Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * Copyright (C) 2015 Cavium, Inc.
0004  */
0005 
0006 #include <linux/pci.h>
0007 #include <linux/netdevice.h>
0008 #include <linux/ip.h>
0009 #include <linux/etherdevice.h>
0010 #include <linux/iommu.h>
0011 #include <net/ip.h>
0012 #include <net/tso.h>
0013 #include <uapi/linux/bpf.h>
0014 
0015 #include "nic_reg.h"
0016 #include "nic.h"
0017 #include "q_struct.h"
0018 #include "nicvf_queues.h"
0019 
0020 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
0021                            int size, u64 data);
0022 static void nicvf_get_page(struct nicvf *nic)
0023 {
0024     if (!nic->rb_pageref || !nic->rb_page)
0025         return;
0026 
0027     page_ref_add(nic->rb_page, nic->rb_pageref);
0028     nic->rb_pageref = 0;
0029 }
0030 
0031 /* Poll a register for a specific value */
0032 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
0033               u64 reg, int bit_pos, int bits, int val)
0034 {
0035     u64 bit_mask;
0036     u64 reg_val;
0037     int timeout = 10;
0038 
0039     bit_mask = (1ULL << bits) - 1;
0040     bit_mask = (bit_mask << bit_pos);
0041 
0042     while (timeout) {
0043         reg_val = nicvf_queue_reg_read(nic, reg, qidx);
0044         if (((reg_val & bit_mask) >> bit_pos) == val)
0045             return 0;
0046         usleep_range(1000, 2000);
0047         timeout--;
0048     }
0049     netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
0050     return 1;
0051 }
0052 
0053 /* Allocate memory for a queue's descriptors */
0054 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
0055                   int q_len, int desc_size, int align_bytes)
0056 {
0057     dmem->q_len = q_len;
0058     dmem->size = (desc_size * q_len) + align_bytes;
0059     /* Save address, need it while freeing */
0060     dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size,
0061                         &dmem->dma, GFP_KERNEL);
0062     if (!dmem->unalign_base)
0063         return -ENOMEM;
0064 
0065     /* Align memory address for 'align_bytes' */
0066     dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
0067     dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
0068     return 0;
0069 }
0070 
0071 /* Free queue's descriptor memory */
0072 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
0073 {
0074     if (!dmem)
0075         return;
0076 
0077     dma_free_coherent(&nic->pdev->dev, dmem->size,
0078               dmem->unalign_base, dmem->dma);
0079     dmem->unalign_base = NULL;
0080     dmem->base = NULL;
0081 }
0082 
0083 #define XDP_PAGE_REFCNT_REFILL 256
0084 
0085 /* Allocate a new page or recycle one if possible
0086  *
0087  * We cannot optimize dma mapping here, since
0088  * 1. It's only one RBDR ring for 8 Rx queues.
0089  * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed
0090  *    and not idx into RBDR ring, so can't refer to saved info.
0091  * 3. There are multiple receive buffers per page
0092  */
0093 static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic,
0094                            struct rbdr *rbdr, gfp_t gfp)
0095 {
0096     int ref_count;
0097     struct page *page = NULL;
0098     struct pgcache *pgcache, *next;
0099 
0100     /* Check if page is already allocated */
0101     pgcache = &rbdr->pgcache[rbdr->pgidx];
0102     page = pgcache->page;
0103     /* Check if page can be recycled */
0104     if (page) {
0105         ref_count = page_ref_count(page);
0106         /* This page can be recycled if internal ref_count and page's
0107          * ref_count are equal, indicating that the page has been used
0108          * once for packet transmission. For non-XDP mode, internal
0109          * ref_count is always '1'.
0110          */
0111         if (rbdr->is_xdp) {
0112             if (ref_count == pgcache->ref_count)
0113                 pgcache->ref_count--;
0114             else
0115                 page = NULL;
0116         } else if (ref_count != 1) {
0117             page = NULL;
0118         }
0119     }
0120 
0121     if (!page) {
0122         page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0);
0123         if (!page)
0124             return NULL;
0125 
0126         this_cpu_inc(nic->pnicvf->drv_stats->page_alloc);
0127 
0128         /* Check for space */
0129         if (rbdr->pgalloc >= rbdr->pgcnt) {
0130             /* Page can still be used */
0131             nic->rb_page = page;
0132             return NULL;
0133         }
0134 
0135         /* Save the page in page cache */
0136         pgcache->page = page;
0137         pgcache->dma_addr = 0;
0138         pgcache->ref_count = 0;
0139         rbdr->pgalloc++;
0140     }
0141 
0142     /* Take additional page references for recycling */
0143     if (rbdr->is_xdp) {
0144         /* Since there is single RBDR (i.e single core doing
0145          * page recycling) per 8 Rx queues, in XDP mode adjusting
0146          * page references atomically is the biggest bottleneck, so
0147          * take bunch of references at a time.
0148          *
0149          * So here, below reference counts defer by '1'.
0150          */
0151         if (!pgcache->ref_count) {
0152             pgcache->ref_count = XDP_PAGE_REFCNT_REFILL;
0153             page_ref_add(page, XDP_PAGE_REFCNT_REFILL);
0154         }
0155     } else {
0156         /* In non-XDP case, single 64K page is divided across multiple
0157          * receive buffers, so cost of recycling is less anyway.
0158          * So we can do with just one extra reference.
0159          */
0160         page_ref_add(page, 1);
0161     }
0162 
0163     rbdr->pgidx++;
0164     rbdr->pgidx &= (rbdr->pgcnt - 1);
0165 
0166     /* Prefetch refcount of next page in page cache */
0167     next = &rbdr->pgcache[rbdr->pgidx];
0168     page = next->page;
0169     if (page)
0170         prefetch(&page->_refcount);
0171 
0172     return pgcache;
0173 }
0174 
0175 /* Allocate buffer for packet reception */
0176 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
0177                      gfp_t gfp, u32 buf_len, u64 *rbuf)
0178 {
0179     struct pgcache *pgcache = NULL;
0180 
0181     /* Check if request can be accomodated in previous allocated page.
0182      * But in XDP mode only one buffer per page is permitted.
0183      */
0184     if (!rbdr->is_xdp && nic->rb_page &&
0185         ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) {
0186         nic->rb_pageref++;
0187         goto ret;
0188     }
0189 
0190     nicvf_get_page(nic);
0191     nic->rb_page = NULL;
0192 
0193     /* Get new page, either recycled or new one */
0194     pgcache = nicvf_alloc_page(nic, rbdr, gfp);
0195     if (!pgcache && !nic->rb_page) {
0196         this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
0197         return -ENOMEM;
0198     }
0199 
0200     nic->rb_page_offset = 0;
0201 
0202     /* Reserve space for header modifications by BPF program */
0203     if (rbdr->is_xdp)
0204         buf_len += XDP_PACKET_HEADROOM;
0205 
0206     /* Check if it's recycled */
0207     if (pgcache)
0208         nic->rb_page = pgcache->page;
0209 ret:
0210     if (rbdr->is_xdp && pgcache && pgcache->dma_addr) {
0211         *rbuf = pgcache->dma_addr;
0212     } else {
0213         /* HW will ensure data coherency, CPU sync not required */
0214         *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
0215                         nic->rb_page_offset, buf_len,
0216                         DMA_FROM_DEVICE,
0217                         DMA_ATTR_SKIP_CPU_SYNC);
0218         if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
0219             if (!nic->rb_page_offset)
0220                 __free_pages(nic->rb_page, 0);
0221             nic->rb_page = NULL;
0222             return -ENOMEM;
0223         }
0224         if (pgcache)
0225             pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM;
0226         nic->rb_page_offset += buf_len;
0227     }
0228 
0229     return 0;
0230 }
0231 
0232 /* Build skb around receive buffer */
0233 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
0234                        u64 rb_ptr, int len)
0235 {
0236     void *data;
0237     struct sk_buff *skb;
0238 
0239     data = phys_to_virt(rb_ptr);
0240 
0241     /* Now build an skb to give to stack */
0242     skb = build_skb(data, RCV_FRAG_LEN);
0243     if (!skb) {
0244         put_page(virt_to_page(data));
0245         return NULL;
0246     }
0247 
0248     prefetch(skb->data);
0249     return skb;
0250 }
0251 
0252 /* Allocate RBDR ring and populate receive buffers */
0253 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
0254                 int ring_len, int buf_size)
0255 {
0256     int idx;
0257     u64 rbuf;
0258     struct rbdr_entry_t *desc;
0259     int err;
0260 
0261     err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
0262                      sizeof(struct rbdr_entry_t),
0263                      NICVF_RCV_BUF_ALIGN_BYTES);
0264     if (err)
0265         return err;
0266 
0267     rbdr->desc = rbdr->dmem.base;
0268     /* Buffer size has to be in multiples of 128 bytes */
0269     rbdr->dma_size = buf_size;
0270     rbdr->enable = true;
0271     rbdr->thresh = RBDR_THRESH;
0272     rbdr->head = 0;
0273     rbdr->tail = 0;
0274 
0275     /* Initialize page recycling stuff.
