Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
0004  * Copyright (c) 2006, 2007  Maciej W. Rozycki
0005  *
0006  * This driver is designed for the Broadcom SiByte SOC built-in
0007  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
0008  *
0009  * Updated to the driver model and the PHY abstraction layer
0010  * by Maciej W. Rozycki.
0011  */
0012 
0013 #include <linux/bug.h>
0014 #include <linux/module.h>
0015 #include <linux/kernel.h>
0016 #include <linux/string.h>
0017 #include <linux/timer.h>
0018 #include <linux/errno.h>
0019 #include <linux/ioport.h>
0020 #include <linux/slab.h>
0021 #include <linux/interrupt.h>
0022 #include <linux/netdevice.h>
0023 #include <linux/etherdevice.h>
0024 #include <linux/skbuff.h>
0025 #include <linux/bitops.h>
0026 #include <linux/err.h>
0027 #include <linux/ethtool.h>
0028 #include <linux/mii.h>
0029 #include <linux/phy.h>
0030 #include <linux/platform_device.h>
0031 #include <linux/prefetch.h>
0032 
0033 #include <asm/cache.h>
0034 #include <asm/io.h>
0035 #include <asm/processor.h>  /* Processor type for cache alignment. */
0036 
0037 /* Operational parameters that usually are not changed. */
0038 
0039 #define CONFIG_SBMAC_COALESCE
0040 
0041 /* Time in jiffies before concluding the transmitter is hung. */
0042 #define TX_TIMEOUT  (2*HZ)
0043 
0044 
0045 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
0046 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
0047 
0048 /* A few user-configurable values which may be modified when a driver
0049    module is loaded. */
0050 
0051 /* 1 normal messages, 0 quiet .. 7 verbose. */
0052 static int debug = 1;
0053 module_param(debug, int, 0444);
0054 MODULE_PARM_DESC(debug, "Debug messages");
0055 
0056 #ifdef CONFIG_SBMAC_COALESCE
0057 static int int_pktcnt_tx = 255;
0058 module_param(int_pktcnt_tx, int, 0444);
0059 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
0060 
0061 static int int_timeout_tx = 255;
0062 module_param(int_timeout_tx, int, 0444);
0063 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
0064 
0065 static int int_pktcnt_rx = 64;
0066 module_param(int_pktcnt_rx, int, 0444);
0067 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
0068 
0069 static int int_timeout_rx = 64;
0070 module_param(int_timeout_rx, int, 0444);
0071 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
0072 #endif
0073 
0074 #include <asm/sibyte/board.h>
0075 #include <asm/sibyte/sb1250.h>
0076 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
0077 #include <asm/sibyte/bcm1480_regs.h>
0078 #include <asm/sibyte/bcm1480_int.h>
0079 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
0080 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
0081 #include <asm/sibyte/sb1250_regs.h>
0082 #include <asm/sibyte/sb1250_int.h>
0083 #else
0084 #error invalid SiByte MAC configuration
0085 #endif
0086 #include <asm/sibyte/sb1250_scd.h>
0087 #include <asm/sibyte/sb1250_mac.h>
0088 #include <asm/sibyte/sb1250_dma.h>
0089 
0090 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
0091 #define UNIT_INT(n)     (K_BCM1480_INT_MAC_0 + ((n) * 2))
0092 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
0093 #define UNIT_INT(n)     (K_INT_MAC_0 + (n))
0094 #else
0095 #error invalid SiByte MAC configuration
0096 #endif
0097 
0098 #ifdef K_INT_PHY
0099 #define SBMAC_PHY_INT           K_INT_PHY
0100 #else
0101 #define SBMAC_PHY_INT           PHY_POLL
0102 #endif
0103 
0104 /**********************************************************************
0105  *  Simple types
0106  ********************************************************************* */
0107 
0108 enum sbmac_speed {
0109     sbmac_speed_none = 0,
0110     sbmac_speed_10 = SPEED_10,
0111     sbmac_speed_100 = SPEED_100,
0112     sbmac_speed_1000 = SPEED_1000,
0113 };
0114 
0115 enum sbmac_duplex {
0116     sbmac_duplex_none = -1,
0117     sbmac_duplex_half = DUPLEX_HALF,
0118     sbmac_duplex_full = DUPLEX_FULL,
0119 };
0120 
0121 enum sbmac_fc {
0122     sbmac_fc_none,
0123     sbmac_fc_disabled,
0124     sbmac_fc_frame,
0125     sbmac_fc_collision,
0126     sbmac_fc_carrier,
0127 };
0128 
0129 enum sbmac_state {
0130     sbmac_state_uninit,
0131     sbmac_state_off,
0132     sbmac_state_on,
0133     sbmac_state_broken,
0134 };
0135 
0136 
0137 /**********************************************************************
0138  *  Macros
0139  ********************************************************************* */
0140 
0141 
0142 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
0143               (d)->sbdma_dscrtable : (d)->f+1)
0144 
0145 
0146 #define NUMCACHEBLKS(x) DIV_ROUND_UP(x, SMP_CACHE_BYTES)
0147 
0148 #define SBMAC_MAX_TXDESCR   256
0149 #define SBMAC_MAX_RXDESCR   256
0150 
0151 #define ENET_PACKET_SIZE    1518
0152 /*#define ENET_PACKET_SIZE  9216 */
0153 
0154 /**********************************************************************
0155  *  DMA Descriptor structure
0156  ********************************************************************* */
0157 
0158 struct sbdmadscr {
0159     uint64_t  dscr_a;
0160     uint64_t  dscr_b;
0161 };
0162 
0163 /**********************************************************************
0164  *  DMA Controller structure
0165  ********************************************************************* */
0166 
0167 struct sbmacdma {
0168 
0169     /*
0170      * This stuff is used to identify the channel and the registers
0171      * associated with it.
0172      */
0173     struct sbmac_softc  *sbdma_eth; /* back pointer to associated
0174                            MAC */
0175     int         sbdma_channel;  /* channel number */
0176     int         sbdma_txdir;    /* direction (1=transmit) */
0177     int         sbdma_maxdescr; /* total # of descriptors
0178                            in ring */
0179 #ifdef CONFIG_SBMAC_COALESCE
0180     int         sbdma_int_pktcnt;
0181                         /* # descriptors rx/tx
0182                            before interrupt */
0183     int         sbdma_int_timeout;
0184                         /* # usec rx/tx interrupt */
0185 #endif
0186     void __iomem        *sbdma_config0; /* DMA config register 0 */
0187     void __iomem        *sbdma_config1; /* DMA config register 1 */
0188     void __iomem        *sbdma_dscrbase;
0189                         /* descriptor base address */
0190     void __iomem        *sbdma_dscrcnt; /* descriptor count register */
0191     void __iomem        *sbdma_curdscr; /* current descriptor
0192                            address */
0193     void __iomem        *sbdma_oodpktlost;
0194                         /* pkt drop (rx only) */
0195 
0196     /*
0197      * This stuff is for maintenance of the ring
0198      */
0199     void            *sbdma_dscrtable_unaligned;
0200     struct sbdmadscr    *sbdma_dscrtable;
0201                         /* base of descriptor table */
0202     struct sbdmadscr    *sbdma_dscrtable_end;
0203                         /* end of descriptor table */
0204     struct sk_buff      **sbdma_ctxtable;
0205                         /* context table, one
0206                            per descr */
0207     dma_addr_t      sbdma_dscrtable_phys;
0208                         /* and also the phys addr */
0209     struct sbdmadscr    *sbdma_addptr;  /* next dscr for sw to add */
0210     struct sbdmadscr    *sbdma_remptr;  /* next dscr for sw
0211                            to remove */
0212 };
0213 
0214 
0215 /**********************************************************************
0216  *  Ethernet softc structure
0217  ********************************************************************* */
0218 
0219 struct sbmac_softc {
0220 
0221     /*
0222      * Linux-specific things
0223      */
0224     struct net_device   *sbm_dev;   /* pointer to linux device */
0225     struct napi_struct  napi;
0226     struct phy_device   *phy_dev;   /* the associated PHY device */
0227     struct mii_bus      *mii_bus;   /* the MII bus */
0228     spinlock_t      sbm_lock;   /* spin lock */
0229     int         sbm_devflags;   /* current device flags */
0230 
0231     /*
0232      * Controller-specific things
0233      */
0234     void __iomem        *sbm_base;  /* MAC's base address */
0235     enum sbmac_state    sbm_state;  /* current state */
0236 
0237     void __iomem        *sbm_macenable; /* MAC Enable Register */
0238     void __iomem        *sbm_maccfg;    /* MAC Config Register */
0239     void __iomem        *sbm_fifocfg;   /* FIFO Config Register */
0240     void __iomem        *sbm_framecfg;  /* Frame Config Register */
0241     void __iomem        *sbm_rxfilter;  /* Receive Filter Register */
0242     void __iomem        *sbm_isr;   /* Interrupt Status Register */
0243     void __iomem        *sbm_imr;   /* Interrupt Mask Register */
0244     void __iomem        *sbm_mdio;  /* MDIO Register */
0245 
0246     enum sbmac_speed    sbm_speed;  /* current speed */
0247     enum sbmac_duplex   sbm_duplex; /* current duplex */
0248     enum sbmac_fc       sbm_fc;     /* cur. flow control setting */
0249     int         sbm_pause;  /* current pause setting */
0250     int         sbm_link;   /* current link state */
0251 
0252     unsigned char       sbm_hwaddr[ETH_ALEN];
0253 
0254     struct sbmacdma     sbm_txdma;  /* only channel 0 for now */
0255     struct sbmacdma     sbm_rxdma;
0256     int         rx_hw_checksum;
0257     int         sbe_idx;
0258 };
0259 
0260 
0261 /**********************************************************************
0262  *  Externs
0263  ********************************************************************* */
0264 
0265 /**********************************************************************
0266  *  Prototypes
0267  ********************************************************************* */
0268 
0269 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
0270               int txrx, int maxdescr);
0271 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
0272 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
0273                    struct sk_buff *m);
0274 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
0275 static void sbdma_emptyring(struct sbmacdma *d);
0276 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
0277 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
0278                 int work_to_do, int poll);
0279 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
0280                  int poll);
0281 static int sbmac_initctx(struct sbmac_softc *s);
0282 static void sbmac_channel_start(struct sbmac_softc *s);
0283 static void sbmac_channel_stop(struct sbmac_softc *s);
0284 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
0285                         enum sbmac_state);
0286 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
0287 static uint64_t sbmac_addr2reg(unsigned char *ptr);
0288 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
0289 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
0290 static void sbmac_setmulti(struct sbmac_softc *sc);
0291 static int sbmac_init(struct platform_device *pldev, long long base);
0292 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
0293 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
0294                 enum sbmac_fc fc);
0295 
0296 static int sbmac_open(struct net_device *dev);
0297 static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue);
0298 static void sbmac_set_rx_mode(struct net_device *dev);
0299 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
0300 static int sbmac_close(struct net_device *dev);
0301 static int sbmac_poll(struct napi_struct *napi, int budget);
0302 
0303 static void sbmac_mii_poll(struct net_device *dev);
0304 static int sbmac_mii_probe(struct net_device *dev);
0305 
0306 static void sbmac_mii_sync(void __iomem *sbm_mdio);
0307 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
0308                    int bitcnt);
0309 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
0310 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
0311                u16 val);
0312 
0313 
0314 /**********************************************************************
0315  *  Globals
0316  ********************************************************************* */
0317 
0318 static char sbmac_string[] = "sb1250-mac";
0319 
0320 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
0321 
0322 
0323 /**********************************************************************
0324  *  MDIO constants
0325  ********************************************************************* */
0326 
0327 #define MII_COMMAND_START   0x01
0328 #define MII_COMMAND_READ    0x02
0329 #define MII_COMMAND_WRITE   0x01
0330 #define MII_COMMAND_ACK     0x02
0331 
0332 #define M_MAC_MDIO_DIR_OUTPUT   0       /* for clarity */
0333 
0334 #define ENABLE      1
0335 #define DISABLE     0
0336 
0337 /**********************************************************************
0338  *  SBMAC_MII_SYNC(sbm_mdio)
0339  *
0340  *  Synchronize with the MII - send a pattern of bits to the MII
0341  *  that will guarantee that it is ready to accept a command.
