);
1224             else
1225                 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1226 
1227             flits = (skb->len + 7) / 8 + 2;
1228             cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1229                           V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1230                           | F_WR_SOP | F_WR_EOP | compl);
1231             dma_wmb();
1232             cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1233                           V_WR_TID(q->token));
1234             wr_gen2(d, gen);
1235             dev_consume_skb_any(skb);
1236             return;
1237         }
1238 
1239         flits = 2;
1240     }
1241 
1242     sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1243     sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1244 
1245     write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1246              htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1247              htonl(V_WR_TID(q->token)));
1248 }
1249 
1250 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1251                     struct sge_qset *qs, struct sge_txq *q)
1252 {
1253     netif_tx_stop_queue(txq);
1254     set_bit(TXQ_ETH, &qs->txq_stopped);
1255     q->stops++;
1256 }
1257 
1258 /**
1259  *  t3_eth_xmit - add a packet to the Ethernet Tx queue
1260  *  @skb: the packet
1261  *  @dev: the egress net device
1262  *
1263  *  Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1264  */
1265 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1266 {
1267     int qidx;
1268     unsigned int ndesc, pidx, credits, gen, compl;
1269     const struct port_info *pi = netdev_priv(dev);
1270     struct adapter *adap = pi->adapter;
1271     struct netdev_queue *txq;
1272     struct sge_qset *qs;
1273     struct sge_txq *q;
1274     dma_addr_t addr[MAX_SKB_FRAGS + 1];
1275 
1276     /*
1277      * The chip min packet length is 9 octets but play safe and reject
1278      * anything shorter than an Ethernet header.
1279      */
1280     if (unlikely(skb->len < ETH_HLEN)) {
1281         dev_kfree_skb_any(skb);
1282         return NETDEV_TX_OK;
1283     }
1284 
1285     qidx = skb_get_queue_mapping(skb);
1286     qs = &pi->qs[qidx];
1287     q = &qs->txq[TXQ_ETH];
1288     txq = netdev_get_tx_queue(dev, qidx);
1289 
1290     reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1291 
1292     credits = q->size - q->in_use;
1293     ndesc = calc_tx_descs(skb);
1294 
1295     if (unlikely(credits < ndesc)) {
1296         t3_stop_tx_queue(txq, qs, q);
1297         dev_err(&adap->pdev->dev,
1298             "%s: Tx ring %u full while queue awake!\n",
1299             dev->name, q->cntxt_id & 7);
1300         return NETDEV_TX_BUSY;
1301     }
1302 
1303     /* Check if ethernet packet can't be sent as immediate data */
1304     if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1305         if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1306             dev_kfree_skb(skb);
1307             return NETDEV_TX_OK;
1308         }
1309     }
1310 
1311     q->in_use += ndesc;
1312     if (unlikely(credits - ndesc < q->stop_thres)) {
1313         t3_stop_tx_queue(txq, qs, q);
1314 
1315         if (should_restart_tx(q) &&
1316             test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1317             q->restarts++;
1318             netif_tx_start_queue(txq);
1319         }
1320     }
1321 
1322     gen = q->gen;
1323     q->unacked += ndesc;
1324     compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1325     q->unacked &= 7;
1326     pidx = q->pidx;
1327     q->pidx += ndesc;
1328     if (q->pidx >= q->size) {
1329         q->pidx -= q->size;
1330         q->gen ^= 1;
1331     }
1332 
1333     /* update port statistics */
1334     if (skb->ip_summed == CHECKSUM_PARTIAL)
1335         qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1336     if (skb_shinfo(skb)->gso_size)
1337         qs->port_stats[SGE_PSTAT_TSO]++;
1338     if (skb_vlan_tag_present(skb))
1339         qs->port_stats[SGE_PSTAT_VLANINS]++;
1340 
1341     /*
1342      * We do not use Tx completion interrupts to free DMAd Tx packets.
1343      * This is good for performance but means that we rely on new Tx
1344      * packets arriving to run the destructors of completed packets,
1345      * which open up space in their sockets' send queues.  Sometimes
1346      * we do not get such new packets causing Tx to stall.  A single
1347      * UDP transmitter is a good example of this situation.  We have
1348      * a clean up timer that periodically reclaims completed packets
1349      * but it doesn't run often enough (nor do we want it to) to prevent
1350      * lengthy stalls.  A solution to this problem is to run the
1351      * destructor early, after the packet is queued but before it's DMAd.
1352      * A cons is that we lie to socket memory accounting, but the amount
1353      * of extra memory is reasonable (limited by the number of Tx
1354      * descriptors), the packets do actually get freed quickly by new
1355      * packets almost always, and for protocols like TCP that wait for
1356      * acks to really free up the data the extra memory is even less.
1357      * On the positive side we run the destructors on the sending CPU
1358      * rather than on a potentially different completing CPU, usually a
1359      * good thing.  We also run them without holding our Tx queue lock,
1360      * unlike what reclaim_completed_tx() would otherwise do.
1361      *
1362      * Run the destructor before telling the DMA engine about the packet
1363      * to make sure it doesn't complete and get freed prematurely.
1364      */
1365     if (likely(!skb_shared(skb)))
1366         skb_orphan(skb);
1367 
1368     write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1369     check_ring_tx_db(adap, q);
1370     return NETDEV_TX_OK;
1371 }
1372 
1373 /**
1374  *  write_imm - write a packet into a Tx descriptor as immediate data
1375  *  @d: the Tx descriptor to write
1376  *  @skb: the packet
1377  *  @len: the length of packet data to write as immediate data
1378  *  @gen: the generation bit value to write
1379  *
1380  *  Writes a packet as immediate data into a Tx descriptor.  The packet
1381  *  contains a work request at its beginning.  We must write the packet
1382  *  carefully so the SGE doesn't read it accidentally before it's written
1383  *  in its entirety.
1384  */
1385 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1386                  unsigned int len, unsigned int gen)
1387 {
1388     struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1389     struct work_request_hdr *to = (struct work_request_hdr *)d;
1390 
1391     if (likely(!skb->data_len))
1392         memcpy(&to[1], &from[1], len - sizeof(*from));
1393     else
1394         skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1395 
1396     to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1397                     V_WR_BCNTLFLT(len & 7));
1398     dma_wmb();
1399     to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1400                     V_WR_LEN((len + 7) / 8));
1401     wr_gen2(d, gen);
1402     kfree_skb(skb);
1403 }
1404 
1405 /**
1406  *  check_desc_avail - check descriptor availability on a send queue
1407  *  @adap: the adapter
1408  *  @q: the send queue
1409  *  @skb: the packet needing the descriptors
1410  *  @ndesc: the number of Tx descriptors needed
1411  *  @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1412  *
1413  *  Checks if the requested number of Tx descriptors is available on an
1414  *  SGE send queue.  If the queue is already suspended or not enough
1415  *  descriptors are available the packet is queued for later transmission.
1416  *  Must be called with the Tx queue locked.
1417  *
1418  *  Returns 0 if enough descriptors are available, 1 if there aren't
1419  *  enough descriptors and the packet has been queued, and 2 if the caller
1420  *  needs to retry because there weren't enough descriptors at the
1421  *  beginning of the call but some freed up in the mean time.
1422  */
1423 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1424                    struct sk_buff *skb, unsigned int ndesc,
1425                    unsigned int qid)
1426 {
1427     if (unlikely(!skb_queue_empty(&q->sendq))) {
1428           addq_exit:__skb_queue_tail(&q->sendq, skb);
1429         return 1;
1430     }
1431     if (unlikely(q->size - q->in_use < ndesc)) {
1432         struct sge_qset *qs = txq_to_qset(q, qid);
1433 
1434         set_bit(qid, &qs->txq_stopped);
1435         smp_mb__after_atomic();
1436 
1437         if (should_restart_tx(q) &&
1438             test_and_clear_bit(qid, &qs->txq_stopped))
1439             return 2;
1440 
1441         q->stops++;
1442         goto addq_exit;
1443     }
1444     return 0;
1445 }
1446 
1447 /**
1448  *  reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1449  *  @q: the SGE control Tx queue
1450  *
1451  *  This is a variant of reclaim_completed_tx() that is used for Tx queues
1452  *  that send only immediate data (presently just the control queues) and
1453  *  thus do not have any sk_buffs to release.
1454  */
1455 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1456 {
1457     unsigned int reclaim = q->processed - q->cleaned;
1458 
1459     q->in_use -= reclaim;
1460     q->cleaned += reclaim;
1461 }
1462 
1463 static inline int immediate(const struct sk_buff *skb)
1464 {
1465     return skb->len <= WR_LEN;
1466 }
1467 
1468 /**
1469  *  ctrl_xmit - send a packet through an SGE control Tx queue
1470  *  @adap: the adapter
1471  *  @q: the control queue
1472  *  @skb: the packet
1473  *
1474  *  Send a packet through an SGE control Tx queue.  Packets sent through
1475  *  a control queue must fit entirely as immediate data in a single Tx
1476  *  descriptor and have no page fragments.