0276      *
0277      * Can't use single buffer per page especially with 64K pages.
0278      * On embedded platforms i.e 81xx/83xx available memory itself
0279      * is low and minimum ring size of RBDR is 8K, that takes away
0280      * lots of memory.
0281      *
0282      * But for XDP it has to be a single buffer per page.
0283      */
0284     if (!nic->pnicvf->xdp_prog) {
0285         rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size);
0286         rbdr->is_xdp = false;
0287     } else {
0288         rbdr->pgcnt = ring_len;
0289         rbdr->is_xdp = true;
0290     }
0291     rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt);
0292     rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache),
0293                 GFP_KERNEL);
0294     if (!rbdr->pgcache)
0295         return -ENOMEM;
0296     rbdr->pgidx = 0;
0297     rbdr->pgalloc = 0;
0298 
0299     nic->rb_page = NULL;
0300     for (idx = 0; idx < ring_len; idx++) {
0301         err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL,
0302                          RCV_FRAG_LEN, &rbuf);
0303         if (err) {
0304             /* To free already allocated and mapped ones */
0305             rbdr->tail = idx - 1;
0306             return err;
0307         }
0308 
0309         desc = GET_RBDR_DESC(rbdr, idx);
0310         desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
0311     }
0312 
0313     nicvf_get_page(nic);
0314 
0315     return 0;
0316 }
0317 
0318 /* Free RBDR ring and its receive buffers */
0319 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
0320 {
0321     int head, tail;
0322     u64 buf_addr, phys_addr;
0323     struct pgcache *pgcache;
0324     struct rbdr_entry_t *desc;
0325 
0326     if (!rbdr)
0327         return;
0328 
0329     rbdr->enable = false;
0330     if (!rbdr->dmem.base)
0331         return;
0332 
0333     head = rbdr->head;
0334     tail = rbdr->tail;
0335 
0336     /* Release page references */
0337     while (head != tail) {
0338         desc = GET_RBDR_DESC(rbdr, head);
0339         buf_addr = desc->buf_addr;
0340         phys_addr = nicvf_iova_to_phys(nic, buf_addr);
0341         dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
0342                      DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
0343         if (phys_addr)
0344             put_page(virt_to_page(phys_to_virt(phys_addr)));
0345         head++;
0346         head &= (rbdr->dmem.q_len - 1);
0347     }
0348     /* Release buffer of tail desc */
0349     desc = GET_RBDR_DESC(rbdr, tail);
0350     buf_addr = desc->buf_addr;
0351     phys_addr = nicvf_iova_to_phys(nic, buf_addr);
0352     dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
0353                  DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
0354     if (phys_addr)
0355         put_page(virt_to_page(phys_to_virt(phys_addr)));
0356 
0357     /* Sync page cache info */
0358     smp_rmb();
0359 
0360     /* Release additional page references held for recycling */
0361     head = 0;
0362     while (head < rbdr->pgcnt) {
0363         pgcache = &rbdr->pgcache[head];
0364         if (pgcache->page && page_ref_count(pgcache->page) != 0) {
0365             if (rbdr->is_xdp) {
0366                 page_ref_sub(pgcache->page,
0367                          pgcache->ref_count - 1);
0368             }
0369             put_page(pgcache->page);
0370         }
0371         head++;
0372     }
0373 
0374     /* Free RBDR ring */
0375     nicvf_free_q_desc_mem(nic, &rbdr->dmem);
0376 }
0377 
0378 /* Refill receive buffer descriptors with new buffers.
0379  */
0380 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
0381 {
0382     struct queue_set *qs = nic->qs;
0383     int rbdr_idx = qs->rbdr_cnt;
0384     int tail, qcount;
0385     int refill_rb_cnt;
0386     struct rbdr *rbdr;
0387     struct rbdr_entry_t *desc;
0388     u64 rbuf;
0389     int new_rb = 0;
0390 
0391 refill:
0392     if (!rbdr_idx)
0393         return;
0394     rbdr_idx--;
0395     rbdr = &qs->rbdr[rbdr_idx];
0396     /* Check if it's enabled */
0397     if (!rbdr->enable)
0398         goto next_rbdr;
0399 
0400     /* Get no of desc's to be refilled */
0401     qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
0402     qcount &= 0x7FFFF;
0403     /* Doorbell can be ringed with a max of ring size minus 1 */
0404     if (qcount >= (qs->rbdr_len - 1))
0405         goto next_rbdr;
0406     else
0407         refill_rb_cnt = qs->rbdr_len - qcount - 1;
0408 
0409     /* Sync page cache info */
0410     smp_rmb();
0411 
0412     /* Start filling descs from tail */
0413     tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
0414     while (refill_rb_cnt) {
0415         tail++;
0416         tail &= (rbdr->dmem.q_len - 1);
0417 
0418         if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf))
0419             break;
0420 
0421         desc = GET_RBDR_DESC(rbdr, tail);
0422         desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1);
0423         refill_rb_cnt--;
0424         new_rb++;
0425     }
0426 
0427     nicvf_get_page(nic);
0428 
0429     /* make sure all memory stores are done before ringing doorbell */
0430     smp_wmb();
0431 
0432     /* Check if buffer allocation failed */
0433     if (refill_rb_cnt)
0434         nic->rb_alloc_fail = true;
0435     else
0436         nic->rb_alloc_fail = false;
0437 
0438     /* Notify HW */
0439     nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
0440                   rbdr_idx, new_rb);
0441 next_rbdr:
0442     /* Re-enable RBDR interrupts only if buffer allocation is success */
0443     if (!nic->rb_alloc_fail && rbdr->enable &&
0444         netif_running(nic->pnicvf->netdev))
0445         nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
0446 
0447     if (rbdr_idx)
0448         goto refill;
0449 }
0450 
0451 /* Alloc rcv buffers in non-atomic mode for better success */
0452 void nicvf_rbdr_work(struct work_struct *work)
0453 {
0454     struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
0455 
0456     nicvf_refill_rbdr(nic, GFP_KERNEL);
0457     if (nic->rb_alloc_fail)
0458         schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
0459     else
0460         nic->rb_work_scheduled = false;
0461 }
0462 
0463 /* In Softirq context, alloc rcv buffers in atomic mode */
0464 void nicvf_rbdr_task(struct tasklet_struct *t)
0465 {
0466     struct nicvf *nic = from_tasklet(nic, t, rbdr_task);
0467 
0468     nicvf_refill_rbdr(nic, GFP_ATOMIC);
0469     if (nic->rb_alloc_fail) {
0470         nic->rb_work_scheduled = true;
0471         schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
0472     }
0473 }
0474 
0475 /* Initialize completion queue */
0476 static int nicvf_init_cmp_queue(struct nicvf *nic,
0477                 struct cmp_queue *cq, int q_len)
0478 {
