Back to home page

OSCL-LXR

 
 

    


0001 /*
0002  * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
0003  *
0004  * This software is available to you under a choice of one of two
0005  * licenses.  You may choose to be licensed under the terms of the GNU
0006  * General Public License (GPL) Version 2, available from the file
0007  * COPYING in the main directory of this source tree, or the
0008  * OpenIB.org BSD license below:
0009  *
0010  *     Redistribution and use in source and binary forms, with or
0011  *     without modification, are permitted provided that the following
0012  *     conditions are met:
0013  *
0014  *      - Redistributions of source code must retain the above
0015  *        copyright notice, this list of conditions and the following
0016  *        disclaimer.
0017  *
0018  *      - Redistributions in binary form must reproduce the above
0019  *        copyright notice, this list of conditions and the following
0020  *        disclaimer in the documentation and/or other materials
0021  *        provided with the distribution.
0022  *
0023  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0024  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
0025  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0026  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
0027  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
0028  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
0029  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
0030  * SOFTWARE.
0031  */
0032 
0033 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
0034 
0035 #include <linux/list.h>
0036 #include <linux/slab.h>
0037 #include <net/neighbour.h>
0038 #include <linux/notifier.h>
0039 #include <linux/atomic.h>
0040 #include <linux/proc_fs.h>
0041 #include <linux/if_vlan.h>
0042 #include <net/netevent.h>
0043 #include <linux/highmem.h>
0044 #include <linux/vmalloc.h>
0045 #include <linux/export.h>
0046 
0047 #include "common.h"
0048 #include "regs.h"
0049 #include "cxgb3_ioctl.h"
0050 #include "cxgb3_ctl_defs.h"
0051 #include "cxgb3_defs.h"
0052 #include "l2t.h"
0053 #include "firmware_exports.h"
0054 #include "cxgb3_offload.h"
0055 
0056 static LIST_HEAD(client_list);
0057 static LIST_HEAD(ofld_dev_list);
0058 static DEFINE_MUTEX(cxgb3_db_lock);
0059 
0060 static DEFINE_RWLOCK(adapter_list_lock);
0061 static LIST_HEAD(adapter_list);
0062 
0063 static const unsigned int MAX_ATIDS = 64 * 1024;
0064 static const unsigned int ATID_BASE = 0x10000;
0065 
0066 static void cxgb_neigh_update(struct neighbour *neigh);
0067 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new,
0068               struct neighbour *neigh, const void *daddr);
0069 
0070 static inline int offload_activated(struct t3cdev *tdev)
0071 {
0072     const struct adapter *adapter = tdev2adap(tdev);
0073 
0074     return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
0075 }
0076 
0077 /**
0078  *  cxgb3_register_client - register an offload client
0079  *  @client: the client
0080  *
0081  *  Add the client to the client list,
0082  *  and call backs the client for each activated offload device
0083  */
0084 void cxgb3_register_client(struct cxgb3_client *client)
0085 {
0086     struct t3cdev *tdev;
0087 
0088     mutex_lock(&cxgb3_db_lock);
0089     list_add_tail(&client->client_list, &client_list);
0090 
0091     if (client->add) {
0092         list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
0093             if (offload_activated(tdev))
0094                 client->add(tdev);
0095         }
0096     }
0097     mutex_unlock(&cxgb3_db_lock);
0098 }
0099 
0100 EXPORT_SYMBOL(cxgb3_register_client);
0101 
0102 /**
0103  *  cxgb3_unregister_client - unregister an offload client
0104  *  @client: the client
0105  *
0106  *  Remove the client to the client list,
0107  *  and call backs the client for each activated offload device.
0108  */
0109 void cxgb3_unregister_client(struct cxgb3_client *client)
0110 {
0111     struct t3cdev *tdev;
0112 
0113     mutex_lock(&cxgb3_db_lock);
0114     list_del(&client->client_list);
0115 
0116     if (client->remove) {
0117         list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
0118             if (offload_activated(tdev))
0119                 client->remove(tdev);
0120         }
0121     }
0122     mutex_unlock(&cxgb3_db_lock);
0123 }
0124 
0125 EXPORT_SYMBOL(cxgb3_unregister_client);
0126 
0127 /**
0128  *  cxgb3_add_clients - activate registered clients for an offload device
0129  *  @tdev: the offload device
0130  *
0131  *  Call backs all registered clients once a offload device is activated
0132  */
0133 void cxgb3_add_clients(struct t3cdev *tdev)
0134 {
0135     struct cxgb3_client *client;
0136 
0137     mutex_lock(&cxgb3_db_lock);
0138     list_for_each_entry(client, &client_list, client_list) {
0139         if (client->add)
0140             client->add(tdev);
0141     }
0142     mutex_unlock(&cxgb3_db_lock);
0143 }
0144 
0145 /**
0146  *  cxgb3_remove_clients - deactivates registered clients
0147  *                 for an offload device
0148  *  @tdev: the offload device
0149  *
0150  *  Call backs all registered clients once a offload device is deactivated
0151  */
0152 void cxgb3_remove_clients(struct t3cdev *tdev)
0153 {
0154     struct cxgb3_client *client;
0155 
0156     mutex_lock(&cxgb3_db_lock);
0157     list_for_each_entry(client, &client_list, client_list) {
0158         if (client->remove)
0159             client->remove(tdev);
0160     }
0161     mutex_unlock(&cxgb3_db_lock);
0162 }
0163 
0164 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
0165 {
0166     struct cxgb3_client *client;
0167 
0168     mutex_lock(&cxgb3_db_lock);
0169     list_for_each_entry(client, &client_list, client_list) {
0170         if (client->event_handler)
0171             client->event_handler(tdev, event, port);
0172     }
0173     mutex_unlock(&cxgb3_db_lock);
0174 }
0175 
0176 static struct net_device *get_iff_from_mac(struct adapter *adapter,