1477  */
1478 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1479              struct sk_buff *skb)
1480 {
1481     int ret;
1482     struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1483 
1484     if (unlikely(!immediate(skb))) {
1485         WARN_ON(1);
1486         dev_kfree_skb(skb);
1487         return NET_XMIT_SUCCESS;
1488     }
1489 
1490     wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1491     wrp->wr_lo = htonl(V_WR_TID(q->token));
1492 
1493     spin_lock(&q->lock);
1494       again:reclaim_completed_tx_imm(q);
1495 
1496     ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1497     if (unlikely(ret)) {
1498         if (ret == 1) {
1499             spin_unlock(&q->lock);
1500             return NET_XMIT_CN;
1501         }
1502         goto again;
1503     }
1504 
1505     write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1506 
1507     q->in_use++;
1508     if (++q->pidx >= q->size) {
1509         q->pidx = 0;
1510         q->gen ^= 1;
1511     }
1512     spin_unlock(&q->lock);
1513     wmb();
1514     t3_write_reg(adap, A_SG_KDOORBELL,
1515              F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1516     return NET_XMIT_SUCCESS;
1517 }
1518 
1519 /**
1520  *  restart_ctrlq - restart a suspended control queue
1521  *  @w: pointer to the work associated with this handler
1522  *
1523  *  Resumes transmission on a suspended Tx control queue.
1524  */
1525 static void restart_ctrlq(struct work_struct *w)
1526 {
1527     struct sk_buff *skb;
1528     struct sge_qset *qs = container_of(w, struct sge_qset,
1529                        txq[TXQ_CTRL].qresume_task);
1530     struct sge_txq *q = &qs->txq[TXQ_CTRL];
1531 
1532     spin_lock(&q->lock);
1533       again:reclaim_completed_tx_imm(q);
1534 
1535     while (q->in_use < q->size &&
1536            (skb = __skb_dequeue(&q->sendq)) != NULL) {
1537 
1538         write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1539 
1540         if (++q->pidx >= q->size) {
1541             q->pidx = 0;
1542             q->gen ^= 1;
1543         }
1544         q->in_use++;
1545     }
1546 
1547     if (!skb_queue_empty(&q->sendq)) {
1548         set_bit(TXQ_CTRL, &qs->txq_stopped);
1549         smp_mb__after_atomic();
1550 
1551         if (should_restart_tx(q) &&
1552             test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1553             goto again;
1554         q->stops++;
1555     }
1556 
1557     spin_unlock(&q->lock);
1558     wmb();
1559     t3_write_reg(qs->adap, A_SG_KDOORBELL,
1560              F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1561 }
1562 
1563 /*
1564  * Send a management message through control queue 0
1565  */
1566 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1567 {
1568     int ret;
1569     local_bh_disable();
1570     ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1571     local_bh_enable();
1572 
1573     return ret;
1574 }
1575 
1576 /**
1577  *  deferred_unmap_destructor - unmap a packet when it is freed
1578  *  @skb: the packet
1579  *
1580  *  This is the packet destructor used for Tx packets that need to remain
1581  *  mapped until they are freed rather than until their Tx descriptors are
1582  *  freed.
1583  */
1584 static void deferred_unmap_destructor(struct sk_buff *skb)
1585 {
1586     int i;
1587     const dma_addr_t *p;
1588     const struct skb_shared_info *si;
1589     const struct deferred_unmap_info *dui;
1590 
1591     dui = (struct deferred_unmap_info *)skb->head;
1592     p = dui->addr;
1593 
1594     if (skb_tail_pointer(skb) - skb_transport_header(skb))
1595         dma_unmap_single(&dui->pdev->dev, *p++,
1596                  skb_tail_pointer(skb) - skb_transport_header(skb),
1597                  DMA_TO_DEVICE);
1598 
1599     si = skb_shinfo(skb);
1600     for (i = 0; i < si->nr_frags; i++)
1601         dma_unmap_page(&dui->pdev->dev, *p++,
1602                    skb_frag_size(&si->frags[i]), DMA_TO_DEVICE);
1603 }
1604 
1605 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1606                      const struct sg_ent *sgl, int sgl_flits)
1607 {
1608     dma_addr_t *p;
1609     struct deferred_unmap_info *dui;
1610 
1611     dui = (struct deferred_unmap_info *)skb->head;
1612     dui->pdev = pdev;
1613     for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1614         *p++ = be64_to_cpu(sgl->addr[0]);
1615         *p++ = be64_to_cpu(sgl->addr[1]);
1616     }
1617     if (sgl_flits)
1618         *p = be64_to_cpu(sgl->addr[0]);
1619 }
1620 
1621 /**
1622  *  write_ofld_wr - write an offload work request
1623  *  @adap: the adapter
1624  *  @skb: the packet to send
1625  *  @q: the Tx queue
1626  *  @pidx: index of the first Tx descriptor to write
1627  *  @gen: the generation value to use
1628  *  @ndesc: number of descriptors the packet will occupy
1629  *  @addr: the address
1630  *
1631  *  Write an offload work request to send the supplied packet.  The packet
1632  *  data already carry the work request with most fields populated.
1633  */
1634 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1635               struct sge_txq *q, unsigned int pidx,
1636               unsigned int gen, unsigned int ndesc,
1637               const dma_addr_t *addr)
1638 {
1639     unsigned int sgl_flits, flits;
1640     struct work_request_hdr *from;
1641     struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1642     struct tx_desc *d = &q->desc[pidx];
1643 
1644     if (immediate(skb)) {
1645         q->sdesc[pidx].skb = NULL;
1646         write_imm(d, skb, skb->len, gen);
1647         return;
1648     }
1649 
1650     /* Only TX_DATA builds SGLs */
1651 
1652     from = (struct work_request_hdr *)skb->data;
1653     memcpy(&d->flit[1], &from[1],
1654            skb_transport_offset(skb) - sizeof(*from));
1655 
1656     flits = skb_transport_offset(skb) / 8;
1657     sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1658     sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1659                   skb_tail_pointer(skb) - skb_transport_header(skb),
1660                   addr);
1661     if (need_skb_unmap()) {
1662         setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1663         skb->destructor = deferred_unmap_destructor;
1664     }
1665 
1666     write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1667              gen, from->wr_hi, from->wr_lo);
1668 }
1669 
1670 /**
1671  *  calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1672  *  @skb: the packet
1673  *
1674  *  Returns the number of Tx descriptors needed for the given offload
1675  *  packet.  These packets are already fully constructed.
1676  */
1677 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1678 {
1679     unsigned int flits, cnt;
1680 
1681     if (skb->len <= WR_LEN)
1682         return 1;   /* packet fits as immediate data */
1683 
1684     flits = skb_transport_offset(skb) / 8;  /* headers */
1685     cnt = skb_shinfo(skb)->nr_frags;
1686     if (skb_tail_pointer(skb) != skb_transport_header(skb))
1687         cnt++;
1688     return flits_to_desc(flits + sgl_len(cnt));
1689 }
1690 
1691 /**
1692  *  ofld_xmit - send a packet through an offload queue
1693  *  @adap: the adapter
1694  *  @q: the Tx offload queue
1695  *  @skb: the packet
1696  *
1697  *  Send an offload packet through an SGE offload queue.
1698  */
1699 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1700              struct sk_buff *skb)
1701 {
1702     int ret;
1703     unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1704 
1705     spin_lock(&q->lock);
1706 again:  reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1707 
1708     ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1709     if (unlikely(ret)) {
1710         if (ret == 1) {
1711             skb->priority = ndesc;  /* save for restart */
1712             spin_unlock(&q->lock);
1713             return NET_XMIT_CN;
1714         }
1715         goto again;
1716     }
1717 
1718     if (!immediate(skb) &&
1719         map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1720         spin_unlock(&q->lock);
1721         return NET_XMIT_SUCCESS;
1722     }
1723 
1724     gen = q->gen;
1725     q->in_use += ndesc;
1726     pidx = q->pidx;
1727     q->pidx += ndesc;
1728     if (q->pidx >= q->size) {
1729         q->pidx -= q->size;
1730         q->gen ^= 1;
1731     }
1732     spin_unlock(&q->lock);
1733 
1734     write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1735     check_ring_tx_db(adap, q);
1736     return NET_XMIT_SUCCESS;
1737 }
1738 
1739 /**
1740  *  restart_offloadq - restart a suspended offload queue
1741  *  @w: pointer to the work associated with this handler
1742  *
1743  *  Resumes transmission on a suspended Tx offload queue.