0479     int err;
0480 
0481     err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
0482                      NICVF_CQ_BASE_ALIGN_BYTES);
0483     if (err)
0484         return err;
0485 
0486     cq->desc = cq->dmem.base;
0487     cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
0488     nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
0489 
0490     return 0;
0491 }
0492 
0493 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
0494 {
0495     if (!cq)
0496         return;
0497     if (!cq->dmem.base)
0498         return;
0499 
0500     nicvf_free_q_desc_mem(nic, &cq->dmem);
0501 }
0502 
0503 /* Initialize transmit queue */
0504 static int nicvf_init_snd_queue(struct nicvf *nic,
0505                 struct snd_queue *sq, int q_len, int qidx)
0506 {
0507     int err;
0508 
0509     err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
0510                      NICVF_SQ_BASE_ALIGN_BYTES);
0511     if (err)
0512         return err;
0513 
0514     sq->desc = sq->dmem.base;
0515     sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
0516     if (!sq->skbuff)
0517         return -ENOMEM;
0518 
0519     sq->head = 0;
0520     sq->tail = 0;
0521     sq->thresh = SND_QUEUE_THRESH;
0522 
0523     /* Check if this SQ is a XDP TX queue */
0524     if (nic->sqs_mode)
0525         qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS);
0526     if (qidx < nic->pnicvf->xdp_tx_queues) {
0527         /* Alloc memory to save page pointers for XDP_TX */
0528         sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
0529         if (!sq->xdp_page)
0530             return -ENOMEM;
0531         sq->xdp_desc_cnt = 0;
0532         sq->xdp_free_cnt = q_len - 1;
0533         sq->is_xdp = true;
0534     } else {
0535         sq->xdp_page = NULL;
0536         sq->xdp_desc_cnt = 0;
0537         sq->xdp_free_cnt = 0;
0538         sq->is_xdp = false;
0539 
0540         atomic_set(&sq->free_cnt, q_len - 1);
0541 
0542         /* Preallocate memory for TSO segment's header */
0543         sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
0544                           q_len * TSO_HEADER_SIZE,
0545                           &sq->tso_hdrs_phys,
0546                           GFP_KERNEL);
0547         if (!sq->tso_hdrs)
0548             return -ENOMEM;
0549     }
0550 
0551     return 0;
0552 }
0553 
0554 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
0555                   int hdr_sqe, u8 subdesc_cnt)
0556 {
0557     u8 idx;
0558     struct sq_gather_subdesc *gather;
0559 
0560     /* Unmap DMA mapped skb data buffers */
0561     for (idx = 0; idx < subdesc_cnt; idx++) {
0562         hdr_sqe++;
0563         hdr_sqe &= (sq->dmem.q_len - 1);
0564         gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
0565         /* HW will ensure data coherency, CPU sync not required */
0566         dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
0567                      gather->size, DMA_TO_DEVICE,
0568                      DMA_ATTR_SKIP_CPU_SYNC);
0569     }
0570 }
0571 
0572 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
0573 {
0574     struct sk_buff *skb;
0575     struct page *page;
0576     struct sq_hdr_subdesc *hdr;
0577     struct sq_hdr_subdesc *tso_sqe;
0578 
0579     if (!sq)
0580         return;
0581     if (!sq->dmem.base)
0582         return;
0583 
0584     if (sq->tso_hdrs) {
0585         dma_free_coherent(&nic->pdev->dev,
0586                   sq->dmem.q_len * TSO_HEADER_SIZE,
0587                   sq->tso_hdrs, sq->tso_hdrs_phys);
0588         sq->tso_hdrs = NULL;
0589     }
0590 
0591     /* Free pending skbs in the queue */
0592     smp_rmb();
0593     while (sq->head != sq->tail) {
0594         skb = (struct sk_buff *)sq->skbuff[sq->head];
0595         if (!skb || !sq->xdp_page)
0596             goto next;
0597 
0598         page = (struct page *)sq->xdp_page[sq->head];
0599         if (!page)
0600             goto next;
0601         else
0602             put_page(page);
0603 
0604         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
0605         /* Check for dummy descriptor used for HW TSO offload on 88xx */
0606         if (hdr->dont_send) {
0607             /* Get actual TSO descriptors and unmap them */
0608             tso_sqe =
0609              (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
0610             nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
0611                          tso_sqe->subdesc_cnt);
0612         } else {
0613             nicvf_unmap_sndq_buffers(nic, sq, sq->head,
0614                          hdr->subdesc_cnt);
0615         }
0616         if (skb)
0617             dev_kfree_skb_any(skb);
0618 next:
0619         sq->head++;
0620         sq->head &= (sq->dmem.q_len - 1);
0621     }
0622     kfree(sq->skbuff);
0623     kfree(sq->xdp_page);
0624     nicvf_free_q_desc_mem(nic, &sq->dmem);
0625 }
0626 
0627 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
0628                     struct queue_set *qs, int qidx)
0629 {
0630     /* Disable send queue */
0631     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
0632     /* Check if SQ is stopped */
0633     if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
0634         return;
0635     /* Reset send queue */
0636     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
0637 }
0638 
0639 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
0640                     struct queue_set *qs, int qidx)
0641 {
0642     union nic_mbx mbx = {};
0643 
0644     /* Make sure all packets in the pipeline are written back into mem */
0645     mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
0646     nicvf_send_msg_to_pf(nic, &mbx);
0647 }
0648 
0649 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
0650                     struct queue_set *qs, int qidx)
0651 {
0652     /* Disable timer threshold (doesn't get reset upon CQ reset */
0653     nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
0654     /* Disable completion queue */
0655     nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
0656     /* Reset completion queue */
0657     nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
0658 }
0659 
0660 static void nicvf_reclaim_rbdr(struct nicvf *nic,
0661                    struct rbdr *rbdr, int qidx)
0662 {
0663     u64 tmp, fifo_state;
0664     int timeout = 10;
0665 
0666     /* Save head and tail pointers for feeing up buffers */
0667     rbdr->head = nicvf_queue_reg_read(nic,
0668                       NIC_QSET_RBDR_0_1_HEAD,
0669                       qidx) >> 3;
0670     rbdr->tail = nicvf_queue_reg_read(nic,
0671                       NIC_QSET_RBDR_0_1_TAIL,
0672                       qidx) >> 3;
0673 
0674     /* If RBDR FIFO is in 'FAIL' state then do a reset first
0675      * before relaiming.