0177                        const unsigned char *mac,
0178                        unsigned int vlan)
0179 {
0180     int i;
0181 
0182     for_each_port(adapter, i) {
0183         struct net_device *dev = adapter->port[i];
0184 
0185         if (ether_addr_equal(dev->dev_addr, mac)) {
0186             rcu_read_lock();
0187             if (vlan && vlan != VLAN_VID_MASK) {
0188                 dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), vlan);
0189             } else if (netif_is_bond_slave(dev)) {
0190                 struct net_device *upper_dev;
0191 
0192                 while ((upper_dev =
0193                     netdev_master_upper_dev_get_rcu(dev)))
0194                     dev = upper_dev;
0195             }
0196             rcu_read_unlock();
0197             return dev;
0198         }
0199     }
0200     return NULL;
0201 }
0202 
0203 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
0204                   void *data)
0205 {
0206     int i;
0207     int ret = 0;
0208     unsigned int val = 0;
0209     struct ulp_iscsi_info *uiip = data;
0210 
0211     switch (req) {
0212     case ULP_ISCSI_GET_PARAMS:
0213         uiip->pdev = adapter->pdev;
0214         uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
0215         uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
0216         uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
0217 
0218         val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
0219         for (i = 0; i < 4; i++, val >>= 8)
0220             uiip->pgsz_factor[i] = val & 0xFF;
0221 
0222         val = t3_read_reg(adapter, A_TP_PARA_REG7);
0223         uiip->max_txsz =
0224         uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
0225                      (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
0226         /*
0227          * On tx, the iscsi pdu has to be <= tx page size and has to
0228          * fit into the Tx PM FIFO.
0229          */
0230         val = min(adapter->params.tp.tx_pg_size,
0231               t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
0232         uiip->max_txsz = min(val, uiip->max_txsz);
0233 
0234         /* set MaxRxData to 16224 */
0235         val = t3_read_reg(adapter, A_TP_PARA_REG2);
0236         if ((val >> S_MAXRXDATA) != 0x3f60) {
0237             val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
0238             val |= V_MAXRXDATA(0x3f60);
0239             pr_info("%s, iscsi set MaxRxData to 16224 (0x%x)\n",
0240                 adapter->name, val);
0241             t3_write_reg(adapter, A_TP_PARA_REG2, val);
0242         }
0243 
0244         /*
0245          * on rx, the iscsi pdu has to be < rx page size and the
0246          * max rx data length programmed in TP
0247          */
0248         val = min(adapter->params.tp.rx_pg_size,
0249               ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
0250                 S_MAXRXDATA) & M_MAXRXDATA);
0251         uiip->max_rxsz = min(val, uiip->max_rxsz);
0252         break;
0253     case ULP_ISCSI_SET_PARAMS:
0254         t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
0255         /* program the ddp page sizes */
0256         for (i = 0; i < 4; i++)
0257             val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
0258         if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
0259             pr_info("%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u\n",
0260                 adapter->name, val, uiip->pgsz_factor[0],
0261                 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
0262                 uiip->pgsz_factor[3]);
0263             t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
0264         }
0265         break;
0266     default:
0267         ret = -EOPNOTSUPP;
0268     }
0269     return ret;
0270 }
0271 
0272 /* Response queue used for RDMA events. */
0273 #define ASYNC_NOTIF_RSPQ 0
0274 
0275 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
0276 {
0277     int ret = 0;
0278 
0279     switch (req) {
0280     case RDMA_GET_PARAMS: {
0281         struct rdma_info *rdma = data;
0282         struct pci_dev *pdev = adapter->pdev;
0283 
0284         rdma->udbell_physbase = pci_resource_start(pdev, 2);
0285         rdma->udbell_len = pci_resource_len(pdev, 2);
0286         rdma->tpt_base =
0287             t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
0288         rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
0289         rdma->pbl_base =
0290             t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
0291         rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
0292         rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
0293         rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
0294         rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
0295         rdma->pdev = pdev;
0296         break;
0297     }
0298     case RDMA_CQ_OP:{
0299         unsigned long flags;
0300         struct rdma_cq_op *rdma = data;
0301 
0302         /* may be called in any context */
0303         spin_lock_irqsave(&adapter->sge.reg_lock, flags);
0304         ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
0305                     rdma->credits);
0306         spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
0307         break;
0308     }
0309     case RDMA_GET_MEM:{
0310         struct ch_mem_range *t = data;
0311         struct mc7 *mem;
0312 
0313         if ((t->addr & 7) || (t->len & 7))
0314             return -EINVAL;
0315         if (t->mem_id == MEM_CM)
0316             mem = &adapter->cm;
0317         else if (t->mem_id == MEM_PMRX)
0318             mem = &adapter->pmrx;
0319         else if (t->mem_id == MEM_PMTX)
0320             mem = &adapter->pmtx;
0321         else
0322             return -EINVAL;
0323 
0324         ret =
0325             t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
0326                     (u64 *) t->buf);