1744  */
1745 static void restart_offloadq(struct work_struct *w)
1746 {
1747     struct sk_buff *skb;
1748     struct sge_qset *qs = container_of(w, struct sge_qset,
1749                        txq[TXQ_OFLD].qresume_task);
1750     struct sge_txq *q = &qs->txq[TXQ_OFLD];
1751     const struct port_info *pi = netdev_priv(qs->netdev);
1752     struct adapter *adap = pi->adapter;
1753     unsigned int written = 0;
1754 
1755     spin_lock(&q->lock);
1756 again:  reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1757 
1758     while ((skb = skb_peek(&q->sendq)) != NULL) {
1759         unsigned int gen, pidx;
1760         unsigned int ndesc = skb->priority;
1761 
1762         if (unlikely(q->size - q->in_use < ndesc)) {
1763             set_bit(TXQ_OFLD, &qs->txq_stopped);
1764             smp_mb__after_atomic();
1765 
1766             if (should_restart_tx(q) &&
1767                 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1768                 goto again;
1769             q->stops++;
1770             break;
1771         }
1772 
1773         if (!immediate(skb) &&
1774             map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1775             break;
1776 
1777         gen = q->gen;
1778         q->in_use += ndesc;
1779         pidx = q->pidx;
1780         q->pidx += ndesc;
1781         written += ndesc;
1782         if (q->pidx >= q->size) {
1783             q->pidx -= q->size;
1784             q->gen ^= 1;
1785         }
1786         __skb_unlink(skb, &q->sendq);
1787         spin_unlock(&q->lock);
1788 
1789         write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1790                   (dma_addr_t *)skb->head);
1791         spin_lock(&q->lock);
1792     }
1793     spin_unlock(&q->lock);
1794 
1795 #if USE_GTS
1796     set_bit(TXQ_RUNNING, &q->flags);
1797     set_bit(TXQ_LAST_PKT_DB, &q->flags);
1798 #endif
1799     wmb();
1800     if (likely(written))
1801         t3_write_reg(adap, A_SG_KDOORBELL,
1802                  F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1803 }
1804 
1805 /**
1806  *  queue_set - return the queue set a packet should use
1807  *  @skb: the packet
1808  *
1809  *  Maps a packet to the SGE queue set it should use.  The desired queue
1810  *  set is carried in bits 1-3 in the packet's priority.
1811  */
1812 static inline int queue_set(const struct sk_buff *skb)
1813 {
1814     return skb->priority >> 1;
1815 }
1816 
1817 /**
1818  *  is_ctrl_pkt - return whether an offload packet is a control packet
1819  *  @skb: the packet
1820  *
1821  *  Determines whether an offload packet should use an OFLD or a CTRL
1822  *  Tx queue.  This is indicated by bit 0 in the packet's priority.
1823  */
1824 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1825 {
1826     return skb->priority & 1;
1827 }
1828 
1829 /**
1830  *  t3_offload_tx - send an offload packet
1831  *  @tdev: the offload device to send to
1832  *  @skb: the packet
1833  *
1834  *  Sends an offload packet.  We use the packet priority to select the
1835  *  appropriate Tx queue as follows: bit 0 indicates whether the packet
1836  *  should be sent as regular or control, bits 1-3 select the queue set.
1837  */
1838 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1839 {
1840     struct adapter *adap = tdev2adap(tdev);
1841     struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1842 
1843     if (unlikely(is_ctrl_pkt(skb)))
1844         return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1845 
1846     return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1847 }
1848 
1849 /**
1850  *  offload_enqueue - add an offload packet to an SGE offload receive queue
1851  *  @q: the SGE response queue
1852  *  @skb: the packet
1853  *
1854  *  Add a new offload packet to an SGE response queue's offload packet
1855  *  queue.  If the packet is the first on the queue it schedules the RX
1856  *  softirq to process the queue.
1857  */
1858 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1859 {
1860     int was_empty = skb_queue_empty(&q->rx_queue);
1861 
1862     __skb_queue_tail(&q->rx_queue, skb);
1863 
1864     if (was_empty) {
1865         struct sge_qset *qs = rspq_to_qset(q);
1866 
1867         napi_schedule(&qs->napi);
1868     }
1869 }
1870 
1871 /**
1872  *  deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1873  *  @tdev: the offload device that will be receiving the packets
1874  *  @q: the SGE response queue that assembled the bundle
1875  *  @skbs: the partial bundle
1876  *  @n: the number of packets in the bundle
1877  *
1878  *  Delivers a (partial) bundle of Rx offload packets to an offload device.
1879  */
1880 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1881                       struct sge_rspq *q,
1882                       struct sk_buff *skbs[], int n)
1883 {
1884     if (n) {
1885         q->offload_bundles++;
1886         tdev->recv(tdev, skbs, n);
1887     }
1888 }
1889 
1890 /**
1891  *  ofld_poll - NAPI handler for offload packets in interrupt mode
1892  *  @napi: the network device doing the polling
1893  *  @budget: polling budget
1894  *
1895  *  The NAPI handler for offload packets when a response queue is serviced
1896  *  by the hard interrupt handler, i.e., when it's operating in non-polling
1897  *  mode.  Creates small packet batches and sends them through the offload
1898  *  receive handler.  Batches need to be of modest size as we do prefetches
1899  *  on the packets in each.
1900  */
1901 static int ofld_poll(struct napi_struct *napi, int budget)
1902 {
1903     struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1904     struct sge_rspq *q = &qs->rspq;
1905     struct adapter *adapter = qs->adap;
1906     int work_done = 0;
1907 
1908     while (work_done < budget) {
1909         struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1910         struct sk_buff_head queue;
1911         int ngathered;
1912 
1913         spin_lock_irq(&q->lock);
1914         __skb_queue_head_init(&queue);
1915         skb_queue_splice_init(&q->rx_queue, &queue);
1916         if (skb_queue_empty(&queue)) {
1917             napi_complete_done(napi, work_done);
1918             spin_unlock_irq(&q->lock);
1919             return work_done;
1920         }
1921         spin_unlock_irq(&q->lock);
1922 
1923         ngathered = 0;
1924         skb_queue_walk_safe(&queue, skb, tmp) {
1925             if (work_done >= budget)
1926                 break;
1927             work_done++;
1928 
1929             __skb_unlink(skb, &queue);
1930             prefetch(skb->data);
1931             skbs[ngathered] = skb;
1932             if (++ngathered == RX_BUNDLE_SIZE) {
1933                 q->offload_bundles++;
1934                 adapter->tdev.recv(&adapter->tdev, skbs,
1935                            ngathered);
1936                 ngathered = 0;
1937             }
1938         }
1939         if (!skb_queue_empty(&queue)) {
1940             /* splice remaining packets back onto Rx queue */
1941             spin_lock_irq(&q->lock);
1942             skb_queue_splice(&queue, &q->rx_queue);
1943             spin_unlock_irq(&q->lock);
1944         }
1945         deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1946     }
1947 
1948     return work_done;
1949 }
1950 
1951 /**
1952  *  rx_offload - process a received offload packet
1953  *  @tdev: the offload device receiving the packet
1954  *  @rq: the response queue that received the packet
1955  *  @skb: the packet
1956  *  @rx_gather: a gather list of packets if we are building a bundle
1957  *  @gather_idx: index of the next available slot in the bundle
1958  *
1959  *  Process an ingress offload packet and add it to the offload ingress
1960  *  queue.  Returns the index of the next available slot in the bundle.
1961  */
1962 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1963                  struct sk_buff *skb, struct sk_buff *rx_gather[],
1964                  unsigned int gather_idx)
1965 {
1966     skb_reset_mac_header(skb);
1967     skb_reset_network_header(skb);
1968     skb_reset_transport_header(skb);
1969 
1970     if (rq->polling) {
1971         rx_gather[gather_idx++] = skb;
1972         if (gather_idx == RX_BUNDLE_SIZE) {
1973             tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1974             gather_idx = 0;
1975             rq->offload_bundles++;
1976         }
1977     } else
1978         offload_enqueue(rq, skb);
1979 
1980     return gather_idx;
1981 }
1982 
1983 /**
1984  *  restart_tx - check whether to restart suspended Tx queues
1985  *  @qs: the queue set to resume
1986  *
1987  *  Restarts suspended Tx queues of an SGE queue set if they have enough
1988  *  free resources to resume operation.
1989  */
1990 static void restart_tx(struct sge_qset *qs)
1991 {
1992     if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1993         should_restart_tx(&qs->txq[TXQ_ETH]) &&
1994         test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1995         qs->txq[TXQ_ETH].restarts++;
1996         if (netif_running(qs->netdev))
1997             netif_tx_wake_queue(qs->tx_q);
1998     }
1999 
2000     if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
2001         should_restart_tx(&qs->txq[TXQ_OFLD]) &&
2002         test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
2003         qs->txq[TXQ_OFLD].restarts++;
2004 
2005         /* The work can be quite lengthy so we use driver's own queue */
2006         queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task);
2007     }
2008     if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2009         should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2010         test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2011         qs->txq[TXQ_CTRL].restarts++;
2012 
2013         /* The work can be quite lengthy so we use driver's own queue */
2014         queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task);
2015     }
2016 }
2017 
2018 /**
2019  *  cxgb3_arp_process - process an ARP request probing a private IP address
2020  *  @pi: the port info
2021  *  @skb: the skbuff containing the ARP request
2022  *
2023  *  Check if the ARP request is probing the private IP address
2024  *  dedicated to iSCSI, generate an ARP reply if so.