0676      */
0677     fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
0678     if (((fifo_state >> 62) & 0x03) == 0x3)
0679         nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
0680                       qidx, NICVF_RBDR_RESET);
0681 
0682     /* Disable RBDR */
0683     nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
0684     if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
0685         return;
0686     while (1) {
0687         tmp = nicvf_queue_reg_read(nic,
0688                        NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
0689                        qidx);
0690         if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
0691             break;
0692         usleep_range(1000, 2000);
0693         timeout--;
0694         if (!timeout) {
0695             netdev_err(nic->netdev,
0696                    "Failed polling on prefetch status\n");
0697             return;
0698         }
0699     }
0700     nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
0701                   qidx, NICVF_RBDR_RESET);
0702 
0703     if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
0704         return;
0705     nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
0706     if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
0707         return;
0708 }
0709 
0710 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
0711 {
0712     u64 rq_cfg;
0713     int sqs;
0714 
0715     rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
0716 
0717     /* Enable first VLAN stripping */
0718     if (features & NETIF_F_HW_VLAN_CTAG_RX)
0719         rq_cfg |= (1ULL << 25);
0720     else
0721         rq_cfg &= ~(1ULL << 25);
0722     nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
0723 
0724     /* Configure Secondary Qsets, if any */
0725     for (sqs = 0; sqs < nic->sqs_count; sqs++)
0726         if (nic->snicvf[sqs])
0727             nicvf_queue_reg_write(nic->snicvf[sqs],
0728                           NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
0729 }
0730 
0731 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
0732 {
0733     union nic_mbx mbx = {};
0734 
0735     /* Reset all RQ/SQ and VF stats */
0736     mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
0737     mbx.reset_stat.rx_stat_mask = 0x3FFF;
0738     mbx.reset_stat.tx_stat_mask = 0x1F;
0739     mbx.reset_stat.rq_stat_mask = 0xFFFF;
0740     mbx.reset_stat.sq_stat_mask = 0xFFFF;
0741     nicvf_send_msg_to_pf(nic, &mbx);
0742 }
0743 
0744 /* Configures receive queue */
0745 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
0746                    int qidx, bool enable)
0747 {
0748     union nic_mbx mbx = {};
0749     struct rcv_queue *rq;
0750     struct rq_cfg rq_cfg;
0751 
0752     rq = &qs->rq[qidx];
0753     rq->enable = enable;
0754 
0755     /* Disable receive queue */
0756     nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
0757 
0758     if (!rq->enable) {
0759         nicvf_reclaim_rcv_queue(nic, qs, qidx);
0760         xdp_rxq_info_unreg(&rq->xdp_rxq);
0761         return;
0762     }
0763 
0764     rq->cq_qs = qs->vnic_id;
0765     rq->cq_idx = qidx;
0766     rq->start_rbdr_qs = qs->vnic_id;
0767     rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
0768     rq->cont_rbdr_qs = qs->vnic_id;
0769     rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
0770     /* all writes of RBDR data to be loaded into L2 Cache as well*/
0771     rq->caching = 1;
0772 
0773     /* Driver have no proper error path for failed XDP RX-queue info reg */
0774     WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx, 0) < 0);
0775 
0776     /* Send a mailbox msg to PF to config RQ */
0777     mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
0778     mbx.rq.qs_num = qs->vnic_id;
0779     mbx.rq.rq_num = qidx;
0780     mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) |
0781               (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
0782               (rq->cont_qs_rbdr_idx << 8) |
0783               (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
0784     nicvf_send_msg_to_pf(nic, &mbx);
0785 
0786     mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
0787     mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
0788              (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
0789              (qs->vnic_id << 0);
0790     nicvf_send_msg_to_pf(nic, &mbx);
0791 
0792     /* RQ drop config
0793      * Enable CQ drop to reserve sufficient CQEs for all tx packets
0794      */
0795     mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
0796     mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
0797              (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
0798              (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
0799     nicvf_send_msg_to_pf(nic, &mbx);
0800 
0801     if (!nic->sqs_mode && (qidx == 0)) {
0802         /* Enable checking L3/L4 length and TCP/UDP checksums
0803          * Also allow IPv6 pkts with zero UDP checksum.
0804          */
0805         nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
0806                       (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
0807         nicvf_config_vlan_stripping(nic, nic->netdev->features);
0808     }
0809 
0810     /* Enable Receive queue */
0811     memset(&rq_cfg, 0, sizeof(struct rq_cfg));
0812     rq_cfg.ena = 1;
0813     rq_cfg.tcp_ena = 0;
0814     nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
0815 }
0816 
0817 /* Configures completion queue */
0818 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
0819                 int qidx, bool enable)
0820 {
0821     struct cmp_queue *cq;
0822     struct cq_cfg cq_cfg;
0823 
0824     cq = &qs->cq[qidx];
0825     cq->enable = enable;
0826 
0827     if (!cq->enable) {
0828         nicvf_reclaim_cmp_queue(nic, qs, qidx);
0829         return;
0830     }
0831 
0832     /* Reset completion queue */
0833     nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
0834 
0835     if (!cq->enable)
0836         return;
0837 
0838     spin_lock_init(&cq->lock);
0839     /* Set completion queue base address */
0840     nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
0841                   qidx, (u64)(cq->dmem.phys_base));
0842 
0843     /* Enable Completion queue */
0844     memset(&cq_cfg, 0, sizeof(struct cq_cfg));
0845     cq_cfg.ena = 1;
0846     cq_cfg.reset = 0;
0847     cq_cfg.caching = 0;
0848     cq_cfg.qsize = ilog2(qs->cq_len >> 10);
0849     cq_cfg.avg_con = 0;
0850     nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
0851 
0852     /* Set threshold value for interrupt generation */
0853     nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
0854     nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
0855                   qidx, CMP_QUEUE_TIMER_THRESH);
0856 }
0857 
0858 /* Configures transmit queue */
0859 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
0860                    int qidx, bool enable)
0861 {
0862     union nic_mbx mbx = {};
0863     struct snd_queue *sq;
0864     struct sq_cfg sq_cfg;
0865 
0866     sq = &qs->sq[qidx];
0867     sq->enable = enable;
0868 
0869     if (!sq->enable) {
0870         nicvf_reclaim_snd_queue(nic, qs, qidx);
0871         return;
0872     }
0873 
0874     /* Reset send queue */
0875     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
0876 
0877     sq->cq_qs = qs->vnic_id;
0878     sq->cq_idx = qidx;
0879 
0880     /* Send a mailbox msg to PF to config SQ */
0881     mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
0882     mbx.sq.qs_num = qs->vnic_id;
0883     mbx.sq.sq_num = qidx;
0884     mbx.sq.sqs_mode = nic->sqs_mode;
0885     mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
0886     nicvf_send_msg_to_pf(nic, &mbx);
0887 
0888     /* Set queue base address */
0889     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
0890                   qidx, (u64)(sq->dmem.phys_base));
0891 
0892     /* Enable send queue  & set queue size */
0893     memset(&sq_cfg, 0, sizeof(struct sq_cfg));
0894     sq_cfg.ena = 1;
0895     sq_cfg.reset = 0;
0896     sq_cfg.ldwb = 0;
0897     sq_cfg.qsize = ilog2(qs->sq_len >> 10);
0898     sq_cfg.tstmp_bgx_intf = 0;
0899     /* CQ's level at which HW will stop processing SQEs to avoid
0900      * transmitting a pkt with no space in CQ to post CQE_TX.