0327         if (ret)
0328             return ret;
0329         break;
0330     }
0331     case RDMA_CQ_SETUP:{
0332         struct rdma_cq_setup *rdma = data;
0333 
0334         spin_lock_irq(&adapter->sge.reg_lock);
0335         ret =
0336             t3_sge_init_cqcntxt(adapter, rdma->id,
0337                     rdma->base_addr, rdma->size,
0338                     ASYNC_NOTIF_RSPQ,
0339                     rdma->ovfl_mode, rdma->credits,
0340                     rdma->credit_thres);
0341         spin_unlock_irq(&adapter->sge.reg_lock);
0342         break;
0343     }
0344     case RDMA_CQ_DISABLE:
0345         spin_lock_irq(&adapter->sge.reg_lock);
0346         ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
0347         spin_unlock_irq(&adapter->sge.reg_lock);
0348         break;
0349     case RDMA_CTRL_QP_SETUP:{
0350         struct rdma_ctrlqp_setup *rdma = data;
0351 
0352         spin_lock_irq(&adapter->sge.reg_lock);
0353         ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
0354                         SGE_CNTXT_RDMA,
0355                         ASYNC_NOTIF_RSPQ,
0356                         rdma->base_addr, rdma->size,
0357                         FW_RI_TID_START, 1, 0);
0358         spin_unlock_irq(&adapter->sge.reg_lock);
0359         break;
0360     }
0361     case RDMA_GET_MIB: {
0362         spin_lock(&adapter->stats_lock);
0363         t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
0364         spin_unlock(&adapter->stats_lock);
0365         break;
0366     }
0367     default:
0368         ret = -EOPNOTSUPP;
0369     }
0370     return ret;
0371 }
0372 
0373 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
0374 {
0375     struct adapter *adapter = tdev2adap(tdev);
0376     struct tid_range *tid;
0377     struct mtutab *mtup;
0378     struct iff_mac *iffmacp;
0379     struct ddp_params *ddpp;
0380     struct adap_ports *ports;
0381     struct ofld_page_info *rx_page_info;
0382     struct tp_params *tp = &adapter->params.tp;
0383     int i;
0384 
0385     switch (req) {
0386     case GET_MAX_OUTSTANDING_WR:
0387         *(unsigned int *)data = FW_WR_NUM;
0388         break;
0389     case GET_WR_LEN:
0390         *(unsigned int *)data = WR_FLITS;
0391         break;
0392     case GET_TX_MAX_CHUNK:
0393         *(unsigned int *)data = 1 << 20;    /* 1MB */
0394         break;
0395     case GET_TID_RANGE:
0396         tid = data;
0397         tid->num = t3_mc5_size(&adapter->mc5) -
0398             adapter->params.mc5.nroutes -
0399             adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
0400         tid->base = 0;
0401         break;
0402     case GET_STID_RANGE:
0403         tid = data;
0404         tid->num = adapter->params.mc5.nservers;
0405         tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
0406             adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
0407         break;
0408     case GET_L2T_CAPACITY:
0409         *(unsigned int *)data = 2048;
0410         break;
0411     case GET_MTUS:
0412         mtup = data;
0413         mtup->size = NMTUS;
0414         mtup->mtus = adapter->params.mtus;
0415         break;
0416     case GET_IFF_FROM_MAC:
0417         iffmacp = data;
0418         iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
0419                         iffmacp->vlan_tag &
0420                         VLAN_VID_MASK);
0421         break;
0422     case GET_DDP_PARAMS:
0423         ddpp = data;
0424         ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
0425         ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
0426         ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
0427         break;
0428     case GET_PORTS:
0429         ports = data;
0430         ports->nports = adapter->params.nports;
0431         for_each_port(adapter, i)
0432             ports->lldevs[i] = adapter->port[i];
0433         break;
0434     case ULP_ISCSI_GET_PARAMS:
0435     case ULP_ISCSI_SET_PARAMS:
0436         if (!offload_running(adapter))
0437             return -EAGAIN;
0438         return cxgb_ulp_iscsi_ctl(adapter, req, data);
0439     case RDMA_GET_PARAMS:
0440     case RDMA_CQ_OP:
0441     case RDMA_CQ_SETUP:
0442     case RDMA_CQ_DISABLE:
0443     case RDMA_CTRL_QP_SETUP:
0444     case RDMA_GET_MEM:
0445     case RDMA_GET_MIB:
0446         if (!offload_running(adapter))
0447             return -EAGAIN;
0448         return cxgb_rdma_ctl(adapter, req, data);
0449     case GET_RX_PAGE_INFO:
0450         rx_page_info = data;
0451         rx_page_info->page_size = tp->rx_pg_size;
0452         rx_page_info->num = tp->rx_num_pgs;
0453         break;
0454     case GET_ISCSI_IPV4ADDR: {
0455         struct iscsi_ipv4addr *p = data;
0456         struct port_info *pi = netdev_priv(p->dev);
0457         p->ipv4addr = pi->iscsi_ipv4addr;
0458         break;
0459     }
0460     case GET_EMBEDDED_INFO: {
0461         struct ch_embedded_info *e = data;
0462 
0463         spin_lock(&adapter->stats_lock);
0464         t3_get_fw_version(adapter, &e->fw_vers);
0465         t3_get_tp_version(adapter, &e->tp_vers);
0466         spin_unlock(&adapter->stats_lock);
0467         break;
0468     }
0469     default:
0470         return -EOPNOTSUPP;
0471     }
0472     return 0;
0473 }
0474 
0475 /*
0476  * Dummy handler for Rx offload packets in case we get an offload packet before
0477  * proper processing is setup.  This complains and drops the packet as it isn't
0478  * normal to get offload packets at this stage.
0479  */
0480 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
0481                 int n)
0482 {
0483     while (n--)
0484         dev_kfree_skb_any(skbs[n]);
0485     return 0;
0486 }
0487 
0488 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
0489 {
0490 }
0491 
0492 void cxgb3_set_dummy_ops(struct t3cdev *dev)
0493 {
0494     dev->recv = rx_offload_blackhole;
0495     dev->neigh_update = dummy_neigh_update;
0496 }
0497 
0498 /*
0499  * Free an active-open TID.