0342  *
0343  *  Input parameters:
0344  *         sbm_mdio - address of the MAC's MDIO register
0345  *
0346  *  Return value:
0347  *         nothing
0348  ********************************************************************* */
0349 
0350 static void sbmac_mii_sync(void __iomem *sbm_mdio)
0351 {
0352     int cnt;
0353     uint64_t bits;
0354     int mac_mdio_genc;
0355 
0356     mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
0357 
0358     bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
0359 
0360     __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
0361 
0362     for (cnt = 0; cnt < 32; cnt++) {
0363         __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
0364         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
0365     }
0366 }
0367 
0368 /**********************************************************************
0369  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
0370  *
0371  *  Send some bits to the MII.  The bits to be sent are right-
0372  *  justified in the 'data' parameter.
0373  *
0374  *  Input parameters:
0375  *         sbm_mdio - address of the MAC's MDIO register
0376  *         data     - data to send
0377  *         bitcnt   - number of bits to send
0378  ********************************************************************* */
0379 
0380 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
0381                    int bitcnt)
0382 {
0383     int i;
0384     uint64_t bits;
0385     unsigned int curmask;
0386     int mac_mdio_genc;
0387 
0388     mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
0389 
0390     bits = M_MAC_MDIO_DIR_OUTPUT;
0391     __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
0392 
0393     curmask = 1 << (bitcnt - 1);
0394 
0395     for (i = 0; i < bitcnt; i++) {
0396         if (data & curmask)
0397             bits |= M_MAC_MDIO_OUT;
0398         else bits &= ~M_MAC_MDIO_OUT;
0399         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
0400         __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
0401         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
0402         curmask >>= 1;
0403     }
0404 }
0405 
0406 
0407 
0408 /**********************************************************************
0409  *  SBMAC_MII_READ(bus, phyaddr, regidx)
0410  *  Read a PHY register.
0411  *
0412  *  Input parameters:
0413  *         bus     - MDIO bus handle
0414  *         phyaddr - PHY's address
0415  *         regnum  - index of register to read
0416  *
0417  *  Return value:
0418  *         value read, or 0xffff if an error occurred.
0419  ********************************************************************* */
0420 
0421 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
0422 {
0423     struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
0424     void __iomem *sbm_mdio = sc->sbm_mdio;
0425     int idx;
0426     int error;
0427     int regval;
0428     int mac_mdio_genc;
0429 
0430     /*
0431      * Synchronize ourselves so that the PHY knows the next
0432      * thing coming down is a command
0433      */
0434     sbmac_mii_sync(sbm_mdio);
0435 
0436     /*
0437      * Send the data to the PHY.  The sequence is
0438      * a "start" command (2 bits)
0439      * a "read" command (2 bits)
0440      * the PHY addr (5 bits)
0441      * the register index (5 bits)
0442      */
0443     sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
0444     sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
0445     sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
0446     sbmac_mii_senddata(sbm_mdio, regidx, 5);
0447 
0448     mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
0449 
0450     /*
0451      * Switch the port around without a clock transition.
0452      */
0453     __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
0454 
0455     /*
0456      * Send out a clock pulse to signal we want the status
0457      */
0458     __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
0459              sbm_mdio);
0460     __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
0461 
0462     /*
0463      * If an error occurred, the PHY will signal '1' back
0464      */
0465     error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
0466 
0467     /*
0468      * Issue an 'idle' clock pulse, but keep the direction
0469      * the same.
0470      */
0471     __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
0472              sbm_mdio);
0473     __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
0474 
0475     regval = 0;
0476 
0477     for (idx = 0; idx < 16; idx++) {
0478         regval <<= 1;
0479 
0480         if (error == 0) {
0481             if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
0482                 regval |= 1;
0483         }
0484 
0485         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
0486                  sbm_mdio);
0487         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
0488     }
0489 
0490     /* Switch back to output */
0491     __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
0492 
0493     if (error == 0)
0494         return regval;
0495     return 0xffff;
0496 }
0497 
0498 
0499 /**********************************************************************
0500  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
0501  *
0502  *  Write a value to a PHY register.
0503  *
0504  *  Input parameters:
0505  *         bus     - MDIO bus handle
0506  *         phyaddr - PHY to use
0507  *         regidx  - register within the PHY
0508  *         regval  - data to write to register
0509  *
0510  *  Return value:
0511  *         0 for success
0512  ********************************************************************* */
0513 
0514 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
0515                u16 regval)
0516 {
0517     struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
0518     void __iomem *sbm_mdio = sc->sbm_mdio;
0519     int mac_mdio_genc;
0520 
0521     sbmac_mii_sync(sbm_mdio);
0522 
0523     sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
0524     sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
0525     sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
0526     sbmac_mii_senddata(sbm_mdio, regidx, 5);
0527     sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
0528     sbmac_mii_senddata(sbm_mdio, regval, 16);
0529 
0530     mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
0531 
0532     __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
0533 
0534     return 0;
0535 }
0536 
0537 
0538 
0539 /**********************************************************************
0540  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
0541  *
0542  *  Initialize a DMA channel context.  Since there are potentially
0543  *  eight DMA channels per MAC, it's nice to do this in a standard
0544  *  way.
0545  *
0546  *  Input parameters:
0547  *         d - struct sbmacdma (DMA channel context)
0548  *         s - struct sbmac_softc (pointer to a MAC)
0549  *         chan - channel number (0..1 right now)
0550  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
0551  *      maxdescr - number of descriptors
0552  *
0553  *  Return value:
0554  *         nothing
0555  ********************************************************************* */
0556 
0557 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
0558               int txrx, int maxdescr)
0559 {
0560 #ifdef CONFIG_SBMAC_COALESCE
0561     int int_pktcnt, int_timeout;
0562 #endif
0563 
0564     /*
0565      * Save away interesting stuff in the structure
0566      */
0567 
0568     d->sbdma_eth       = s;
0569     d->sbdma_channel   = chan;
0570     d->sbdma_txdir     = txrx;
0571 
0572 #if 0
0573     /* RMON clearing */
0574     s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
0575 #endif
0576 
0577     __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
0578     __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
0579     __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
0580     __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
0581     __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
0582     __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
0583     __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
0584     __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
0585     __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
0586     __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
0587     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
0588     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
0589     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
0590     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
0591     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
0592     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
0593     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
0594     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
0595     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
0596     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
0597     __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
0598 
0599     /*
0600      * initialize register pointers
0601      */
0602 
0603     d->sbdma_config0 =
0604         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
0605     d->sbdma_config1 =
0606         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
0607     d->sbdma_dscrbase =
0608         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
0609     d->sbdma_dscrcnt =
0610         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
0611     d->sbdma_curdscr =
0612         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
0613     if (d->sbdma_txdir)
0614         d->sbdma_oodpktlost = NULL;
0615     else
0616         d->sbdma_oodpktlost =
0617             s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
0618 
0619     /*
0620      * Allocate memory for the ring
0621      */
0622 
0623     d->sbdma_maxdescr = maxdescr;
0624 
0625     d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
0626                            sizeof(*d->sbdma_dscrtable),
0627                            GFP_KERNEL);
0628 
0629     /*
0630      * The descriptor table must be aligned to at least 16 bytes or the
0631      * MAC will corrupt it.