0901      */
0902     sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
0903     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
0904 
0905     /* Set threshold value for interrupt generation */
0906     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
0907 
0908     /* Set queue:cpu affinity for better load distribution */
0909     if (cpu_online(qidx)) {
0910         cpumask_set_cpu(qidx, &sq->affinity_mask);
0911         netif_set_xps_queue(nic->netdev,
0912                     &sq->affinity_mask, qidx);
0913     }
0914 }
0915 
0916 /* Configures receive buffer descriptor ring */
0917 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
0918                   int qidx, bool enable)
0919 {
0920     struct rbdr *rbdr;
0921     struct rbdr_cfg rbdr_cfg;
0922 
0923     rbdr = &qs->rbdr[qidx];
0924     nicvf_reclaim_rbdr(nic, rbdr, qidx);
0925     if (!enable)
0926         return;
0927 
0928     /* Set descriptor base address */
0929     nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
0930                   qidx, (u64)(rbdr->dmem.phys_base));
0931 
0932     /* Enable RBDR  & set queue size */
0933     /* Buffer size should be in multiples of 128 bytes */
0934     memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
0935     rbdr_cfg.ena = 1;
0936     rbdr_cfg.reset = 0;
0937     rbdr_cfg.ldwb = 0;
0938     rbdr_cfg.qsize = RBDR_SIZE;
0939     rbdr_cfg.avg_con = 0;
0940     rbdr_cfg.lines = rbdr->dma_size / 128;
0941     nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
0942                   qidx, *(u64 *)&rbdr_cfg);
0943 
0944     /* Notify HW */
0945     nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
0946                   qidx, qs->rbdr_len - 1);
0947 
0948     /* Set threshold value for interrupt generation */
0949     nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
0950                   qidx, rbdr->thresh - 1);
0951 }
0952 
0953 /* Requests PF to assign and enable Qset */
0954 void nicvf_qset_config(struct nicvf *nic, bool enable)
0955 {
0956     union nic_mbx mbx = {};
0957     struct queue_set *qs = nic->qs;
0958     struct qs_cfg *qs_cfg;
0959 
0960     if (!qs) {
0961         netdev_warn(nic->netdev,
0962                 "Qset is still not allocated, don't init queues\n");
0963         return;
0964     }
0965 
0966     qs->enable = enable;
0967     qs->vnic_id = nic->vf_id;
0968 
0969     /* Send a mailbox msg to PF to config Qset */
0970     mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
0971     mbx.qs.num = qs->vnic_id;
0972     mbx.qs.sqs_count = nic->sqs_count;
0973 
0974     mbx.qs.cfg = 0;
0975     qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
0976     if (qs->enable) {
0977         qs_cfg->ena = 1;
0978 #ifdef __BIG_ENDIAN
0979         qs_cfg->be = 1;
0980 #endif
0981         qs_cfg->vnic = qs->vnic_id;
0982         /* Enable Tx timestamping capability */
0983         if (nic->ptp_clock)
0984             qs_cfg->send_tstmp_ena = 1;
0985     }
0986     nicvf_send_msg_to_pf(nic, &mbx);
0987 }
0988 
0989 static void nicvf_free_resources(struct nicvf *nic)
0990 {
0991     int qidx;
0992     struct queue_set *qs = nic->qs;
0993 
0994     /* Free receive buffer descriptor ring */
0995     for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
0996         nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
0997 
0998     /* Free completion queue */
0999     for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1000         nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1001 
1002     /* Free send queue */
1003     for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1004         nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1005 }
1006 
1007 static int nicvf_alloc_resources(struct nicvf *nic)
1008 {
1009     int qidx;
1010     struct queue_set *qs = nic->qs;
1011 
1012     /* Alloc receive buffer descriptor ring */
1013     for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1014         if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1015                     DMA_BUFFER_LEN))
1016             goto alloc_fail;
1017     }
1018 
1019     /* Alloc send queue */
1020     for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1021         if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1022             goto alloc_fail;
1023     }
1024 
1025     /* Alloc completion queue */
1026     for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1027         if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
1028             goto alloc_fail;
1029     }
1030 
1031     return 0;
1032 alloc_fail:
1033     nicvf_free_resources(nic);
1034     return -ENOMEM;
1035 }
1036 
1037 int nicvf_set_qset_resources(struct nicvf *nic)
1038 {
1039     struct queue_set *qs;
1040 
1041     qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
1042     if (!qs)
1043         return -ENOMEM;
1044     nic->qs = qs;
1045 
1046     /* Set count of each queue */
1047     qs->rbdr_cnt = DEFAULT_RBDR_CNT;
1048     qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
1049     qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
1050     qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
1051 
1052     /* Set queue lengths */
1053     qs->rbdr_len = RCV_BUF_COUNT;
1054     qs->sq_len = SND_QUEUE_LEN;
1055     qs->cq_len = CMP_QUEUE_LEN;
1056 
1057     nic->rx_queues = qs->rq_cnt;
1058     nic->tx_queues = qs->sq_cnt;
1059     nic->xdp_tx_queues = 0;
1060 
1061     return 0;
1062 }
1063 
1064 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
1065 {
1066     bool disable = false;
1067     struct queue_set *qs = nic->qs;
1068     struct queue_set *pqs = nic->pnicvf->qs;
1069     int qidx;
1070 
1071     if (!qs)
1072         return 0;
1073 
1074     /* Take primary VF's queue lengths.
1075      * This is needed to take queue lengths set from ethtool
1076      * into consideration.
1077      */
1078     if (nic->sqs_mode && pqs) {
1079         qs->cq_len = pqs->cq_len;
1080         qs->sq_len = pqs->sq_len;
1081     }
1082 
1083     if (enable) {
1084         if (nicvf_alloc_resources(nic))
1085             return -ENOMEM;
1086 
1087         for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1088             nicvf_snd_queue_config(nic, qs, qidx, enable);
1089         for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1090             nicvf_cmp_queue_config(nic, qs, qidx, enable);
1091         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1092             nicvf_rbdr_config(nic, qs, qidx, enable);
1093         for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1094             nicvf_rcv_queue_config(nic, qs, qidx, enable);
1095     } else {
1096         for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1097             nicvf_rcv_queue_config(nic, qs, qidx, disable);
1098         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1099             nicvf_rbdr_config(nic, qs, qidx, disable);
1100         for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1101             nicvf_snd_queue_config(nic, qs, qidx, disable);
1102         for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1103             nicvf_cmp_queue_config(nic, qs, qidx, disable);
1104 
1105         nicvf_free_resources(nic);
1106     }
1107 
1108     /* Reset RXQ's stats.
1109      * SQ's stats will get reset automatically once SQ is reset.
1110      */
1111     nicvf_reset_rcv_queue_stats(nic);
1112 
1113     return 0;
1114 }
1115 
1116 /* Get a free desc from SQ
1117  * returns descriptor ponter & descriptor number
1118  */
1119 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1120 {
1121     int qentry;
1122 
1123     qentry = sq->tail;
1124     if (!sq->is_xdp)
1125         atomic_sub(desc_cnt, &sq->free_cnt);
1126     else
1127         sq->xdp_free_cnt -= desc_cnt;
1128     sq->tail += desc_cnt;
1129     sq->tail &= (sq->dmem.q_len - 1);
1130 
1131     return qentry;
1132 }
1133 
1134 /* Rollback to previous tail pointer when descriptors not used */
1135 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
1136                       int qentry, int desc_cnt)
1137 {
1138     sq->tail = qentry;
1139     atomic_add(desc_cnt, &sq->free_cnt);
1140 }
1141 
1142 /* Free descriptor back to SQ for future use */
1143 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1144 {
1145     if (!sq->is_xdp)
1146         atomic_add(desc_cnt, &sq->free_cnt);
1147     else
1148         sq->xdp_free_cnt += desc_cnt;
1149     sq->head += desc_cnt;
1150     sq->head &= (sq->dmem.q_len - 1);
1151 }
1152 
1153 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1154 {
1155     qentry++;
1156     qentry &= (sq->dmem.q_len - 1);
1157     return qentry;
1158 }
1159 
1160 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1161 {
1162     u64 sq_cfg;
1163 
1164     sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1165     sq_cfg |= NICVF_SQ_EN;
1166     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1167     /* Ring doorbell so that H/W restarts processing SQEs */
1168     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1169 }
1170 
1171 void nicvf_sq_disable(struct nicvf *nic, int qidx)
1172 {
1173     u64 sq_cfg;
1174 
1175     sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1176     sq_cfg &= ~NICVF_SQ_EN;
1177     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1178 }
1179 
1180 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
1181                   int qidx)
1182 {
1183     u64 head;
1184     struct sk_buff *skb;
1185     struct nicvf *nic = netdev_priv(netdev);
1186     struct sq_hdr_subdesc *hdr;
1187 
1188     head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1189     while (sq->head != head) {
1190         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1191         if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1192             nicvf_put_sq_desc(sq, 1);
1193             continue;
1194         }
1195         skb = (struct sk_buff *)sq->skbuff[sq->head];
1196         if (skb)
1197             dev_kfree_skb_any(skb);
1198         atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1199         atomic64_add(hdr->tot_len,
1200                  (atomic64_t *)&netdev->stats.tx_bytes);
1201         nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1202     }
1203 }
1204 
1205 /* XDP Transmit APIs */
1206 void nicvf_xdp_sq_doorbell(struct nicvf *nic,
1207                struct snd_queue *sq, int sq_num)
1208 {
1209     if (!sq->xdp_desc_cnt)
1210         return;
1211 
1212     /* make sure all memory stores are done before ringing doorbell */
1213     wmb();
1214 
1215     /* Inform HW to xmit all TSO segments */
1216     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1217                   sq_num, sq->xdp_desc_cnt);
1218     sq->xdp_desc_cnt = 0;
1219 }
1220 
1221 static inline void
1222 nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1223                  int subdesc_cnt, u64 data, int len)
1224 {
1225     struct sq_hdr_subdesc *hdr;
1226 
1227     hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1228     memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1229     hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1230     hdr->subdesc_cnt = subdesc_cnt;
1231     hdr->tot_len = len;
1232     hdr->post_cqe = 1;
1233     sq->xdp_page[qentry] = (u64)virt_to_page((void *)data);
1234 }
1235 
1236 int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq,
1237                 u64 bufaddr, u64 dma_addr, u16 len)
1238 {
1239     int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1240     int qentry;
1241 
1242     if (subdesc_cnt > sq->xdp_free_cnt)
1243         return 0;
1244 
1245     qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1246 
1247     nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len);
1248 
1249     qentry = nicvf_get_nxt_sqentry(sq, qentry);
1250     nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr);
1251 
1252     sq->xdp_desc_cnt += subdesc_cnt;
1253 
1254     return 1;
1255 }
1256 
1257 /* Calculate no of SQ subdescriptors needed to transmit all
1258  * segments of this TSO packet.