0500  */
0501 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
0502 {
0503     struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
0504     union active_open_entry *p = atid2entry(t, atid);
0505     void *ctx = p->t3c_tid.ctx;
0506 
0507     spin_lock_bh(&t->atid_lock);
0508     p->next = t->afree;
0509     t->afree = p;
0510     t->atids_in_use--;
0511     spin_unlock_bh(&t->atid_lock);
0512 
0513     return ctx;
0514 }
0515 
0516 EXPORT_SYMBOL(cxgb3_free_atid);
0517 
0518 /*
0519  * Free a server TID and return it to the free pool.
0520  */
0521 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
0522 {
0523     struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
0524     union listen_entry *p = stid2entry(t, stid);
0525 
0526     spin_lock_bh(&t->stid_lock);
0527     p->next = t->sfree;
0528     t->sfree = p;
0529     t->stids_in_use--;
0530     spin_unlock_bh(&t->stid_lock);
0531 }
0532 
0533 EXPORT_SYMBOL(cxgb3_free_stid);
0534 
0535 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
0536               void *ctx, unsigned int tid)
0537 {
0538     struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
0539 
0540     t->tid_tab[tid].client = client;
0541     t->tid_tab[tid].ctx = ctx;
0542     atomic_inc(&t->tids_in_use);
0543 }
0544 
0545 EXPORT_SYMBOL(cxgb3_insert_tid);
0546 
0547 /*
0548  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
0549  */
0550 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
0551 {
0552     struct cpl_tid_release *req;
0553 
0554     skb->priority = CPL_PRIORITY_SETUP;
0555     req = __skb_put(skb, sizeof(*req));
0556     req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
0557     OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
0558 }
0559 
0560 static void t3_process_tid_release_list(struct work_struct *work)
0561 {
0562     struct t3c_data *td = container_of(work, struct t3c_data,
0563                        tid_release_task);
0564     struct sk_buff *skb;
0565     struct t3cdev *tdev = td->dev;
0566 
0567 
0568     spin_lock_bh(&td->tid_release_lock);
0569     while (td->tid_release_list) {
0570         struct t3c_tid_entry *p = td->tid_release_list;
0571 
0572         td->tid_release_list = p->ctx;
0573         spin_unlock_bh(&td->tid_release_lock);
0574 
0575         skb = alloc_skb(sizeof(struct cpl_tid_release),
0576                 GFP_KERNEL);
0577         if (!skb)
0578             skb = td->nofail_skb;
0579         if (!skb) {
0580             spin_lock_bh(&td->tid_release_lock);
0581             p->ctx = (void *)td->tid_release_list;
0582             td->tid_release_list = p;
0583             break;
0584         }
0585         mk_tid_release(skb, p - td->tid_maps.tid_tab);
0586         cxgb3_ofld_send(tdev, skb);
0587         p->ctx = NULL;
0588         if (skb == td->nofail_skb)
0589             td->nofail_skb =
0590                 alloc_skb(sizeof(struct cpl_tid_release),
0591                     GFP_KERNEL);
0592         spin_lock_bh(&td->tid_release_lock);
0593     }
0594     td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
0595     spin_unlock_bh(&td->tid_release_lock);
0596 
0597     if (!td->nofail_skb)
0598         td->nofail_skb =
0599             alloc_skb(sizeof(struct cpl_tid_release),
0600                 GFP_KERNEL);
0601 }
0602 
0603 /* use ctx as a next pointer in the tid release list */
0604 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
0605 {
0606     struct t3c_data *td = T3C_DATA(tdev);
0607     struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
0608 
0609     spin_lock_bh(&td->tid_release_lock);
0610     p->ctx = (void *)td->tid_release_list;
0611     p->client = NULL;
0612     td->tid_release_list = p;
0613     if (!p->ctx || td->release_list_incomplete)
0614         schedule_work(&td->tid_release_task);
0615     spin_unlock_bh(&td->tid_release_lock);
0616 }
0617 
0618 EXPORT_SYMBOL(cxgb3_queue_tid_release);
0619 
0620 /*
0621  * Remove a tid from the TID table.  A client may defer processing its last
0622  * CPL message if it is locked at the time it arrives, and while the message
0623  * sits in the client's backlog the TID may be reused for another connection.
0624  * To handle this we atomically switch the TID association if it still points
0625  * to the original client context.