0632      */
0633     d->sbdma_dscrtable = (struct sbdmadscr *)
0634                  ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
0635                    sizeof(*d->sbdma_dscrtable));
0636 
0637     d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
0638 
0639     d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
0640 
0641     /*
0642      * And context table
0643      */
0644 
0645     d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
0646                     sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
0647 
0648 #ifdef CONFIG_SBMAC_COALESCE
0649     /*
0650      * Setup Rx/Tx DMA coalescing defaults
0651      */
0652 
0653     int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
0654     if ( int_pktcnt ) {
0655         d->sbdma_int_pktcnt = int_pktcnt;
0656     } else {
0657         d->sbdma_int_pktcnt = 1;
0658     }
0659 
0660     int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
0661     if ( int_timeout ) {
0662         d->sbdma_int_timeout = int_timeout;
0663     } else {
0664         d->sbdma_int_timeout = 0;
0665     }
0666 #endif
0667 
0668 }
0669 
0670 /**********************************************************************
0671  *  SBDMA_CHANNEL_START(d)
0672  *
0673  *  Initialize the hardware registers for a DMA channel.
0674  *
0675  *  Input parameters:
0676  *         d - DMA channel to init (context must be previously init'd
0677  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
0678  *
0679  *  Return value:
0680  *         nothing
0681  ********************************************************************* */
0682 
0683 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
0684 {
0685     /*
0686      * Turn on the DMA channel
0687      */
0688 
0689 #ifdef CONFIG_SBMAC_COALESCE
0690     __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
0691                0, d->sbdma_config1);
0692     __raw_writeq(M_DMA_EOP_INT_EN |
0693                V_DMA_RINGSZ(d->sbdma_maxdescr) |
0694                V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
0695                0, d->sbdma_config0);
0696 #else
0697     __raw_writeq(0, d->sbdma_config1);
0698     __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
0699                0, d->sbdma_config0);
0700 #endif
0701 
0702     __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
0703 
0704     /*
0705      * Initialize ring pointers
0706      */
0707 
0708     d->sbdma_addptr = d->sbdma_dscrtable;
0709     d->sbdma_remptr = d->sbdma_dscrtable;
0710 }
0711 
0712 /**********************************************************************
0713  *  SBDMA_CHANNEL_STOP(d)
0714  *
0715  *  Initialize the hardware registers for a DMA channel.
0716  *
0717  *  Input parameters:
0718  *         d - DMA channel to init (context must be previously init'd
0719  *
0720  *  Return value:
0721  *         nothing
0722  ********************************************************************* */
0723 
0724 static void sbdma_channel_stop(struct sbmacdma *d)
0725 {
0726     /*
0727      * Turn off the DMA channel
0728      */
0729 
0730     __raw_writeq(0, d->sbdma_config1);
0731 
0732     __raw_writeq(0, d->sbdma_dscrbase);
0733 
0734     __raw_writeq(0, d->sbdma_config0);
0735 
0736     /*
0737      * Zero ring pointers
0738      */
0739 
0740     d->sbdma_addptr = NULL;
0741     d->sbdma_remptr = NULL;
0742 }
0743 
0744 static inline void sbdma_align_skb(struct sk_buff *skb,
0745                    unsigned int power2, unsigned int offset)
0746 {
0747     unsigned char *addr = skb->data;
0748     unsigned char *newaddr = PTR_ALIGN(addr, power2);
0749 
0750     skb_reserve(skb, newaddr - addr + offset);
0751 }
0752 
0753 
0754 /**********************************************************************
0755  *  SBDMA_ADD_RCVBUFFER(d,sb)
0756  *
0757  *  Add a buffer to the specified DMA channel.   For receive channels,
0758  *  this queues a buffer for inbound packets.
0759  *
0760  *  Input parameters:
0761  *     sc - softc structure
0762  *          d - DMA channel descriptor
0763  *     sb - sk_buff to add, or NULL if we should allocate one
0764  *
0765  *  Return value:
0766  *         0 if buffer could not be added (ring is full)
0767  *         1 if buffer added successfully
0768  ********************************************************************* */
0769 
0770 
0771 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
0772                    struct sk_buff *sb)
0773 {
0774     struct net_device *dev = sc->sbm_dev;
0775     struct sbdmadscr *dsc;
0776     struct sbdmadscr *nextdsc;
0777     struct sk_buff *sb_new = NULL;
0778     int pktsize = ENET_PACKET_SIZE;
0779 
0780     /* get pointer to our current place in the ring */
0781 
0782     dsc = d->sbdma_addptr;
0783     nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
0784 
0785     /*
0786      * figure out if the ring is full - if the next descriptor
0787      * is the same as the one that we're going to remove from
0788      * the ring, the ring is full
0789      */
0790 
0791     if (nextdsc == d->sbdma_remptr) {
0792         return -ENOSPC;
0793     }
0794 
0795     /*
0796      * Allocate a sk_buff if we don't already have one.
0797      * If we do have an sk_buff, reset it so that it's empty.
0798      *
0799      * Note: sk_buffs don't seem to be guaranteed to have any sort
0800      * of alignment when they are allocated.  Therefore, allocate enough
0801      * extra space to make sure that:
0802      *
0803      *    1. the data does not start in the middle of a cache line.
0804      *    2. The data does not end in the middle of a cache line
0805      *    3. The buffer can be aligned such that the IP addresses are
0806      *       naturally aligned.
0807      *
0808      *  Remember, the SOCs MAC writes whole cache lines at a time,
0809      *  without reading the old contents first.  So, if the sk_buff's
0810      *  data portion starts in the middle of a cache line, the SOC
0811      *  DMA will trash the beginning (and ending) portions.
0812      */
0813 
0814     if (sb == NULL) {
0815         sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
0816                            SMP_CACHE_BYTES * 2 +
0817                            NET_IP_ALIGN);
0818         if (sb_new == NULL)
0819             return -ENOBUFS;
0820 
0821         sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
0822     }
0823     else {
0824         sb_new = sb;
0825         /*
0826          * nothing special to reinit buffer, it's already aligned
0827          * and sb->data already points to a good place.
0828          */
0829     }
0830 
0831     /*
0832      * fill in the descriptor
0833      */
0834 
0835 #ifdef CONFIG_SBMAC_COALESCE
0836     /*
0837      * Do not interrupt per DMA transfer.
0838      */
0839     dsc->dscr_a = virt_to_phys(sb_new->data) |
0840         V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
0841 #else
0842     dsc->dscr_a = virt_to_phys(sb_new->data) |
0843         V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
0844         M_DMA_DSCRA_INTERRUPT;
0845 #endif
0846 
0847     /* receiving: no options */
0848     dsc->dscr_b = 0;
0849 
0850     /*
0851      * fill in the context
0852      */
0853 
0854     d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
0855 
0856     /*
0857      * point at next packet
0858      */
0859 
0860     d->sbdma_addptr = nextdsc;
0861 
0862     /*
0863      * Give the buffer to the DMA engine.
0864      */
0865 
0866     __raw_writeq(1, d->sbdma_dscrcnt);
0867 
0868     return 0;                   /* we did it */
0869 }
0870 
0871 /**********************************************************************
0872  *  SBDMA_ADD_TXBUFFER(d,sb)
0873  *
0874  *  Add a transmit buffer to the specified DMA channel, causing a
0875  *  transmit to start.
0876  *
0877  *  Input parameters:
0878  *         d - DMA channel descriptor
0879  *     sb - sk_buff to add
0880  *
0881  *  Return value:
0882  *         0 transmit queued successfully
0883  *         otherwise error code
0884  ********************************************************************* */
0885 
0886 
0887 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
0888 {
0889     struct sbdmadscr *dsc;
0890     struct sbdmadscr *nextdsc;
0891     uint64_t phys;
0892     uint64_t ncb;
0893     int length;
0894 
0895     /* get pointer to our current place in the ring */
0896 
0897     dsc = d->sbdma_addptr;
0898     nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
0899 
0900     /*
0901      * figure out if the ring is full - if the next descriptor
0902      * is the same as the one that we're going to remove from
0903      * the ring, the ring is full
0904      */
0905 
0906     if (nextdsc == d->sbdma_remptr) {
0907         return -ENOSPC;
0908     }
0909 
0910     /*
0911      * Under Linux, it's not necessary to copy/coalesce buffers
0912      * like it is on NetBSD.  We think they're all contiguous,
0913      * but that may not be true for GBE.
0914      */
0915 
0916     length = sb->len;
0917 
0918     /*
0919      * fill in the descriptor.  Note that the number of cache
0920      * blocks in the descriptor is the number of blocks
0921      * *spanned*, so we need to add in the offset (if any)
0922      * while doing the calculation.
0923      */
0924 
0925     phys = virt_to_phys(sb->data);
0926     ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
0927 
0928     dsc->dscr_a = phys |
0929         V_DMA_DSCRA_A_SIZE(ncb) |
0930 #ifndef CONFIG_SBMAC_COALESCE
0931         M_DMA_DSCRA_INTERRUPT |
0932 #endif
0933         M_DMA_ETHTX_SOP;
0934 
0935     /* transmitting: set outbound options and length */
0936 
0937     dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
0938         V_DMA_DSCRB_PKT_SIZE(length);
0939 
0940     /*
0941      * fill in the context
0942      */
0943 
0944     d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
0945 
0946     /*
0947      * point at next packet
0948      */
0949 
0950     d->sbdma_addptr = nextdsc;
0951 
0952     /*
0953      * Give the buffer to the DMA engine.