1259  * Taken from 'Tilera network driver' with a minor modification.
1260  */
1261 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1262 {
1263     struct skb_shared_info *sh = skb_shinfo(skb);
1264     unsigned int sh_len = skb_tcp_all_headers(skb);
1265     unsigned int data_len = skb->len - sh_len;
1266     unsigned int p_len = sh->gso_size;
1267     long f_id = -1;    /* id of the current fragment */
1268     long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1269     long f_used = 0;  /* bytes used from the current fragment */
1270     long n;            /* size of the current piece of payload */
1271     int num_edescs = 0;
1272     int segment;
1273 
1274     for (segment = 0; segment < sh->gso_segs; segment++) {
1275         unsigned int p_used = 0;
1276 
1277         /* One edesc for header and for each piece of the payload. */
1278         for (num_edescs++; p_used < p_len; num_edescs++) {
1279             /* Advance as needed. */
1280             while (f_used >= f_size) {
1281                 f_id++;
1282                 f_size = skb_frag_size(&sh->frags[f_id]);
1283                 f_used = 0;
1284             }
1285 
1286             /* Use bytes from the current fragment. */
1287             n = p_len - p_used;
1288             if (n > f_size - f_used)
1289                 n = f_size - f_used;
1290             f_used += n;
1291             p_used += n;
1292         }
1293 
1294         /* The last segment may be less than gso_size. */
1295         data_len -= p_len;
1296         if (data_len < p_len)
1297             p_len = data_len;
1298     }
1299 
1300     /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1301     return num_edescs + sh->gso_segs;
1302 }
1303 
1304 #define POST_CQE_DESC_COUNT 2
1305 
1306 /* Get the number of SQ descriptors needed to xmit this skb */
1307 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1308 {
1309     int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1310 
1311     if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1312         subdesc_cnt = nicvf_tso_count_subdescs(skb);
1313         return subdesc_cnt;
1314     }
1315 
1316     /* Dummy descriptors to get TSO pkt completion notification */
1317     if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1318         subdesc_cnt += POST_CQE_DESC_COUNT;
1319 
1320     if (skb_shinfo(skb)->nr_frags)
1321         subdesc_cnt += skb_shinfo(skb)->nr_frags;
1322 
1323     return subdesc_cnt;
1324 }
1325 
1326 /* Add SQ HEADER subdescriptor.
1327  * First subdescriptor for every send descriptor.
1328  */
1329 static inline void
1330 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1331              int subdesc_cnt, struct sk_buff *skb, int len)
1332 {
1333     int proto;
1334     struct sq_hdr_subdesc *hdr;
1335     union {
1336         struct iphdr *v4;
1337         struct ipv6hdr *v6;
1338         unsigned char *hdr;
1339     } ip;
1340 
1341     ip.hdr = skb_network_header(skb);
1342     hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1343     memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1344     hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1345 
1346     if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1347         /* post_cqe = 0, to avoid HW posting a CQE for every TSO
1348          * segment transmitted on 88xx.
1349          */
1350         hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1351     } else {
1352         sq->skbuff[qentry] = (u64)skb;
1353         /* Enable notification via CQE after processing SQE */
1354         hdr->post_cqe = 1;
1355         /* No of subdescriptors following this */
1356         hdr->subdesc_cnt = subdesc_cnt;
1357     }
1358     hdr->tot_len = len;
1359 
1360     /* Offload checksum calculation to HW */
1361     if (skb->ip_summed == CHECKSUM_PARTIAL) {
1362         if (ip.v4->version == 4)
1363             hdr->csum_l3 = 1; /* Enable IP csum calculation */
1364         hdr->l3_offset = skb_network_offset(skb);
1365         hdr->l4_offset = skb_transport_offset(skb);
1366 
1367         proto = (ip.v4->version == 4) ? ip.v4->protocol :
1368             ip.v6->nexthdr;
1369 
1370         switch (proto) {
1371         case IPPROTO_TCP:
1372             hdr->csum_l4 = SEND_L4_CSUM_TCP;
1373             break;
1374         case IPPROTO_UDP:
1375             hdr->csum_l4 = SEND_L4_CSUM_UDP;
1376             break;
1377         case IPPROTO_SCTP:
1378             hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1379             break;
1380         }
1381     }
1382 
1383     if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1384         hdr->tso = 1;
1385         hdr->tso_start = skb_tcp_all_headers(skb);
1386         hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1387         /* For non-tunneled pkts, point this to L2 ethertype */
1388         hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1389         this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1390     }
1391 
1392     /* Check if timestamp is requested */
1393     if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1394         skb_tx_timestamp(skb);
1395         return;
1396     }
1397 
1398     /* Tx timestamping not supported along with TSO, so ignore request */
1399     if (skb_shinfo(skb)->gso_size)
1400         return;
1401 
1402     /* HW supports only a single outstanding packet to timestamp */
1403     if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1))
1404         return;
1405 
1406     /* Mark the SKB for later reference */
1407     skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1408 
1409     /* Finally enable timestamp generation
1410      * Since 'post_cqe' is also set, two CQEs will be posted
1411      * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP.
1412      */
1413     hdr->tstmp = 1;
1414 }
1415 
1416 /* SQ GATHER subdescriptor
1417  * Must follow HDR descriptor
1418  */
1419 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1420                            int size, u64 data)
1421 {
1422     struct sq_gather_subdesc *gather;
1423 
1424     qentry &= (sq->dmem.q_len - 1);
1425     gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1426 
1427     memset(gather, 0, SND_QUEUE_DESC_SIZE);
1428     gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1429     gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1430     gather->size = size;
1431     gather->addr = data;
1432 }
1433 
1434 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1435  * packet so that a CQE is posted as a notifation for transmission of
1436  * TSO packet.