0626  */
0627 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
0628 {
0629     struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
0630 
0631     BUG_ON(tid >= t->ntids);
0632     if (tdev->type == T3A)
0633         (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
0634     else {
0635         struct sk_buff *skb;
0636 
0637         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
0638         if (likely(skb)) {
0639             mk_tid_release(skb, tid);
0640             cxgb3_ofld_send(tdev, skb);
0641             t->tid_tab[tid].ctx = NULL;
0642         } else
0643             cxgb3_queue_tid_release(tdev, tid);
0644     }
0645     atomic_dec(&t->tids_in_use);
0646 }
0647 
0648 EXPORT_SYMBOL(cxgb3_remove_tid);
0649 
0650 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
0651              void *ctx)
0652 {
0653     int atid = -1;
0654     struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
0655 
0656     spin_lock_bh(&t->atid_lock);
0657     if (t->afree &&
0658         t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
0659         t->ntids) {
0660         union active_open_entry *p = t->afree;
0661 
0662         atid = (p - t->atid_tab) + t->atid_base;
0663         t->afree = p->next;
0664         p->t3c_tid.ctx = ctx;
0665         p->t3c_tid.client = client;
0666         t->atids_in_use++;
0667     }
0668     spin_unlock_bh(&t->atid_lock);
0669     return atid;
0670 }
0671 
0672 EXPORT_SYMBOL(cxgb3_alloc_atid);
0673 
0674 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
0675              void *ctx)
0676 {
0677     int stid = -1;
0678     struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
0679 
0680     spin_lock_bh(&t->stid_lock);
0681     if (t->sfree) {
0682         union listen_entry *p = t->sfree;
0683 
0684         stid = (p - t->stid_tab) + t->stid_base;
0685         t->sfree = p->next;
0686         p->t3c_tid.ctx = ctx;
0687         p->t3c_tid.client = client;
0688         t->stids_in_use++;
0689     }
0690     spin_unlock_bh(&t->stid_lock);
0691     return stid;
0692 }
0693 
0694 EXPORT_SYMBOL(cxgb3_alloc_stid);
0695 
0696 /* Get the t3cdev associated with a net_device */
0697 struct t3cdev *dev2t3cdev(struct net_device *dev)
0698 {
0699     const struct port_info *pi = netdev_priv(dev);
0700 
0701     return (struct t3cdev *)pi->adapter;
0702 }
0703 
0704 EXPORT_SYMBOL(dev2t3cdev);
0705 
0706 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
0707 {
0708     struct cpl_smt_write_rpl *rpl = cplhdr(skb);
0709 
0710     if (rpl->status != CPL_ERR_NONE)
0711         pr_err("Unexpected SMT_WRITE_RPL status %u for entry %u\n",
0712                rpl->status, GET_TID(rpl));
0713 
0714     return CPL_RET_BUF_DONE;
0715 }
0716 
0717 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
0718 {
0719     struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
0720 
0721     if (rpl->status != CPL_ERR_NONE)
0722         pr_err("Unexpected L2T_WRITE_RPL status %u for entry %u\n",
0723                rpl->status, GET_TID(rpl));
0724 
0725     return CPL_RET_BUF_DONE;
0726 }
0727 
0728 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
0729 {
0730     struct cpl_rte_write_rpl *rpl = cplhdr(skb);
0731 
0732     if (rpl->status != CPL_ERR_NONE)
0733         pr_err("Unexpected RTE_WRITE_RPL status %u for entry %u\n",
0734                rpl->status, GET_TID(rpl));
0735 
0736     return CPL_RET_BUF_DONE;
0737 }
0738 
0739 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
0740 {
0741     struct cpl_act_open_rpl *rpl = cplhdr(skb);
0742     unsigned int atid = G_TID(ntohl(rpl->atid));
0743     struct t3c_tid_entry *t3c_tid;
0744 
0745     t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
0746     if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
0747         t3c_tid->client->handlers &&
0748         t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
0749         return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
0750                                     t3c_tid->
0751                                     ctx);
0752     } else {
0753         pr_err("%s: received clientless CPL command 0x%x\n",
0754                dev->name, CPL_ACT_OPEN_RPL);
0755         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
0756     }
0757 }
0758 
0759 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
0760 {
0761     union opcode_tid *p = cplhdr(skb);
0762     unsigned int stid = G_TID(ntohl(p->opcode_tid));
0763     struct t3c_tid_entry *t3c_tid;
0764 
0765     t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
0766     if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
0767         t3c_tid->client->handlers[p->opcode]) {
0768         return t3c_tid->client->handlers[p->opcode] (dev, skb,
0769                                  t3c_tid->ctx);
0770     } else {
0771         pr_err("%s: received clientless CPL command 0x%x\n",
0772                dev->name, p->opcode);
0773         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
0774     }
0775 }
0776 
0777 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
0778 {
0779     union opcode_tid *p = cplhdr(skb);
0780     unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
0781     struct t3c_tid_entry *t3c_tid;
0782 
0783     t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
0784     if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
0785         t3c_tid->client->handlers[p->opcode]) {
0786         return t3c_tid->client->handlers[p->opcode]
0787             (dev, skb, t3c_tid->ctx);
0788     } else {
0789         pr_err("%s: received clientless CPL command 0x%x\n",
0790                dev->name, p->opcode);
0791         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
0792     }
0793 }
0794 
0795 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
0796 {
0797     struct cpl_pass_accept_req *req = cplhdr(skb);
0798     unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
0799     struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
0800     struct t3c_tid_entry *t3c_tid;
0801     unsigned int tid = GET_TID(req);
0802 
0803     if (unlikely(tid >= t->ntids)) {
0804         printk("%s: passive open TID %u too large\n",
0805                dev->name, tid);
0806         t3_fatal_err(tdev2adap(dev));
0807         return CPL_RET_BUF_DONE;
0808     }
0809 
0810     t3c_tid = lookup_stid(t, stid);
0811     if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
0812         t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
0813         return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
0814             (dev, skb, t3c_tid->ctx);
0815     } else {
0816         pr_err("%s: received clientless CPL command 0x%x\n",
0817                dev->name, CPL_PASS_ACCEPT_REQ);
0818         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
0819     }
0820 }
0821 
0822 /*
0823  * Returns an sk_buff for a reply CPL message of size len.  If the input
0824  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
0825  * is allocated.  The input skb must be of size at least len.  Note that this
0826  * operation does not destroy the original skb data even if it decides to reuse
0827  * the buffer.