0954      */
0955 
0956     __raw_writeq(1, d->sbdma_dscrcnt);
0957 
0958     return 0;                   /* we did it */
0959 }
0960 
0961 
0962 
0963 
0964 /**********************************************************************
0965  *  SBDMA_EMPTYRING(d)
0966  *
0967  *  Free all allocated sk_buffs on the specified DMA channel;
0968  *
0969  *  Input parameters:
0970  *         d  - DMA channel
0971  *
0972  *  Return value:
0973  *         nothing
0974  ********************************************************************* */
0975 
0976 static void sbdma_emptyring(struct sbmacdma *d)
0977 {
0978     int idx;
0979     struct sk_buff *sb;
0980 
0981     for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
0982         sb = d->sbdma_ctxtable[idx];
0983         if (sb) {
0984             dev_kfree_skb(sb);
0985             d->sbdma_ctxtable[idx] = NULL;
0986         }
0987     }
0988 }
0989 
0990 
0991 /**********************************************************************
0992  *  SBDMA_FILLRING(d)
0993  *
0994  *  Fill the specified DMA channel (must be receive channel)
0995  *  with sk_buffs
0996  *
0997  *  Input parameters:
0998  *     sc - softc structure
0999  *          d - DMA channel
1000  *
1001  *  Return value:
1002  *         nothing
1003  ********************************************************************* */
1004 
1005 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1006 {
1007     int idx;
1008 
1009     for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1010         if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1011             break;
1012     }
1013 }
1014 
1015 #ifdef CONFIG_NET_POLL_CONTROLLER
1016 static void sbmac_netpoll(struct net_device *netdev)
1017 {
1018     struct sbmac_softc *sc = netdev_priv(netdev);
1019     int irq = sc->sbm_dev->irq;
1020 
1021     __raw_writeq(0, sc->sbm_imr);
1022 
1023     sbmac_intr(irq, netdev);
1024 
1025 #ifdef CONFIG_SBMAC_COALESCE
1026     __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1027     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1028     sc->sbm_imr);
1029 #else
1030     __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1031     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1032 #endif
1033 }
1034 #endif
1035 
1036 /**********************************************************************
1037  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1038  *
1039  *  Process "completed" receive buffers on the specified DMA channel.
1040  *
1041  *  Input parameters:
1042  *            sc - softc structure
1043  *             d - DMA channel context
1044  *    work_to_do - no. of packets to process before enabling interrupt
1045  *                 again (for NAPI)
1046  *          poll - 1: using polling (for NAPI)
1047  *
1048  *  Return value:
1049  *         nothing
1050  ********************************************************************* */
1051 
1052 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1053                 int work_to_do, int poll)
1054 {
1055     struct net_device *dev = sc->sbm_dev;
1056     int curidx;
1057     int hwidx;
1058     struct sbdmadscr *dsc;
1059     struct sk_buff *sb;
1060     int len;
1061     int work_done = 0;
1062     int dropped = 0;
1063 
1064     prefetch(d);
1065 
1066 again:
1067     /* Check if the HW dropped any frames */
1068     dev->stats.rx_fifo_errors
1069         += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1070     __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1071 
1072     while (work_to_do-- > 0) {
1073         /*
1074          * figure out where we are (as an index) and where
1075          * the hardware is (also as an index)
1076          *
1077          * This could be done faster if (for example) the
1078          * descriptor table was page-aligned and contiguous in
1079          * both virtual and physical memory -- you could then
1080          * just compare the low-order bits of the virtual address
1081          * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1082          */
1083 
1084         dsc = d->sbdma_remptr;
1085         curidx = dsc - d->sbdma_dscrtable;
1086 
1087         prefetch(dsc);
1088         prefetch(&d->sbdma_ctxtable[curidx]);
1089 
1090         hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1091              d->sbdma_dscrtable_phys) /
1092             sizeof(*d->sbdma_dscrtable);
1093 
1094         /*
1095          * If they're the same, that means we've processed all
1096          * of the descriptors up to (but not including) the one that
1097          * the hardware is working on right now.
1098          */
1099 
1100         if (curidx == hwidx)
1101             goto done;
1102 
1103         /*
1104          * Otherwise, get the packet's sk_buff ptr back
1105          */
1106 
1107         sb = d->sbdma_ctxtable[curidx];
1108         d->sbdma_ctxtable[curidx] = NULL;
1109 
1110         len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1111 
1112         /*
1113          * Check packet status.  If good, process it.
1114          * If not, silently drop it and put it back on the
1115          * receive ring.
1116          */
1117 
1118         if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1119 
1120             /*
1121              * Add a new buffer to replace the old one.  If we fail
1122              * to allocate a buffer, we're going to drop this
1123              * packet and put it right back on the receive ring.
1124              */
1125 
1126             if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1127                      -ENOBUFS)) {
1128                 dev->stats.rx_dropped++;
1129                 /* Re-add old buffer */
1130                 sbdma_add_rcvbuffer(sc, d, sb);
1131                 /* No point in continuing at the moment */
1132                 printk(KERN_ERR "dropped packet (1)\n");
1133                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1134                 goto done;
1135             } else {
1136                 /*
1137                  * Set length into the packet
1138                  */
1139                 skb_put(sb,len);
1140 
1141                 /*
1142                  * Buffer has been replaced on the
1143                  * receive ring.  Pass the buffer to
1144                  * the kernel
1145                  */
1146                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1147                 /* Check hw IPv4/TCP checksum if supported */
1148                 if (sc->rx_hw_checksum == ENABLE) {
1149                     if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1150                         !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1151                         sb->ip_summed = CHECKSUM_UNNECESSARY;
1152                         /* don't need to set sb->csum */
1153                     } else {
1154                         skb_checksum_none_assert(sb);
1155                     }
1156                 }
1157                 prefetch(sb->data);
1158                 prefetch((const void *)(((char *)sb->data)+32));
1159                 if (poll)
1160                     dropped = netif_receive_skb(sb);
1161                 else
1162                     dropped = netif_rx(sb);
1163 
1164                 if (dropped == NET_RX_DROP) {
1165                     dev->stats.rx_dropped++;
1166                     d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1167                     goto done;
1168                 }
1169                 else {
1170                     dev->stats.rx_bytes += len;
1171                     dev->stats.rx_packets++;
1172                 }
1173             }
1174         } else {
1175             /*
1176              * Packet was mangled somehow.  Just drop it and
1177              * put it back on the receive ring.
1178              */
1179             dev->stats.rx_errors++;
1180             sbdma_add_rcvbuffer(sc, d, sb);
1181         }
1182 
1183 
1184         /*
1185          * .. and advance to the next buffer.
1186          */
1187 
1188         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1189         work_done++;
1190     }
1191     if (!poll) {
1192         work_to_do = 32;
1193         goto again; /* collect fifo drop statistics again */
1194     }
1195 done:
1196     return work_done;
1197 }
1198 
1199 /**********************************************************************
1200  *  SBDMA_TX_PROCESS(sc,d)
1201  *
1202  *  Process "completed" transmit buffers on the specified DMA channel.
1203  *  This is normally called within the interrupt service routine.
1204  *  Note that this isn't really ideal for priority channels, since
1205  *  it processes all of the packets on a given channel before
1206  *  returning.
1207  *
1208  *  Input parameters:
1209  *      sc - softc structure
1210  *       d - DMA channel context
1211  *    poll - 1: using polling (for NAPI)
1212  *
1213  *  Return value:
1214  *         nothing
1215  ********************************************************************* */
1216 
1217 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1218                  int poll)
1219 {
1220     struct net_device *dev = sc->sbm_dev;
1221     int curidx;
1222     int hwidx;
1223     struct sbdmadscr *dsc;
1224     struct sk_buff *sb;
1225     unsigned long flags;
1226     int packets_handled = 0;
1227 
1228     spin_lock_irqsave(&(sc->sbm_lock), flags);
1229 
1230     if (d->sbdma_remptr == d->sbdma_addptr)
1231       goto end_unlock;
1232 
1233     hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1234          d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1235 
1236     for (;;) {
1237         /*
1238          * figure out where we are (as an index) and where
1239          * the hardware is (also as an index)
1240          *
1241          * This could be done faster if (for example) the
1242          * descriptor table was page-aligned and contiguous in
1243          * both virtual and physical memory -- you could then
1244          * just compare the low-order bits of the virtual address
1245          * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1246          */
1247 
1248         curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1249 
1250         /*
1251          * If they're the same, that means we've processed all
1252          * of the descriptors up to (but not including) the one that
1253          * the hardware is working on right now.
1254          */
1255 
1256         if (curidx == hwidx)
1257             break;
1258 
1259         /*
1260          * Otherwise, get the packet's sk_buff ptr back
1261          */
1262 
1263         dsc = &(d->sbdma_dscrtable[curidx]);
1264         sb = d->sbdma_ctxtable[curidx];
1265         d->sbdma_ctxtable[curidx] = NULL;
1266 
1267         /*
1268          * Stats
1269          */
1270 
1271         dev->stats.tx_bytes += sb->len;
1272         dev->stats.tx_packets++;
1273 
1274         /*
1275          * for transmits, we just free buffers.
1276          */
1277 
1278         dev_consume_skb_irq(sb);
1279 
1280         /*
1281          * .. and advance to the next buffer.
1282          */
1283 
1284         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1285 
1286         packets_handled++;
1287 
1288     }
1289 
1290     /*
1291      * Decide if we should wake up the protocol or not.
1292      * Other drivers seem to do this when we reach a low
1293      * watermark on the transmit queue.