1437  */
1438 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1439                         int tso_sqe, struct sk_buff *skb)
1440 {
1441     struct sq_imm_subdesc *imm;
1442     struct sq_hdr_subdesc *hdr;
1443 
1444     sq->skbuff[qentry] = (u64)skb;
1445 
1446     hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1447     memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1448     hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1449     /* Enable notification via CQE after processing SQE */
1450     hdr->post_cqe = 1;
1451     /* There is no packet to transmit here */
1452     hdr->dont_send = 1;
1453     hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1454     hdr->tot_len = 1;
1455     /* Actual TSO header SQE index, needed for cleanup */
1456     hdr->rsvd2 = tso_sqe;
1457 
1458     qentry = nicvf_get_nxt_sqentry(sq, qentry);
1459     imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1460     memset(imm, 0, SND_QUEUE_DESC_SIZE);
1461     imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1462     imm->len = 1;
1463 }
1464 
1465 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1466                      int sq_num, int desc_cnt)
1467 {
1468     struct netdev_queue *txq;
1469 
1470     txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1471                   skb_get_queue_mapping(skb));
1472 
1473     netdev_tx_sent_queue(txq, skb->len);
1474 
1475     /* make sure all memory stores are done before ringing doorbell */
1476     smp_wmb();
1477 
1478     /* Inform HW to xmit all TSO segments */
1479     nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1480                   sq_num, desc_cnt);
1481 }
1482 
1483 /* Segment a TSO packet into 'gso_size' segments and append
1484  * them to SQ for transfer
1485  */
1486 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1487                    int sq_num, int qentry, struct sk_buff *skb)
1488 {
1489     struct tso_t tso;
1490     int seg_subdescs = 0, desc_cnt = 0;
1491     int seg_len, total_len, data_left;
1492     int hdr_qentry = qentry;
1493     int hdr_len;
1494 
1495     hdr_len = tso_start(skb, &tso);
1496 
1497     total_len = skb->len - hdr_len;
1498     while (total_len > 0) {
1499         char *hdr;
1500 
1501         /* Save Qentry for adding HDR_SUBDESC at the end */
1502         hdr_qentry = qentry;
1503 
1504         data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1505         total_len -= data_left;
1506 
1507         /* Add segment's header */
1508         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1509         hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1510         tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1511         nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1512                         sq->tso_hdrs_phys +
1513                         qentry * TSO_HEADER_SIZE);
1514         /* HDR_SUDESC + GATHER */
1515         seg_subdescs = 2;
1516         seg_len = hdr_len;
1517 
1518         /* Add segment's payload fragments */
1519         while (data_left > 0) {
1520             int size;
1521 
1522             size = min_t(int, tso.size, data_left);
1523 
1524             qentry = nicvf_get_nxt_sqentry(sq, qentry);
1525             nicvf_sq_add_gather_subdesc(sq, qentry, size,
1526                             virt_to_phys(tso.data));
1527             seg_subdescs++;
1528             seg_len += size;
1529 
1530             data_left -= size;
1531             tso_build_data(skb, &tso, size);
1532         }
1533         nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1534                      seg_subdescs - 1, skb, seg_len);
1535         sq->skbuff[hdr_qentry] = (u64)NULL;
1536         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1537 
1538         desc_cnt += seg_subdescs;
1539     }
1540     /* Save SKB in the last segment for freeing */
1541     sq->skbuff[hdr_qentry] = (u64)skb;
1542 
1543     nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1544 
1545     this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1546     return 1;
1547 }
1548 
1549 /* Append an skb to a SQ for packet transfer. */
1550 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1551             struct sk_buff *skb, u8 sq_num)
1552 {
1553     int i, size;
1554     int subdesc_cnt, hdr_sqe = 0;
1555     int qentry;
1556     u64 dma_addr;
1557 
1558     subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1559     if (subdesc_cnt > atomic_read(&sq->free_cnt))
1560         goto append_fail;
1561 
1562     qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1563 
1564     /* Check if its a TSO packet */
1565     if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1566         return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1567 
1568     /* Add SQ header subdesc */
1569     nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1570                  skb, skb->len);
1571     hdr_sqe = qentry;
1572 
1573     /* Add SQ gather subdescs */
1574     qentry = nicvf_get_nxt_sqentry(sq, qentry);
1575     size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1576     /* HW will ensure data coherency, CPU sync not required */
1577     dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1578                       offset_in_page(skb->data), size,
1579                       DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1580     if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1581         nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1582         return 0;
1583     }
1584 
1585     nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1586 
1587     /* Check for scattered buffer */
1588     if (!skb_is_nonlinear(skb))
1589         goto doorbell;
1590 
1591     for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1592         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1593 
1594         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1595         size = skb_frag_size(frag);
1596         dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1597                           skb_frag_page(frag),
1598                           skb_frag_off(frag), size,
1599                           DMA_TO_DEVICE,
1600                           DMA_ATTR_SKIP_CPU_SYNC);
1601         if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1602             /* Free entire chain of mapped buffers
1603              * here 'i' = frags mapped + above mapped skb->data
1604              */
1605             nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1606             nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1607             return 0;
1608         }
1609         nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1610     }
1611 
1612 doorbell:
1613     if (nic->t88 && skb_shinfo(skb)->gso_size) {
1614         qentry = nicvf_get_nxt_sqentry(sq, qentry);
1615         nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1616     }
1617 
1618     nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1619 
1620     return 1;
1621 
1622 append_fail:
1623     /* Use original PCI dev for debug log */
1624     nic = nic->pnicvf;
1625     netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1626     return 0;
1627 }
1628 
1629 static inline unsigned frag_num(unsigned i)
1630 {
1631 #ifdef __BIG_ENDIAN
1632     return (i & ~3) + 3 - (i & 3);
1633 #else
1634     return i;
1635 #endif
1636 }
1637 
1638 static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr,
1639                    u64 buf_addr, bool xdp)
1640 {
1641     struct page *page = NULL;
1642     int len = RCV_FRAG_LEN;
1643 
1644     if (xdp) {
1645         page = virt_to_page(phys_to_virt(buf_addr));
1646         /* Check if it's a recycled page, if not
1647          * unmap the DMA mapping.
1648          *
1649          * Recycled page holds an extra reference.
1650          */
1651         if (page_ref_count(page) != 1)
1652             return;
1653 
1654         len += XDP_PACKET_HEADROOM;
1655         /* Receive buffers in XDP mode are mapped from page start */
1656         dma_addr &= PAGE_MASK;
1657     }
1658     dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len,
1659                  DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1660 }
1661 
1662 /* Returns SKB for a received packet */
1663 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic,
1664                   struct cqe_rx_t *cqe_rx, bool xdp)
1665 {
1666     int frag;
1667     int payload_len = 0;
1668     struct sk_buff *skb = NULL;
1669     struct page *page;
1670     int offset;
1671     u16 *rb_lens = NULL;
1672     u64 *rb_ptrs = NULL;
1673     u64 phys_addr;
1674 
1675     rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1676     /* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1677      * CQE_RX at word6, hence buffer pointers move by word
1678      *
1679      * Use existing 'hw_tso' flag which will be set for all chips
1680      * except 88xx pass1 instead of a additional cache line
1681      * access (or miss) by using pci dev's revision.