0828  */
0829 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
0830                            gfp_t gfp)
0831 {
0832     if (likely(!skb_cloned(skb))) {
0833         BUG_ON(skb->len < len);
0834         __skb_trim(skb, len);
0835         skb_get(skb);
0836     } else {
0837         skb = alloc_skb(len, gfp);
0838         if (skb)
0839             __skb_put(skb, len);
0840     }
0841     return skb;
0842 }
0843 
0844 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
0845 {
0846     union opcode_tid *p = cplhdr(skb);
0847     unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
0848     struct t3c_tid_entry *t3c_tid;
0849 
0850     t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
0851     if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
0852         t3c_tid->client->handlers[p->opcode]) {
0853         return t3c_tid->client->handlers[p->opcode]
0854             (dev, skb, t3c_tid->ctx);
0855     } else {
0856         struct cpl_abort_req_rss *req = cplhdr(skb);
0857         struct cpl_abort_rpl *rpl;
0858         struct sk_buff *reply_skb;
0859         unsigned int tid = GET_TID(req);
0860         u8 cmd = req->status;
0861 
0862         if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
0863             req->status == CPL_ERR_PERSIST_NEG_ADVICE)
0864             goto out;
0865 
0866         reply_skb = cxgb3_get_cpl_reply_skb(skb,
0867                             sizeof(struct
0868                                cpl_abort_rpl),
0869                             GFP_ATOMIC);
0870 
0871         if (!reply_skb) {
0872             printk("do_abort_req_rss: couldn't get skb!\n");
0873             goto out;
0874         }
0875         reply_skb->priority = CPL_PRIORITY_DATA;
0876         __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
0877         rpl = cplhdr(reply_skb);
0878         rpl->wr.wr_hi =
0879             htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
0880         rpl->wr.wr_lo = htonl(V_WR_TID(tid));
0881         OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
0882         rpl->cmd = cmd;
0883         cxgb3_ofld_send(dev, reply_skb);
0884 out:
0885         return CPL_RET_BUF_DONE;
0886     }
0887 }
0888 
0889 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
0890 {
0891     struct cpl_act_establish *req = cplhdr(skb);
0892     unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
0893     struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
0894     struct t3c_tid_entry *t3c_tid;
0895     unsigned int tid = GET_TID(req);
0896 
0897     if (unlikely(tid >= t->ntids)) {
0898         printk("%s: active establish TID %u too large\n",
0899                dev->name, tid);
0900         t3_fatal_err(tdev2adap(dev));
0901         return CPL_RET_BUF_DONE;
0902     }
0903 
0904     t3c_tid = lookup_atid(t, atid);
0905     if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
0906         t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
0907         return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
0908             (dev, skb, t3c_tid->ctx);
0909     } else {
0910         pr_err("%s: received clientless CPL command 0x%x\n",
0911                dev->name, CPL_ACT_ESTABLISH);
0912         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
0913     }
0914 }
0915 
0916 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
0917 {
0918     struct cpl_trace_pkt *p = cplhdr(skb);
0919 
0920     skb->protocol = htons(0xffff);
0921     skb->dev = dev->lldev;
0922     skb_pull(skb, sizeof(*p));
0923     skb_reset_mac_header(skb);
0924     netif_receive_skb(skb);
0925     return 0;
0926 }
0927 
0928 /*
0929  * That skb would better have come from process_responses() where we abuse
0930  * ->priority and ->csum to carry our data.  NB: if we get to per-arch
0931  * ->csum, the things might get really interesting here.
0932  */
0933 
0934 static inline u32 get_hwtid(struct sk_buff *skb)
0935 {
0936     return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
0937 }
0938 
0939 static inline u32 get_opcode(struct sk_buff *skb)
0940 {
0941     return G_OPCODE(ntohl((__force __be32)skb->csum));
0942 }
0943 
0944 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
0945 {
0946     unsigned int hwtid = get_hwtid(skb);
0947     unsigned int opcode = get_opcode(skb);
0948     struct t3c_tid_entry *t3c_tid;
0949 
0950     t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
0951     if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
0952         t3c_tid->client->handlers[opcode]) {
0953         return t3c_tid->client->handlers[opcode] (dev, skb,
0954                               t3c_tid->ctx);
0955     } else {
0956         pr_err("%s: received clientless CPL command 0x%x\n",
0957                dev->name, opcode);
0958         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
0959     }
0960 }
0961 
0962 static int nb_callback(struct notifier_block *self, unsigned long event,
0963                void *ctx)
0964 {
0965     switch (event) {
0966     case (NETEVENT_NEIGH_UPDATE):{
0967         cxgb_neigh_update((struct neighbour *)ctx);
0968         break;
0969     }
0970     case (NETEVENT_REDIRECT):{
0971         struct netevent_redirect *nr = ctx;
0972         cxgb_redirect(nr->old, nr->new, nr->neigh,
0973                   nr->daddr);
0974         cxgb_neigh_update(nr->neigh);
0975         break;
0976     }
0977     default:
0978         break;
0979     }
0980     return 0;
0981 }
0982 
0983 static struct notifier_block nb = {
0984     .notifier_call = nb_callback
0985 };
0986 
0987 /*
0988  * Process a received packet with an unknown/unexpected CPL opcode.
0989  */
0990 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
0991 {
0992     pr_err("%s: received bad CPL command 0x%x\n", dev->name, *skb->data);
0993     return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
0994 }
0995 
0996 /*
0997  * Handlers for each CPL opcode
0998  */
0999 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
1000 
1001 /*
1002  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
1003  * to unregister an existing handler.
1004  */
1005 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1006 {
1007     if (opcode < NUM_CPL_CMDS)
1008         cpl_handlers[opcode] = h ? h : do_bad_cpl;
1009     else
1010         pr_err("T3C: handler registration for opcode %x failed\n",
1011                opcode);
1012 }
1013 
1014 EXPORT_SYMBOL(t3_register_cpl_handler);
1015 
1016 /*
1017  * T3CDEV's receive method.