1294      */
1295 
1296     if (packets_handled)
1297         netif_wake_queue(d->sbdma_eth->sbm_dev);
1298 
1299 end_unlock:
1300     spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1301 
1302 }
1303 
1304 
1305 
1306 /**********************************************************************
1307  *  SBMAC_INITCTX(s)
1308  *
1309  *  Initialize an Ethernet context structure - this is called
1310  *  once per MAC on the 1250.  Memory is allocated here, so don't
1311  *  call it again from inside the ioctl routines that bring the
1312  *  interface up/down
1313  *
1314  *  Input parameters:
1315  *         s - sbmac context structure
1316  *
1317  *  Return value:
1318  *         0
1319  ********************************************************************* */
1320 
1321 static int sbmac_initctx(struct sbmac_softc *s)
1322 {
1323 
1324     /*
1325      * figure out the addresses of some ports
1326      */
1327 
1328     s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1329     s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1330     s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1331     s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1332     s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1333     s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1334     s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1335     s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1336 
1337     /*
1338      * Initialize the DMA channels.  Right now, only one per MAC is used
1339      * Note: Only do this _once_, as it allocates memory from the kernel!
1340      */
1341 
1342     sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1343     sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1344 
1345     /*
1346      * initial state is OFF
1347      */
1348 
1349     s->sbm_state = sbmac_state_off;
1350 
1351     return 0;
1352 }
1353 
1354 
1355 static void sbdma_uninitctx(struct sbmacdma *d)
1356 {
1357     kfree(d->sbdma_dscrtable_unaligned);
1358     d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1359 
1360     kfree(d->sbdma_ctxtable);
1361     d->sbdma_ctxtable = NULL;
1362 }
1363 
1364 
1365 static void sbmac_uninitctx(struct sbmac_softc *sc)
1366 {
1367     sbdma_uninitctx(&(sc->sbm_txdma));
1368     sbdma_uninitctx(&(sc->sbm_rxdma));
1369 }
1370 
1371 
1372 /**********************************************************************
1373  *  SBMAC_CHANNEL_START(s)
1374  *
1375  *  Start packet processing on this MAC.
1376  *
1377  *  Input parameters:
1378  *         s - sbmac structure
1379  *
1380  *  Return value:
1381  *         nothing
1382  ********************************************************************* */
1383 
1384 static void sbmac_channel_start(struct sbmac_softc *s)
1385 {
1386     uint64_t reg;
1387     void __iomem *port;
1388     uint64_t cfg,fifo,framecfg;
1389     int idx, th_value;
1390 
1391     /*
1392      * Don't do this if running
1393      */
1394 
1395     if (s->sbm_state == sbmac_state_on)
1396         return;
1397 
1398     /*
1399      * Bring the controller out of reset, but leave it off.
1400      */
1401 
1402     __raw_writeq(0, s->sbm_macenable);
1403 
1404     /*
1405      * Ignore all received packets
1406      */
1407 
1408     __raw_writeq(0, s->sbm_rxfilter);
1409 
1410     /*
1411      * Calculate values for various control registers.
1412      */
1413 
1414     cfg = M_MAC_RETRY_EN |
1415         M_MAC_TX_HOLD_SOP_EN |
1416         V_MAC_TX_PAUSE_CNT_16K |
1417         M_MAC_AP_STAT_EN |
1418         M_MAC_FAST_SYNC |
1419         M_MAC_SS_EN |
1420         0;
1421 
1422     /*
1423      * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1424      * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1425      * Use a larger RD_THRSH for gigabit
1426      */
1427     if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1428         th_value = 28;
1429     else
1430         th_value = 64;
1431 
1432     fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1433         ((s->sbm_speed == sbmac_speed_1000)
1434          ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1435         V_MAC_TX_RL_THRSH(4) |
1436         V_MAC_RX_PL_THRSH(4) |
1437         V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1438         V_MAC_RX_RL_THRSH(8) |
1439         0;
1440 
1441     framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1442         V_MAC_MAX_FRAMESZ_DEFAULT |
1443         V_MAC_BACKOFF_SEL(1);
1444 
1445     /*
1446      * Clear out the hash address map
1447      */
1448 
1449     port = s->sbm_base + R_MAC_HASH_BASE;
1450     for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1451         __raw_writeq(0, port);
1452         port += sizeof(uint64_t);
1453     }
1454 
1455     /*
1456      * Clear out the exact-match table
1457      */
1458 
1459     port = s->sbm_base + R_MAC_ADDR_BASE;
1460     for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1461         __raw_writeq(0, port);
1462         port += sizeof(uint64_t);
1463     }
1464 
1465     /*
1466      * Clear out the DMA Channel mapping table registers
1467      */
1468 
1469     port = s->sbm_base + R_MAC_CHUP0_BASE;
1470     for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1471         __raw_writeq(0, port);
1472         port += sizeof(uint64_t);
1473     }
1474 
1475 
1476     port = s->sbm_base + R_MAC_CHLO0_BASE;
1477     for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1478         __raw_writeq(0, port);
1479         port += sizeof(uint64_t);
1480     }
1481 
1482     /*
1483      * Program the hardware address.  It goes into the hardware-address
1484      * register as well as the first filter register.
1485      */
1486 
1487     reg = sbmac_addr2reg(s->sbm_hwaddr);
1488 
1489     port = s->sbm_base + R_MAC_ADDR_BASE;
1490     __raw_writeq(reg, port);
1491     port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1492 
1493     __raw_writeq(reg, port);
1494 
1495     /*
1496      * Set the receive filter for no packets, and write values
1497      * to the various config registers
1498      */
1499 
1500     __raw_writeq(0, s->sbm_rxfilter);
1501     __raw_writeq(0, s->sbm_imr);
1502     __raw_writeq(framecfg, s->sbm_framecfg);
1503     __raw_writeq(fifo, s->sbm_fifocfg);
1504     __raw_writeq(cfg, s->sbm_maccfg);
1505 
1506     /*
1507      * Initialize DMA channels (rings should be ok now)
1508      */
1509 
1510     sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1511     sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1512 
1513     /*
1514      * Configure the speed, duplex, and flow control
1515      */
1516 
1517     sbmac_set_speed(s,s->sbm_speed);
1518     sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1519 
1520     /*
1521      * Fill the receive ring
1522      */
1523 
1524     sbdma_fillring(s, &(s->sbm_rxdma));
1525 
1526     /*
1527      * Turn on the rest of the bits in the enable register
1528      */
1529 
1530 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1531     __raw_writeq(M_MAC_RXDMA_EN0 |
1532                M_MAC_TXDMA_EN0, s->sbm_macenable);
1533 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1534     __raw_writeq(M_MAC_RXDMA_EN0 |
1535                M_MAC_TXDMA_EN0 |
1536                M_MAC_RX_ENABLE |
1537                M_MAC_TX_ENABLE, s->sbm_macenable);
1538 #else
1539 #error invalid SiByte MAC configuration
1540 #endif
1541 
1542 #ifdef CONFIG_SBMAC_COALESCE
1543     __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1544                ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1545 #else
1546     __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1547                (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1548 #endif
1549 
1550     /*
1551      * Enable receiving unicasts and broadcasts
1552      */
1553 
1554     __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1555 
1556     /*
1557      * we're running now.
1558      */
1559 
1560     s->sbm_state = sbmac_state_on;
1561 
1562     /*
1563      * Program multicast addresses
1564      */
1565 
1566     sbmac_setmulti(s);
1567 
1568     /*
1569      * If channel was in promiscuous mode before, turn that on
1570      */
1571 
1572     if (s->sbm_devflags & IFF_PROMISC) {
1573         sbmac_promiscuous_mode(s,1);
1574     }
1575 
1576 }
1577 
1578 
1579 /**********************************************************************
1580  *  SBMAC_CHANNEL_STOP(s)
1581  *
1582  *  Stop packet processing on this MAC.