2025  */
2026 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2027 {
2028     struct net_device *dev = skb->dev;
2029     struct arphdr *arp;
2030     unsigned char *arp_ptr;
2031     unsigned char *sha;
2032     __be32 sip, tip;
2033 
2034     if (!dev)
2035         return;
2036 
2037     skb_reset_network_header(skb);
2038     arp = arp_hdr(skb);
2039 
2040     if (arp->ar_op != htons(ARPOP_REQUEST))
2041         return;
2042 
2043     arp_ptr = (unsigned char *)(arp + 1);
2044     sha = arp_ptr;
2045     arp_ptr += dev->addr_len;
2046     memcpy(&sip, arp_ptr, sizeof(sip));
2047     arp_ptr += sizeof(sip);
2048     arp_ptr += dev->addr_len;
2049     memcpy(&tip, arp_ptr, sizeof(tip));
2050 
2051     if (tip != pi->iscsi_ipv4addr)
2052         return;
2053 
2054     arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2055          pi->iscsic.mac_addr, sha);
2056 
2057 }
2058 
2059 static inline int is_arp(struct sk_buff *skb)
2060 {
2061     return skb->protocol == htons(ETH_P_ARP);
2062 }
2063 
2064 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2065                     struct sk_buff *skb)
2066 {
2067     if (is_arp(skb)) {
2068         cxgb3_arp_process(pi, skb);
2069         return;
2070     }
2071 
2072     if (pi->iscsic.recv)
2073         pi->iscsic.recv(pi, skb);
2074 
2075 }
2076 
2077 /**
2078  *  rx_eth - process an ingress ethernet packet
2079  *  @adap: the adapter
2080  *  @rq: the response queue that received the packet
2081  *  @skb: the packet
2082  *  @pad: padding
2083  *  @lro: large receive offload
2084  *
2085  *  Process an ingress ethernet packet and deliver it to the stack.
2086  *  The padding is 2 if the packet was delivered in an Rx buffer and 0
2087  *  if it was immediate data in a response.
2088  */
2089 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2090            struct sk_buff *skb, int pad, int lro)
2091 {
2092     struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2093     struct sge_qset *qs = rspq_to_qset(rq);
2094     struct port_info *pi;
2095 
2096     skb_pull(skb, sizeof(*p) + pad);
2097     skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2098     pi = netdev_priv(skb->dev);
2099     if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2100         p->csum == htons(0xffff) && !p->fragment) {
2101         qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2102         skb->ip_summed = CHECKSUM_UNNECESSARY;
2103     } else
2104         skb_checksum_none_assert(skb);
2105     skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2106 
2107     if (p->vlan_valid) {
2108         qs->port_stats[SGE_PSTAT_VLANEX]++;
2109         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2110     }
2111     if (rq->polling) {
2112         if (lro)
2113             napi_gro_receive(&qs->napi, skb);
2114         else {
2115             if (unlikely(pi->iscsic.flags))
2116                 cxgb3_process_iscsi_prov_pack(pi, skb);
2117             netif_receive_skb(skb);
2118         }
2119     } else
2120         netif_rx(skb);
2121 }
2122 
2123 static inline int is_eth_tcp(u32 rss)
2124 {
2125     return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2126 }
2127 
2128 /**
2129  *  lro_add_page - add a page chunk to an LRO session
2130  *  @adap: the adapter
2131  *  @qs: the associated queue set
2132  *  @fl: the free list containing the page chunk to add
2133  *  @len: packet length
2134  *  @complete: Indicates the last fragment of a frame
2135  *
2136  *  Add a received packet contained in a page chunk to an existing LRO
2137  *  session.
2138  */
2139 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2140              struct sge_fl *fl, int len, int complete)
2141 {
2142     struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2143     struct port_info *pi = netdev_priv(qs->netdev);
2144     struct sk_buff *skb = NULL;
2145     struct cpl_rx_pkt *cpl;
2146     skb_frag_t *rx_frag;
2147     int nr_frags;
2148     int offset = 0;
2149 
2150     if (!qs->nomem) {
2151         skb = napi_get_frags(&qs->napi);
2152         qs->nomem = !skb;
2153     }
2154 
2155     fl->credits--;
2156 
2157     dma_sync_single_for_cpu(&adap->pdev->dev,
2158                 dma_unmap_addr(sd, dma_addr),
2159                 fl->buf_size - SGE_PG_RSVD, DMA_FROM_DEVICE);
2160 
2161     (*sd->pg_chunk.p_cnt)--;
2162     if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2163         dma_unmap_page(&adap->pdev->dev, sd->pg_chunk.mapping,
2164                    fl->alloc_size, DMA_FROM_DEVICE);
2165 
2166     if (!skb) {
2167         put_page(sd->pg_chunk.page);
2168         if (complete)
2169             qs->nomem = 0;
2170         return;
2171     }
2172 
2173     rx_frag = skb_shinfo(skb)->frags;
2174     nr_frags = skb_shinfo(skb)->nr_frags;
2175 
2176     if (!nr_frags) {
2177         offset = 2 + sizeof(struct cpl_rx_pkt);
2178         cpl = qs->lro_va = sd->pg_chunk.va + 2;
2179 
2180         if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2181              cpl->csum_valid && cpl->csum == htons(0xffff)) {
2182             skb->ip_summed = CHECKSUM_UNNECESSARY;
2183             qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2184         } else
2185             skb->ip_summed = CHECKSUM_NONE;
2186     } else
2187         cpl = qs->lro_va;
2188 
2189     len -= offset;
2190 
2191     rx_frag += nr_frags;
2192     __skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2193     skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset);
2194     skb_frag_size_set(rx_frag, len);
2195 
2196     skb->len += len;
2197     skb->data_len += len;
2198     skb->truesize += len;
2199     skb_shinfo(skb)->nr_frags++;
2200 
2201     if (!complete)
2202         return;
2203 
2204     skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2205 
2206     if (cpl->vlan_valid) {
2207         qs->port_stats[SGE_PSTAT_VLANEX]++;
2208         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2209     }
2210     napi_gro_frags(&qs->napi);
2211 }
2212 
2213 /**
2214  *  handle_rsp_cntrl_info - handles control information in a response
2215  *  @qs: the queue set corresponding to the response
2216  *  @flags: the response control flags
2217  *
2218  *  Handles the control information of an SGE response, such as GTS
2219  *  indications and completion credits for the queue set's Tx queues.
2220  *  HW coalesces credits, we don't do any extra SW coalescing.
2221  */
2222 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2223 {
2224     unsigned int credits;
2225 
2226 #if USE_GTS
2227     if (flags & F_RSPD_TXQ0_GTS)
2228         clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2229 #endif
2230 
2231     credits = G_RSPD_TXQ0_CR(flags);
2232     if (credits)
2233         qs->txq[TXQ_ETH].processed += credits;
2234 
2235     credits = G_RSPD_TXQ2_CR(flags);
2236     if (credits)
2237         qs->txq[TXQ_CTRL].processed += credits;
2238 
2239 # if USE_GTS
2240     if (flags & F_RSPD_TXQ1_GTS)
2241         clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2242 # endif
2243     credits = G_RSPD_TXQ1_CR(flags);
2244     if (credits)
2245         qs->txq[TXQ_OFLD].processed += credits;
2246 }
2247 
2248 /**
2249  *  check_ring_db - check if we need to ring any doorbells
2250  *  @adap: the adapter
2251  *  @qs: the queue set whose Tx queues are to be examined
2252  *  @sleeping: indicates which Tx queue sent GTS
2253  *
2254  *  Checks if some of a queue set's Tx queues need to ring their doorbells
2255  *  to resume transmission after idling while they still have unprocessed
2256  *  descriptors.
2257  */
2258 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2259               unsigned int sleeping)
2260 {
2261     if (sleeping & F_RSPD_TXQ0_GTS) {
2262         struct sge_txq *txq = &qs->txq[TXQ_ETH];
2263 
2264         if (txq->cleaned + txq->in_use != txq->processed &&
2265             !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2266             set_bit(TXQ_RUNNING, &txq->flags);
2267             t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2268                      V_EGRCNTX(txq->cntxt_id));
2269         }
2270     }
2271 
2272     if (sleeping & F_RSPD_TXQ1_GTS) {
2273         struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2274 
2275         if (txq->cleaned + txq->in_use != txq->processed &&
2276             !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2277             set_bit(TXQ_RUNNING, &txq->flags);
2278             t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2279                      V_EGRCNTX(txq->cntxt_id));
2280         }
2281     }
2282 }
2283 
2284 /**
2285  *  is_new_response - check if a response is newly written
2286  *  @r: the response descriptor
2287  *  @q: the response queue
2288  *
2289  *  Returns true if a response descriptor contains a yet unprocessed
2290  *  response.