1018  */
1019 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1020 {
1021     while (n--) {
1022         struct sk_buff *skb = *skbs++;
1023         unsigned int opcode = get_opcode(skb);
1024         int ret = cpl_handlers[opcode] (dev, skb);
1025 
1026 #if VALIDATE_TID
1027         if (ret & CPL_RET_UNKNOWN_TID) {
1028             union opcode_tid *p = cplhdr(skb);
1029 
1030             pr_err("%s: CPL message (opcode %u) had unknown TID %u\n",
1031                    dev->name, opcode, G_TID(ntohl(p->opcode_tid)));
1032         }
1033 #endif
1034         if (ret & CPL_RET_BUF_DONE)
1035             kfree_skb(skb);
1036     }
1037     return 0;
1038 }
1039 
1040 /*
1041  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1042  */
1043 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1044 {
1045     int r;
1046 
1047     local_bh_disable();
1048     r = dev->send(dev, skb);
1049     local_bh_enable();
1050     return r;
1051 }
1052 
1053 EXPORT_SYMBOL(cxgb3_ofld_send);
1054 
1055 static int is_offloading(struct net_device *dev)
1056 {
1057     struct adapter *adapter;
1058     int i;
1059 
1060     read_lock_bh(&adapter_list_lock);
1061     list_for_each_entry(adapter, &adapter_list, adapter_list) {
1062         for_each_port(adapter, i) {
1063             if (dev == adapter->port[i]) {
1064                 read_unlock_bh(&adapter_list_lock);
1065                 return 1;
1066             }
1067         }
1068     }
1069     read_unlock_bh(&adapter_list_lock);
1070     return 0;
1071 }
1072 
1073 static void cxgb_neigh_update(struct neighbour *neigh)
1074 {
1075     struct net_device *dev;
1076 
1077     if (!neigh)
1078         return;
1079     dev = neigh->dev;
1080     if (dev && (is_offloading(dev))) {
1081         struct t3cdev *tdev = dev2t3cdev(dev);
1082 
1083         BUG_ON(!tdev);
1084         t3_l2t_update(tdev, neigh);
1085     }
1086 }
1087 
1088 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1089 {
1090     struct sk_buff *skb;
1091     struct cpl_set_tcb_field *req;
1092 
1093     skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1094     if (!skb) {
1095         pr_err("%s: cannot allocate skb!\n", __func__);
1096         return;
1097     }
1098     skb->priority = CPL_PRIORITY_CONTROL;
1099     req = skb_put(skb, sizeof(*req));
1100     req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1101     OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1102     req->reply = 0;
1103     req->cpu_idx = 0;
1104     req->word = htons(W_TCB_L2T_IX);
1105     req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1106     req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1107     tdev->send(tdev, skb);
1108 }
1109 
1110 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new,
1111               struct neighbour *neigh,
1112               const void *daddr)
1113 {
1114     struct net_device *dev;
1115     struct tid_info *ti;
1116     struct t3cdev *tdev;
1117     u32 tid;
1118     int update_tcb;
1119     struct l2t_entry *e;
1120     struct t3c_tid_entry *te;
1121 
1122     dev = neigh->dev;
1123 
1124     if (!is_offloading(dev))
1125         return;
1126     tdev = dev2t3cdev(dev);
1127     BUG_ON(!tdev);
1128 
1129     /* Add new L2T entry */
1130     e = t3_l2t_get(tdev, new, dev, daddr);
1131     if (!e) {
1132         pr_err("%s: couldn't allocate new l2t entry!\n", __func__);
1133         return;
1134     }
1135 
1136     /* Walk tid table and notify clients of dst change. */
1137     ti = &(T3C_DATA(tdev))->tid_maps;
1138     for (tid = 0; tid < ti->ntids; tid++) {
1139         te = lookup_tid(ti, tid);
1140         BUG_ON(!te);
1141         if (te && te->ctx && te->client && te->client->redirect) {
1142             update_tcb = te->client->redirect(te->ctx, old, new, e);
1143             if (update_tcb) {
1144                 rcu_read_lock();
1145                 l2t_hold(L2DATA(tdev), e);
1146                 rcu_read_unlock();
1147                 set_l2t_ix(tdev, tid, e);
1148             }
1149         }
1150     }
1151     l2t_release(tdev, e);
1152 }
1153 
1154 /*
1155  * Allocate and initialize the TID tables.  Returns 0 on success.
1156  */
1157 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1158              unsigned int natids, unsigned int nstids,
1159              unsigned int atid_base, unsigned int stid_base)
1160 {
1161     unsigned long size = ntids * sizeof(*t->tid_tab) +
1162         natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1163 
1164     t->tid_tab = kvzalloc(size, GFP_KERNEL);
1165     if (!t->tid_tab)
1166         return -ENOMEM;
1167 
1168     t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1169     t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1170     t->ntids = ntids;
1171     t->nstids = nstids;
1172     t->stid_base = stid_base;
1173     t->sfree = NULL;
1174     t->natids = natids;
1175     t->atid_base = atid_base;
1176     t->afree = NULL;
1177     t->stids_in_use = t->atids_in_use = 0;
1178     atomic_set(&t->tids_in_use, 0);
1179     spin_lock_init(&t->stid_lock);
1180     spin_lock_init(&t->atid_lock);
1181 
1182     /*
1183      * Setup the free lists for stid_tab and atid_tab.