1583  *
1584  *  Input parameters:
1585  *         s - sbmac structure
1586  *
1587  *  Return value:
1588  *         nothing
1589  ********************************************************************* */
1590 
1591 static void sbmac_channel_stop(struct sbmac_softc *s)
1592 {
1593     /* don't do this if already stopped */
1594 
1595     if (s->sbm_state == sbmac_state_off)
1596         return;
1597 
1598     /* don't accept any packets, disable all interrupts */
1599 
1600     __raw_writeq(0, s->sbm_rxfilter);
1601     __raw_writeq(0, s->sbm_imr);
1602 
1603     /* Turn off ticker */
1604 
1605     /* XXX */
1606 
1607     /* turn off receiver and transmitter */
1608 
1609     __raw_writeq(0, s->sbm_macenable);
1610 
1611     /* We're stopped now. */
1612 
1613     s->sbm_state = sbmac_state_off;
1614 
1615     /*
1616      * Stop DMA channels (rings should be ok now)
1617      */
1618 
1619     sbdma_channel_stop(&(s->sbm_rxdma));
1620     sbdma_channel_stop(&(s->sbm_txdma));
1621 
1622     /* Empty the receive and transmit rings */
1623 
1624     sbdma_emptyring(&(s->sbm_rxdma));
1625     sbdma_emptyring(&(s->sbm_txdma));
1626 
1627 }
1628 
1629 /**********************************************************************
1630  *  SBMAC_SET_CHANNEL_STATE(state)
1631  *
1632  *  Set the channel's state ON or OFF
1633  *
1634  *  Input parameters:
1635  *         state - new state
1636  *
1637  *  Return value:
1638  *         old state
1639  ********************************************************************* */
1640 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1641                         enum sbmac_state state)
1642 {
1643     enum sbmac_state oldstate = sc->sbm_state;
1644 
1645     /*
1646      * If same as previous state, return
1647      */
1648 
1649     if (state == oldstate) {
1650         return oldstate;
1651     }
1652 
1653     /*
1654      * If new state is ON, turn channel on
1655      */
1656 
1657     if (state == sbmac_state_on) {
1658         sbmac_channel_start(sc);
1659     }
1660     else {
1661         sbmac_channel_stop(sc);
1662     }
1663 
1664     /*
1665      * Return previous state
1666      */
1667 
1668     return oldstate;
1669 }
1670 
1671 
1672 /**********************************************************************
1673  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1674  *
1675  *  Turn on or off promiscuous mode
1676  *
1677  *  Input parameters:
1678  *         sc - softc
1679  *      onoff - 1 to turn on, 0 to turn off
1680  *
1681  *  Return value:
1682  *         nothing
1683  ********************************************************************* */
1684 
1685 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1686 {
1687     uint64_t reg;
1688 
1689     if (sc->sbm_state != sbmac_state_on)
1690         return;
1691 
1692     if (onoff) {
1693         reg = __raw_readq(sc->sbm_rxfilter);
1694         reg |= M_MAC_ALLPKT_EN;
1695         __raw_writeq(reg, sc->sbm_rxfilter);
1696     }
1697     else {
1698         reg = __raw_readq(sc->sbm_rxfilter);
1699         reg &= ~M_MAC_ALLPKT_EN;
1700         __raw_writeq(reg, sc->sbm_rxfilter);
1701     }
1702 }
1703 
1704 /**********************************************************************
1705  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1706  *
1707  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1708  *
1709  *  Input parameters:
1710  *         sc - softc
1711  *
1712  *  Return value:
1713  *         nothing
1714  ********************************************************************* */
1715 
1716 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1717 {
1718     uint64_t reg;
1719 
1720     /* Hard code the off set to 15 for now */
1721     reg = __raw_readq(sc->sbm_rxfilter);
1722     reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1723     __raw_writeq(reg, sc->sbm_rxfilter);
1724 
1725     /* BCM1250 pass1 didn't have hardware checksum.  Everything
1726        later does.  */
1727     if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1728         sc->rx_hw_checksum = DISABLE;
1729     } else {
1730         sc->rx_hw_checksum = ENABLE;
1731     }
1732 }
1733 
1734 
1735 /**********************************************************************
1736  *  SBMAC_ADDR2REG(ptr)
1737  *
1738  *  Convert six bytes into the 64-bit register value that
1739  *  we typically write into the SBMAC's address/mcast registers
1740  *
1741  *  Input parameters:
1742  *         ptr - pointer to 6 bytes
1743  *
1744  *  Return value:
1745  *         register value
1746  ********************************************************************* */
1747 
1748 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1749 {
1750     uint64_t reg = 0;
1751 
1752     ptr += 6;
1753 
1754     reg |= (uint64_t) *(--ptr);
1755     reg <<= 8;
1756     reg |= (uint64_t) *(--ptr);
1757     reg <<= 8;
1758     reg |= (uint64_t) *(--ptr);
1759     reg <<= 8;
1760     reg |= (uint64_t) *(--ptr);
1761     reg <<= 8;
1762     reg |= (uint64_t) *(--ptr);
1763     reg <<= 8;
1764     reg |= (uint64_t) *(--ptr);
1765 
1766     return reg;
1767 }
1768 
1769 
1770 /**********************************************************************
1771  *  SBMAC_SET_SPEED(s,speed)
1772  *
1773  *  Configure LAN speed for the specified MAC.
1774  *  Warning: must be called when MAC is off!
1775  *
1776  *  Input parameters:
1777  *         s - sbmac structure
1778  *         speed - speed to set MAC to (see enum sbmac_speed)
1779  *
1780  *  Return value:
1781  *         1 if successful
1782  *      0 indicates invalid parameters
1783  ********************************************************************* */
1784 
1785 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1786 {
1787     uint64_t cfg;
1788     uint64_t framecfg;
1789 
1790     /*
1791      * Save new current values
1792      */
1793 
1794     s->sbm_speed = speed;
1795 
1796     if (s->sbm_state == sbmac_state_on)
1797         return 0;   /* save for next restart */
1798 
1799     /*
1800      * Read current register values
1801      */
1802 
1803     cfg = __raw_readq(s->sbm_maccfg);
1804     framecfg = __raw_readq(s->sbm_framecfg);
1805 
1806     /*
1807      * Mask out the stuff we want to change
1808      */
1809 
1810     cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1811     framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1812               M_MAC_SLOT_SIZE);
1813 
1814     /*
1815      * Now add in the new bits
1816      */
1817 
1818     switch (speed) {
1819     case sbmac_speed_10:
1820         framecfg |= V_MAC_IFG_RX_10 |
1821             V_MAC_IFG_TX_10 |
1822             K_MAC_IFG_THRSH_10 |
1823             V_MAC_SLOT_SIZE_10;
1824         cfg |= V_MAC_SPEED_SEL_10MBPS;
1825         break;
1826 
1827     case sbmac_speed_100:
1828         framecfg |= V_MAC_IFG_RX_100 |
1829             V_MAC_IFG_TX_100 |
1830             V_MAC_IFG_THRSH_100 |
1831             V_MAC_SLOT_SIZE_100;
1832         cfg |= V_MAC_SPEED_SEL_100MBPS ;
1833         break;
1834 
1835     case sbmac_speed_1000:
1836         framecfg |= V_MAC_IFG_RX_1000 |
1837             V_MAC_IFG_TX_1000 |
1838             V_MAC_IFG_THRSH_1000 |
1839             V_MAC_SLOT_SIZE_1000;
1840         cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1841         break;
1842 
1843     default:
1844         return 0;
1845     }
1846 
1847     /*
1848      * Send the bits back to the hardware
1849      */
1850 
1851     __raw_writeq(framecfg, s->sbm_framecfg);
1852     __raw_writeq(cfg, s->sbm_maccfg);
1853 
1854     return 1;
1855 }
1856 
1857 /**********************************************************************
1858  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1859  *
1860  *  Set Ethernet duplex and flow control options for this MAC
1861  *  Warning: must be called when MAC is off!
1862  *
1863  *  Input parameters:
1864  *         s - sbmac structure
1865  *         duplex - duplex setting (see enum sbmac_duplex)
1866  *         fc - flow control setting (see enum sbmac_fc)
1867  *
1868  *  Return value:
1869  *         1 if ok
1870  *         0 if an invalid parameter combination was specified
1871  ********************************************************************* */
1872 
1873 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1874                 enum sbmac_fc fc)
1875 {
1876     uint64_t cfg;
1877 
1878     /*
1879      * Save new current values
1880      */
1881 
1882     s->sbm_duplex = duplex;
1883     s->sbm_fc = fc;
1884 
1885     if (s->sbm_state == sbmac_state_on)
1886         return 0;   /* save for next restart */
1887 
1888     /*
1889      * Read current register values
1890      */
1891 
1892     cfg = __raw_readq(s->sbm_maccfg);
1893 
1894     /*
1895      * Mask off the stuff we're about to change
1896      */
1897 
1898     cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1899 
1900 
1901     switch (duplex) {
1902     case sbmac_duplex_half:
1903         switch (fc) {
1904         case sbmac_fc_disabled:
1905             cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1906             break;
1907 
1908         case sbmac_fc_collision:
1909             cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1910             break;
1911 
1912         case sbmac_fc_carrier:
1913             cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1914             break;
1915 
1916         case sbmac_fc_frame:        /* not valid in half duplex */
1917         default:            /* invalid selection */
1918             return 0;
1919         }
1920         break;
1921 
1922     case sbmac_duplex_full:
1923         switch (fc) {
1924         case sbmac_fc_disabled:
1925             cfg |= V_MAC_FC_CMD_DISABLED;
1926             break;
1927 
1928         case sbmac_fc_frame:
1929             cfg |= V_MAC_FC_CMD_ENABLED;
1930             break;
1931 
1932         case sbmac_fc_collision:    /* not valid in full duplex */
1933         case sbmac_fc_carrier:      /* not valid in full duplex */
1934         default:
1935             return 0;
1936         }
1937         break;
1938     default:
1939         return 0;
1940     }
1941 
1942     /*
1943      * Send the bits back to the hardware
1944      */
1945 
1946     __raw_writeq(cfg, s->sbm_maccfg);
1947 
1948     return 1;
1949 }
1950 
1951 
1952 
1953 
1954 /**********************************************************************
1955  *  SBMAC_INTR()
1956  *
1957  *  Interrupt handler for MAC interrupts
1958  *
1959  *  Input parameters:
1960  *         MAC structure
1961  *
1962  *  Return value:
1963  *         nothing
1964  ********************************************************************* */
1965 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1966 {
1967     struct net_device *dev = (struct net_device *) dev_instance;
1968     struct sbmac_softc *sc = netdev_priv(dev);
1969     uint64_t isr;
1970     int handled = 0;
1971 
1972     /*
1973      * Read the ISR (this clears the bits in the real
1974      * register, except for counter addr)
1975      */
1976 
1977     isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1978 
1979     if (isr == 0)
1980         return IRQ_RETVAL(0);
1981     handled = 1;
1982 
1983     /*
1984      * Transmits on channel 0
1985      */
1986 
1987     if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
1988         sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
1989 
1990     if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1991         if (napi_schedule_prep(&sc->napi)) {
1992             __raw_writeq(0, sc->sbm_imr);
1993             __napi_schedule(&sc->napi);
1994             /* Depend on the exit from poll to reenable intr */
1995         }
1996         else {
1997             /* may leave some packets behind */
1998             sbdma_rx_process(sc,&(sc->sbm_rxdma),
1999                      SBMAC_MAX_RXDESCR * 2, 0);
2000         }
2001     }
2002     return IRQ_RETVAL(handled);
2003 }
2004 
2005 /**********************************************************************
2006  *  SBMAC_START_TX(skb,dev)
2007  *
2008  *  Start output on the specified interface.  Basically, we
2009  *  queue as many buffers as we can until the ring fills up, or
2010  *  we run off the end of the queue, whichever comes first.