2291  */
2292 static inline int is_new_response(const struct rsp_desc *r,
2293                   const struct sge_rspq *q)
2294 {
2295     return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2296 }
2297 
2298 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2299 {
2300     q->pg_skb = NULL;
2301     q->rx_recycle_buf = 0;
2302 }
2303 
2304 #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2305 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2306             V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2307             V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2308             V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2309 
2310 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2311 #define NOMEM_INTR_DELAY 2500
2312 
2313 /**
2314  *  process_responses - process responses from an SGE response queue
2315  *  @adap: the adapter
2316  *  @qs: the queue set to which the response queue belongs
2317  *  @budget: how many responses can be processed in this round
2318  *
2319  *  Process responses from an SGE response queue up to the supplied budget.
2320  *  Responses include received packets as well as credits and other events
2321  *  for the queues that belong to the response queue's queue set.
2322  *  A negative budget is effectively unlimited.
2323  *
2324  *  Additionally choose the interrupt holdoff time for the next interrupt
2325  *  on this queue.  If the system is under memory shortage use a fairly
2326  *  long delay to help recovery.
2327  */
2328 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2329                  int budget)
2330 {
2331     struct sge_rspq *q = &qs->rspq;
2332     struct rsp_desc *r = &q->desc[q->cidx];
2333     int budget_left = budget;
2334     unsigned int sleeping = 0;
2335     struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2336     int ngathered = 0;
2337 
2338     q->next_holdoff = q->holdoff_tmr;
2339 
2340     while (likely(budget_left && is_new_response(r, q))) {
2341         int packet_complete, eth, ethpad = 2;
2342         int lro = !!(qs->netdev->features & NETIF_F_GRO);
2343         struct sk_buff *skb = NULL;
2344         u32 len, flags;
2345         __be32 rss_hi, rss_lo;
2346 
2347         dma_rmb();
2348         eth = r->rss_hdr.opcode == CPL_RX_PKT;
2349         rss_hi = *(const __be32 *)r;
2350         rss_lo = r->rss_hdr.rss_hash_val;
2351         flags = ntohl(r->flags);
2352 
2353         if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2354             skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2355             if (!skb)
2356                 goto no_mem;
2357 
2358             __skb_put_data(skb, r, AN_PKT_SIZE);
2359             skb->data[0] = CPL_ASYNC_NOTIF;
2360             rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2361             q->async_notif++;
2362         } else if (flags & F_RSPD_IMM_DATA_VALID) {
2363             skb = get_imm_packet(r);
2364             if (unlikely(!skb)) {
2365 no_mem:
2366                 q->next_holdoff = NOMEM_INTR_DELAY;
2367                 q->nomem++;
2368                 /* consume one credit since we tried */
2369                 budget_left--;
2370                 break;
2371             }
2372             q->imm_data++;
2373             ethpad = 0;
2374         } else if ((len = ntohl(r->len_cq)) != 0) {
2375             struct sge_fl *fl;
2376 
2377             lro &= eth && is_eth_tcp(rss_hi);
2378 
2379             fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2380             if (fl->use_pages) {
2381                 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2382 
2383                 net_prefetch(addr);
2384                 __refill_fl(adap, fl);
2385                 if (lro > 0) {
2386                     lro_add_page(adap, qs, fl,
2387                              G_RSPD_LEN(len),
2388                              flags & F_RSPD_EOP);
2389                     goto next_fl;
2390                 }
2391 
2392                 skb = get_packet_pg(adap, fl, q,
2393                             G_RSPD_LEN(len),
2394                             eth ?
2395                             SGE_RX_DROP_THRES : 0);
2396                 q->pg_skb = skb;
2397             } else
2398                 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2399                          eth ? SGE_RX_DROP_THRES : 0);
2400             if (unlikely(!skb)) {
2401                 if (!eth)
2402                     goto no_mem;
2403                 q->rx_drops++;
2404             } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2405                 __skb_pull(skb, 2);
2406 next_fl:
2407             if (++fl->cidx == fl->size)
2408                 fl->cidx = 0;
2409         } else
2410             q->pure_rsps++;
2411 
2412         if (flags & RSPD_CTRL_MASK) {
2413             sleeping |= flags & RSPD_GTS_MASK;
2414             handle_rsp_cntrl_info(qs, flags);
2415         }
2416 
2417         r++;
2418         if (unlikely(++q->cidx == q->size)) {
2419             q->cidx = 0;
2420             q->gen ^= 1;
2421             r = q->desc;
2422         }
2423         prefetch(r);
2424 
2425         if (++q->credits >= (q->size / 4)) {
2426             refill_rspq(adap, q, q->credits);
2427             q->credits = 0;
2428         }
2429 
2430         packet_complete = flags &
2431                   (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2432                    F_RSPD_ASYNC_NOTIF);
2433 
2434         if (skb != NULL && packet_complete) {
2435             if (eth)
2436                 rx_eth(adap, q, skb, ethpad, lro);
2437             else {
2438                 q->offload_pkts++;
2439                 /* Preserve the RSS info in csum & priority */
2440                 skb->csum = rss_hi;
2441                 skb->priority = rss_lo;
2442                 ngathered = rx_offload(&adap->tdev, q, skb,
2443                                offload_skbs,
2444                                ngathered);
2445             }
2446 
2447             if (flags & F_RSPD_EOP)
2448                 clear_rspq_bufstate(q);
2449         }
2450         --budget_left;
2451     }
2452 
2453     deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2454 
2455     if (sleeping)
2456         check_ring_db(adap, qs, sleeping);
2457 
2458     smp_mb();       /* commit Tx queue .processed updates */
2459     if (unlikely(qs->txq_stopped != 0))
2460         restart_tx(qs);
2461 
2462     budget -= budget_left;
2463     return budget;
2464 }
2465 
2466 static inline int is_pure_response(const struct rsp_desc *r)
2467 {
2468     __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2469 
2470     return (n | r->len_cq) == 0;
2471 }
2472 
2473 /**
2474  *  napi_rx_handler - the NAPI handler for Rx processing
2475  *  @napi: the napi instance
2476  *  @budget: how many packets we can process in this round
2477  *
2478  *  Handler for new data events when using NAPI.
2479  */
2480 static int napi_rx_handler(struct napi_struct *napi, int budget)
2481 {
2482     struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2483     struct adapter *adap = qs->adap;
2484     int work_done = process_responses(adap, qs, budget);
2485 
2486     if (likely(work_done < budget)) {
2487         napi_complete_done(napi, work_done);
2488 
2489         /*
2490          * Because we don't atomically flush the following
2491          * write it is possible that in very rare cases it can
2492          * reach the device in a way that races with a new
2493          * response being written plus an error interrupt
2494          * causing the NAPI interrupt handler below to return
2495          * unhandled status to the OS.  To protect against
2496          * this would require flushing the write and doing
2497          * both the write and the flush with interrupts off.
2498          * Way too expensive and unjustifiable given the
2499          * rarity of the race.
2500          *
2501          * The race cannot happen at all with MSI-X.
2502          */
2503         t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2504                  V_NEWTIMER(qs->rspq.next_holdoff) |
2505                  V_NEWINDEX(qs->rspq.cidx));
2506     }
2507     return work_done;
2508 }
2509 
2510 /*
2511  * Returns true if the device is already scheduled for polling.
2512  */
2513 static inline int napi_is_scheduled(struct napi_struct *napi)
2514 {
2515     return test_bit(NAPI_STATE_SCHED, &napi->state);
2516 }
2517 
2518 /**
2519  *  process_pure_responses - process pure responses from a response queue
2520  *  @adap: the adapter
2521  *  @qs: the queue set owning the response queue
2522  *  @r: the first pure response to process
2523  *
2524  *  A simpler version of process_responses() that handles only pure (i.e.,
2525  *  non data-carrying) responses.  Such respones are too light-weight to
2526  *  justify calling a softirq under NAPI, so we handle them specially in
2527  *  the interrupt handler.  The function is called with a pointer to a
2528  *  response, which the caller must ensure is a valid pure response.
2529  *
2530  *  Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2531  */
2532 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2533                   struct rsp_desc *r)
2534 {
2535     struct sge_rspq *q = &qs->rspq;
2536     unsigned int sleeping = 0;
2537 
2538     do {
2539         u32 flags = ntohl(r->flags);
2540 
2541         r++;
2542         if (unlikely(++q->cidx == q->size)) {
2543             q->cidx = 0;
2544             q->gen ^= 1;
2545             r = q->desc;
2546         }
2547         prefetch(r);
2548 
2549         if (flags & RSPD_CTRL_MASK) {
2550             sleeping |= flags & RSPD_GTS_MASK;
2551             handle_rsp_cntrl_info(qs, flags);
2552         }
2553 
2554         q->pure_rsps++;
2555         if (++q->credits >= (q->size / 4)) {
2556             refill_rspq(adap, q, q->credits);
2557             q->credits = 0;
2558         }
2559         if (!is_new_response(r, q))
2560             break;
2561         dma_rmb();
2562     } while (is_pure_response(r));
2563 
2564     if (sleeping)
2565         check_ring_db(adap, qs, sleeping);
2566 
2567     smp_mb();       /* commit Tx queue .processed updates */
2568     if (unlikely(qs->txq_stopped != 0))
2569         restart_tx(qs);
2570 
2571     return is_new_response(r, q);
2572 }
2573 
2574 /**
2575  *  handle_responses - decide what to do with new responses in NAPI mode
2576  *  @adap: the adapter
2577  *  @q: the response queue
2578  *
2579  *  This is used by the NAPI interrupt handlers to decide what to do with
2580  *  new SGE responses.  If there are no new responses it returns -1.  If
2581  *  there are new responses and they are pure (i.e., non-data carrying)
2582  *  it handles them straight in hard interrupt context as they are very
2583  *  cheap and don't deliver any packets.  Finally, if there are any data
2584  *  signaling responses it schedules the NAPI handler.  Returns 1 if it
2585  *  schedules NAPI, 0 if all new responses were pure.