1682      */
1683     if (!nic->hw_tso)
1684         rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1685     else
1686         rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1687 
1688     for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1689         payload_len = rb_lens[frag_num(frag)];
1690         phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1691         if (!phys_addr) {
1692             if (skb)
1693                 dev_kfree_skb_any(skb);
1694             return NULL;
1695         }
1696 
1697         if (!frag) {
1698             /* First fragment */
1699             nicvf_unmap_rcv_buffer(nic,
1700                            *rb_ptrs - cqe_rx->align_pad,
1701                            phys_addr, xdp);
1702             skb = nicvf_rb_ptr_to_skb(nic,
1703                           phys_addr - cqe_rx->align_pad,
1704                           payload_len);
1705             if (!skb)
1706                 return NULL;
1707             skb_reserve(skb, cqe_rx->align_pad);
1708             skb_put(skb, payload_len);
1709         } else {
1710             /* Add fragments */
1711             nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp);
1712             page = virt_to_page(phys_to_virt(phys_addr));
1713             offset = phys_to_virt(phys_addr) - page_address(page);
1714             skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1715                     offset, payload_len, RCV_FRAG_LEN);
1716         }
1717         /* Next buffer pointer */
1718         rb_ptrs++;
1719     }
1720     return skb;
1721 }
1722 
1723 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1724 {
1725     u64 reg_val;
1726 
1727     switch (int_type) {
1728     case NICVF_INTR_CQ:
1729         reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1730         break;
1731     case NICVF_INTR_SQ:
1732         reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1733         break;
1734     case NICVF_INTR_RBDR:
1735         reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1736         break;
1737     case NICVF_INTR_PKT_DROP:
1738         reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1739         break;
1740     case NICVF_INTR_TCP_TIMER:
1741         reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1742         break;
1743     case NICVF_INTR_MBOX:
1744         reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1745         break;
1746     case NICVF_INTR_QS_ERR:
1747         reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1748         break;
1749     default:
1750         reg_val = 0;
1751     }
1752 
1753     return reg_val;
1754 }
1755 
1756 /* Enable interrupt */
1757 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1758 {
1759     u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1760 
1761     if (!mask) {
1762         netdev_dbg(nic->netdev,
1763                "Failed to enable interrupt: unknown type\n");
1764         return;
1765     }
1766     nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1767             nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1768 }
1769 
1770 /* Disable interrupt */
1771 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1772 {
1773     u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1774 
1775     if (!mask) {
1776         netdev_dbg(nic->netdev,
1777                "Failed to disable interrupt: unknown type\n");
1778         return;
1779     }
1780 
1781     nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1782 }
1783 
1784 /* Clear interrupt */
1785 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1786 {
1787     u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1788 
1789     if (!mask) {
1790         netdev_dbg(nic->netdev,
1791                "Failed to clear interrupt: unknown type\n");
1792         return;
1793     }
1794 
1795     nicvf_reg_write(nic, NIC_VF_INT, mask);
1796 }
1797 
1798 /* Check if interrupt is enabled */
1799 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1800 {
1801     u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1802     /* If interrupt type is unknown, we treat it disabled. */
1803     if (!mask) {
1804         netdev_dbg(nic->netdev,
1805                "Failed to check interrupt enable: unknown type\n");
1806         return 0;
1807     }
1808 
1809     return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1810 }
1811 
1812 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1813 {
1814     struct rcv_queue *rq;
1815 
1816 #define GET_RQ_STATS(reg) \
1817     nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1818                 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1819 
1820     rq = &nic->qs->rq[rq_idx];
1821     rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1822     rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1823 }
1824 
1825 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1826 {
1827     struct snd_queue *sq;
1828 
1829 #define GET_SQ_STATS(reg) \
1830     nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1831                 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1832 
1833     sq = &nic->qs->sq[sq_idx];
1834     sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1835     sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1836 }
1837 
1838 /* Check for errors in the receive cmp.queue entry */
1839 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1840 {
1841     netif_err(nic, rx_err, nic->netdev,
1842           "RX error CQE err_level 0x%x err_opcode 0x%x\n",
1843           cqe_rx->err_level, cqe_rx->err_opcode);
1844 
1845     switch (cqe_rx->err_opcode) {
1846     case CQ_RX_ERROP_RE_PARTIAL:
1847         this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1848         break;
1849     case CQ_RX_ERROP_RE_JABBER:
1850         this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1851         break;
1852     case CQ_RX_ERROP_RE_FCS:
1853         this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1854         break;
1855     case CQ_RX_ERROP_RE_RX_CTL:
1856         this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1857         break;
1858     case CQ_RX_ERROP_PREL2_ERR:
1859         this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1860         break;
1861     case CQ_RX_ERROP_L2_MAL:
1862         this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1863         break;
1864     case CQ_RX_ERROP_L2_OVERSIZE:
1865         this_cpu_inc(nic->drv_stats->rx_oversize);
1866         break;
1867     case CQ_RX_ERROP_L2_UNDERSIZE:
1868         this_cpu_inc(nic->drv_stats->rx_undersize);
1869         break;
1870     case CQ_RX_ERROP_L2_LENMISM:
1871         this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1872         break;
1873     case CQ_RX_ERROP_L2_PCLP:
1874         this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1875         break;
1876     case CQ_RX_ERROP_IP_NOT:
1877         this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1878         break;
1879     case CQ_RX_ERROP_IP_CSUM_ERR:
1880         this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1881         break;
1882     case CQ_RX_ERROP_IP_MAL:
1883         this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1884         break;
1885     case CQ_RX_ERROP_IP_MALD:
1886         this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1887         break;
1888     case CQ_RX_ERROP_IP_HOP:
1889         this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1890         break;
1891     case CQ_RX_ERROP_L3_PCLP:
1892         this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1893         break;
1894     case CQ_RX_ERROP_L4_MAL:
1895         this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1896         break;
1897     case CQ_RX_ERROP_L4_CHK:
1898         this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1899         break;
1900     case CQ_RX_ERROP_UDP_LEN:
1901         this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1902         break;
1903     case CQ_RX_ERROP_L4_PORT:
1904         this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1905         break;
1906     case CQ_RX_ERROP_TCP_FLAG:
1907         this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1908         break;
1909     case CQ_RX_ERROP_TCP_OFFSET:
1910         this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1911         break;
1912     case CQ_RX_ERROP_L4_PCLP:
1913         this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1914         break;
1915     case CQ_RX_ERROP_RBDR_TRUNC:
1916         this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1917         break;
1918     }
1919 
1920     return 1;
1921 }
1922 
1923 /* Check for errors in the send cmp.queue entry */
1924 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1925 {
1926     switch (cqe_tx->send_status) {
1927     case CQ_TX_ERROP_DESC_FAULT:
1928         this_cpu_inc(nic->drv_stats->tx_desc_fault);
1929         break;
1930     case CQ_TX_ERROP_HDR_CONS_ERR:
1931         this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1932         break;
1933     case CQ_TX_ERROP_SUBDC_ERR:
1934         this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1935         break;
1936     case CQ_TX_ERROP_MAX_SIZE_VIOL:
1937         this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1938         break;
1939     case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1940         this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1941         break;
1942     case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1943         this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1944         break;
1945     case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1946         this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1947         break;
1948     case CQ_TX_ERROP_LOCK_VIOL:
1949         this_cpu_inc(nic->drv_stats->tx_lock_viol);
1950         break;
1951     case CQ_TX_ERROP_DATA_FAULT:
1952         this_cpu_inc(nic->drv_stats->tx_data_fault);
1953         break;
1954     case CQ_TX_ERROP_TSTMP_CONFLICT:
1955         this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1956         break;
1957     case CQ_TX_ERROP_TSTMP_TIMEOUT:
1958         this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1959         break;
1960     case CQ_TX_ERROP_MEM_FAULT:
1961         this_cpu_inc(nic->drv_stats->tx_mem_fault);
1962         break;
1963     case CQ_TX_ERROP_CK_OVERLAP:
1964         this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1965         break;
1966     case CQ_TX_ERROP_CK_OFLOW:
1967         this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1968         break;
1969     }
1970 
1971     return 1;
1972 }