2011  *
2012  *  Input parameters:
2013  *
2014  *
2015  *  Return value:
2016  *         nothing
2017  ********************************************************************* */
2018 static netdev_tx_t sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2019 {
2020     struct sbmac_softc *sc = netdev_priv(dev);
2021     unsigned long flags;
2022 
2023     /* lock eth irq */
2024     spin_lock_irqsave(&sc->sbm_lock, flags);
2025 
2026     /*
2027      * Put the buffer on the transmit ring.  If we
2028      * don't have room, stop the queue.
2029      */
2030 
2031     if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2032         /* XXX save skb that we could not send */
2033         netif_stop_queue(dev);
2034         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2035 
2036         return NETDEV_TX_BUSY;
2037     }
2038 
2039     spin_unlock_irqrestore(&sc->sbm_lock, flags);
2040 
2041     return NETDEV_TX_OK;
2042 }
2043 
2044 /**********************************************************************
2045  *  SBMAC_SETMULTI(sc)
2046  *
2047  *  Reprogram the multicast table into the hardware, given
2048  *  the list of multicasts associated with the interface
2049  *  structure.
2050  *
2051  *  Input parameters:
2052  *         sc - softc
2053  *
2054  *  Return value:
2055  *         nothing
2056  ********************************************************************* */
2057 
2058 static void sbmac_setmulti(struct sbmac_softc *sc)
2059 {
2060     uint64_t reg;
2061     void __iomem *port;
2062     int idx;
2063     struct netdev_hw_addr *ha;
2064     struct net_device *dev = sc->sbm_dev;
2065 
2066     /*
2067      * Clear out entire multicast table.  We do this by nuking
2068      * the entire hash table and all the direct matches except
2069      * the first one, which is used for our station address
2070      */
2071 
2072     for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2073         port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2074         __raw_writeq(0, port);
2075     }
2076 
2077     for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2078         port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2079         __raw_writeq(0, port);
2080     }
2081 
2082     /*
2083      * Clear the filter to say we don't want any multicasts.
2084      */
2085 
2086     reg = __raw_readq(sc->sbm_rxfilter);
2087     reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2088     __raw_writeq(reg, sc->sbm_rxfilter);
2089 
2090     if (dev->flags & IFF_ALLMULTI) {
2091         /*
2092          * Enable ALL multicasts.  Do this by inverting the
2093          * multicast enable bit.
2094          */
2095         reg = __raw_readq(sc->sbm_rxfilter);
2096         reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2097         __raw_writeq(reg, sc->sbm_rxfilter);
2098         return;
2099     }
2100 
2101 
2102     /*
2103      * Progam new multicast entries.  For now, only use the
2104      * perfect filter.  In the future we'll need to use the
2105      * hash filter if the perfect filter overflows
2106      */
2107 
2108     /* XXX only using perfect filter for now, need to use hash
2109      * XXX if the table overflows */
2110 
2111     idx = 1;        /* skip station address */
2112     netdev_for_each_mc_addr(ha, dev) {
2113         if (idx == MAC_ADDR_COUNT)
2114             break;
2115         reg = sbmac_addr2reg(ha->addr);
2116         port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2117         __raw_writeq(reg, port);
2118         idx++;
2119     }
2120 
2121     /*
2122      * Enable the "accept multicast bits" if we programmed at least one
2123      * multicast.
2124      */
2125 
2126     if (idx > 1) {
2127         reg = __raw_readq(sc->sbm_rxfilter);
2128         reg |= M_MAC_MCAST_EN;
2129         __raw_writeq(reg, sc->sbm_rxfilter);
2130     }
2131 }
2132 
2133 static const struct net_device_ops sbmac_netdev_ops = {
2134     .ndo_open       = sbmac_open,
2135     .ndo_stop       = sbmac_close,
2136     .ndo_start_xmit     = sbmac_start_tx,
2137     .ndo_set_rx_mode    = sbmac_set_rx_mode,
2138     .ndo_tx_timeout     = sbmac_tx_timeout,
2139     .ndo_eth_ioctl      = sbmac_mii_ioctl,
2140     .ndo_validate_addr  = eth_validate_addr,
2141     .ndo_set_mac_address    = eth_mac_addr,
2142 #ifdef CONFIG_NET_POLL_CONTROLLER
2143     .ndo_poll_controller    = sbmac_netpoll,
2144 #endif
2145 };
2146 
2147 /**********************************************************************
2148  *  SBMAC_INIT(dev)
2149  *
2150  *  Attach routine - init hardware and hook ourselves into linux
2151  *
2152  *  Input parameters:
2153  *         dev - net_device structure
2154  *
2155  *  Return value:
2156  *         status
2157  ********************************************************************* */
2158 
2159 static int sbmac_init(struct platform_device *pldev, long long base)
2160 {
2161     struct net_device *dev = platform_get_drvdata(pldev);
2162     int idx = pldev->id;
2163     struct sbmac_softc *sc = netdev_priv(dev);
2164     unsigned char *eaddr;
2165     uint64_t ea_reg;
2166     int i;
2167     int err;
2168 
2169     sc->sbm_dev = dev;
2170     sc->sbe_idx = idx;
2171 
2172     eaddr = sc->sbm_hwaddr;
2173 
2174     /*
2175      * Read the ethernet address.  The firmware left this programmed
2176      * for us in the ethernet address register for each mac.
2177      */
2178 
2179     ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2180     __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2181     for (i = 0; i < 6; i++) {
2182         eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2183         ea_reg >>= 8;
2184     }
2185 
2186     eth_hw_addr_set(dev, eaddr);
2187 
2188     /*
2189      * Initialize context (get pointers to registers and stuff), then
2190      * allocate the memory for the descriptor tables.
2191      */
2192 
2193     sbmac_initctx(sc);
2194 
2195     /*
2196      * Set up Linux device callins
2197      */
2198 
2199     spin_lock_init(&(sc->sbm_lock));
2200 
2201     dev->netdev_ops = &sbmac_netdev_ops;
2202     dev->watchdog_timeo = TX_TIMEOUT;
2203     dev->min_mtu = 0;
2204     dev->max_mtu = ENET_PACKET_SIZE;
2205 
2206     netif_napi_add_weight(dev, &sc->napi, sbmac_poll, 16);
2207 
2208     dev->irq        = UNIT_INT(idx);
2209 
2210     /* This is needed for PASS2 for Rx H/W checksum feature */
2211     sbmac_set_iphdr_offset(sc);
2212 
2213     sc->mii_bus = mdiobus_alloc();
2214     if (sc->mii_bus == NULL) {
2215         err = -ENOMEM;
2216         goto uninit_ctx;
2217     }
2218 
2219     sc->mii_bus->name = sbmac_mdio_string;
2220     snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2221         pldev->name, idx);
2222     sc->mii_bus->priv = sc;
2223     sc->mii_bus->read = sbmac_mii_read;
2224     sc->mii_bus->write = sbmac_mii_write;
2225 
2226     sc->mii_bus->parent = &pldev->dev;
2227     /*
2228      * Probe PHY address
2229      */
2230     err = mdiobus_register(sc->mii_bus);
2231     if (err) {
2232         printk(KERN_ERR "%s: unable to register MDIO bus\n",
2233                dev->name);
2234         goto free_mdio;
2235     }
2236     platform_set_drvdata(pldev, sc->mii_bus);
2237 
2238     err = register_netdev(dev);
2239     if (err) {
2240         printk(KERN_ERR "%s.%d: unable to register netdev\n",
2241                sbmac_string, idx);
2242         goto unreg_mdio;
2243     }
2244 
2245     pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2246 
2247     if (sc->rx_hw_checksum == ENABLE)
2248         pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2249 
2250     /*
2251      * Display Ethernet address (this is called during the config
2252      * process so we need to finish off the config message that
2253      * was being displayed)
2254      */
2255     pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2256            dev->name, base, eaddr);
2257 
2258     return 0;
2259 unreg_mdio:
2260     mdiobus_unregister(sc->mii_bus);
2261 free_mdio:
2262     mdiobus_free(sc->mii_bus);
2263 uninit_ctx:
2264     sbmac_uninitctx(sc);
2265     return err;
2266 }
2267 
2268 
2269 static int sbmac_open(struct net_device *dev)
2270 {
2271     struct sbmac_softc *sc = netdev_priv(dev);
2272     int err;
2273 
2274     if (debug > 1)
2275         pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2276 
2277     /*
2278      * map/route interrupt (clear status first, in case something
2279      * weird is pending; we haven't initialized the mac registers
2280      * yet)
2281      */
2282 
2283     __raw_readq(sc->sbm_isr);
2284     err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2285     if (err) {
2286         printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2287                dev->irq);
2288         goto out_err;
2289     }
2290 
2291     sc->sbm_speed = sbmac_speed_none;
2292     sc->sbm_duplex = sbmac_duplex_none;
2293     sc->sbm_fc = sbmac_fc_none;
2294     sc->sbm_pause = -1;
2295     sc->sbm_link = 0;
2296 
2297     /*
2298      * Attach to the PHY
2299      */
2300     err = sbmac_mii_probe(dev);
2301     if (err)
2302         goto out_unregister;
2303 
2304     /*
2305      * Turn on the channel