2586  *
2587  *  The caller must ascertain NAPI is not already running.
2588  */
2589 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2590 {
2591     struct sge_qset *qs = rspq_to_qset(q);
2592     struct rsp_desc *r = &q->desc[q->cidx];
2593 
2594     if (!is_new_response(r, q))
2595         return -1;
2596     dma_rmb();
2597     if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2598         t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2599                  V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2600         return 0;
2601     }
2602     napi_schedule(&qs->napi);
2603     return 1;
2604 }
2605 
2606 /*
2607  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2608  * (i.e., response queue serviced in hard interrupt).
2609  */
2610 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2611 {
2612     struct sge_qset *qs = cookie;
2613     struct adapter *adap = qs->adap;
2614     struct sge_rspq *q = &qs->rspq;
2615 
2616     spin_lock(&q->lock);
2617     if (process_responses(adap, qs, -1) == 0)
2618         q->unhandled_irqs++;
2619     t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2620              V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2621     spin_unlock(&q->lock);
2622     return IRQ_HANDLED;
2623 }
2624 
2625 /*
2626  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2627  * (i.e., response queue serviced by NAPI polling).
2628  */
2629 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2630 {
2631     struct sge_qset *qs = cookie;
2632     struct sge_rspq *q = &qs->rspq;
2633 
2634     spin_lock(&q->lock);
2635 
2636     if (handle_responses(qs->adap, q) < 0)
2637         q->unhandled_irqs++;
2638     spin_unlock(&q->lock);
2639     return IRQ_HANDLED;
2640 }
2641 
2642 /*
2643  * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2644  * SGE response queues as well as error and other async events as they all use
2645  * the same MSI vector.  We use one SGE response queue per port in this mode
2646  * and protect all response queues with queue 0's lock.
2647  */
2648 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2649 {
2650     int new_packets = 0;
2651     struct adapter *adap = cookie;
2652     struct sge_rspq *q = &adap->sge.qs[0].rspq;
2653 
2654     spin_lock(&q->lock);
2655 
2656     if (process_responses(adap, &adap->sge.qs[0], -1)) {
2657         t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2658                  V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2659         new_packets = 1;
2660     }
2661 
2662     if (adap->params.nports == 2 &&
2663         process_responses(adap, &adap->sge.qs[1], -1)) {
2664         struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2665 
2666         t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2667                  V_NEWTIMER(q1->next_holdoff) |
2668                  V_NEWINDEX(q1->cidx));
2669         new_packets = 1;
2670     }
2671 
2672     if (!new_packets && t3_slow_intr_handler(adap) == 0)
2673         q->unhandled_irqs++;
2674 
2675     spin_unlock(&q->lock);
2676     return IRQ_HANDLED;
2677 }
2678 
2679 static int rspq_check_napi(struct sge_qset *qs)
2680 {
2681     struct sge_rspq *q = &qs->rspq;
2682 
2683     if (!napi_is_scheduled(&qs->napi) &&
2684         is_new_response(&q->desc[q->cidx], q)) {
2685         napi_schedule(&qs->napi);
2686         return 1;
2687     }
2688     return 0;
2689 }
2690 
2691 /*
2692  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2693  * by NAPI polling).  Handles data events from SGE response queues as well as
2694  * error and other async events as they all use the same MSI vector.  We use
2695  * one SGE response queue per port in this mode and protect all response
2696  * queues with queue 0's lock.
2697  */
2698 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2699 {
2700     int new_packets;
2701     struct adapter *adap = cookie;
2702     struct sge_rspq *q = &adap->sge.qs[0].rspq;
2703 
2704     spin_lock(&q->lock);
2705 
2706     new_packets = rspq_check_napi(&adap->sge.qs[0]);
2707     if (adap->params.nports == 2)
2708         new_packets += rspq_check_napi(&adap->sge.qs[1]);
2709     if (!new_packets && t3_slow_intr_handler(adap) == 0)
2710         q->unhandled_irqs++;
2711 
2712     spin_unlock(&q->lock);
2713     return IRQ_HANDLED;
2714 }
2715 
2716 /*
2717  * A helper function that processes responses and issues GTS.
2718  */
2719 static inline int process_responses_gts(struct adapter *adap,
2720                     struct sge_rspq *rq)
2721 {
2722     int work;
2723 
2724     work = process_responses(adap, rspq_to_qset(rq), -1);
2725     t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2726              V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2727     return work;
2728 }
2729 
2730 /*
2731  * The legacy INTx interrupt handler.  This needs to handle data events from
2732  * SGE response queues as well as error and other async events as they all use
2733  * the same interrupt pin.  We use one SGE response queue per port in this mode
2734  * and protect all response queues with queue 0's lock.
2735  */
2736 static irqreturn_t t3_intr(int irq, void *cookie)
2737 {
2738     int work_done, w0, w1;
2739     struct adapter *adap = cookie;
2740     struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2741     struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2742 
2743     spin_lock(&q0->lock);
2744 
2745     w0 = is_new_response(&q0->desc[q0->cidx], q0);
2746     w1 = adap->params.nports == 2 &&
2747         is_new_response(&q1->desc[q1->cidx], q1);
2748 
2749     if (likely(w0 | w1)) {
2750         t3_write_reg(adap, A_PL_CLI, 0);
2751         t3_read_reg(adap, A_PL_CLI);    /* flush */
2752 
2753         if (likely(w0))
2754             process_responses_gts(adap, q0);
2755 
2756         if (w1)
2757             process_responses_gts(adap, q1);
2758 
2759         work_done = w0 | w1;
2760     } else
2761         work_done = t3_slow_intr_handler(adap);
2762 
2763     spin_unlock(&q0->lock);
2764     return IRQ_RETVAL(work_done != 0);
2765 }
2766 
2767 /*
2768  * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2769  * Handles data events from SGE response queues as well as error and other
2770  * async events as they all use the same interrupt pin.  We use one SGE
2771  * response queue per port in this mode and protect all response queues with
2772  * queue 0's lock.
2773  */
2774 static irqreturn_t t3b_intr(int irq, void *cookie)
2775 {
2776     u32 map;
2777     struct adapter *adap = cookie;
2778     struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2779 
2780     t3_write_reg(adap, A_PL_CLI, 0);
2781     map = t3_read_reg(adap, A_SG_DATA_INTR);
2782 
2783     if (unlikely(!map)) /* shared interrupt, most likely */
2784         return IRQ_NONE;
2785 
2786     spin_lock(&q0->lock);
2787 
2788     if (unlikely(map & F_ERRINTR))
2789         t3_slow_intr_handler(adap);
2790 
2791     if (likely(map & 1))
2792         process_responses_gts(adap, q0);
2793 
2794     if (map & 2)
2795         process_responses_gts(adap, &adap->sge.qs[1].rspq);
2796 
2797     spin_unlock(&q0->lock);
2798     return IRQ_HANDLED;
2799 }
2800 
2801 /*
2802  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2803  * Handles data events from SGE response queues as well as error and other
2804  * async events as they all use the same interrupt pin.  We use one SGE
2805  * response queue per port in this mode and protect all response queues with
2806  * queue 0's lock.
2807  */
2808 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2809 {
2810     u32 map;
2811     struct adapter *adap = cookie;
2812     struct sge_qset *qs0 = &adap->sge.qs[0];
2813     struct sge_rspq *q0 = &qs0->rspq;
2814 
2815     t3_write_reg(adap, A_PL_CLI, 0);
2816     map = t3_read_reg(adap, A_SG_DATA_INTR);
2817 
2818     if (unlikely(!map)) /* shared interrupt, most likely */
2819         return IRQ_NONE;
2820 
2821     spin_lock(&q0->lock);
2822 
2823     if (unlikely(map & F_ERRINTR))
2824         t3_slow_intr_handler(adap);
2825 
2826     if (likely(map & 1))
2827         napi_schedule(&qs0->napi);
2828 
2829     if (map & 2)
2830         napi_schedule(&adap->sge.qs[1].napi);
2831 
2832     spin_unlock(&q0->lock);
2833     return IRQ_HANDLED;
2834 }
2835 
2836 /**
2837  *  t3_intr_handler - select the top-level interrupt handler
2838  *  @adap: the adapter
2839  *  @polling: whether using NAPI to service response queues
2840  *
2841  *  Selects the top-level interrupt handler based on the type of interrupts
2842  *  (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2843  *  response queues.