1184      */
1185     if (nstids) {
1186         while (--nstids)
1187             t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1188         t->sfree = t->stid_tab;
1189     }
1190     if (natids) {
1191         while (--natids)
1192             t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1193         t->afree = t->atid_tab;
1194     }
1195     return 0;
1196 }
1197 
1198 static void free_tid_maps(struct tid_info *t)
1199 {
1200     kvfree(t->tid_tab);
1201 }
1202 
1203 static inline void add_adapter(struct adapter *adap)
1204 {
1205     write_lock_bh(&adapter_list_lock);
1206     list_add_tail(&adap->adapter_list, &adapter_list);
1207     write_unlock_bh(&adapter_list_lock);
1208 }
1209 
1210 static inline void remove_adapter(struct adapter *adap)
1211 {
1212     write_lock_bh(&adapter_list_lock);
1213     list_del(&adap->adapter_list);
1214     write_unlock_bh(&adapter_list_lock);
1215 }
1216 
1217 int cxgb3_offload_activate(struct adapter *adapter)
1218 {
1219     struct t3cdev *dev = &adapter->tdev;
1220     int natids, err;
1221     struct t3c_data *t;
1222     struct tid_range stid_range, tid_range;
1223     struct mtutab mtutab;
1224     unsigned int l2t_capacity;
1225     struct l2t_data *l2td;
1226 
1227     t = kzalloc(sizeof(*t), GFP_KERNEL);
1228     if (!t)
1229         return -ENOMEM;
1230 
1231     err = -EOPNOTSUPP;
1232     if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1233         dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1234         dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1235         dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1236         dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1237         dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1238         goto out_free;
1239 
1240     err = -ENOMEM;
1241     l2td = t3_init_l2t(l2t_capacity);
1242     if (!l2td)
1243         goto out_free;
1244 
1245     natids = min(tid_range.num / 2, MAX_ATIDS);
1246     err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1247                 stid_range.num, ATID_BASE, stid_range.base);
1248     if (err)
1249         goto out_free_l2t;
1250 
1251     t->mtus = mtutab.mtus;
1252     t->nmtus = mtutab.size;
1253 
1254     INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1255     spin_lock_init(&t->tid_release_lock);
1256     INIT_LIST_HEAD(&t->list_node);
1257     t->dev = dev;
1258 
1259     RCU_INIT_POINTER(dev->l2opt, l2td);
1260     T3C_DATA(dev) = t;
1261     dev->recv = process_rx;
1262     dev->neigh_update = t3_l2t_update;
1263 
1264     /* Register netevent handler once */
1265     if (list_empty(&adapter_list))
1266         register_netevent_notifier(&nb);
1267 
1268     t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1269     t->release_list_incomplete = 0;
1270 
1271     add_adapter(adapter);
1272     return 0;
1273 
1274 out_free_l2t:
1275     kvfree(l2td);
1276 out_free:
1277     kfree(t);
1278     return err;
1279 }
1280 
1281 static void clean_l2_data(struct rcu_head *head)
1282 {
1283     struct l2t_data *d = container_of(head, struct l2t_data, rcu_head);
1284     kvfree(d);
1285 }
1286 
1287 
1288 void cxgb3_offload_deactivate(struct adapter *adapter)
1289 {
1290     struct t3cdev *tdev = &adapter->tdev;
1291     struct t3c_data *t = T3C_DATA(tdev);
1292     struct l2t_data *d;
1293 
1294     remove_adapter(adapter);
1295     if (list_empty(&adapter_list))
1296         unregister_netevent_notifier(&nb);
1297 
1298     free_tid_maps(&t->tid_maps);
1299     T3C_DATA(tdev) = NULL;
1300     rcu_read_lock();
1301     d = L2DATA(tdev);
1302     rcu_read_unlock();
1303     RCU_INIT_POINTER(tdev->l2opt, NULL);
1304     call_rcu(&d->rcu_head, clean_l2_data);
1305     kfree_skb(t->nofail_skb);
1306     kfree(t);
1307 }
1308 
1309 static inline void register_tdev(struct t3cdev *tdev)
1310 {
1311     static int unit;
1312 
1313     mutex_lock(&cxgb3_db_lock);
1314     snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1315     list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1316     mutex_unlock(&cxgb3_db_lock);
1317 }
1318 
1319 static inline void unregister_tdev(struct t3cdev *tdev)
1320 {
1321     mutex_lock(&cxgb3_db_lock);
1322     list_del(&tdev->ofld_dev_list);
1323     mutex_unlock(&cxgb3_db_lock);
1324 }
1325 
1326 static inline int adap2type(struct adapter *adapter)
1327 {
1328     int type = 0;
1329 
1330     switch (adapter->params.rev) {
1331     case T3_REV_A:
1332         type = T3A;
1333         break;
1334     case T3_REV_B:
1335     case T3_REV_B2:
1336         type = T3B;
1337         break;
1338     case T3_REV_C:
1339         type = T3C;
1340         break;
1341     }
1342     return type;
1343 }
1344 
1345 void cxgb3_adapter_ofld(struct adapter *adapter)
1346 {
1347     struct t3cdev *tdev = &adapter->tdev;
1348 
1349     INIT_LIST_HEAD(&tdev->ofld_dev_list);
1350 
1351     cxgb3_set_dummy_ops(tdev);
1352     tdev->send = t3_offload_tx;
1353     tdev->ctl = cxgb_offload_ctl;
1354     tdev->type = adap2type(adapter);
1355 
1356     register_tdev(tdev);
1357 }
1358 
1359 void cxgb3_adapter_unofld(struct adapter *adapter)
1360 {
1361     struct t3cdev *tdev = &adapter->tdev;
1362 
1363     tdev->recv = NULL;
1364     tdev->neigh_update = NULL;
1365 
1366     unregister_tdev(tdev);
1367 }
1368 
1369 void __init cxgb3_offload_init(void)
1370 {
1371     int i;
1372 
1373     for (i = 0; i < NUM_CPL_CMDS; ++i)
1374         cpl_handlers[i] = do_bad_cpl;
1375 
1376     t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1377     t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1378     t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1379     t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1380     t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1381     t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1382     t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1383     t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1384     t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1385     t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1386     t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1387     t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1388     t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1389     t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1390     t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1391     t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1392     t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1393     t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1394     t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1395     t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1396     t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1397     t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1398     t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1399     t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1400     t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1401     t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1402 }