2306      */
2307 
2308     sbmac_set_channel_state(sc,sbmac_state_on);
2309 
2310     netif_start_queue(dev);
2311 
2312     sbmac_set_rx_mode(dev);
2313 
2314     phy_start(sc->phy_dev);
2315 
2316     napi_enable(&sc->napi);
2317 
2318     return 0;
2319 
2320 out_unregister:
2321     free_irq(dev->irq, dev);
2322 out_err:
2323     return err;
2324 }
2325 
2326 static int sbmac_mii_probe(struct net_device *dev)
2327 {
2328     struct sbmac_softc *sc = netdev_priv(dev);
2329     struct phy_device *phy_dev;
2330 
2331     phy_dev = phy_find_first(sc->mii_bus);
2332     if (!phy_dev) {
2333         printk(KERN_ERR "%s: no PHY found\n", dev->name);
2334         return -ENXIO;
2335     }
2336 
2337     phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2338                   &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2339     if (IS_ERR(phy_dev)) {
2340         printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2341         return PTR_ERR(phy_dev);
2342     }
2343 
2344     /* Remove any features not supported by the controller */
2345     phy_set_max_speed(phy_dev, SPEED_1000);
2346     phy_support_asym_pause(phy_dev);
2347 
2348     phy_attached_info(phy_dev);
2349 
2350     sc->phy_dev = phy_dev;
2351 
2352     return 0;
2353 }
2354 
2355 
2356 static void sbmac_mii_poll(struct net_device *dev)
2357 {
2358     struct sbmac_softc *sc = netdev_priv(dev);
2359     struct phy_device *phy_dev = sc->phy_dev;
2360     unsigned long flags;
2361     enum sbmac_fc fc;
2362     int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2363 
2364     link_chg = (sc->sbm_link != phy_dev->link);
2365     speed_chg = (sc->sbm_speed != phy_dev->speed);
2366     duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2367     pause_chg = (sc->sbm_pause != phy_dev->pause);
2368 
2369     if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2370         return;                 /* Hmmm... */
2371 
2372     if (!phy_dev->link) {
2373         if (link_chg) {
2374             sc->sbm_link = phy_dev->link;
2375             sc->sbm_speed = sbmac_speed_none;
2376             sc->sbm_duplex = sbmac_duplex_none;
2377             sc->sbm_fc = sbmac_fc_disabled;
2378             sc->sbm_pause = -1;
2379             pr_info("%s: link unavailable\n", dev->name);
2380         }
2381         return;
2382     }
2383 
2384     if (phy_dev->duplex == DUPLEX_FULL) {
2385         if (phy_dev->pause)
2386             fc = sbmac_fc_frame;
2387         else
2388             fc = sbmac_fc_disabled;
2389     } else
2390         fc = sbmac_fc_collision;
2391     fc_chg = (sc->sbm_fc != fc);
2392 
2393     pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2394         phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2395 
2396     spin_lock_irqsave(&sc->sbm_lock, flags);
2397 
2398     sc->sbm_speed = phy_dev->speed;
2399     sc->sbm_duplex = phy_dev->duplex;
2400     sc->sbm_fc = fc;
2401     sc->sbm_pause = phy_dev->pause;
2402     sc->sbm_link = phy_dev->link;
2403 
2404     if ((speed_chg || duplex_chg || fc_chg) &&
2405         sc->sbm_state != sbmac_state_off) {
2406         /*
2407          * something changed, restart the channel
2408          */
2409         if (debug > 1)
2410             pr_debug("%s: restarting channel "
2411                  "because PHY state changed\n", dev->name);
2412         sbmac_channel_stop(sc);
2413         sbmac_channel_start(sc);
2414     }
2415 
2416     spin_unlock_irqrestore(&sc->sbm_lock, flags);
2417 }
2418 
2419 
2420 static void sbmac_tx_timeout (struct net_device *dev, unsigned int txqueue)
2421 {
2422     struct sbmac_softc *sc = netdev_priv(dev);
2423     unsigned long flags;
2424 
2425     spin_lock_irqsave(&sc->sbm_lock, flags);
2426 
2427 
2428     netif_trans_update(dev); /* prevent tx timeout */
2429     dev->stats.tx_errors++;
2430 
2431     spin_unlock_irqrestore(&sc->sbm_lock, flags);
2432 
2433     printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2434 }
2435 
2436 
2437 
2438 
2439 static void sbmac_set_rx_mode(struct net_device *dev)
2440 {
2441     unsigned long flags;
2442     struct sbmac_softc *sc = netdev_priv(dev);
2443 
2444     spin_lock_irqsave(&sc->sbm_lock, flags);
2445     if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2446         /*
2447          * Promiscuous changed.
2448          */
2449 
2450         if (dev->flags & IFF_PROMISC) {
2451             sbmac_promiscuous_mode(sc,1);
2452         }
2453         else {
2454             sbmac_promiscuous_mode(sc,0);
2455         }
2456     }
2457     spin_unlock_irqrestore(&sc->sbm_lock, flags);
2458 
2459     /*
2460      * Program the multicasts.  Do this every time.
2461      */
2462 
2463     sbmac_setmulti(sc);
2464 
2465 }
2466 
2467 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2468 {
2469     struct sbmac_softc *sc = netdev_priv(dev);
2470 
2471     if (!netif_running(dev) || !sc->phy_dev)
2472         return -EINVAL;
2473 
2474     return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2475 }
2476 
2477 static int sbmac_close(struct net_device *dev)
2478 {
2479     struct sbmac_softc *sc = netdev_priv(dev);
2480 
2481     napi_disable(&sc->napi);
2482 
2483     phy_stop(sc->phy_dev);
2484 
2485     sbmac_set_channel_state(sc, sbmac_state_off);
2486 
2487     netif_stop_queue(dev);
2488 
2489     if (debug > 1)
2490         pr_debug("%s: Shutting down ethercard\n", dev->name);
2491 
2492     phy_disconnect(sc->phy_dev);
2493     sc->phy_dev = NULL;
2494     free_irq(dev->irq, dev);
2495 
2496     sbdma_emptyring(&(sc->sbm_txdma));
2497     sbdma_emptyring(&(sc->sbm_rxdma));
2498 
2499     return 0;
2500 }
2501 
2502 static int sbmac_poll(struct napi_struct *napi, int budget)
2503 {
2504     struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2505     int work_done;
2506 
2507     work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2508     sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2509 
2510     if (work_done < budget) {
2511         napi_complete_done(napi, work_done);
2512 
2513 #ifdef CONFIG_SBMAC_COALESCE
2514         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2515                  ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2516                  sc->sbm_imr);
2517 #else
2518         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2519                  (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2520 #endif
2521     }
2522 
2523     return work_done;
2524 }
2525 
2526 
2527 static int sbmac_probe(struct platform_device *pldev)
2528 {
2529     struct net_device *dev;
2530     struct sbmac_softc *sc;
2531     void __iomem *sbm_base;
2532     struct resource *res;
2533     u64 sbmac_orig_hwaddr;
2534     int err;
2535 
2536     res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2537     if (!res) {
2538         printk(KERN_ERR "%s: failed to get resource\n",
2539                dev_name(&pldev->dev));
2540         err = -EINVAL;
2541         goto out_out;
2542     }
2543     sbm_base = ioremap(res->start, resource_size(res));
2544     if (!sbm_base) {
2545         printk(KERN_ERR "%s: unable to map device registers\n",
2546                dev_name(&pldev->dev));
2547         err = -ENOMEM;
2548         goto out_out;
2549     }
2550 
2551     /*
2552      * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2553      * value for us by the firmware if we're going to use this MAC.
2554      * If we find a zero, skip this MAC.
2555      */
2556     sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2557     pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2558          sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2559     if (sbmac_orig_hwaddr == 0) {
2560         err = 0;
2561         goto out_unmap;
2562     }
2563 
2564     /*
2565      * Okay, cool.  Initialize this MAC.
2566      */
2567     dev = alloc_etherdev(sizeof(struct sbmac_softc));
2568     if (!dev) {
2569         err = -ENOMEM;
2570         goto out_unmap;
2571     }
2572 
2573     platform_set_drvdata(pldev, dev);
2574     SET_NETDEV_DEV(dev, &pldev->dev);
2575 
2576     sc = netdev_priv(dev);
2577     sc->sbm_base = sbm_base;
2578 
2579     err = sbmac_init(pldev, res->start);
2580     if (err)
2581         goto out_kfree;
2582 
2583     return 0;
2584 
2585 out_kfree:
2586     free_netdev(dev);
2587     __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2588 
2589 out_unmap:
2590     iounmap(sbm_base);
2591 
2592 out_out:
2593     return err;
2594 }
2595 
2596 static int sbmac_remove(struct platform_device *pldev)
2597 {
2598     struct net_device *dev = platform_get_drvdata(pldev);
2599     struct sbmac_softc *sc = netdev_priv(dev);
2600 
2601     unregister_netdev(dev);
2602     sbmac_uninitctx(sc);
2603     mdiobus_unregister(sc->mii_bus);
2604     mdiobus_free(sc->mii_bus);
2605     iounmap(sc->sbm_base);
2606     free_netdev(dev);
2607 
2608     return 0;
2609 }
2610 
2611 static struct platform_driver sbmac_driver = {
2612     .probe = sbmac_probe,
2613     .remove = sbmac_remove,
2614     .driver = {
2615         .name = sbmac_string,
2616     },
2617 };
2618 
2619 module_platform_driver(sbmac_driver);
2620 MODULE_LICENSE("GPL");