2844  */
2845 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2846 {
2847     if (adap->flags & USING_MSIX)
2848         return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2849     if (adap->flags & USING_MSI)
2850         return polling ? t3_intr_msi_napi : t3_intr_msi;
2851     if (adap->params.rev > 0)
2852         return polling ? t3b_intr_napi : t3b_intr;
2853     return t3_intr;
2854 }
2855 
2856 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2857             F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2858             V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2859             F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2860             F_HIRCQPARITYERROR)
2861 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2862 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2863               F_RSPQDISABLED)
2864 
2865 /**
2866  *  t3_sge_err_intr_handler - SGE async event interrupt handler
2867  *  @adapter: the adapter
2868  *
2869  *  Interrupt handler for SGE asynchronous (non-data) events.
2870  */
2871 void t3_sge_err_intr_handler(struct adapter *adapter)
2872 {
2873     unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2874                  ~F_FLEMPTY;
2875 
2876     if (status & SGE_PARERR)
2877         CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2878              status & SGE_PARERR);
2879     if (status & SGE_FRAMINGERR)
2880         CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2881              status & SGE_FRAMINGERR);
2882 
2883     if (status & F_RSPQCREDITOVERFOW)
2884         CH_ALERT(adapter, "SGE response queue credit overflow\n");
2885 
2886     if (status & F_RSPQDISABLED) {
2887         v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2888 
2889         CH_ALERT(adapter,
2890              "packet delivered to disabled response queue "
2891              "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2892     }
2893 
2894     if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2895         queue_work(cxgb3_wq, &adapter->db_drop_task);
2896 
2897     if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2898         queue_work(cxgb3_wq, &adapter->db_full_task);
2899 
2900     if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2901         queue_work(cxgb3_wq, &adapter->db_empty_task);
2902 
2903     t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2904     if (status &  SGE_FATALERR)
2905         t3_fatal_err(adapter);
2906 }
2907 
2908 /**
2909  *  sge_timer_tx - perform periodic maintenance of an SGE qset
2910  *  @t: a timer list containing the SGE queue set to maintain
2911  *
2912  *  Runs periodically from a timer to perform maintenance of an SGE queue
2913  *  set.  It performs two tasks:
2914  *
2915  *  Cleans up any completed Tx descriptors that may still be pending.
2916  *  Normal descriptor cleanup happens when new packets are added to a Tx
2917  *  queue so this timer is relatively infrequent and does any cleanup only
2918  *  if the Tx queue has not seen any new packets in a while.  We make a
2919  *  best effort attempt to reclaim descriptors, in that we don't wait
2920  *  around if we cannot get a queue's lock (which most likely is because
2921  *  someone else is queueing new packets and so will also handle the clean
2922  *  up).  Since control queues use immediate data exclusively we don't
2923  *  bother cleaning them up here.
2924  *
2925  */
2926 static void sge_timer_tx(struct timer_list *t)
2927 {
2928     struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2929     struct port_info *pi = netdev_priv(qs->netdev);
2930     struct adapter *adap = pi->adapter;
2931     unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2932     unsigned long next_period;
2933 
2934     if (__netif_tx_trylock(qs->tx_q)) {
2935                 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2936                                                      TX_RECLAIM_TIMER_CHUNK);
2937         __netif_tx_unlock(qs->tx_q);
2938     }
2939 
2940     if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2941         tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2942                              TX_RECLAIM_TIMER_CHUNK);
2943         spin_unlock(&qs->txq[TXQ_OFLD].lock);
2944     }
2945 
2946     next_period = TX_RECLAIM_PERIOD >>
2947                       (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2948                       TX_RECLAIM_TIMER_CHUNK);
2949     mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2950 }
2951 
2952 /**
2953  *  sge_timer_rx - perform periodic maintenance of an SGE qset
2954  *  @t: the timer list containing the SGE queue set to maintain
2955  *
2956  *  a) Replenishes Rx queues that have run out due to memory shortage.
2957  *  Normally new Rx buffers are added when existing ones are consumed but
2958  *  when out of memory a queue can become empty.  We try to add only a few
2959  *  buffers here, the queue will be replenished fully as these new buffers
2960  *  are used up if memory shortage has subsided.
2961  *
2962  *  b) Return coalesced response queue credits in case a response queue is
2963  *  starved.
2964  *
2965  */
2966 static void sge_timer_rx(struct timer_list *t)
2967 {
2968     spinlock_t *lock;
2969     struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2970     struct port_info *pi = netdev_priv(qs->netdev);
2971     struct adapter *adap = pi->adapter;
2972     u32 status;
2973 
2974     lock = adap->params.rev > 0 ?
2975            &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2976 
2977     if (!spin_trylock_irq(lock))
2978         goto out;
2979 
2980     if (napi_is_scheduled(&qs->napi))
2981         goto unlock;
2982 
2983     if (adap->params.rev < 4) {
2984         status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2985 
2986         if (status & (1 << qs->rspq.cntxt_id)) {
2987             qs->rspq.starved++;
2988             if (qs->rspq.credits) {
2989                 qs->rspq.credits--;
2990                 refill_rspq(adap, &qs->rspq, 1);
2991                 qs->rspq.restarted++;
2992                 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2993                          1 << qs->rspq.cntxt_id);
2994             }
2995         }
2996     }
2997 
2998     if (qs->fl[0].credits < qs->fl[0].size)
2999         __refill_fl(adap, &qs->fl[0]);
3000     if (qs->fl[1].credits < qs->fl[1].size)
3001         __refill_fl(adap, &qs->fl[1]);
3002 
3003 unlock:
3004     spin_unlock_irq(lock);
3005 out:
3006     mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3007 }
3008 
3009 /**
3010  *  t3_update_qset_coalesce - update coalescing settings for a queue set
3011  *  @qs: the SGE queue set
3012  *  @p: new queue set parameters
3013  *
3014  *  Update the coalescing settings for an SGE queue set.  Nothing is done
3015  *  if the queue set is not initialized yet.
3016  */
3017 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3018 {
3019     qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3020     qs->rspq.polling = p->polling;
3021     qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3022 }
3023 
3024 /**
3025  *  t3_sge_alloc_qset - initialize an SGE queue set
3026  *  @adapter: the adapter
3027  *  @id: the queue set id
3028  *  @nports: how many Ethernet ports will be using this queue set
3029  *  @irq_vec_idx: the IRQ vector index for response queue interrupts
3030  *  @p: configuration parameters for this queue set
3031  *  @ntxq: number of Tx queues for the queue set
3032  *  @dev: net device associated with this queue set
3033  *  @netdevq: net device TX queue associated with this queue set
3034  *
3035  *  Allocate resources and initialize an SGE queue set.  A queue set
3036  *  comprises a response queue, two Rx free-buffer queues, and up to 3
3037  *  Tx queues.  The Tx queues are assigned roles in the order Ethernet
3038  *  queue, offload queue, and control queue.
3039  */
3040 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3041               int irq_vec_idx, const struct qset_params *p,
3042               int ntxq, struct net_device *dev,
3043               struct netdev_queue *netdevq)
3044 {
3045     int i, avail, ret = -ENOMEM;
3046     struct sge_qset *q = &adapter->sge.qs[id];
3047 
3048     init_qset_cntxt(q, id);
3049     timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3050     timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3051 
3052     q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3053                    sizeof(struct rx_desc),
3054                    sizeof(struct rx_sw_desc),
3055                    &q->fl[0].phys_addr, &q->fl[0].sdesc);
3056     if (!q->fl[0].desc)
3057         goto err;
3058 
3059     q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3060                    sizeof(struct rx_desc),
3061                    sizeof(struct rx_sw_desc),
3062                    &q->fl[1].phys_addr, &q->fl[1].sdesc);
3063     if (!q->fl[1].desc)
3064         goto err;
3065 
3066     q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3067                   sizeof(struct rsp_desc), 0,
3068                   &q->rspq.phys_addr, NULL);
3069     if (!q->rspq.desc)
3070         goto err;
3071 
3072     for (i = 0; i < ntxq; ++i) {
3073         /*
3074          * The control queue always uses immediate data so does not
3075          * need to keep track of any sk_buffs.
3076          */
3077         size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3078 
3079         q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3080                         sizeof(struct tx_desc), sz,
3081                         &q->txq[i].phys_addr,
3082                         &q->txq[i].sdesc);
3083         if (!q->txq[i].desc)
3084             goto err;
3085 
3086         q->txq[i].gen = 1;
3087         q->txq[i].size = p->txq_size[i];
3088         spin_lock_init(&q->txq[i].lock);
3089         skb_queue_head_init(&q->txq[i].sendq);
3090     }
3091 
3092     INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq);
3093     INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq);
3094 
3095     q->fl[0].gen = q->fl[1].gen = 1;
3096     q->fl[0].size = p->fl_size;
3097     q->fl[1].size = p->jumbo_size;
3098 
3099     q->rspq.gen = 1;
3100     q->rspq.size = p->rspq_size;
3101     spin_lock_init(&q->rspq.lock);
3102     skb_queue_head_init(&q->rspq.rx_queue);
3103 
3104     q->txq[TXQ_ETH].stop_thres = nports *
3105         flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3106 
3107 #if FL0_PG_CHUNK_SIZE > 0
3108     q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3109 #else
3110     q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3111 #endif
3112 #if FL1_PG_CHUNK_SIZE > 0
3113     q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3114 #else
3115     q->fl[1].buf_size = is_offload(adapter) ?
3116         (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3117         MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3118 #endif
3119 
3120     q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3121     q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3122     q->fl[0].order = FL0_PG_ORDER;
3123     q->fl[1].order = FL1_PG_ORDER;
3124     q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3125     q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3126 
3127     spin_lock_irq(&adapter->sge.reg_lock);
3128 
3129     /* FL threshold comparison uses < */
3130     ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3131                    q->rspq.phys_addr, q->rspq.size,
3132                    q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3133     if (ret)
3134         goto err_unlock;
3135 
3136     for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3137         ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3138                       q->fl[i].phys_addr, q->fl[i].size,
3139                       q->fl[i].buf_size - SGE_PG_RSVD,
3140                       p->cong_thres, 1, 0);
3141         if (ret)
3142             goto err_unlock;
3143     }
3144 
3145     ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3146                  SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3147                  q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3148                  1, 0);
3149     if (ret)
3150         goto err_unlock;
3151 
3152     if (ntxq > 1) {
3153         ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3154                      USE_GTS, SGE_CNTXT_OFLD, id,
3155                      q->txq[TXQ_OFLD].phys_addr,
3156                      q->txq[TXQ_OFLD].size, 0, 1, 0);
3157         if (ret)
3158             goto err_unlock;
3159     }
3160 
3161     if (ntxq > 2) {
3162         ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3163                      SGE_CNTXT_CTRL, id,
3164                      q->txq[TXQ_CTRL].phys_addr,
3165                      q->txq[TXQ_CTRL].size,
3166                      q->txq[TXQ_CTRL].token, 1, 0);
3167         if (ret)
3168             goto err_unlock;
3169     }
3170 
3171     spin_unlock_irq(&adapter->sge.reg_lock);
3172 
3173     q->adap = adapter;
3174     q->netdev = dev;
3175     q->tx_q = netdevq;
3176     t3_update_qset_coalesce(q, p);
3177 
3178     avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3179               GFP_KERNEL | __GFP_COMP);
3180     if (!avail) {
3181         CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3182         ret = -ENOMEM;
3183         goto err;
3184     }
3185     if (avail < q->fl[0].size)
3186         CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3187             avail);
3188 
3189     avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3190               GFP_KERNEL | __GFP_COMP);
3191     if (avail < q->fl[1].size)
3192         CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3193             avail);
3194     refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3195 
3196     t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3197              V_NEWTIMER(q->rspq.holdoff_tmr));
3198 
3199     return 0;
3200 
3201 err_unlock:
3202     spin_unlock_irq(&adapter->sge.reg_lock);
3203 err:
3204     t3_free_qset(adapter, q);
3205     return ret;
3206 }
3207 
3208 /**
3209  *      t3_start_sge_timers - start SGE timer call backs
3210  *      @adap: the adapter
3211  *
3212  *      Starts each SGE queue set's timer call back
3213  */
3214 void t3_start_sge_timers(struct adapter *adap)
3215 {
3216     int i;
3217 
3218     for (i = 0; i < SGE_QSETS; ++i) {
3219         struct sge_qset *q = &adap->sge.qs[i];
3220 
3221         if (q->tx_reclaim_timer.function)
3222             mod_timer(&q->tx_reclaim_timer,
3223                   jiffies + TX_RECLAIM_PERIOD);
3224 
3225         if (q->rx_reclaim_timer.function)
3226             mod_timer(&q->rx_reclaim_timer,
3227                   jiffies + RX_RECLAIM_PERIOD);
3228     }
3229 }
3230 
3231 /**
3232  *  t3_stop_sge_timers - stop SGE timer call backs
3233  *  @adap: the adapter
3234  *
3235  *  Stops each SGE queue set's timer call back
3236  */
3237 void t3_stop_sge_timers(struct adapter *adap)
3238 {
3239     int i;
3240 
3241     for (i = 0; i < SGE_QSETS; ++i) {
3242         struct sge_qset *q = &adap->sge.qs[i];
3243 
3244         if (q->tx_reclaim_timer.function)
3245             del_timer_sync(&q->tx_reclaim_timer);
3246         if (q->rx_reclaim_timer.function)
3247             del_timer_sync(&q->rx_reclaim_timer);
3248     }
3249 }
3250 
3251 /**
3252  *  t3_free_sge_resources - free SGE resources
3253  *  @adap: the adapter
3254  *
3255  *  Frees resources used by the SGE queue sets.
3256  */
3257 void t3_free_sge_resources(struct adapter *adap)
3258 {
3259     int i;
3260 
3261     for (i = 0; i < SGE_QSETS; ++i)
3262         t3_free_qset(adap, &adap->sge.qs[i]);
3263 }
3264 
3265 /**
3266  *  t3_sge_start - enable SGE
3267  *  @adap: the adapter
3268  *
3269  *  Enables the SGE for DMAs.  This is the last step in starting packet
3270  *  transfers.
3271  */
3272 void t3_sge_start(struct adapter *adap)
3273 {
3274     t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3275 }
3276 
3277 /**
3278  *  t3_sge_stop_dma - Disable SGE DMA engine operation
3279  *  @adap: the adapter
3280  *
3281  *  Can be invoked from interrupt context e.g.  error handler.
3282  *
3283  *  Note that this function cannot disable the restart of works as
3284  *  it cannot wait if called from interrupt context, however the
3285  *  works will have no effect since the doorbells are disabled. The
3286  *  driver will call tg3_sge_stop() later from process context, at
3287  *  which time the works will be stopped if they are still running.
3288  */
3289 void t3_sge_stop_dma(struct adapter *adap)
3290 {
3291     t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3292 }
3293 
3294 /**
3295  *  t3_sge_stop - disable SGE operation completly
3296  *  @adap: the adapter
3297  *
3298  *  Called from process context. Disables the DMA engine and any
3299  *  pending queue restart works.
3300  */
3301 void t3_sge_stop(struct adapter *adap)
3302 {
3303     int i;
3304 
3305     t3_sge_stop_dma(adap);
3306 
3307     /* workqueues aren't initialized otherwise */
3308     if (!(adap->flags & FULL_INIT_DONE))
3309         return;
3310     for (i = 0; i < SGE_QSETS; ++i) {
3311         struct sge_qset *qs = &adap->sge.qs[i];
3312 
3313         cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task);
3314         cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task);
3315     }
3316 }
3317 
3318 /**
3319  *  t3_sge_init - initialize SGE
3320  *  @adap: the adapter
3321  *  @p: the SGE parameters
3322  *
3323  *  Performs SGE initialization needed every time after a chip reset.
3324  *  We do not initialize any of the queue sets here, instead the driver
3325  *  top-level must request those individually.  We also do not enable DMA
3326  *  here, that should be done after the queues have been set up.
3327  */
3328 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3329 {
3330     unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3331 
3332     ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3333         F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3334         V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3335         V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3336 #if SGE_NUM_GENBITS == 1
3337     ctrl |= F_EGRGENCTRL;
3338 #endif
3339     if (adap->params.rev > 0) {
3340         if (!(adap->flags & (USING_MSIX | USING_MSI)))
3341             ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3342     }
3343     t3_write_reg(adap, A_SG_CONTROL, ctrl);
3344     t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3345              V_LORCQDRBTHRSH(512));
3346     t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3347     t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3348              V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3349     t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3350              adap->params.rev < T3_REV_C ? 1000 : 500);
3351     t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3352     t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3353     t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3354     t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3355     t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3356 }
3357 
3358 /**
3359  *  t3_sge_prep - one-time SGE initialization
3360  *  @adap: the associated adapter
3361  *  @p: SGE parameters
3362  *
3363  *  Performs one-time initialization of SGE SW state.  Includes determining
3364  *  defaults for the assorted SGE parameters, which admins can change until
3365  *  they are used to initialize the SGE.
3366  */
3367 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3368 {
3369     int i;
3370 
3371     p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3372         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3373 
3374     for (i = 0; i < SGE_QSETS; ++i) {
3375         struct qset_params *q = p->qset + i;
3376 
3377         q->polling = adap->params.rev > 0;
3378         q->coalesce_usecs = 5;
3379         q->rspq_size = 1024;
3380         q->fl_size = 1024;
3381         q->jumbo_size = 512;
3382         q->txq_size[TXQ_ETH] = 1024;
3383         q->txq_size[TXQ_OFLD] = 1024;
3384         q->txq_size[TXQ_CTRL] = 256;
3385         q->cong_thres = 0;
3386     }
3387 
3388     spin_lock_init(&adap->sge.reg_lock);
3389 }